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Synthèse Pour une Logique Temps-Réel FaibleDans 
ette thèse, nous nous intéressons à la spé
i�
ation et à la synthèse de 
ontr�leurs dessystèmes temps-réels. Les modèles pour 
es systèmes sont des Event-re
ording Automata. Noussupposons que les 
ontr�leurs observent tous les évènements se produisant dans le système etqu'ils peuvent interdirent uniquement des évènements 
ontr�lables. Tous les évènements nesont pas né
essairement 
ontr�lables.Une première étude est faite sur la logique Event-re
ording Logi
 (ERL). Nous proposonsdes nouveaux algorithmes pour les problèmes de véri�
ation et de satisfaisabilité. Ces algo-rithmes présentent les similitudes entre les problèmes de dé
ision 
ités 
i-dessus et les prob-lèmes de dé
ision similaires étudiés dans le 
adre du µ-
al
ul. Nos algorithmes 
orrigent aussides algorithmes présents dans la litérature. Les similitudes relevées nous permettent de prouverl'équivalen
e entre les formules de ERL et les formules de ERL en forme normale disjon
tive.La logique ERL n'étant pas su�samment expressive pour dé
rire 
ertaines propriétés dessystèmes, en parti
ulier des propriétés des 
ontr�leurs, nous introduisons une nouvelle logiqueWTµ. La logique WTµ est une extension temps-réel faible du µ-
al
ul. Nous proposons desalgorithmes pour la véri�
ation des systèmes lorsque les propriétés sont é
rites en WTµ. Nousidenti�ons un fragment de WTµ appelé WTµ pour le 
ontr�le (C-WTµ). Nous proposons unalgorithme qui permet de véri�er si une formule de C-WTµ possède un modèle. Cet algorithmen'a pas besoin de 
onnaître les ressour
es (horloges et 
onstante maximale 
omparée ave
 leshorloges) des modèles.En utilisant C-WTµ 
omme langage de spé
i�
ation des systèmes, nous proposons desalgorithmes de dé
ision pour le 
ontr�le 
entralisé et le ∆-
ontr�le 
entralisé. Ces algorithmespermettent aussi de 
onstruire des modèles de 
ontr�leurs.Mots-
lés : Systèmes temps-réel, Event-Re
ording automata, logique temps-réel, satisfais-abilité, Event-Re
ording Logi
, méthodes formelles, véri�
ation, synthèse de 
ontr�leurs.Dis
ipline : Informatique.LaBRI,Université Bordeaux 1,351, 
ours de la Libération,33405 Talen
e-Cedex (FRANCE).



Synthesis For a Weak Real-Time Logi
In this dissertation, we 
onsider the spe
i�
ation and the 
ontroller synthesis problem forreal-time systems. Our models for systems are kinds of Event-re
ording automata. We assumethat 
ontrollers observe all the events o

urring in the system and 
an prevent o

urren
es of
ontrollable events.We study Event-re
ording Logi
 (ERL). We propose new algorithms for the model-
he
kingand the satis�ability problems of that logi
. Our algorithms are similar to some algorithmsproposed for the same problems in the setting of the standard µ-
al
ulus. They also 
orre
tearlier proposed algorithms. We de�ne disjun
tive normal form formulas and we show thatevery formula is equivalent to a formula in disjun
tive normal form.Unfortunately, ERL is rather weak and 
an not des
ribe some interesting real-time prop-erties, in parti
ular some important properties for 
ontrollers. We de�ne a new logi
 that we
all WTµ. The logi
 WTµ is a weak real-time extension of the standard µ-
al
ulus. We presentan algorithm for the model-
he
king problem of WTµ. We 
onsider a fragment of WTµ 
alledWTµ for 
ontrol (C-WTµ). We show that the satis�ability of C-WTµ is de
idable. The algo-rithm that we propose for de
iding whether a formula of C-WTµ, has a model does not needto know the maximal 
onstant used in models and it enables the 
onstru
tion of a witnessmodel.Using C-WTµ, we present algorithms for a 
entralised 
ontroller synthesis problem and a
entralised ∆-
ontroller synthesis problems. The 
onstru
tion of witness 
ontrollers is e�e
tive.Keywords: Real-time systems, Event-Re
ording automata, formal methods, real-time logi
,
µ-
al
ulus, Event-Re
ording Logi
, satis�ability, model-
he
king, 
ontroller synthesis.Dis
ipline: Computer S
ien
e.LaBRI,Université Bordeaux 1,351, 
ours de la Libération,33405 Talen
e-Cedex (FRANCE).
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Introdu
tionA system is a set of intera
ting obje
ts. We 
onsider 
omputerised systems, that are systemsembedding 
omputational devi
es. The role of 
omputational devi
es is to exe
ute programs.Computerised systems in
lude transformational systems (
lassi
al systems whose inputs areavailable at the beginning of the exe
ution, and whi
h deliver their outputs when terminating:for instan
e 
ompiler and bat
h systems), and rea
tive systems that rea
t 
ontinuously totheir environment, at the speed determined by the latter [HP85℄. Rea
tive systems maintainan ongoing intera
tion with their environment while transformational systems do not. In theirturn, rea
tive systems in
lude intera
tive systems (for instan
e: World wide web browsers)and real-time systems (for instan
e 
ontrol systems). While deadlines of 
omputations, tasksor events 
an be o

asionally missed in intera
tive systems, they should not be missed inreal-time systems. Thus, the 
orre
tness of a real-time system not only depends on logi
alintera
tions that happen in it, but also on the time at whi
h intera
tions (re
eption of inputsor out
omes of outputs) o

ur.Be
ause the size of 
omputational devi
es have shrank, they are embedded in physi
alobje
ts that they 
ontrol. Control operations are often triggered by internal or external signalsand the results of 
omputations are used to introdu
e motion in physi
al obje
ts of systems.In pra
ti
e, the 
ommuni
ation between 
omputational devi
es and the rest of the systemis realised using sensors that interpret physi
al input and a
tuators that introdu
e motionsin the obje
ts using results of 
omputations. Compa
t disk players, mobiles phones, 
ars,washing ma
hines and planes are examples of systems. For example there is around 30 programinstru
tions in a washing ma
hine and around one billion program instru
tions in a mobilephone.A

ording to the ar
hite
ture of systems, it is usual to 
onsider 
entralised systems andde
entralised systems. Centralised systems embed a single 
omputational devi
e with a singleprogram, while de
entralised systems embed more than one 
omputational devi
e or programneeding to 
ommuni
ate to a
hieve tasks in
luding the 
ontrol of physi
al devi
es.The design of programs and systems should be a rigorous task and programs need to bevalidated. The validation approa
h that is widely 
onsidered 
onsist to test the system withsome test 
ases. The test 
ases are often generated manually by the developers. This validationapproa
h is not reliable. Indeed, test 
ases 
ould not 
over all the aspe
ts of the systems. Forexample, the test 
ases approa
h had not been e�
ient to dis
overed bugs in the phone swit
hCCS7 at Manathan(1990), in the phone 
ommuni
ation network at Paris(1998), in the Arianero
ket(1999) [Fle02℄. Just imagine a 
riti
al bug in the program that 
ommands the exit ofthe wheels of an airplane or in systems embedded in automated 
ars.On the other side, assume that one is able to dete
t bugs in a system and that one wants1



2to 
orre
t them. A solution may 
onsist to 
orre
t erroneous parts of the system; if one is notable to 
orre
t the system, a solution may 
onsist to start again the implementation of thesystem. Another solution may 
onsist to 
ombine the erroneous system with a new one in su
ha way that the resulting system does not longer 
ontain bugs.In this thesis we 
onsider the 
orre
tion problem for systems. The above motivates the useof formal methods presented below.Formal MethodsIt is often the 
ase that requirements for systems are des
ribed in a natural language by 
us-tomers, and implementation is performed by a team of engineers. It should be 
lear that, if therequirements are 
omplex, so will also be the system. But, the simpli
ity of the requirementsis not a guarantee for the simpli
ity and the 
orre
tness of the systems, as natural languagesare often ambiguous. It is important to have �exa
t� languages to des
ribe properties, �exa
t�methods to design systems, �exa
t� methods to validate or 
orre
t systems. These are the goalsof Formal methods that in
lude:
• Test generation aims at providing methods for asserting that a system is 
orre
t. Itamounts to generation of a 
olle
tion of test sequen
es from a formal spe
i�
ation anda property to be tested.
• Proving 
orre
tness amounts to providing a formal proof on the 
orre
tness of a systemwith respe
t to a property des
ribed in a formal language. This method is semi-automati
as it is often the 
ase that prover needs human intera
tion (introdu
tion of new axioms)to terminates.
• Model-
he
king is an automati
 method that allows to 
he
k whether a system satis�esa given property.
• Satis�ability/realisability provides te
hniques to 
he
k whether a given property 
an beful�lled by at least one system. It also provide te
hniques to 
onstru
t a system thatsatis�es a given property.
• Controller synthesis designs 
ontrollers for a main system (
alled the plant) so that the
ontrolled system satis�es a given property. It 
an be applied if the supervision of thesystem 
an be done by disabling in the plant some a
tions at the origin of the bugs.All the 
lasses above are somehow related. For example 
ontroller synthesis methods 
anbe useful when a given system does not satisfy a property (test, proof, model-
he
king) andwhen the 
ontrollers 
an be 
onstru
ted automati
ally (satis�ability).We will 
onsider the 
ontroller synthesis method for the 
orre
tion of real-time systemswhen the properties are des
ribed with a �weak� real-time formal language. But, let us dis
usssome 
hallenges 
on
erning the de�nition of models for systems and the de�nition of formallanguages to des
ribe properties for systems.



3The Design of models and De
ision Pro
eduresThe main goal of formal models is to provide formal representations for interesting �real-life�situations as we are not always interested in all the aspe
ts of systems [HP85, Sif01℄.The design of models for systems and properties depends on interesting aspe
ts of systemsand the nature of the properties for systems. Are we interested in the time at whi
h a variationo

urs in systems (if so, models may expli
itly mention information on the time)? Are weinterested only in the logi
al o

urren
e of events? Are we interested in a 
ommuni
ationproto
ol (if so, a model may have a queue for message) or in rea
tive systems (if so, no queueis needed in the model). The design of models is based on the abstra
tion realised on interestingaspe
ts of systems.We are most often interested in the representation of behavioural aspe
ts of systems.It is natural to think of behavioural aspe
ts of systems as su

essive observable variationso

urring in systems. Ea
h variation may have a 
ause. Models for systems are abstra
tionof the variations and the 
auses of the variations. An abstra
tion of a variation 
ontains: anabstra
tion of starting 
ontrol point of the variation, an abstra
tion of the ending 
ontrolpoint of the variation and, an abstra
tion of the 
ause of the variation. Abstra
t variationsare often 
alled transitions, abstra
t 
ontrol points are often 
alled states and abstra
t 
ausesof variations are often 
alled events.To des
ribe properties of systems, one 
an use natural languages; be
ause they are am-biguous, they are negle
ted in favor of formal languages having exa
t semanti
s. The design ofmodels for properties depends on the models for systems and the nature of properties for themodels. Properties for models will 
ombine properties on states and properties on transitionsleading from a state (future-based properties) or on transitions leading to a state (past-basedproperties). The standard types of properties for systems in
lude rea
hability properties (somesituation 
an happen), safety properties (some situation will never happen), liveliness proper-ties (some situation is unavoidable) fairness properties (some situation will happen in�nitelyoften) deadlo
k-free properties (the system never stop).Whatever is the nature and aspe
ts of a system and the properties, it is obvious that theirrepresentations are useful in pra
ti
e only if we are able to provide de
ision pro
edures forthe validation and the 
orre
tion problems in
luding the model-
he
king, and the 
ontrollersynthesis. The models of systems and the languages to des
ribe properties are in this way, theresult of an arbitration between the expressive power (that is 
lass of systems and propertiesthey 
an represent) , their su

in
tness enabling the representation of a big system with amodel of small size, and their simpli
ity that makes their use easy and enables problems tobe
ome de
idable (existen
e of de
ision pro
edures).For pra
ti
al issues, de
ision pro
edures need to be e�
ient and their implementationshould be easy. For theoreti
al issues, it 
ould happen that we are interested in the under-standing of models and their theoreti
al properties. Then, we may not be interested in thee�
ien
y of pro
edures, but only in relations with others de
ision pro
edures.Abstra
tion of systems into models is the sour
e of some problems in
luding a non de-terminism of the models, the (behavioral) equivalen
e of models and the formalisation of thenotion of 
ombination of systems. A non determinism o

urs in a model when two outgoingtransitions from a state 
an be triggered by the same event; this 
an happen if an event isan abstra
tion of two di�erent 
auses of variations from the same 
ontrol point. Having two



