B. Heras, S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri et al., DSB proteins and bacterial pathogenicity, Nature Reviews Microbiology, vol.23, issue.3, pp.215-225, 2009.
DOI : 10.1038/nrmicro2087

J. C. Bardwell, K. Mcgovern, and J. Beckwith, Identification of a protein required for disulfide bond formation in vivo, Cell, vol.67, issue.3, pp.581-589, 1991.
DOI : 10.1016/0092-8674(91)90532-4

C. R. Tinsley, R. Voulhoux, J. L. Beretti, J. Tommassen, and X. Nassif, Three Homologues, Including Two Membrane-bound Proteins, of the Disulfide Oxidoreductase DsbA in Neisseria meningitidis: EFFECTS ON BACTERIAL GROWTH AND BIOGENESIS OF FUNCTIONAL TYPE IV PILI, Journal of Biological Chemistry, vol.279, issue.26, pp.27078-27087, 2004.
DOI : 10.1074/jbc.M313404200

S. Sinha, O. H. Ambur, P. R. Langford, T. Tønjum, and J. S. Kroll, Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ, Microbiology, vol.154, issue.1, pp.217-225, 2008.
DOI : 10.1099/mic.0.2007/010496-0

J. L. Martin, J. C. Bardwell, and J. Kuriyan, Crystal structure of the DsbA protein required for disulphide bond formation in vivo, Nature, vol.365, issue.6445, pp.464-468, 1993.
DOI : 10.1038/365464a0

E. Ondo-mbele, C. Vivès, A. Koné, and L. Serre, Intriguing Conformation Changes Associated with the Trans/Cis Isomerization of a Prolyl Residue in the Active Site of the DsbA C33A Mutant, Journal of Molecular Biology, vol.347, issue.3, pp.555-563, 2005.
DOI : 10.1016/j.jmb.2005.01.049

S. Sinha, P. R. Langford, and J. S. Kroll, Functional diversity of three different DsbA proteins from Neisseria meningitidis, Microbiology, vol.150, issue.9, pp.2993-3000, 2004.
DOI : 10.1099/mic.0.27216-0

W. L. Delano, The PyMOL Molecular Graphics System, DeLano Scientific, 2002.

J. L. Martin, Thioredoxin ???a fold for all reasons, Structure, vol.3, issue.3, pp.245-250, 1995.
DOI : 10.1016/S0969-2126(01)00154-X

K. Inaba, Y. Takahashi, K. Ito, and S. Hayashi, Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB, Proc. Natl Acad. Sci. USA, pp.287-292, 2006.
DOI : 10.1073/pnas.0507570103

K. Inaba, S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita et al., Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation, Cell, vol.127, issue.4, pp.789-801, 2006.
DOI : 10.1016/j.cell.2006.10.034

M. Huber-wunderlich and R. Glockshuber, A single dipeptide sequence modulates the redox properties of a whole enzyme family. Folding Des, pp.161-171, 1998.

U. Grauschopf, J. R. Winther, P. Korber, T. Zander, P. Dallinger et al., Why is DsbA such an oxidizing disulfide catalyst? Cell, pp.947-955, 1995.
DOI : 10.1016/0092-8674(95)90210-4

URL : http://doi.org/10.1016/0092-8674(95)90210-4

L. W. Guddat, J. C. Bardwell, and J. L. Martin, Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization, Structure, vol.6, issue.6, pp.757-767, 1998.
DOI : 10.1016/S0969-2126(98)00077-X

B. Heras, M. Kurz, R. Jarrott, S. R. Shouldice, P. Frei et al., Staphylococcus aureus DsbA Does Not Have a Destabilizing Disulfide: A NEW PARADIGM FOR BACTERIAL OXIDATIVE FOLDING, Journal of Biological Chemistry, vol.283, issue.7, pp.4261-4271, 2008.
DOI : 10.1074/jbc.M707838200

H. Kadokura, H. Tian, T. Zander, J. C. Bardwell, and J. Beckwith, Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, Science, vol.303, issue.5657, pp.534-537, 2004.
DOI : 10.1126/science.1091724

J. Qin, G. M. Clore, W. P. Kennedy, J. Kuszewski, and A. M. Gronenborn, The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal, Structure, vol.4, issue.5, pp.613-620, 1996.
DOI : 10.1016/S0969-2126(96)00065-2

J. B. Charbonnier, P. Belin, M. Moutiez, E. A. Stura, and E. Quemeneur, On the role of the cis-proline residue in the active site of DsbA, Protein Science, vol.32, issue.1, pp.96-105, 1999.
DOI : 10.1110/ps.8.1.96

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, 2001.
DOI : 10.1073/pnas.181342398

J. P. Vivian, J. Scoullar, A. L. Robertson, S. P. Bottomley, J. Horne et al., Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis, Journal of Biological Chemistry, vol.283, issue.47, pp.32452-32461, 2008.
DOI : 10.1074/jbc.M803990200

J. Messens and J. F. Collet, Pathways of disulfide bond formation in Escherichia coli, The International Journal of Biochemistry & Cell Biology, vol.38, issue.7, pp.1050-1062, 2006.
DOI : 10.1016/j.biocel.2005.12.011

B. R. Roberts, Z. A. Wood, T. J. Jönsson, L. B. Poole, and P. A. Karplus, AhpF, Protein Science, vol.300, issue.9, pp.2414-2420, 2005.
DOI : 10.1110/ps.051459705

H. Sugeta, Normal vibrations and molecular conformations of dialkyl disulfides, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.31, issue.11, pp.1729-1737, 1975.
DOI : 10.1016/0584-8539(75)80116-4

G. Roos, A. Garcia-pino, K. Van-belle, E. Brosens, K. Wahni et al., The Conserved Active Site Proline Determines the Reducing Power of Staphylococcus aureus Thioredoxin, Journal of Molecular Biology, vol.368, issue.3, pp.800-811, 2007.
DOI : 10.1016/j.jmb.2007.02.045

