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Synthése Pour une Logique Temps-Réel Faible

Dans cette thése, nous nous intéressons & la spécification et & la synthése de controleurs des
systémes temps-réels. Les modeéles pour ces systémes sont des Event-recording Automata. Nous
supposons que les controleurs observent tous les événements se produisant dans le systéme et
qu’ils peuvent interdirent uniquement des événements controlables. Tous les événements ne
sont pas nécessairement controlables.

Une premiére étude est faite sur la logique Event-recording Logic (ERL). Nous proposons
des nouveaux algorithmes pour les problémes de vérification et de satisfaisabilité. Ces algo-
rithmes présentent les similitudes entre les problémes de décision cités ci-dessus et les prob-
lémes de décision similaires étudiés dans le cadre du p-calcul. Nos algorithmes corrigent aussi
des algorithmes présents dans la litérature. Les similitudes relevées nous permettent de prouver
I’équivalence entre les formules de ERL et les formules de ERL en forme normale disjonctive.

La logique ERL n’étant pas suffisamment expressive pour décrire certaines propriétés des
systémes, en particulier des propriétés des controleurs, nous introduisons une nouvelle logique
WT,,. La logique WT,, est une extension temps-réel faible du p-calcul. Nous proposons des
algorithmes pour la vérification des systémes lorsque les propriétés sont écrites en WT',. Nous
identifions un fragment de WT,, appelé WT,, pour le contrdle (C-WT,,). Nous proposons un
algorithme qui permet de vérifier si une formule de C-W'T, posséde un modele. Cet algorithme
n’a pas besoin de connaitre les ressources (horloges et constante maximale comparée avec les
horloges) des modéles.

En utilisant C-WT, comme langage de spécification des systémes, nous proposons des
algorithmes de décision pour le controle centralisé et le A-controle centralisé. Ces algorithmes
permettent aussi de construire des modéles de controleurs.

Mots-clés : Systémes temps-réel, Event-Recording automata, logique temps-réel, satisfais-
abilité, Event-Recording Logic, méthodes formelles, vérification, synthése de controleurs.
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Université Bordeaux 1,
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Synthesis For a Weak Real-Time Logic

In this dissertation, we consider the specification and the controller synthesis problem for
real-time systems. Our models for systems are kinds of Event-recording automata. We assume
that controllers observe all the events occurring in the system and can prevent occurrences of
controllable events.

We study Event-recording Logic (ERL). We propose new algorithms for the model-checking
and the satisfiability problems of that logic. Our algorithms are similar to some algorithms
proposed for the same problems in the setting of the standard p-calculus. They also correct
earlier proposed algorithms. We define disjunctive normal form formulas and we show that
every formula is equivalent to a formula in disjunctive normal form.

Unfortunately, ERL is rather weak and can not describe some interesting real-time prop-
erties, in particular some important properties for controllers. We define a new logic that we
call WT,. The logic WT, is a weak real-time extension of the standard p-calculus. We present
an algorithm for the model-checking problem of WT,,. We consider a fragment of WT, called
WT,, for control (C-WT,). We show that the satisfiability of C-WT,, is decidable. The algo-
rithm that we propose for deciding whether a formula of C-WT,,, has a model does not need
to know the maximal constant used in models and it enables the construction of a witness
model.

Using C-W'T,, we present algorithms for a centralised controller synthesis problem and a
centralised A-controller synthesis problems. The construction of witness controllers is effective.

Keywords: Real-time systems, Event-Recording automata, formal methods, real-time logic,
p-calculus, Event-Recording Logic, satisfiability, model-checking, controller synthesis.

Discipline: Computer Science.

LaBRI,

Université Bordeaux 1,
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Introduction

A system is a set of interacting objects. We consider computerised systems, that are systems
embedding computational devices. The role of computational devices is to execute programs.
Computerised systems include transformational systems (classical systems whose inputs are
available at the beginning of the execution, and which deliver their outputs when terminating:
for instance compiler and batch systems), and reactive systems that react continuously to
their environment, at the speed determined by the latter [HP85]. Reactive systems maintain
an ongoing interaction with their environment while transformational systems do not. In their
turn, reactive systems include interactive systems (for instance: World wide web browsers)
and real-time systems (for instance control systems). While deadlines of computations, tasks
or events can be occasionally missed in interactive systems, they should not be missed in
real-time systems. Thus, the correctness of a real-time system not only depends on logical
interactions that happen in it, but also on the time at which interactions (reception of inputs
or outcomes of outputs) occur.

Because the size of computational devices have shrank, they are embedded in physical
objects that they control. Control operations are often triggered by internal or external signals
and the results of computations are used to introduce motion in physical objects of systems.
In practice, the communication between computational devices and the rest of the system
is realised using sensors that interpret physical input and actuators that introduce motions
in the objects using results of computations. Compact disk players, mobiles phones, cars,
washing machines and planes are examples of systems. For example there is around 30 program
instructions in a washing machine and around one billion program instructions in a mobile
phone.

According to the architecture of systems, it is usual to consider centralised systems and
decentralised systems. Centralised systems embed a single computational device with a single
program, while decentralised systems embed more than one computational device or program
needing to communicate to achieve tasks including the control of physical devices.

The design of programs and systems should be a rigorous task and programs need to be
validated. The validation approach that is widely considered consist to test the system with
some test cases. The test cases are often generated manually by the developers. This validation
approach is not reliable. Indeed, test cases could not cover all the aspects of the systems. For
example, the test cases approach had not been efficient to discovered bugs in the phone switch
CCS7 at Manathan(1990), in the phone communication network at Paris(1998), in the Ariane
rocket(1999) [Fle02|. Just imagine a critical bug in the program that commands the exit of
the wheels of an airplane or in systems embedded in automated cars.

On the other side, assume that one is able to detect bugs in a system and that one wants



to correct them. A solution may consist to correct erroneous parts of the system; if one is not
able to correct the system, a solution may consist to start again the implementation of the
system. Another solution may consist to combine the erroneous system with a new one in such
a way that the resulting system does not longer contain bugs.

In this thesis we consider the correction problem for systems. The above motivates the use
of formal methods presented below.

Formal Methods

It is often the case that requirements for systems are described in a natural language by cus-
tomers, and implementation is performed by a team of engineers. It should be clear that, if the
requirements are complex, so will also be the system. But, the simplicity of the requirements
is not a guarantee for the simplicity and the correctness of the systems, as natural languages
are often ambiguous. It is important to have “ezact” languages to describe properties, “exact”
methods to design systems, “exact” methods to validate or correct systems. These are the goals
of Formal methods that include:

o Test generation aims at providing methods for asserting that a system is correct. It
amounts to generation of a collection of test sequences from a formal specification and
a property to be tested.

e Prouving correctness amounts to providing a formal proof on the correctness of a system
with respect to a property described in a formal language. This method is semi-automatic
as it is often the case that prover needs human interaction (introduction of new axioms)
to terminates.

e Model-checking is an automatic method that allows to check whether a system satisfies
a given property.

o Satisfiability/realisability provides techniques to check whether a given property can be
fulfilled by at least one system. It also provide techniques to construct a system that
satisfies a given property.

e Controller synthesis designs controllers for a main system (called the plant) so that the
controlled system satisfies a given property. It can be applied if the supervision of the
system can be done by disabling in the plant some actions at the origin of the bugs.

All the classes above are somehow related. For example controller synthesis methods can
be useful when a given system does not satisfy a property (test, proof, model-checking) and
when the controllers can be constructed automatically (satisfiability).

We will consider the controller synthesis method for the correction of real-time systems
when the properties are described with a “weak” real-time formal language. But, let us discuss
some challenges concerning the definition of models for systems and the definition of formal
languages to describe properties for systems.



The Design of models and Decision Procedures

The main goal of formal models is to provide formal representations for interesting “real-life”
situations as we are not always interested in all the aspects of systems [HP85, Sif01].

The design of models for systems and properties depends on interesting aspects of systems
and the nature of the properties for systems. Are we interested in the time at which a variation
occurs in systems (if so, models may explicitly mention information on the time)? Are we
interested only in the logical occurrence of events? Are we interested in a communication
protocol (if so, a model may have a queue for message) or in reactive systems (if so, no queue
is needed in the model). The design of models is based on the abstraction realised on interesting
aspects of systems.

We are most often interested in the representation of behavioural aspects of systems.
It is natural to think of behavioural aspects of systems as successive observable variations
occurring in systems. Each variation may have a cause. Models for systems are abstraction
of the variations and the causes of the variations. An abstraction of a variation contains: an
abstraction of starting control point of the variation, an abstraction of the ending control
point of the variation and, an abstraction of the cause of the variation. Abstract variations
are often called tramsitions, abstract control points are often called states and abstract causes
of variations are often called events.

To describe properties of systems, one can use natural languages; because they are am-
biguous, they are neglected in favor of formal languages having exact semantics. The design of
models for properties depends on the models for systems and the nature of properties for the
models. Properties for models will combine properties on states and properties on transitions
leading from a state (future-based properties) or on transitions leading to a state (past-based
properties). The standard types of properties for systems include reachability properties (some
situation can happen), safety properties (some situation will never happen), liveliness proper-
ties (some situation is unavoidable) fairness properties (some situation will happen infinitely
often) deadlock-free properties (the system never stop).

Whatever is the nature and aspects of a system and the properties, it is obvious that their
representations are useful in practice only if we are able to provide decision procedures for
the validation and the correction problems including the model-checking, and the controller
synthesis. The models of systems and the languages to describe properties are in this way, the
result of an arbitration between the expressive power (that is class of systems and properties
they can represent) , their succinctness enabling the representation of a big system with a
model of small size, and their simplicity that makes their use easy and enables problems to
become decidable (existence of decision procedures).

For practical issues, decision procedures need to be efficient and their implementation
should be easy. For theoretical issues, it could happen that we are interested in the under-
standing of models and their theoretical properties. Then, we may not be interested in the
efficiency of procedures, but only in relations with others decision procedures.

Abstraction of systems into models is the source of some problems including a non de-
terminism of the models, the (behavioral) equivalence of models and the formalisation of the
notion of combination of systems. A non determinism occurs in a model when two outgoing
transitions from a state can be triggered by the same event; this can happen if an event is
an abstraction of two different causes of variations from the same control point. Having two



models for the same system, knowing whether they are equivalent can reduce the complex-
ity of decision procedures when a model is more tractable (for decision procedures) than the
others. Models of systems can be combined in synchronous mode or asynchronous mode. In
synchronous mode, a transition occurs in the combined system when from the respective cur-
rent state of each component of the combination, it is possible to take a transition caused by
a same event. In asynchronous model it is not required that the event happens at the same
time in all the components. Reactive systems are often combined in synchronous mode.

Providing new languages for properties of systems raises fundamental problems of the
language theory including emptiness checking (does a property have a model?), inclusion
checking (is a set of models of a property included in a set of models of another property), the
expressive power of languages (what properties can be described with a given language?) and
closure properties under operations on languages (union, intersection, complementation). For
example, for the closure under complementation, it could be useful and practical that the set
of systems that do not satisfy a property can be described with another property written in
the same language; for the closure under intersection, it could be useful that the conjunction
of two properties can be described with a single property of the language.

Formal Models for Reactive Systems

A low level model for systems is untimed transition system that is just a collection of transi-
tions. In that model, a transition s — s’ indicates that in the state s, the process can move
to the state s’ when the event a occurs. No explicit information on the time of the occur-
rence of the events are mentioned. Untimed transition systems have been extended by adding
a tripping condition on the transitions. For probabilistic transition systems |PZ93|, tripping
conditions are just probabilistic laws. For timed transition systems (TTS) [HMP92|, tripping
conditions are information on the time at which the event can occur. In timed transition
systems, transitions are labelled either with a delay or by an event. Delay can range over a
discrete domain (natural numbers for example) for discrete time transition system or over a
dense domain (real numbers for example) for dense time transition system.

The problem with the low level models above is that they are not tractable for automation.
They can not be represented using a finite structure as the set of states and the set of transitions
in a model can be infinite. High level models that can be represented in a finite way have been
developed.

There are two theoretical approaches for high-level modelling of systems. The algebraic
approach [vG97| and the finite state transition systems based approach. The semantics of
high level models is often described using low-levels models. Algebraic-based models can often
be translated into transition systems. Thus, they will not be considered here. We describe
below development that have been done for high-level models in the transition systems based
approach.

Kripke structure or finite state automata [CCGOO0| are transition systems with finitely
many states. Behaviours of the systems are a sequence of transitions.

Durational Kripke structure (DKS) [Lar05] are somehow a generalisation of ideas behind
modeling systems with TTS or many other real-time models [EMSS91, CCG00, GHKKO05].
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Figure 1: Example of a DKS and its semantics.

They are kinds of finite state automata having tripping conditions on transitions. There con-

. : : " 23a
dition are integer interval. For example, a transition s — ' asserts that the system can

move from s to s’ when if the event a occurs at 2, or 3 time units after the system enter the
state s. Then it is fundamental to wonder about the states of the system 1, 2, or 3 times units
after it enter the state s’ or the state of the system between 1 and 2 times units. Three discrete
semantics had been considered (see Figure 1 for illustration):

1. the the jump semantics. In this semantics the system move from a state s to s’ without
taking any intermediary state. Thus, the states of a system at the times d+1, d+2, ...,
d+t —1 are not explicitly represented when moving from s in the time d to the state s’
in the time d + t. Here time progresses but in a discrete way.

2. the continuous semantics with intermediary states. Here, moving from s to s’ takes ¢
time units and the system moves through intermediary states between s and s’. All the
crossed intermediary states have the same properties as s. This semantics is not time
deterministic but time elapse continuously. Then next reachable state is chosen very
early in the time.

3. the continuous semantics with delay. The system lets the time elapse in its current state
before moving to another state. This semantics is time deterministic and time elapses
continuously. Moreover after an occurrence of an event, the next reachable state is chosen
late in the time.

Timed automata [AD94] has been provided as powerful model to describe real-time sys-
tems. In timed automata, clock variables are used to handle the elapse of the time. All the



clock variables grow with the same rate (the one of the universal time). Timed automata are

. . . . L. ,a, X . .
also a kind of timed extension of finite state automata. A transition s %5 o is equipped

with a tripping constraint g and a set of clock X to be reset when the transition is taken.
The tripping constraint compares clock variables with rational constants. There is two types
of comparisons: the comparison between a single clock and a rational called diagonal free con-
straint and the comparison of a difference between two clocks and a rational called diagonal
constraint. Clocks are evaluated in the dense-time domain (set of positive real number). The

. . . L. g,a,X . ..
continuous semantics of a high level transition s = s’ is a set of low level transitions of

the forms (s,v) 2N (s,v + 1) or (s,v) — (s,0[X := 0]) (v represents a valuation of the

clocks, t represent a delay, v + ¢ returns the value of the clocks after the delay and v[X := 0]
return the values of the clocks after the reset of all the clock in X). A low level transition
(s,v) =% (s,9[X := 0]) occurs only if the value of the clocks represented by v satisfies the
condition g. We remark that since their introduction by Alur and Dill, timed automata have
been extended to interesting models such as hybrid automata [Hen96|, updatable timed au-
tomata [BDFP04].

Event-recording automata |[AFH99] model has been introduced as a restricted form of timed
automata. The main difference between Event-Recording automata and timed automata is
that each clock is associated to a unique event and the unique clock to be reset when a
transition is taken is the clock associated to the event on that transition.

Formal Description of Properties

Low level models are widely used to represent the semantics of high level models. Lan-
guages to described properties must be interpreted on transition systems models. Formal
languages [Koy90, AH94, HR04]| enable exact description of linear-time properties (that are
properties on the possible executions) and/or branching-time properties (that are properties
on states which may have several possible futures). They also describe either properties on
untimed systems or properties on timed systems.

As it is discussed in [EH83|, the use of linear or branching time specification languages
depends on the underlying nature of time. The use of linear time language is based on the
hypothesis that each moment (present time) has a unique future time while, when using
branching time languages, we implicitly assume that the future of a present time could be
divided into alternative future times. Alternation can be observed in non deterministic mod-
els as an event can be the source of two alternative transitions. Branching-time languages
allow to characterize interesting behavioral relations between systems such as simulation and
bisimulation [Par81]; they are sometimes preferred to linear-time languages.

The development of formal languages to describe properties has been done in two main
directions: The logical direction that provides logical languages and the automata-based di-
rection. We present here some relevant languages for untimed systems followed with some
relevant languages for real-time (timed) systems.

The automata approach Automata, that are Kripke structures equipped with a set of ac-
cepting sequences of transitions, can be used to describe a system and its properties. A Kripke
structure, describes the dynamics of a system. Behaviours (sequences of events or states) are



declared “good” or “bad” according to whether they belong to an acceptance condition (Rabin,
Parity, etc...). Thus, automata [Tho90] are kinds of devices recognising set of words, set of
trees, or set of transition systems. Automata on words are used to describe linear-time prop-
erties and automata on trees, in particular alternating automata on trees, are often used to
describe branching-time properties.

Usual methods for emptiness checking and universality checking for automata-based
languages consist to check whether some states are reachable. Forward or Backward state
exploration algorithms are often used. The closure under boolean operations usually involves
the construction of new automata.

We recall some results concerning some important problems on automata-based languages.
Finite state automata on words and event-recording automata on timed words are closed under
all boolean operations and the language inclusion testing problem is decidable. The language
inclusion testing problem for these automata is also decidable. Timed automata on words are
not closed under complementation and language inclusion testing problem is undecidable. The
language emptiness testing problem for all the aforementioned automata on words is decidable.
Alternating automata on trees (or transition systems) are closed under boolean operations,
their emptiness and their inclusion testing problem is also decidable.

The logical approach Here are some important languages that have been developed.

Linear-temporal Logic (LTL) is a linear-time temporal logic introduced by Pnueli [Pnu77,
LPZ85] for untimed systems. LTL enables the description of properties on a single execution
of the system or sequence of transitions. But it is not possible to describe a property of the
form “on all the executions of a system it is always true that there exists an execution that
satisfies a property”.

The Computational Tree Logic (CTL [CE82|, CTL* [EH83]) are branching-time logics for
untimed systems. They allow quantification (existential or universal) on transitions outgoing
from states of models. Formulas of CTL* and CTL are not interpreted over independent set of
executions (sequence of transitions) but over a tree-like structure representing a dependence
between executions.

The Hennessy-Milner logic was introduced by Hennessy and Milner [HM80| for untimed
systems (initially represented with the CCS algebraic representation). This logic include two
important modal operators (a) and [a]. A state s of a system satisfies (a)p when there is
at least one outgoing transition s — s’ such that the target s’ satisfies the property . A
state s of a system satisfies [a]p when for all outgoing transitions s -2, ¢, the target state s
satisfies the property ¢. A weakness of the Hennessy-Milner logic is that it can not be used
to described fairness or liveliness properties.

The p-calculus introduced by Kozen [Koz82, ANO01] is an expressive logic which extends
the Hennessy-Milner Logic [HMS80| by considering the greatest (r) and least (p) fixpoint op-
erators. Fixpoint operators are useful to describe reachability, fairness or liveliness properties.
The p-calculus is more expressive than CTL and CTL*. Formulas of the p-calculus includes
arbitrary nested fixpoints. The power of nested fixpoint had been demonstrated [Bra98, BLO5|;
in particular they are used to describe properties such as: “an event occurs infinitely often” or
“an event occurs almost all the time”. The model-checking and the satisfiability problems of



the p-calculus are decidable. The p-calculus is as expressive as alternating automata on trees.

The metric temporal logic (MTL) [Koy90] is a timed linear-time temporal logic which
extends LTL with timing constraints. For instance, with MTL, it is possible to write a formula
expressing that a request p is always followed one time unit later by a response g. There are
tractable fragments of MTL that had been considered like Safety-MTL [OW06b] which impose
bound on the modality on the future and MITL [AFH96| which disallows punctual constraints
some modality of the future.

Timed Computational Tree Logic (TCTL) [ACD93] is an extension of CTL that explicitly
mentions the information on the time.

Timed Modal Logic(TML) and Extended Timed Modal Logic (ETML) are timed logic
proposed by Larsen et al. [HLY91] to describe properties of processes expressed in the real-
time process calculus TCCS of Wang [Yi90]. Among properties that can be handled with
these logic an important property for real-time processes is the necessity modal operator on
time delays that enables to describe a property like “After a coin has been inserted, coffee
will be continuously available for 30 seconds. TML is an extension of the Hennessy-Milner
Logic [HM80| which considers modalities of the form (a)arp, (a)vry, [a]ary, and [alyre where
the semantics of I is a delay interval, a is an action and ¢ a formula and . A formula (a)yr¢
specifies a property which holds invariably for all time-delays in I; a system that satisfies this
formula is such that any state reached after a time-delay within I must have a a-successor
satisfying ¢. A formula (a)3;¢ specify a property which holds eventually for some time-delay
in I. Operator of the form [a]37¢ and [a)yre are defined by duality. Then, Larsen et al. have
shown that if I is defined with a first-order assertion, then the model-checking of TML is
decidable. ETML is a fragment of TML in which time intervals are not specified. In [HLY91]
the model-checking and the satisfiability of ETML is left open.

The logic LZ has been introduced by Sokolsky et al. [SS95]. The logic LZ is a timed
extension of the p-calculus; it enables the description of safety and liveliness properties of real-
time systems. The model-checking of LZ is shown decidable in [SS95]. The logic LZ supports all
original operators of the p-calculus as well as two new time modalities (necessity /universality
and possibility /eventuality of time successors) also used in [HLY91]. But Ly’ formulas are
alternation free as the fragment of the u-calculus studied in [SS94, BC96|, which means that
in every Lz formula the “level” of mutually recursive greatest and least fixpoint operators
is one (arbitrary nested fixpoint is not authorized). The local model-checking algorithm for
L!, [SS95] uses quotients of clocks values as defined by Alur and Dill [AD94]. As this model-
checking algorithm is local, the whole state space need not be explored and refinements of
the quotient are carried only when necessary to satisfy clock constraints in the formula or the
timed automaton used to represent the system under investigation.

The logic L, [LLW95] has been considered by Laroussinie et al.. It is a fragment of the
logic T, [TXJS92| introduced by Henzinger et al.; it allows to describe properties on timed
automata. Formulas of L, use also combined modalities on events of the classical p-calculus
with modalities on time-delays. The logic L, considers the greatest fixpoint operator; it does
not consider the least fixpoint operator. The logic L, is sufficiently expressive for characteris-
ing timed automata (behavioral characterisation) |[Cer93, SI94, IPPA0O|. For a given timed
automata, it is possible to construct a L, characteristic formula. The satisfiability problem of
L, have been left open in [BCLO05|.

Event-Clock Logic (EventClockTL) has been proposed by Raskin and Schobbens [RS99].



EventClockTL is an extension of LTL with event-recording and event-predicting operators.
The satisfiability problem of EventClockTL have been shown decidable.

Event-recording Logic (ERL) is a timed extension of the p-calculus introduced by
Sorea [Sor02] and it is used to describe properties on systems modelled with event-recording
automata. ERL is more expressive than the event-recording part of EventClockTL since it in-
cludes arbitrary nested fixpoints. The extension consist in adding timing constraints in modal
operators obtaining modal operator of the form (g, a) and [g, a]. For example, a formula of the
form (hy < 3,a) expresses the fact that the event @ must occur at most 3 time units after the
clock hy has been reset (recall that the clock hy is reset only after an occurrence of the event
b). A decision procedure for the satisfiability problem of ERL is provided in [Sor(02].

Let us comment some techniques used to solve some problems on logical languages. The

closure properties are often a consequence of their definitions. Indeed most of the logical
languages use boolean operators (logical "and" operator (A) for the closure under intersection,
logical "or" operator (V) for the closure under union, and logical "negation" operator (—) for
the complementation). Duality is often a fundamental principle of logical languages.
The emptiness testing of logical languages is also called the satisfiability problem. A widely
used method for temporal logic is the tableau method. Tableau systems were first developed
by Gentzen as syntactical devices for modal logics [Gen34|. Tableau systems benefit from the
structure of the properties to decompose their satisfiability checking into the satisfiability
checking of smaller properties. It has been shown that there exists an intimate relationship
between tableaux and automata over trees [Eme85].

Whatever is their forms (automata or logic), languages on the same models need to be
compared. To compare two languages, it is common to provide example of properties that can
be described with only one of the two languages and it is common to show how properties
written in one of the two languages can be rewritten in the other language.

Methods and Algorithms for the Model-checking

Techniques for the model-checking of systems have been developed depending on models and
the specifications. Most of these techniques work on low level models.

There are two basic strategies when designing a model-checking algorithm: “Global” algo-
rithms that are recursive on the structure of the specification and evaluate each of part of the
specification over the states of the transition system. “Local” algorithms, in contrast, explore
only parts of the states space of the system, but check all parts of the specification. The choice
of local or global algorithm does not affect the worst-case complexity of model-checking al-
gorithms. Model-checking algorithms are often presented in the form of tableau [Eme85] and
they use results on two player games.

In order to provide efficient model-checking algorithm, some techniques to reduce the size
of models have been developed [Mer01] including, symbolic techniques and abstraction based
techniques. Symbolic techniques consist in encoding set of states using compact objects such
as logical formulas or efficient data structures [GV08] such as Binary Decision Diagrams,
Difference Bound Matrices, Clock Difference Diagrams.

Let us recall some algorithms for the model-checking in some settings:
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e The setting of Kripke Structures. The model-checking of systems modeled with Kripke
structures has been widely investigated for linear-time properties (LTL [Var07]) and
Branching-time Properties (CTL and CTL* [LS01], the p-calculus [SE89]). The tech-
niques aforementioned have been used and implemented in tools such as SMV [CCGT02],
MEC 5 [GV04], Lustre [CPHP87| and SPIN [Hol97].

e The setting of timed automata. Abstraction based techniques have been provided for the
reachability of timed automata. These techniques include region abstraction and zone-
based abstraction. They consist in partitioning the infinite set of states of the semantics
into finite sets of abstraction classes. Region and zone-abstraction based techniques
have also been deployed for other types of properties. This techniques have been used
for the model-checking of TCTL [TXJS92], the model-checking of MTL and its frag-
ments [OW05, OW06a, AH93, OW06b, AFH96|, the model-checking of TML [HLY91],
ETML [HLY91], L!, [SS95], L, [LLW95] and Event-Recording Logic [Sor01, Sor02].
Tools implementing model-checking algorithms for real-time systems include Kro-
nos [BDM198|, Uppaal [BLL96], Hytech [HHWT97], Cmc [LL98], Tempo [Sor01] and
PHAVer |Fre05, Fre08|.

Methods and Algorithms for the Controller Synthesis

We recall that the supervisory control problem, as introduced by Ramadge and Won-
ham [RW89|, asks whether a given system called a plant can be controlled with another
system called a controller in such a way that the resulting system called the controlled system
satisfies the given control objective. The synthesis problem asks whether a witness controller
can be effectively computed.

The controller synthesis (control + synthesis) problem is studied depending on theoretical
assumption made on the systems. These assumptions concern the nature of the events in
systems, the architecture of systems and the nature of properties.

The notions of controllability, observability, distinguishability are often considered. The
notion of controllability is based on the assumption that some events of the systems can be
disable (controllable event) and the others can not. The notion of observability is based on the
assumption that controller can not observe all the events that happen in the systems. This
notion considers observable events and unobservable events. The notion of distinguishability
relies on the fact that a controller may not abstract a cause of a variation in the same manner
as the system; then, it could happen that occurrences of some events in the systems can not
be distinguished by the controllers. Relying on the architecture of the systems, the centralised
supervisory control is opposed to the decentralised (distributed) control. The centralised super-
visory control of a system is achieved by a unique controller while in the decentralised cases,
more than one controller can be combined with the plant to meet the control objectives. It
is usual to distinguish internal control objectives from external control objectives. Internal
control objectives refer to state properties while external control objectives refer to properties
on sequences of events.

Let us recall some previous works on the controller synthesis for discrete event systems
and dense-time systems.

Ramadge and Wonham [RW89]| consider the supervisory control problem of discrete event
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systems. In their setting, a plant and controllers are deterministic finite state automata;
the notion of controllability is also considered. The external control objective is either a
reachability or a safety property. Many authors [PR05, BK06, AVW03, AW07| have consid-
ered the supervisory control of discrete event systems modeled with finite state automata
when the control objectives are described with a p-calculus formula. These extensions of
the works of Ramadge and Wonham use the expressive power of the p-calculus to describe
more general properties for supervised systems and controllers. They consider the notion
of controllability, observability, and distinguishability and the centralised and decentralised
supervisory control problems. They use a so-called quotient based method that provide
powerful quotient operation for the division of properties by systems and the division of
properties by properties. In the works of Arnold et al. [AVW03, ABPV05, AW07|, the
division operation works for disjunctive normal form formulas and the computation of
witness controllers is effective (winning strategy in two player parity game) for some classes
of decidable supervisory control problems. In particular, Arnold et al. [AW07]| have shown
that the supervisory control problem is decidable under the three following conditions: at
most one controller is non deterministic; all but one specification of controllers are simple (a
simple specification does not describe observability and distinguishability conditions); and
the specification of the non deterministic controller is simple.

The centralised dense-time version of the supervisory control has been investigated and

solved in [AMP95]. In that investigation, Maler et al. consider timed automata models, un-
timed control objectives and the notion of controllability. They provide an algorithm to decide
whether a discrete controller exists, and show that if the answer is positive, a witness controller
can be effectively computed. The control objective is a reachability or a safety property.
D’Souza and Madhusudan [DM02] have also considered the centralised dense-time supervi-
sory control for timed automata when the external control objective is described with a timed
automaton. They also consider the notion of controllability. For decidable cases of control,
D’Souza and Madhusudan synthesise controllers with a priory limit on their resources (num-
ber of clocks, power of the controllers to observe clocks). Madhusudan et al. [BDMP03] had
extended the frameworks of D’Souza and Madhusudan by considering the notion of partial
observability.
Bouyer et al. [BBC06] have investigated centralised dense-time supervisory control of timed
automata when the external control objective is described with the logic MTL. They consider
notions of controllability and they provide decidability results when there is a limit on the re-
sources of controllers. Controllers are just winning strategies in some two player parity games.
Laroussinie et al. [BCL05| have considered the centralised supervisory control problem for
timed automata models with L, when the set of events is partitioned into a set of controllable
events and a set of uncontrollable events. They present how to decide the existence of con-
troller for some deterministic fragment of L,, but the procedure does not say how to construct
a witness controller.

Contributions of this Thesis

We consider controller synthesis for real-time systems that can be combined in synchronous
mode; the control objectives are timed branching-time properties.
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The framework of Arnold et al. [AVW03, ABPV05, AW0T]|, based on finite state automata
and the p-calculus, is a powerful framework for the controller synthesis of untimed systems.
This work proposes methods to decide the existence of controllers and methods to synthesize
controllers. For timed systems, Laroussinie et al. [BCLO05] have provided an extension to the
framework of Arnold et al. as they have considered timed automata models for systems and the
logic L, to describe control objectives. The method in the Laroussinie et al. framework only
decides the existence of a controller and does not provide a method to synthesise controllers.

Our goal in this thesis is to find a class of timed models “weaker” than the class of timed
automata, to use a “weak” real-time extension of the p-calculus for providing a powerful
framework for the controller synthesis of real-time systems. We also hope to reuse techniques
of the framework of Arnold et al.

We start our investigation with event-recording automata as models for systems and Event-
Recording Logic (ERL) as language to describe properties. We present new decision procedures
for the model-checking and the satisfiability of ERL. We also present a disjunctive normal form
theorem for ERL. We show that ERL is not expressible enough to describe useful properties
of timed processes, especially some interesting properties for controllers. For instance, with
the modalities of ERL we are not able to describe a property of the form “ an event can be
completed at any moment that satisfies a timing constraint”.

Then, we introduce a new logic that we call WT, which is also a “weak” real-time extension
of the p-calculus. We show that WT, is more expressive that ERL. We consider fundamental
problems on WT,, namely: the model-checking and the satisfiability problems. We show that
the model-checking problem of WT,, is decidable. For the satisfiability, we consider a frag-
ment of WT,, called C-WT,, (WT, for the control). We provide a decision procedure for a
satisfiability problem of C-WT,, formulas. That procedure works without any information on
the maximal constant of the models. It also shows how to construct a witness model for a
satisfiable formula.

We present decision procedures for the centralised and the A-dense-time centralised con-
troller synthesis problems when the control objectives are described with C-W'T, formulas.

Organisation of this Thesis

In Chapter 1 we present basic notions that we use later in the thesis. These notions include
alternating automata on trees, two player parity games, the p-calculus, the logic L, and some
frameworks to the controller synthesis.

In Chapter 2, we present models for real-time systems and some fundamental problems
about these models. Our model, that we call tsmed process is nothing else but event-recording
automata (without an acceptance condition). We present the reachability analysis in that
model using well know region abstraction techniques and zone abstraction technique. We
present how to remove diagonal constraints in the model without changing their behavioural
properties.

In Chapter 3, we present Event-Recording Logic (ERL for short). We consider funda-
mental problems about that logic: the model-checking problem, the satisfiability problem,
the disjunctive normal form problem. The first two problems have been considered earlier by
Sorea [Sor02]. Our algorithms for these problems enable a better understanding of the models;
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they also enable to reuse some algorithms for the same problems for the standard p-calculus.
We provide a disjunctive normal form theorem for ERL formulas. We show that the algo-
rithm of Sorea [Sor02| for the satisfiability checking is ambiguous and is not correct in case of
diagonal constraints.

The Chapter 4 introduces the new logic WT,,. There, we define WT,, and we show that
WT,, is more expressive than ERL as any formula of ERL can be translated into equivalent
formula of WT,, and some formulas of WT, can not be translated into formulas of ERL. WT,
enables a description of some interesting properties in particular some properties of controllers.
Then we consider the model-checking and the satisfiability problems for WT,,. We show that
the model-checking of WT, is decidable. We introduce C-W'T,, as a decidable fragment of
WT,,. Our decision procedure for the satisfiability of C-WT, shows how to construct models
for satisfiable formulas.

The centralised and the A-dense time centralised controller synthesis problems are consid-
ered in Chapter 5. Formulas are difficult to handle because they use fixpoint operators. We
introduce modal automata that are a kind of alternating automata. Modal automata are inter-
preted over timed processes. We define the quotient of modal automata over timed processes.
Then, we consider a subclass of modal automata that we call modal automata for control (C-
MA). We show that a C-MA automaton can be translated into an equivalent C-WT,, formula
and reciprocally a C-WT, formula can be translated into an equivalent C-MA automaton. At
the end of this chapter, we show that the two aforementioned controller synthesis problems
are decidable; moreover we show how to construct controllers.
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Chapter 1

Preliminaries

This chapter presents some frameworks for the supervisory control problem of discrete systems
and dense-time systems.

First of all, we recall some definitions and results concerning transition systems, automata
on words, the standard p-calculus and automata on transition systems. Then, we present the
frameworks of Ramadage and Wonham [RW89|, Arnold et al. [AVW03, ABPV05, AW07|,
D’Souza and Madhusudan [DM02] and Laroussinie et al. [BCLO05].

1.1 Automata on Words

In this section we present basic notions that include labelled transition systems, bisimulation
relation, (Biichi, Rabin and Parity) acceptance conditions and automata on words.

Definition 1 A word over an alphabet 3 is a sequence w = wp.w ... of symbols in >. 3* is
the set of finite words over ¥, and ¥“ is the set of infinite words over X.

For a word w, the number of occurrences of the letter a in w is denoted by |wl|,. Given
w € X%, we consider the set

Inf(w) ={a € X|Vidj > iw; = a}
of symbols in ¥ occurring infinitely often in w.