4models for the same system, knowing whether they are equivalent 
an redu
e the 
omplex-ity of de
ision pro
edures when a model is more tra
table (for de
ision pro
edures) than theothers. Models of systems 
an be 
ombined in syn
hronous mode or asyn
hronous mode. Insyn
hronous mode, a transition o

urs in the 
ombined system when from the respe
tive 
ur-rent state of ea
h 
omponent of the 
ombination, it is possible to take a transition 
aused bya same event. In asyn
hronous model it is not required that the event happens at the sametime in all the 
omponents. Rea
tive systems are often 
ombined in syn
hronous mode.Providing new languages for properties of systems raises fundamental problems of thelanguage theory in
luding emptiness 
he
king (does a property have a model?), in
lusion
he
king (is a set of models of a property in
luded in a set of models of another property), theexpressive power of languages (what properties 
an be des
ribed with a given language?) and
losure properties under operations on languages (union, interse
tion, 
omplementation). Forexample, for the 
losure under 
omplementation, it 
ould be useful and pra
ti
al that the setof systems that do not satisfy a property 
an be des
ribed with another property written inthe same language; for the 
losure under interse
tion, it 
ould be useful that the 
onjun
tionof two properties 
an be des
ribed with a single property of the language.Formal Models for Rea
tive SystemsA low level model for systems is untimed transition system that is just a 
olle
tion of transi-tions. In that model, a transition s a
−→ s′ indi
ates that in the state s, the pro
ess 
an moveto the state s′ when the event a o

urs. No expli
it information on the time of the o

ur-ren
e of the events are mentioned. Untimed transition systems have been extended by addinga tripping 
ondition on the transitions. For probabilisti
 transition systems [PZ93℄, tripping
onditions are just probabilisti
 laws. For timed transition systems (TTS) [HMP92℄, tripping
onditions are information on the time at whi
h the event 
an o

ur. In timed transitionsystems, transitions are labelled either with a delay or by an event. Delay 
an range over adis
rete domain (natural numbers for example) for dis
rete time transition system or over adense domain (real numbers for example) for dense time transition system.The problem with the low level models above is that they are not tra
table for automation.They 
an not be represented using a �nite stru
ture as the set of states and the set of transitionsin a model 
an be in�nite. High level models that 
an be represented in a �nite way have beendeveloped.There are two theoreti
al approa
hes for high-level modelling of systems. The algebrai
approa
h [vG97℄ and the �nite state transition systems based approa
h. The semanti
s ofhigh level models is often des
ribed using low-levels models. Algebrai
-based models 
an oftenbe translated into transition systems. Thus, they will not be 
onsidered here. We des
ribebelow development that have been done for high-level models in the transition systems basedapproa
h.Kripke stru
ture or �nite state automata [CCG00℄ are transition systems with �nitelymany states. Behaviours of the systems are a sequen
e of transitions.Durational Kripke stru
ture (DKS) [Lar05℄ are somehow a generalisation of ideas behindmodeling systems with TTS or many other real-time models [EMSS91, CCG00, GHKK05℄.
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) Semanti
s with intermediary states
s1 s1

s0 s21 1 1 a

aa(d) Continuous with delayFigure 1: Example of a DKS and its semanti
s.They are kinds of �nite state automata having tripping 
onditions on transitions. There 
on-dition are integer interval. For example, a transition s
[2,3],a
−→ s′ asserts that the system 
anmove from s to s′ when if the event a o

urs at 2, or 3 time units after the system enter thestate s. Then it is fundamental to wonder about the states of the system 1, 2, or 3 times unitsafter it enter the state s′ or the state of the system between 1 and 2 times units. Three dis
retesemanti
s had been 
onsidered (see Figure 1 for illustration):1. the the jump semanti
s. In this semanti
s the system move from a state s to s′ withouttaking any intermediary state. Thus, the states of a system at the times d+1, d+2, . . .,

d+ t− 1 are not expli
itly represented when moving from s in the time d to the state s′in the time d+ t. Here time progresses but in a dis
rete way.2. the 
ontinuous semanti
s with intermediary states. Here, moving from s to s′ takes ttime units and the system moves through intermediary states between s and s′. All the
rossed intermediary states have the same properties as s. This semanti
s is not timedeterministi
 but time elapse 
ontinuously. Then next rea
hable state is 
hosen veryearly in the time.3. the 
ontinuous semanti
s with delay. The system lets the time elapse in its 
urrent statebefore moving to another state. This semanti
s is time deterministi
 and time elapses
ontinuously. Moreover after an o

urren
e of an event, the next rea
hable state is 
hosenlate in the time.Timed automata [AD94℄ has been provided as powerful model to des
ribe real-time sys-tems. In timed automata, 
lo
k variables are used to handle the elapse of the time. All the
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lo
k variables grow with the same rate (the one of the universal time). Timed automata arealso a kind of timed extension of �nite state automata. A transition s
g,a,X
−→ s′ is equippedwith a tripping 
onstraint g and a set of 
lo
k X to be reset when the transition is taken.The tripping 
onstraint 
ompares 
lo
k variables with rational 
onstants. There is two typesof 
omparisons: the 
omparison between a single 
lo
k and a rational 
alled diagonal free 
on-straint and the 
omparison of a di�eren
e between two 
lo
ks and a rational 
alled diagonal
onstraint. Clo
ks are evaluated in the dense-time domain (set of positive real number). The
ontinuous semanti
s of a high level transition s

g,a,X
−→ s′ is a set of low level transitions ofthe forms (s, v)

t
−→ (s, v + t) or (s, v)

a
−→ (s, v[X := 0]) (v represents a valuation of the
lo
ks, t represent a delay, v + t returns the value of the 
lo
ks after the delay and v[X := 0]return the values of the 
lo
ks after the reset of all the 
lo
k in X). A low level transition

(s, v)
a
−→ (s, v[X := 0]) o

urs only if the value of the 
lo
ks represented by v satis�es the
ondition g. We remark that sin
e their introdu
tion by Alur and Dill, timed automata havebeen extended to interesting models su
h as hybrid automata [Hen96℄, updatable timed au-tomata [BDFP04℄.Event-re
ording automata [AFH99℄ model has been introdu
ed as a restri
ted form of timedautomata. The main di�eren
e between Event-Re
ording automata and timed automata isthat ea
h 
lo
k is asso
iated to a unique event and the unique 
lo
k to be reset when atransition is taken is the 
lo
k asso
iated to the event on that transition.Formal Des
ription of PropertiesLow level models are widely used to represent the semanti
s of high level models. Lan-guages to des
ribed properties must be interpreted on transition systems models. Formallanguages [Koy90, AH94, HR04℄ enable exa
t des
ription of linear-time properties (that areproperties on the possible exe
utions) and/or bran
hing-time properties (that are propertieson states whi
h may have several possible futures). They also des
ribe either properties onuntimed systems or properties on timed systems.As it is dis
ussed in [EH83℄, the use of linear or bran
hing time spe
i�
ation languagesdepends on the underlying nature of time. The use of linear time language is based on thehypothesis that ea
h moment (present time) has a unique future time while, when usingbran
hing time languages, we impli
itly assume that the future of a present time 
ould bedivided into alternative future times. Alternation 
an be observed in non deterministi
 mod-els as an event 
an be the sour
e of two alternative transitions. Bran
hing-time languagesallow to 
hara
terize interesting behavioral relations between systems su
h as simulation andbisimulation [Par81℄; they are sometimes preferred to linear-time languages.The development of formal languages to des
ribe properties has been done in two maindire
tions: The logi
al dire
tion that provides logi
al languages and the automata-based di-re
tion. We present here some relevant languages for untimed systems followed with somerelevant languages for real-time (timed) systems.The automata approa
h Automata, that are Kripke stru
tures equipped with a set of a
-
epting sequen
es of transitions, 
an be used to des
ribe a system and its properties. A Kripkestru
ture, des
ribes the dynami
s of a system. Behaviours (sequen
es of events or states) are



7de
lared �good� or �bad� a

ording to whether they belong to an a

eptan
e 
ondition (Rabin,Parity, et
...). Thus, automata [Tho90℄ are kinds of devi
es re
ognising set of words, set oftrees, or set of transition systems. Automata on words are used to des
ribe linear-time prop-erties and automata on trees, in parti
ular alternating automata on trees, are often used todes
ribe bran
hing-time properties.Usual methods for emptiness 
he
king and universality 
he
king for automata-basedlanguages 
onsist to 
he
k whether some states are rea
hable. Forward or Ba
kward stateexploration algorithms are often used. The 
losure under boolean operations usually involvesthe 
onstru
tion of new automata.We re
all some results 
on
erning some important problems on automata-based languages.Finite state automata on words and event-re
ording automata on timed words are 
losed underall boolean operations and the language in
lusion testing problem is de
idable. The languagein
lusion testing problem for these automata is also de
idable. Timed automata on words arenot 
losed under 
omplementation and language in
lusion testing problem is unde
idable. Thelanguage emptiness testing problem for all the aforementioned automata on words is de
idable.Alternating automata on trees (or transition systems) are 
losed under boolean operations,their emptiness and their in
lusion testing problem is also de
idable.The logi
al approa
h Here are some important languages that have been developed.Linear-temporal Logi
 (LTL) is a linear-time temporal logi
 introdu
ed by Pnueli [Pnu77,LPZ85℄ for untimed systems. LTL enables the des
ription of properties on a single exe
utionof the system or sequen
e of transitions. But it is not possible to des
ribe a property of theform �on all the exe
utions of a system it is always true that there exists an exe
ution thatsatis�es a property�.The Computational Tree Logi
 (CTL [CE82℄, CTL∗ [EH83℄) are bran
hing-time logi
s foruntimed systems. They allow quanti�
ation (existential or universal) on transitions outgoingfrom states of models. Formulas of CTL∗ and CTL are not interpreted over independent set ofexe
utions (sequen
e of transitions) but over a tree-like stru
ture representing a dependen
ebetween exe
utions.The Hennessy-Milner logi
 was introdu
ed by Hennessy and Milner [HM80℄ for untimedsystems (initially represented with the CCS algebrai
 representation). This logi
 in
lude twoimportant modal operators 〈a〉 and [a]. A state s of a system satis�es 〈a〉ϕ when there isat least one outgoing transition s
a
−→ s′ su
h that the target s′ satis�es the property ϕ. Astate s of a system satis�es [a]ϕ when for all outgoing transitions s a

−→ s′, the target state s′satis�es the property ϕ. A weakness of the Hennessy-Milner logi
 is that it 
an not be usedto des
ribed fairness or liveliness properties.The µ-
al
ulus introdu
ed by Kozen [Koz82, AN01℄ is an expressive logi
 whi
h extendsthe Hennessy-Milner Logi
 [HM80℄ by 
onsidering the greatest (ν) and least (µ) �xpoint op-erators. Fixpoint operators are useful to des
ribe rea
hability, fairness or liveliness properties.The µ-
al
ulus is more expressive than CTL and CTL∗. Formulas of the µ-
al
ulus in
ludesarbitrary nested �xpoints. The power of nested �xpoint had been demonstrated [Bra98, BL05℄;in parti
ular they are used to des
ribe properties su
h as: �an event o

urs in�nitely often� or�an event o

urs almost all the time�. The model-
he
king and the satis�ability problems of



8the µ-
al
ulus are de
idable. The µ-
al
ulus is as expressive as alternating automata on trees.The metri
 temporal logi
 (MTL) [Koy90℄ is a timed linear-time temporal logi
 whi
hextends LTL with timing 
onstraints. For instan
e, with MTL, it is possible to write a formulaexpressing that a request p is always followed one time unit later by a response q. There aretra
table fragments of MTL that had been 
onsidered like Safety-MTL [OW06b℄ whi
h imposebound on the modality on the future andMITL [AFH96℄ whi
h disallows pun
tual 
onstraintssome modality of the future.Timed Computational Tree Logi
 (TCTL) [ACD93℄ is an extension of CTL that expli
itlymentions the information on the time.Timed Modal Logi
(TML) and Extended Timed Modal Logi
 (ETML) are timed logi
proposed by Larsen et al. [HLY91℄ to des
ribe properties of pro
esses expressed in the real-time pro
ess 
al
ulus TCCS of Wang [Yi90℄. Among properties that 
an be handled withthese logi
 an important property for real-time pro
esses is the ne
essity modal operator ontime delays that enables to des
ribe a property like �After a 
oin has been inserted, 
o�eewill be 
ontinuously available for 30 se
onds. TML is an extension of the Hennessy-MilnerLogi
 [HM80℄ whi
h 
onsiders modalities of the form 〈a〉∃Iϕ, 〈a〉∀Iϕ, [a]∃Iϕ, and [a]∀Iϕ wherethe semanti
s of I is a delay interval, a is an a
tion and ϕ a formula and . A formula 〈a〉∀Iϕspe
i�es a property whi
h holds invariably for all time-delays in I; a system that satis�es thisformula is su
h that any state rea
hed after a time-delay within I must have a a-su

essorsatisfying ϕ. A formula 〈a〉∃Iϕ spe
ify a property whi
h holds eventually for some time-delayin I. Operator of the form [a]∃Iϕ and [a]∀Iϕ are de�ned by duality. Then, Larsen et al. haveshown that if I is de�ned with a �rst-order assertion, then the model-
he
king of TML isde
idable. ETML is a fragment of TML in whi
h time intervals are not spe
i�ed. In [HLY91℄the model-
he
king and the satis�ability of ETML is left open.The logi
 Ltµ has been introdu
ed by Sokolsky et al. [SS95℄. The logi
 Ltµ is a timedextension of the µ-
al
ulus; it enables the des
ription of safety and liveliness properties of real-time systems. The model-
he
king of Ltµ is shown de
idable in [SS95℄. The logi
 Ltµ supports alloriginal operators of the µ-
al
ulus as well as two new time modalities (ne
essity/universalityand possibility/eventuality of time su

essors) also used in [HLY91℄. But Lµt formulas arealternation free as the fragment of the µ-
al
ulus studied in [SS94, BC96℄, whi
h means thatin every Ltµ formula the �level� of mutually re
ursive greatest and least �xpoint operatorsis one (arbitrary nested �xpoint is not authorized). The lo
al model-
he
king algorithm for
Ltµ [SS95℄ uses quotients of 
lo
ks values as de�ned by Alur and Dill [AD94℄. As this model-
he
king algorithm is lo
al, the whole state spa
e need not be explored and re�nements ofthe quotient are 
arried only when ne
essary to satisfy 
lo
k 
onstraints in the formula or thetimed automaton used to represent the system under investigation.The logi
 Lν [LLW95℄ has been 
onsidered by Laroussinie et al.. It is a fragment of thelogi
 Tν [TXJS92℄ introdu
ed by Henzinger et al.; it allows to des
ribe properties on timedautomata. Formulas of Lν use also 
ombined modalities on events of the 
lassi
al µ-
al
uluswith modalities on time-delays. The logi
 Lν 
onsiders the greatest �xpoint operator; it doesnot 
onsider the least �xpoint operator. The logi
 Lν is su�
iently expressive for 
hara
teris-ing timed automata (behavioral 
hara
terisation) [Cer93, SI94, IPPA00℄. For a given timedautomata, it is possible to 
onstru
t a Lν 
hara
teristi
 formula. The satis�ability problem of
Lν have been left open in [BCL05℄.Event-Clo
k Logi
 (EventClo
kTL) has been proposed by Raskin and S
hobbens [RS99℄.