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, issue.19, pp.5974-5983, 1994.
DOI : 10.1021/bi00185a039

M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik et al., High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery, Journal of Biomolecular Screening, vol.6, issue.6, pp.429-440, 2001.
DOI : 10.1177/108705710100600609

U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, and P. Nordlund, Thermofluor-based high-throughput stability optimization of proteins for structural studies, Analytical Biochemistry, vol.357, issue.2, pp.289-298, 2006.
DOI : 10.1016/j.ab.2006.07.027

M. Moutiez, T. V. Burova, T. Haertle, and E. Quemeneur, On the non-respect of the thermodynamic cycle by DsbA variants, Protein Science, vol.33, issue.1, pp.106-112, 1999.
DOI : 10.1110/ps.8.1.106

J. P. Grimshaw, C. U. Stirnimann, M. S. Brozzo, G. Malojcic, M. G. Grutter et al., DsbL and DsbI Form a Specific Dithiol Oxidase System for Periplasmic Arylsulfate Sulfotransferase in Uropathogenic Escherichia coli, Journal of Molecular Biology, vol.380, issue.4, pp.667-680, 2008.
DOI : 10.1016/j.jmb.2008.05.031

G. Ren, D. Stephan, Z. Xu, Y. Zheng, D. Tang et al., Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue, Journal of Biological Chemistry, vol.284, issue.15, pp.10150-10159, 2009.
DOI : 10.1074/jbc.M809509200

S. Hu, J. A. Peek, E. Rattigan, R. K. Taylor, and J. L. Martin, Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae, Journal of Molecular Biology, vol.268, issue.1, pp.137-146, 1997.
DOI : 10.1006/jmbi.1997.0940

E. Mössner, M. Huber-wunderlich, and R. Glockshuber, thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases, Protein Science, vol.34, issue.5, pp.1233-1244, 1998.
DOI : 10.1002/pro.5560070519

S. Quan, I. Schneider, J. Pan, V. Hacht, A. Bardwell et al., C Motif Is More than a Redox Rheostat, Journal of Biological Chemistry, vol.282, issue.39, pp.28823-28833, 2007.
DOI : 10.1074/jbc.M705291200

B. Miroux and J. E. Walker, Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels, Journal of Molecular Biology, vol.260, issue.3, pp.289-298, 1996.
DOI : 10.1006/jmbi.1996.0399

U. Jakob, W. Muse, M. Eser, and J. C. Bardwell, Chaperone Activity with a Redox Switch, Cell, vol.96, issue.3, pp.341-352, 1999.
DOI : 10.1016/S0092-8674(00)80547-4

G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-77, 1959.
DOI : 10.1016/0003-9861(59)90090-6

J. Regeimbal and J. C. Bardwell, DsbB Catalyzes Disulfide Bond Formation de Novo, Journal of Biological Chemistry, vol.277, issue.36, pp.32706-32713, 2002.
DOI : 10.1074/jbc.M205433200

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

T. C. Termilliger and J. Berendzen, Automated MAD and MIR structure solution, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.4, pp.849-861, 1999.
DOI : 10.1107/S0907444999000839

R. Miller, S. M. Gallo, H. G. Khalak, and C. M. Weeks, SnB: crystal structure determination via shake-and-bake, Journal of Applied Crystallography, vol.27, issue.4, pp.613-621, 1994.
DOI : 10.1107/S0021889894000191

E. De-la-fortelle and G. Bricogne, [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods, Methods Enzymol, vol.276, pp.472-494, 1997.
DOI : 10.1016/S0076-6879(97)76073-7

A. Perrakis, R. Morris, and V. S. Lamzin, Automated protein model building combined with iterative structure refinement, Nature Structural Biology, vol.6, issue.5, pp.458-463, 1999.
DOI : 10.1038/8263

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

A. Vagin and A. Teplyakov, An approach to multi-copy search in molecular replacement, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.12, pp.1622-1624, 2000.
DOI : 10.1107/S0907444900013780

R. J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors, Acta Crystallographica Section A Foundations of Crystallography, vol.42, issue.3, pp.140-149, 1986.
DOI : 10.1107/S0108767386099622

&. Crystallography and . Nmr, System: a new software suite for macromolecular structure determination, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.54, pp.905-921

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

P. Carpentier, A. Royant, J. Ohana, and D. Bourgeois, Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy, Journal of Applied Crystallography, vol.40, issue.6, pp.1113-1122, 2007.
DOI : 10.1107/S0021889807044202

F. Aslund, K. D. Berndt, and A. Holmgren, Redox Potentials of Glutaredoxins and Other Thiol-Disulfide Oxidoreductases of the Thioredoxin Superfamily Determined by Direct Protein-Protein Redox Equilibria, Journal of Biological Chemistry, vol.272, issue.49, pp.30780-30786, 1997.
DOI : 10.1074/jbc.272.49.30780

F. Aslund, B. Ehn, A. Miranda-vizuete, C. Pueyo, and A. Holmgren, Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant., Proceedings of the National Academy of Sciences, vol.91, issue.21, pp.91-9813, 1994.
DOI : 10.1073/pnas.91.21.9813

M. Bader, W. Muse, D. P. Ballou, C. Gassner, and J. C. Bardwell, Oxidative Protein Folding Is Driven by the Electron Transport System, Cell, vol.98, issue.2, pp.217-244, 1999.
DOI : 10.1016/S0092-8674(00)81016-8

M. W. Bader, T. Xie, C. A. Yu, and J. C. Bardwell, Disulfide Bonds Are Generated by Quinone Reduction, Journal of Biological Chemistry, vol.275, issue.34, pp.26082-26090, 2000.
DOI : 10.1074/jbc.M003850200