Definition 2 A labelled transition system over an alphabet X (or a X-labelled transition sys-
tem for short) is a tuple S = (9, %, s, Ag) where S is a set of states, s° € S is the initial state
and Ag C S x X x S is a transition relation. A Y-labelled transition system is deterministic
if Ag is a partial function Ag: S x ¥ — S.

We often write s — s’ instead of simply the transition (s,a,s’) € As.

A finite labelled transition system is a system with finitely many states.

Definition 3 A product of two Y-labelled transition systems P = (P,%,p?, Ap) and S =
(S8,%,sY Ag) is the Y-labelled transition system P x S = (P x S, %, (p°,s), Apxs) where
(p,s) — (p',s') if and only if p - p’ and s —— .

15
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We define two behavioral relations between label transition systems. These relations, called
simulation and bisimulation, have been introduced by Park [Par81]. Let S; = (51,3, 59, Asy)
and Sy = (92, %, 59, Asy) be two labelled transition systems.

Definition 4 A simulation between S; and Sy is a relation R C S; x Sy such that whenever
s1Rs9 and a € X, then:

e If 51 —% s} then there exists s, € Sy such that sy — s} and s} Rs).

Definition 5 A bisimulation between S1 and Ss is a relation R C Sp X Ss such that whenever
$1Rso and a € X, then:

o If s; - s/ then there exists s, € Sy such that sy —— s} and s, Rsb.

o If 55 - 5!, then there exists s} € Sy such that s; — s} and s, Rsb.

We write s1 C so (resp. s1 ~ s2) if and only if there exists a simulation (resp. a bisimula-
tion) R with s1Rss.

Definition 6 Sy simulate S (resp. 81 and Sy are bisimilar) whenever there exists a simu-

lation (resp. a bisimulation) R between S; and Sz such that the pair (s9,s9) of their initial

states belongs to the relation R, and then we write S C Sa (resp. S1 ~ S2).

Definition 7 An w-automaton on words over ¥ is a tuple A = (S, Acc) where § =
(8,%,s Ag) is a finite X-labelled transition system and Acc is the acceptance condition.

Definition 8 Let A = (S, Acc) be an w-automaton over X-words as above defined. A run p
of A on a word w = wow1 --- € X is a sequence of states p = sgs7 ... such that the following
conditions hold:

1. sg=s°

2. s; is such that s;_1 Bl si € Ag

Whether a run of an automaton is accepting depends on the nature of the acceptance
condition of the automaton. There are several acceptance conditions:

1. The Biichi acceptance condition [B62] is given by a set F' C Q: p is accepting when

Inf(p)NF #0

2. The Rabin acceptance condition [Rab69] is given by a set Q@ = {(F;, F;)}i=1.n with
E;, F; C Q: pis accepting when

AE,F)eQst(Inf(p)NE=0)A(Inf(p)NF #0)
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3. The parity condition [Mos85| is given by a function rank : Q — {1,...,k} (where k is
a natural number) that assigns a parity indez to states of the automaton: p is accepting
when

maz{rank(q)|q € Inf(p)}

is even. This condition is also called the max-parity condition.

Depending of the nature of the acceptance condition, automata are called Biichi automata,
Rabin automata, or Parity automata.

Definition 9 The language of an automaton A denoted by £(.A) is the set of words on which
A has an accepting run.

Let us recall some interesting well known results on automata. Non deterministic Biichi
automata, Rabin automata and Parity automata accept the same set of languages. This set of
languages is closed under intersection, union, and complementation (see [Tho97]). The empti-
ness checking for a Rabin automata with m states and n pairs is decidable in O(mn)3". Every
non deterministic Rabin automaton can be translated into an equivalent parity automaton and
reciprocally (see [L99]). Moreover, every non deterministic parity automaton can be translated
into a deterministic parity automaton.

1.2 Two Player Parity Games and Multi-Parity Games

We present a complexity result for checking a winning strategy in a two player games with
parity condition. We also present the notion of two multi-parity game.

Definition 10 A two player parity game(see [Zie98]) is a tuple G = (Ng, Na, T C N2, Accg)
where (N, T is a graph with the nodes (or positions) N = N4 U Ng partitioned into Ng and
N 4. Ng denotes the set of nodes of the player Fve and N4 denotes the set of nodes of the
player Adam. The winning condition Accg C N“, is a parity condition on the nodes. The
game is finite if NV is finite.

A play between Fve and Adam from some node n € N proceeds as follows: if n € Ng then
FEve makes a choice of a successor otherwise Adam chooses a successor; from this successor
the same rule applies and the play goes on forever unless one of the parties cannot make a
move. A play is finite if a player cannot make a move and then he loose the play. In the case
that the play is an infinite path m = ngning--- , Eve wins if 7 € Accg. Otherwise Adam
is the winner. Among winning conditions introduced in the literature, we consider the parity
condition. A strategy o for Fve is a function assigning to every sequence of nodes 7 ending in
a node n from Ng a vertex o(7) which is a successor of n.

A play from n consistent with o is a finite or infinite sequence ngning--- such that
ni+1 = o(n;) for all i with n; € Ng. The strategy o is winning for Eve from the node n if and
only if all the plays starting in n and consistent with ¢ are winning. The strategies for Adam
is are defined similarly. A node is winning if there exists a strategy winning from it. A game
is determined if every node is winning for one of the player. A strategy is positional if it does
not depend on the sequences of nodes that were played till now, but only on the present node.



18 CHAPTER 1. PRELIMINARIES

So such a strategy for Eve can be represented as a function ¢ : Ng — N and identified with
a choice of edges in the graph of the game.

Now we state the following results on two player games (see [GH82, EJ91, Jur00, V.J0O]).

Theorem 11 Every parity game is determined. In a two player parity game one of the players
has a winning positional strategqy from each of his winning nodes. There is an effective procedure
that decides who is a winner from a given node in a finite game, and that procedure works in

time /2]
o{m ()"

where, d is the mazimal parity indez.

1.3 The p-Calculus

The p-calculus introduced by Kozen [Koz82| (see also [AN01]) is an expressive temporal logic
that extends modal logic with the greatest () and least (u) fixpoint operators. We present the
syntax and the semantics of the y-calculus. Then we state some well known results that include
the complexity of the model-checking problem, the complexity of the satisfiability problem and
a disjunctive normal form theorem. The complexity result for the model-checking is obtained
by reduction to checking if there is a winning strategy in a two player parity game.

1.3.1 Definitions and Semantics

Definition 12 The syntax of the p-calculus is defined over a set Var = {X,Y,...} of vari-
ables, a set X of events. It is given by the following grammar:

p =1t |l X eV elend[{a)e]lae]pX.o(X)[vX.o(X)

In the above, X € Var, a € ¥; and ¢t and ff denote the formula that are always “true” and
“false” respectively; (a) and [a] denote the existential and the universal modalities indexed with
the event a; they represent “exists a-successor and “all a-successor” modalities respectively. The
formulas puX.p(X) and vX.p(X) represent respectively the least and the greatest fixpoint
formula.

For a formula ¢, the closure [Koz82| of ¢, sub(y) is defined as follows:

Definition 13 The closure sub(y) of ¢ is the smallest set of formulas such that:

* v € sub(p)
if 11 V 1pg € sub(yp) the both 11,19 € sub(yp)
if 11 A 1pg € sub(yp) the both 11,19 € sub(yp)

if {(a)y € sub(p) then 1) € sub(yp)

if [a]y € sub(p) then ¥ € sub(yp)
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o if 0 X.(X) € sub(p) then (X) € sub(yp), where o € {v, u}

The formulas in sub(y) are called the sub formulas of ¢. For a formula ¢, sub(y) is finite
and, by definition, it is not larger that the number of symbols used in .

Definition 14 The set free(y) of free variable of a p-calculus formula ¢ is defined inductively
as follows:

o free(tt) = free(ff) =0

o free(X)={X}

o free(p V) = free(p Nip) = free(p) U free(y)

o free(laly) = free({a)p) = free(p)

o free(uX.p(X)) = free(vX.p(X)) = free(p) \ {X}

A variable X is free in a formula ¢ if X € free(y).

Definition 15 A variable X is bound in a formula ¢ if there is a sub formula 0 X.1)(X) of ¢
with o € {p,v}.

We remark that, a variable can be bound and free at the same time. For example, in the
formula ¢ = uX((a)X V (b)Y) AvY.(c)Y, the variable Y is bound and free. An occurrence of
Y in ¢ can be replaced with a new variable to get an equivalent formula variables of which
are either free or bound.

Definition 16 (Well named) We call a formula well named if the expression uX.p(X) (or
vX.p(X)) occurs at most once for each variable X.

By renaming some occurrences of variables if necessary, every formula can be translated
into an equivalent well named formula. In what follows, without loss of generality, we assume
that formulas are well named.

Definition 17 (Binding) The binding definition of a bound variable X in a well named
formula ¢, D, (X) is the unique sub formula of ¢ of the form o X.¢)(X). We will omit subscript
¢ when it causes no ambiguity. We call X a p-variable when o = p, otherwise we call X a
v-variable. The function D, assigning to every bound variable its binding definition in ¢ will
be called the binding function associated with .

Definition 18 A sentence is a well named formula without free variables.

Definition 19 The dependency order <, over the bound variables of a formula ¢, is the
least partial order such that if X occurs in Dy, (Y') and D, (Y') is a sub formula of Dy, (X) then
X <, Y. When X <, Y, it is also said that Y depends on X or X is older than Y.
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Let us illustrate the three definitions just above with an example. Consider again the formula
e = uX{a)X vV ()Y) AvY.(c)Y. It should be clear that ¢ is not a sentence as there is
a free occurrence of the variable Y in ¢. We have that D,(X) = pX((a)X Vv (b)Y) and
D,(Y) = vY.(c)Y. The variables X and Y can not be compared with the dependency order
relation <.

Definition 20 (Expansion) Given a formula ¢, its binding function D, and a sub formula
Y of ¢, the ezpansion (W])m of ¥ with respect to D, is defined by

(¥)p, = V[Dp(Xn)/Xn] - - [Dp(X1)/X1]

where Xy <, X3 <, -+ <, X, is a chain of bound variables of ¢ with respect to <.

Definition 21 Variable X in uX.o(X) is guarded if every occurrence of X in ¢(X) is in the
scope of some modality operator () or []. We say that a formula is guarded if every bound
variable in the formula is guarded.

Alternation depth describes the number of alternations between least and greatest fixpoint
operators.

Definition 22 The alternation depth of a formula denoted by alt(y) is the number of nesting
between p and v in ¢; it is recursively defined as follows:

o alt(tt) = alt(ff) = alt(X) =0

o alt(p A ) = alt(p V) = max(alt(p), alt(1))

 alt({a)p) = alt(alp) = alt(y)

o alt(puXp(X)) = max({1,alt(p(X)} U {1+ alt(wYap(Y)) | vYb(Y) € subp); X <, Y})
o alt(vX.p(X)) = max({1, alt(p(X)} U {1+ alt(uYap(Y)) | pYab(Y) € sub(¢); X <, V)

Formulas of the p-calculus are interpreted over X-labelled transition systems. The se-
mantics of a p-calculus formula ¢ is a set of states of a X-labelled transition system & =
(8,%,5% Ag) where the formula holds under a given valuation of variables Val : Var — 25
and it is denoted by [[go]]“s/al. Given a valuation of variables Val and a set of states T C S,
the valuation Val[X/T] is the valuation Val with the substitution that associates the states
of T with the variable X. Formally, for Y € Var, Val[X/T)(Y) =T if Y = X and Val(Y)
otherwise. We define the relation F between a state s of a transition system &, a valuation
Val and a formula ¢. We write S, s, Val E ¢ when the formula ¢ holds in s or equivalently s
satisfies (. The relation F is defined as follows:

e S5, ValE X if s € Val(X)
o S.5, ValE o1 Vo if S5, Val E 1 or S, s, Val E ¢
o S.s5, ValE o1 Ao if S, s, Val E p1 and S, s, Val F o

e S,s, Val E (a)g if there is s = s’ such that S, s, Val E ¢
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e S,s, Val F [a]p if for all s %= &' we have S, s, Val F ¢
o S5, ValF /’LXQO(X) if s € ﬂ{T < S‘ [[@(X)Hf/al[X/T] < T}

o 8,5, Val FvX.p(X) if s € U{T C S|T C [ g/}

Then we define [[go]]“s/al = {s € §|S,s, Val E ¢}. It is said that a X-labelled transition
system S is a model of a formula ¢ when s° € [go]]“s,al; in this case we write S, Val F . The
valuation Val is omitted if the formula does not contains free variables.

It is known (see [Eme90] for a survey) that properties expressed in temporal logics LTL,
CTL, and CTL* can be encoded as p-calculus formulas and that there are formulas of the
p-calculus (for instance v X.(a)(a)X) that can not be written in CTL*.

Given two formulas 7 and @9, we often use the notation p; = @9 to say that ¢ is
equivalent to s, meaning that for every labelled transition system S and valuation Val,

S S
[[801]] Val — [[902]] Val-

It is standard to consider the negation operator (=) on p-calculus sentences. Given a
formula ¢ and a ¥-labelled transition system & and a valuation Val, this operator is defined

by: [¢]® = S\ []°.
The following proposition is standard.

Proposition 23 The following equivalences are true:
o —tt=ff
o« ff=1tt
* (p1Ap2) =01V o

o (o1 V) =1 A

o uX.p(X)=vX.-p(-X)

o vX.p(X)=puX.—p(—X)

Thanks to the proposition just above, the negation operator can not appear in p-calculus
sentences.

Let us present some results on the p-calculus.

Proposition 24 ([Koz82]) Every formula of the p-calculus is equivalent to some guarded
formula of the p-calculus.
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1.3.2 Model-Checking and Satisfiability Results

Informally, the task of checking whether a finite state transition system, S = (S, %, s%, Ag) is
a model of a sentence ¢ can be seen as two player parity game whose nodes are set of tuples of
the form (s,1) where s € S and 1 is a sub formula of ¢. Positions of the player Fve contain

sub formulas of one of the forms ¢, 1 V @2, (a)1p. The other positions belong to the player
Adam. The initial position of the game is (s, ¢). The set of moves of the games are such that:

e There is no move from either (s, tt) or (s, ff).
e From (s,p A1) as well as from (s, V 1) there are moves to (s, ) and to (s,1)).
e From (s, [a]y) and from (s, (a)¢) there are moves to (s, ¢, for every s’ such that s —— s’

e There is a move from (s,0X.¢(X)) to (s, (X))

There is a move from X to (s,¢(X)) where D(X) = 0 X.¢(X)

The acceptance condition is given by the parity function rank : Q — N defined by:

0 if 4 is not a variable
rank(y) = ¢ 2 x alt(D(X)) where ¢ = X and X is a v-variable
2xalt(D(X))+1 where ¢ = X and X is a p-variable

One can show that S is a model of a formula if player Eve has a winning strategy in the
the game. This gives an intuitive idea behind the following results.

Theorem 25 ([EJ91, Tho97, Jur00]) LetS = (S,%, s°, As) be a S-labelled transition sys-
tem and let ¢ be a p-calculus formula. The model-checking problem for ¢ and S is solvable in

time
8] x |sub(p)| "
O (\A5| x |sub(p)| x (W

Theorem 26 (|[Cas87, AD89, Sti96]) Let S and Sy two bisimilar labelled transition sys-
tems. For every p-calculus formula ¢, S1 is a model of ¢ is and only if So is o model of

@Y.

Theorem 27 ([EJ91]) The satisfiability problem for u-calculus formulas is solvable in expo-
nential time. The construction of witness models is effective.

In [EJ91, NW96|, two player parity games are defined for the satisfiability problem of the
p-calculus. The authors shown that a p-calculus formula is satisfiable if and only if there is
a winning strategy for one of the two players in the game. A witness model for a formula is
presented as a winning strategy. We recall that two player parity games are determined and
strategies are positional. It follows that witness models for formulas are finite state automata.
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1.3.3 Disjunctive Normal Form

Disjunctive normal form formulas are special kinds of formulas. One restriction in disjunctive
normal form formulas is that conjunctions of the form (a)p A (a)y are not allowed. These
conjunctions are in some sense deterministic as for example, there is not need to check whether
a state of a transition system satisfies two formulas after the occurrence of an event; and a
model for a formula ¢ can be “easily” merged with a model of a formula ¢ in order to build a
model for (a)p A (b)1p. The other restrictions are presented in Definition 29.

Let us present a modal operator [JW95] that extends the syntax of the u-calculus.

Definition 28 Let I' be a set of formula. The operator (a) —TI is defined by

(@) =T = A(a)onla \/ ¢

pel pel’

A formula of the form (a)y is equivalent to (a) —{tt, ¢} and a formula of the form [a]p is
equivalent to (a) —0V (a) —{¢}. This means that every p-calculus formulas can be rewritten
using the operator (a) —T.

Definition 29 The set of disjunctive formulas, dF}, is the smallest set defined by the following
clauses:

o 1t, ff, X belongs to dF},.

o If p,% € dF}, then ¢ V4 € dF},; if moreover X does not occur in a sub formula of ¢ of
the form X A, then pX.¢(X), vX.¢(X) € dF),.

e Formula o1 Apa A... Ay, € dF), provided that every ¢; is in {tt, ff} or a formula of the
form ¢; = (a;) —0; with ©; C dF),. It is required that for any event a there can be at
most one conjunct of the form (a) —I' among ¢1, @2, ..., ¢n.

Theorem 30 ([JW95]) For every formula ¢, there exists an equivalent disjunctive formula

0.

1.4 Alternating Tree Automata

We present alternating tree automata |[MS87| and non deterministic tree automata. Alter-
nating tree automata recognize labelled transition systems. They are a main technical tool
for proofs and, in understanding of the p-calculus. Alternating tree automata have the same
expressive power as the p-calculus in the sense that every p-calculus formula can be translated
into an equivalent alternating tree automaton and reciprocally. The definition of alternating
tree automata presented in this section is different from the one in [MS87|. In the definition
presented below, we use modal operators ((),[]) of the u-calculus in transition relations.

Definition 31 An alternating tree automaton is the structure A = (Q, X, ¢", A, Acc) where
Q is a finite set of states, ¥ is an alphabet, ¢” is the initial state, A : Q — TF(Q,Y) is
a transition relation which assigns a transition formula to each state of the automaton, and
Acc is the parity condition given by a function Q4 : @ — {0,...,k}. The set TF(Q,X) of
transition formulas is defined as follows:
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e it and ff are transition formulas.
e For every ¢ € Q, (a)q, [a]q are transition formulas.

e for every qi, g2 € Q, 1 N\ g2 and q1 V g9 are transition formulas

An alternating tree automaton as above accepts labelled transition systems. The meaning
of alternating tree automata can be defined using the game approach. To decide whether a
transition system is accepted by an alternating tree automaton, one can consider a two player
parity game. Let S = (S, X, 5%, Ag) be a X-labelled transition system. The acceptance game
of A over S is the tuple G(A,S) = (N, Ng,Na, T, Accg) where:

o Np=SxFFand F¥ C TF(Q,Y) is the set of transition formulas of the form ff, o V),
(a)p with ¢, € TF(Q, ).

o Nu=SxTF(Q,%)\ Ng

e There is no move from (s, t¢) nor from (s, ff), for every s € Q.

e From (s, A1) as well as from (s, V 1)) there are moves to (s, ) and to (s,).

e From (s, [a]y) and from (s, (a)¢) there are moves to (s', p) for every s’ such that s — s’

e There is a move from (s,q) to (s, A(q)).

e Accg is the max-parity condition characterised by the function g : N — N defined by
0 if ¢ is not a state

Qg(s,ﬁﬂ) = { QA(Q) if p = q is a state

We say that A accepts S (or S models A), and we write S € L(A) or S F A, if there is a
winning strategy for the player Eve in G(S,.A).

Theorem 32 ([Niw88, EJ91, Wil01]|) For every u-calculus formula ¢ there is an alternat-
ing tree automaton A, such that for every X-labelled transition system S:

SE ¢ if and only if S € L(A,).

Conversely, for every alternating tree automaton A there is a p-calculus formula ¢ o such that
every X-labelled transition system P:

S e L(A) if and only if SF ¢ 4.

1.5 Frameworks for Discrete-Time Control

We present the Ramadge et al. approach and the Arnold et al. approach to the discrete-time
control problem. We recall that in discrete-time control, timing information are not explicit
in models of systems and specifications. In the Ramadge et al. Approach specifications are
linear-time properties described with an automaton on words. The Arnold et al. approach
considers branching-time properties described with p-calculus formula.
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1.5.1 The Ramadge et al. Approach

The controller synthesis problem considered by Ramadge and Wonham [RW89] consists to
provide controller for a system (called the plant). The main goal is that the system resulting
from the combination of the plant with controller, the controlled system, satisfies the given
requirement. In [RW89|, Ramadge and Wonham consider centralised and decentralised con-
troller synthesis problems with full and partial observability hypothesis on events. We only
present their framework for the centralised controller synthesis with total observation.

In that framework, plants and controllers are deterministic finite state automata over a set
of events > partitioned into a set of controllable event 3. and a set of uncontrollable events
Y- Requirements controlled systems are given with regular languages (on words). Controllers
never forbid an occurrence of uncontrollable event. The synthesis of a controller is effective
and polynomial in the size of the plant and the requirement. .

Since the works in [RW89], the control problem has been studied in more powerful settings.
Some of these studies are presented in the following.

1.5.2 The Arnold et al. Approach

The framework of Arnold et al. [AVW03, ABPV05, AW07] for the supervisory control consider
transition system models and control objective described with alternating tree automata on
transition systems, or equivalently p-calculus formulas. There, the notions of controllability,
observability and distinguishability are considered for centralised and decentralised controller
synthesis problems. We will just present the framework for the centralised controller synthesis
when the set of events X, occurring in the plants are partitioned into a set .. of controllable
events and a set >, of uncontrollable events.

Plants and controllers are finite state labelled transition systems (not necessarily deter-
ministic). A controller has to satisfy the untimed control condition (UCC) that requires that
it can not forbid any occurrence of an uncontrollable event. This property for controllers can
be described with an alternating tree automaton (see below).

The centralised controller synthesis problem is:

given a plant P and two p-calculus formulas ¢ and v, does there exists a controller R
satisfying the condition (UCC) such that P x R satisfies ¢ and R satisfies 17

The solution to the centralised controller synthesis uses a notion of quotient of a control
objective ¢ with a plant P. Because a p-calculus formula can be translated into an equivalent
alternating tree automaton on transition systems (see Theorem 32), Arnold et al. assume
that the control objective ¢ is described with an equivalent alternating tree automaton A..
Then they provide a quotient operator A,/P of A, with a plant P. The quotient operation
is defined in such a way that it satisfies the property presented in Proposition 33 just below.

Proposition 33 ([AVWO03, AWO07]) Given an alternating tree automaton A, two finite
state transition systems P and R, there is an alternating tree automaton .4/P such that:

RE A/P if and only if P x RE A
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To ensure R in the proposition above to be a controller, R should additionally satisfies the
untimed controller conditions (UCC). Arnold et al. [ABPV05] have shown that the control
condition (UCC) can be described with a p-calculus formula

vX. /\ (@)X A /\ [a] X

aGEu aEZc

that is equivalent to the one state alternating tree automaton B defined as follows:

B={q¢"},%,¢° A, Acc) where

A(Q") = /\ (ayq" A /\ [a]q".

aGEu aEZc

where Acc is the parity condition given by a function rank that assigns the value 0 to the
state qO.
Let us comment the transition formula of the one state modal automaton B. The formula
has two parts. The first part is the conjunction A,y (a)¢’. A state in which this part is
true should (because of the existential modality) have, for every uncontrollable event from
Y., an outgoing transition to a state in which A(q?) is true again. The second part is the
conjunction A,y [a]q; it requires every successor of a state (satisfying the formula), with
a controllable event, to satisfy A(q"); it does not requires its models to have transitions
labelled with controllable events from Y. The parity index of ¢° is even and it is equal to 0.
In consequence every infinite path in the acceptance game is accepted.

As alternating tree automata are closed under intersection, a controller for a plant P
under a specification A, should satisfy A,/P N Ay N B. This provides a hint of a proof for
the decidability of the centralised controller synthesis problem.

Theorem 34 (JAVWO03, AWO07]|) Given a plant P and two p-calculus formulas ¢ and 1),
the problem of checking whether there exists a controller R satisfying the condition (UCC) such
that P X R E ¢ and R F ¢ is decidable. Moreover, the computation of a witness controller is
effective.

1.6 Frameworks for Dense-Time Supervisory Control

We present the approach of Madhusudan et al. [DMO02| and the approach of Laroussinie et
al. [BCLO5] to the controller synthesis of dense-time systems. These approaches consider timed
automata model [AD94] that we present in the next subsection.

1.6.1 The Timed Automata Model

Let H be a set of clocks. A clock constraint is a comparison of a clock, or the difference between
two clocks, with a constant. Let Gdsy be a set of clock constraints. Clocks are real-valued
variables. If v represents a valuation, v(h) represents the value of the clock h, (v+t)(h) gives
the value of the clock h after a delay of ¢ time units, and v[H := 0] resets every clock in H.
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Definition 35 A timed automaton over (H,Y) is a structure P = (P, H,%, p°, Ap, Acc)
where P is a finite set of states, ¥ is an alphabet, p° is the initial state, Ap C P x Gdsy X
¥ x 2 x P is the transition relation and Acc is the acceptance condition.

. . C L e ', H'
A timed automaton is deterministic if there are no two distinct transitions of the form p 9.4y

" H// . .
p’ and p 225 p” such that ¢” and ¢’ can be satisfied by the same valuation of the clocks.

A timed automaton P as defined above represents a transition system whose states are
pairs of the form (p,v) made of a state of the timed automaton and a valuation. Transitions
in the transition system are of the form (p,v) AN (p,v + 1) or (p,v) —= (p',v[H = 0]). A
transition (p,v) 4 (p,v +t) represents a delay (of amount ¢ € R") that occurs in the timed
transition system when it is in state p and the values of the clocks are given by v. A transition
(p,v) == (p,v[H := 0]) indicates that the system moves from the state p to the state p’ when
the event a occurs; and then it immediately resets all the clocks in H. The latter transition is
possible if the timed transition system has a transition p 9.0 p’ and the values of the clocks,
given by v, satisfy the constraint g.

A timed automaton accepts timed words. A timed word over an alphabet X is sequence
w = (a;,t;)i=1.. such that i < j implies ¢; < t;.

A run p, of a timed automaton over a timed word (a;,¢;);=1.. is a sequence of the form

ap,to ai,ty ai,t;
pP= (PO;UO) I (thl) A — (pi+17vi+1)'~

with p; € P, v; is a valuation of the clocks, for all ¢ > 0, satisfying the following requirements:

e po = pY is the initial state of the automaton.

e vg(h) =0 for all h € H.
e for all ¢ > 0, there is a transition p; 9,015 pi+1 such that v; +¢; — t;_1 satisfies g; and
viy1 equals v; +t; — t;_1[H; := 0].

A run is accepting if and only if its projection on the states (P) of the timed automaton
belongs the acceptance condition (Acc) of the automaton. A timed word, w is accepted by a
timed automaton if and only if there is an accepting run of the automaton over w.

The language of a timed automaton, £(.A) is the set of timed words over which there is
an accepting run. Formally,

L(A) ={w]|w is a timed word and A accepts w}

The following theorem presents some fundamental results on languages of timed automata.
Automata in that theorem are timed automata with the Biichi acceptance condition. These
results are useful for understanding the results presented in the next subsection.

Theorem 36 ( [AD94]) Emptiness testing is decidable for non deterministic timed au-
tomata. Timed automata are closed under union and intersection. Non deterministic timed
automata are not closed under complementation but deterministic timed automata are closed
under complementation. The inclusion testing between non deterministic timed automata is
undecidable but, it is decidable to check whether a timed automata is included in a determin-
istic timed automata.
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1.6.2 The Madhusudan et al. Approach for Automata Specification

Madhusudan et al. [DM02] consider the controller synthesis for timed specifications. A plant P
is a deterministic timed automaton over (Hp,¥) where, Hp denotes the set of clocks used by
the plant and the set of events ¥ = ¥, U X, is partitioned into a set . of controllable events
and a set X, of uncontrollable events. A controller S is a deterministic timed automaton over
(Hp UHs,X) where, Hg is a set of clocks disjoint from Hp. A controller is combined with the
plant for satisfying a control objective.

The notion of product between timed automata formalises the combination between sys-
tems (the plant and the controller). This notion is defined as follows:

Definition 37 The product of a timed automaton P = (P, Hy, %, p®, Ap, Accy) with a timed

automaton S = (S, Hs, %, 5%, Ag, Acea) is the timed automaton P x S = (P x S, H; U

Ho, %, (p°,s°), A, Acc) where, and A is given by (p,s) g XY (p’,s") € A if and only if

X Y . . . .
p P25 ' and s 2% ¢ with ¢ representing the conjunction of g1 and go.

A controller satisfies the following timed control conditions (TCC):

(TCC) (C1) S has resets only in Hg (i.e, if s gl s', then H C Hg).

(C2) S does not restrict uncontrollable events (non restricting): whenever we have w €
L(P x8) and (w.(a,t)) € L(P) with a € X, then w.(a,t) € L(P x S).

(C3) S is non-blocking: whenever we have w € L(P x S) and (w.(b,t)) € L(P), there
exists ¢ € ¥ and ¢ € R such that (w.(c,t')) € L(P x S).

A control objective is described by a timed automaton with Biichi acceptance condition. It
can describe a set of undesired behaviours or a set of desired behaviours. The timed automata
can be deterministic or not.

The controller synthesis against undesired behaviours is: given a plant P and a timed
automaton A, does there exists a controller S for P such that L(P x §) N L(A) = (7 The
control synthesis against desired behaviours is: given a plant P and a timed automaton A,
does there exists a controller S for P such that L(P x §) C L(A)?

In Table 1, we present decidability results [DM02] for the controller synthesis problem
against undesired behaviours and the controller synthesis problem for desired behaviours; for
decidable cases, a finite-state controller can be synthesized.

Limited resources Unlimited resources
Det. Cont. Obj Nondet. Cont. Obj. Det. Cont. Obj Nondet. Cont. Obj.
Desired Undesired Desired Undesired
Decidable Undecidable | Decidable Decidable Undecidable | Undecidable

Table 1: Controller Synthesis results for Madhusudan et al..

Theses results do not only depend on whether the specification is deterministic or not; but
they also depend on some hypothesis made on the number of clocks and the constants that
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appear in the controller; these latter parameters are called the resources of the controllers.
In the case of limited resources, a maximal constant in the controller is specified and the set
Hs is also specified.

1.6.3 The Laroussinie et al. Approach for L, Specification

Laroussinie et al. [BCL05| use the framework of timed automata to describe plants and the
timed branching-time logic L, to describe internal control objectives.

Syntax and Semantics of L,

Definition 38 The logic L, over the finite set of clocks H, the set of identifiers Var, and the
set of events X is defined as the set of formulas generated by the following grammar:

pu=1tt|fflovVeleAnplhinplheac|{a)e|[ale|(0)e|[dle] X

where, a € ¥ is an event, h € H is a clock variable, ¢ € Q>¢ is a constant, X is a variable,
e {<, >, <, >}

The logic L, allows for the recursive definition of formulas by including a set Var of
variables. The formula associated with each of the identifiers is specified by a declaration D;
In other words, the declaration D assigns a L, formula to each identifier. For an identifier X,

we write X d;fgo if D(X) = . Intuitively X stands for the largest solution of the equation

Xdéfgo.

A formula is interpreted over the semantics of timed automaton. From what has preceded,
we use the notion P Ep ¢ to say that the timed automaton P is a model of ¢ with respect to
the declaration D. Let us take a timed automaton P, whose set of clocks K is disjoint from
the set of clocks H occurring in formulas. Formulas are interpreted over extended states of the
form (p,v) where, p is a state of P, v is a valuation of all clocks in K U H. The satisfaction
relation Fp is the largest relation satisfying the following implications:

e it is true that P, (p,v) Fp tt.

e it is false that P, (p,v) Ep ff.

o if P,(p,v) Ep ¢V then P,(p,v) Ep ¢ or P, (p,v) Ep ¢
o if P,(p,v) Ep ¢ At then P, (p,v) Ep ¢ and P, (p,v) Ep ¢

o if P,(p,v) Ep hxc then v(h) > ec.

e if P,(p,v) Fp [a]p then for all p 9:a.H p’ such that v satisfies g we have P, (p’,v[H :=

0]) Fp .

o if P,(p,v) Ep (a)p then there is p 9.1 p’ such that v satisfies g and P, (p’,v[H =

0]) Fp .
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o if P,

p,v) Ep [8]p then for all t € RT P, (p,v+t) Ep .

e if P,(p,v) Ep (§)p then there is t € RT such that P, (p,v +t) Ep .

(p,v) F
(p,v)
o if P, (p,v) Fp hiny then P, (p,v[{h} = 0]) Fp ¢
o if P, (p,v) Fp X then P, (p,v) Fp D(X)

Any relation satisfying the above implications is referred to as a satisfiability relation. The
relation Fp is the union of all satisfiability relations.

The control problem

Events are controllable or non controllable. A plant P is a timed automaton that is determin-
istic with respect to controllable events. At any time and in any state, the time elapses or an
event occurs. The plant does not control the occurrences of uncontrollable events.

The control objective is a formula ¢ of L9t (L4 is a deterministic fragment of L,). The
fragment L% ensures that the conjunctions of L% formulas are in some sense deterministic
and thus, they can be merged safely. By this way, a controller against a control objective ¢ A1
will “easily” combine a controller against ¢ and a controller against .

A controller for a plant is a function f that during the execution of the system constantly
gives information about what should be done in order to ensure the control objective. A con-
troller can not prevent uncontrollable events from occurring; but it can disable a controllable
event at any time. We write f(P) for the controlled system.

The control problem considered by Laroussinie et al. is the following.

Given a timed automaton P, the plant, and a L%! formula ¢, a (deterministic) control
objective, is there a controller f such that f(P) F ¢?

The main result of Laroussinie et al. is that the control problem can be reduced to the
standard model-checking problem. For that purpose, from a L% control objective ¢, the
formula @ =\ 5, Iy ¢ is defined. For a controllable event a. the formula p® will hold when
there is a controller which ensures ¢ and which starts by enforcing the event a.. The formula
%" that will hold when there is a controller which ensures ¢ and which starts by delaying.
The construction of these new formulas involves the introduction a new modal operator [0)
that can not be described using a L, formula and whose semantics is the following.

P, (p,v) Ep [d)y if and only if either V¢ € RT, P, (p,v +t) Ep ¢ or, 3t € RT such that
P, (p,v+t)Eppand VO <t/ <t, P,(p,v+1t)Fpep.

The resulting logic (L, augmented with [§)), L™ enables to express dense-time control
requirement: some property is true for a subset of the states of the plant that are reachable
by time elapsing before a controllable action leading to good states is possible. Thus, checking
the existence of a controller for a timed automaton against a L% control objective is reduced
to checking whether the timed automaton satisfies a dense-time control requirement which is
itself described with a L™ formula.
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Theorem 39 (|[BCLO05]) Forall p € Lﬁet and a timed automaton P, there exists a controller
f such that f(P) Ep ¢ if and only if P Fp @.

The decidability of the control problem (the construction of a witness controller is not
effective) comes from the following theorem.

Theorem 40 ([BCLO5]) Given v € L™, and a timed automaton P, it is EXPTIME-
complete to decide whether P is a model of 1.
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Chapter 2

Timed Processes

In reactive real-time systems, the correctness of the tasks they perform depends not only upon
logical correctness, but also upon the times at which the tasks are performed. For recording
the duration of a task, we can use an event that is triggered at the beginning of the task and
another event that is triggered when the task ends; then the duration of the task will be the
difference between the time at which the termination event happens and the time at which
the beginning event happens. If there are several tasks in the system, we could imagine that
there are as many start-events as tasks. The dynamics of a real-time system can be described
through the variation of its tasks. A variation can be constrained with the occurrence of events
and/or timing information.