9EventClo
kTL is an extension of LTL with event-re
ording and event-predi
ting operators.The satis�ability problem of EventClo
kTL have been shown de
idable.Event-re
ording Logi
 (ERL) is a timed extension of the µ-
al
ulus introdu
ed bySorea [Sor02℄ and it is used to des
ribe properties on systems modelled with event-re
ordingautomata. ERL is more expressive than the event-re
ording part of EventClo
kTL sin
e it in-
ludes arbitrary nested �xpoints. The extension 
onsist in adding timing 
onstraints in modaloperators obtaining modal operator of the form 〈g, a〉 and [g, a]. For example, a formula of theform 〈hb < 3, a〉 expresses the fa
t that the event a must o

ur at most 3 time units after the
lo
k hb has been reset (re
all that the 
lo
k hb is reset only after an o

urren
e of the event
b). A de
ision pro
edure for the satis�ability problem of ERL is provided in [Sor02℄.Let us 
omment some te
hniques used to solve some problems on logi
al languages. The
losure properties are often a 
onsequen
e of their de�nitions. Indeed most of the logi
allanguages use boolean operators (logi
al "and" operator (∧) for the 
losure under interse
tion,logi
al "or" operator (∨) for the 
losure under union, and logi
al "negation" operator (¬) forthe 
omplementation). Duality is often a fundamental prin
iple of logi
al languages.The emptiness testing of logi
al languages is also 
alled the satis�ability problem. A widelyused method for temporal logi
 is the tableau method. Tableau systems were �rst developedby Gentzen as synta
ti
al devi
es for modal logi
s [Gen34℄. Tableau systems bene�t from thestru
ture of the properties to de
ompose their satis�ability 
he
king into the satis�ability
he
king of smaller properties. It has been shown that there exists an intimate relationshipbetween tableaux and automata over trees [Eme85℄.Whatever is their forms (automata or logi
), languages on the same models need to be
ompared. To 
ompare two languages, it is 
ommon to provide example of properties that 
anbe des
ribed with only one of the two languages and it is 
ommon to show how propertieswritten in one of the two languages 
an be rewritten in the other language.Methods and Algorithms for the Model-
he
kingTe
hniques for the model-
he
king of systems have been developed depending on models andthe spe
i�
ations. Most of these te
hniques work on low level models.There are two basi
 strategies when designing a model-
he
king algorithm: �Global� algo-rithms that are re
ursive on the stru
ture of the spe
i�
ation and evaluate ea
h of part of thespe
i�
ation over the states of the transition system. �Lo
al� algorithms, in 
ontrast, exploreonly parts of the states spa
e of the system, but 
he
k all parts of the spe
i�
ation. The 
hoi
eof lo
al or global algorithm does not a�e
t the worst-
ase 
omplexity of model-
he
king al-gorithms. Model-
he
king algorithms are often presented in the form of tableau [Eme85℄ andthey use results on two player games.In order to provide e�
ient model-
he
king algorithm, some te
hniques to redu
e the sizeof models have been developed [Mer01℄ in
luding, symboli
 te
hniques and abstra
tion basedte
hniques. Symboli
 te
hniques 
onsist in en
oding set of states using 
ompa
t obje
ts su
has logi
al formulas or e�
ient data stru
tures [GV08℄ su
h as Binary De
ision Diagrams,Di�eren
e Bound Matri
es, Clo
k Di�eren
e Diagrams.Let us re
all some algorithms for the model-
he
king in some settings:
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• The setting of Kripke Stru
tures. The model-
he
king of systems modeled with Kripkestru
tures has been widely investigated for linear-time properties (LTL [Var07℄) andBran
hing-time Properties (CTL and CTL∗ [LS01℄, the µ-
al
ulus [SE89℄). The te
h-niques aforementioned have been used and implemented in tools su
h as SMV [CCG+02℄,MEC 5 [GV04℄, Lustre [CPHP87℄ and SPIN [Hol97℄.
• The setting of timed automata. Abstra
tion based te
hniques have been provided for therea
hability of timed automata. These te
hniques in
lude region abstra
tion and zone-based abstra
tion. They 
onsist in partitioning the in�nite set of states of the semanti
sinto �nite sets of abstra
tion 
lasses. Region and zone-abstra
tion based te
hniqueshave also been deployed for other types of properties. This te
hniques have been usedfor the model-
he
king of TCTL [TXJS92℄, the model-
he
king of MTL and its frag-ments [OW05, OW06a, AH93, OW06b, AFH96℄, the model-
he
king of TML [HLY91℄,ETML [HLY91℄, Ltµ [SS95℄, Lν [LLW95℄ and Event-Re
ording Logi
 [Sor01, Sor02℄.Tools implementing model-
he
king algorithms for real-time systems in
lude Kro-nos [BDM+98℄, Uppaal [BLL+96℄, Hyte
h [HHWT97℄, Cm
 [LL98℄, Tempo [Sor01℄ andPHAVer [Fre05, Fre08℄.Methods and Algorithms for the Controller SynthesisWe re
all that the supervisory 
ontrol problem, as introdu
ed by Ramadge and Won-ham [RW89℄, asks whether a given system 
alled a plant 
an be 
ontrolled with anothersystem 
alled a 
ontroller in su
h a way that the resulting system 
alled the 
ontrolled systemsatis�es the given 
ontrol obje
tive. The synthesis problem asks whether a witness 
ontroller
an be e�e
tively 
omputed.The 
ontroller synthesis (
ontrol + synthesis) problem is studied depending on theoreti
alassumption made on the systems. These assumptions 
on
ern the nature of the events insystems, the ar
hite
ture of systems and the nature of properties.The notions of 
ontrollability , observability , distinguishability are often 
onsidered. Thenotion of 
ontrollability is based on the assumption that some events of the systems 
an bedisable (
ontrollable event) and the others 
an not. The notion of observability is based on theassumption that 
ontroller 
an not observe all the events that happen in the systems. Thisnotion 
onsiders observable events and unobservable events. The notion of distinguishabilityrelies on the fa
t that a 
ontroller may not abstra
t a 
ause of a variation in the same manneras the system; then, it 
ould happen that o

urren
es of some events in the systems 
an notbe distinguished by the 
ontrollers. Relying on the ar
hite
ture of the systems, the 
entralisedsupervisory 
ontrol is opposed to the de
entralised (distributed) 
ontrol . The 
entralised super-visory 
ontrol of a system is a
hieved by a unique 
ontroller while in the de
entralised 
ases,more than one 
ontroller 
an be 
ombined with the plant to meet the 
ontrol obje
tives. Itis usual to distinguish internal 
ontrol obje
tives from external 
ontrol obje
tives. Internal
ontrol obje
tives refer to state properties while external 
ontrol obje
tives refer to propertieson sequen
es of events.Let us re
all some previous works on the 
ontroller synthesis for dis
rete event systemsand dense-time systems.Ramadge and Wonham [RW89℄ 
onsider the supervisory 
ontrol problem of dis
rete event



11systems. In their setting, a plant and 
ontrollers are deterministi
 �nite state automata;the notion of 
ontrollability is also 
onsidered. The external 
ontrol obje
tive is either area
hability or a safety property. Many authors [PR05, BK06, AVW03, AW07℄ have 
onsid-ered the supervisory 
ontrol of dis
rete event systems modeled with �nite state automatawhen the 
ontrol obje
tives are des
ribed with a µ-
al
ulus formula. These extensions ofthe works of Ramadge and Wonham use the expressive power of the µ-
al
ulus to des
ribemore general properties for supervised systems and 
ontrollers. They 
onsider the notionof 
ontrollability, observability, and distinguishability and the 
entralised and de
entralisedsupervisory 
ontrol problems. They use a so-
alled quotient based method that providepowerful quotient operation for the division of properties by systems and the division ofproperties by properties. In the works of Arnold et al. [AVW03, ABPV05, AW07℄, thedivision operation works for disjun
tive normal form formulas and the 
omputation ofwitness 
ontrollers is e�e
tive (winning strategy in two player parity game) for some 
lassesof de
idable supervisory 
ontrol problems. In parti
ular, Arnold et al. [AW07℄ have shownthat the supervisory 
ontrol problem is de
idable under the three following 
onditions: atmost one 
ontroller is non deterministi
; all but one spe
i�
ation of 
ontrollers are simple (asimple spe
i�
ation does not des
ribe observability and distinguishability 
onditions); andthe spe
i�
ation of the non deterministi
 
ontroller is simple.The 
entralised dense-time version of the supervisory 
ontrol has been investigated andsolved in [AMP95℄. In that investigation, Maler et al. 
onsider timed automata models, un-timed 
ontrol obje
tives and the notion of 
ontrollability. They provide an algorithm to de
idewhether a dis
rete 
ontroller exists, and show that if the answer is positive, a witness 
ontroller
an be e�e
tively 
omputed. The 
ontrol obje
tive is a rea
hability or a safety property.D'Souza and Madhusudan [DM02℄ have also 
onsidered the 
entralised dense-time supervi-sory 
ontrol for timed automata when the external 
ontrol obje
tive is des
ribed with a timedautomaton. They also 
onsider the notion of 
ontrollability. For de
idable 
ases of 
ontrol,D'Souza and Madhusudan synthesise 
ontrollers with a priory limit on their resour
es (num-ber of 
lo
ks, power of the 
ontrollers to observe 
lo
ks). Madhusudan et al. [BDMP03℄ hadextended the frameworks of D'Souza and Madhusudan by 
onsidering the notion of partialobservability.Bouyer et al. [BBC06℄ have investigated 
entralised dense-time supervisory 
ontrol of timedautomata when the external 
ontrol obje
tive is des
ribed with the logi
 MTL. They 
onsidernotions of 
ontrollability and they provide de
idability results when there is a limit on the re-sour
es of 
ontrollers. Controllers are just winning strategies in some two player parity games.Laroussinie et al. [BCL05℄ have 
onsidered the 
entralised supervisory 
ontrol problem fortimed automata models with Lν when the set of events is partitioned into a set of 
ontrollableevents and a set of un
ontrollable events. They present how to de
ide the existen
e of 
on-troller for some deterministi
 fragment of Lν , but the pro
edure does not say how to 
onstru
ta witness 
ontroller.Contributions of this ThesisWe 
onsider 
ontroller synthesis for real-time systems that 
an be 
ombined in syn
hronousmode; the 
ontrol obje
tives are timed bran
hing-time properties.



12 The framework of Arnold et al. [AVW03, ABPV05, AW07℄, based on �nite state automataand the µ-
al
ulus, is a powerful framework for the 
ontroller synthesis of untimed systems.This work proposes methods to de
ide the existen
e of 
ontrollers and methods to synthesize
ontrollers. For timed systems, Laroussinie et al. [BCL05℄ have provided an extension to theframework of Arnold et al. as they have 
onsidered timed automata models for systems and thelogi
 Lν to des
ribe 
ontrol obje
tives. The method in the Laroussinie et al. framework onlyde
ides the existen
e of a 
ontroller and does not provide a method to synthesise 
ontrollers.Our goal in this thesis is to �nd a 
lass of timed models �weaker� than the 
lass of timedautomata, to use a �weak� real-time extension of the µ-
al
ulus for providing a powerfulframework for the 
ontroller synthesis of real-time systems. We also hope to reuse te
hniquesof the framework of Arnold et al.We start our investigation with event-re
ording automata as models for systems and Event-Re
ording Logi
 (ERL) as language to des
ribe properties. We present new de
ision pro
eduresfor the model-
he
king and the satis�ability of ERL. We also present a disjun
tive normal formtheorem for ERL. We show that ERL is not expressible enough to des
ribe useful propertiesof timed pro
esses, espe
ially some interesting properties for 
ontrollers. For instan
e, withthe modalities of ERL we are not able to des
ribe a property of the form � an event 
an be
ompleted at any moment that satis�es a timing 
onstraint�.Then, we introdu
e a new logi
 that we 
all WTµ whi
h is also a �weak� real-time extensionof the µ-
al
ulus. We show that WTµ is more expressive that ERL. We 
onsider fundamentalproblems on WTµ namely: the model-
he
king and the satis�ability problems. We show thatthe model-
he
king problem of WTµ is de
idable. For the satis�ability, we 
onsider a frag-ment of WTµ 
alled C-WTµ (WTµ for the 
ontrol). We provide a de
ision pro
edure for asatis�ability problem of C-WTµ formulas. That pro
edure works without any information onthe maximal 
onstant of the models. It also shows how to 
onstru
t a witness model for asatis�able formula.We present de
ision pro
edures for the 
entralised and the ∆-dense-time 
entralised 
on-troller synthesis problems when the 
ontrol obje
tives are des
ribed with C-WTµ formulas.Organisation of this ThesisIn Chapter 1 we present basi
 notions that we use later in the thesis. These notions in
ludealternating automata on trees, two player parity games, the µ-
al
ulus, the logi
 Lµ and someframeworks to the 
ontroller synthesis.In Chapter 2, we present models for real-time systems and some fundamental problemsabout these models. Our model, that we 
all timed pro
ess is nothing else but event-re
ordingautomata (without an a

eptan
e 
ondition). We present the rea
hability analysis in thatmodel using well know region abstra
tion te
hniques and zone abstra
tion te
hnique. Wepresent how to remove diagonal 
onstraints in the model without 
hanging their behaviouralproperties.In Chapter 3, we present Event-Re
ording Logi
 (ERL for short). We 
onsider funda-mental problems about that logi
: the model-
he
king problem, the satis�ability problem,the disjun
tive normal form problem. The �rst two problems have been 
onsidered earlier bySorea [Sor02℄. Our algorithms for these problems enable a better understanding of the models;