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.98-10037, 2001.
DOI : 10.1073/pnas.181342398

J. C. Bardwell, J. O. Lee, G. Jander, N. Martin, D. Belin et al., A pathway for disulfide bond formation in vivo., Proceedings of the National Academy of Sciences, vol.90, issue.3, pp.1038-1080, 1993.
DOI : 10.1073/pnas.90.3.1038

J. C. Bardwell, K. Mcgovern, and J. Beckwith, Identification of a protein required for disulfide bond formation in vivo, Cell, vol.67, issue.3, pp.581-590, 1991.
DOI : 10.1016/0092-8674(91)90532-4

P. H. Bessette, J. Qiu, J. C. Bardwell, J. R. Swartz, and G. Georgiou, Effect of Sequences of the Active-Site Dipeptides of DsbA and DsbC on In Vivo Folding of Multidisulfide Proteins in Escherichia coli, Journal of Bacteriology, vol.183, issue.3, p.980, 2001.
DOI : 10.1128/JB.183.3.980-988.2001

T. L. Blundell and L. N. Johnson, Protein crystallography, 1976.

G. A. Bowden and G. Georgiou, Folding and aggregation of beta-lactamase in the periplasmic space of Escherichia coli, J Biol Chem, vol.265, issue.28, pp.16760-16766, 1990.

E. Brickman and J. Beckwith, Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ??80 transducing phages, Journal of Molecular Biology, vol.96, issue.2, pp.307-323, 1975.
DOI : 10.1016/0022-2836(75)90350-2

M. A. Bringer, N. Rolhion, A. L. Glasser, and A. Darfeuille-michaud, The Oxidoreductase DsbA Plays a Key Role in the Ability of the Crohn's Disease-Associated Adherent-Invasive Escherichia coli Strain LF82 To Resist Macrophage Killing, Journal of Bacteriology, vol.189, issue.13, pp.4860-71, 2007.
DOI : 10.1128/JB.00233-07

R. Bryk, C. D. Lima, H. Erdjument-bromage, P. Tempst, and C. Nathan, Metabolic Enzymes of Mycobacteria Linked to Antioxidant Defense by a Thioredoxin-Like Protein, Science, vol.295, issue.5557, pp.1073-1080, 2002.
DOI : 10.1126/science.1067798

L. S. Burall, J. M. Harro, X. Li, C. V. Lockatell, S. D. Himpsl et al., Proteus mirabilis Genes That Contribute to Pathogenesis of Urinary Tract Infection: Identification of 25 Signature-Tagged Mutants Attenuated at Least 100-Fold, Infection and Immunity, vol.72, issue.5, pp.2922-2960, 2004.
DOI : 10.1128/IAI.72.5.2922-2938.2004

O. Carmel-harel and G. Storz, Responses to Oxidative Stress, Annual Review of Microbiology, vol.54, issue.1, pp.439-61, 2000.
DOI : 10.1146/annurev.micro.54.1.439

J. B. Charbonnier, P. Belin, M. Moutiez, E. A. Stura, and E. Quemeneur, On the role of the cis-proline residue in the active site of DsbA, Protein Science, vol.32, issue.1, pp.96-105, 1999.
DOI : 10.1110/ps.8.1.96

J. Chen, J. L. Song, S. Zhang, Y. Wang, D. F. Cui et al., Chaperone Activity of DsbC, Journal of Biological Chemistry, vol.274, issue.28, pp.19601-19606, 1999.
DOI : 10.1074/jbc.274.28.19601

P. T. Chivers, M. C. Laboissiere, and R. T. Raines, The CXXC motif: imperatives for the formation of native disulfide bonds in the cell, Embo J, vol.15, issue.11, pp.2659-67, 1996.

J. F. Collet and J. C. Bardwell, Oxidative protein folding in bacteria, Molecular Microbiology, vol.337, issue.1, pp.1-8, 2002.
DOI : 10.1046/j.1365-2958.2002.02851.x

J. F. Collet, J. Riemer, M. W. Bader, and J. C. Bardwell, Reconstitution of a Disulfide Isomerization System, Journal of Biological Chemistry, vol.277, issue.30, pp.26886-92, 2002.
DOI : 10.1074/jbc.M203028200

F. E. Dailey and H. C. Berg, Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli., Proceedings of the National Academy of Sciences, vol.90, issue.3, pp.1043-1050, 1993.
DOI : 10.1073/pnas.90.3.1043

N. J. Darby, S. Raina, and T. E. Creighton, Contributions of Substrate Binding to the Catalytic Activity of DsbC, Biochemistry, vol.37, issue.3, pp.783-91, 1998.
DOI : 10.1021/bi971888f

E. De-la-fortelle and G. Bricogne, [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods, Methods Enzymol, vol.276, pp.472-494, 1997.
DOI : 10.1016/S0076-6879(97)76073-7

L. Debarbieux and J. Beckwith, The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm, Proceedings of the National Academy of Sciences, vol.95, issue.18, pp.95-10751, 1998.
DOI : 10.1073/pnas.95.18.10751

L. Debarbieux and J. Beckwith, On the Functional Interchangeability, Oxidant versus Reductant, of Members of the Thioredoxin Superfamily, Journal of Bacteriology, vol.182, issue.3, pp.723-730, 2000.
DOI : 10.1128/JB.182.3.723-727.2000

R. J. Dutton, D. Boyd, M. Berkmen, and J. Beckwith, Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation, Proceedings of the National Academy of Sciences, vol.105, issue.33, pp.11933-11941, 2008.
DOI : 10.1073/pnas.0804621105

G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-77, 1959.
DOI : 10.1016/0003-9861(59)90090-6

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

P. R. Evans, Proceedings of CCP4 Study Weekend, Data Collection & Processing, pp.114-122, 1993.

R. B. Freedman, [38] Protein disulfide-isomerase, Conformation and Forces in Protein Folding, pp.204-214, 1991.
DOI : 10.1016/0076-6879(95)51143-1

R. B. Freedman, N. J. Bulleid, H. C. Hawkins, and J. L. Paver, Role of protein disulphide-isomerase in the expression of native proteins, Biochem Soc Symp, vol.55, pp.167-92, 1989.