In this chapter, we consider models for a class of real-time systems and models for repre-
senting their behaviours. We called our models timed processes. Timed processes have local
clocks each associated to an event and such a clock gathers the time elapsed since the last
occurrence of the corresponding event. A timed process is a finite state labelled transition
system whose transitions are labelled with constraints on clocks and events. A constraint on
clocks is just a conjunction of comparisons of values of a clock or the difference between two
clock values, with an integer constant. The latter is are called diagonal constraint.

Clock are interpreted over real numbers. The value of each clock grows continuously and
with the same rate as the time unless it is reset. A timed process is a finite representation of
all the behaviours of a real-time system. A behaviour of a real-time system is a succession of
states of its timed process paired with the values of clocks. When the system is in some state,
the time elapses continuously (the values of the clocks too) until an event occurs. Then, the
process instantaneously selects a transition labelled with that event and checks whether the
constraint on the chosen transition is satisfied by the values of clocks before it resets the clock
associated to the event and moves to the target state of the transition. If the constraint is not
satisfied, the process does not change the state.

We will use transition systems to represent the semantics (set of behaviours) of timed
processes. A transition in the semantics of a timed process will be labelled with an event or
a valuation of clocks; a state will be a pair made of a state of the timed process and the
values of the clocks. As clocks values are real-numbers, semantics are infinite state labelled
transition systems, and each state has infinitely many outgoing transitions. Because infinite

33
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models are difficult to handle, we introduce two representations for semantics called the M-
action representation and the M -region representation.

The M-action representation will be obtained from the semantics by replacing each tran-
sition labelled with a valuation by a transition labelled with canonical and atomic constraints
satisfied in that valuation. We will require constraints to use constants lower than M. As there
will be finitely many canonical and atomic constraints, each state will have finitely many out-
going transitions, but there will still be infinitely many states in M-action representations.
Then, we introduce M-region representation a state of which is a state of the underlying timed
process paired with a M-region. A region is just a set of “equivalent” valuations. There are
finitely many regions and then, M-region representations are finite structures suitable suitable
for verification purposes. As we will show, using bisimulation relation, M-region representa-
tions preserve behavioral properties of the semantics.

We will consider that systems communicate in a synchronous mode. For communicating
systems in synchronous mode, an event must happen at the same time in all the systems in
order to be considered. We will assume that the communicating devices will be 0-delay. We
will formalise the communication by defining a product operation between timed processes.
We will show that the semantics of the product of two timed processes is “the same” as the
product of the semantics of that processes.

A natural and fundamental problem that arises when defining models for systems is the
reachability problem. The reachability problem requires to check if a target state could be
reached from a source state when a system executes. There are two approaches to this problem:
the forward analysis, and the backward analysis. We will present an algorithm based on the M-
region representation that is correct for the backward and the forward approaches whatever
is the nature or the constraint (general or diagonal free). But considering the zone-based
representation of the timing context (a zone is just a set of valuations satisfying a constraint),
we show the incorrectness of the forward analysis algorithm when diagonal constraints are
authorised in the timed processes.

Related Results: All results presented in this section are known. Timed processes
are nothing else but event-recording automata [AFH99| without an acceptance condition
these in turn are a subclass of timed automata [AD94]. The reachability problem for timed
automata has been considered using region abstraction [ACD'92, LY97] and zone abstrac-
tion [LPY97, BY04| and algorithms for the reachability problem have been implemented in
verification tools like Uppaal [LPY97, BLLT96, BDL04| or Kronos [BTY97, Yov98|. Bouyer
has shown [Bou03] (see also [BLR05]) the incorrectness of a zone-approach for the reachability
problem of timed automata with diagonal constraints.

This chapter is organised as follows. In the next section we consider clocks, constraints, we
also present decomposition of constraints into atomic constraints. In Section 2.2 we present
regions and their properties. Zones and their operations are presented in Section 2.3. In Sec-
tion 2.4, we define timed processes, their semantics and representations of semantics. We use
some properties of regions to show that M-region representation can be used instead of the
semantics. We present the the product of timed processes in Section 2.5, and in Section 2.6
we consider the reachability analysis.
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2.1 Clock, Valuation, Constraints

We define clocks that are real numbers valued variables. We also define clock constraints and
we present their decomposition into atomic clock constraints.

2.1.1 Clocks and Valuations

Clocks are variables evaluated over real numbers. There are two operations on time, the time
elapse operation that gives the value of the clock after a delay and the reset operation that
sets the value of a clocks to 0.

Let RT be the set of non negative real numbers. We consider H = {hi, ha,...} a set of
clocks variables (or clocks for simplicity).

Definition 41 A wvaluation on a set of clock H is a total function v : H — RT.

The symbol V represents the set of valuations. Given a valuation v € V, and a clock h € H,
the valuation v+t is defined by [v+¢](h) = v(h) +t and, the valuation v[h := 0] is defined by
v[h:=0](h') = 0if h =1 else v[h := 0](h') = v(h'). We say that a valuation v is a successor
of a valuation v if v =o' + ¢ for some t € R™.

Example: Let H = {hj,ho} be a set of two clocks. In Table 2, we present some valuations
on h are some valuation on H.

{Uo(hl) =0 {Ul(hl) = 0.35 {’Ug(hl) = 0.35 {’Ug(hl) = 0.85
Uo(hg) = 0 Ul(hg) = 0.35 Ug(hg) = 0 ’U3(h2) = 0.50

{U4(h1) = 0 {’U5(h1) = 0.35
U4(h2) = 0.50 U5(h2) = 0.85

Table 2: Examples of valuations.

These valuations are such that v1 = vy + 0.35, va = wvilhe = 0], v3 = vy + 0.50, v4 =
vslhy == 0], v5 = vg + 0.35 and vy = v5]hy := 0]. In Figure 2 we give another representations
of these valuations in Cartesian reference.

0

2.1.2 Constraints

Constraints are conjunctions of simple constraints; and a simple constraint is a comparison
of a clock with an integer (diagonal free simple constraint) or a comparison of the difference
between two clocks with and integer. Diagonal free constraints use only diagonal free simple
constraints. Constraints are interpreted over valuations. The semantics of a constraint is the set
of valuations satisfying it. We will also consider two types of atomic constraints : rectangular
constraints and triangular constraints.
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Figure 2: Representation of valuations in Cartesian reference.

Definition 42 A simple constraint defined on a set of clocks H is an equation of the form
h —h <in or hixin where n € N, is one of {<,<,>,>} and h,h/ € H.
A diagonal free simple constraint is a simple constraint of the form h i n.

Definition 43 A clock constraint over a set of clocks H is a conjunction of simple constraints.
®4, , denotes the set of clock constraints over H. A diagonal-free clock constraint is a clock
constraint that uses only diagonal free simple constraints. Gdsy denotes the set of diagonal-
free clock constraints over H.

We will often write h = n or h — b/ = n as an abbreviation of h < n A h > n. We also
write h — b/ = n to represent the constraint h —h' <n Ah—h' > n.

Later we consider two special clock constraints ¢¢ and ff defined by: &t = A\, h > 0 and

The notion of a constraint satisfied in a given valuation denoted v F ¢ is defined inductively
as follows:

e v hixan if and only if v(h) xn
e vEh— K xanif and only if v(h) — v(h') >xn

e vE gi ANgoif and only if v F gy and v F go

The meaning of a constraint g, denoted [g], is the set of valuations in which it is satisfied.
Clearly, [g] = {v: v E g}. It becomes obvious that [t{] = H — R* and [ff] = 0.

Definition 44 A constraint g is inconsistent if [g] = 0.

Definition 45 The bound of a constraint g, denoted by M,, is the maximal constant that
appears in it. The bound of a set of constraints is the maximal value among the bounds of

constraint it contains. A set of constraints is M-bounded if every constant in it is smaller than
M.
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Now we consider atomic constraints and we show how to decompose a constraint into an
“equivalent” set of atomic constraints.

Definition 46 For a integer M € N, a M -rectangular constraint is a conjunction of the form
Anew 9n where gp, is a constraint of the form ¢ < h < ¢+ 1or h = c or h > M with
ce NN[0.M].

The set of all M-rectangular constraints is denoted by Agds;, (M) . The symbol Agdsy,
will denote the set |, Agdsy (M)

Definition 47 A M-triangular constraint is a conjunction of the form A, 90 A
/\(h,h')em ghn where g ps is a constraint of the forms ¢ < h—h' < c+1lorh—-1h =c
or h —h' > M and gy, is of the form ¢ < h<c+1or h=cor h > M with c € NN[0..M].

The symbol T'gdsy (M) denotes the set of all of M-triangular constraints. The symbol
T'gdsy, denotes the set ey T'9dsy (M).

Notation: We often use the symbol § to denote a constraint in Agdsy, (M) or Tgdss (M)
for some M. Later the terms atomic constraints will often be used in place of rectangular
constraints or triangular constraints.

Let us first recall the following fact resulting from definitions of atomic constraints.

Fact 48 (atomicity) Let M € N be a constant.

* V9,9 € Tgdsy (M), if [g] # [§'] then [g] N [g] =0
* V9,9 € Agdsy (M), if [9] # ['] then [g[ N [g'] =0
* ¥(9,9') € Agdsy (M) x Tgdsy(M), either [g'T N [g] =0 or [g'] < [9]

The first two items state that either the semantics of two atomic constraints of the same
nature are equal, or they are disjoint. The last item of the above fact states that the semantics
of a triangular constraint is either included in the semantics of a rectangular constraints, or
the two semantics are disjoint.

Example: In Figure 3,we illustrate the concepts of constraints and diagonal free constraints.
The constraints g; and g3 are general constraints while the constraint go is diagonal free.
Moreover [g3] = [g1] A [g2]. The constraint gs is a rectangular constraint in Agdsy(2) and
the constraint gs is a triangular constraint. [

Normalization and Rectangularisation Until the end of this subsection we consider the
decomposition of diagonal free constraint into set of rectangular constraints. We will need to
consider constraints that do not involve constants greater than a fixed bound. For that purpose,
we present the normalisation operation normy that we use later to decompose constraints.

Definition 49 Given N € N, the N-normalization of a simple constraint C' is the constraint
normpy(C') defined by :

o normy(h>in) = tt if e {<, <} and n > N.
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g =0<h, <3AN0<hy<2A-1<h,—hy <1

g3 =1<hy <2AN0<hy <1A=-1<h,—hy <1

Figure 3: Illustration of constraints and diagonal free constraints.

e normy(h —h'>an) = tt if e {<,<} and n > N.
e normy(h<n)=h> N if € {>,>} and n > N.
e normy(h—h'><xn)=h—h"> N if e {>,>} and n > N.

e In the other cases normy does not modify the constraint.

Given a constraint g and an integer N, the N-normalization of g, normpy(g) is obtained
by normalizing each simple constraint occurring in g.

Lemma 50 Let C, a diagonal-free simple constraint, there is a constant M such that:

e for every N > M, [normp(C)] = [normy(C)] = [C]

e for every N < M, [normp(C)] € [normn(C)]

Proof

1. When C has the form h < n with e {<, <} and consider M = n,
(a) Let N > M, normpy(h > n) is equal to normps(h > n) and they are equal to
h>1n and we get the result that [normps (C)] = [normy(C)] = [C].
(b) Let N < M, normy(ht<in)=h > 0. Clearly [normy(C)] € [normy(C)].

2. When C has the form h > n with <€ {>, >} and consider M = n,

(a) Let N > M, normpy(h > n) is equal to normps(h > n) and they are equal to
h>1n and we get the result that [normys(C)] = [normy(C)] = [C].

(b) Let N < M, then normpy(h><n) = hvt N and [normp(C)] = h>x M. Clearly,
[normar(C)] € [normy(C)].
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O

Let us recall that for a constraint g, M, denotes the maximal constant occurring in g.
We use the lemma above to show that the M-normalisation of a constraint does modify its
semantics when M is greater or equal to M,.

Proposition 51 Let g € Gdsy,

e for every M > M,, [normas(g)] = [normn(g)] = [9]

o for every M < My, [norma(g)] S [normpy(g)]

Proof

By definitions ¢ = A,_; ,, Ci and, [norma(g)] = (i—y ,, [Norma(C;)]. As M, is greater
that the constant used in every Cj, we get, using 50 that for M > M,, [norma(g)] =
[normn(g)] = [g]and for M < My, [norma(g)] € [normn(g)] O

Example: Considering the constraint g = 0 < hy < 3A0 < hy < 2, we present in Table 3
the results of M-normalisation operations depending on the value of M. It is easy to see that

M | normas(g)
0 | tt
1|t
2 [0< Ty <2
3 0<h,<3A0<hy<2

Table 3: Illustration of the normalisation operation.

for every M < 2, [¢g] C [normas(g)] and for every M > 2, [g] = [normas(g)] O

To obtain the decomposition of diagonal constraints, we firstly decompose diagonal free
constraints into a set (possibly infinite) of unbounded rectangular constraints. Then, we use
the normalisation procedure above on each atomic constraint in that set to have a finite set
of bounded rectangular constraints. The decomposition of diagonal free constraints into a set
of unbounded rectangular constraints is performed in two steps: in Lemma 52 we decompose
simple diagonal free constraints and we use that decomposition in Proposition 53 to decompose
diagonal free constraints.

Lemma 52 For every diagonal free simple constraint C, there is a set Rect(C) of atomic
diagonal free simple constraints such that [C] = Ucrepeet(c) [C']-

Proof
Let C be a diagonal free constraint C'. We construct a set Rect(C) depending on the form of
C; and we show that for every v € V, v E C' if and only if there is C' € Rect(C) such that
vEC.

1. if C is of the form h < n then set Rect(C) ={i<h <i+1,h=1i|i=0..n—1}
2. if C'is of the form h < n then set Rect(C) = {i < h <i+1,h=1i|i=0.n—1}U{h =n}

3. if C' is of the form h > n then set Rect(C) ={i<h<i+1,h=1i+1|i=mn..00}
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4. if C'is of the form h > n then set Rect(C) = {i < h <i+1,h =i+1|i =n..oo}U{h =n}

The proof that in each case, [C] = Ucregee(c) [C'], is obvious. O

We observe that simple constraints of the form h > n to h > n are decomposed into infinite
set of constraints.

Proposition 53 For every diagonal-free constraint g, there is a set Rect(g) of rectangular
constraints such that [g] = Ugegeer(q) [9]-

Proof
The result is a consequence of the Lemma 52 above as a constraints is a conjunction of simple
constraints. n

We say that Rect(g) is the unbounded rectangular decomposition of g.

Now that we have decomposed diagonal free constraints into sets (possibly infinite) of
unbounded rectangular constraints, we will apply the normalisation operation on each rectan-
gular constraint in these sets; the result of the application of the normalisation operation with
respect to a constant M will be finite set of M-rectangular constraints. But we need to show
that the semantics of the constraint resulting from the application of the M-normalisation
operation on a simple diagonal free constraint is the same as the union of the semantics of
rectangular constraints in its unbounded rectangular decomposition.

Lemma 54 For every diagonal free simple constraint C' of the form h < n or h > n, for every
M €N, [norm(C)] = Ucrepeer(c) [normar (C1)].

Proof
If C is of the form:

e h<n,
— If M > n then normy(C) = C and for every C' € Rect(C), normy(C'") = C".
Then we get the result.

— If M < n then normy(C) = tt. Let C' be h = n. From Lemma 52, we get that
C" € Rect(C) and normp(C') = tt; then we get that Ucc pecr(oy [Rormar(C')] =
tt and [norms(C)] = Ucrepeet(cy [normar (C7)].

e h>n,

— The case when M > n is obvious because every constraint in Rect(C')U{C} is not
modified by normas.

— The case when M < n is also obvious because norm(C) = h > M and
normpr(C') = h > M for every C' € Rect(C)

Now we can easily extend results in the lemma above to diagonal free constraints.
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Proposition 55 For every diagonal-free constraint g, for every M € N, [normp(g)] =
Uf]ERect(g) [[TLO?”T)’LM(@)]]

Proof
It is a consequence of Lemma 54 above and Proposition 53 g

Definition 56 Given g € Gdsy and an integer M € N, we define the set

Rectp(g) = {normp(g) | g € Rect(g)}

From Proposition 51, we get that every diagonal-free constraint using constant smaller
than an integer M can be decomposed into a finite set of M-rectangular constraints.

Proposition 57 For every constraint g € Gdsy, for every M € N such that M > M, we
have that: [g] = Ujepeet,, (g) 19]-

Proof

From Proposition 55 [norma(9)] = Ujepeet(q) [Rormar(g)] or equivalently [norma(g)] =
UseRectas (g) [9]- From Proposition 51 for M > Mg, [g] = [norma(g)] and we get the result.
n

Remark: The same kind of property can be established for general constraints and triangular
constraints. The semantics of every rectangular constraint is equal to the union of semantics
of some triangular constraints. Then, every M-bounded diagonal free atomic constraint can
be decomposed into an equivalent set of M-bounded triangular constraints.

From the remark above we have the following proposition that we leave without proof.

Proposition 58 Every constraint or diagonal free constraint can be decomposed into a finite
equivalent set of triangular constraints.

2.2 Regions

We present a partitioning of the valuations into a finite number of equivalence classes called
regions. Valuations in the same region must satisfy the same clock constraints, their time
successors must also satisfy the same clock constraints, and they must satisfy the same clock
constraints after a clock is reset. Depending on the nature of the clocks constraints, region are
defined differently but they agree on a same set of properties.

Given a valuation v, [v] denotes the equivalence class (region) of v. We also use the letter r
to represent a region. Given a region r, we define r+¢t = {[v+t]|v e r}, rI={r+t |t € R>o}
and r[h := 0] = {[v[h :==0]] : v € r}.

The operation r + t returns the set of regions that can be reached from valuations in r
after ¢ time units. The operation r T gives the set of regions that can be reached when the
time elapses in r. The operation r[h := 0] gives the unique region after the clock h is reset in
every valuation of r. We write r C g for r C [g].
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Given a set G of constraints, we will present constructions for different types of sets of
regions Reg that satisfy the following properties:

P1 Vg € G,r € Reg, either r C [g] or [g] Nr = 0.

P2 Vr,r’" € Reg, if there exists some v € r and t € R>q such that v +¢ € 7/, then for every
v" € r there is some ¢’ € R>q such that o' +t' € /.

P3 Vr,r' € Reg,Vh € H, if r[h:= 0] Nr' # 0, then r[h := 0] C r'.

Now we will present definitions of regions for diagonal-free constraints and general (diag-
onal) constraint.

2.2.1 Regions for Diagonal Free Constraints

The definition of a region we present here has been introduced by Alur and Dill [AD94]
for analysing timed automata using only diagonal -free constraints. The equivalence relation
between valuations is defined with respect to some integer M representing the maximal value
used in constraints. The definition of that relation is somehow related to the definition of
atomic constraints as atomic constraints can not be decomposed into smaller constraints.
Thus, two equivalent valuations agree on the integral part of each clock whose values are
smaller than M and they also agree on the order on the fractional part of the values of the
clocks.

For a real number n let |n| denote the integral part of n and {n} denote the fractional
part of n.

Let M be a natural number. Consider the parametrised binary relation ~™C Vi, x Vi
over valuations defined by, v ~M o' if:

1. v(h) > M if and only if v'(h) > M for each h € H;
2. if v(h) < M, then |v(h)] = [v'(h)] for every h € H;
3. if v(h) < M, then {v(h)} = 0 if and only if {v'(h)} = 0 for every h € H, and;

4. if v(h) < M and v(h') < M, then {v(h)} < {v(h)} if and only if {v'(h)} < {v'(h')} for
every h,h' € H.

Proposition 59 ([AD94]) The relation ~™ is an equivalence relation over the set of valu-
ations with at most 23"~ x |H|! x (M + 1)/l equivalence classes.

Proof
The relation ~™ is defined as a conjunction of four properties. Each property defines an
equivalence relation; let us denote them by N{W e ,N% , respectively. For each of these four

relations we will give an upper bound on the number of its equivalence classes. The product
of these bounds will give an upper bound on ~™ as the later is the intersection of the four
equivalence relations.

The relation defined by the first condition has 27l equivalence classes, as the only thing
that counts is whether the value of a clock is bigger than M or not. Similarly the third relation
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has 2/ equivalence classes. The number of classes of the second relation is (M + 1)/l as there
are M +1 possible integer values of interest. Finally, the number of classes of the fourth relation
is bounded by the number of permutations of the set of clocks multiplied by 2/%=1 as for every
two clocks consecutive in a permutation we need to decide if they are equal or if the second is
strictly bigger than the first.

Summarizing, we get 237=1H!|(M 4 1)1,
n

We use Reg(M) (or Reg for short) to represent the set of equivalence classes of the relation
M

~

Definition 60 A region [AD94] is an equivalence class of the relation ~™ C Vy; x V3 defined
above.

In Figure 4 we illustrate region for diagonal free constraints for the maximal constant
M = 2. In Figure 4 valuations earlier presented in Table 2 are not equivalent. A region in
the figure is either a corner point (for example (0,2)), an open line segment (for example
0 < hy = hy < 1) or an open box (for example 0 < hy < hy < 1).

ho
2
V4 Us
AN /
N /
N /
Yo N /U1
N\ N N N 1 N
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\ ‘-
N -
0 1
hy
0 1 2
Figure 4: Region illustration.

From the definition of ~™ it comes that an equivalence class can be represented using a
triangular constraint in g. According to the definition of ~™, two valuations that belong to
the same equivalence class satisfy constraint of the form:

e h =iy orip < h < i,+ 1 for each h € H where iy, € {0,1,..., M} and we assume

M + 1 = oco. This is a consequence of N{W, Né\/[, ~§4.

o h—h' =ipy oripy < h—h' < iy + 1 for each couple (h,h') € H? such that h 1 M
and A/ >1 M with € {=, <}. This is a consequence of ~}.
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Proposition 61 Let G be a set of M-bounded constraints then Reg(M) satisfies the P1, P2,
P3 mentioned above.

Proof
We show P1 in the first item, P2 in the second item and P3 in the last item.

1. Let g € G, from Proposition 57 let [g] = Uy, cpect,, (o) [9i]- Each g; is a rectangular
constraint. [g] Nr = Uy, cpecty, (o) [9:] N7). From Fact 48 there is at most one ¢ such that
r intersects g;. It follows that r intersects a constraint g; of Rectys(g) if and only if g;
contains r. We have that if v = r then v F g.

2. Let v,v’ € r, adding t to v may modify the integer part of the value (with respect to v)
of some clocks or may modify the order on the fractional part of the value (with respect
to v) of clocks. We aim at find a time ¢’ such that:

- The integer part of the value of each clock with respect to v’ 4+ is equal to the integer
part of the value of each clock with respect to v +¢

- The order of the fractional parts of clocks in v’ + ¢’ is the same in v + .

- The set of clocks with zero fractional part in v + ¢ is the same in v' + ¢'.

Let |H| = n and assume a permutation 7 of {1,...,n} such that:

{v(hm)} o1 {o(hny )} D2, > {0 (B, ) } ()

with b€ {<, =}

Let t € R>¢. It is clear that {v(h) +t} = {v(h) 4+ {t}}. Only the fractional part of ¢
may affect the order in (x).

There may be a largest index j such that:
{v(hx;) +{t}} = {v(hx;)} + {t}. In case, no such j exists, take j = n.

Clearly, {v(hx;) + {t}} = {v(hr,)} and; Vk > j we have:
{vlhm,) +{t}} <{v(hx,)} and {v(hr,) + {t}} < {v(hz;) + {t}}.

We get that:
{o(hayn) + {83} oo b1 {v(hr,) + {t}} <{v(hn;) +{t}}
Similarly, we establish that
{v(ha)) + {13} <{v(hm;_)) + {81552 - B {o () + {21}
where 53 => if bqj€ {<} otherwise bqj€ {=}, V& < j

o If {v/(hr, )+ {t'}} # 0, in order to have

{v’(h,rj+1{t’}} D . D1 < {0V (ha, {t'}} < {v’(h,rj) +{t'}} and
{0 (hjyr) + {3} o< {0 (hry ) + {35552 .. B {0 (Bry ) + {t}}

We take {t'} € [0,1 — {v/(hx;) N[ = {v' (ha, 1)} 1]
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o If {v/(hr, ) +{t'}} = 0 then {t} = 1 — {v(hr;,,)}; and we take {t'} = 1 —
{0 (hry i) -

It comes that [{v'(hr,)} + {t'}] = [{v(hs,)} + {t}].
To ensure that |[{v'(hr,)} + ¢ = [{v(hs,)} +t] we must take [t| = |t'].
3. Let v1,v9 € r, then v and vy satisfy all the conditions in the definition of an equivalence

class. Its obvious that v1[h := 0] and ve[h := 0] also satisfy those three conditions and
then vy [h := 0] and ve[h := 0] belong to r[h := 0].

If v € r[h:= 0] N7’ then every v' € r' is equivalent to v which is also equivalent to every
v" € r[h :=0]. Thus v € r[h := 0] if and only if v € r[h := 0].

2.2.2 Regions for General Constraints

For general constraints, the ones in ®4, we need to slightly modify the equivalence relation
defined above. Considering a set G of clock constraints, we consider the equivalence relation
~¢ defined in [Yov98] by v ~¢ v’ if the following three conditions hold:

1. v(h) > M implies v'(h) > M where M is the maximal constant that occurs in G

)
2. if v(h) < M then

() Lo(h)] = [+/(h)] and
(b) {v(h)} =0 implies {v'(h)} =0

3. For every clock constraints in G of the form h — h' ~ ¢, v E h — I ~ ¢ implies v/ E
h—h ~c.

The set of regions for a set of clock constraints G is the set of equivalence classes of the
relation ~¢. Using similar argumentation as in the previous subsection, we can show that the
number of equivalence classes is finite and the set of regions satisfies the properties P1, P2,
P3 mentioned above.

2.3 Zones and Difference Bounded Matrices

2.3.1 Zone and Representation

We define zones that we use later for symbolic analysis. Zones have been considered by several
authors [Dil90, HNSY94, YL97| for analysing timed systems. They enable a finite partitioning
of valuations.

Definition 62 A zone is the set of valuations satisfying a constraint. A k-bounded zone is a
zone defined by a k-bounded clock constraint.
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For a zone Z represented by the constraint g, we define the approximation operator
normp(Z) = normps(g)

Given a zone Z, the set of k-bounded zones containing Z is finite and not empty. The
intersection of theses k-bounded zones is a k-bounded zone containing 7, and is the smallest
one having this property.

Since it is obvious that several constraints represent the same zone, among the set of con-
straints with the same semantics we are interested in the so-called unique canonical constraint,
the one that we can not strengthen any simple constraint it contains without modifying of the
semantics of the constraint.

A zone can be represented with a difference bounded matrix [Dil90| defined below.

Definition 63 A difference bounded matrix (DBM) for n clocks is an (n+1) x (n+1) square
matrix of pairs

(epa) € (Z x {<, <}) U{(o0; <)}

A DBM D = (¢, ;)i j=1.n defines the following subset of valuations (the clock hg is
supposed to be always equal to zero, that is, for each valuation v, v(hg) = 0):

{7) : {hl,hg, ... ,hn} — RJF ‘VO < i,j < n,v(hi) — U(hj) > 4 CZ"]'}

We will write v € D if the valuation v belong to the set that define D.

It is obvious that a DBM D can be translated into a constraint. That constraint is just
the conjunction of simple constraints of the form h; — h; 0<; ; ¢; ;. A DBM is canonical if the
constraint associated to it is canonical.

2.3.2 Computation of some Operations on DBMs

We recall operations on DBMs that are useful for the reachability analysis. These operations
have been nicely described in [BY04, CGP99|. Some of these operations use the following
order relation and the sum (+) operation between elements of DBMs. In Subsection 2.6.2,
these operations are used to compute some DBMs (presented there in a simple form).

Given (¢;1) and (¢/;<) two possible elements of a DBMs, we define the order <.C ((Zx{<
, <} U{(00;<})? by

c<c
(e;x1) <, (<) = ¢ or
c=c andeither = or x'=<

We define (¢;<1) + (¢;<') = (¢’;<") where ¢/ = ¢+ ¢ and < is < if both 1 and < are
< and <" is < otherwise.

Canonical Dbms: The computation of canonical Dbms derives tightest simple diagonal
constraints, one for each simple diagonal constraint in Dbms. A given Dbm is transformed
into a weighted graph where clocks are nodes and the simple constraints are edges labeled
with bounds. A constraints of the form h — A/ 1 n (with e {<, <}) will be converted to an
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edge from node A’ to h labeled with (1, n), namely the distance from b’ to h is bounded by n.
Thus, deriving the tightest simple constraint on a pair of clocks in a Dbm, is equivalent to find
the shortest path between their nodes in the weighted graph constructed from the Dbm. The
Floyd-Warshall algorithm [Flo62| can be used to find shortest paths between nodes. There is
a simple constraint A — k' > n’ in the resulting canonical Dbm if the weight of the shortest
path from A’ to h is equal to (>1,n').

Intersection: Let D = (Ci,j§[><]i,j)i,j:1,...,n and D' = (C'/i,j; [><],/L'7j)i,j:1,...,n be two DBMs. Con-
sider the DBM D" = (Cgl,j§'><1§/,j)i,j=1,...,n defined by:

(ci 3o ;) = min((ci ;> ), (c; j;0<; ;))for all indexes 4,5 =1...n
where min(x,y) denotes the minimum of z and y according to the relation <. defined above.
It has been established that v € D" if and only if v € D and v € D’

Future: This operation computes the set of valuations that are reachable from a DBM when
time elapses. Given D = (¢; ;> ;)i j=1,..n i normal form, the DBM D' = (c;j; [X];,j)iJZL---,"
defined by :

{ (i) = (cigiv<ig) if j#0

(ciyivdig) = (005<)

is such that v' € D’ if and only if there is t € RT, v € D such that v/ = v + .

Past: This operation computes the set of valuations from which a valuation in a DBM
can be reached when time elapses. Given D = (¢; ;< ;)i j=1,...n i normal form, the DBM
D' = (c ;< )i j=1,..n defined by :

ihj
{ (cijivdiy) = (cigixig) if i#0
(chyivdy) = (05)  if i=0
is such that v' € D' if and only if there is t € RT, v € D such that v = v + .

/o
Zh]’

Image by resets: Assume that D = (¢; ;< j)i j=1,...n is a DBM in canonical form. Consider
the DBM Dy, .- = (C;,j§'><1;,j)i,j=1,...,n defined by:

(¢33 5) (cijidig) if 4,5 #k

(Gorio) = Gl = huivdye) = (0:2)
(CGeiby) = (cioibi0) if i #k
(C;m'; N;c,i) = (co,i3™0,i) if 1#k

We have that v' € Dy, .—¢ if and only if there is v € D such that v' = v[hy, := 0].

k-approximation: The k- approximation of a DBM D = (¢; ;b )i j=1,..n in canonical
form is the DBM Dy, = (cgyj;bquj)i,jzlw.’n defined by:

(Cg,jHX]g,j) = (C@j;DQZ‘J) zf —k < Cij <k
(¢ i) = (005<) if cij>k
(ciji<iy) = (k<) if ey <—k

If Z is the zone associated to D then, the zone of Dy, is equal to Normy(Z)
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Emptiness testing: A DBM D = (c¢; ;> ;)i j=1,..n is empty if and only if there ex-
ists a negative cycle in D, that means that there exists a sequence of distinct indexes
(41,12,...,9—1,1 = i1) such that

-1

Z(C%iﬂlvm%iﬂl) <(0;<)

j=1

Equality testing D = (¢ ;> ;)i j=1,.n» and D' = (c ”,lxﬁj) ij=1,..n be two DBMs as-
sumed to be in canonical form. D is equal to D’ if and only if (c”,m”) <e (¢ ;> ;) and
(330 5) < (cigip<i)

2.4 Models for Timed Processes

2.4.1 Definitions

We present models for timed processes, their semantics and two alternative representa-
tions for the semantics. Models for timed process are nothing else but event-recording
automata [AFH99| without an acceptance condition. The semantics of timed processes are
transition systems. States of semantics are couple of the form (p,v) where p is a (control)
state of a timed process and the valuation v gives the timing context of the execution of
the timed process. Transitions of semantics are of two sorts: delay transitions that represent
the elapse of the time and discrete transitions that represent the occurrence of an event.
Our presentation for Delay transition is not standard. Instead of labeling delay transition
with real number ¢ as it is commonly done in [AD94, AFH99, DM02, BCL05| to represent
the elapse of time from the configuration (p,v), we choose to label delay transitions with
the timing context v + t from (p,v) after ¢ time units. The two representations for the
semantics successively replace valuations on transitions with atomic constraints and valuation
in configuration with regions.

Let ¥ = {aj,az ...} be a set of events . We consider Hs, = {h1, ha, ...} the set of clocks.
The clock h; is the unique clock associated to the event a;. When there is no confusion, a will
denote an event and h, will denote the unique clock associated to a. There are as many clocks
as events. The symbol Gdsy will denote the set of constraints defined over Hy, the symbol
Agdsy, will denote the set of rectangular constraints over Hy, and the symbol Vs, will denote
the set of valuations over Hs.

Definition 64 A timed process , or process for short, is a tuple
P = (P’Z’pO’AP>
where,

e P is a finite set of states,

e pY € P is the initial state,
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o Ap C P x (Gdsy, x ¥ x P is a transition relation.

Sometimes, we shortly write p LN p’ for a transition (p,g,a,p’) in Ap. The bound of a timed
process is the maximal constant that occurs in its guards. For a timed process P, Mp denotes
its bound. Given a constant M, we say a timed process is M-bounded if its bound is smaller
than M.

Definition 65 A timed process is deterministic if whenever there are two transitions p EAL D1
and p 928 po with p; # po, the constraint g; A go is inconsistent.

Figure 5,Figure 6 and Figure 7 present three timed processes. The timed process in Figure 6
and Figure 7 are deterministic and timed process in Figure 5 is not deterministic.

0< hg<2a 0<hg<2a

tt, c

0<hy<2,b 0<hy<2,b

Figure 5: A non deterministic timed process:Py.

The timed process in Figure 5 is not deterministic as the conjunction of the guards in the
two transitions outgoing from py is consistent while their events are the same. In Figure 6, the
conjunction of the guards is inconsistent and, in Figure 7 the transitions outgoing from pg are
not labelled with the same event.

tt, c

®

0<hy<2,b 0<hy<2,0

Figure 6: A deterministic timed process:P;.

0< hy <2,a 0<hy<2,0
tt, c
® el @
0< hy<2,b 0< hg <2,a

Figure 7: A deterministic timed process:Ps.
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2.4.2 Semantics

The semantics of a timed process is a transition system that represents all possible behaviours
of the timed process. The idea is that each clock h, records the amount of time elapsed
since the last occurrence of the corresponding event a. The time elapses continuously at a
state. Whenever an action a is executed, the clock h, is automatically reset. No other clock
assignments are permitted.

l’l(’%) =0
vi(hy) = 0.4

v1(hy) =04
vi(he) = 0.4

vi(he) = 0.4

va(hy) = 2.4
va(he) =0

Figure 8: A part of the semantics of Py.

Definition 66 The semantics of a timed process P as above is the transition system
[P] = (P x Vs, ZU Vs, (p°,0°), =)

where —C (P x Vyx) X (XU Vs) x (P x Vyx) is defined by:

- (p,v) Khst (p,v +t) for every ¢t > 0.

- (p,v) =% (p',v]hg = 0]) if there is (p, g,a,p’) € Ap such that v € [g].

Delay transitions are transitions labelled with valuations and discrete transitions are tran-
sitions labelled with events.