13they also enable to reuse some algorithms for the same problems for the standard µ-
al
ulus.We provide a disjun
tive normal form theorem for ERL formulas. We show that the algo-rithm of Sorea [Sor02℄ for the satis�ability 
he
king is ambiguous and is not 
orre
t in 
ase ofdiagonal 
onstraints.The Chapter 4 introdu
es the new logi
 WTµ. There, we de�ne WTµ and we show thatWTµ is more expressive than ERL as any formula of ERL 
an be translated into equivalentformula of WTµ and some formulas of WTµ 
an not be translated into formulas of ERL. WTµenables a des
ription of some interesting properties in parti
ular some properties of 
ontrollers.Then we 
onsider the model-
he
king and the satis�ability problems for WTµ. We show thatthe model-
he
king of WTµ is de
idable. We introdu
e C-WTµ as a de
idable fragment ofWTµ. Our de
ision pro
edure for the satis�ability of C-WTµ shows how to 
onstru
t modelsfor satis�able formulas.The 
entralised and the ∆-dense time 
entralised 
ontroller synthesis problems are 
onsid-ered in Chapter 5. Formulas are di�
ult to handle be
ause they use �xpoint operators. Weintrodu
e modal automata that are a kind of alternating automata. Modal automata are inter-preted over timed pro
esses. We de�ne the quotient of modal automata over timed pro
esses.Then, we 
onsider a sub
lass of modal automata that we 
all modal automata for 
ontrol (C-MA). We show that a C-MA automaton 
an be translated into an equivalent C-WTµ formulaand re
ipro
ally a C-WTµ formula 
an be translated into an equivalent C-MA automaton. Atthe end of this 
hapter, we show that the two aforementioned 
ontroller synthesis problemsare de
idable; moreover we show how to 
onstru
t 
ontrollers.
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Chapter 1PreliminariesThis 
hapter presents some frameworks for the supervisory 
ontrol problem of dis
rete systemsand dense-time systems.First of all, we re
all some de�nitions and results 
on
erning transition systems, automataon words, the standard µ-
al
ulus and automata on transition systems. Then, we present theframeworks of Ramadage and Wonham [RW89℄, Arnold et al. [AVW03, ABPV05, AW07℄,D'Souza and Madhusudan [DM02℄ and Laroussinie et al. [BCL05℄.1.1 Automata on WordsIn this se
tion we present basi
 notions that in
lude labelled transition systems, bisimulationrelation, (Bü
hi, Rabin and Parity) a

eptan
e 
onditions and automata on words.De�nition 1 A word over an alphabet Σ is a sequen
e w = w0.w1 . . . of symbols in Σ. Σ∗ isthe set of �nite words over Σ, and Σω is the set of in�nite words over Σ.For a word w, the number of o

urren
es of the letter a in w is denoted by |w|a. Given
w ∈ Σω, we 
onsider the set

Inf(w) = {a ∈ Σ | ∀i∃j > iwj = a}of symbols in Σ o

urring in�nitely often in w.De�nition 2 A labelled transition system over an alphabet Σ (or a Σ-labelled transition sys-tem for short) is a tuple S = 〈S,Σ, s0,∆S〉 where S is a set of states, s0 ∈ S is the initial stateand ∆S ⊆ S × Σ × S is a transition relation. A Σ-labelled transition system is deterministi
if ∆S is a partial fun
tion ∆S : S × Σ→ S.We often write s a
−→ s′ instead of simply the transition (s, a, s′) ∈ ∆S .A �nite labelled transition system is a system with �nitely many states.De�nition 3 A produ
t of two Σ-labelled transition systems P = 〈P ,Σ, p0,∆P 〉 and S =

〈S,Σ, s0,∆S〉 is the Σ-labelled transition system P × S = 〈P × S,Σ, (p0, s0),∆P×S〉 where
(p, s)

a
−→ (p′, s′) if and only if p

a
−→ p′ and s a

−→ s′.15



16 Chapter 1. PreliminariesWe de�ne two behavioral relations between label transition systems. These relations, 
alledsimulation and bisimulation, have been introdu
ed by Park [Par81℄. Let S1 = 〈S1,Σ, s
0
1,∆S1〉and S2 = 〈S2,Σ, s

0
2,∆S2〉 be two labelled transition systems.De�nition 4 A simulation between S1 and S2 is a relation R ⊆ S1 × S2 su
h that whenever

s1Rs2 and a ∈ Σ, then:
• If s1 a

−→ s′1 then there exists s′2 ∈ S2 su
h that s2 a
−→ s′2 and s′1Rs′2.De�nition 5 A bisimulation between S1 and S2 is a relation R ⊆ S1×S2 su
h that whenever

s1Rs2 and a ∈ Σ, then:
• If s1 a

−→ s′1 then there exists s′2 ∈ S2 su
h that s2 a
−→ s′2 and s′1Rs′2.

• If s2 a
−→ s′2 then there exists s′1 ∈ S1 su
h that s1 a

−→ s′1 and s′1Rs′2.We write s1 ⊑ s2 (resp. s1 ∼ s2) if and only if there exists a simulation (resp. a bisimula-tion) R with s1Rs2.De�nition 6 S2 simulate S1 (resp. S1 and S2 are bisimilar) whenever there exists a simu-lation (resp. a bisimulation) R between S1 and S2 su
h that the pair (s01, s
0
2) of their initialstates belongs to the relation R, and then we write S1 ⊑ S2 (resp. S1 ∼ S2).De�nition 7 An ω-automaton on words over Σ is a tuple A = 〈S,Acc〉 where S =

〈S,Σ, s0,∆S〉 is a �nite Σ-labelled transition system and Acc is the a

eptan
e 
ondition.De�nition 8 Let A = 〈S,Acc〉 be an ω-automaton over Σ-words as above de�ned. A run ρof A on a word w = w0w1 · · · ∈ Σω is a sequen
e of states ρ = s0s1 . . . su
h that the following
onditions hold:1. s0 = s02. si is su
h that si−1
wi−→ si ∈ ∆SWhether a run of an automaton is a

epting depends on the nature of the a

eptan
e
ondition of the automaton. There are several a

eptan
e 
onditions:1. The Bü
hi a

eptan
e 
ondition [B�62℄ is given by a set F ⊆ Q: ρ is a

epting when

Inf(ρ) ∩ F 6= ∅2. The Rabin a

eptan
e 
ondition [Rab69℄ is given by a set Ω = {(Ei, Fi)}i=1..n with
Ei, Fi ⊆ Q: ρ is a

epting when

∃(E,F ) ∈ Ω s.t (Inf(ρ) ∩ E = ∅) ∧ (Inf(ρ) ∩ F 6= ∅)



1.2. Two Player Parity Games and Multi-Parity Games 173. The parity 
ondition [Mos85℄ is given by a fun
tion rank : Q→ {1, . . . , k} (where k isa natural number) that assigns a parity index to states of the automaton: ρ is a

eptingwhen
max{rank(q) | q ∈ Inf(ρ)}is even. This 
ondition is also 
alled the max-parity 
ondition.Depending of the nature of the a

eptan
e 
ondition, automata are 
alled Bü
hi automata,Rabin automata, or Parity automata.De�nition 9 The language of an automaton A denoted by L(A) is the set of words on whi
h

A has an a

epting run.Let us re
all some interesting well known results on automata. Non deterministi
 Bü
hiautomata, Rabin automata and Parity automata a

ept the same set of languages. This set oflanguages is 
losed under interse
tion, union, and 
omplementation (see [Tho97℄). The empti-ness 
he
king for a Rabin automata with m states and n pairs is de
idable in O(mn)3n. Everynon deterministi
 Rabin automaton 
an be translated into an equivalent parity automaton andre
ipro
ally (see [L�99℄). Moreover, every non deterministi
 parity automaton 
an be translatedinto a deterministi
 parity automaton.1.2 Two Player Parity Games and Multi-Parity GamesWe present a 
omplexity result for 
he
king a winning strategy in a two player games withparity 
ondition. We also present the notion of two multi-parity game.De�nition 10 A two player parity game(see [Zie98℄) is a tuple G = 〈NE , NA, T ⊆ N
2,AccG〉where 〈N,T 〉 is a graph with the nodes (or positions) N = NA ∪NE partitioned into NE and

NA. NE denotes the set of nodes of the player Eve and NA denotes the set of nodes of theplayer Adam. The winning 
ondition AccG ⊆ Nω, is a parity 
ondition on the nodes. Thegame is �nite if N is �nite.A play between Eve and Adam from some node n ∈ N pro
eeds as follows: if n ∈ NE then
Eve makes a 
hoi
e of a su

essor otherwise Adam 
hooses a su

essor; from this su

essorthe same rule applies and the play goes on forever unless one of the parties 
annot make amove. A play is �nite if a player 
annot make a move and then he loose the play. In the 
asethat the play is an in�nite path π = n0n1n2 · · · , Eve wins if π ∈ AccG . Otherwise Adamis the winner. Among winning 
onditions introdu
ed in the literature, we 
onsider the parity
ondition. A strategy σ for Eve is a fun
tion assigning to every sequen
e of nodes ~n ending ina node n from NE a vertex σ(~n) whi
h is a su

essor of n.A play from n 
onsistent with σ is a �nite or in�nite sequen
e n0n1n2 · · · su
h that
ni+1 = σ(ni) for all i with ni ∈ NE. The strategy σ is winning for Eve from the node n if andonly if all the plays starting in n and 
onsistent with σ are winning. The strategies for Adamis are de�ned similarly. A node is winning if there exists a strategy winning from it. A gameis determined if every node is winning for one of the player. A strategy is positional if it doesnot depend on the sequen
es of nodes that were played till now, but only on the present node.



18 Chapter 1. PreliminariesSo su
h a strategy for Eve 
an be represented as a fun
tion σ : NE → N and identi�ed witha 
hoi
e of edges in the graph of the game.Now we state the following results on two player games (see [GH82, EJ91, Jur00, VJ00℄).Theorem 11 Every parity game is determined. In a two player parity game one of the playershas a winning positional strategy from ea
h of his winning nodes. There is an e�e
tive pro
edurethat de
ides who is a winner from a given node in a �nite game, and that pro
edure works intime
O

(

|T | ×

(

2× |N |

d

)⌈d/2⌉
)where, d is the maximal parity index.1.3 The µ-Cal
ulusThe µ-
al
ulus introdu
ed by Kozen [Koz82℄ (see also [AN01℄) is an expressive temporal logi
that extends modal logi
 with the greatest (ν) and least (µ) �xpoint operators. We present thesyntax and the semanti
s of the µ-
al
ulus. Then we state some well known results that in
ludethe 
omplexity of the model-
he
king problem, the 
omplexity of the satis�ability problem anda disjun
tive normal form theorem. The 
omplexity result for the model-
he
king is obtainedby redu
tion to 
he
king if there is a winning strategy in a two player parity game.1.3.1 De�nitions and Semanti
sDe�nition 12 The syntax of the µ-
al
ulus is de�ned over a set Var = {X,Y, . . .} of vari-ables, a set Σ of events. It is given by the following grammar:

ϕ ::= tt |� |X |ϕ ∨ ψ |ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ |µX.ϕ(X) | νX.ϕ(X)In the above, X ∈ Var , a ∈ Σ; and tt and � denote the formula that are always �true� and�false� respe
tively; 〈a〉 and [a] denote the existential and the universal modalities indexed withthe event a; they represent �exists a-su

essor and �all a-su

essor� modalities respe
tively. Theformulas µX.ϕ(X) and νX.ϕ(X) represent respe
tively the least and the greatest �xpointformula.For a formula ϕ, the 
losure [Koz82℄ of ϕ, sub(ϕ) is de�ned as follows:De�nition 13 The 
losure sub(ϕ) of ϕ is the smallest set of formulas su
h that:
• ϕ ∈ sub(ϕ)

• if ψ1 ∨ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if ψ1 ∧ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if 〈a〉ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)

• if [a]ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)
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• if σX.ψ(X) ∈ sub(ϕ) then ψ(X) ∈ sub(ϕ), where σ ∈ {ν, µ}The formulas in sub(ϕ) are 
alled the sub formulas of ϕ. For a formula ϕ, sub(ϕ) is �niteand, by de�nition, it is not larger that the number of symbols used in ϕ.De�nition 14 The set free(ϕ) of free variable of a µ-
al
ulus formula ϕ is de�ned indu
tivelyas follows:
• free(tt) = free(�) = ∅

• free(X) = {X}

• free(ϕ ∨ ψ) = free(ϕ ∧ ψ) = free(ϕ) ∪ free(ψ)

• free([a]ϕ) = free(〈a〉ϕ) = free(ϕ)

• free(µX.ϕ(X)) = free(νX.ϕ(X)) = free(ϕ) \ {X}A variable X is free in a formula ϕ if X ∈ free(ϕ).De�nition 15 A variable X is bound in a formula ϕ if there is a sub formula σX.ψ(X) of ϕwith σ ∈ {µ, ν}.We remark that, a variable 
an be bound and free at the same time. For example, in theformula ϕ = µX(〈a〉X ∨ 〈b〉Y ) ∧ νY.〈c〉Y , the variable Y is bound and free. An o

urren
e of
Y in ϕ 
an be repla
ed with a new variable to get an equivalent formula variables of whi
hare either free or bound.De�nition 16 (Well named) We 
all a formula well named if the expression µX.ϕ(X) (or
νX.ϕ(X)) o

urs at most on
e for ea
h variable X.By renaming some o

urren
es of variables if ne
essary, every formula 
an be translatedinto an equivalent well named formula. In what follows, without loss of generality, we assumethat formulas are well named.De�nition 17 (Binding) The binding de�nition of a bound variable X in a well namedformula ϕ, Dϕ(X) is the unique sub formula of ϕ of the form σX.ψ(X). We will omit subs
ript
ϕ when it 
auses no ambiguity. We 
all X a µ-variable when σ = µ, otherwise we 
all X a
ν-variable. The fun
tion Dϕ assigning to every bound variable its binding de�nition in ϕ willbe 
alled the binding fun
tion asso
iated with ϕ.De�nition 18 A senten
e is a well named formula without free variables.De�nition 19 The dependen
y order ≤ϕ over the bound variables of a formula ϕ, is theleast partial order su
h that if X o

urs in Dϕ(Y ) and Dϕ(Y ) is a sub formula of Dϕ(X) then
X ≤ϕ Y . When X ≤ϕ Y , it is also said that Y depends on X or X is older than Y .