S. Froshauer, G. N. Green, D. Boyd, K. Mcgovern, and J. Beckwith, Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli, Journal of Molecular Biology, vol.200, issue.3, pp.501-512, 1988.
DOI : 10.1016/0022-2836(88)90539-6

A. Groves, J. E. Haouz, P. Nettleship, R. J. Nordlund, M. Owens et al., The impact of protein characterization in structural proteomics, Acta Crystallogr D Biol Crystallogr, vol.62, pp.1125-1161, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187921

P. Gouet, E. Courcelle, D. I. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, issue.4, pp.305-313, 1999.
DOI : 10.1093/bioinformatics/15.4.305

URL : https://hal.archives-ouvertes.fr/hal-00314288

U. Grauschopf, J. R. Winther, P. Korber, T. Zander, P. Dallinger et al., Why is DsbA such an oxidizing disulfide catalyst?, Cell, vol.83, issue.6, pp.947-55, 1995.
DOI : 10.1016/0092-8674(95)90210-4

URL : http://doi.org/10.1016/0092-8674(95)90210-4

J. P. Grimshaw, C. U. Stirnimann, M. S. Brozzo, G. Malojcic, M. G. Grutter et al., DsbL and DsbI Form a Specific Dithiol Oxidase System for Periplasmic Arylsulfate Sulfotransferase in Uropathogenic Escherichia coli, Journal of Molecular Biology, vol.380, issue.4, pp.667-80, 2008.
DOI : 10.1016/j.jmb.2008.05.031

. Martin, Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability, Protein Sci, vol.6, issue.9, pp.1893-900, 1997.

L. W. Guddat, J. C. Bardwell, and J. L. Martin, Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization, Structure, vol.6, issue.6, pp.757-67, 1998.
DOI : 10.1016/S0969-2126(98)00077-X

L. W. Guddat, J. C. Bardwell, T. Zander, and J. L. Martin, DsbA are conserved and are implicated in peptide binding, Protein Science, vol.33, issue.6, pp.1148-56, 1997.
DOI : 10.1002/pro.5560060603

U. H. Ha, Y. Wang, and S. Jin, DsbA of Pseudomonas aeruginosa Is Essential for Multiple Virulence Factors, Infection and Immunity, vol.71, issue.3, pp.1590-1595, 2003.
DOI : 10.1128/IAI.71.3.1590-1595.2003

P. W. Haebel, D. Goldstone, F. Katzen, J. Beckwith, and P. Metcalf, The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex, The EMBO Journal, vol.21, issue.18, pp.4774-84, 2002.
DOI : 10.1093/emboj/cdf489

B. Heras, M. Kurz, R. Jarrott, S. R. Shouldice, P. Frei et al., Staphylococcus aureus DsbA Does Not Have a Destabilizing Disulfide: A NEW PARADIGM FOR BACTERIAL OXIDATIVE FOLDING, Journal of Biological Chemistry, vol.283, issue.7, pp.4261-71, 2008.
DOI : 10.1074/jbc.M707838200

B. Heras, M. Kurz, S. R. Shouldice, and J. L. Martin, The name's bond??????disulfide bond, Current Opinion in Structural Biology, vol.17, issue.6, pp.691-699, 2007.
DOI : 10.1016/j.sbi.2007.08.009

B. Heras, S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri et al., DSB proteins and bacterial pathogenicity, Nature Reviews Microbiology, vol.23, issue.3, pp.215-240, 2009.
DOI : 10.1038/nrmicro2087

A. Hiniker and J. C. Bardwell, In Vivo Substrate Specificity of Periplasmic Disulfide Oxidoreductases, Journal of Biological Chemistry, vol.279, issue.13, pp.12967-73, 2004.
DOI : 10.1074/jbc.M311391200

A. Hiniker, G. Ren, B. Heras, Y. Zheng, S. Laurinec et al., Laboratory evolution of one disulfide isomerase to resemble another, Proceedings of the National Academy of Sciences, vol.104, issue.28, pp.11670-11675, 2007.
DOI : 10.1073/pnas.0704692104

A. Holmgren, Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide, J Biol Chem, vol.254, pp.9627-9659, 1979.

A. Holmgren, Thioredoxin and glutaredoxin: small multi-functional redox proteins with active-site disulphide bonds, Biochemical Society Transactions, vol.16, issue.2, pp.95-101, 1988.
DOI : 10.1042/bst0160095

A. Holmgren, Thioredoxin and glutaredoxin systems, J Biol Chem, vol.264, issue.24, 1989.

M. J. Gooley and . Scanlon, Probing the flexibility of the DsbA oxidoreductase from Vibrio cholerae--a 15N -1H heteronuclear NMR relaxation analysis of oxidized and reduced forms of DsbA, J Mol Biol, vol.371, issue.3, pp.703-719, 2007.