Remark: When presenting the semantics of timed automata [AD94, DM02, BCL05] and
event-recording automata [AFH99|, it is usual to label delay transitions with non negative
real numbers. In the semantics presented above, delay transition are labelled with valuations.
We remark that these two presentations are equivalent. The choice of the presentation above
will be justified in the next chapters when the semantics of formulas will be defined.

! !

Notation: Later we use the notation s —— s’ if there exists s’ such that s — s” and

a
s — .
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Let us use the following example to illustrate the notion of semantics of timed processes.
We consider process in Figure 5 and Figure 6 and transitions from pg to p; and ps. In Figure 8,
we present the beginning of the semantics of the process in Figure 5. As that process is not
deterministic, at the same time ( for example ¢ = 0.4), it is possible to trigger the event a and
either move to p; or po. From p; it is possible to do immediately ¢ while it is not the case
from po.

2.4.3 Representations for Timed Processes

The above semantics is not very convenient as both the set of states and the set of labels
occurring in transitions are uncountable. We will consider two more abstract semantics of
processes. The first will abstract from valuations in the labels of transitions. The second will
replace valuations in states by regions. In order for the abstractions to be finite, they will be
parametrized by a bound M on the clock values.

Definition 67 The M-action abstraction of a timed process P is the (XU Agdsy,(M))-labeled
transition system

(PYM = (P x Vs, 5 U Agdsy (M), (s°,0%), Au),
where A, C (P x Vy) x (XU Agdss,(M)) x (P x Vyx) is defined by:

- (p,v) 9, (p,v +t) for any t € RT such that v+t F g and

- (p,v) =% (p,v[hq := 0]) if there is (p, g,a,p’) € Ap with v E g.

We observe that the M-action representation is obtained from the semantics by replacing
valuations on delay-transitions with M-rectangular constraints they satisfy. Then for every
timed process P and every natural constant M, there is an isomorphism between [P] and

Py,

Definition 68 The M -region abstraction of a timed process P is the (XU Agdsy,(M))-labeled
transition system

(PYM = (P x Reg(M),x U Agds(M), (p°,7°), A,),

reg
where v € 79 A, C (P x Reg(M)) x (XU Agdsx(M)) x (P x Reg(M)) is defined by:

- (p,r) 2, (p,r") with ' Crfand r' C g.

- (p,7) =% (p',r[hg := 0]) if there is (p, g,a,p’) € Ap with r C g.

Notation: Later and particularly in the next Chapter, given a (Gdsy U X)-LTS, we use

. g,a . . g a
the notation s = s’ if there exists s” such that s —— s” and s — &’

M
reg’

Proposition 69 For every timed process P, and every M > Mp: (P)™ is bisimilar to (P)
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Proof
We consider a relation ~C (P x Vx) X (P X Regs(M)) defined by (p,v) ~ (p,[v]) for every
p € P,v € Vx. We show that it is a bisimulation.

e First, we consider delay transitions. Assume that (p,v) ~ (p, [v]). If (p,v) 9, (p,v'),

then there is t € RT such that v+ ¢ € [g]. According to Proposition 61, [v +¢] C § and

obviously [v+t] C [v]T. Then, we get that (p, [v]) L (p, [v+t]) and (p, v+t) ~ (p, [v+1]).

Reciprocally, if (p,r) —— (p,7'), then ' C g and ' C r1 Let v € r according to
Proposition 61, there is t € RT such that v +¢ € r’. Since ' C g, we get v+t € [¢] and

then (p,v) - (p, ).

e Next, we consider discrete transitions. Assume that (p,v) ~ (p, [v]). If (p,v) == (p,v"),
then v/ = v[hq := 0] and there is p 2% p’ such that v € [g]. Let § € Agds(M) be an
atomic guard such that v € [§]. Then we get (p, [v]) — (p', [v']) and (p,v') ~ (p, [v']).
Reciprocally, if (p,r) — (p/,r'), then 7/ = r[h, := 0] and there is p =% p’ such that
r € [g]. Let v € 7, obviously v € [g], and v[hg := 0] € ¢’ It follows that (p,v) ——
(p',vlhg :=0]) and (p,v[hg :=0]) ~ (p,r’).

2.5 Product of Timed Processes

Definition 70 The product of a timed process P = (P, %, p", Ap) with a timed process
R = (S,%,s%, Ar) is the timed process denoted by P x R and defined by the tuple P x
R = (P x 8,%,(p° s"),A) where ((p,s),g,a,(p’,s')) € A if there is (p,¢',a,p’) € Ap,
(s,9",a,8') € Agr with g=¢' N g".

Example: The product of the timed process in Figure 6 with the timed process in Figure 9
is depicted in Figure 10

0< hyg<2a
hg < 7,d 1<hy<3,b

0<hy,<1,b

Figure 9: A non deterministic timed process:Py.

O

Now we show that the semantics of the product of two timed processes is the product of
their semantics.

Lemma 71 Let P; and Ps be two timed processes, then [Py x Ps] is bisimilar to [P1] x [P2].
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0<hyg<l,a
1<hy<2,b
0<hy<1,b

Figure 10: A non deterministic timed process:Ps.

Proof
Let Py = (P1,%,p{, Ap;) and Py = (P2, %, p, Apy) and consider the relation

RC (P; x Py xVs)x ((P1xVs)x (P2 xVy))

defined by (p1,p2,v)R((p1,v),(p2,v)). Now we show that R is a bisimulation between
[[771 X 772]] and H'Pﬂ] X [[772]]

/ /

e It is obvious that (pi,p2,v) —— (p},ph,v") is and only if ((p1,v),(p2,v)) ——
((p1, ), (P2, v'))

e Let us consider discrete transitions. Assume that (pi,p2,v)R((p1,v),(p2,v)). If
(p1, po,v) —= (p},ph,v") then v = wv[h, := 0] and there is (p1,p2) EIEN (p},p5)
g1.a

such that v € [g]. But (p1,p2) L5 (p},py) implies there is p; 2% p! in Py and
|

g2,a i

/

2
p2 == ph in Py such that [g] = [o1] N [g2]. As v € [g], we get that v € [g¢1]
and v € [go] implying that (p1,v) —— (p,v') and (po,v) —— (p},v') and then,
we get that ((p1,v), (p2,0)) == ((p{,v"), (95, v')). Reciprocally if ((p1,v), (p2,v)) =
((p},v"), (py,v")), then (p1,v) —= (p},v") and (pa2,v) —— (ph,v') with v = v[h, := 0)].
But (p;,v) — (p,v) for every i € {1,2} implies that there exists p; ELIEN pi in P;

) glﬂ;a (

with v € [g;] for every i € {1,2}. It is obvious that (p1, pe P}, py) and because

v € [g1 A go] we get that (p1, pa,v) —— (p}, ph, ).
0

We remark that the relation R in the proof above is a bijective application between states
of [P1 x P2] and [P1] x [Pz]. We get that [Py x Po] is isomorphic to [P1] x [Pz].

2.6 Reachability Analysis

For verification purposes, the most fundamental properties that we should be able to verify
are reachability properties. We consider the reachability analysis of timed processes. The
reachability analysis requires to check whether a system has an execution from a given start
(or source) state to a given end (or target) state. There are two main algorithms for the
reachability analysis: the forward algorithm and the backward algorithm.

The forward analysis starts in a source state with clocks initialized with some set of values.
Then, it computes states reachable within 1 steps, 2 steps, etc... until the target state is
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reached or until the computation terminates. The backward algorithm starts in a target state
with clocks initialized with some set of values and it computes states from which we can
reach target states within 1 steps, 2 steps, etc... until source states are reached or until the
computation terminates. As timing information needs to be considered for taking transitions
in a timed process, simple algorithm may consider semantics of timed processes. Because of
semantics of timed process are infinite state transitions systems where each state could have
infinitely many successors and predecessors, an algorithm like depth in first search (DFS) may
not terminate. Then, we need a finite representation for semantics that preserves reachability
properties. States in that finite representation are pairs of a state of the timed process and a
representable (infinite) set of set of valuations (that may be a singleton).

The forward algorithms are based on the computation of the representable set of valuations
Post(V, tr) of time successors of a representable set of valuations V' with respect to a transition

tr=p 2% p.
Post(V,tr) = {v +tlhy :==0],|v € V 3t € RT such that v+t € [g]}

Having Post(V,tr), the forward analysis consists in computing the following symbolic states
Src; with ¢ > 0. Srcg is the symbolic start state made of a start state from the timed process
and a set VO of initial valuations.

Srcg = {(p,V")|p is the start state and V? is an initial set of valuations}

and iteratively
Srciv1 = {0, V)|3tr =p L% p'3(p, V) € Sre; such that V! = Post(V, tr)}

The backward algorithms are based on the computation of the representable set of valua-
tions Pre(V,tr) of time predecessors of a representable set of valuations V' with respect to a

transition tr = p 2% p’.
Pre(Z,tr) = {v|3t € R" such that v+t € [g] and v+ t[h, :=0] € Z}
Then the backward analysis consists in computing the following symbolic states:

Tgto = {(p,V°)|p is the target state and V" is an initial set of valuations}

and iteratively
Tgtiyn = {(,V)|3tr=p LN p'3(p,V) € Tgt; such that V' = Pre(V,tr)}

We will present algorithms that use regions and zones as representable set of valuations.

2.6.1 Region-based Algorithms

Region based algorithms have been introduced by Alur et Dill [AD94] for reachability analysis
of timed automata. In region-based reachability algorithms, regions are used for representing
sets of valuations. In this case, reachability algorithms work on M-region representations as
in that representation states of timed processes are already paired with regions.

We explain here how one can use the M-region representation for reachability analysis of
timed processes.
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Lemma 72 For every M, a state is reachable in [P] if and only if it is reachable in ([P]}M.

Proof
It is enough to remark that (P)? is obtained from [P] by renaming the labels of transitions.
O

As Agdss(M) and X are finite, labels of transitions in (P)™ range over a finite set, but
a state may also have infinitely many successors or predecessors. Then the following lemma
comes as a corollary of Proposition 69. Let us recall that Mp is the maximal constant that
occurs in the constraints of the timed process P.

Lemma 73 For every M > Mp, a state (p,v) is reachable in [P] if and only if (p,[v]) is
reachable in (P)M

reg

Proof
By Lemma 72 a state (p,v) is reachable in [P] if and only if it is reachable in (P)*. Then
we can use the bisimilarity result in Proposition 69 to conclude. g

In practice the region construction is not used to check reachability properties as the num-
ber of regions is too high. Algorithms for “minimizing” the region graph have been proposed
for example in [ACD%92, ACH'92, TY01| and other techniques for “minimizing” reachability
graph have been proposed for example in [YL97, KL96]. However in practice on-the-fly tech-
niques are preferred since the reachability graph need not be entirely constructed before the
analysis.

2.6.2 Zone-based Algorithms
The zone abstraction [LPY97] is a symbolic approach in which zones are used for representing
a timing context.

Backward reachability algorithm

For a given tr = p 29, p’ and a zone Z, the Pre operator defined above is specialised for zone
as follows:

Pre(Z,tr) = {v|3t € RT such that v+t € [g] and v+ t[h, := 0] € Z}

We recall the following result concerning the termination and the correctness of the algorithm
that establishes that if a state is declared reachable by the computation, then it is really
reachable. This result is just a corollary of a similar result on timed automata presented
in [Bou03].

Proposition 74 The backward analysis algorithm terminates and is correct with respect to
reachability.
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Forward reachability algorithm

For a given tr = p ELLN p’ and a zone Z, the Post operator defined above is specialised for
zones as follows:

Post(Z,tr) = {v+t[hs := 0],|v € Z3t € RT such that v+t € [g]}

But iterative computations of the Sre¢; will not terminates as Post(Z,tr) may introduce new
zones. For ensuring termination, approximation of zones has been proposed leading to the
following algorithm.

Algorithm The following forward algorithm comes from [BY04, Bou03| and has been imple-
mented in several tools like Kronos [BTY97, Yov98], and Uppaal [BLL196, LPY97, BDL04].

Algorithm 1 Forward Analysis Algorithm for Timed processes
Require: P = (P, X, p?, Ap)
Require: Target C P // the set of reachable state
Ensure: YES or NO a state of T'arget is reachable.
Visited «— 0;
Waiting «— {p°, Normy(Zo)};
repeat
Get and Remove (p, Z) from Waiting,
if p € Target then
RETURN “YES, p is reachable”;
else
if there is no (¢, Z’) € Visited such that Z C Z’ then
Visited «— Visited U{(p, Z)};
Successor — {(p’', Normy(Post(Z,e) | e transition from p to p'};
Waiting «— Waiting U Successor;
end if
end if
until Waiting = ()
RETURN NO;

Correctness Bouyer [Bou03|(see also |[BLRO05|) has shown that the reachability algorithm
is correct for timed automata that use only diagonal free constraints; but is not correct for
timed automata that use general class of constraints. We show that the same is true for timed
processes (that are special kinds of timed automata). For that purpose, we consider the timed
process (we recall that only the clock associated to the event of a transition is reset when the
transition is crossed) in Figure 11. This example is a very minor modification of the example
from [Bou03].
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ha

hy —hg <2ANhg—he > 2,d

Figure 11: A timed process

We consider a path from pg to py in the timed process in Figure 11. If « is the date the
transition from pg to p; is taken, G is the date the transition from p; to po is taken and 7 is
the the number of loops taken along the run, the valuation v of the clocks when arriving in
p7 is defined by:

v(hg) =0 wv(he) =2y+54+ (8 —«a)
v(hg) =8 v(ha) =2y+5+p

Clearly, v(hg) —v(he) < v(hy) —v(he) as 8> «a.

If we consider the forward algorithm for reachability that uses zones and that starts in pg
with all the clocks set to 0, the set of valuation that can be reached in p; when loop is taken
~ times, is the following:
he =0
hy > 1
he > 2v+5
hg > 2v+6
2946 <hg—hg <2y+38
1<hy—he <3
2y+5 < he—heg <27+38
2y+2<he—hy <2y +5
hd — hb = 2’)/ +5
0<hg—h.<3

Consider the constraint hy — hy < 2 A hg — he > 2. If we require that hy, — h, < 2 then,

ha—he = (ha—hp)+ (ho — ha) + (ha — he)
—2%y—5+2+2y+5

<
< 2

This means that the transition from p7 to pg can not be triggered from the zone above.
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If we fix a maximal constant k£ and we use the approximation operator Normy, then for
a number of loops « sufficiently large and such that k < 2v + 2, the approximated zone we
obtain is the following:

((hq =0
hy > 1
he >k
hg > k
hg —hqg >k
1< hy—hye <3
he —hg > k
he —hy > k
hg—hy >k
0<hy—he<3

This zone is consistent with the constraint hy — hy < 2 A hg — he > 2 and then the state pg is
declared reachable from pq.

2.7 Diagonal Constraints Can Be Safely Removed

We will show that simple diagonal constraints can be removed from timed processes with-
out reducing their behavioral properties. The proof of this result follows ideas in [BDGP9S8]
and uses induction on the number of constraints to be removed. It consists of keeping the
information on the truth of diagonal constraints in the states of the timed processes. Such a
transformation induces an exponential blowup in the size of the initial timed process [BC05].
We will first mark states of the semantics of timed processes with a tuple of boolean val-
ues representing the truth of simple diagonal constraints with respect to the valuation in the
states.

Assume that P is a timed process and the unique simple diagonal constraint occurring in
P is the simple constraint C' = (h — b/ > ¢), with h, b € Hy, e {<,<,>,>}. Then to each
state (p,v) of [P], we assign the truth value of v € [C]. The resulting transition system, that
we call the marked semantics of P does not modify the behavioral properties of P.

Observation 74.1 The marked semantics of P and the semantics of P are isomorphic.

Now, from P and C, we build a new timed process R(P,C) = (P x{0,1}, %, (p°, t°)), Ar)
where,

e 0¥ is the truth value of ¥ € [C]. We recall that v" is the valuation that assigns the
constant 0 to every clock in Hy

e Ag is a transition relation defined according to Ap as follows: Let (p,tv) be a state of R
and let p LN p’ be a transition in Ap. Then there are three cases for defining transition
from (p,tv) depending on p <% p’ and C:

1. if h # hg and W # hg, then we add the transition (p,tv) 2% (p/,tv) in Ag.
2. if b’ = h, then the following transitions are added in Ag
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gAhiXic,a
)T —"

(a) (p,tv p’1)
gA—(hic),a

(b) (p,t’U) - (p/,O)
3. The last case when h = h, is dual to the case just above.

To end the construction of R(P,C), we remove in it every transition of the form (p,0) £%

(p’,tv) where C occurs in g and we delete every occurrence of C' in the remaining transitions.

We remark that by construction R(P,C) does not contain any occurrence of the simple
diagonal constraint C' and we show that [R(P,C')] is bisimilar to the marked semantics of P.

Lemma 75 Let P be a timed process and C be a simple diagonal constraint occurring in P.
The marked semantics of P and [R(P,C)] are bisimilar.

Proof

Consider the relation R defined by (p,v)R((p,tv),v) if tv is the truth value of v € [C]. We
show that R is a bisimulation. As the cases of delay transitions are obvious we consider the
cases of discrete transitions. Assume that (p,v)R((p,tv),v) .

1. if tv =0 then v ¢ [C].

— Now assume that (p,v) —— (p/, '), then v/ = v[hq := 0] and there is p 2% p’ such
that v € [¢] and C does not occurs in g as v ¢ [C].

a

(a) if h # hg and B # hg, then the transition (p,0) 2% (p’,0) exist in Ag and
because v € [g] we get that ((p,0),v) — ((p’,0),v). As neither i nor h’ have
been modified, v € [C] and then (p’,v")R((p’,0),v").

(b) if b’ = h, then, the transitions (p,0) ghhbdc,a (p’,1) and (p,0)
exits in Ag. But either v € [h < ¢] or v € [=(h > c)].

i. If v € [h < c] then v € [h — hy < ] as the clock h, is reset after the tran-
sitions. Then we get that ((p,0),v) = ((p’,1),v') and (p’,v")R((p’,1),v")
ii. If v € [~(hc)] then v/ & [h— hy>c] as the clock h, is reset af-
ter the transitions. Then we get that ((p,0),v) — ((p’,0),v') and
(", v )R((p",0),v")
(c) the last case when h = h, is dual to the case just above.

I ()

<= Now assume that ((p,0),v) —— ((p',tv'),v'). Then, there is (p,0) 2% (p’, tv') such

that v € [¢g] and C does not occur in g as tv = 0.

(a) if h # hg and W' # hg, then to' = tv = 0 and v/ & [h — b/ <1 ¢] and there is
a transition p 2% p’ in Ap. As v € [g] we get that (p,v) —— (p',v') and
(', v)R((p",0), ).

(b) if ' = hg then g = ¢’ A g” where ¢ = h > ¢ or ¢ = =(h < ¢) and there
is a transition p g p'in Ap. As v € [g] we get that (p,v) —= (p’,v’) and
(p", " )R((p',tv),v") where tv' = 1 if ¢" = h < ¢ otherwise tv' = 0.

(c) the last case when h = h, is dual to the case just above.

2. The case when tv = 1 is similar to the case when tv = 0.
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O

Let P be a timed process, and let Cq,Cs,...,C), be all the simple diagonal constraints
in P. From the lemma above we can recursively remove each constraint obtaining a timed
process without a diagonal constraint that preserves the behavioral properties. We get the
following proposition.

Proposition 76 For every timed process P that uses diagonal constraints in its transition
relation, there is a timed process P’ that does not uses diagonal constraints in its transition
relation such that [P] is bisimilar to [P’].

2.8 Concluding Remarks

We have presented timed processes as models for real-time systems that use the time infor-
mation on the occurrences of events for executing correctly.

We have recalled that regions provide a good abstraction for theoretical analysis of timed
processes using diagonal free or general constraints. We have also presented the reachability
analysis through zone-based abstraction and we have shown that when timed processes are
defined using general constraints the zone-based approach combined with the approximation
operator that we have considered leads to incorrect results. Then, we wondered if we could
discard diagonal constraints from timed process without reducing their expressive power. The
answer is yes and we have shown how to transform (with exponential cost) timed processes with
diagonal constraint into equivalent behavioral timed processes with diagonal-free constraints
only. As we will not be interested in efficient procedures, but in understanding models and
their properties, in the following we will consider timed processes with diagonal-free constraints
only.



Chapter 3

Results on Event-Recording Logic

The design of models for systems, and real-time systems in particular, is carried by require-
ments. Requirements describe desired or undesired properties of systems encompassing behav-
ioral properties such as reachability, liveliness, deadlock and safety properties. For real-time
systems, requirements must consider timing information. For example, a requirement must not
only define the logical moment at which events (tasks) must occur (terminate), but must also
describe the quantitative time information on occurrences of events (termination of tasks).
Given a requirement, it is useful to check whether a given real-time system meets that re-
quirement (model-checking), or to check whether we can construct a real-time system that
meets the requirement (satisfiability checking).

We consider the logic Event-Recording Logic(ERL) as a formal language for describing
properties on timed processes. Event-Recording Logic has been introduced by Sorea [Sor02]
as a timed extension of the p-calculus [Koz82|. In this logic, modalities are indexed both with
an event and a constraint. We consider the basic problems about this logic such as the model-
checking problem, the satisfiability checking problem and the equivalence between formulas
and formulas in disjunctive normal form.

To solve the model-checking problem, we transform formulas into equivalent rectangular
formulas. Rectangular formulas use only rectangular constraints. The later formulas are used
by the model-checking procedure. We show that checking if a timed process is a model of
a formula is equivalent to check if the M-region representation of that timed process is a
model of the corresponding rectangular formula. Then, our model-checking procedure works
as a model-checking procedure of the standard p-calculus. Intuitively, in that procedure, for
checking if ¢ V ¢ is satisfied in some state, it is enough to check if ¢ is satisfied in that state
or v is satisfied in that state; such a step is a non deterministic step. For checking if a fixpoint
formula 0 X.p(X) is satisfied in some state, we check if ¢(cX.p(X)) (regeneration step) is
satisfied in that state. For checking is a conjunct ¢ A ¢ is satisfied in some state, we check
whether ¢ is satisfied in that state and whether ¢ is also satisfied in that state. For checking
if (g,a)p is satisfied in some state, we check that there is an outgoing transition from that
state labelled with (g, a) that leads to a state satisfying . For checking if [g, a|p is satisfied in
some state, we check that every outgoing transition from that state labelled with the couple
(g,a) leads to some state that satisfies ¢.

61
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From the intuitive idea for the model-checking procedure of ERL, we provide a tableau-
based decision procedure for the satisfiability checking problem of ERL formulas. For that
purpose, we define a tableau system of rules each rule of which is made of a conclusion and
premise. Conclusions and premises are set of timed sequents. Each timed sequent is a tuple
made of a set of a formulas and a timing context represented by a region. The use of a set of
formulas in timed sequent is a consequence of the fact that to check if a formula of the p A
is satisfied in some state, we must check that the state satisfies ¢ and ). We define the notion
of a tableau and we show that a formula is satisfiable if and only if it contains a particular
“good” sub-tableau. The “goodness” of a sub tableau is defined as the “goodness” of all the
paths it contains and the “goodness” of a path is defined according to traces and the number
of times fixpoint formulas are regenerated. Traces are links between formulas in premises and
formulas in conclusions; they are useful as they also keep track of the regeneration of a fixpoint
formula. As timed sequent may contain many fixpoint formulas, signature (tuple of ordinals)
will be combined with traces to keep track of the number of time each fixpoint formula will be
regenerated along a path. We also compare our satisfiability decision procedure with an earlier
one proposed by Sorea [Sor02]. We get that the tableau system of rules of Sorea is somehow
ambiguous as a particular rule may have two interpretations. Moreover the system of Sorea is
incorrect due to the use of zones for representing timing context in the tableau for formulas
that use diagonal constraints.

As timed sequents are labelled with set of formulas and we need to decompose a path
into traces to decide if they are “good”; the satisfiability procedure is expensive (exponential
on the size of the formula) and difficult. Then we wondered if all these artifacts can be
avoided and the answer is yes. An intuitive idea is to consider only conjunctions that do not
require the use of sets of formulas in timed sequents. An example for such a conjunction is a
conjunction of the form (g1, a1)p A (g2, a2)y where g1 A g2 is inconsistent or a; # as. Another
idea consists, given a formula (g1,a)¢ A (g2, a)1) where g; A g2 is consistent, to assume that
the models will have two outgoing transitions, one for each member of the conjunction. Then,
we introduce the notion of disjunctive normal form for formulas. We show that every formula
has an equivalent disjunctive normal form formula. From a given general ERL formula, we
construct an equivalent ERL formula in disjunctive normal form. The satisfiability checking for
disjunctive normal form formulas is easier than the satisfiability procedure of general formulas.

Related results: The standard (untimed) p-calculus has been introduced by
Kozen [Koz82|. Model-checking and satisfiability of the p-calculus have been shown to have
efficient (tableau-based) procedures [SE89, Eme97, GV08] and to have relations with other
theoretical objects such as game [EJ91, NW96| and automata [Tho90, JW95|. For the later
relation, a disjunctive normal form of formulas has been provided [JW95] to show the equiva-
lence between alternating automata on trees and non-deterministic automata on trees [MS95].
The use of such kind of transformation has been presented in [AVW03, AW07, BCL05| for
controller synthesis of systems. As ERL extends the p-calculus, we have wondered if some
of the results on the p-calculus could be extended to ERL. Sorea [Sor02| has considered the
tableau technique, early used in the setting of the (untimed) p-calculus [JW95], to prove the
decidability of the model-checking and satisfiability problems on ERL. The difficulty with the
procedure of Sorea is that it is based on zones and rule that reduces modalities indexed with
a constraint and an event is not easy to understand. We have proposed new rules and we have
tried to reuse as much as possible standard results on the u-calculus.

In the next section, we present ERL and its semantics. In Section 3.2, we consider the
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model-checking problem of ERL formulas that we reduce to the model-checking problem of
pu-calculus formulas modalities of which are indexed in a particular alphabet. The satisfiability
problem for ERL formulas is addressed in Section 3.3. In that section we provide a new tableau
system that uses regions for representing the timing context. From our tableau system we
provide disjunctive normal form theorem in Section 3.5.

3.1 Event-Recording Logic

3.1.1 Definitions

Event-Recording Logic [Sor02] is an extension of the p-calculus; it has been introduced to de-
scribe properties on timed processes. The extension is made on modal operators by considering
modal operators of the form (g,a) and [g, a.

Definition 77 Let X be a set of events, Var a set of variables. The set of formulas of Event-
Recording Logic (ERL) denoted by Fe,; is the set of formulas given by the following grammar:

pu=tt|[fFI X [orne|eVel{gaellgade|pXe|vXe

where,

e ¢ is an event from X,
e ¢ is a constraint from Gdsy,

e X is a variable from Var,

The bound of a formula is the maximal constant that occurs in its constraints. For a formula
¢, M, denotes its bound. Given a constant M, we say that a formula is M-bounded if its
bound is smaller than M. The notions of sub formula, free variable, binding , dependency
order , expansion, sentence, guarded formula , positive formula for the setting of ERL are
obvious from the definitions of similar notions for the setting of the p-calculus in Section 1.3.

3.1.2 Semantics

Our goal is to interpret a formula ¢ of F.,; over timed processes. Because the meaning of a
timed process is a (Vx U X)-labelled transition system, we give the interpretation of a formula
over such type of transition systems.

. . . v,a . v a
Notation: We will write s — s’ when there is s” such that s — s” and s” — ¢’

As a formula may contain free variables we will need a valuation of such variables. Given
a valuation of variables Val : Var — P(S) and a set of states 7' C S, the valuation Val[X/T|
is the valuation Val with the substitution that associates the set of states T" with the variable
X. Formally, for Y € Var, Val[X/T](Y) = T if Y = X and Val(Y) otherwise. We write
S, s, Val Fy ¢ when the formula ¢ holds in s or equivalently s satisfies (.
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Definition 78 (Meaning of a formula over (Vs U X)-labelled transition systems)
For a given (Vyx U X)-labelled transition system S, a given formula ¢ and an assignment
Val : Var — P(S), we define the satisfaction relation F; and the set [go]]“s,al inductively as
follows:

e S,s, Val F tt.

e S5, ValEy X if s € Val(X).

o S5, ValFy o1 Vo if S, s, Val Fy o1 or S, s, Val Fy @s.

o S5, Val Fy o1 Ao if S, s, Val Fy 1 and S, s, Val F; po.

o S, s, Val By [g,aly if for every s —% s’ € Ag such that v € [g] we have S, s, Val ;1.
e S,s, Val £, (g,a)ip if there exists s —— s’ € Ag such that v € [¢] and S, s/, Val & 1.

o 8,5, Val Fy uX.p(X) if s € T C S| [e(X)]Saxyr € T3
o S5, Val Fy vX.p(X) if s € {T € S|T C [(X)]Saipx/m}-
o [@l5y =1{518,s, Val ks o}

We will sometimes write s € [[go]]“g,al instead of S, s, Val E; ¢. If ¢ is a sentence, i.e., does
not have free variables, then its meaning does not depend on a valuation and we can write
just S, s F¢ . Finally, we will write S F; ¢ for S, s F; ¢ to say that S is a model of .

Let us consider ¢ a formula and P a timed process. We say that ¢ is satisfied in a state
p, a valuation v : H — R and a valuation Val : Var — P(P X Vs) of propositional variables
and we write P, (p,v), Val E ¢ when [P], (p,v), Val F; .

Definition 79 (Meaning of a formula over timed processes) The meaning [[90]]71)/(11 CPx(H—
R™) of a formula over a timed process P is defined by :

P P
[Pl v = ] [&/a];
We will write P F ¢ if [P] is a model of ¢ and we say that P is a model of ¢.

Given two formulas ¢, and ¢, we often use the notation p; = @9 to say that ¢ is
equivalent to 9, meaning that for every timed process P, [[901]]71)/al = [[gog]]?/al.

Remark: The presentation of the semantics above is different (but it is equivalent) from the
one in [Sor02|. In particular, the presentation of the semantics of modal operators indexed
with a constraint and an event seems simpler as it benefits from that delay transitions in the
semantics of timed processes (see Definition 66) are labelled with valuations.

Given the sentence ¢, and a (VUX)-labelled transition system S, we introduce the negation
operator — defined by: [-¢]® = S\ [¢]°.

Proposition 80 The following equivalences are true:

o it = ff
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o ~ff=1tt

* ~(p1 A p2) =1 V o

o —(p1V p2) =1 A o

o ~(g,a)p = [g,a]~p

e —[g,alp = (g,a)~p

o uX.o(X)=vX.—p(—-X)

o vX.p(X)=puX.—p(-X)
Proof

Let a sentence ¢, a (V U X)-labelled transition system S and let s be a state of S. The proof
uses structural induction. All the cases but for modalities are standard.

o If s € [(g,a)¢]® then s ¢ [[(g,a>g0]]“sfal. By definition it means that for every v’ € [g],

s 2% ¢ in S we have s’ & [go]]“s/al. Once again by definition s € [[g, a]ﬂgo]]“s/al.
e The case of =g, a]y uses a dual argumentation.

O

We can assume that the grammar of the syntax of ERL is augmented with the negation
operator in the following way: if ¢ is an ERL sentence, so is =(¢p).

Proposition 81 Let g,g1,92,...,9n, € Gdsy, be such that [g] = U,_; ,, [9:] then,

L. <g?a>¢ = \/izl..n<gi7 a>90
2. [g,alo = Ny ,l9i ale

Proof
Let S, s a configuration of s, and Val a valuation of propositional variables.

1. S, s, Val By (g,a)e if and only if there is v € [g] such that s —> ' and S, s, Val k&,
¢. Equivalently, S,s, Val F; (g;,a)¢ for some i € {1,2,...,n} such that v € g; and
equivalently S, s, Val £t \V,_; . (g:, a)e.

2. From proposition 80 [[g, al¢] = [-({g,a)—¢)]. Then, use the first item to conclude.
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3.2 Model-Checking

In this section we address the model-checking problem that is to check if a given a system
is a model of a given specification. In the literature (see [CGP99, Mer01, BBFT01, GV08]),
this problem is known as the model-checking problem and it has been widely studied for
several temporal logics [Var96, LP85, KVWO00, Sch03, Ong02, LMS04] and particularly the
p-calculus [SE89, NW96, Eme97|.

Here, we present an algorithm for the model-checking problem where, the system, P is a
timed process and the specification, ¢ is a formula of ERL. That algorithm is based on the
one for the p-calculus. Indeed, we show that checking if a timed process is a model of an ERL
formula can be reduced to checking whether an untimed transition system is a model of a
particular p-calculus formula.

Let § = (S, Vs UZX,s,As) be a (Vs UX)-labelled transition system, ¢ an ERL formula.
Informally, to check whether S is a model of ¢, we work in the following way. First we assign
the initial configuration s° to ¢ meaning that we are checking if s F; ¢. Now, assume that a
configuration s has been assigned to a sub formula v of ¢. Depending of the the structure of
1, we must check if some (or all) successors of s in S satisfy some sub formula of .

When ¢ is a sentence and does not contain free variables, the procedure works as follows:

e if 1) = tt the answer if “yes”;
e if 1) = ff the answer is “no”;

e to verify that o1 Ao is satisfied at s, we check that o1 is satisfied at s and (o is satisfied
at s;

e to verify that ¢ V @2 is satisfied at s, we check if ¢ is satisfied at s or if ¢y is satisfied
at s;
e to verify that (g,a)v is satisfied at s, we check that s’ satisfies ¢ where s’ is a chosen

configuration such that s =5 ¢’ in S and v’ € [g] ;
e to verify that [g, a1 is satisfied at s, we check that s’ satisfies ¢ for every s’ such that
va . ’
s — s in S and V' € [g];
e to verify that o X.¢(X) is satisfied at s, we check ¥ (X) is satisfied at s;

e to verify that X is satisfied at s, we check that 1 (X) is satisfied at s; assuming that X
is bound and Dy (X) = o X.9(X).

When ¢ is not a sentence, we need a valuation of free variables over the set of states S.

To check whether a timed process P is a model of a formula ¢, means to check whether
[P] is a model of . One could wonder about the termination of such a procedure since the
state space of [P] is infinite and there could exists infinitely many outgoing transitions from
configurations of [P].

We intend to operate on a finite structure and try to use decision procedures for the
model-checking problem of the p-calculus. We consider abstraction on models that preserve
their semantics.
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1. We consider “good abstractions” for timed processes. These abstractions will be finite
labelled transition systems.

2. We consider “good abstraction” for formulas. These abstractions will be formulas of finite
length.

3. We define a “good abstract” satisfaction relation between a “good abstraction” of a timed
process and “good abstraction” of a formula. This “good abstract” satisfaction relation
must be defined in such a way that a timed process satisfies a formula if and only if the
abstraction of the timed process satisfies the abstraction of the formula.