20 Chapter 1. PreliminariesLet us illustrate the three de�nitions just above with an example. Consider again the formula
ϕ = µX(〈a〉X ∨ 〈b〉Y ) ∧ νY.〈c〉Y . It should be 
lear that ϕ is not a senten
e as there isa free o

urren
e of the variable Y in ϕ. We have that Dϕ(X) = µX(〈a〉X ∨ 〈b〉Y ) and
Dϕ(Y ) = νY.〈c〉Y . The variables X and Y 
an not be 
ompared with the dependen
y orderrelation ≤ϕ.De�nition 20 (Expansion) Given a formula ϕ, its binding fun
tion Dϕ, and a sub formula
ψ of ϕ, the expansion 〈[ψ]〉Dϕ

of ψ with respe
t to Dϕ is de�ned by
〈[ψ]〉Dϕ

= ψ[Dϕ(Xn)/Xn] · · · [Dϕ(X1)/X1]where X1 ≤ϕ X2 ≤ϕ · · · ≤ϕ Xn is a 
hain of bound variables of ϕ with respe
t to ≤ϕ.De�nition 21 Variable X in µX.ϕ(X) is guarded if every o

urren
e of X in ϕ(X) is in thes
ope of some modality operator 〈〉 or []. We say that a formula is guarded if every boundvariable in the formula is guarded.Alternation depth des
ribes the number of alternations between least and greatest �xpointoperators.De�nition 22 The alternation depth of a formula denoted by alt(ϕ) is the number of nestingbetween µ and ν in ϕ; it is re
ursively de�ned as follows:
• alt(tt) = alt(�) = alt(X) = 0

• alt(ϕ ∧ ψ) = alt(ϕ ∨ ψ) = max(alt(ϕ), alt(ψ))

• alt(〈a〉ϕ) = alt([a]ϕ) = alt(ϕ)

• alt(µX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(νY.ψ(Y )) | νY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ Y })

• alt(νX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(µY.ψ(Y )) |µY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ Y })Formulas of the µ-
al
ulus are interpreted over Σ-labelled transition systems. The se-manti
s of a µ-
al
ulus formula ϕ is a set of states of a Σ-labelled transition system S =
〈S,Σ, s0,∆S〉 where the formula holds under a given valuation of variables Val : Var → 2S ,and it is denoted by [[ϕ]]SVal . Given a valuation of variables Val and a set of states T ⊆ S,the valuation Val [X/T ] is the valuation Val with the substitution that asso
iates the statesof T with the variable X. Formally, for Y ∈ Var , Val [X/T ](Y ) = T if Y = X and Val(Y )otherwise. We de�ne the relation � between a state s of a transition system S, a valuation
Val and a formula ϕ. We write S, s,Val � ϕ when the formula ϕ holds in s or equivalently ssatis�es ϕ. The relation � is de�ned as follows:
• S, s,Val � X if s ∈ Val(X)

• S, s,Val � ϕ1 ∨ ϕ2 if S, s,Val � ϕ1 or S, s,Val � ϕ2

• S, s,Val � ϕ1 ∧ ϕ2 if S, s,Val � ϕ1 and S, s,Val � ϕ2

• S, s,Val � 〈a〉ϕ if there is s a
−→ s′ su
h that S, s′,Val � ϕ
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• S, s,Val � [a]ϕ if for all s a

−→ s′ we have S, s′,Val � ϕ

• S, s,Val � µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal [X/T ] ⊆ T}.
• S, s,Val � νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal [X/T ]}Then we de�ne [[ϕ]]SVal = {s ∈ S | S, s,Val � ϕ}. It is said that a Σ-labelled transitionsystem S is a model of a formula ϕ when s0 ∈ [[ϕ]]SVal ; in this 
ase we write S,Val � ϕ. Thevaluation Val is omitted if the formula does not 
ontains free variables.It is known (see [Eme90℄ for a survey) that properties expressed in temporal logi
s LTL,CTL, and CTL∗ 
an be en
oded as µ-
al
ulus formulas and that there are formulas of the

µ-
al
ulus (for instan
e νX.〈a〉〈a〉X) that 
an not be written in CTL∗.Given two formulas ϕ1 and ϕ2, we often use the notation ϕ1 ≡ ϕ2 to say that ϕ1 isequivalent to ϕ2, meaning that for every labelled transition system S and valuation Val ,
[[ϕ1]]

S
Val = [[ϕ2]]

S
Val .It is standard to 
onsider the negation operator (¬) on µ-
al
ulus senten
es. Given aformula ϕ and a Σ-labelled transition system S and a valuation Val , this operator is de�nedby: [[¬ϕ]]S = S \ [[ϕ]]S .The following proposition is standard.Proposition 23 The following equivalen
es are true:

• ¬tt ≡ �
• ¬� ≡ tt

• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬〈a〉ϕ ≡ [a]¬ϕ

• ¬[a]ϕ ≡ 〈a〉¬ϕ

• ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)

• ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)Thanks to the proposition just above, the negation operator 
an not appear in µ-
al
ulussenten
es.Let us present some results on the µ-
al
ulus.Proposition 24 ([Koz82℄) Every formula of the µ-
al
ulus is equivalent to some guardedformula of the µ-
al
ulus.



22 Chapter 1. Preliminaries1.3.2 Model-Che
king and Satis�ability ResultsInformally, the task of 
he
king whether a �nite state transition system, S = 〈S,Σ, s0,∆S〉 isa model of a senten
e ϕ 
an be seen as two player parity game whose nodes are set of tuples ofthe form (s, ψ) where s ∈ S and ψ is a sub formula of ϕ. Positions of the player Eve 
ontainsub formulas of one of the forms tt , ϕ1 ∨ ϕ2, 〈a〉ψ. The other positions belong to the player
Adam. The initial position of the game is (s0, ϕ). The set of moves of the games are su
h that:
• There is no move from either (s, tt) or (s,�).
• From (s, ϕ ∧ ψ) as well as from (s, ϕ ∨ ψ) there are moves to (s, ϕ) and to (s, ψ).
• From (s, [a]ϕ) and from (s, 〈a〉ϕ) there are moves to (s′, ϕ, for every s′ su
h that s a

−→ s′.
• There is a move from (s, σX.ϕ(X)) to (s, ϕ(X))

• There is a move from X to (s, ϕ(X)) where D(X) = σX.ϕ(X)The a

eptan
e 
ondition is given by the parity fun
tion rank : Q→ N de�ned by:
rank(ψ) =







0 if ψ is not a variable
2× alt(D(X)) where ϕ = X and X is a ν-variable
2× alt(D(X)) + 1 where ϕ = X and X is a µ-variableOne 
an show that S is a model of a formula if player Eve has a winning strategy in thethe game. This gives an intuitive idea behind the following results.Theorem 25 ([EJ91, Tho97, Jur00℄) Let S = 〈S,Σ, s0,∆S〉 be a Σ-labelled transition sys-tem and let ϕ be a µ-
al
ulus formula. The model-
he
king problem for ϕ and S is solvable intime

O

(

|∆S | × |sub(ϕ)| ×

(

|S| × |sub(ϕ)|

⌊alt(ϕ)/2⌋

⌈alt(ϕ)/2⌉
))Theorem 26 ([Cas87, AD89, Sti96℄) Let S1 and S2 two bisimilar labelled transition sys-tems. For every µ-
al
ulus formula ϕ, S1 is a model of ϕ is and only if S2 is a model of

ϕ.Theorem 27 ([EJ91℄) The satis�ability problem for µ-
al
ulus formulas is solvable in expo-nential time. The 
onstru
tion of witness models is e�e
tive.In [EJ91, NW96℄, two player parity games are de�ned for the satis�ability problem of the
µ-
al
ulus. The authors shown that a µ-
al
ulus formula is satis�able if and only if there isa winning strategy for one of the two players in the game. A witness model for a formula ispresented as a winning strategy. We re
all that two player parity games are determined andstrategies are positional. It follows that witness models for formulas are �nite state automata.
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tive Normal FormDisjun
tive normal form formulas are spe
ial kinds of formulas. One restri
tion in disjun
tivenormal form formulas is that 
onjun
tions of the form 〈a〉ϕ ∧ 〈a〉ψ are not allowed. These
onjun
tions are in some sense deterministi
 as for example, there is not need to 
he
k whethera state of a transition system satis�es two formulas after the o

urren
e of an event; and amodel for a formula ϕ 
an be �easily� merged with a model of a formula ψ in order to build amodel for 〈a〉ϕ ∧ 〈b〉ψ. The other restri
tions are presented in De�nition 29.Let us present a modal operator [JW95℄ that extends the syntax of the µ-
al
ulus.De�nition 28 Let Γ be a set of formula. The operator (a)→Γ is de�ned by
(a)→Γ =

∧

ϕ∈Γ

〈a〉ϕ ∧ [a]
∨

ϕ∈Γ

ϕA formula of the form 〈a〉ϕ is equivalent to (a)→{tt , ϕ} and a formula of the form [a]ϕ isequivalent to (a)→∅∨ (a)→{ϕ}. This means that every µ-
al
ulus formulas 
an be rewrittenusing the operator (a)→Γ.De�nition 29 The set of disjun
tive formulas, dFµ is the smallest set de�ned by the following
lauses:
• tt , �, X belongs to dFµ.
• If ϕ,ψ ∈ dFµ then ϕ ∨ ψ ∈ dFµ; if moreover X does not o

ur in a sub formula of ϕ ofthe form X ∧ γ, then µX.ϕ(X), νX.ϕ(X) ∈ dFµ.
• Formula ϕ1 ∧ϕ2 ∧ . . .∧ϕn ∈ dFµ provided that every ϕi is in {tt ,�} or a formula of theform ϕi = (ai)→Θi with Θi ⊆ dFµ. It is required that for any event a there 
an be atmost one 
onjun
t of the form (a)→Γ among ϕ1, ϕ2, . . . , ϕn.Theorem 30 ([JW95℄) For every formula ϕ, there exists an equivalent disjun
tive formula

ψ.1.4 Alternating Tree AutomataWe present alternating tree automata [MS87℄ and non deterministi
 tree automata. Alter-nating tree automata re
ognize labelled transition systems. They are a main te
hni
al toolfor proofs and, in understanding of the µ-
al
ulus. Alternating tree automata have the sameexpressive power as the µ-
al
ulus in the sense that every µ-
al
ulus formula 
an be translatedinto an equivalent alternating tree automaton and re
ipro
ally. The de�nition of alternatingtree automata presented in this se
tion is di�erent from the one in [MS87℄. In the de�nitionpresented below, we use modal operators (〈〉, []) of the µ-
al
ulus in transition relations.De�nition 31 An alternating tree automaton is the stru
ture A = 〈Q,Σ, q0,∆,Acc〉 where
Q is a �nite set of states, Σ is an alphabet, q0 is the initial state, ∆ : Q → TF (Q,Σ) isa transition relation whi
h assigns a transition formula to ea
h state of the automaton, and
Acc is the parity 
ondition given by a fun
tion ΩA : Q → {0, . . . , k}. The set TF (Q,Σ) oftransition formulas is de�ned as follows:
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• tt and � are transition formulas.
• For every q ∈ Q, 〈a〉q, [a]q are transition formulas.
• for every q1, q2 ∈ Q, q1 ∧ q2 and q1 ∨ q2 are transition formulasAn alternating tree automaton as above a

epts labelled transition systems. The meaningof alternating tree automata 
an be de�ned using the game approa
h. To de
ide whether atransition system is a

epted by an alternating tree automaton, one 
an 
onsider a two playerparity game. Let S = 〈S,Σ, s0,∆S〉 be a Σ-labelled transition system. The a

eptan
e gameof A over S is the tuple G(A, S) = 〈N,NE , NA, T,AccG〉 where:
• NE = S×FE and FE ⊆ TF (Q,Σ) is the set of transition formulas of the form �, ϕ∨ψ,
〈a〉ϕ with ϕ,ψ ∈ TF (Q,Σ).

• NA = S × TF (Q,Σ) \NE

• There is no move from (s, tt) nor from (s,�), for every s ∈ Q.
• From (s, ϕ ∧ ψ) as well as from (s, ϕ ∨ ψ) there are moves to (s, ϕ) and to (s, ψ).
• From (s, [a]ϕ) and from (s, 〈a〉ϕ) there are moves to (s′, ϕ) for every s′ su
h that s a

−→ s′.
• There is a move from (s, q) to (s,∆(q)).
• AccG is the max-parity 
ondition 
hara
terised by the fun
tion ΩG : N → N de�ned by

ΩG(s, ϕ) =

{

0 if ϕ is not a state
ΩA(q) if ϕ = q is a stateWe say that A a

epts S (or S models A), and we write S ∈ L(A) or S � A, if there is awinning strategy for the player Eve in G(S,A).Theorem 32 ([Niw88, EJ91, Wil01℄) For every µ-
al
ulus formula ϕ there is an alternat-ing tree automaton Aϕ su
h that for every Σ-labelled transition system S:

S � ϕ if and only if S ∈ L(Aϕ).Conversely, for every alternating tree automaton A there is a µ-
al
ulus formula ϕA su
h thatevery Σ-labelled transition system P:
S ∈ L(A) if and only if S � ϕA.1.5 Frameworks for Dis
rete-Time ControlWe present the Ramadge et al. approa
h and the Arnold et al. approa
h to the dis
rete-time
ontrol problem. We re
all that in dis
rete-time 
ontrol, timing information are not expli
itin models of systems and spe
i�
ations. In the Ramadge et al. Approa
h spe
i�
ations arelinear-time properties des
ribed with an automaton on words. The Arnold et al. approa
h
onsiders bran
hing-time properties des
ribed with µ-
al
ulus formula.