S. H. Hu, J. A. Peek, E. Rattigan, R. K. Taylor, and J. L. Martin, Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae, Journal of Molecular Biology, vol.268, issue.1, pp.137-183, 1997.
DOI : 10.1006/jmbi.1997.0940

M. Huber-wunderlich and R. Glockshuber, A single dipeptide sequence modulates the redox properties of a whole enzyme family, Folding and Design, vol.3, issue.3, pp.161-71, 1998.
DOI : 10.1016/S1359-0278(98)00024-8

C. Hwang, A. J. Sinskey, and H. F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science, vol.257, issue.5076, pp.1496-502, 1992.
DOI : 10.1126/science.1523409

K. Inaba and K. Ito, Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade, The EMBO Journal, vol.21, issue.11, pp.2646-54, 2002.
DOI : 10.1093/emboj/21.11.2646

K. Inaba, S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita et al., Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation, Cell, vol.127, issue.4, pp.789-801, 2006.
DOI : 10.1016/j.cell.2006.10.034

K. Inaba, Y. H. Takahashi, N. Fujieda, K. Kano, H. Miyoshi et al., DsbB Elicits a Red-shift of Bound Ubiquinone during the Catalysis of DsbA Oxidation, Journal of Biological Chemistry, vol.279, issue.8, pp.6761-6769, 2004.
DOI : 10.1074/jbc.M310765200

K. Inaba, Y. H. Takahashi, K. Ito, and S. Hayashi, Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB, Proceedings of the National Academy of Sciences, vol.103, issue.2, pp.287-92, 2006.
DOI : 10.1073/pnas.0507570103

K. Ito and K. Inaba, The disulfide bond formation (Dsb) system, Current Opinion in Structural Biology, vol.18, issue.4, pp.450-458, 2008.
DOI : 10.1016/j.sbi.2008.02.002

M. W. Jackson and G. V. Plano, DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis, J Bacteriol, vol.181, issue.16, pp.5126-5156, 1999.

U. Jakob, W. Muse, M. Eser, and J. C. Bardwell, Chaperone Activity with a Redox Switch, Cell, vol.96, issue.3, pp.341-52, 1999.
DOI : 10.1016/S0092-8674(00)80547-4

G. Jander, N. L. Martin, and J. Beckwith, Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation, Embo J, vol.13, issue.21, pp.5121-5128, 1994.

S. Jonda, M. Huber-wunderlich, R. Glockshuber, and E. Mossner, Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm, The EMBO Journal, vol.18, issue.12, pp.3271-81, 1999.
DOI : 10.1093/emboj/18.12.3271

G. R. Jones, M. Christodoulides, J. L. Brooks, A. R. Miller, K. A. Cartwright et al., Dynamics of Carriage of Neisseria meningitidis in a Group of Military Recruits: Subtype Stability and Specificity of the Immune Response following Colonization, Journal of Infectious Diseases, vol.178, issue.2, pp.451-460, 1998.
DOI : 10.1086/515622

A. Jordan and P. Reichard, RIBONUCLEOTIDE REDUCTASES, Annual Review of Biochemistry, vol.67, issue.1, pp.71-98, 1998.
DOI : 10.1146/annurev.biochem.67.1.71

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

H. Kadokura and J. Beckwith, Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA, The EMBO Journal, vol.21, issue.10, pp.2354-63, 2002.
DOI : 10.1093/emboj/21.10.2354

H. Kadokura, F. Katzen, and J. Beckwith, Protein Disulfide Bond Formation in Prokaryotes, Annual Review of Biochemistry, vol.72, issue.1, pp.111-146, 2003.
DOI : 10.1146/annurev.biochem.72.121801.161459

H. Kadokura, H. Tian, T. Zander, J. C. Bardwell, and J. Beckwith, Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, Science, vol.303, issue.5657, pp.534-541, 2004.
DOI : 10.1126/science.1091724

S. Kamitani, Y. Akiyama, and K. Ito, Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme, Embo J, vol.11, issue.1, pp.57-62, 1992.

H. J. Kang, F. Coulibaly, F. Clow, T. Proft, and E. N. Baker, Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure, Science, vol.318, issue.5856, pp.1625-1633, 2007.
DOI : 10.1126/science.1145806

R. Kern, A. Malki, A. Holmgren, and G. Richarme, Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase, Biochemical Journal, vol.371, issue.3, pp.965-72, 2003.
DOI : 10.1042/bj20030093

E. E. Kim and H. W. Wyckoff, Reaction mechanism of alkaline phosphatase based on crystal structures, Journal of Molecular Biology, vol.218, issue.2, pp.449-64, 1991.
DOI : 10.1016/0022-2836(91)90724-K

S. R. Klee, X. Nassif, B. Kusecek, P. Merker, J. L. Beretti et al., Molecular and Biological Analysis of Eight Genetic Islands That Distinguish Neisseria meningitidis from the Closely Related Pathogen Neisseria gonorrhoeae, Infection and Immunity, vol.68, issue.4, pp.2082-95, 2000.
DOI : 10.1128/IAI.68.4.2082-2095.2000

T. Kobayashi, S. Kishigami, M. Sone, H. Inokuchi, T. Mogi et al., Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.94-11857, 1997.
DOI : 10.1073/pnas.94.22.11857

T. Kortemme and T. E. Creighton, Ionisation of Cysteine Residues at the Termini of Model ??-Helical Peptides. Relevance to Unusual Thiol pKaValues in Proteins of the Thioredoxin Family, Journal of Molecular Biology, vol.253, issue.5, pp.799-812, 1995.
DOI : 10.1006/jmbi.1995.0592

T. Kortemme, N. J. Darby, and T. E. Creighton, Electrostatic Interactions in the Active Site of the N-Terminal Thioredoxin-like Domain of Protein Disulfide Isomerase, Biochemistry, vol.35, issue.46, pp.14503-14514, 1996.
DOI : 10.1021/bi9617724

N. S. Kosower and E. M. Kosower, The Glutathione Status of Cells, Int Rev Cytol, vol.54, pp.109-60, 1978.
DOI : 10.1016/S0074-7696(08)60166-7

C. Lafaye, T. Iwema, P. Carpentier, C. Jullian-binard, J. S. Kroll et al., Biochemical and Structural Study of the Homologues of the Thiol???Disulfide Oxidoreductase DsbA in Neisseria meningitidis, Journal of Molecular Biology, vol.392, issue.4, pp.952-66, 2009.
DOI : 10.1016/j.jmb.2009.07.056

URL : https://hal.archives-ouvertes.fr/inserm-00869150

A. M. Lasica and E. K. Jagusztyn-krynicka, The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis, FEMS Microbiology Reviews, vol.31, issue.5, pp.626-662, 2007.
DOI : 10.1111/j.1574-6976.2007.00081.x

S. H. Lee, S. M. Butler, and A. Camilli, Selection for in vivo regulators of bacterial virulence, Proceedings of the National Academy of Sciences, vol.98, issue.12, pp.6889-94, 2001.
DOI : 10.1073/pnas.111581598

A. G. Leslie, Integration of macromolecular diffraction data, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.10, pp.1696-702, 1999.
DOI : 10.1107/S090744499900846X

. Holmgren, New thioredoxins and glutaredoxins as electron donors of 3'- phosphoadenylylsulfate reductase, J Biol Chem, vol.274, issue.12, pp.7695-7703, 1999.