3.2.1 Abstract Semantics for Formulas

We propose in Definition 82 the symbolic relation, denoted by F,, of satisfaction between a
timed process and a formula. This relation will serve as a “good abstract” satisfaction relation
we have discussed before. We immediately remark that for any timed process P: ([P]}M and
([P])%g are (Agdsy, (M) U X)-LTS. (P)™ has infinitely many states while (P)*/ , has finitely
many states. Our objective will be to reduce the model checking over [P] to the model checking
over (P)M for suitable M.

reg

. . . g,a ) g a
Notation: We will write s == s’ when there is s” such that s — s” and s” — ¢’

Definition 82 [Abstract meaning of a formula over a (Gdss, U X)-LTS)| Let ¢ be a formula,
S = (S,Gdss U %,5°, Ag) be a (Gdssx U X)-LTS. For a configuration s of S, a valuation
Val : Var — P(S) of propositional variables, we define the symbolic relation of satisfaction
g and the set 9[[g0]]“g/al as follows:

o 5,5, Val Fy tt.

o S,s5,Val Fy X if s € Val(X).

o §5,5, Val By o1 Vo if S,5, Val By 1 or S, s, Val Fy pa.

o S.5,ValFg o1 N if S, 5, Val By 1 and S, s, Val Fy .

o S,s, Val 4 [g,aly if for every s 2% ¢ e Ag, we have S, ¢/, Val Fg 1.
o S,s, Val 4 (g,a)y if there exist s 2% ¢ e Ag and S, ¢/, Val Fq 9.

o 8,5, Val by pX.p(X) if s € T € S| 2[0(X)] Yy € T}

o S5, Val Fg vX.p(X) if s € {T € S|T € [o(X)] Va1 -

b gﬂ@]]‘lslal = {5 : Sy, Val ':g 90}

If p is a sentence, i.e., does not have free variables, then its meaning does not depend on
a valuation and we can write just S, s F4 ¢. Finally, we will write S =, ¢ for S, s? Fy .
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We propose the symbolic decision procedure for the model checking of a process P against
a formula ¢. This procedure is similar to the real-time decision procedure defined above. The
difference occurs when we check if a state satisfies a sub formula of the form (g,a)1y and
[g,a]i. In these cases, the procedure works as follows:

e to verify that (g,a)t is satisfied at s, we check that s’ satisfies ¢ where s’ is a chosen
configuration such that s 2% ¢ in S

e to verify that [g,a]v is satisfied at s, we check that s’ satisfies ¢ for every s’ such that

g,a
s 2=sinS

It should be quite clear that for timed processes, we can not just substitute the symbolic
decision procedure for the real-time decision procedure.

We expect to apply the symbolic decision procedure on representations of timed processes
and formulas that use constraints in a same finite set. Then, we will consider bounded con-
straints, and we will ensure that any constraint in that set can not be split into constraints
that use smaller constants. According to Fact 48, rectangular constraints are appropriate for
this objective.

Definition 83 An M -rectangular formula is a formula using constraints in Agdsy,(M).

Given a formula ¢, and a bound M, we define the M-rectangular formula Rectps(¢) as the
formula obtained from ¢ by replacing each constraint g that occurs in ¢ by the disjunction
of atomic M-rectangular constraints contained in g. From Proposition 81, this definition is
sound and Rectps(p) is a formula of F,.

Definition 84 The M-rectangular ERL formula associated to an ERL formula ¢, Rectps(p)
is the formula defined inductively as follows:

o Rectp(ff) =
e Recty(tt) =

e Rectpy(X) =

e Rectpr(p1 A @a) = Rectpr(p1) A Rectpr(92)

o Rectar((9,0)9) = VgeRecta (g) (9> @) Recty (9)

o Rectu([9, @) = Ngerecta (g)9: al Rectrr ()

(
(
(
(
o Rectar(p1 V p2) = Rectr(i01) V Rectar(2)
(
(
o Recty(0X.p(X)) = 0 X.Rectp(p(X)) where o is one of {,v}

We remark that the size of Rectps(p) could be exponential in the size of .

We show in the following proposition that for M > M, (M, is the maximal constant that
occurs in ¢) formulas and their M-rectangular forms are equivalent over transition systems
that represents the semantics of timed processes.
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Proposition 85 Let ¢ be a formula and S be a (Vs UX)-LTS. For every M > M, S, s, Val F;
¢ if and only if S, s, Val E; Rectp(p).

Proof
We use structural induction. Let M > M.

e The basic cases of ff, t¢, X are obvious.
e The cases of p1 V s, 1 A @9 are also obvious.

e The case when ¢ = (g,a)1. Rectp(p) = \/geReCtM(g)@,a)go. From Proposition 57,
[9] =V jeRectrs (o) [9]- We use Proposition 81 to conclude.

e The case when ¢ = [g,a]. Rectym (@) = Njerecty ()9> alo- We use Proposition 57 and
Proposition 81 to conclude.

When ¢ = 0 X.4)(X). Rectpr() = 0 X.Rectpr(¢(X)). By induction hypothesis (X)) =
Rectpr(¢(X)), then we get the result.

O

The “good abstraction” for formulas that we use later for the model-checking algorithm is
the rectangular form.

3.2.2 Fixpoint Approximation

Now we introduce the notion of computation of a fixpoint by successive steps that gives us a
powerful tool to understand the semantics of formulas. Let S be a (Gdsy, U 3)-LTS.

Definition 86 For every ordinal A\, we define constructions for the fixpoints u*X.o(X) and
1 X.o(X) the semantics of which is inductively defined as follows:

o I[OX.p(X)] 7y =0, and I X.0(X)]7, = I35,

S S
o XX Ve = Lo oo xppSrx)

e When [ is a limit ordinal,

— I Xp(X)] v = Unes ‘TP X0 T

— IPX ()] Ta = Nies TP X0(X)] Vs

We recall the Knaster-Tarski theorem [Tar55] showing how to approximate fixpoint by
iterative computations.

Theorem 87 (|Tar55])
o S5, Val Fy uX.o(X) if and only if s € gﬂuﬁX.go(X)]]“S/al.
o S.s, Val By vX.o(X) if and only if s € (g gﬂVﬁX.go(X)]]“S/al.

A definition and a theorem analogous to Definition 86 and Theorem 87 is made considering
(Vs UX)-LTS, F; and [¢] instead of (Gdsy, U X)-LTS, F, and 9[¢].
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3.2.3 Model-Checking Results

The next step in our abstraction is to show that the real-time algorithm for the model-checking
problem, defined above, can be replaced by a symbolic algorithm. In order words, we make
a relation between F; and F,. Given a timed process P and an M -rectangular formula ¢,
we show that the result of the “real-time” decision procedure for [P] F; ¢ is the same as
the result of the symbolic decision procedure for (P)* k, ¢ with M > M,. Recall that in
aforementioned real-time algorithm as in the symbolic algorithm, the verification task consists
in moving from a verification goal into another and the verdict depends on the number of
times particular variables are regenerated. If we show that a succession of moves in the real-
time procedure can be mimicked in the symbolic procedure in such a way that formulas and
the locations in the verification goal are preserved then the verdict of the two procedures will
always be the same. That is what we show in Lemma 88 below.

Lemma 88 For every Mp-bounded process P, for every M, rectangular formula, for every
M > My, [P, (p,v), Val k¢ ¢ if and only if (P)™, (p,v), Val &, .

Proof
The proof uses structural induction. Let M > M.

e The basics cases when ¢ is of the form ¢, ff, X are obvious.
e The cases of ¢ A @2, or 1 V 2 are also obvious.

e Assume that ¢ = (g, a)v,

(=>) If[P], (p,v), Val E; (g, a)1) then there is v’ € [g] such that (p,v) v (p' V' [hg =
0]), and [P], (p,v'[hq := 0]), Val &, 1. By induction hypothesis (P)™, (p’,v'[hq :=
0]), Val E, . But, ' F g implies that (p,v) 2% (p,v'[hq = 0]) and then
(P, (p,v), Val Fy (g,a)y.

(<=) It (P)M, (p,v), Val E, (g,a)t), then there is v € [g], (p,v) L5 (p',v'[hg =
0)) in (P)M such that (P)™,(p',v'[ha := 0]) F, 9. By induction hypothesis
[P], (0,0 [ha = 0)), Val & . But, if (p,v) L% (p/,v'[he = 0]) in (P)™, then
there is (p,v) —> (p/,v'[hq := 0]) in [P]. This implies that [P], (p,v), Val &
(g, a)p.

e The case when ¢ = [g, a]i) uses a dual argument to the case when ¢ = (g, a)v.

e Since intersection and union of set preserves monotonicity, the cases of fixpoint formula
come as a consequence of the above ones

0

As ([P]}M has infinitely many states, the real-time model-checking procedure may not
terminate. By the following proposition, we can consider the M-region representation that is
finite to ensure termination. The following corollary is just an extension of Theorem 26 to
timed processed and ERL formulas.
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Corollary 89 Let S and S’ be two bisimilar timed processes and let ¢ be a formula. S 4 ¢
if and only if S F, ¢

Proposition 90 For any timed process P, any formula ¢, for every M > max(M,, Mp),
[P], (p,v), Val Ey ¢ if and only if (P). . (p, [v]ar), Val By Rectas ()

Proof

By Proposition 85, [P], (p,v), Val F; ¢ if and only if [P], (p,v), Val E; Rectyy (@) for every
M' > M,. From Lemma 88, this is equivalent to ([P])M, (p,v), Val E4 Rectpp (@) for every
M' > M,. From Proposition 69, ([P]}M is bisimilar to ([P])%g then using Corollary 89, we get

([P])M, (p,v), Val E4 Rectpr () if and only if ([P])M (p, [v]am), Val By Rectar(p) O

reg?

We get the following theorem.

Theorem 91 There is an effective procedure that checks whether a timed process P is an

model of a formula ¢ assuming an initial valuation v°.

Proof
By Proposition 90, we get that to check if P satisfies ¢ is equivalent to check that ([PD%Q E

Recty(p) for M sufficiently big. But the relation F, between ([P])%g and Rectps(p) is the
same (modulo the labels on transition of the models and the index in the modalities) as the
relation F between a labelled transition system and a p-calculus formula. Then it comes that
the model-checking procedure for the p-calculus can be used for the model-checking of ERL.
O

3.2.4 Complexity

The complexity for our model-checking algorithm is immediate from the complexity of the
model-checking problem for the p-calculus. In Theorem 25, the complexity of the model-
checking for the p-calculus depends on the size of the models, the alternation depth and the size
(number of sub formulas) of the formulas. For the model-checking algorithm of ERL, models
are M-region representations and formulas are M-rectangular. Let M be an integer, there
are at most (2 x M + 1)/l rectangular constraints. For a timed process P = (P, %, p°, Ap),
the M-region region representation ([P])%g has at most |P| x |Reg(M)| states and at most

|Ap| x |Agds(M)| transitions. The M-rectangular formula Rectps(p) for a given formula ¢
has at most |sub(p)| x |Agds(M)| sub formulas and is of the same alternation depth as .

The we get the following corollary.

Corollary 92 Let ¢ be a formula, and P = (P, %, p", Ap) be a timed process. Our model-
checking problem procedure procedure works in

[alt() /2]
0 <|Ap| x | Agds(M)[* x |subl(e)| % (2 <P Heg ()L ('5;"’“0)' X [Agds(M )') )
alt\p

We recall that alt(y) is the alternation depth of the formula ¢.
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From corollary 92, we get that our model-checking algorithm is exponential time in the size of
the timed process and the length of the binary encoding of the largest constant in the formula
and in the timed process.

We remark that a standard zone-based model-checking algorithm for WT,, will remain in
EXPTIME; but it may be an interesting alternative in practice.

3.3 Satisfiability

The satisfiability problem for ERL is: given a sentence of Event-Recording Logic ¢, check
whether there exists a timed process P that is a model of ¢ with respect the initial valuation v°.

By Propositions 56 and 81 we can assume that the formula uses only rectangular constraints.

We consider this problem and we propose a tableau-based decision procedure. We propose
a new tableau system of rules that we use to construct tableaux. From tableaux we check the
existence of “good” fragments to decide if formulas are satisfiable. In our tableau system of
rules, timing contexts are represented by regions while the tableau system of rules proposed
by Sorea [Sor02] for the satisfiability of ERL uses zones. Later in Section 3.4 we make some
observations on the interpretations of some rules of Sorea and we show that it is incorrect for
the satisfiability of a formula that uses general (diagonal) constraints as originally considered
by Sorea.

Let us first extend the syntax of Event-recording logic formula by considering the new
modal operator (g,a) — that extends the operator (a) — for the p-calculus and that has the
same expressive power that the former ones that is (g,a) and [g, a].

Definition 93 Let I" be a set of formulas. We define the modal operator (g,a) —I" by:
(9,0) =T = N\ (g, a)p Alg,a] \/ ¢
pel pel’
Recall that the conjunction of an empty set is equal to ¢ and the disjunction of an empty set
is equal to ff; So (g,a) —0 = [a, aff.
We immediately remark that:
lgale = (g,0) ={p} Vv (g,a) =0
(g:0)p = (g9,a) —={ep tt}

In consequence, every formula of event-recording logic is equivalent to a formula using only the
new modal operator. Later we consider rectangular formulas that only use the new modality
operator in addition to the boolean and fixpoints operators.

3.3.1 Tableau

As checking if P is a model of ¢ consists to check if [P] F; ¢, we describe the set of formulas,
that we called the satisfiability objective, assigned to configurations (or state) of a (VUX)-LTS
that models a formula ¢. This assignment procedure will give intuitions for the rules of the
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tableau. Assignments map satisfiability objectives to states from which there is at least one
transition labelled with a valuation.

Initially, {¢} is assigned to the initial state s. The tuple (s,T") of a state s and its satis-
fiability objective T is a verification objective. We write {¢, '} as a shortcut for {¢} UT.

Assuming that the current verification objective is (s, {¢,I'}), and depending on the struc-
ture of ¢, we use the verification procedure described in the previous section to generate the
next satisfiability objectives. We first consider the cases when only the satisfiability objective
changes. According to the verification procedure the change is done by the following rules:

o if o = 1 A e, then the next satisfiability objective is {¢1, p2,I'} since we would like to
verify that s satisfies ¢1 and s satisfies 9;

o if o = 1V 2, then the next satisfiability objective is {¢1,I'} or {¢2,I'} since we would
like to verify that s satisfies @1 or s satisfies po;

o if 0 X.9)(X), then the next satisfiability objective is {¢)(c X.9(X)),I'}. This is a regen-
eration step.

From a verification objective (s,T), if we apply the rules above, we do not change the current
state in the transition system, but, we end up in a verification objective (s,I') where I' is
such that every formula in it is in one of the form tt, ff, or (g,a) —©. Then, we consider the
following cases:

e if I' contains the formula ff, then I is not satisfied in s;
e if {t is the unique formula in then I is satisfied in s;
e clse, I' contains at least one formula of the form (g,a) —© then:

— for every (g,a) -© € I', and ¢ € O, we must create a verification objective
(", {v} U{VO|(¢d,a) -0© € T'and v € [¢']}) for some s’ and v € [g] with
va
s — 8,

— for every (v,a) and every s’ such that s —— s', we must find a formula (¢/,a) —O €
I' with v € [¢'] and ¢p € O; and we create the verification objective (s, {¢} U
{VO'[(g",a) =0" € I'and v € [¢']}).

As a consequence of Lemma 88, considering [P] and (P)™ with M > M, we get that the
set of verification objectives in the real-time verification procedure is the same as the set of
verification objectives in the symbolic verification procedure. Moreover real-time rules can be
mimicked by symbolic rules. Of course while checking for satisfiability, we do not have states
of a system. So we will use the procedure as above with “imaginary” states. For this to work
we will need to keep the timing information in a form of regions.

Now we formalise the rules and the procedure above by defining the tableau system of rules
for Event-Recording Logic following the one introduced for the p-calculus [Koz82, Wal95] and
other temporal logics [GM96, Gor99, LS01]. We claim that our tableau system of rules is
different and simpler than the one proposed by Sorea [Sor02].
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A tableau system of rules is a collection of rules. A rule is of the form

T ... T,
T

where T" and T; for every i = 1..n are tuples made of a set of formulas (satisfiability objectives)
and a region (timing context). The tuples over the lines of a rules (7; for every i = 1..n) are
called the premises of the rules and the tuple T below the line of a rule is called conclusion of
the rule. A rule as above is interpreted as follows: verifying whether the satisfiability objectives
in the conclusion are satisfiable from the timing context is reduced to checking if all (some)
satisfiability objectives in the hypothesis are satisfiable in their corresponding timing context.

Definition 94 (The System of Tableau Rules) The system of tableau rules &%
parametrised by a formula ¢ (or rather its binding function D) and the set of regions Regns
is defined by:

i

{w’F};ﬁ(ﬁr)
{er.Thr  {e, Thr {o1, 02, T}
{o1 V2, T v {¢1 sz,F};r(/\)

fe(X).Thr fe(X).Thr )
(1 Xo(X), Thr " wXo(X),Thir

S e) D) = o Xp(X)
P ULV 6, | (g,a) — ©; €T, O, % O,}; (g Ak = 0]
(gv a) - ®Z S Fa

LESKST

Iir

for every

(mod)

We remark that if g is rectangular then (g A r7) is a region (or is inconsistent). Thus, if we
start with a rectangular formula then all time-contexts obtained by applications of the rules
will be regions.

We give the intuitive idea behind the rule (mod). The conclusion I';r of the rule (mod)
is such that every formula in I is of the form (g,a) —© where © is a set of formulas. Recall
that (g,a) 20 = A co(9:a)¢ A [g,a] Ve - Then the presence of existential modality
requires that when the time elapses, the constraint occurring in a formula (g,a) —©; of T’
should be satisfied (when ©; # () and then every ¢ € ©; should also be satisfied. We need
something more though as I' may contain a collection of formulas of the form (g,a) —©, for
the same guarded-event (g, a). In this case we need when to check if ¢ € ©; together with the
disjunctions \/ ©; are satisfied.

Definition 95 (Tableau) A tableau for a rectangular formula ¢ from a region 7°
7% = (T, L), where T = (N, E) is a tree, and L is a labeling function such that:

is a pair
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1. The root n° of 7';_% is labeled by {¢};7°

2. The sons of any node n are created and labeled according to the rules of system S¥. It
is required the rule (mod) is applied only when no other rule is applicable.

Example: Let us present a fragment of the tableau for a formula
0 =(0<hg <lya) ={p1,02} AN (0 < hg <1,a) =>{p3} A0 < hy <1,b) ={ps}

where, g is the region satisfying the constraint h, = 0 A hy = 0, 7 is the region satisfying the
constraint h, = 0A0 < hy < 1 and, o is the region satisfying the constraint 0 < h, < 1Ahy =0

{or,03him {waspshir {es.prValimn {pafiro
{(0 < hg < 1,a) ={p1,p2}, (0 < hy < 1,a) ={ps3}, (0 < hg < 1,b) —={pa}};10
{(0 < hg <1,a) ={p1,p2}, (0 < hg <1,a) ={p3} A (0 < hy < 1,0) ={@4}};70
{(0< hg <1,a) ={p1,p2} A (0 < hg < 1,a) ={p3} AN (0 < hq < 1,b) ={pa}};70

O

If n is a node of the tableau and £(n) = I';r, then Lgrr(n) =I' and £,(n) = r denote
the formula part and the timing part of L(n).

We remark that the application of a rule at some node n depends both on some formula
¢ € Lprr(n) and the time context L£,(n). We say that the rule is directed by the tuple

©; Lp(n).
We remark that the tableau of a formula ¢ is a finite branching tree nodes of which are
labeled on the finite alphabet 25%0(®) x Reg.

Definition 96 A modal node is a node in which the rule (mod) is applied; A disjunctive
(resp.conjunctive) node is a node in which the rule V (resp A) is applied. Since a modal node
may has several successors, a (g,a)-son of a modal node is the son obtained by considering
the guarded event (g,a) for some ¢ € ©; with (g,a) — ©; € I.

Example: In the example just above, the node labelled with
{(0 <ha <1,a) ={p1, 02} A (0 < g <1,a) ={p3} A0 < ha <1,b) ={ps}}iro
is a conjunctive node. The node labelled with
{(0 < hg < 1,a) ={p1,p2}, (0 < hy < 1,a) ={ps3}, (0 < hg < 1,b) —={pa}};70
is a modal node which has three (0 < h, < 1,a)-sons and one (0 < h, < 1,b)-son. O
Definition 97 (Choice node, near to) A choice node is a root node or a son of a modal
node. A node m is near to a node n if and only if there is a path from n to m in a tableau

without an application of the rule (mod) in-between.

We remark that the root of a tableau can be a choice node and a modal node. A leaf node, a
modal node, or a disjunctive node, or a conjunctive node can also be a choice node.
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3.3.2 Semantics of Tableau

A path in a tableau represents of partial task in the satisfiability checking of a set of formulas.
Given I';;rp and I'g; 79 two consecutive nodes of the tableau, such that I's;re derived from
I'y; 7y, there is a formula ¢ € I'y that has been reduced according to an appropriate rule and
there is a formula ¢ € I'y which is one of the results of the reduction of ¢;. Such a relation
between formulas in the premises and formulas in the conclusion keeps track of decomposition
of each formula. We follow [JW95, NW96| and we formalise this relation by defining traces.

Definition 98 (Trace) Given a path 7 of 7% = (7, L), a trace on m will be a function F
which assigns a tuple made of a formula and a region to each node in some initial segment of
m, according to the rules applied for the construction of 7. Fgrr, and F, denote the formula
part and the timing part of F(n). We require that F satisfies the following condition: let n be
the successor of m on 7 then

L. if the rule applied m is not (mod) and it is not directed by F(m) then F(m) = F(n);

2. if the rule applied at the node m is not (mod) but it is directed by F(m) then F,(n) =
F,(m) and Fgrr(n) is one of the results of the application the rule in m.

3. if the rule (mod) is applied at m and the son n € 7 of m is labeled by ¢ U {\/©; :
(g,a) = ©; €', ©; # O;};77 Aglh, := 0] for some (g,a) — ©; € Lgrr(m) and ¢ € ©;
then F(n) = ¢;r1 Aglhq := 0] if F(m) = (g,a) — ©;;7 and F(n) = \/ ©;;71 Aglhg := 0]
if F(m) = (g,a) — ©j;7.

In order to establish whether a formula is satisfiable are not, we distinguish “good trace”
from “bad trace”. Intuitively, a “bad trace” is something that cannot appear in a correct
execution of the verification procedure sketched on page 73. We also consider “good path”
and “bad path”. Again a “bad path” is a path that cannot occur during correct execution of
the verification procedure. To characterise “good” and “bad” paths we need to consider finite
and infinite paths.

A finite trace is “good” if it ends in a tuple the formula part of which is ¢ or (g,a) —0.
Otherwise it is “bad”.

If a trace is infinite, there is are fixpoint variables that are infinitely often regenerated.
Following [Ko0z82, JW95|, we give the definition of variable regeneration.

Definition 99 A variable X is regenerated on a trace F of some path if and only if for some
m and its son n on the path Frprr(m) = X and Fgprr(n) = (X)) with Dy(X) = 0 X.9(X).

As stated later in Theorem 87, the “goodness” of a trace may depend on the nature of
variables that are infinitely often regenerated. As introduced in the above examples, “good”
and “bad” traces depends on the order between variables and the nature of the oldest variable
that is infinitely often regenerated.

We formalise the notion of “good” and “bad” traces by defining p-traces.
Definition 100 (u-trace) A p-trace is an infinite trace on which the oldest variable regen-

erated infinitely often is a p-variable; or a finite trace, ending with a tuple the formula part
of which contains ff.
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So a “bad” trace is a u-trace and a “good” is a trace that is not “bad”. It follows that a
“bad” path is a path that contains a u-trace. We call such a path a p-path. A “good” path is
a path that does not contains a p-trace.

Now that we have formally defined “good” paths and “bad” paths, we look for a distribution
of “good” paths in the tableau in order to decide whether a set of formulas is satisfiable or not.

Definition 101 (Pre-model) A pre-model PM is a fragment of a tableau 77 satisfying the
following conditions:

e The root of 7% belongs to PM.
e If a disjunctive node belongs to PM, then only one of its sons belongs to PM.
e If a modal node belongs to PM, then all its sons belong to PM.

e There is no path with a p-trace in PM.

Definition 102 (refutation) A refutation RF is a fragment of a tableau 77 satisfying the
following conditions:

e The root of T:f) belongs to RF.
e If a disjunctive node belongs to RF, then all its sons belongs to RF.
e If a modal node belongs to RF, then at most one of its sons belong to RF.

e There is a p-trace on every path of RF.
In the next section we show the following theorem.

Theorem 103 A guarded rectangular formula ¢ is satisfiable if and only if there exists a
pre-model for .

3.3.3 Satisfiability Results

In this section, we present a proof of Theorem 103. As remarked before we can restrain to
rectangular formulas.

As formulas may contain many fixpoint operators, then we need a structure to handle the
variation of ordinals associated to each fixpoint operator after a computation step. For that
purpose, we consider the notion of signature (also see [Wal95]).

Definition 104 (Signature, p-signature, v-signature) A signature  sig =
(a1,00,...,0yp) is a sequence of ordinals value of which depends on a state. We distin-
guish p-signature from v-signature that we simply call signature when it is clear from the
context.

Let a formula v without free variables, if S,s F <[¢]>D¢ then, ¢ has the p-signature
Fsig(i,s) = (aq,...aqe) in s if #sig(s, 1)) is the least (in lexicographical order) sequence of
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ordinals such that S, s F ([@b])D& where D, is obtained from the binding function D, by chang-
ing definitions of X; (fori=1,...,d") from Dy (X;) = vX;.0i(X;) to Dy,(Xi) = v X;.0:(Xi).

IfS,s# <[¢]>DW then, ¢ has the v-signature Ysig(1,s) = (aq,...aqv) in s if Ysig(s, ) is
the least (in lexicographical order) sequence of ordinals such that S,s & quD; where D, is

obtained from the binding function D, by changing definitions of Y; (for i = 1,...,d") from
Dy(Yi) = nYipi(Ys) to DY) = pYipi(Ys).

In the definition of the notions of ¥-signature and Y-signature just above S is either a
(X U Valy)-labelled transition system representing the semantics of a timed process, and in
this case F is the relation F;; or a (X U Gds)-labelled transition system representing the
semantics of a timed process, and in this case F is the relation F,.

Lemma 105 (pu-Signature) Let “sig(p, s) the signature of ¢ at s, it is true that:

o sig(p1 A w2, s) = max{!sig(p1,s)," sig(pa, s)}
o Fsig(p1 V p2,8) = Msig(p1,s) or Fsig(p1 V @2,s) = Fsig(pe,s)

e for all ¢ € O, there is s’ such that s 9% ¢ and Fsig(p,s’) < tsig((g,a) — O,s);

and for every s’ such that there is a transition from s 2% s', we have #sig(\/ ©, s') <+
sig((g,a) — ©,s)

o if X; is the ¢ — th variable of D, and D,(X;) = uX;p(X;), then the prefixes of length
i— 1 of Psig(uX;.o(X;),s) and Hsig(p ( ), s) are equal
o

o “sig(vX.p(X),s) = Fsig(e(X),s) where Dy,(X) = vX.@o(X)

o if D,(Y) = puY.o(Y), then #sig(Y,s) > #sig(o(Y),s)
o if D,(Y)=vY.@(Y), then #sig(Y,s) = #sig(e(Y),s)
Proof

The case of (§,a) —© is a generalisation of the cases of ¢1 A w2 and ¢1 V @2 which themselves
are immediate.

Considering the last cases, we suppose that S,s F <[Xi]>D¢ with Dy (X;) = pX;.9(X;).
X; occurs in ;(X;) implies that X; <, X; and Xj is free v;(X;). Let Fsig(X;,s) =
(a1,00,...,0,) and D’ obtained from D, by changing definitions of X; (for i = 1,...,d")
from D (X) pXii(X;) to D (X;) = p Xi4hi(X).

It follows from the definition of the signature that S,s F, p*X;.9(X;). This implies
that «; is a successor ordinal. It follows that S, s F, ¢(u® ' X.4(X;)). This means that the
signature of ¥(u® 1 X;.4(X;)) at s is (o, ..., a1, 05 — 1,0}, ,...,al,) and is smaller than
sig(W;, s). The difference occurs at the position i. O

Lemma 106 (v-Signature) Let “sig(y, s) the signature of ¢ at s, the following assertions
hold:

o Vsig(p1V p2,s) = max{"sig(y1,s),” sig(p2,s)}
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o Vsig(p1 A pa,s) = Vsig(p1,s) or Vsig(p1 A w2, s) = Vsig(pa, s)

e Either exists ¢ € © such that for all &/, if s 2% s’ for some ¢, then we have “sig(p, s') <”

sig((g,a) — ©,s); or there is s’ such that s g0, s', and Vsig(\/ ©, ") <" sig((g,a) —
0,s).

o If X is the i —th variable of D, and D, (X;) = pX;¢(X;), then the prefix of length i —1
of Vsig(uX;.0(X;),s) and "sig(¢(X), s) are equal.

o Vsig(vX.p(X),s) = Ysig(¢(X),s) where Dy, (X) = v X.p(X)
o If D,(Y) = pY.p(Y), then Vsig(Y,s) = Vsig(p(Y),s)
o If D, (Y)=vY.(Y), then "sig(Y,s) > “sig(e(Y),s)

Proof
Dual to Lemma 105. O

Proposition 107 Any tableau for a formula ¢ contains either a pre-model or a refutation.

Proof

(Sketch) The proof of this result is the same as the proof of a similar result in the setting of the
for p-calculus [Wal95]. The proof uses some results on two player parity games. One defines a
two player parity game and shows that a player has a winning strategy if and only if there is
a pre-model for ¢ and its adversary has a winning strategy if and only if there is a refutation
for . The conclusion comes from the fact that two player parity games are determined (see
Theorem 11). O

Proposition 108 Any tableau of a satisfiable rectangular guarded formula ¢ contains a pre-
model for ¢.

Proof
The proof follows the ones in [Koz82, Wal95].
Suppose that there is timed process P such that (P)™, 50k, ¢.

Let T;% a tableau for ¢. We aim at constructing a pre-model PM for ¢ which is in fact a
sub tree of T;_%. It means to choose the nodes of T;f) that we will include in PM. Of course,
the root of 7';% will be included in PM. We assign to each node n that has been included in

PM, a state s, € S such that ([PD%Q, sn Fg (¥)p, for every ¢ € Lprr(n). This assignment
will be done through the so-called marking relation M : N — S. So we will have

(1) if s, = M(n) then (P)M, s, Fq ([1[)]>Dw for every ¢ € LEgrr(n).

We set s” = M (n°) where n° is the root of 7%.This satisfies (1).
Now, assume that a node n has been included in PM with s, = M(n). We use the rules

for the tableau to select the next nodes that we include in PM. The selection works as follows:

e The only son of some node n, marked with s,,, on which an unary rule (ff,, A, reg, u, or
v) was applied is included in PM; this son is marked with s,,.
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e If n is a disjunctive node, then s, is put into the marking of the son for which it has the
least signature. Such a son exists by Lemma 105.

e If n is a modal node, then we add all the sons of n in PM. Each son n’ of n is the result

of the reduction of a formula (§,a) — © € Lggrr(n) with respect to some ¢ € ©. Set

M (n') = s, where s, is such that s, 2% s/, and *sig((j,a) — ©,5,) >* sig(e), sp).

Such a configuration exists by Lemma 105.

By Property (1) above, it is obvious that no leaf of PM contains ff. It remains to show
that the tree we have constructed does not have an infinite path with a u-trace.

Now, assume that there is an infinite path 7 that has a p-trace on it. Then, there is the
oldest p-variable X; infinitely often regenerated along the trace. According to Lemma 105,
from the point when no variable older that X; is regenerated, u-signatures of formulas on that
trace never increase on positions 1,...,¢7—1. Then maximal signature of formulas on the trace
considered up to position ¢ never increases and decreases every time X; is regenerated. This
is a contradiction because sequences of ordinals of bounded length are well-ordered. g

From the definition of the system of tableau rules, applying a rule different from (mod)
and V to a node of a tableau generates a unique successor. In a pre-model we choose only one
son of a disjunctive node and all the sons of a modal node. It follows that in a pre-model, a
node with more that one successor is a modal node. Given a node n of PM we denote des(n)
the closest descendant of n or n itself in that is either a modal node or a leaf.

Definition 109 (sharply guarded model for a pre-model) Given a pre-model PM = (K, L),
the sharply guarded model based on PM is the timed process S = (S, %, s, Ag) such that:

1. S consists of all nodes of PM that are either leaves, or modal nodes.

2. (s,g,a,s") € Ag if there is in PM a son n of s with des(n) = s, such that the label of
n was obtained from the label of s by reducing a formula of the form (g,a) — ©.

We remark that the maximal constant that occurs in the sharply guarded model is smaller or
equal to the maximal constant that occurs in the formula.

Proposition 110 Formula ¢ is satisfiable in the sharply guarded model associated to a pre-
model of ¢.

Proof

The proof is dual to the one of Proposition 108. We will assume that PM is a pre-model for
@ and ¢ is not satisfiable in the sharply-guarded model P associated to PM. Then, we obtain
a contradiction.

If ¢ is not satisfiable in P then (P)M | 50 74 ¢ Recall that states of (PDM " are the leaves

reg’ reg

or the modal nodes of PM. Using the assumption that (P)M 0 Hy ¢, we show that PM

reg’
contains a path 7 with a p-trace F = {¢,; 7, }ner- The expected path 7 and the u-trace are

constructed as follows:
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M
reg’

of PM associated to the initial configuration of (P)Y

reg*

e 7 starts at n® and ¢,,0 = . By the hypothesis, (P)..,, des(n’) I, ¢ since n® is the node

e Now assuming that we have constructed F up to the node ;7 € Lgrr(m) x L,(m)
such that ([P]}f,\;[g, des(m) g (¢m)p,- The formula of the next tuple (the timing part is
obvious) is selected as follows:

1. If m is not a modal node, then the only son m’ of m is such that

— Om = ©m if pp, was not reduced by the rule.

— o = 1 if O = 01 A o and Ysig(om, desy,) > Ysig(e1, desy);

— O = 2 if Yy = Y1 A Yo and not above;

— @y is the formula that occurs in Lgrr(m') if ¢, = @1V @2. Observe that the
choice is directed by PM.

— In the other sub cases: ff,, v, 1, reg, just take the resulting formula as the next
element of the trace.

2. If m is a modal node and ¢,, = (§,a) —O then
— either there is ¢ € O, such that for every son m’ of m and s LLA
s’ with des(m’) = s we have ([PD%Q, s’ Hy (¢Dp, and "sig(v, ) <
Ysig((g,a) —©,s). In this case, just take ¢, = 1;
— or, there is a son m’ of m with des(m) = ¢, and s 2% ¢ such that ([P]}f,\;[g, s’ Hy
\V © and ¥ sig(\/ O, s) <" sig((g,a) — O, s). In this case consider m' and set

©m =\ O or v € © depending on which one appears in £(m’).
There are two cases:

1. The above trace is finite. If the last element is ff, there is a contradiction with that the
sharply guarded model correspond to the pre-model; and a pre-model does not contain a
p-trace, in particular it does not contain a trace that ends with a tuple the formula part
of which is ff. If the last tuple does not contain the formula ff, it contains a formula
of the form (g,a) — 0 or tt; from the definition of the sharply guarded model, it follows
that (P)  des(m) k, {(¢Dp,, this is in contradiction with the third item of Lemma

reg’
106, because we assumed that ([P]}%g, des(m) is not satisfied the formula assigned to m.
In fact, if the last tuple occurs in the node m and contains the formula:

e tt, then (P)M des(m)k, tt and we get a contradiction with the hypothesis.

reg’

e (g,a) —0, then m is either a modal node or a leaf. In both cases, m does not
have a son n obtained from it by reducing a formula (g,a) —© with respect to
some © and p. € © as otherwise the that could not end with (g,a) —0. As
(g,a) =0 = [g, a]ff, by definition of F, we get the contradiction with the hypothesis

that (P)M  des(m) ¥, (9,a) —0.

reg’

2. If the trace is infinite, the only way to have an infinite trace is to have a regeneration of
a fixpoint variable. It cannot be a y-variable as we are in a pre-model. Hence it must be
a v-variable. As by Lemma 106 the v-signature decreases along the constructed trace,
this is impossible.

O



82 CHAPTER 3. RESULTS ON EVENT-RECORDING LOGIC

3.3.4 Complexity Issues

We have reduced the satisfiability of a formula to the existence of a pre-model in its tableau.
Then the complexity for the satisfiability of a formula is the same as the complexity of checking
the existence of a pre-model in its tableau. The procedure for checking the existence of a pre-
model in the tableau is the same as the procedure for checking the existence of a pre-model in
the tableau for p-calculus formula which is exponential in the size of the formula. In the case
of ERL, our algorithm is also exponential in the size of the formula.