1.5. Frameworks for Dis
rete-Time Control 251.5.1 The Ramadge et al. Approa
hThe 
ontroller synthesis problem 
onsidered by Ramadge and Wonham [RW89℄ 
onsists toprovide 
ontroller for a system (
alled the plant). The main goal is that the system resultingfrom the 
ombination of the plant with 
ontroller, the 
ontrolled system, satis�es the givenrequirement. In [RW89℄, Ramadge and Wonham 
onsider 
entralised and de
entralised 
on-troller synthesis problems with full and partial observability hypothesis on events. We onlypresent their framework for the 
entralised 
ontroller synthesis with total observation.In that framework, plants and 
ontrollers are deterministi
 �nite state automata over a setof events Σ partitioned into a set of 
ontrollable event Σc and a set of un
ontrollable events
Σu. Requirements 
ontrolled systems are given with regular languages (on words). Controllersnever forbid an o

urren
e of un
ontrollable event. The synthesis of a 
ontroller is e�e
tiveand polynomial in the size of the plant and the requirement. .Sin
e the works in [RW89℄, the 
ontrol problem has been studied in more powerful settings.Some of these studies are presented in the following.1.5.2 The Arnold et al. Approa
hThe framework of Arnold et al. [AVW03, ABPV05, AW07℄ for the supervisory 
ontrol 
onsidertransition system models and 
ontrol obje
tive des
ribed with alternating tree automata ontransition systems, or equivalently µ-
al
ulus formulas. There, the notions of 
ontrollability,observability and distinguishability are 
onsidered for 
entralised and de
entralised 
ontrollersynthesis problems. We will just present the framework for the 
entralised 
ontroller synthesiswhen the set of events Σ, o

urring in the plants are partitioned into a set Σc of 
ontrollableevents and a set Σu of un
ontrollable events.Plants and 
ontrollers are �nite state labelled transition systems (not ne
essarily deter-ministi
). A 
ontroller has to satisfy the untimed 
ontrol 
ondition (UCC) that requires thatit 
an not forbid any o

urren
e of an un
ontrollable event. This property for 
ontrollers 
anbe des
ribed with an alternating tree automaton (see below).The 
entralised 
ontroller synthesis problem is:given a plant P and two µ-
al
ulus formulas ϕ and ψ, does there exists a 
ontroller Rsatisfying the 
ondition (UCC) su
h that P ×R satis�es ϕ and R satis�es ψ?The solution to the 
entralised 
ontroller synthesis uses a notion of quotient of a 
ontrolobje
tive ϕ with a plant P. Be
ause a µ-
al
ulus formula 
an be translated into an equivalentalternating tree automaton on transition systems (see Theorem 32), Arnold et al. assumethat the 
ontrol obje
tive ϕ is des
ribed with an equivalent alternating tree automaton Aϕ.Then they provide a quotient operator Aϕ/P of Aϕ with a plant P. The quotient operationis de�ned in su
h a way that it satis�es the property presented in Proposition 33 just below.Proposition 33 ([AVW03, AW07℄) Given an alternating tree automaton A, two �nitestate transition systems P and R, there is an alternating tree automaton A/P su
h that:

R � A/P if and only if P ×R � A



26 Chapter 1. PreliminariesTo ensure R in the proposition above to be a 
ontroller, R should additionally satis�es theuntimed 
ontroller 
onditions (UCC). Arnold et al. [ABPV05℄ have shown that the 
ontrol
ondition (UCC) 
an be des
ribed with a µ-
al
ulus formula
νX.

∧

a∈Σu

〈a〉X ∧
∧

a∈Σc

[a]Xthat is equivalent to the one state alternating tree automaton B de�ned as follows:
B = 〈{q0},Σ, q0,∆,Acc〉 where
∆(q0) =

∧

a∈Σu

〈a〉q0 ∧
∧

a∈Σc

[a]q0.where Acc is the parity 
ondition given by a fun
tion rank that assigns the value 0 to thestate q0.Let us 
omment the transition formula of the one state modal automaton B. The formulahas two parts. The �rst part is the 
onjun
tion ∧a∈Σu
〈a〉q0. A state in whi
h this part istrue should (be
ause of the existential modality) have, for every un
ontrollable event from

Σu, an outgoing transition to a state in whi
h ∆(q0) is true again. The se
ond part is the
onjun
tion ∧a∈Σc
[a]q0; it requires every su

essor of a state (satisfying the formula), witha 
ontrollable event, to satisfy ∆(q0); it does not requires its models to have transitionslabelled with 
ontrollable events from Σc. The parity index of q0 is even and it is equal to 0.In 
onsequen
e every in�nite path in the a

eptan
e game is a

epted.As alternating tree automata are 
losed under interse
tion, a 
ontroller for a plant Punder a spe
i�
ation Aϕ should satisfy Aϕ/P ∩ Aψ ∩ B. This provides a hint of a proof forthe de
idability of the 
entralised 
ontroller synthesis problem.Theorem 34 ([AVW03, AW07℄) Given a plant P and two µ-
al
ulus formulas ϕ and ψ,the problem of 
he
king whether there exists a 
ontroller R satisfying the 
ondition (UCC) su
hthat P ×R � ϕ and R � ψ is de
idable. Moreover, the 
omputation of a witness 
ontroller ise�e
tive.1.6 Frameworks for Dense-Time Supervisory ControlWe present the approa
h of Madhusudan et al. [DM02℄ and the approa
h of Laroussinie etal. [BCL05℄ to the 
ontroller synthesis of dense-time systems. These approa
hes 
onsider timedautomata model [AD94℄ that we present in the next subse
tion.1.6.1 The Timed Automata ModelLetH be a set of 
lo
ks. A 
lo
k 
onstraint is a 
omparison of a 
lo
k, or the di�eren
e betweentwo 
lo
ks, with a 
onstant. Let GdsH be a set of 
lo
k 
onstraints. Clo
ks are real-valuedvariables. If v represents a valuation, v(h) represents the value of the 
lo
k h, (v+ t)(h) givesthe value of the 
lo
k h after a delay of t time units, and v[H := 0] resets every 
lo
k in H.



1.6. Frameworks for Dense-Time Supervisory Control 27De�nition 35 A timed automaton over (H,Σ) is a stru
ture P = 〈P ,H,Σ, p0,∆P ,Acc〉where P is a �nite set of states, Σ is an alphabet, p0 is the initial state, ∆P ⊆ P ×GdsH ×
Σ× 2H × P is the transition relation and Acc is the a

eptan
e 
ondition.A timed automaton is deterministi
 if there are no two distin
t transitions of the form p

g′,a,H′

−→

p′ and p
g′′,a,H′′

−→ p′′ su
h that g′′ and g′ 
an be satis�ed by the same valuation of the 
lo
ks.A timed automaton P as de�ned above represents a transition system whose states arepairs of the form (p, v) made of a state of the timed automaton and a valuation. Transitionsin the transition system are of the form (p, v)
t
−→ (p, v + t) or (p, v)

a
−→ (p′, v[H := 0]). Atransition (p, v)

t
−→ (p, v+ t) represents a delay (of amount t ∈ R+) that o

urs in the timedtransition system when it is in state p and the values of the 
lo
ks are given by v. A transition

(p, v)
a
−→ (p, v[H := 0]) indi
ates that the system moves from the state p to the state p′ whenthe event a o

urs; and then it immediately resets all the 
lo
ks in H. The latter transition ispossible if the timed transition system has a transition p

g,a,H
−→ p′ and the values of the 
lo
ks,given by v, satisfy the 
onstraint g.A timed automaton a

epts timed words. A timed word over an alphabet Σ is sequen
e

w = (ai, ti)i=1.. su
h that i < j implies ti ≤ tj.A run ρ, of a timed automaton over a timed word (ai, ti)i=1.. is a sequen
e of the form
ρ = (p0, v0)

a0,t0
−→ (p1, v1)

a1,t1
−→ . . .

ai,ti−→ (pi+1, vi+1) . . .with pi ∈ P , vi is a valuation of the 
lo
ks, for all i ≥ 0, satisfying the following requirements:
• p0 = p0 is the initial state of the automaton.
• v0(h) = 0 for all h ∈ H.
• for all i ≥ 0, there is a transition pi

gi,ai,Hi−→ pi+1 su
h that vi + ti − ti−1 satis�es gi and
vi+1 equals vi + ti − ti−1[Hi := 0].A run is a

epting if and only if its proje
tion on the states (P) of the timed automatonbelongs the a

eptan
e 
ondition (Acc) of the automaton. A timed word, w is a

epted by atimed automaton if and only if there is an a

epting run of the automaton over w.The language of a timed automaton, L(A) is the set of timed words over whi
h there isan a

epting run. Formally,

L(A) = {w |w is a timed word and A a

epts w}The following theorem presents some fundamental results on languages of timed automata.Automata in that theorem are timed automata with the Bü
hi a

eptan
e 
ondition. Theseresults are useful for understanding the results presented in the next subse
tion.Theorem 36 ( [AD94℄) Emptiness testing is de
idable for non deterministi
 timed au-tomata. Timed automata are 
losed under union and interse
tion. Non deterministi
 timedautomata are not 
losed under 
omplementation but deterministi
 timed automata are 
losedunder 
omplementation. The in
lusion testing between non deterministi
 timed automata isunde
idable but, it is de
idable to 
he
k whether a timed automata is in
luded in a determin-isti
 timed automata.



28 Chapter 1. Preliminaries1.6.2 The Madhusudan et al. Approa
h for Automata Spe
i�
ationMadhusudan et al. [DM02℄ 
onsider the 
ontroller synthesis for timed spe
i�
ations. A plant Pis a deterministi
 timed automaton over (HP ,Σ) where, HP denotes the set of 
lo
ks used bythe plant and the set of events Σ = Σu ∪Σc is partitioned into a set Σc of 
ontrollable eventsand a set Σu of un
ontrollable events. A 
ontroller S is a deterministi
 timed automaton over(HP ∪HS ,Σ) where, HS is a set of 
lo
ks disjoint from HP . A 
ontroller is 
ombined with theplant for satisfying a 
ontrol obje
tive.The notion of produ
t between timed automata formalises the 
ombination between sys-tems (the plant and the 
ontroller). This notion is de�ned as follows:De�nition 37 The produ
t of a timed automaton P = 〈P ,H1,Σ, p
0,∆P ,Acc1〉 with a timedautomaton S = 〈S,H2,Σ, s

0,∆S ,Acc2〉 is the timed automaton P × S = 〈P × S,H1 ∪

H2,Σ, (p
0, s0),∆,Acc〉 where, and ∆ is given by (p, s)

g,a,X∪Y
−→ (p′, s′) ∈ ∆ if and only if

p
g1,a,X
−→ p′, and s g2,a,Y−→ s′ with g representing the 
onjun
tion of g1 and g2.A 
ontroller satis�es the following timed 
ontrol 
onditions (TCC):(TCC) (C1) S has resets only in HS (i.e, if s g,a,H−→ s′, then H ⊆ HS).(C2) S does not restri
t un
ontrollable events (non restri
ting): whenever we have w ∈

L(P × S) and (w.(a, t)) ∈ L(P) with a ∈ Σu, then w.(a, t) ∈ L(P × S).(C3) S is non-blo
king : whenever we have w ∈ L(P × S) and (w.(b, t)) ∈ L(P), thereexists c ∈ Σ and t′ ∈ R+ su
h that (w.(c, t′)) ∈ L(P × S).A 
ontrol obje
tive is des
ribed by a timed automaton with Bü
hi a

eptan
e 
ondition. It
an des
ribe a set of undesired behaviours or a set of desired behaviours. The timed automata
an be deterministi
 or not.The 
ontroller synthesis against undesired behaviours is: given a plant P and a timedautomaton A, does there exists a 
ontroller S for P su
h that L(P × S) ∩ L(A) = ∅? The
ontrol synthesis against desired behaviours is: given a plant P and a timed automaton A,does there exists a 
ontroller S for P su
h that L(P × S) ⊆ L(A)?In Table 1, we present de
idability results [DM02℄ for the 
ontroller synthesis problemagainst undesired behaviours and the 
ontroller synthesis problem for desired behaviours; forde
idable 
ases, a �nite-state 
ontroller 
an be synthesized.Limited resour
es Unlimited resour
esDet. Cont. Obj Nondet. Cont. Obj. Det. Cont. Obj Nondet. Cont. Obj.Desired Undesired Desired UndesiredDe
idable Unde
idable De
idable De
idable Unde
idable Unde
idableTable 1: Controller Synthesis results for Madhusudan et al..Theses results do not only depend on whether the spe
i�
ation is deterministi
 or not; butthey also depend on some hypothesis made on the number of 
lo
ks and the 
onstants that
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ontroller; these latter parameters are 
alled the resour
es of the 
ontrollers.In the 
ase of limited resour
es, a maximal 
onstant in the 
ontroller is spe
i�ed and the set
HS is also spe
i�ed.1.6.3 The Laroussinie et al. Approa
h for Lν Spe
i�
ationLaroussinie et al. [BCL05℄ use the framework of timed automata to des
ribe plants and thetimed bran
hing-time logi
 Lν to des
ribe internal 
ontrol obje
tives.Syntax and Semanti
s of LνDe�nition 38 The logi
 Lν over the �nite set of 
lo
ks H, the set of identi�ers Var , and theset of events Σ is de�ned as the set of formulas generated by the following grammar:

ϕ ::= tt |� |ϕ ∨ ϕ |ϕ ∧ ϕ |h in ϕ |h ⊲⊳ c | 〈a〉ϕ | [a]ϕ | 〈δ〉ϕ | [δ]ϕ |Xwhere, a ∈ Σ is an event, h ∈ H is a 
lo
k variable, c ∈ Q≥0 is a 
onstant, X is a variable,
⊲⊳∈ {≤,≥, <,>}.The logi
 Lν allows for the re
ursive de�nition of formulas by in
luding a set Var ofvariables. The formula asso
iated with ea
h of the identi�ers is spe
i�ed by a de
laration D;In other words, the de
laration D assigns a Lν formula to ea
h identi�er. For an identi�er X,we write Xdef

= ϕ if D(X) = ϕ. Intuitively X stands for the largest solution of the equation
X
def
= ϕ.A formula is interpreted over the semanti
s of timed automaton. From what has pre
eded,we use the notion P �D ϕ to say that the timed automaton P is a model of ϕ with respe
t tothe de
laration D. Let us take a timed automaton P, whose set of 
lo
ks K is disjoint fromthe set of 
lo
ks H o

urring in formulas. Formulas are interpreted over extended states of theform (p, v) where, p is a state of P, v is a valuation of all 
lo
ks in K ∪ H. The satisfa
tionrelation �D is the largest relation satisfying the following impli
ations:
• it is true that P, (p, v) �D tt .
• it is false that P, (p, v) �D �.
• if P, (p, v) �D ϕ ∨ ψ then P, (p, v) �D ϕ or P, (p, v) �D ψ

• if P, (p, v) �D ϕ ∧ ψ then P, (p, v) �D ϕ and P, (p, v) �D ψ

• if P, (p, v) �D h ⊲⊳ c then v(h) ⊲⊳ c.
• if P, (p, v) �D [a]ϕ then for all p

g,a,H
−→ p′ su
h that v satis�es g we have P, (p′, v[H :=

0]) �D ϕ.
• if P, (p, v) �D 〈a〉ϕ then there is p

g,a,H
−→ p′ su
h that v satis�es g and P, (p′, v[H :=

0]) �D ϕ.
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• if P, (p, v) �D [δ]ϕ then for all t ∈ R+ P, (p, v + t) �D ϕ.
• if P, (p, v) �D 〈δ〉ϕ then there is t ∈ R+ su
h that P, (p, v + t) �D ϕ.
• if P, (p, v) �D h inϕ then P, (p, v[{h} := 0]) �D ϕ