D. Lin, C. V. Rao, and J. M. Slauch, The Salmonella SPI1 Type Three Secretion System Responds to Periplasmic Disulfide Bond Status via the Flagellar Apparatus and the RcsCDB System, Journal of Bacteriology, vol.190, issue.1, pp.87-97, 2008.
DOI : 10.1128/JB.01323-07

J. Lundstrom, G. Krause, and A. Holmgren, A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease, J Biol Chem, vol.267, issue.13, pp.9047-52, 1992.

R. M. Macnab, [44] Proton-driven bacterial flagellar motor, Methods Enzymol, vol.125, pp.563-81, 1986.
DOI : 10.1016/S0076-6879(86)25046-6

K. Maeda, P. Hagglund, C. Finnie, B. Svensson, and A. Henriksen, Structural Basis for Target Protein Recognition by??the Protein Disulfide Reductase Thioredoxin, Structure, vol.14, issue.11, pp.1701-1711, 2006.
DOI : 10.1016/j.str.2006.09.012

G. Malojcic, R. L. Owen, J. P. Grimshaw, and R. Glockshuber, Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB, FEBS Lett, vol.582, pp.23-24, 2008.

R. E. Mandrell, J. M. Griffiss, and B. A. Macher, Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes [published erratum appears in J Exp Med 1988 Oct 1;168(4):1517], Journal of Experimental Medicine, vol.168, issue.1, pp.107-133, 1988.
DOI : 10.1084/jem.168.1.107

J. L. Martin, Thioredoxin ???a fold for all reasons, Structure, vol.3, issue.3, pp.245-50, 1995.
DOI : 10.1016/S0969-2126(01)00154-X

J. L. Martin, J. C. Bardwell, and J. Kuriyan, Crystal structure of the DsbA protein required for disulphide bond formation in vivo, Nature, vol.365, issue.6445, pp.464-472, 1993.
DOI : 10.1038/365464a0

R. Meima, C. Eschevins, S. Fillinger, A. Bolhuis, L. W. Hamoen et al., The bdbDC Operon of Bacillus subtilisEncodes Thiol-disulfide Oxidoreductases Required for Competence Development, Journal of Biological Chemistry, vol.277, issue.9, pp.6994-7001, 2002.
DOI : 10.1074/jbc.M111380200

A. J. Merz and M. So, with Epithelial Cell Membranes, Annual Review of Cell and Developmental Biology, vol.16, issue.1, pp.423-57, 2000.
DOI : 10.1146/annurev.cellbio.16.1.423

J. Messens and J. F. Collet, Pathways of disulfide bond formation in Escherichia coli, The International Journal of Biochemistry & Cell Biology, vol.38, issue.7, pp.1050-62, 2006.
DOI : 10.1016/j.biocel.2005.12.011

R. Miller, S. M. Gallo, H. G. Khalak, and C. M. Weeks, SnB: crystal structure determination via shake-and-bake, Journal of Applied Crystallography, vol.27, issue.4, pp.613-621, 1994.
DOI : 10.1107/S0021889894000191

A. Miranda-vizuete and G. Spyrou, The novel oxidoreductase KDRF (KM-102-derived reductase-like factor) is identical with human thioredoxin reductase, Biochemical Journal, vol.325, issue.1, pp.287-295, 1997.
DOI : 10.1042/bj3250287

B. Miroux and J. E. Walker, Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels, Journal of Molecular Biology, vol.260, issue.3, pp.289-98, 1996.
DOI : 10.1006/jmbi.1996.0399

D. Missiakas, C. Georgopoulos, and S. Raina, Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo., Proceedings of the National Academy of Sciences, vol.90, issue.15, pp.90-7084, 1993.
DOI : 10.1073/pnas.90.15.7084

E. Mossner, M. Huber-wunderlich, and R. Glockshuber, thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases, Protein Science, vol.34, issue.5, pp.1233-1277, 1998.
DOI : 10.1002/pro.5560070519

E. Mossner, M. Huber-wunderlich, A. Rietsch, J. Beckwith, R. Glockshuber et al., Importance of Redox Potential for the in Vivo Function of the Cytoplasmic Disulfide Reductant Thioredoxin from Escherichia coli, Journal of Biological Chemistry, vol.274, issue.36, pp.25254-25263, 1999.
DOI : 10.1074/jbc.274.36.25254

M. Moutiez, T. V. Burova, T. Haertle, and E. Quemeneur, On the non-respect of the thermodynamic cycle by DsbA variants, Protein Science, vol.33, issue.1, pp.106-118, 1999.
DOI : 10.1110/ps.8.1.106

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-55, 1997.
DOI : 10.1107/S0907444996012255

F. C. Neidhardt, P. L. Bloch, and D. F. Smith, Culture medium for enterobacteria, J Bacteriol, vol.119, issue.3, pp.736-783, 1974.