3.4 Comparison With Earlier Works

In the section we compare results in previous sections with Sorea’s results on ERL. In [Sor02]
Sorea proposed decision procedures for the model-checking and satisfiability of ERL formulas.
These procedures were supposed to work even for general constraints (diagonal constraints
were allowed). The Sorea [Sor02| procedure for the satisfiability problem of ERL is based on a
tableau system of rules. Sequents in rules are couples, made of a set of formulas and a timing
context. Timing context are represented by zones. In that tableau system, one particular
rule could be interpreted in two ways. One way is wrong as it forbids the “division” of the
time satisfying a constraint in the existential modality. The second interpretation is correct
as it enables the “division” of the time. Nevertheless, the procedure for the satisfiability is
not correct. Recall that the satisfiability procedure requires to check the existence of a “good”
fragment in the tableaux. Indeed, the application of a rule in some node of the tableau depends
on the consistence of the zone in that node and the rule uses the time elapse operation on zones.
Normally, labelling of nodes will range over an infinite set and the satisfiability procedure may
not terminate. To ensure finite set of labels for the nodes of a tableau, Sorea has proposed
to approximate zones. As diagonal constraints were allowed, the procedure of Sorea declares
some fragments of tableaux “good” while in reality they are not.

3.4.1 Sorea’s Semantics for Timed Process and ERL Formulas

Let us briefly comment the Sorea’ semantics for timed process and the relation with the
semantics in Definition 66. Sorea’s semantics for timed processes is standard. They Sorea’s
semantics of a timed process is a (RT x X)-LTS where there is transition (p,v) e, (p' v+
t[hq := 0]) whenever there is a transition p 2% p’ and a delay ¢ € Rt such that v+t € [g]. That
representation for Sorea’s semantics for timed processes is isomorphic to the representation in
which delays on transitions are replaced with valuations and defined in such a way that there
is transition (p,v) vty (p',v 4 t[h = 0]) whenever there is a transition p 2% p’ and a delay
t € R" such that v + ¢ € [g]. This latter representation is a ( Valy, x X)-LTS.

Semantics in Definition 66 is a ( Valy, UX)-LT'S. Using the notation just after Definition 66, one

can observe that, there is a transition (p,v) g (p’,v + t[he := 0]) in the Sorea’s semantics

for a timed process P if and only if there is a transition (p,v) vty (p'sv + t[hg := 0]) in
[P]. The same remark holds for representations that label transitions with constraints. Due
to the relation between Sorea’s semantics and our semantics for timed processes, the Sorea’s
interpretation of an ERL formula over a timed process is exactly the same as our interpretation
of the formula over the timed process.
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3.4.2 Sorea’s Tableau System of Rules

Let us first recall the tableau system of rules of Sorea [Sor02|. Let ¢ = (g,a)1) be an ERL
formula, and I" be a set of formulas, such that each formula in I' is a variable X, or a formula
of the form (¢, a’)y)' or [¢/,a'|Y’ for some constraint ¢’, and event o’. Let the set tob(g,a,T")
be defined by:

tob(g,a,T) = {[g',alp € T |[g A g'] # 0}

The tableau system of rules proposed by Sorea [Sor(02] is presented below. A rule is made of
some number of premises and a conclusion. The timing context is represented with a zone.

ity
To.0}: f02)
{1, ThZ {2, THZ {o1,02, T} Z
{e1V e, T} Z ) {1 Ao, T} A
{p(X),T'}; Z {p(X),T'}; Z

MG OR Y ACN P SEE Ny AL

B rea) D) = o XplX)
Ty 2y 19 € Gg}t[(g,a)p €T}
I,z

(mod)

where

G= U Lar Ndnr A\ -9}

JCtob(g,a,I') g'ed g &J
denotes a set of all constraints included in g, and I'y/; Z;/ is defined by:

g — {0} (ZT Ag)[ha = 0]) if T=0 or tob(g,a,T') =10
9y {oYU@y; (ZTAg'))[ha :==0] if tob(g,a,T #10

with ®y = {0 |[¢", ale) € tob(g,a,T) # 0 and ¢’ C ¢"}.

3.4.3 Existential Modality May Cause Constraint Division

In the tableau system of rules above, it is not clear what happens in the rule (mod). For a
given formula (g, a)¢ in the conclusion of the rule (mod), we consider a set of constraints Gy
which is such that the intersection of every constraint in it with g is consistent. As no precision
is done in [Sor02] on the use of this rule when checking the satisfiability of a formula, there
are two possible interpretations:

1. The first interpretation may consist to consider all the timed sequents in the set
{Ly:Z, |9 € Gy}
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2. The second may consist to consider only one sequent in that set.

The first interpretation gives incorrect result as it may be enough to consider only one
timed sequent to ensure the satisfiability of the formula. For instance consider the example
below.

Example: Let the formula ¢ = (1 < h, < 2,a)tt A [hq = 1,a]ff A (hq = 1,b)tt. Consider the
following sets of sub formulas of ¢V

To = {(1<hg<2a)ttAlhe=1af A (he = 1,b)tt}
Ty = {(1<hy <2 a)t[he=1,alff A (ha = 1,b)tt}
Ty = {(1<hg<2a)tt[he=1,alff, (ha = 1,b)tt}
s = {¢,ff}

Ly = {it}

The formula ¢° has two existential modal operators and one universal modal operator. Ac-
cording to the tableau system of rules, we should consider the sets tob(1 < h, < 2,a,I'3) =
{hq = 1}, tob(hg = 1,a,T'2) = {hs = 1}, and the sets Gi<p,<2 = {ha = 1,1 < hg < 2}.
Ghazl = {ha = 1}7

Then the tableau for ° starting from the Z° in which the value of h, = 1 is depicted in
Figure 12.

[Ti;ha =0A Ry =0]

A

|F1;ha:0/\hb:O|

A

|F2;ha:0/\hb:O|

(mod),hy = 1,a (mod), hg = 1,b (mod),1 < hg < 2,a

|Tssha =0 By =1] |Tusha =1 ARy =0] ITusha =0AT < hy <2

Figure 12: The beginning part of the symbolic tableau.

The tableau does not contain a disjunctive node. As I's contains ff and is included in the
pre-model, the procedure of Sorea will assert that ¢” does not have a model. This is not true
since the timed process in Figure 13 is a model of ¢°.

O
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Figure 13: A timed process.

But, even the second interpretation gives incorrect result. As we show in the next subsec-
tion, the use of the approximation operation on zones to ensure finite set of labels of nodes of
the tableau and then to ensure the termination of the satisfiability procedure, will make some
paths “good” while they are not.

3.4.4 Zone Approach Is Not Correct

Consider the formula ¢ defined by ¢ = (hy < 3, ¢)p1 where,

p1 = (ha <3,a)p2
P2 = (hp=3,b)ps3
p3 = pX.pg

ps = 5V e

o5 = (ha=3,a)p7
w6 = (ha=2,a)ps
pr = (ha =2,a)p9
ps = (hy=2,b)X
w9 = (hpy=2,b)on
e11 = (ha =3,b)p12
w12 = (hy —hg <2Ahg—h.>2)tt

Observe that ¢ has been inspired by the timed process in Figure 11 (Page 57) and each
sub formula ¢; intends to describe the property of some state of that timed process.

A tableau for ¢ that uses the of rules of Sorea presented in Subsection 3.4.2 is presented
in Figure 14. In this tableau every set of formulas in each timed sequent is a singleton. Ev-
ery modal node has a single successor. There are disjunctive nodes {p4}; Z; where i is and
integer. From a disjunctive node {¢4}; Z% we can take the path {p4}; Z% — {ps}; Z¢ —
{os}; Z8 — {X}; Ziy — {pa}; Zi! or take the path from {p4}; Z} to {tt}; Zi,. To check
that ¢ is satisfiable, we must check that there is a pre-model in the tableau. As X is the
single p variable in ¢, it must be regenerated only finitely times in a trace of the pre-
model. As every node except disjunctive nodes has a single successor, the unique trace of
the pre-model is of the form {¢}; Zy — {¢1}; 21 — {p2}; Zo — {ea};Z) — {pe}; Z8 —
{esh 20 = (X120 — {ea}; 2} — - = {ea} 2§ — {pe}: Z§ — {ps}: 2§ — (X} 23y —
{pa}; fo“ —{esh Zé’“ — {1k Z?‘H — {9 }; Zg’“ —{pn}; Zfl'H where k is the number
of times the variable X is regenerated.
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(mod)7 (hy <

3,¢)
C
(mod), (hy =2 b/ \ mod), =2,a) | (mod), (hq < 3,a)

(mod), (hq = 3,a (mod), (hy = 3,b)

{o11}; Z11 @}323 W) @
(,U)/ (mod), (ha = 2,a)

(mod)(hy — ha <2/\hd—h > 2,d) @ {wg}@

Figure 14: A tableau for ¢.

It is not difficult to see that satisfiability of ¢ is reduced to the reachability problem of
{tt}; ZFL. This problem has been discussed in Subsection 2.6.2 where we present an automa-
ton that has the same structure as our tableau.

Following remarks we have done in Subsection 2.6.2, The zone Z] k“ is the following

he =0

hy > 1

he > 2v+5

ha > 2v+6
2y+6<hg—hg<2v+38
1< hy—hy <3
27+5§hc_ha§27+8
2y+2<he—hy <2v+5
hd—hb:2’7+5
0<hyg—he<3
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and for 19 the zone obtained from for ! by replacing the constraint h, = 0 with 0 < h,.
We remark that the bounds of diagonal constraints are not modified. It is clear that Z;™1
Ahy —hg < 2N\ hg — he > 2 is inconsistent as taking hy — hg < 2 implies (using constraints in
fo‘lT) that hg — h. < 2. Then the application of the rule (mod) in {11 }; forl may produce
the timed sequent {ff}; ff. That is enough to conclude that ¢ is not satisfiable.

In [Sor02|, Sorea uses the normalisation (approximation) operator Normps on zone that
occurs in the tableau to ensure the termination of its tableau-based decision procedure for the
satisfiability of formulas. When applying the normalisation operator at each node, for U will
become the zone defined by the following constraints:

he =0

hy > 1

he >k

hqg >k

he —hg >k

1<hy—hy <3

he —hg > k

he —hy >k

hg —hy > k
koghd_hcg?)

For a sufficiently big k, Zfl'HT Ahy — hq < 2 A hg — he > 2 is consistent and {tt}; Zf;l is the
last node of the path. As the unique trace is finite and ends with a tuple formula part of which
is tt. We will get that ¢ is satisfiable, which is not correct.

3.5 Disjunctive Normal Form

The use of conjunctions in formulas and the alternation of fixpoint operators has required the
use of set of formulas in timed sequent of the tableau leading to exponential algorithm for the
satisfiability. Are there some kind of formulas for which sets of formulas do not need to be
considered in timed sequents? If so, what is the expressive power of this kind of formulas? As
we will see the answer to the first problem is yes for disjunctive normal form formulas that
have the same expressive power as formulas in general form. In this section we consider the
transformation of general ERL formulas into equivalent formulas in disjunctive normal form
and we consider the satisfiability of later formulas. For that purpose we construct disjunctive
formulas from tableau and we use the equivalence between tableaux of the disjunctive formula
and the initial formula to show their equivalence.

3.5.1 Definition and Satisfiability Results
Let us first define disjunctive normal form for formulas.

Definition 111 (Disjunctive normal form) The set F; of formulas in disjunctive normal form,
is the smallest set defined by the following clauses:

1. Every variable is a disjunctive formula.
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2. If p,9 € Fq then ¢V € Fy; If moreover X does not occur in a sub formula of ¢ of the
form X Ay, then uX.p(X), vX.p(X) € Fy.

3. Formula ¢1 Ao A ... A, € Fq provided that every y; is in {tt, ff} or a formula of the
form ¢; = (gi,a;) —0; with ©; C F;. We require that for any pair of guarded-events
(Gi,a;) and (gj,a;), a; = a; implies that g; # g;.

We remark that modulo the order of application of the rule (and), disjunctive formulas
have unique tableaux. Moreover on any infinite path there is one and only one infinite trace.

The proof of the following theorem uses similar argument to the proof of a similar result
on the standard p-calculus [JW95].

Theorem 112 A closed disjunctive formula o is satisfiable if and only if the formula v 0b-
tained from o by replacing all occurrences of p-variables by ff and all occurrences of v-variables
by tt is satisfiable.

Proof

Let T;% and 7';% be the tableaux for ¢ and . The tableau T;% is a finite tree while the tableau
T;f) is not necessarily a finite tree. But observe that T;f) can be seen as an unfolding of a
graph obtained from T;% by adding back edges from every node labelled with ¢t or ff to the
unique node formula part of which contains the definition of the corresponding variable; that
definition should be a p-formula for all the nodes labelled with {ff} with ff corresponding to
the substitution of a u-variable, and it should be a v-formula for all the nodes labelled with
{tt} with tt corresponding to the substitution of a v-variable. So, we can assume the existence
of a surjective function f : T;f) — T;% that assigns to a node of T;f) a unique corresponding

node in 7';%.

It is easy to show, using structural induction, that if ¢ is satisfiable, so is .

Conversely, assuming that v is satisfiable, then v has a model. Let P be a model for 1. From
P, we can build a pre-model PM,, for ¢ and from PM,y we build a sub tree PM,, of T;%
containing any node n of T;% such that f(n) belongs to PMy. It is easy to show that the

resulting sub tree is a pre-model of T;% meaning that ¢ is satisfiable. g

In what follows, we will prove the equivalence between ERL formulas and ERL formulas
in disjunctive normal form.

Theorem 113 (disjunctive normal form) For every formula o, there exists an equivalent
disjunctive formula @ such that for any timed process P, P FE o if and only if P F @.

3.5.2 Tableau Equivalence and Tableau With Back Edges

For the proof of Theorem 113, we will define the notion of equivalence between tableaux. We
will show that the equivalence between tableaux of two formulas implies the equivalence of
the meaning of formulas. We will introduce the notion of tableau with back edges which are
a kind of graphs obtained from tableaux by cutting suffixes of some infinite paths and by
adding conveniently back edges from the root of the suffixes that have been cut to one of their
ancestors. Then given a formula, we will build from one of its tableau, a tableau with back
edges. From that tableau with back edges, we will construct a formula in disjunctive form
having a tableau equivalent to the tableau of the given formula.
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Tableau equivalence

Definition 114 (tableau equivalence) Let 71 and 79 be two tableaux. The tableaux 71 and
To are equivalent if and only if there is a bijective mapping £ between choice nodes, modal
nodes and leaf nodes of 71 and 7 such that :

1. £(n) = m implies that n is root of 71 and m is root of 79, or n and m are both disjunctive
nodes or both modal nodes.

2. If ny is a descendant of n then £(ny) is a descendant of £(n). Moreover if ny is a (g, a)-son
of n, then £(n1) is a (g, a)-son of n.

3. The set of literals in Lgrr(n) is equal to the set of literals of Lrrr(E(n)).

4. There is a p-trace on a path 7w of 7y if and only if there is a u-trace on the image of 7
under £ in ™

Observation 114.1 If £ : 7% — Tdé is a function showing the equivalence of 7% and Tdé then
s s T T

gL 7';% — T is also a function showing the equivalence of 7';% and 77%.

Proposition 115 If two guarded formulas have equivalent tableaux then, they admit the
same set of models

Proof
Let ¢ and ¢ two M-rectangular formulas. Let T;f) and T;% be the tableaux for ¢ and v that

are equivalent. Then, there is a bijective mapping & : T;% — T;% showing the equivalence. We
will show that for any M-rectangular timed process P, state p and valuation Val, we have
that P, p°, Val E ¢ if and only if P, p°, Val = ).

If P,p°, Val E ¢ then, by Proposition 88 [[P]]M, (pY,0%), Val E, ¢. Under this assumption,
we will exhibit a pre-model in T;%. We use constructions similar to the ones in the proof of
Proposition 108. We consider a marking M : N — P x Vy that satisfies: if (p,,v,) € M(n)
then ([P]}%g, (Pnsvn) Fy Lerp(n). We construct a pre-model PM of 77. Now consider the
image £(PM) which maps a node n of PM to the node £(n) in 7';%. Because 7 is equivalent
to T;{}), the literals in every node n of PM and in Lggrr(E(n)) are the same. There is a
bijective function between the (g,a) sons of n and the (g,a)-sons of £(n) implying that a
configuration (p,v) appears in M (n’) where n’ is a son of n if and only it appears in M (E(n’)).
Finally £ maps the root of 7% with the root of 7';% and E(PM) does not contain a p-trace
as PM does not contain a u-trace. Because £(PM) is a pre-model of 7';%, the formula v is
satisfiable. Next, by using a contradiction argument, we show that P is also a model of .
Assume that P is not a model of 1), then [[P]]M, (p°,0°), Val ¥, ¢. Then, using constructions
similar to the ones in the proof of Proposition 110 we can show that £(PM) contains a
path 7 containing a p-trace and we immediately get a contradiction as we have shown that
E(PM) is a pre-model and a pre-model does not contain a u-trace.

If P, p°, Val =4 then P, p°, Val E ¢ as £7! is also tableaux equivalence. O
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The converse of that proposition is not true; take for example the formulas (g,a) —{tt} A
(9,a) —{it} and (g,a) —{tt}.

Tableau with back edges Recall that nodes of a tableau have finitely many different labels.
Then, an infinite path in a tableau has node labels that infinitely often occur in that path.
For “good” paths, the ones that do not contain a p-trace, we will cut a suffix starting at some
node label of which occur infinitely often and we will add a back edge to some ancestor of
that node equipped with the same label. We do the same for “bad” paths, the ones having a
p-trace. When adding a back edge, we will care that each path, among all the paths obtained
by taking the back edge, corresponds to a path of the tableau with the same nature (“good”
or “bad”).
0

Let us take a tableau 775 = (7, £) of a formula ¢ with respect to some region r°.

Proposition 116 There is an automaton that distinguishes p-traces from wv-traces in a
tableau for .

Proof

Recall that a formula is of finite length and therefore uses a finite number of variables. The
automaton is a Rabin automaton whose states are variables, and who is always in the state
corresponding to the last variable read. Acceptance condition is a set of pairs of subsets of
states such that a right member of a pair contains a p-variable X; the left member contains
all the v-variables that are older than X. This automaton accepts a trace if and only if it is a
p-trace. O

Corollary 117 There is a deterministic parity w-regular automaton which decides if a path
contains a p-trace.

Proof
In every node, a transition of the automaton is the disjunction of transitions of the automaton
of Proposition 116 on each formula in that node. Such an automaton is a non-deterministic

Rabin automaton which can be translated into an equivalent deterministic parity automaton.
O

Form a tableau, we show how to build a tableau with back edges that preserves the nature
of the path of the tableau.

Lemma 118 (back edge tableau) Given 7%
ble to construct a finite tree with back edges 7

(T, L) a tableau of a formula ¢, it is possi-

(T, L) satisfying the following conditions:

1. 7 unwinds 7,

2. Every node to which a back edge points can be assigned color red or green in such a way
that for any infinite path from the unwinding of 7 we have : there is a p-trace on the
path if and only if the highest node of 7 through which the path goes infinitely often is
colored red.
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Proof

Consider a tableau 7 for ¢, clearly 7 is finite branching and labelled over a finite alphabet. A
path 7 of 7 that contains a p-trace is such that there is a highest node n in 7 from which a
pu-variable is regenerated infinitely often in the same time-context. There is a deterministic w-
regular automaton with parity condition that separates paths that contain p-trace from paths
that do not. That automaton assigns a state to each node of 7. Formally, let S = (S, s°,J, Acc)
be that deterministic automaton, where Acc is a parity condition using a function c : § — N.
The finite tree with back edges 7 = (7, L), where £ C 25ub(#) % Reg x S, is constructed from
7 as follows:

e if m is a root of 7, L(m) = {p};7, and 6(s°, ({¢};7)) = s then m added to nodes of 7
and set £L(m) = L(m) x {s}.

e if m is a node of 7 with £(m) = (T'; 7, s), and n is a son of the unique correspondent of m
in 7, then n is added in 7 as a son of m and, £(n) = L(n) x {s'} with s’ = 6(s, £(n)). An
exception to this occurs when there is an ancestor n’ of m in 7 with £(n’) = L£(n) and
c(Ls(n)) = max{c(m’') | m’ occurs between n’ and m}. In this case, a back edge from
m to n’ is added in 7. If ¢(Lg(n’)) is even, then assign the color red to n', else assign
the color green.

By construction, 7 unwinds to 7. Consider an infinite path # = ny,n9,ns,... of the un-
winding of 7; this path has a unique correspondent in 7 and therefore it contains either a
p-trace or a v-trace. Moreover, there is ¢ and j such that n; = n; and n; is the highest node
from which the type of the path is decided. By construction we get that n; is of color red if
and only if the path 7 contains a p-trace. O

End of the proof of Theorem 113 Here, we end the proof of Theorem 113 and we
construct the equivalent disjunctive normal form formula to a given formula. The idea is to
use the tableau with back edges defined above to get the formula in the desired form. For
that purpose, a formula will be assigned to each node of tableau with back edges depending
on the rule applied in the node. This should be clear for all nodes, except nodes with a back
edge and nodes at which the rule (mod) is applied. Let us go into the proof that shows the
construction of an equivalent disjunctive normal form formula.

Recall that a tableau with back edges does not have an infinite path. A leaf of such a
tableau contains either t¢, ff or formulas of the form (g,a) —0. We start the construction of
the disjunctive normal form formula from the leaf of the tableau with back edge and we move
to its root by assigning a disjunctive formula ¢, to each node of the tableau with back edge
in the following way:

L. If n is a leaf then ¢y is the conjunction of all the literals and formulas of the form
(9,a) =0 in Lgrr(n).

2. In the case that there are outgoing edges from n, we assume that every son of n has
assigned some disjunctive formula. We also assume that a formula assigned to a son is
assigned to an edge leading from n to this son. We assign the variable X, to a back edge,
if this back edge leads to an ancestor m. An auxiliary formula -, is assigned to each
internal node n according to the rule applied in n. This assignment works as follows:
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e if one of the rules (A), (reg), (v), or (1) was applied in n, and ~/ is the formula on
the unique edge leading from n, then an auziliary formula v, =~/ is assigned to n.

e if the rule (V) was applied in n, then the auziliary formula 7, = @n, V @n, is
assigned to n where ¢, and ¢,, are the disjunctive formulas assigned to each edge
leading from n;

e if the rule (mod) was applied in n then let I'; , be the set of all the formulas assigned
to edges leading from n to some node labeled by a result of reduction of the guarded
event (g, a). We let +,, be the conjunction of all the literals and formulas of the form
(9,a) —0 appearing in £(n) together with all the formulas of the form (g, a) —I'; 4.

In the case that there is no back edge leading to n, then ¢,, = ~,. Otherwise @,, = uX,. 7
if n is colored red and, ¢, = vX,.7, is colored green.

To end the proof of the theorem 113, we claim that, using the construction of ¢, is easy to
construct a tableau T;f) for ¢ and a function & : T;f) — T:,% that defines an equivalence between

@ @ v :
7)o and 77. In consequence ¢ and ¢ are equivalent.

3.6 Concluding Remarks

We have considered Event-Recording Logic as a language for describing properties of timed
processes. We have presented an algorithm for the model-checking problem of ERL formulas.
The algorithm uses the M-region representation of timed processes and that is similar to a well
known algorithm for the model-checking problem of the standard p-calculus. We wondered,
if other results in the setting of the standard p-calculus could be transferred to the setting
of Event-Recording Logic. We have shown that the answer is yes for the satisfiability, and
the disjunctive normal form property. From the model-checking algorithm, we have provided
a new tableau system for the satisfiability checking problem of Event-Recording Logic. Our
tableau system of rules is different and simpler than the tableau system proposed earlier by
Sorea. Then we have pointed out some ambiguities when using tableau system of Sorea and
some incorrectness caused by the use of approximation operation on zones. The simplicity of
our tableau system of rules has enabled us to provide a disjunctive normal form theorem for
ERL formulas.



Chapter 4

The Logic W'T,

An important modality over occurrences of an event in a real-time system is the the necessity
modality on the time periods at which the event can occur. The necessity modality allows
to describe general properties like “An event can be completed at every time instance when a
condition on the time is satisfied”. Examples of such kinds of properties are: “After a coin is
inserted, coffee is continuously available for 30 seconds” or “the brake system of a car operates
at any time within the 10 time units”. We claim that the modalities of ERL can not be used
to handle such important kinds of properties.

In this chapter, we introduce a new logic that we call WT,. The logic WT, is a weak timed
extension of the standard p-calculus. Formulas of WT, are interpreted over timed processes.
Its modalities are indexed with either constraints or events, while modalities of ERL are
indexed with pairs made of a constraint and an event. We show that W'T, is more expressive
than ERL as every formula of ERL can be translated into an equivalent WT,, formula; and
there are some formulas of WT), that can not be translated into formulas of ERL. Modalities
of WT,, are of the form (g) and [g] in addition to the classical modalities of the p-calculus
indexed with event ({a) and [a]). Intuitively, a state of a timed process p satisfies (g)¢ from
a given time-context with a valuation v if by letting the time elapse in it, it is possible to
reach a moment when the values of the clocks satisfy g and in that moment, the formula ¢ is
satisfied. A state p of a timed process satisfies [g]e from a time-context v if whenever starting
from v we let the time pass and reach a moment when g is satisfied then ¢ is satisfied in that
moment. We consider the model-checking and the satisfiability problems for WT, as they can
be then used for the controller synthesis.

For the model-checking problem, we use our approach to the model-checking of ERL, so
we reduce the model-checking problem of WT, to the model-checking problem of the standard
p-calculus.

For the satisfiability, we will consider fragments of WT, as the satisfiability of WT, itself
is difficult. We consider a first fragment that we call WG-WT,, (for Well Guarded WT,,)
and a second fragment that we call C-WT, (for WT,, for controller synthesis). Roughly
speaking, Formulas WG-WT), are formulas of WT), such that every modality indexed with
a constraint is immediately followed by a boolean combination of formulas all starting with
a modality indexed with an event; and a modality indexed with an event is preceded by
a modality indexed with a constraint. Formulas of C-WT,, disallow an existential modality

93
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indexed with a constraint ({(g)) to be followed with a combination of formulas containing a
formula starting with a universal modality indexed with an event ([a]) except [a]tt. C-WT,, is
a fragment of WG-WT,,. We provide a tableau system of rules for C-W'T, and we show, by
using techniques similar to the ones in the previous chapter, that the satisfiability problem for
C-WT,, is decidable. Then, we wonder whether we could use our tableau system of rules for
deciding whether a C-WT,, formula has a deterministic model. We show that this problem is
not easy as it could involve the use of new integer constants in the models.

Related results: Logics (TML [HLY91]|, L!, [SS95| L, [LLW95|) that enable to de-
scribe the the necessity modal operator has been considered for describing properties of
timed automata but the decidability of the satisfiability problem has not been established.
Laroussinie et al. [LLW95] have introduced the logic L, as a more powerful logic than the one
in [HLY91, SS95| but its satisfiability problem is still open and no disjunctive normal form has
been provided [BCLO05|. The logics L, and WT,, are incomparable as they are not interpreted
over the same model and L, does not allow the least fixpoint operator. But, if we restrict the
interpretation of L, to timed processes, we get that (g)¢ has the same meaning as the L,
formula (6)(g A ¢), [g]¢ has the same meaning as the L, formula [0](g — ¢), (@) has the
same meaning as (a)(z, in ¢) and [a]y has the same meaning as [a|(z, in ¢).

This chapter is organised as follows: We define WT,,, WG-WT, and C-WT,, in the next
section. In Section 4.2 we consider the model-checking of WT,, and we present the relation
between WT ), and ERL. In Section 4.3 we use tableau-based technique to show the decidability
of the satisfiability problem for C-WT,,.

4.1 Syntax and Semantics

We define the syntax of WT',, WG-WT,, and C-WT, formulas. WT, formulas have modalities
indexed with constraints and modalities indexed with events. We define rectangular formulas
that use only rectangular constraints and we show that every formula can be transformed into
an M-equivalent rectangular formula. Then we show that modalities of ERL can be simulated
by combinations of modalities of WT,,, meaning that ERL is a fragment of WT,.

4.1.1 Definitions

The logic WT), is a variant of the p-calculus and ERL. The formulas of WT, describe prop-
erties on timed processes. Apart from the usual events modalities of the standard p-calculus,
it has also modalities indexed by constraints. Modalities of WT,, can also be seen as an adap-
tation of modalities of L, for timed processes.

Definition 119 Let X,Y range over the set of variables denoted Var. A formula ¢ of WT,
is generated using the following grammar:
pu=tt [ [fIX[eheleVella)e|{ge|lde]lge | nXe|vXe

where a € ¥ is an event and g € Gdsy, is a constraint.

The bound of a formula is the maximal constant that occurs in its constraints. For a
formula ¢, M, denotes its bound. Given a constant M, we say that a formula is M-bounded
if its bound is smaller than M.
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Notion of bound variables, sentences, sub formulas, well named formula, v-variable, u-
variable, dependency order, alternation depth, guarded formulas, expansion, and binding func-
tion are analogous to the definitions of similar notions for the setting of the p-calculus in
Section 1.3.

4.1.2 Semantics of WT,

A formula is interpreted over timed processes, or rather their semantics. Intuitively, we say
that a state (p,v) satisfies a formula [g]e, if whenever starting from v we let the time pass and
reach a valuation v’ E g then (p,v’) F; . Similarly, a formula (g)p is satisfied if by letting
the time pass it is possible to go from valuation v to a valuation v’ E g with (p,v’) E; ¢. The
meaning for the modalities [a] and (a) is classical.

We will be mainly interested in describing timed processes, but actually the formulas of
WT,, can be evaluated in any (Vx, U X)- labelled transition system. Let us fix such a system
S = (9,2 U Vs, s”, Ag). The semantics of a formula ¢, denoted [[go]]“s,al, defined with respect
to an assignment Val : Var — 2° is the set of states of S which satisfy ¢.

We write S, s, Val F; ¢ to say that the state s satisfies ¢ with respect to the valuation
Val.

Definition 120 For a given (Vx UX)-labelled transition system S, a given formula ¢ and an
assignment Val : Var — P(S), we define the satisfaction relation F; and the semantics [[go]]“s,al
inductively as follows:

. [go]]“s,al ={s|S,s, Val F ¢}

e S,s, Val F tt.

e S5, ValEy X if s € Val(X).

o S.s,Val Fy o1 Vo if S5, Val Fy 1 or S, s, Val Fy pa.

o S5, Val Fy o1 Ao if S, s, Val Fy o1 and S, s, Val F; po.

e S,5, Val Fy (a)yp if there is s —— s such that S, s', Val F; .

e S,s, Val E; (g)1 if there is s — s’ such that v € [g] and S, s/, Val F; 1.
e S,s, Val Ey [a]yp if for all s = 5" we have S, s/, Val E; .

e S,s, Val ky [gtp if for all s — s with v € [g], we have S, s', Val F; 4.
o 8,5, Val Fy pX.o(X) if s € (T € S| [o(X)]Vax/ry € T

o S5, Val F vX.p(X) if s € T € S|T C [p(X)]Susix/ry -

We will write S F; ¢ for S, s E; ¢ to say that S is a model of the sentence (.

To ensure the existence of fixpoints, we need to show that modal operators indexed with
constraints and modal operators indexed with events are monotone.
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Proposition 121 The operators (o) and [«] are monotone for every o € Gdsy, U X.

Proof

The cases for operators other than (g) and [g] are standard. We show that modal operators
indexed with constraints are monotonic. Assume that we have @1 and @9 and a transition
system S such that [[gol]]“g,al - [@2]]“9@

o If s € [(g)p1]9y then there is s — &' with v € [g] such that s € [¢1]5,, and then
S S S S
s € [p2l vy as [1l Ve € lp2l V- Then s € [(9)@2] vV

o If s € [[gle1]Sy and s & [lglpal$,; then there is s —— s with v € [g] such that

S S S S S
s" & (2] Var- As 8" & [02] Ve and [01] 70 € [92]7a We get that s” & [p1]7,;- Then there
is s — s with v € [g] such that &' & [¢1]5,- So s & [[gle1]5, a contradiction.

We write ¢1 = 2 when the formulas ¢; and o are equivalent.

We introduce the negation operator —. Given a sentence ¢, a (V x X)-labelled transition
system S, and a valuation Val, we define [[ﬂgo]]“g,al =5\ [[go]]“g/al

Proposition 122 We have the following equivalences.

1. ~tt=ff

2. ff=tt

3. 201 A2) = 1V pa

4. =(p1V p2) = 71 A g

5. 7(a)p = [a]np for a € ¥ UGds
6. ~[a)p = (a)—p for a € ¥ UGds
7. uX.o(X) =vX.—p(-X)

8. wX.p(X) = puX.—p(-X)

Proof
Let S be a (X U Vy)-labelled transition system and let s be a state of S. As the cases for
operators other than (g) and [g] are standard, we consider the following:

o If s € [-(g)¢] then s & [(g)¢]. It is equivalent to say that for every v € [g], for every
s — s', we have that s’ ¢ [¢] meaning by definition that s’ € [[g]—¢].

e The case of —[g]¢ = (g)—¢ is obvious from the previous case.

Proposition 123 Let g, 91,92, ..,9n such that [g] = J,_; ,, [¢:] then,
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L (g)p = V1. n(gi)p
2. [l = Nic1 nlaile

Proof
We will consider the first case since the proof of the second case is easy by using Proposi-
tion 122. Let S be a (X U Vyx)-labelled transition system and s be a state of S

(=) If S,s F; (g9)p then there is s — s’ with v € [g] such that S,s F; . As [g] =
Uiy . [gi], there is i € [1..n] such that v € [g;]. Then, s — s’ with v € [g;] and
S,s' F; p, meaning that S, s F; (gi)p hence S,sF, \/,_; . (g:)¢.

(=) IfS,sF iy . (g9i)p then S, s, (g:)¢ for some i € [1..n] meaning that, there is s — s’

with v € [g;] such that S,s’ F; ¢. But v € [g;] implies v € [g] as [g] = U,_1 , [gi]-
Then we get that S, s F; (g)e.

Meaning of a formula over a timed process Consider ¢ a formula, and P a timed
process. We say that ¢ is satisfied in a state p, a valuation of clocks v : H — R, and a
valuation Val : Var — P(P x Vx) of propositional variables and we write P, (p,v), Val F ¢
when [P], (p,v), Val E¢ o.

The meaning [[90]]71)/@ C P x Vy, of a formula over a timed process P is defined by
P P
HSO]] Val = [[90]] [gfa];

We will write P E ¢ if [P] is a model of ¢ and we say that P is a model of ¢.

4.1.3 Restricted Logics: WG-WT, and C-WT,

We will consider fragments of WT,. The first fragment of WT, we will consider is WG-WT,,
and the second one is WT, for the control (C-WT),). C-WT), is itself a fragment of WG-WT,,.

Definition 124 The set of WG-WT), formulas is defined by the following rules:

tt, ff and X are formulas of WG-W'T,.

(9)¢ and [g]e are formulas of WG-WT,, provided that ¢ is a boolean combination of
formulas of the form (a)v or [a]¢) where 9 is a formula of WG-WT,,

@ A and ¢ V ¢ are formulas of WG-WT), provided that ¢ and 1 are formulas of
WG-WT,,.

uX.p and v.X.p are formulas of WG-WT), provided that ¢ is a formula of WG-W'T,.
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We remark that a formula of WG-WT), is also a formula of WT,. Formulas of WG-WT,
are such that if we look at a formula as a tree, then the modalities indexed with constraints
and with events must alternate on each path.