• if P, (p, v) �D X then P, (p, v) �D D(X)Any relation satisfying the above impli
ations is referred to as a satis�ability relation. Therelation �D is the union of all satis�ability relations.The 
ontrol problemEvents are 
ontrollable or non 
ontrollable. A plant P is a timed automaton that is determin-isti
 with respe
t to 
ontrollable events. At any time and in any state, the time elapses or anevent o

urs. The plant does not 
ontrol the o

urren
es of un
ontrollable events.The 
ontrol obje
tive is a formula ϕ of Ldetν (Ldetν is a deterministi
 fragment of Lν). Thefragment Ldetν ensures that the 
onjun
tions of Ldetν formulas are in some sense deterministi
and thus, they 
an be merged safely. By this way, a 
ontroller against a 
ontrol obje
tive ϕ∧ψwill �easily� 
ombine a 
ontroller against ϕ and a 
ontroller against ψ.A 
ontroller for a plant is a fun
tion f that during the exe
ution of the system 
onstantlygives information about what should be done in order to ensure the 
ontrol obje
tive. A 
on-troller 
an not prevent un
ontrollable events from o

urring; but it 
an disable a 
ontrollableevent at any time. We write f(P) for the 
ontrolled system.The 
ontrol problem 
onsidered by Laroussinie et al. is the following.Given a timed automaton P, the plant, and a Ldetν formula ϕ, a (deterministi
) 
ontrolobje
tive, is there a 
ontroller f su
h that f(P) � ϕ?The main result of Laroussinie et al. is that the 
ontrol problem 
an be redu
ed to thestandard model-
he
king problem. For that purpose, from a Ldetν 
ontrol obje
tive ϕ, theformula ϕ =
∨

e∈Σc∪{λ}
ϕe is de�ned. For a 
ontrollable event ac the formula ϕac will hold whenthere is a 
ontroller whi
h ensures ϕ and whi
h starts by enfor
ing the event ac. The formula

ϕλ that will hold when there is a 
ontroller whi
h ensures ϕ and whi
h starts by delaying.The 
onstru
tion of these new formulas involves the introdu
tion a new modal operator [δ〉that 
an not be des
ribed using a Lν formula and whose semanti
s is the following.
P, (p, v) �D ϕ[δ〉ψ if and only if either ∀t ∈ R+, P, (p, v + t) �D ϕ or, ∃t ∈ R+ su
h that

P, (p, v + t) �D ψ and ∀0 ≤ t′ < t, P, (p, v + t) �D ϕ.The resulting logi
 (Lν augmented with [δ〉), Lcontν enables to express dense-time 
ontrolrequirement: some property is true for a subset of the states of the plant that are rea
hableby time elapsing before a 
ontrollable a
tion leading to good states is possible. Thus, 
he
kingthe existen
e of a 
ontroller for a timed automaton against a Ldetν 
ontrol obje
tive is redu
edto 
he
king whether the timed automaton satis�es a dense-time 
ontrol requirement whi
h isitself des
ribed with a Lcontν formula.



1.6. Frameworks for Dense-Time Supervisory Control 31Theorem 39 ([BCL05℄) For all ϕ ∈ Ldetν and a timed automaton P, there exists a 
ontroller
f su
h that f(P) �D ϕ if and only if P �D ϕ.The de
idability of the 
ontrol problem (the 
onstru
tion of a witness 
ontroller is note�e
tive) 
omes from the following theorem.Theorem 40 ([BCL05℄) Given ψ ∈ Lcontν , and a timed automaton P, it is EXPTIME-
omplete to de
ide whether P is a model of ψ.
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Chapter 2Timed Pro
essesIn rea
tive real-time systems, the 
orre
tness of the tasks they perform depends not only uponlogi
al 
orre
tness, but also upon the times at whi
h the tasks are performed. For re
ordingthe duration of a task, we 
an use an event that is triggered at the beginning of the task andanother event that is triggered when the task ends; then the duration of the task will be thedi�eren
e between the time at whi
h the termination event happens and the time at whi
hthe beginning event happens. If there are several tasks in the system, we 
ould imagine thatthere are as many start-events as tasks. The dynami
s of a real-time system 
an be des
ribedthrough the variation of its tasks. A variation 
an be 
onstrained with the o

urren
e of eventsand/or timing information.In this 
hapter, we 
onsider models for a 
lass of real-time systems and models for repre-senting their behaviours. We 
alled our models timed pro
esses. Timed pro
esses have lo
al
lo
ks ea
h asso
iated to an event and su
h a 
lo
k gathers the time elapsed sin
e the lasto

urren
e of the 
orresponding event. A timed pro
ess is a �nite state labelled transitionsystem whose transitions are labelled with 
onstraints on 
lo
ks and events. A 
onstraint on
lo
ks is just a 
onjun
tion of 
omparisons of values of a 
lo
k or the di�eren
e between two
lo
k values, with an integer 
onstant. The latter is are 
alled diagonal 
onstraint.Clo
k are interpreted over real numbers. The value of ea
h 
lo
k grows 
ontinuously andwith the same rate as the time unless it is reset. A timed pro
ess is a �nite representation ofall the behaviours of a real-time system. A behaviour of a real-time system is a su

ession ofstates of its timed pro
ess paired with the values of 
lo
ks. When the system is in some state,the time elapses 
ontinuously (the values of the 
lo
ks too) until an event o

urs. Then, thepro
ess instantaneously sele
ts a transition labelled with that event and 
he
ks whether the
onstraint on the 
hosen transition is satis�ed by the values of 
lo
ks before it resets the 
lo
kasso
iated to the event and moves to the target state of the transition. If the 
onstraint is notsatis�ed, the pro
ess does not 
hange the state.We will use transition systems to represent the semanti
s (set of behaviours) of timedpro
esses. A transition in the semanti
s of a timed pro
ess will be labelled with an event ora valuation of 
lo
ks; a state will be a pair made of a state of the timed pro
ess and thevalues of the 
lo
ks. As 
lo
ks values are real-numbers, semanti
s are in�nite state labelledtransition systems, and ea
h state has in�nitely many outgoing transitions. Be
ause in�nite33
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essesmodels are di�
ult to handle, we introdu
e two representations for semanti
s 
alled the M -a
tion representation and the M -region representation.The M -a
tion representation will be obtained from the semanti
s by repla
ing ea
h tran-sition labelled with a valuation by a transition labelled with 
anoni
al and atomi
 
onstraintssatis�ed in that valuation. We will require 
onstraints to use 
onstants lower thanM . As therewill be �nitely many 
anoni
al and atomi
 
onstraints, ea
h state will have �nitely many out-going transitions, but there will still be in�nitely many states in M -a
tion representations.Then, we introdu
eM -region representation a state of whi
h is a state of the underlying timedpro
ess paired with a M -region. A region is just a set of �equivalent� valuations. There are�nitely many regions and then,M -region representations are �nite stru
tures suitable suitablefor veri�
ation purposes. As we will show, using bisimulation relation, M -region representa-tions preserve behavioral properties of the semanti
s.We will 
onsider that systems 
ommuni
ate in a syn
hronous mode. For 
ommuni
atingsystems in syn
hronous mode, an event must happen at the same time in all the systems inorder to be 
onsidered. We will assume that the 
ommuni
ating devi
es will be 0-delay. Wewill formalise the 
ommuni
ation by de�ning a produ
t operation between timed pro
esses.We will show that the semanti
s of the produ
t of two timed pro
esses is �the same� as theprodu
t of the semanti
s of that pro
esses.A natural and fundamental problem that arises when de�ning models for systems is therea
hability problem. The rea
hability problem requires to 
he
k if a target state 
ould berea
hed from a sour
e state when a system exe
utes. There are two approa
hes to this problem:the forward analysis, and the ba
kward analysis. We will present an algorithm based on theM -region representation that is 
orre
t for the ba
kward and the forward approa
hes whateveris the nature or the 
onstraint (general or diagonal free). But 
onsidering the zone-basedrepresentation of the timing 
ontext (a zone is just a set of valuations satisfying a 
onstraint),we show the in
orre
tness of the forward analysis algorithm when diagonal 
onstraints areauthorised in the timed pro
esses.Related Results: All results presented in this se
tion are known. Timed pro
essesare nothing else but event-re
ording automata [AFH99℄ without an a

eptan
e 
onditionthese in turn are a sub
lass of timed automata [AD94℄. The rea
hability problem for timedautomata has been 
onsidered using region abstra
tion [ACD+92, LY97℄ and zone abstra
-tion [LPY97, BY04℄ and algorithms for the rea
hability problem have been implemented inveri�
ation tools like Uppaal [LPY97, BLL+96, BDL04℄ or Kronos [BTY97, Yov98℄. Bouyerhas shown [Bou03℄ (see also [BLR05℄) the in
orre
tness of a zone-approa
h for the rea
habilityproblem of timed automata with diagonal 
onstraints.This 
hapter is organised as follows. In the next se
tion we 
onsider 
lo
ks, 
onstraints, wealso present de
omposition of 
onstraints into atomi
 
onstraints. In Se
tion 2.2 we presentregions and their properties. Zones and their operations are presented in Se
tion 2.3. In Se
-tion 2.4, we de�ne timed pro
esses, their semanti
s and representations of semanti
s. We usesome properties of regions to show that M -region representation 
an be used instead of thesemanti
s. We present the the produ
t of timed pro
esses in Se
tion 2.5, and in Se
tion 2.6we 
onsider the rea
hability analysis.



2.1. Clo
k, Valuation, Constraints 352.1 Clo
k, Valuation, ConstraintsWe de�ne 
lo
ks that are real numbers valued variables. We also de�ne 
lo
k 
onstraints andwe present their de
omposition into atomi
 
lo
k 
onstraints.2.1.1 Clo
ks and ValuationsClo
ks are variables evaluated over real numbers. There are two operations on time, the timeelapse operation that gives the value of the 
lo
k after a delay and the reset operation thatsets the value of a 
lo
ks to 0.Let R+ be the set of non negative real numbers. We 
onsider H = {h1, h2, . . . } a set of
lo
ks variables (or 
lo
ks for simpli
ity).De�nition 41 A valuation on a set of 
lo
k H is a total fun
tion v : H → R+.The symbol V represents the set of valuations. Given a valuation v ∈ V, and a 
lo
k h ∈ H,the valuation v+ t is de�ned by [v+ t](h) = v(h)+ t and, the valuation v[h := 0] is de�ned by
v[h := 0](h′) = 0 if h = h′ else v[h := 0](h′) = v(h′). We say that a valuation v is a su

essorof a valuation v′ if v = v′ + t for some t ∈ R+.Example: Let H = {h1, h2} be a set of two 
lo
ks. In Table 2, we present some valuationson h are some valuation on H.
{

v0(h1) = 0
v0(h2) = 0

{

v1(h1) = 0.35
v1(h2) = 0.35

{

v2(h1) = 0.35
v2(h2) = 0

{

v3(h1) = 0.85
v3(h2) = 0.50

{

v4(h1) = 0
v4(h2) = 0.50

{

v5(h1) = 0.35
v5(h2) = 0.85Table 2: Examples of valuations.These valuations are su
h that v1 = v0 + 0.35, v2 = v1[h2 := 0], v3 = v2 + 0.50, v4 =

v3[h1 := 0], v5 = v4 + 0.35 and v2 = v5[h2 := 0]. In Figure 2 we give another representationsof these valuations in Cartesian referen
e.
�2.1.2 ConstraintsConstraints are 
onjun
tions of simple 
onstraints; and a simple 
onstraint is a 
omparisonof a 
lo
k with an integer (diagonal free simple 
onstraint) or a 
omparison of the di�eren
ebetween two 
lo
ks with and integer. Diagonal free 
onstraints use only diagonal free simple
onstraints. Constraints are interpreted over valuations. The semanti
s of a 
onstraint is the setof valuations satisfying it. We will also 
onsider two types of atomi
 
onstraints : re
tangular
onstraints and triangular 
onstraints.
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Figure 2: Representation of valuations in Cartesian referen
e.De�nition 42 A simple 
onstraint de�ned on a set of 
lo
ks H is an equation of the form
h− h′ ⊲⊳ n or h ⊲⊳ n where n ∈ N, ⊲⊳ is one of {<,≤,≥, >} and h, h′ ∈ H.A diagonal free simple 
onstraint is a simple 
onstraint of the form h ⊲⊳ n.De�nition 43 A 
lo
k 
onstraint over a set of 
lo
ks H is a 
onjun
tion of simple 
onstraints.
ΦH , denotes the set of 
lo
k 
onstraints over H. A diagonal-free 
lo
k 
onstraint is a 
lo
k
onstraint that uses only diagonal free simple 
onstraints. GdsH denotes the set of diagonal-free 
lo
k 
onstraints over H.We will often write h = n or h − h′ = n as an abbreviation of h ≤ n ∧ h ≥ n. We alsowrite h− h′ = n to represent the 
onstraint h− h′ ≤ n ∧ h− h′ ≥ n.Later we 
onsider two spe
ial 
lo
k 
onstraints tt and � de�ned by: tt =

∧

h∈H h ≥ 0 and� =
∧

h∈H h < 0.The notion of a 
onstraint satis�ed in a given valuation denoted v � g is de�ned indu
tivelyas follows:
• v � h ⊲⊳ n if and only if v(h) ⊲⊳ n
• v � h− h′ ⊲⊳ n if and only if v(h)− v(h′) ⊲⊳ n
• v � g1 ∧ g2 if and only if v � g1 and v � g2The meaning of a 
onstraint g, denoted [[g]], is the set of valuations in whi
h it is satis�ed.Clearly, [[g]] = {v : v � g}. It be
omes obvious that [[tt ]] = H → R+ and [[�]] = ∅.De�nition 44 A 
onstraint g is in
onsistent if [[g]] = ∅.De�nition 45 The bound of a 
onstraint g, denoted by Mg, is the maximal 
onstant thatappears in it. The bound of a set of 
onstraints is the maximal value among the bounds of
onstraint it 
ontains. A set of 
onstraints isM -bounded if every 
onstant in it is smaller than

M .