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, issue.19, pp.5974-83, 1994.
DOI : 10.1021/bi00185a039

E. Ondo-mbele, C. Vives, A. Kone, and L. Serre, Intriguing Conformation Changes Associated with the Trans/Cis Isomerization of a Prolyl Residue in the Active Site of the DsbA C33A Mutant, Journal of Molecular Biology, vol.347, issue.3, pp.555-63, 2005.
DOI : 10.1016/j.jmb.2005.01.049

R. Ortenberg and J. Beckwith, : Redox Myths, Realities, and Practicalities, Antioxidants & Redox Signaling, vol.5, issue.4, pp.403-414, 2003.
DOI : 10.1089/152308603768295140

E. Carver, B. A. Asel, P. Springer, F. R. Lane, and . Salemme, High-density miniaturized thermal shift assays as a general strategy for drug discovery, J Biomol Screen, vol.6, issue.6, pp.429-469, 2001.

J. Scanlon, The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes, J Biol Chem, vol.284, issue.26, pp.17835-17880, 2009.

J. A. Peek and R. K. Taylor, Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae., Proceedings of the National Academy of Sciences, vol.89, issue.13, pp.6210-6214, 1992.
DOI : 10.1073/pnas.89.13.6210

A. Perrakis, R. Morris, and V. S. Lamzin, Automated protein model building combined with iterative structure refinement, Nature Structural Biology, vol.6, issue.5, pp.458-63, 1999.
DOI : 10.1038/8263

T. Peters, L. K. Jr, and . Davidson, The biosynthesis of rat serum albumin In vivo studies on the formation of the disulfide bonds, J Biol Chem, vol.257, issue.15, pp.8847-53, 1982.

W. A. Prinz, F. Aslund, A. Holmgren, and J. Beckwith, The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm, Journal of Biological Chemistry, vol.272, issue.25, pp.15661-15668, 1997.
DOI : 10.1074/jbc.272.25.15661

A. Puig, M. M. Lyles, R. Noiva, and H. F. Gilbert, The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase, J Biol Chem, vol.269, issue.29, pp.19128-19163, 1994.

J. Qin, G. M. Clore, W. M. Kennedy, J. R. Huth, and A. M. Gronenborn, Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF??B, Structure, vol.3, issue.3, pp.289-97, 1995.
DOI : 10.1016/S0969-2126(01)00159-9

J. Qin, G. M. Clore, W. P. Kennedy, J. Kuszewski, and A. M. Gronenborn, The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal, Structure, vol.4, issue.5, pp.613-633, 1996.
DOI : 10.1016/S0969-2126(96)00065-2

S. Quan, I. Schneider, J. Pan, A. Von-hacht, and J. C. Bardwell, C Motif Is More than a Redox Rheostat, Journal of Biological Chemistry, vol.282, issue.39, pp.28823-28856, 2007.
DOI : 10.1074/jbc.M705291200

. Jagusztyn-krynicka, Characterization of new DsbB-like thiol-oxidoreductases of, 2005.

J. Regeimbal and J. C. Bardwell, DsbB Catalyzes Disulfide Bond Formation de Novo, Journal of Biological Chemistry, vol.277, issue.36, pp.32706-32719, 2002.
DOI : 10.1074/jbc.M205433200

A. Shouldice, J. L. Hiniker, B. Martin, J. C. Heras, and . Bardwell, Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue, J Biol Chem, vol.284, issue.15, pp.10150-10159, 2009.

P. W. Riddles, R. L. Blakeley, and B. Zerner, [8] Reassessment of Ellman's reagent, Methods Enzymol, vol.91, pp.49-60, 1983.
DOI : 10.1016/S0076-6879(83)91010-8

A. Rietsch, D. Belin, N. Martin, and J. Beckwith, An in vivo pathway for disulfide bond isomerization in Escherichia coli, Proceedings of the National Academy of Sciences, vol.93, issue.23, pp.13048-53, 1996.
DOI : 10.1073/pnas.93.23.13048

B. R. Roberts, Z. A. Wood, T. J. Jonsson, L. B. Poole, and P. A. Karplus, AhpF, Protein Science, vol.300, issue.9, pp.2414-2434, 2005.
DOI : 10.1110/ps.051459705

G. Roos, A. Garcia-pino, K. Van-belle, E. Brosens, K. Wahni et al., The Conserved Active Site Proline Determines the Reducing Power of Staphylococcus aureus Thioredoxin, Journal of Molecular Biology, vol.368, issue.3, pp.368-800, 2007.
DOI : 10.1016/j.jmb.2007.02.045

V. Rybin, A. Zapun, A. Torronen, S. Raina, D. Missiakas et al., Crystallization of DsbC, the disulfide bond isomerase of Escherichia coli, Acta Crystallographica Section D Biological Crystallography, vol.52, issue.6, pp.1219-1240, 1996.
DOI : 10.1107/S0907444996008967

B. S. Shorrosh, J. Subramaniam, K. R. Schubert, and R. A. Dixon, Expression and Localization of Plant Protein Disulfide Isomerase, Plant Physiology, vol.103, issue.3, pp.719-726, 1993.
DOI : 10.1104/pp.103.3.719

A. K. Singh, M. Bhattacharyya-pakrasi, and H. B. Pakrasi, Identification of an Atypical Membrane Protein Involved in the Formation of Protein Disulfide Bonds in Oxygenic Photosynthetic Organisms, Journal of Biological Chemistry, vol.283, issue.23, pp.15762-70, 2008.
DOI : 10.1074/jbc.M800982200

S. Sinha, O. H. Ambur, P. R. Langford, T. Tonjum, and J. S. Kroll, Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ, Microbiology, vol.154, issue.1, pp.217-242, 2008.
DOI : 10.1099/mic.0.2007/010496-0

S. Sinha, P. R. Langford, and J. S. Kroll, Functional diversity of three different DsbA proteins from Neisseria meningitidis, Microbiology, vol.150, issue.9, pp.2993-3000, 2004.
DOI : 10.1099/mic.0.27216-0

M. Sone, Y. Akiyama, and K. Ito, Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds, J Biol Chem, vol.272, issue.16, pp.10349-52, 1997.