We also remark that (g)ff is equivalent to (g)\/,cx(a)ff and (g)tt is equivalent to

(9) Agesla]tt. By the duality principle, [g]ff is equivalent to [g] \/ ,cx(a)ff and [g]tt is equiv-
alent to [g] A cx(a)tt. Then we can allow modalities indexed with constraints to be followed

by tt and ff without changing the definition of WG-WT), syntax.
Definition 125 The set of C-WT,, formulas are defined by the following rules:

e tt, ffand X are formulas of C-WT,,.

e (g)pis aformula of C-WT,, provided that ¢ is a positive boolean combination of formulas
of the form (a)iy where 1 is a formula of C-WT,,.

lg]¢ are formulas of C-WT, provided that ¢ is a boolean combination of formulas of
the forms (a)vy or [a]i) where % is a formula of C-WT,,.

@A and ¢V are formulas of C-WT, provided that ¢ and 1 are formulas of C-W'T),.

uX.o and v.X.p are formulas of C-WT, provided that ¢ is a formula of C-W'T,.

By definition C-WT, is a fragment of WG-WT),. Indeed, in formulas of C-W'T, a formula
of the form [a]p is not allowed after an existential delay modality. We remark that since
tt = [a]tt, we can allow formulas of the form [a]¢t to occur in the set of formulas participating in
the boolean combination that follows an existential delay modality indexed with a constraint;
this does not change the expressive power of C-W'T,.

Example: In the WG-WT,, formula ¢ = (0 < h, < 1)(((b)tt A [a]ff) V (c)tt) events a, b and
c are in the scope of the modality (0 < h, < 1). The formula ¢ says that there is a time at
which 0 < h, < 1 is satisfied and at that time, the event ¢ can be completed or the event b
can be completed and the event a can not be completed. We observe that ¢ is not a formula
of C-WT,. O

4.1.4 Rectangular Formulas

We introduce rectangular form for WT,, formulas and we show the equivalence between a
formula and its rectangular form.

Definition 126 A rectangular formula is a formula defined using rectangular constraints.

Recall that Rectps(g) was presented in Definition 56. The M-rectangular formula associ-
ated to the formula ¢ is the formula Rectys(¢) inductively defined by:

o Recty(f) =ff
o Rectp(tt) = tt

o Recty(X) =X
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o Rectpr(v1 A @2) = Rectpr(p1) A Rectpr(92)

o Rectpr(p1 V @2) = Rectpr(p1) V Rectpr(92)

o Recty((g)p) = \/QERQCt]\[(g)<g>¢

o Rectyr({a)p) = (a)Rectpr(p)

o Recty([alp) = [a]Rectnr (@)

(
(
(
o Recty([9]®) = Ngerect (9)l9]®
(
(
o Rectp(0X.o(X)) =ocX.Rectp(p(X)) where o is one of {u, v}

We can state the following proposition.
Proposition 127 For every M > M, S, s, Val =, ¢ if and only if S, s, Val F; Rectpr(p)

Proof
The proof uses structural induction.

e The cases of ff, tt, X are standard.
e The cases of formulas of the form 1 A @2 or ¢ V o are also standard.

o If S, s, Val ¢ (a)yp, then there is s — s’ with v/ = v[h, := 0] such that S,s’ £ . By
induction hypothesis, S, s’ E; Rectpr(p). It follows that S, s, Val F; Rectp({a)p). The
other way of the proof uses similar argumentation.

e The case of [a]e uses dual argumentation.

e The case when ¢ = (g)¢. Rectar(9) = Vjepeety (g)(9)¢- From Proposition 57, [g] =
UgeRecta (g) [9]- We use Proposition 123 to conclude.

e Argumentation for the case when ¢ = [g]p is similar to the case when ¢ = (g)¢.

e The cases of fixpoint formulas are standard.

4.1.5 Relation between ERL and WT,

We show that ERL is a fragment of WT,,. With an example, we show that modal operators we
have introduced are useful for describing some relevant real-time properties on timed processes
in particular the necessity modal property on time delay.

Proposition 128 Consider a property that can be written using a WT,, formula ¢ or an
ERL formula v, then for every timed process P, state p of P and valuation v € Vy,,

e P,(p,v), Val E; (g){a)p if and only if P, (p,v), Val F; (g, a)y.
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o P,(p,v), Val F; [g][a]p if and only if P, (p,v), Val F; [g,a]t).

Lemma 129 There is a property that can be described with a WT,, formula and that can
not be described with an ERL formula.

Proof
Consider the property “in the time interval (0,1) there is a time instance when no action a is
possible”.. This property can be expressed by WT,, formula:

0 =(0<he < 1)[alff

Observe that we use the clock associated to action a, but we could use any other clock as
we assume that initial valuation of all clocks is 0. Of course ¢ is satisfiable, moreover it is
consistent with the formula

¢ =(0 < hg < 1){a)tt

saying that there is a time instance when a is possible. We show that ¢ is not equivalent
to a ERL formula. We claim that any ERL formula consistent with ¢’ is not equivalent to
©. Indeed, every ERL formula can be transformed into a boolean combination of formulas
starting with modalities (g,b) or [g,b]. It is easy to verify that every such formula that is
consistent with ¢’ has a model where action a is possible at every time instance between 0
and 1. g

In consequence of Lemma 129 and Proposition 128 we get the following.
Theorem 130 WT, is strictly more expressive than ERL

Example: Assume that we aim at checking the following property of timed process in Fig-
ure 15.

hy > 10, s

hy <10,b

7 < hg <10,d hy <10,b

hy > 10, s

Figure 15: A toy-car model.

The system operates at any time within the 10 time units after the first d signal by sending
a second d signal; it should send signal s at least 10 time units after the second d or receive
signal b at most 10 time units after the second d.
This property is described with the following WT,, formula:

o == [tt][d)[ha < 101{d)({hy < 10)(BYEL V (hg > 10)(s)tt)
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The system modeled in Figure 15 is not a model of ¢. For example, if the second “danger
signal” occurs 6 time units after the first “danger signal” the system will never compute the
following “brake signal” unless another “danger signal” occurs 2 time units after the second.
So there is a risk that the car goes into collision. [

4.2 Model-checking

We consider the model-checking of WT,,. We define the abstract semantics of formulas in
which formulas are interpreted over (Gdsy, UX.)-labelled transition systems. In that semantics
constraints in transitions are directly compared (identity test) with the constraints in formulas.
Then we use that semantics for the model-checking by showing that checking if a timed process
is a model of a formula is the same as checking if the M-region semantics of that timed process
is an abstract model (with respect to the abstract semantics) of the M-rectangular formula of
the formula for M sufficiently big.

4.2.1 Abstract Semantics for Formulas

We would also like to evaluate our formulas in models of the form (P] or ([P]}%Q. More

generally, we can define a semantics of WT, in any (Gdsx, U X)-labelled transition system
S = (5,Gdsyx, UX, s, —) as follows:

Definition 131 The symbolic relation of satisfaction, S, s, Val F,, and symbolic meaning of
a formula 9 [[go]]“sfal are defined for a symbolic representation S, a valuation of variables Val and
a formula ¢ inductively as follows:

o S.s5, Val Fy tt

o S,s,Val Fy X when s € Val(X)

o S,5,Val Fy o1V 2 when S, 5, Val Fy 1 or S, 5, Val Fg po.
o 5,5, Val Fy o1 Ao when S, s, Val By 1 and S, s, Val Fy ¢o.
o S,s, Val F, (a)t if there is s — s’ such that S, s, Val F, 1
o S,s, Val F4 (9)9 if there is s 9, ¢ such that S, ¢, Val Fq ¥
o S,s, Val k, [a]y if for all s % ' we have S, s/, Val F, ¢

o S,s, Val Fg4 g9 if for all s 9, ¢ we have S, ¢, Val Fq ¥

o 8.5, Val by pX.p(X) if s € (T € S| {o(X)) Yusp/r) € T

o S5, Val Fg vX.o(X) if s € U{T € S|T C (o(X))Vup/m}

o IS, ={s|S,s, Val £, ¢}
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We will write Sk, ¢ for S, s? F, ¢ to say that S is an abstract model of the sentence ¢.

Observe that this is nothing else, but the semantics of the standard p-calculus. We use
this observation in the next subsection for the model-checking decision procedure. Results we
present in that subsection use the framework of Subsection 3.2.3. Constructs for approximating
fixpoints in WT,, formulas are analogous to the ones in Subsection 3.2.2.

4.2.2 Model-Checking Results

Let us now consider the model-checking of WT,,. From Proposition 127, we can consider
rectangular formula as “good” abstraction of formula and for sufficiently big M, we will use
the M-region representation of timed process P, to check whether it is a model of a given
formula.

Proposition 132 For every process P, for every M -rectangular formula ¢, for every M >
M,: [P], (p,v), Val k= ¢ if and only if (P)™, (p,v), Val £, ¢.

Proof
The proof is by induction on the structure of the formula. The cases of ff, tt, oV ¢, @ A p and
0 X.p(X) are immediate. We consider the cases of (9)¢p, [g]e, (a)p and [a]p.

e Assume that the formula has the form (g)¢ where, g € Agds(M).

= if [P],(p,v), Val E; (g)¢, then there is (p,v) v, (p,v") such that v € [g¢] and
[P], (p,v'), Val E; . By the induction hypothesis, (P}, (p,v'), Val Fy . But,

(p,v) =, (p,v'), v' € [g] and g € Agds(M) involve that (p,v) - (p,v') is a
transition in (P)™M. It follows that (P)™, (p,v), Val Fq (9)p.
“= ([PDM, (p,v), Val E4 (g)p, then there is (p,v) 9, (p,v’) such that [P], (p,v"), Val F,

¢. By the induction hypothesis, [P], (p,v'), Val &, ¢. But if (p,v) < (p, ) is a
transition in (P)™ then v/ € [¢] and there is ¢ € Rt such that v/ = v +¢. It follows

that, the transition (p,v) -, (p, ") belong to [P] and then [P], (p,v), Val E; (g)¢.
e In the case of [g]p, we use a dual argumentation.

e Assume that the formula has the form (a)yp,

= if [P], (p,v), Val E; (a)e, then there is (p,v) — (p’,v') such that [P], (p,v"), Val &,
¢ with v/ = v[h, := 0]. By the induction hypothesis, (P)™, (p’, ), Val Fq ¢. But
if (p,v) - (p',v') is a transition of [P] then, there is a transition p <% p’ in P
for which v € [g]. According to the definition of (P)™ there is also the transition
(p,v) = (p',v') in (PYM. It follows that (P)™, (p,v), Val k, (a)ep.

< if (P)M, (p,v),Val &, (a)e then there is (p,v) —— (p/,v') such that
[P, (p,v"), Val 4 ¢ with v = w[h, = 0]. By the induction hypothesis,
[P], (p',v"), Val E; . Because (p,v) —= (p’,v') belong to [P], we get that
[P1, (p,v), Val & (g)¢.

e A dual argumentation holds in the case of [a]ep.
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O

Using bisimilarity between (P)) %g and (P)M, for sufficiently big M, and that every formula

is equivalent to some rectangular formula (see Proposition 127) we get the following lemma.

Lemma 133 For every process P, for every formula ¢, for every M > max(M,, Mp):
[P, (p,v), Val ;¢ if and only if (P)Y | (p, [v]ar), Val =, Rectpr(¢).

reg’

Theorem 134 is nothing else but a consequence of Lemma 133 and Theorem 25 as our
model-checking procedure is just the one of the p-calculus over (Agdss,(M) U X)-labelled
transition systems.

Theorem 134 There is an exponential time procedure that checks whether a process is a model
of a formula.

4.3 Satisfiability of the C-WT, Fragment

In this section we consider the satisfiability problem for C-WT, formulas. We will show that
it is decidable whether a C-WT,, formula has a model. We recall that formulas of the form
(g9)]ale or more generally, (g)p where, ¢ is a boolean combination of formulas containing
a formula of the form [a]y) (with ¢ # tt), are not admitted as C-WT, formulas. We use
tableau-based method.

4.3.1 Tableaux

We present the tableau system of rules for C-WT,. We will assume that formulas are M-
rectangular. We also define the notions of traces, u-traces and pre-model.

Let us introduce a notation. Given a set of formulas I' and a region r, we define the set
I ={(g)elr C g}

Definition 135 (Tableau system of rules) Let a ¢ be a C-WT,, formula and let D, be
its binding function. We define the system of tableau rules S parametrised by ¢, its binding
function and the set of regions Regys:

U U f {Lhr

o p Y Tethr st lnr=0" {Gethir st gl nr=a ™
{p1, T {2, Thr {e1, 92, T}
{1 Vo, Thr v {e1 N2, T'}; T(/\)
{p(X), I} {p(X), I} lo(X).Tyir _ .,
X0 I Gxe ) e ) PelX) = oXelX)

{ol(g)p €l };ri Yri € rTNRegy
I'r

(delay)
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e U{¢|[a]yp € T};rlhg := 0] for each (a)p € T’
Iir

(mod)

When applying the rule (delay) we require that every formula in the conclusion should be in
one of the forms ff, tt, (g)u or [g]®y and when applying the rule (mod) we require that every
formula in the conclusion should be in one of the forms ff, t¢, (a)y or [a]t.

Definition 136 (Tableau) A tableau for a formula ¢ from a region 7°
where 7 = (N, E) is a tree, and L is a labeling function such that:

is a pair 7% = (T, L),

1. The root n° of 7';% is labeled by {¢};7°

2. The sons of any node n are created and labeled according to the rules of systems S¥. It
is required the rules (mod) and (delay) are applied only when no other rule is applicable.

Given a node n such that £(n) =I';r, Lr(n) =T and L,(n) = r denote the formula part and
the timing part of L(n).

If we construct a tableau for a C-WT), formula, a conclusion never contains at the same
time a formula starting with a modality indexed with a guard and a formula starting with a
modality indexed with an event. So, in a tableau, the formula part of timed sequents on which
no rule is applicable never contain formulas of the forms (a)1, (¢9)¢ and [g]¢.

Definition 137 (Trace) Given a path m of 7% = (7, L), a trace on 7 is a function F that
assigns a tuple made of a formula and a region to each node in some initial segment of m,
according to the rules applied for the construction of 7. Fx and F, denotes the formula part
and the timing part of F(n). F satisfies the following conditions:

1. if F(n) is defined then Fx(n) € L£(n) and Fy(n) = L,(n);

2. if the rule applied at the node m is not directed by F(m) then the son n € 7 of m is
such that F(m) = F(n);

3. if the rule is directed by F(m) but it is not (mod), then the tuple F(n) for the son n € 7
of m is one of the results of the application application of the rule;

4. if the rule (delay) is applied at the node m and the son n € 7 of m is labeled by
{vl(9)p € Iy }sri then:
e F(n) is equal to ;r; if F(m) = (g)p;1;

e otherwise F(n) is undefined;

5. if the rule (mod) is applied at m and the son n € 7 of m is labeled by ¢ U {¢|[a]y €
I'};r[hq == 0] for some (a)p € I then:
o F(n) = ¢;rlhe := 0] if F(m) = (a)p;7;
* F(n) = 1;r[ha := 0] if F(m) = [a]¢);7;

e otherwise F(n) is undefined and F(m) is the last element of the trace.
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A variable X is regenerated on a trace F of some path if and only if for some m and its
son n on the path Fr(m) = X and Fr(n) = ¢(X) with Dy(X) = o X.9(X).

A p-trace is a infinite trace on which the oldest variable regenerated infinitely often is a
p-variable; or a maximal finite trace, ending with a tuple the formula part of which contains

i

An pre-model PM is a fragment of a tableau T;% satisfying the following conditions:

the root of 7% belongs to PM;
if a disjunctive node belongs to PM, then only one of its sons belongs to PM;
for all other kinds of nodes, if a node belongs to PM then all its successors t0o;

there is no path with a u-trace in PM.

The notions of signature, p-signature, and v-signature are defined as in Chapter 3, Defini-
tion 104. The proof of the following lemma is the same as the analogous lemma (Lemma 105)
in Chapter 3.

Lemma 138 (p-Signature) Let #sig(p, s) the signature of ¢ at s, it is true that:

Hsig(p1 A w2, s) = max{"sig(p1, ),/ sig(pa, s)}
Hsig(p1 Vo, s) = Msigler,s) or "sig(p1 V pa,s) = Msiglepa, s)
rsig((a)p,s) = Msig(yp,s') for some s’ such that s —— s’
rsig([alp, s) = max{"sig(yp,s’) for all s’ such that s — s’}

9. o

Fsig({g)p,s) = Hsig(p,s’) some s’ such that s — s

rsig(gle,s) = max{*sig(y,s') for all s’ such that s 2 s’}

If X; is the i —th variable of Dy, and Dy, (X;) = uX;p(X;), then the prefix of length i —1
of Psig(uX;.o(X;),s) and #sig(p(X),s) are equal

Fsig(vX.p(X),s) = #sig(p(X),s) where Dy(X) = vX.p(X)
If D,(Y) = puY.@(Y), then #sig(Y,s) > #sig(p(Y),s)

If D,(Y) = vY.p(Y), then #sig(Y,s) = #sig(e(Y),s)

Properties for the v-signature “sig(y, s) can be defined in a dual way. An analogous lemma
to Lemma 138 considers (Vs U X)-LTS and F; instead of (Gdsy, U X)-LTS and F,.
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4.3.2 Satisfiability Results

We show in Theorem 139 that a formula is satisfiable if and only if its tableau contains a
pre-model. In Proposition 142 we show that a formula has a model if there is a pre-model
in its tableau and in Proposition 140 we show that if a formula has a model then there is
a pre-model in its tableau. The complexity of the satisfiability checking is the same as the
complexity of checking the existence of a pre-model in a tableau.

Theorem 139 There is an exponential time procedure in the size of the formula that checks
if a formula ¢ is satisfiable.

The proof is a consequence of the two following propositions.

Proposition 140 If ¢ is satisfiable then there is a pre-model in T;_%.

Proof

If o is satisfiable, then there exists a process P such that P F; ¢. Without the loss of generality
we can assume that ¢ is rectangular. By Lemma 133, for every M > max(Mp, M), we have

that (PDY &, o

reg
Consider T;f) the tableau for ¢; then we choose the nodes of T;f) that we include in the
pre-model PM accordingly to a marking relation M : N — 2°. It will be defined in such a
way that s € M(n) implies ([P]}f_ve[g, s, Val Fy (W]}Dp for every ¢ € Lx(n). First, we put s" in
M (n®) with n® being the root of 7,. This is consistent as ([P])%g Fg .
Then, if we assume that the node n has been included in the pre-model PM with s, €
M (n), we choose the next node to include in the tableau using the following rules:

e The only son n’ of some node n, marked with s,, on which an unary rule (wtt, A, reg, u,
or v) was applied is included in PM and we set s, € M(n').

e If n is a disjunctive node, then s, is put into the marking of the son for which it has the
least p-signature. By Lemma 138, such a son exists.

e If n is a delay node, then we add all the sons of n in PM. Each son n’ of n is the result
of the reduction of a set of formulas of the form (g) or [g]y with respect to a region r;.
Then, we set s, € M(n') where s, is the unique state such that s, s 5.

e If n is a modal node, then we add all the sons of n in PM. Each son n’ of n is the result
of the reduction of a formula of the form (a)y. Then, we set s,» € M(n') where s, is
a state such that s, — s, and *sig({(a)e, sn) >" sig(p, s,). By Lemma 138, such a
son exists.

Using similar argumentation described at the end of the proof of Proposition 108 we can show
that every path in the above pre-model does not contain a u-trace. O

From the definition of the tableau rules, applying a rule different from (mod), (delay) and
(V) to a node of a tableau generates a unique successor. In a symbolic pre-model we choose
only one son of a disjunctive node and all the sons of a modal or a delay node. It follows that
in a symbolic pre-model, the nodes with more that one successor are modal or delay nodes.
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Given a node n of PM we denote des®(n) the closest descendant of n or n itself in PM
that is either a delay node, a modal node, or a leaf. Observe that, if n is the root of PM
or n is a successor of a modal node of PM, then des“(n) is a delay node or a leaf; if n is a
successor of a delay node of PM, then des®(n) is a modal node.

Definition 141 (model for a pre-model) Given a pre-model PM for a formula ¢, the
model based on PM is the timed process P = (P, ¥, p’, Ap) such that:

1. p¥ = des®(n®) where n' is the root of PM.
2. P consists of all the leaves and delay nodes of PM.

3. (p,g,a,des“(n’)) € Ap if there is in PM a successor n of p obtained by reducing a
region 7; C g with g € Agds(M,) and a successor n’ of des®(n) obtained by reducing
an action a.

Remark: From the definition above, the maximal constant that occurs in the model P con-
structed from a pre-model PM is the same as maximal constant that occurs in the formula.
Moreover, the constraints in the model are rectangular.

Proposition 142 Given a formula ¢, if there is a pre-model in T;_%, then ¢ is satisfiable.

Proof

Assume that ¢ has a pre-model PM and ¢ is not satisfiable. Let M = M. Consider P, the
model based on P M. From the remark above, Mp = M. If P i7 ¢, then by Lemma 133 we get
that, ([PD%Q g ©. If so, we show that PM contains a path m with a p-trace F = {@m; 7m tmer-
The path 7 and the trace F are built in the following way:

o 7 starts at mg and ¢, = ¢.

e Assume that, we built F up to the tuple ¢.,;rp, with, ¢, € Lx(m) and r,, = L,(m),
such that ([P])f_ve[g, (des*(m),rm) Hq <[90m]>D¢- The formula of the next tuple (the timing
part is obvious) is selected as follows:

1. If m is not a delay nor a modal node, then the only son m’ of m is such that

— L,(m) = L,(m') and there are equal to 7,.
— if ¢, was not reduced by the rule then ¢,y = ©m,.

v

—if o = o1 A @2 is reduced then ¢,y = @1 if Ysig(om, (des®(m),r)) >
sig(y1, (des®(m),r)), otherwise @,y = pa.

— if om = @1V @2 is reduced then ¢, is the formula that occurs in £x(m’). We
remark that, the choice in this case is directed by PM.

— In the other sub cases (i.e ff, fte, wtt, u,v,, or reg), we just take the resulting
formula as the one for the next tuple of the trace.

2. If m is a delay node and ¢, is of the form (g)¢ or [g]¢ and there is a son m’ of m
the formula part of which contains 1, then we take ¢,,, = .

3. If m is a modal node, it is necessarily the closest descendant of a successor n’ (with
respect to some region 7,,) of some delay node n; then,
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— if o, = (a)1, there is a son m’ of m the formula part of which was obtained by
reducing ¢, and the timing part of which is r,[h, := 0]. We take @,y = 1.

— if ¢, = [a]t, then because (des®(m),rm) Fg ([gofm]>m7 there exists a state

p’, a constraint g such that des®(n) <% p’ is a transition in P and

Vsig([a]y, (des®(n),rm)) =" sig(¥, (p', rm[he :==0]) with r,, C ¢ and g €
Agds(M,). We take @ = 9 and rypy = rp[hq := 0].

We remark that F is a valid trace of PM and we distinguish two cases:

1. The trace is finite;

If the trace ends with the formula ff, then we get a contradiction with that P
derived from PM; Indeed a trace of PM never ends with ff.

If the trace ends at the node m with the formula ¢,, = tt, then m is a leaf or a
delay node and obviously, ([P])%Q, (des™(m),rm) Eq4 tt, leading to a contradiction
with the hypothesis.

If the trace ends with a formula of form [g]p, then the region at node m could never
reach g meaning that [g]y is satisfied at m. We also get a contradiction with our
hypothesis.

Assume that the trace ends at the node m with a formula of the form [a]¢.. There
is the closest ancestor n of node m which is a delay node. The selected formula at
the node n that occurs in the trace has the form [g]y) or (g)¥ and v is a boolean
combination of formulas containing [a]p,.

Let p be the state in P that corresponds to the node n. Such a state exits be-
cause n is a delay node. Let r be the region at the node m and ' be region at
the node n. Because m is a son of n, we have that » € r’]. Additionally, by hy-
pothesis, ([P]}i‘gg, (p,7") Hy {(9)¢])p,- Because the trace is maximal, there is no
transition from p labelled with (g,a) for the unique constraint g € Agds(M)
such that r C g. It follows that in (P)Y  there a unique outgoing transition

reg
(p,7") = (p,r) and there is no outgoing transition from (p,r) labelled with
a. This implies ([P]}%g, (p,7) Eg {laec)p, - Contradiction with that in the trace

Ysig((g)Y, (p,r")) = Vsig([a]y, (p,r)). Indeed, recall that the trace has been built
by choosing at every node, the formula and the configuration with the least v-
signature.

2. If the trace is infinite, then because the v-signature decreases along the trace and the
formula is of finite length, there is necessarily a p-variable X that is infinitely often
regenerated and no older variable than X is infinitely often regenerated. This is a con-
tradiction with that PM does not contain a p-trace.

O

Proposition 140 and Proposition 142 ends the proof of Theorem 139.

4.3.3 Existence of Deterministic Models for Formulas

We may wonder if a formula has a deterministic model. The solution to that question is difficult
as deterministic models may need constants that are strictly greater than the maximal constant
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occurring in formulas. This is the case with the following formula. Let ¢ be the formula defined
by:
© = ((hqg > 1){a)(0 < hy < 1){c)tt) A ({(hq > 1){(a)[0 < hq < 1][c]ff).

Observe that ¢ can be rewritten using the syntax of ERL; so, the same problem appears for
ERL. The formula ¢ says that there are two time instants satisfying h, > 1 at which event
a must occur. In one of these time instants the event ¢ must occur when 0 < h, < 1 is
satisfied and for the other time instant the event ¢ never occurs in time instants satisfying
0 < hy < 1. Using our procedure for the satisfiability, the resulting model will be of the form
of the timed process in Figure 16 with ¢g; and go are instantiated to h, > 1. Model in Figure 16
is deterministic if conjunction of g; and g is inconsistent. For example, g; and g» could be
respectively instantiated to 1 < hy < 3 and 4 < h,.

g2,a 0<ha<1,C

Figure 16: A Timed process.

We can also consider a situation when we impose a maximal constant with which the clocks
can be compared in the models. Such a constant can be greater than the maximal constant
occurring in the formula. Under such an assumption, checking the existence of a deterministic
models for WG-WT), formulas (not only C-WT,, formulas) is done by replacing the rule (mod)
of the tableau by the following rule:

{¢|(a)y € T'};r[hg := 0] for each a s.t (a)p € T
I'ir

(moddet)

We remark that our tableau system of rules for the M-bounded satisfiability checking problem
of WG-WT, is the same as the tableau system of rules for the satisfiability of C-W'T; only
the nature of the formulas in the timed sequents changes.

If we consider the formula ¢ presented just above and we execute our satisfiability proce-
dure for checking whether ¢ has a deterministic model of bound M = 1, it will result that
¢ does not have a deterministic M-bounded model. This is because in our models clocks are
compared with integer. But, if we check for models of bound M = 2, our satisfiability decision
procedure will return that ¢ has a deterministic model.

4.4 Concluding Remarks

We have defined a new logic called WT, that is interpreted over timed processes. The logic
WT,, is a “weak” real-time extension of the p-calculus. The logic WT, is expressive enough to
handle the necessity modal operator on time delay and can be used to describe properties like
“An event can be completed at every time a condition on the time is satisfied”. We have used
the region abstraction to show that it is decidable whether a timed process satisfies a formula.
Our technique leads to an exponential algorithm that requires the construction of M-region
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representations of timed processes. Also based on the region representation, we have shown
that it is decidable whether there exists a timed process that satisfies a formula of C-WT,,. We
have shown that checking the existence of deterministic model for a formula may require the
use of constants greater than the ones used in the formula. This problem can be avoided if we
assume that there is a maximal value with which the clocks can be compared. These results
are fundamental for the controller synthesis problems that we consider in the next chapter.



Chapter 5

Centralised Controller Synthesis using
C-WT,, Specification

It could happen that behaviours of a real-time system (called a plant) do not satisfy a property,
because for example, either that property is the result of a modification of an initial property
or, there are bugs in the real-time system; then we would like to provide a new system that
satisfies the property. To tackle this problem two approaches can be considered: either we
destroy the old system and we design (when it is possible) a new one, or we design (when it
is possible) another system (called a controller) that we combine with the plant in such a way
that the resulting system (called the controlled or supervised system) satisfies the expected
property. The first approach is expensive for big systems or for systems that only need small
modifications that can be done by another system. The second approach is cheap if the plant
can be controlled by disabling some events and the controller is small compared to the con-
trolled system. In this chapter we consider the second approach. Given a plant and a property,
the controller synthesis problem can be understood as the search for a component, called the
controller such that the the controlled system satisfies the property. Systems are reactive and
evolve in some environment. We make some convenient and practical assumptions on events.
We distinguish uncontrollable events (for example, the ones that come from the environment)
from controllable events (for example the ones that come from the system). We assume that,
controllers can never prevent uncontrollable events to happen whatever is the time they occur.

In our framework, plants and controllers are modelled with timed processes. Properties
are described with C-WT, formulas. The combination between a plant and a controller is
the product of their models (timed processes). We define modal automata which are, roughly
speaking, another way for presenting WT,, formulas. Modal automata are interpreted over
timed processes. We show that modal automata are closed under intersection. We translate
WT,, formulas into equivalent modal automata and reciprocally we translate modal automata
into an equivalent WT, formulas. As formulas use fixpoint operators that are difficult to han-
dle; then we use modal automata to describe properties of systems. We consider subclasses of
modal automata that we called well guarded modal automata (W G-MA) and modal automata
for control (C-MA). The class of WG-MA is equivalent to class of WG-WT),, formulas, and
the class C-MA is equivalent to the class of C-WT, formulas. In consequence, the empti-
ness checking problem for C-MA is the same as the satisfiability checking problem of C-WT,,

111
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formulas. Both problems are decidable.

We consider two controller synthesis problems: the centralised controller synthesis problem
and the A-dense-time control.

The centralised controller synthesis problem (CCP) is the following:

(CCP) Given the model of a plant P and a property described with a C-MA A, does there exits
a controller R such that P X R E A and satisfying also the following control condition
(CC):

Control condition(CC) R does not restrict environment events.

Our solution to CCP consist to define the quotient of automata by the plants. The result of
that operation is a modal automaton that the controller must satisfy in addition to the control
condition. The control condition will be described with a modal automaton. Then, a controller
will be the model resulting from the satisfiability checking procedure of an automaton which
is semantically equivalent to the intersection of the quotient automaton with an automaton
that describes the control condition.

The A-dense-time control amounts to finding a controller (also called a A-controller) for a
system such that at least A > 0 time units elapse between two consecutive controllable events.
We will show that this problem is decidable and it is a corollary to (CCP) as properties on a
A-controller can be described in a C-MA. We will be able to construct a witness A-controller.

Related results: The controller synthesis problems have been introduced by Ramadge
and Wonham [RW89| and since then, they have been considered by many authors in the
settings of untimed systems [PR05, BK06, AW07] and timed systems [Sav01, DM02, BDMP03,
BCLO05|. The framework of Arnold et al. [AVW03, AW07| is a considerable extension of the
framework of Ramadge et al. as it considers branching-time properties and the p-calculus is
expressible enough for describing the control condition. Arnold et al. [AVW03, AW(7| also use
modal automata instead of formulas for describing specifications. These modal automata are
some kind of alternating automata [Tho97| over labelled trees. The Madhusudan et al. [DMO02,
BDMPO03] framework for the controller synthesis is an extension of the framework of Ramadge
and Wonham [RW89| and Pnueli et al. [AMP95] to real-time systems modeled with timed
automata and it does not consider more general timed branching-time properties. In the
framework of Laroussinie et al. [BCLO05] the logic L, is used for the centralised controller
synthesis and the A-dense-time control of timed automata. The solution provided in [BCLO5|
gives an answer to the existence of a controller; it does not show how to build controllers. This
is because the satisfiability problem of L, are still open. Our contributions place themselves
between the framework of Arnold et al. and the framework of Laroussinie et al. as our model
is a subclass of timed automata and we use the techniques of Arnold et al.

The chapter is organized as follows: In the next section, we define modal automata, their
semantics; we show that they are closed under intersection and we present an algorithm for
the model-checking of modal automata. The translation between modal automata and WT,
formulas is presented in Section 5.2. In Section 5.3, we define well guarded modal automata
(WG-MA) and modal automata for control (C-MA). We define the quotient of WG-MA by
timed processes that we use in Section 5.4 for controller synthesis.
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5.1 Modal Automata and Modal Automata for Controller Syn-
thesis

We define modal automata that are interpreted over timed processes. The interpretation of a
modal automaton is presented as a two player parity game and acceptance is defined in terms
of winning strategy for a player in that game. We show that modal automata are closed under
intersection and we consider the model-checking problem for modal automata. This problem
is reduced to checking the existence of a winning strategy in the acceptance game. We will
also define subclasses of modal automata. The first one is the subclass of well guarded modal
automata (W G-MA) and the second subclass is the one modal automata for control (C-MA).

5.1.1 Definition and Semantics

Modal automata are nothing else but WT,, formulas written in the automata syntax; they
are kinds of timed alternating automata with parity acceptance condition. They use modal
formulas in their transition relations.

Definition 143 The set of modal formulas over ¥ and @, denoted MF (3, Q) is the smallest
set closed under the following rules:

o tt, ff, ¢ are modal formulas, where ¢ € Q.
e vV, p AN are modal formulas for all ¢, € MF(X, Q).
o (9)1, (a)t, [g]Y, [a]yp are modal formulas for all ¢p € MF(XE, Q) where g € Gdsy.

Definition 144 A modal automaton (MA for short) over X is a tuple
A=(Q,%,¢", A0 : Q — MF(X,Q), Acca € Q%)
where:

e () is a finite set of states.
e ¢¥ € Q is the initial state.
e A 4 is a transition relation.

e Accy is the max-parity condition given by the parity function rank : Q — N.

Modal automata accept timed processes and their semantics is defined using acceptance
games.
We define the real-time acceptance game of a timed process P = (P, %, p°, Ap) and a modal
automaton A. Let F be the set of formulas containing all the formulas appearing as values of
transition function A 4 and closed under sub formulas. The game G(P, A) is (Ng, Na, T, Accg)
where:

e Np = P x .7:1134 x V and .7:1134 C F is a the set of modal formulas of the form ff, o V 9,
(9)¢p, (a)ep .
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e Ny=(PxFxV)\Ng.
e There is no move from either (p, tt,v) or (p, ff,v) for every v € V.
e From (p, oA, v) as well as from (p, pV1),v) there are moves to (p, ¢, v) and to (p, 1, v).

e From (p,[g]e,v) and from (p, (g)p,v) there are moves to (p,p,v + t) for every ¢ such
that v +t € [g].

e From (p, [a]p,v) and from (p, (a)p,v) there are moves to (p', ¢, v[he := 0]) for every p’
g7a !
such that p == p’ and v € [g].

e There is a move from (p, q,v) to (p, A(q),v).

e Accg is the set of infinite sequences projection of which on @ is in Acc.

We say that A accepts P (or P is a model of A) and we write P € L(A) or P F A if and
only if there is a winning strategy for the player Eve from the position (p®, ¢",v°) in G(P, A).
We define the language of an automaton A denoted by £(.A), as the set of processes it accepts.
Formally

L(A)={P|PE A}

We show that modal automata are closed under intersection. Let us define an intersection
operation between modal automata.

Definition 145 Let

Al - <Q17E7q!1)7A1 : Ql - f(Z,Q1)7A061 g Q('lu>

and
Az = (Q2,%,05, A2 : Q2 — F(X,Q1), Acca C Q%)

be two modal automata. Consider the automaton
ALANA = (Q,%,¢°, A :Q — F(2,Q), Acc C Q¥)
where
e Q=0Q1UQU{¢"}
e ¢ is the initial state.

e A is defined by:

Aq1(q) if ge @
A(q) = ¢ Aa(q) if g € Q2
Ar(q) A As(q) ifg=4q°

e Acc = Acey U Acco

Proposition 146 Given two automata 4; and As, for every timed process P, P € L(A1) N
L(A3) if and only if P € L(A; A A3).
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Proof

If P € L(A1 A Ay), then Eve has a winning strategy in G(P, A; A Az), meaning that Eve wins
every play starting from (p°,q°,v°) and consistent with that strategy. From (p°, ¢%, v%) there
is a move to ng = (p¥, A1(q¥) A Az(g),v°). There are moves from ng to ny = (p°, A1(q?),v?)
and ny = (p°, As(q)),v") and Eve has a winning strategy from n; and a winning strategy
from ngy. These strategies are also winning for Eve in G(P, A;) and G(P, Az).

Conversely, from winning strategies in G(P,A;) and G(P,Az), the winning strategy in
G(P, A1 AN As) mimics either the winning strategy in G(P,.A;) or the winning strategy in
G(P,As), depending on the fist move of Eve. O

5.1.2 Model- Checking

We address the model-checking problem of modal automata which is to check if an automaton
accepts a given timed process. For this question we use similar technique to the model-checking
problem of WT,, formulas in Section 4.2. As real-time acceptance game arena is infinite, we
need to abstract that game in such a way that the arena of the resulting game is finite.

Symbolic acceptance game of a timed process Let P = (P,%, p’, Ap) be a timed pro-
cess and A a modal automaton as above. Let, as before, F be the set of formulas containing all
the formulas that are the values of A 4 and all their sub formulas. The M -symbolic acceptance
game of P and A is the structure Q(P, A, M) = (Ng, Ny, T, Acc) where

e Np=Px .7-';34 x Reg(M) and .7:1134 C F is the set of modal formulas of the form ff, ¢V,
(9)¢, (a)e .

o Ny=PxF\Ng.
e There is no move from (p, tt,r), nor (p, ff,r) for every r € Reg(M).
e From (p, oA, ) as well as from (p, ¢V, r) there are moves to (p, ¢, r) and to (p,v,r).

e From (p,[g]e, ) and from (p, (g)p,r) there are moves to (p, ¢, ") for every r’ € r]such
that 7 C g.

e From (p,[a]p,r) and from (p, (a)p,r) there are moves to (p’, ¢, r[hq := 0]) for every p’
g7a !
such that p — p’ and r C g¢.

e There is a move from (p,q,7) to (p, A(q),r).

° AccG is the set of infinite sequences projection of which on @ is in Acc.

We say that P is an M-symbolic model of A and we write P Fys A if and only if there is a
winning strategy for the player Eve in G(P,.A, M).

Proposition 147 For every automaton A, for every timed process P, for every M >
max(My, Mp), Eve has a winning strategy in G(P,.A) if and only if Eve has a winning
strategy in G(P, A, M).
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Proof

The choice of M > max(M 4, Mp) follows from a similar argument as in the case of Lemma 133
In the setting of modal automata, acceptance is defined in terms of a parity game. We show
that if Fve player has a winning strategy in G(P,.A) then she also has a winning strategy in
Q(P, A, M) and reciprocally. For this, we show how a move of a player from a position (p, ¢, v)
to some position (p’, ¢’,v’) can be mimicked by moves of the same player from (p, ¢, [v]ar) to

(p', ¢, [v']ar) and reciprocally.

We note that a play in G(P, A) starts in (p°,¢°,v°) and a play in G(P,.A, M) starts in
(»°,¢%, r%) with 70 = [v0]y,.
~ Assume that the current position in G(P,A) is n = (p,p,v), and the current position in
G(P, A, M) ism = (p,p,r) with r = [v].

o If o = it or p = ff then there is no move neither from n nor m.

e If ¢ = ¢ then there is a move from n to (p,A(q),v) and there is a move from 7 to

(p, Alg), 7).

o If ¢ = 1 Vo, and the player Eve moves to (p, @i, v), then in G(P, A, M), she can move
to (p, @i, r) with i € {1,2} and conversely.

o If ¢ = @1 A 2, and the player Adam moves to (p, @i, v) with ¢ € {1,2}, then in
G(P, A, M), he can move to (p, ¢;,r) and conversely.
o A

ssume that ¢ = (g)v.

— Assume that the player Eve moves to (p,v,v"), for some v € v 1 N[g]. Let
r" = [v']p. From Proposition 61, we get that if M > M4 > M,, then ' C g and
by definition 7’ € r]. Eve can move to (p,,r’).

— Reciprocally, if Eve moves to (p,v,r’), then ' C g. Let v € r, according to
Proposition 61, there is v' € v Nr’. Since 7’ C g, then v' € [¢] and the player Fve
can move to (p,1,v").

e The case when ¢ = [g]t is obvious from the previous one.

e Assume that ¢ = (a)1,

— Assume that Eve moves to (p/,4,v'), then v/ = v[hq := 0] and there is p 2% p/
with v € [g]. Let r = [v]p;. From Proposition 61, we get that if M > Mp > Mg,
then r C g. Fve can move to (p’,1,r[hg := 0]).

— Conversely, if Eve moves to (p',1,7'), then ' = r|h, := 0] and there is p 2% p/
such that r C g. Let v € r, then v € [g] and Eve can move to (p’,1,v") with
v = v[h, := 0]. By Proposition 61, v’ € r’.

e The case when ¢ = [a]y) becomes obvious.
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From Proposition 147, if we want to check whether a timed process is accepted by a modal
automaton, we check the existence of a winning strategy in the symbolic game with the suitable
M parameter.

In consequence of Proposition 147 and Theorem 11, we can state the following result.

Theorem 148 [t is decidable whether a modal automaton A accepts a timed process P.

5.1.3 Restricted Modal Automata: WG-MA and C-MA

We define two subclasses of modal automata that intend to be equivalent to WG-W'T, for-
mulas, and C-WT,, formulas (see Subsection 4.1.3). We call these automata well guarded
automata (WG-MA for short) and modal automata for control (C-MA for short). These au-
tomata use well guarded modal formulas and modal formulas for control in their transition
relations. The definition of modal formulas and well guarded modal formulas use discrete
modal formulas.

Definition 149 Let S be a set. The set of discrete modal formulas over (X,5) is defined by
the following rules:

e (a)s and [a]s are discrete modal formulas provided that a € ¥ and s € S.

e 1 Ay and @1 V g is a discrete modal formulas provided that ¢1 and o are discrete
modal formulas.

Definition 150 Let S be a set. The set of well guarded modal formulas over (X,5),
MF y4(3,S) is defined by the following recursive set of rules:

o tt, ff and s are well guarded modal formulas where s € S.

e (9)¢. and [g]pe are well guarded modal formulas provided that ¢, is a discrete modal
formula over (3, MF,4(%,S)) and g € Gdsy.

e ©1A\p2 and @1 Vs are well guarded modal formulas provided that @1, g2 € MF,,4(%, S5).

Definition 151 A well guarded modal automaton (WG-MA) is a modal automaton transition
relation of which uses formulas of MF,4(%, Q) where @ is the set of states of the automaton.

Definition 152 The set MF.(X,S) of modal formulas for control over a set S is defined
like MFy4(%,S), but we require that for every formula of the form (g)¢, the formula ¢ is a
boolean combination of formulas of the form (a)i, with v € MF (%, S).

Definition 153 A modal automaton for control(C-MA) is a modal automaton transition
relation of which uses formulas of MF (X, Q) where @ is the set of states of the automaton.
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5.2 Automata and Logic

Now, we consider the relation between modal automata and WT, formulas. We show how
to translate formulas of WT, into equivalent modal automata and vice versa. Such kind of
transformation has been considered earlier for temporal [Var96, Var07] and modal logics [SE89,
Wal95|. The proof of the translation is similar to the proof of a similar result [Wal01] in the
setting of the p-calculus. Assuming that £ is one of {WG,C}, at the end of this section, we
show that {-WT), formulas can be translated into an equivalent {&-MA and, conversely. As we
have proved that the satisfiability problem of C-WT, is decidable, so will be the emptiness
problem of C-MA.

5.2.1 From Formulas to Modal Automata

Now we give the construction of a modal automaton A, whose language is the set of timed
processes satisfying the formula ¢. W.l.o.g, we assume that ¢ does not contain sub formulas
of one of the forms tt, ff (indeed, the occurrence of such kinds of formulas in ¢ can be easily
replaced with fixpoint formulas without changing the meaning of ).

A state in A, corresponds to a sub formula of ¢ that we aim at verifying in a current state
of a (Vx UZX) labelled-transition system. The following clauses present how to reduce a local
verification of a formula into local verifications of its sub formulas:

e To verify that ¢1 A @9 in sub(p), we check ¢ and 9 in the current state.

e To verify that ¢1 V @2 in sub(p), we check in a non deterministic way @1 or @9 in the
current state.

e To verify that (g)¥ in sub(y), we check the existence of a successor of the current
valuation of the clocks which satisfies g, then we check ¥ in the current state of the
transition system with respect to the new values of the clocks.

e To verify that [g]t) in sub(y), we check the existence of an eventual successor of the
current valuation of the clocks (time elapse) which satisfies g, then we check 1 in the
current state of the transition system with respect to the new values of the clocks.

e To verify that (a)y in sub(y), we check the existence of an a-successor of the current
state of the transition system. Then we check v on that successor which became the
current state.

e To verify that [a]y in sub(yp), we check the existence of an eventual a-successor of the
current state of the transition system. Then we check v on that successor, which becomes
the current state.

e To verify that o X.p(X) in sub(p), we check ¢(X) in the current state with respect to
the current valuation.

e To verify that X in sub(y), we check ¢(X) in the current state, where D(X) = 0 X.p(X).
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Finally, in the construction of the automaton we must ensure constraints on fixpoints.
That is, every p-variable Y is infinitely often regenerated only when there v-variable X that
is greater that Y and infinitely often regenerated.

We will now give the transformation from a formula into an equivalent automaton. First
we define a function t¢r that transform a WT, formula into a modal formula. The symbol
Var(y) denotes the set of variables that occur in ¢.

Definition 154 Given a WT, formula ¢, the transition relation associated to ¢ is the modal
formula tr(p) € MF (X, Var(p)) defined inductively as follows:

o tr(p1 A pa) = tr(p1) Atr(pa)

o t7(p1V pa2) = tr(p1) Vir(p2)
o tr({g)v) = (g)tr(¥)

tr([gl) = lgltr(v)

(

(

(

(

tr({a)y) = (a)tr(y)
tr(laly) = laltr(y)
tr(cXy(X)) =X
o ir(X)=

Remark: By construction, it is not difficult to remark that, if ¢ is a formula of WG-W'T,
then tr(y) is a modal formula of MF,4(X,Var(y)); and if ¢ is a formula of C-WT,, then
tr(y) is a modal formula of MF (X, Var(y))

The transformation of a formula into an equivalent automaton is the following.

Definition 155 For a formula ¢, consider the automaton
"490 = (Qu ZaquAA : Q - W(ZaQ)7ACC - Qw>
where,
o Q="Var(p) U{q"},
e ¢ is the initial state of the automaton.

e The transition relation A : Q — MF(X, Q) is defined by:

- A(g") = tr(p)
— if ¢ = X then A(q) = tr(¢(X)) where Dy(X) = 0 X.9(X),
e The acceptance condition is the parity condition that uses the parity function rank :
@ — N defined by:
0 if g =¢q°
rank(q) = ¢ 2 x alt(Dy(X)) where ¢ = X and X is a v-variable
2 x alt(D,(X))+1 where ¢ = X and X is a p-variable
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The alternation depth alt(yp) of a WT, formula is defined like the alternation depth of u-
calculus formulas (see Definition 22). We also remark that the initial state ¢° never occurs in
the transition relations of the states.

Lemma 156 Let ¢ be a formula and let A, be the automaton obtained from ¢ using the
transformation above. If ¢ is a formula of of WG-WT,, (resp. C-WT),) then A, is a WG-MA
(resp. C-MA).

Proof

If ¢ = ¢" then A(q) = tr(¢). According to the remark above, if ¢ is a formula of WG-WT,,
(resp. C-WT,,) then tr(p) € MF,4(E,Q) (resp. tr(p) € MF (3, Q).

If ¢ = X is a variable, then A(q) = A(¢(X)) where, D, (X) = ¢(X). If ¢ is a formula of WG-
WT,, (resp. C-WT),) then, by definition, ¢(X) is also a formula of WG-WT,, (resp. C-WT),).
We use the remark above to conclude. n

Theorem 157 Given a formula @, for every timed process P,

P E ¢ if and only if P € L(A,)

Proof

(=) We show that if P F ¢, then P € L(A,). For this we show the existence of a winning
strategy for the player Fve in G(P, A, ). Recall that in G(P, A,), the player Eve makes
a choice in positions of the form (p, @1 V ¢2,v) or (p, (g)1,v) or (p, (a),v). The choice
should be done as follows:

— In a position (p,¢1 V p2,v) he should choose (p,¢;,v) with ¢ € {1,2} and
sig((p,v), 1V p2) = Fsig((p,v), ¢i).

— In a position (p, (9)1,v) he should choose the (p,1,v") with v/ € v1, V' € [g] and
"sig((p,v), (g9)) = #sig((p,v'), ).

— In a position (p, (a)1,v) he should choose the (p,,v") with #sig((p,v), (a)y)) =
rsig((p,v'), 1) v/ = v[he := 0], and p’ is such that there is p 2% p’ and v € [g].

We show that such a strategy is winning for the player Fve. Indeed, assume that there
is a play (p1,1,v1)(p2, 2, v2) . .. consistent with the above strategy on which some odd
priority p is the greatest priority appearing infinitely often. This means that on this play
we infinitely often meet the p-variable X; where | = (p — 1)/2. Let m be a step of the
play after which no priority greater than p appears. In particular it means that after
m there are no variables with indexes greater than /. By the signature decrease lemma
(see Lemma 138), the signatures of positions of the play after m never increase on the
first [ positions. They decrease every time we meet X;. But this is impossible as the
lexicographic order on [-tuples of ordinals is well ordering. Hence, such a play can not
exist, and the strategy we have defined is winning for player Adam.

(<=) In this direction of the proof, we show that if P € L(A,), then P F ¢. We assume
that P € L(A,) and P i ¢, then we exhibit a winning strategy for the player Adam in
G(P,A,). If P ¢, the strategy for the player Adam is dual to the one of the player
FEve stated in the previous direction. It works as follows:
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— In a position (p,1 A p2,v) he should choose (p,¢;,v) with ¢ € {1,2} and
"sig((p,v), p1 A p2) = "sig((p,v), »i)-
— In a position (p, [g]t),v) he should choose the (p,,v") with v' € v, v € [¢g] and
vsig((p,v),lglv) = "sig((p,v'), ).
— In a position (p,[a]y,v) he should choose the (p,,v") with Ysig((p,v),[a]y)) =
vsig((p,v'),¥) v = v[hg := 0], and p’ is such that there is p <% p’ and v € [g].
Using a similar argument as in the direction (=), we show that there is not a p-variable
which is infinitely often regenerated in the game. Then, we get a contradiction with that

P e L(A,).

0

5.2.2 From Modal Automata to Formulas

This transformation is similar to the transformation in [Wal01] for the case of the u-calculus
and it uses vectorial formulas (see [Bek84, ANO1|).

Definition 158 A system of equations of WT), is a system:

901(X17' o 7Xn)
902(X17' o 7Xn)

X Z
X, Z
Xn z Son(Xl’ e 7X'n)
where for every i € {1,--- ,n}, o; is a fixpoint operator and ¢; is an WT,, formula that does

not have a fixpoint sub formula.

The solution of a system of n equations is a vector of n formulas of WT,, defined by
induction on n as follows:

e The solution of a system made of a unique equation X;Zp;(X) is the formula
0'1X.Q01(X1)

e The solution of a system of n equations:

X1 2 o(Xy,, X1, Xn)
Xo 2 (X1, , Xy, Xn)

Xn g QOn(Xlu"'7anlaXn)

is the vector (?ﬁb o Unet, U’n,Xn-(Pn(wla e, Xn)) where (?ﬁb T 7%—1) is the
solution of the system of n — 1 equations obtained by replacing X,, with the formula
Uan-SOn(le co 7XTL717 Xn)
X z
X2

Sol(Xla"' anth'an-SOn(Xh'" 7Xn717Xn))
@2(X17"' anth'an-SOn(Xh'" 7Xn717Xn))

02

Xn-1 Tact Sonfl(le”' anfho'an-QOn(Xla"' 7Xn717Xn))
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The use of system of equations do not add the expressive power of WT,; indeed, every
formula ¢ of WT,, can be defined as the first component of the solution of the system of
equations in which each equation XZt)(X) corresponds to a sub formula 0 X.4)(X) of ¢ and
the order on the equations depends on the dependency order between variables in .

In what follows, we give the transformation of an automaton into an equivalent formula.
The resulting formula is the component of a system of equations such that each equation
corresponds to a unique state of the modal automaton. We use the parity indexes to define
the order between two equations.

Definition 159 Take an automaton

A=(Q%,¢" A0 Q = F(2,Q), Ace € Q)

and q1,---,q, an order over the states of A such that for i < j, we have rank(g;) >
rank(q;). If the initial state of A is i according to the order above, we define the formula p 4
as the k™ component of the solution of the following system of equations:

Xl z SOI(XI)"' 7XTL—1)X7Z)
X2 2 802(X1)"' 7XTL—1)X7Z)
Xn g QOn(Xh co 7Xn717Xn)

X; is the variable associated to ¢; and ¢;(Xy,- -, Xp—1, X,,) is obtained from A(g;) by re-
placing each state by the corresponding variable. We put o; = p if rank(g;) is odd and o; = v
if rank(q;) is even.

The proof of the following theorem is similar to the proof of Theorem 157; it also uses
signature decrease lemma (see Lemma 138).

Theorem 160 Given an automaton A, for every timed process P,

P e L(A) if and only if PE ¢4
The following corollary is a consequence of Lemma 156, Theorem 157 and, Theorem 160.

Corollary 161 Every WG-WT), formula can be translated into an equivalent WG-MA and
conversely. Every C-WT,, formula can be translated into an equivalent C-MA and conversely.

In consequence of Corollary 161 and the result in Theorem 160, we get the decidability
of the emptiness problem of C-MA which is to check whether there exists a timed process
process P that satisfies a given C-MA.

Theorem 162 There is decision procedure that checks whether a C-MA is empty. Moreover,
if a C-MA 1s not empty, we can construct one of its models.
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5.3 Quotient for Automata

We consider WG-MA and we define the quotient A/P of a WG-MA A over a timed process
P that satisfies the following property:

R x PE Aif and only if R E A/P.

We show that the quotient of a C-MA over a timed process is still a C-MA. Later in
Section 5.4, we use this quotient to provide a solution to controller synthesis problems.

Definition 163 Given a WG-MA
A=(Q,2,¢",A: Q — MF(2,Q), Acc C Q)
and a timed process
P=(P,%,p°, Ap)
we construct the WG-MA A/P.

Firstly, we propose the division ¢/p of a formula ¢ € MF,,4(3, Q) by a state p € P. Let
M be the biggest constant used in P. We assume that ¢ is M-rectangular. The result of the
division is a well guarded modal formula from MF (X, Q x P) as stated below:

tt/p = tt

il = ff

a/p = (g¢,p)
(ev)/p = (p/p)V (¥/p)
(eAd)/p = (p/p)A(W/p)
(lgle)/p = lgl(e/(p.9))

{ge)/p = (9)(/(p,9)

(@)p)/(p.9) = (a) [ \/ (o/p")

p—p

([ale)/(p.g) = la | A (/0

p—p’

Given two discrete modal formulas ¢ and v, we define (pV¢)/(p,9) = ¢/(p,9) V¥ /(p,9)
and (¢ AY)/(p,g) = ©/(p.g9) NY/(p,9)-

By convention, a disjunction over an empty set is false, and a conjunction over an empty
set is true.

Finally, we define the quotient,
A/P=(Qx P.3,(d°p"),A,: Q x P — MF(Z,Q), Acc € Q)
where A/(q,p) = A(q)/p.
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Lemma 164 Let ¢ € MF.(X,S) and let p € P be a state of a timed process. The quotient
¢/p is a formula of MF (X, 5).

Proof
The proof uses the induction principle, on the size of the formula. All the cases but when ¢ is
in one of the forms [g]y) or (g)1 are obvious.

e if o = (g)1, then 7 is a boolean combination of the form (ai)i; >y ... ><p—1 (an)yn
where p;€ {V, A} and all ¢; are in MF (3, Q).
Now we show that ¢/p belongs to MF.(3,Q x P). Obviously, ¢/p = (g)(({a1)1)1 >

oo D1 {an)¥n)/(p,g)) which is equal to (g)(({a1)¥1)/(p,g) b1 ... B<poy
((an)¥n)/(p,g)). We show that each member of the combination has the appro-

priate form. By definition ({(a;)vs)/(p,g9) = <a2>(\/pﬂ)p (¥i/p")). We remark that

({a;)v;)/(p,g) may be equal to {(a;)ff if there is no p’ such that p 24 .

As by induction hypothesis ¢;/p’ € MF.(X,S), it follows that ¢/p belongs to
MF.(E,Q x P) as each formula participating in the boolean combination after (g)
is the of form (a).

e if o = [g]1), then 1) is a boolean combination of the form (aj)11 >y ... ><y—1 (an)y >
[@n+1]Vn41 DN¥nt1 - Dhytm—1 [@ntm]Vntm where d,€ {V,A} and ¢; is in MF (X, Q)
with (i = 1.n +m).

Now we show that ¢/p belongs to MF.(X,Q x P). Obviously, ¢/p =
(@) (5g) =0 o 1 (@n)0n)/(5rg) i (ansalbns)/(Prg) s

- ™Mpgm—1 ([@ntm]Vntm)/(p,g)). We need to show that each member of the com-
bination has the appropriate form. We consider the following two cases:

— By definition ({ai)v:)/(p,9) = <az>(\/pgp (1i/p")). We remark that ((a;)¥i)/(p, 9)
may be equal to (a;)ff if there is no p’ such that p 2L .
]

— By definition ([a:]4:)/(p,9) = lail(A o2, (¥i/p")). We remark that ([a:]¢i)/(p, g)
may be equal to [a;]¢t if there is no p’ such that p 2% p’.

As by induction hypothesis ;/p’ € MF (%, S), it follows from the two cases just above
that ¢/p belongs to MF.(X,Q x P).

In consequence of Lemma 164, we get the following corollary.
Corollary 165 The quotient of a C-MA by a timed process is a C-MA.
Now, we show the main property of the quotient operator.

Theorem 166 Let P be a timed process and A be a modal automaton, both over an alphabet
Y. The modal automaton A/P is such that for every timed process R over ¥ :

PxREA ifandonlyif REA/P
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Proof

We will consider G(R x P, A) = (Ng, Na, T, Acc) and G(R, A/P) = (Ng,Na, T, Acc'). We
say that a position n = ((s,p), p,v) of the game G(R x P, .A) is relevant if p € MF(X,Q).
We write n —, n’ if n and n’ are positions and there is a path from n to n'.

Let us define the map f from the positions of G(R x P, A) to those of G(R,.A/P). To a po-
sition ((s,p), ¢, v) we associate (s, y/p,v) with one exception when ¢ starts with modality (a)
or [a], for some action a. In this later case we associate to ((s,p), ¢, v) the node (s,¢/(p,g),v)
where ¢ is the unique atomic constraint such that v F g.

Let us take a pair of positions n and f(n). We will show how a move of a player from n to
some n’ can be mimicked by moves of the same player from f(n) to f(n'). Similarly, we will
show that a sequence of moves from f(n) to some f(n') can be mimicked by a move from n
to n’.

The proof is easy for all but positions with formulas starting with an action modality. Let
us consider several cases:

e Suppose n = ((s,p), (a)p,v). Then f(n) = (s,((a)p)/(p,g),v) where g is the unique
atomic constraint such that v F g. From n Eve can go to a position ((s',p'), ¢, v[hg := 0]);
where s 2% ¢ and p LA p' with v E gs and v F gp. Observe that g, = g as g, is an
atomic constraint. By definition

(a))/(p.g) = (@) | \/ (o/m)

g9,a
p—p1

This means that from f(n) Eve can go to (s’,\/pﬂp,(go/p’),v[ha := 0]). By choosing
the disjunct with p’ she can get to f(n') = (s, /0, v[hq := 0]).

e Let us take n and n’ as above and show that every choice of Eve from f(n) can be
mimicked from n. By this we mean that after making two moves from f(n) Eve has to
hit a position of the form f(n') for some n’ and we will show that Eve can reach n’ from
n.

As f(n) = (s,({a)p)/(p,g),v), Eve can move to

s\ (¢/p1),vlhe =0]

g,a
p—p1

where s 2% ¢ and v E gs- Then Eve can chose one of the disjuncts and get to
(s',0/p',v[he := 0]). Clearly this node is of the form f(n) for n’ = ((s,p'), ¢, v[hq := 0]).
Since v F g we have that from n = ((s,p), (a)¢,v) Eve can get to n’ = ((s',p, ¢, v[hg :=
0]) as required.

We remark that the case when n = ((s,p), [a]e,v) is dual to the case above. We have shown
that a move in G(P x R,.A) can be mimicked by a unique sequence of moves in G(R,.A/P)
and reciprocally. We have also shown that the set of states of A occurring in a move of
G(R x P, A) is the same as the set of states of A occurring in G(R, A/P). As the winning
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condition in G(R x P, A) and G(R,.A/P) depends on states of A encountered along a play,
we get that there a play is winning for some in G(P x R,.A) if and only if the mimicked play
is winning for the same player in G(R,.4/P). Then we get that A4 accepts R x P if and only
if A/P accepts R. O

5.4 Centralised Controller Synthesis for C-WT,

We use the quotient operation for two controller synthesis problems. In Theorem 162, we have
established the decidability of the emptiness of C-MA. Moreover we are able to construct
models for a non empty C-MA. We use that result to provide solutions to the centralised
controller synthesis problem and A-dense-time control problem. Controllers will be models
of quotients of specifications over plants. Controllers will also satisfy additional properties.
An additional property is for example a control condition (hypothesis) that we describe with
C-MA.

5.4.1 Centralised Controller Synthesis

We assume that X, the set of events is partitioned into the set X, of uncontrollable events
and, the set X. of controllable events; in the other words ¥ = ¥, U X, with ¥, N X, = (.

The centralized control problem(CCP) we consider is the following;:

CCP: Given X =X, UX,, a timed process P and a C-MA over X, does there exists a timed
process R over X, satisfying the control condition (CC), such that P x R E A.

Control condition (CC): R does not forbid occurrences of uncontrollable events.

The condition (CC) needs some attention and a construction. We need to describe a
property that prevents R from restricting the occurrence of an uncontrollable event at any
moment of time; we also need to describe a property that makes it possible for R to forbid
the occurrence of a controllable event in some time instances.

We claim that these two properties for R can be described with the C-modal automaton B
defined as follows:

B = <{q0}7 quoaAB : Q - WC(ZvQ)7ACC = (q0)w>

where,

Ap(q”) = ( A [tt]<a>q0> A ( A [tt][a]q°>

a€Y, a€Y.

Proposition 167 R E B if and only if R satisfies the control condition (CC) above.

Proof
Let R = (S,%,s°, Ar) be a timed process such that R F B; then there is a winning strategy
for the player Fve in the acceptance game G(R, B). We will show that in every state of R any
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uncontrollable event can happen at any time and some controllable events may not happen
at some time instance.

A play in G(R, B) starts in (s, ¢°,v%) which is a position for Adam, but a winning position
for Eve. Assume that a play is in a winning position (s, ¢”,v). There is two cases:

1. Adam moves to (s, \,cx., ([tt](a)q"),v) which is position for Adam, then he can move
to (s, [tt](a)q®,v) for any a € ¥, and then move to (s, {a)q",v +t) for any ¢t € R as
v+t € [tt]. The later position is a position for Fve. As there is a winning strategy from
that later position, the player Eve can move to (s, q°, v+t[h, := 0]) meaning that, there
is a transition s 2% ¢ with v+t € [g]. Obviously, R does not prevent the occurrence
of the event a at the time v + ¢ for any time ¢ € R* and any event a € A,. The position
(s',q°, v + t[hy := 0]) is a position for Adam but also a winning position for Eve from

which we can repeat the argument.

2. Adam moves to (s, A,y ([#][al¢®),v) which is a position of Adam, then he can move
to (s, [tt][a]q’,v) for any a € ¥, and then moves to (s, [a]¢°,v +t) for any ¢t € R as
v+t € [tt]. The later position is a position for Adam and there are two cases:

(a) There is no move from that later position meaning that there is not transition
s 2% ¢ with v+t € [g]. Obviously, the controller prevents the occurrence of the

event a at the time v + ¢.

(b) There is a move from that later position to some position (s’,¢°, v + t[h, := 0]),
meaning that R does not prevent the event a at the time context v+t. The position
(s',q°,v + t[hg := 0]) is a position for Adam but also a winning position for Eve
from which we can apply a similar argument.

We have shown that a state s of R that occurs in a winning position in the acceptance game
satisfies the condition (CC). Because from a winning position we always move to another
winning position containing s or a successor of s, we get that every state of R satisfies the
condition (CC). O

A solution the the controller synthesis problem is given by the following result

Theorem 168

: .| PxREA
R E (A/P) A B if and only if { RER
Proof
P x R E Aif and only if (see Theorem 166) R = A/P. From Proposition 146, R F B and
REA/P if and only if RE (A/P)AB O

Corollary 169 The CCP problem is decidable.

5.4.2 The A-Dense-Time Control Problem

The centralised A-dense-time control amounts to finding a controller (also called a A-
controller) for a system such that at least A > 0 time units elapse between two consecutive
controllable events. The A-control condition is the following.
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A control condition (A-CC) The intervals between any two controllable events are greater
or equal to A.

Our solution to the centralised A-dense-time control is to build an automaton, called the
A-automata. A A-controller should also satisfy the control condition (CC) above.

Let Ba be the C-MA defined as follows:
Ba=(Q,%,¢%6a : Q — MF.(,Q), Acc C Q¥)

where

e Q={¢"}UU,cx,. {aa} is the set of states. The state g, is the one associated to the event
a.

e ¢ is the initial state and it is not associated to any event.

e The transition relation is defined by:

oalq”) = [tt] N\ (g’ ] N lalga

UED, a€Y,

and for every a the transition from the corresponding state ¢, is defined by:

0a(qa) = [tt] N\ (waa A | (ha < AT N D) V ((ha = AT N [blas)

UENy bex. bex.

e Acc is the parity condition defined with a function rank which assigns the value 0 to
every state in Q.

Let us comment the modal automaton Ba. The automaton Ba has |X.| + 1 states. The
initial state ¢° describes what happens in the controller when no controllable event has oc-
curred. At this step, any uncontrollable event may happen whatever is the time instance and
any controllable event may happen at any time context; this is because no controllable event
has occurred. The other states, one per controllable event, enable to save the information on
the last controllable event that has occurred. At a state ¢,, we assume that a is the last event
that has occurred. At q,, an occurrence of an uncontrollable event, u can not be prevented
whatever is the timing context. Additionally, a controllable event b may occur if the amount
of time elapsed since the occurrence of a (recall that a is the last event that has occurred),
measured with the clock h,, is greater or equal to A.

We state that a timed process satisfying Ba also satisfies the condition A—(CC). The
proof of this proposition is similar to the proof of Proposition 167.

Proposition 170 For any timed process R, R € L(Ba) if and only if R satisfies the condition
A—(CC).

In corollary to Theorem 168, we get the decidability of the A-dense-time control.

Corollary 171 The A-dense-time control is decidable; moreover, we can build a A-controller.
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5.5 Conclusion

In this chapter we have considered two controller synthesis problems for plants described by
timed processes and specifications described by C-WT: the centralised controller synthesis
problem and the A-dense-time control problem. As a plant is a reactive system, we have
assumed that events can be controllable (event completed by the plant) or not (events com-
pleted by the environment of the plant) and, only the occurrences of controllable events can
be disabled by controllers.

We have shown that these two problems are decidable and, controller can be constructed when
plants are controllable.
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Conclusion and Perspectives

The main goal of this thesis was to provide methods to synthesise controllers for a class of real-
time systems and real-time control objectives. In recent years a framework for the supervisory
control of untimed reactive systems have been developed, in particular the framework that uses
Kripke structure models with the standard p-calculus. We wanted to use a class of real-time
models for systems that could provide a framework for the supervisory control of real-time
systems and if possible, reuse techniques proposed for the setting of untimed reactive systems.

Relying on some theoretical results on event-recording automata including closure under
boolean operations and closure under complementation, we have chosen to work with these
models. To describe real-time control objectives, we have chosen Event-Recording Logic (ERL)
because it is a decidable timed extension of the p-calculus and there are significant results for
the control of untimed reactive systems with the u-calculus.

Following our intuitions, we were interested in the similarities between untimed models and
our models. These similarities concern some basic problems including the reachability analysis,
the model-checking, the satisfiability, the disjunctive normal form theorem, the existence of
deterministic models for specifications. These basic problems have been fundamental for the
solution to the supervisory control of untimed systems.

ERL is too weak Our intuitions were good as, we had provided new decision procedures
for the model-checking and the satisfiability problems of ERL. These procedures are new
and interesting in the way that they reuse decision procedures for the model-checking in
the setting of the p-calculus with Kripke structures. A great benefit of the similarity of the
two aforementioned problems, is that they have allowed us to provide a disjunctive normal
form theorem for ERL. We had at that time, some useful theoretical ingredients to apply the
methods Arnold et al. [AVW03, ABPV05, AWO07] for the supervisory control. Unfortunately,
we have discovered that ERL is not expressive enough to describe interesting properties for
the controllers like “An uncontrollable event can be completed at every time”.

Overcome the weakness of ERL: the new logic WT, We have introduced a new lan-
guage that we have called WT,,. The logic WT, is a weak real-time extension of the standard
p-calculus. Compared to ERL, WT, considers modality indexed with timing constraints and
modalities indexed with events. We have shown that WT,, is strictly more expressive than
ERL. We have hoped that the modification of the contents of modalities will be without ad-
verse consequences. For the model-checking problem of WT,, we have provided a decision
procedure similar to a procedure for the model-checking problem of the (untimed) p-calculus.
We have presented a fragment for WT,, called WT), for control (C-WT,). We have provided

131
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a decision procedure for the satisfiability problem of C-W'T;; this procedure does not assume
a limit on the constants of the models, and it shows how to construct a witness model for a
satisfiable formula.

Centralised Control Result Relying on satisfiability results on C-W'T,, we have proposed
a quotient-based approach to a centralised controller synthesis problem and a centralised A-
dense time controller synthesis problem for the class of real-time systems we have considered.

Perspectives

This thesis makes a progress in the domain of the controller synthesis of real-time systems.
Presented results do not cover the class of real-time systems that can be modelled with timed
automata, but they can be useful for the class of systems that we have considered. We think
that our contribution can be useful for some parts of automated cars systems ' and protocols
(for instance Philips audio protocol). The approach that has been proposed in this thesis
should be followed to provide more general results including the decidability of the existence
of deterministic models for C-WT,, the decidability of the satisfiability problem of WT,, and
the decentralised controller synthesis with WT,,. We think that, if one assumes a bound on
the constants used by the controllers, it will not be very difficult to provide a solution to the
decentralised controller synthesis with WT,, (and WG-WT,). Works in that direction may
follow some results for the setting of the p-calculus [AWO07|. We also hope that works in the
aforementioned directions can enable a better understanding of real-time models including
timed automata models, and the logic L, [BCL05].

!See for example the European Project CityMobil at http://www.citymobil-project.eu
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