D. S. Stephens, Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis, Vaccine, vol.27, issue.2, pp.71-78, 2009.
DOI : 10.1016/j.vaccine.2009.04.070

D. S. Stephens, B. Greenwood, and P. Brandtzaeg, Epidemic meningitis, meningococcaemia, and Neisseria meningitidis, The Lancet, vol.369, issue.9580, pp.2196-210, 2007.
DOI : 10.1016/S0140-6736(07)61016-2

D. S. Stephens, P. A. Spellman, and J. S. Swartley, to Human Mucosal Cells, Journal of Infectious Diseases, vol.167, issue.2, pp.475-484, 1993.
DOI : 10.1093/infdis/167.2.475

E. J. Stewart, F. Aslund, and J. Beckwith, Disulfide bond formation in the Escherichia coli cytoplasm: an invivo role reversal for the thioredoxins, The EMBO Journal, vol.17, issue.19, pp.5543-50, 1998.
DOI : 10.1093/emboj/17.19.5543

H. Sugeta, Normal vibrations and molecular conformations of dialkyl disulfides, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.31, issue.11, pp.1729-1737, 1975.
DOI : 10.1016/0584-8539(75)80116-4

J. S. Swartley, A. A. Marfin, S. Edupuganti, L. J. Liu, P. Cieslak et al., Capsule switching of Neisseria meningitidis, Proceedings of the National Academy of Sciences, vol.94, issue.1, pp.271-277, 1997.
DOI : 10.1073/pnas.94.1.271

T. C. Terwilliger and J. Berendzen, Automated MAD and MIR structure solution, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.4, pp.849-861, 1999.
DOI : 10.1107/S0907444999000839

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-80, 1994.
DOI : 10.1093/nar/22.22.4673

C. R. Tinsley and X. Nassif, Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities., Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.11109-11123, 1996.
DOI : 10.1073/pnas.93.20.11109

C. R. Tinsley, R. Voulhoux, J. L. Beretti, J. Tommassen, and X. Nassif, Three Homologues, Including Two Membrane-bound Proteins, of the Disulfide Oxidoreductase DsbA in Neisseria meningitidis: EFFECTS ON BACTERIAL GROWTH AND BIOGENESIS OF FUNCTIONAL TYPE IV PILI, Journal of Biological Chemistry, vol.279, issue.26, pp.27078-87, 2004.
DOI : 10.1074/jbc.M313404200

J. F. Tomb, A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd., Proceedings of the National Academy of Sciences, vol.89, issue.21, pp.10252-10258, 1992.
DOI : 10.1073/pnas.89.21.10252

Y. L. Tzeng and D. S. Stephens, Epidemiology and pathogenesis of Neisseria meningitidis, Microbes and Infection, vol.2, issue.6, pp.687-700, 2000.
DOI : 10.1016/S1286-4579(00)00356-7

A. Vagin and A. Teplyakov, An approach to multi-copy search in molecular replacement, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.12, pp.1622-1624, 2000.
DOI : 10.1107/S0907444900013780

M. Van-deuren, P. Brandtzaeg, and J. W. Van-der-meer, Update on Meningococcal Disease with Emphasis on Pathogenesis and Clinical Management, Clinical Microbiology Reviews, vol.13, issue.1, pp.144-66, 2000.
DOI : 10.1128/CMR.13.1.144-166.2000

F. Vinci, J. Couprie, P. Pucci, E. Quemeneur, and M. Moutiez, Description of the topographical changes associated to the different stages of the DsbA catalytic cycle, Protein Science, vol.5, issue.7, pp.1600-1612, 2002.
DOI : 10.1110/ps.4960102

J. P. Vivian, J. Scoullar, A. L. Robertson, S. P. Bottomley, J. Horne et al., Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis, Journal of Biological Chemistry, vol.283, issue.47, pp.32452-61, 2008.
DOI : 10.1074/jbc.M803990200

S. Wagner, M. M. Klepsch, S. Schlegel, A. Appel, R. Draheim et al., Tuning Escherichia coli for membrane protein overexpression, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14371-14377, 2008.
DOI : 10.1073/pnas.0804090105

M. Watarai, T. Tobe, M. Yoshikawa, and C. Sasakawa, Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.4927-4958, 1995.
DOI : 10.1073/pnas.92.11.4927

M. Wunderlich, R. Jaenicke, and R. Glockshuber, The Redox Properties of Protein Disulfide Isomerase (DsbA) of Escherichia coli Result from a Tense Conformation of its Oxidized Form, Journal of Molecular Biology, vol.233, issue.4, pp.559-66, 1993.
DOI : 10.1006/jmbi.1993.1535

Y. F. Yang and W. W. Wells, Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis, J Biol Chem, vol.266, pp.12759-65, 1991.

J. Yu and J. S. Kroll, DsbA: a protein-folding catalyst contributing to bacterial virulence, Microbes and Infection, vol.1, issue.14, pp.1221-1229, 1999.
DOI : 10.1016/S1286-4579(99)00239-7

T. Zander, N. D. Phadke, and J. C. Bardwell, [5] Disulfide bond catalysts in Escherichia coli, Methods Enzymol, vol.290, pp.59-74, 1998.
DOI : 10.1016/S0076-6879(98)90007-6

A. Zapun, J. C. Bardwell, and T. E. Creighton, The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo, Biochemistry, vol.32, issue.19, pp.5083-92, 1993.
DOI : 10.1021/bi00070a016

A. Zapun and T. E. Creighton, Effects of DsbA on the Disulfide Folding of Bovine Pancreatic Trypsin Inhibitor and .alpha.-Lactalbumin, Biochemistry, vol.33, issue.17, pp.5202-5213, 1994.
DOI : 10.1021/bi00183a025