2.1. Clo
k, Valuation, Constraints 37Now we 
onsider atomi
 
onstraints and we show how to de
ompose a 
onstraint into an�equivalent� set of atomi
 
onstraints.De�nition 46 For a integer M ∈ N, a M -re
tangular 
onstraint is a 
onjun
tion of the form
∧

h∈H gh where gh is a 
onstraint of the form c < h < c + 1 or h = c or h > M with
c ∈ N ∩ [0..M [.The set of all M -re
tangular 
onstraints is denoted by AgdsH(M) . The symbol AgdsHwill denote the set ⋃M∈N

AgdsH(M)De�nition 47 A M -triangular 
onstraint is a 
onjun
tion of the form ∧

h∈H gh ∧
∧

(h,h′)∈H2 gh,h′ where gh,h′ is a 
onstraint of the forms c < h − h′ < c + 1 or h − h′ = cor h− h′ > M and gh is of the form c < h < c+ 1 or h = c or h > M with c ∈ N ∩ [0..M [.The symbol TgdsH(M) denotes the set of all of M -triangular 
onstraints. The symbol
TgdsH denotes the set ⋃M∈N

TgdsH(M).Notation: We often use the symbol ĝ to denote a 
onstraint in AgdsH(M) or TgdsH(M)for some M . Later the terms atomi
 
onstraints will often be used in pla
e of re
tangular
onstraints or triangular 
onstraints.Let us �rst re
all the following fa
t resulting from de�nitions of atomi
 
onstraints.Fa
t 48 (atomi
ity) Let M ∈ N be a 
onstant.
• ∀ĝ, ĝ′ ∈ TgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅

• ∀ĝ, ĝ′ ∈ AgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅

• ∀(ĝ, ĝ′) ∈ AgdsH(M)× TgdsH(M), either [[ĝ′]] ∩ [[ĝ]] = ∅ or [[ĝ′]] ⊆ [[ĝ]]The �rst two items state that either the semanti
s of two atomi
 
onstraints of the samenature are equal, or they are disjoint. The last item of the above fa
t states that the semanti
sof a triangular 
onstraint is either in
luded in the semanti
s of a re
tangular 
onstraints, orthe two semanti
s are disjoint.Example: In Figure 3,we illustrate the 
on
epts of 
onstraints and diagonal free 
onstraints.The 
onstraints g1 and g3 are general 
onstraints while the 
onstraint g2 is diagonal free.Moreover [[g3]] = [[g1]] ∧ [[g2]]. The 
onstraint g2 is a re
tangular 
onstraint in AgdsH(2) andthe 
onstraint g3 is a triangular 
onstraint. �Normalization and Re
tangularisation Until the end of this subse
tion we 
onsider thede
omposition of diagonal free 
onstraint into set of re
tangular 
onstraints. We will need to
onsider 
onstraints that do not involve 
onstants greater than a �xed bound. For that purpose,we present the normalisation operation normN that we use later to de
ompose 
onstraints.De�nition 49 Given N ∈ N, the N -normalization of a simple 
onstraint C is the 
onstraint
normN(C) de�ned by :
• normN (h ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
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g1 = 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2 ∧−1 ≤ ha − hb ≤ 1

g2 = 1 < ha < 2 ∧ 0 < hb < 1

g3 = 1 < ha < 2 ∧ 0 < hb ≤ 1 ∧−1 ≤ ha − hb ≤ 1

Figure 3: Illustration of 
onstraints and diagonal free 
onstraints.
• normN (h− h′ ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
• normN (h ⊲⊳ n) = h > N if ⊲⊳∈ {>,≥} and n > N .
• normN (h− h′ ⊲⊳ n) = h− h′ > N if ⊲⊳∈ {>,≥} and n > N .
• In the other 
ases normN does not modify the 
onstraint.Given a 
onstraint g and an integer N , the N -normalization of g, normN (g) is obtainedby normalizing ea
h simple 
onstraint o

urring in g.Lemma 50 Let C, a diagonal-free simple 
onstraint, there is a 
onstant M su
h that:
• for every N ≥M , [[normM(C)]] = [[normN(C)]] = [[C]]

• for every N < M , [[normM(C)]] ( [[normN(C)]]Proof1. When C has the form h ⊲⊳ n with ⊲⊳∈ {<,≤} and 
onsider M = n,(a) Let N ≥ M , normN(h ⊲⊳ n) is equal to normM(h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , normN(h ⊲⊳ n) = h ≥ 0. Clearly [[normM (C)]] ( [[normN (C)]].2. When C has the form h ⊲⊳ n with ⊲⊳∈ {>,≥} and 
onsider M = n,(a) Let N ≥ M , normN(h ⊲⊳ n) is equal to normM(h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , then normN(h ⊲⊳ n) = h ⊲⊳ N and [[normM (C)]] = h ⊲⊳ M . Clearly,
[[normM (C)]] ( [[normN (C)]].
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�Let us re
all that for a 
onstraint g, Mg denotes the maximal 
onstant o

urring in g.We use the lemma above to show that the M -normalisation of a 
onstraint does modify itssemanti
s when M is greater or equal to Mg.Proposition 51 Let g ∈ GdsH,

• for every M ≥Mg, [[normM(g)]] = [[normN (g)]] = [[g]]

• for every M < Mg, [[normM(g)]] ( [[normN (g)]]ProofBy de�nitions g =
∧

i=1..nCi and, [[normM(g)]] =
⋂

i=1..n [[NormM(Ci)]]. As Mg is greaterthat the 
onstant used in every Ci, we get, using 50 that for M ≥ Mg, [[normM(g)]] =
[[normN (g)]] = [[g]]and for M < Mg, [[normM(g)]] ( [[normN(g)]] �Example: Considering the 
onstraint g = 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2 , we present in Table 3the results of M -normalisation operations depending on the value of M . It is easy to see thatM normM(g)0 tt1 tt2 0 ≤ hb ≤ 23 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2Table 3: Illustration of the normalisation operation.for every M < 2, [[g]] ⊆ [[normM (g)]] and for every M ≥ 2, [[g]] = [[normM (g)]] �To obtain the de
omposition of diagonal 
onstraints, we �rstly de
ompose diagonal free
onstraints into a set (possibly in�nite) of unbounded re
tangular 
onstraints. Then, we usethe normalisation pro
edure above on ea
h atomi
 
onstraint in that set to have a �nite setof bounded re
tangular 
onstraints. The de
omposition of diagonal free 
onstraints into a setof unbounded re
tangular 
onstraints is performed in two steps: in Lemma 52 we de
omposesimple diagonal free 
onstraints and we use that de
omposition in Proposition 53 to de
omposediagonal free 
onstraints.Lemma 52 For every diagonal free simple 
onstraint C, there is a set Rect(C) of atomi
diagonal free simple 
onstraints su
h that [[C]] =

⋃

C′∈Rect(C) [[C ′]].ProofLet C be a diagonal free 
onstraint C. We 
onstru
t a set Rect(C) depending on the form of
C; and we show that for every v ∈ V, v � C if and only if there is C ′ ∈ Rect(C) su
h that
v � C ′.1. if C is of the form h < n then set Rect(C) = {i < h < i+ 1, h = i | i = 0..n− 1}2. if C is of the form h ≤ n then set Rect(C) = {i < h < i+1, h = i | i = 0..n−1}∪{h = n}3. if C is of the form h > n then set Rect(C) = {i < h < i+ 1, h = i+ 1 | i = n..∞}
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esses4. if C is of the form h ≥ n then set Rect(C) = {i < h < i+1, h = i+1 | i = n..∞}∪{h = n}The proof that in ea
h 
ase, [[C]] = ∪C′∈Rect(C)[[C
′]], is obvious. �We observe that simple 
onstraints of the form h > n to h ≥ n are de
omposed into in�niteset of 
onstraints.Proposition 53 For every diagonal-free 
onstraint g, there is a set Rect(g) of re
tangular
onstraints su
h that [[g]] =

⋃

ĝ∈Rect(g) [[ĝ]].ProofThe result is a 
onsequen
e of the Lemma 52 above as a 
onstraints is a 
onjun
tion of simple
onstraints. �We say that Rect(g) is the unbounded re
tangular de
omposition of g.Now that we have de
omposed diagonal free 
onstraints into sets (possibly in�nite) ofunbounded re
tangular 
onstraints, we will apply the normalisation operation on ea
h re
tan-gular 
onstraint in these sets; the result of the appli
ation of the normalisation operation withrespe
t to a 
onstant M will be �nite set of M -re
tangular 
onstraints. But we need to showthat the semanti
s of the 
onstraint resulting from the appli
ation of the M -normalisationoperation on a simple diagonal free 
onstraint is the same as the union of the semanti
s ofre
tangular 
onstraints in its unbounded re
tangular de
omposition.Lemma 54 For every diagonal free simple 
onstraint C of the form h ≤ n or h ≥ n, for every
M ∈ N, [[normM(C)]] = ∪C′∈Rect(C)[[normM(C ′)]].ProofIf C is of the form:
• h ≤ n,� If M ≥ n then normM(C) = C and for every C ′ ∈ Rect(C), normM(C ′) = C ′.Then we get the result.� If M < n then normM(C) = tt . Let C ′ be h = n. From Lemma 52, we get that

C ′ ∈ Rect(C) and normM(C ′) = tt ; then we get that ⋃C′∈Rect(C) [[normM(C ′)]] =

tt and [[normM (C)]] = ∪C′∈Rect(C)[[normM(C ′)]].
• h ≥ n,� The 
ase when M ≥ n is obvious be
ause every 
onstraint in Rect(C)∪ {C} is notmodi�ed by normM .� The 
ase when M < n is also obvious be
ause norm(C) = h > M and

normM(C ′) = h > M for every C ′ ∈ Rect(C)

�Now we 
an easily extend results in the lemma above to diagonal free 
onstraints.



2.2. Regions 41Proposition 55 For every diagonal-free 
onstraint g, for every M ∈ N, [[normM(g)]] =
⋃

ĝ∈Rect(g) [[normM (ĝ)]].ProofIt is a 
onsequen
e of Lemma 54 above and Proposition 53 �De�nition 56 Given g ∈ GdsH and an integer M ∈ N, we de�ne the set
RectM (g) = {normM (ĝ) | ĝ ∈ Rect(g)}From Proposition 51, we get that every diagonal-free 
onstraint using 
onstant smallerthan an integer M 
an be de
omposed into a �nite set of M -re
tangular 
onstraints.Proposition 57 For every 
onstraint g ∈ GdsH, for every M ∈ N su
h that M ≥ Mg wehave that: [[g]] =

⋃

ĝ∈RectM (g) [[ĝ]].ProofFrom Proposition 55 [[normM (g)]] =
⋃

ĝ∈Rect(g) [[normM(ĝ)]] or equivalently [[normM(g)]] =
⋃

ĝ∈RectM (g) [[ĝ]]. From Proposition 51 for M ≥ Mg, [[g]] = [[normM(g)]] and we get the result.
�Remark: The same kind of property 
an be established for general 
onstraints and triangular
onstraints. The semanti
s of every re
tangular 
onstraint is equal to the union of semanti
sof some triangular 
onstraints. Then, every M -bounded diagonal free atomi
 
onstraint 
anbe de
omposed into an equivalent set of M -bounded triangular 
onstraints.From the remark above we have the following proposition that we leave without proof.Proposition 58 Every 
onstraint or diagonal free 
onstraint 
an be de
omposed into a �niteequivalent set of triangular 
onstraints.2.2 RegionsWe present a partitioning of the valuations into a �nite number of equivalen
e 
lasses 
alledregions. Valuations in the same region must satisfy the same 
lo
k 
onstraints, their timesu

essors must also satisfy the same 
lo
k 
onstraints, and they must satisfy the same 
lo
k
onstraints after a 
lo
k is reset. Depending on the nature of the 
lo
ks 
onstraints, region arede�ned di�erently but they agree on a same set of properties.Given a valuation v, [v] denotes the equivalen
e 
lass (region) of v. We also use the letter rto represent a region. Given a region r, we de�ne r+ t = {[v+ t] | v ∈ r}, r↑= {r+ t | t ∈ R≥0}and r[h := 0] = {[v[h := 0]] : v ∈ r}.The operation r + t returns the set of regions that 
an be rea
hed from valuations in rafter t time units. The operation r↑ gives the set of regions that 
an be rea
hed when thetime elapses in r. The operation r[h := 0] gives the unique region after the 
lo
k h is reset inevery valuation of r. We write r ⊆ g for r ⊆ [[g]].
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essesGiven a set G of 
onstraints, we will present 
onstru
tions for di�erent types of sets ofregions Reg that satisfy the following properties:P1 ∀g ∈ G, r ∈ Reg, either r ⊆ [[g]] or [[g]] ∩ r = ∅.P2 ∀r, r′ ∈ Reg, if there exists some v ∈ r and t ∈ R≥0 su
h that v + t ∈ r′, then for every
v′ ∈ r there is some t′ ∈ R≥0 su
h that v′ + t′ ∈ r′.P3 ∀r, r′ ∈ Reg,∀h ∈ H, if r[h := 0] ∩ r′ 6= ∅, then r[h := 0] ⊆ r′.Now we will present de�nitions of regions for diagonal-free 
onstraints and general (diag-onal) 
onstraint.2.2.1 Regions for Diagonal Free ConstraintsThe de�nition of a region we present here has been introdu
ed by Alur and Dill [AD94℄for analysing timed automata using only diagonal -free 
onstraints. The equivalen
e relationbetween valuations is de�ned with respe
t to some integer M representing the maximal valueused in 
onstraints. The de�nition of that relation is somehow related to the de�nition ofatomi
 
onstraints as atomi
 
onstraints 
an not be de
omposed into smaller 
onstraints.Thus, two equivalent valuations agree on the integral part of ea
h 
lo
k whose values aresmaller than M and they also agree on the order on the fra
tional part of the values of the
lo
ks.For a real number n let ⌊n⌋ denote the integral part of n and {n} denote the fra
tionalpart of n.Let M be a natural number. Consider the parametrised binary relation ∼M⊆ VH × VHover valuations de�ned by, v ∼M v′ if:1. v(h) > M if and only if v′(h) > M for ea
h h ∈ H;2. if v(h) ≤M , then ⌊v(h)⌋ = ⌊v′(h)⌋ for every h ∈ H;3. if v(h) ≤M , then {v(h)} = 0 if and only if {v′(h)} = 0 for every h ∈ H, and;4. if v(h) ≤M and v(h′) ≤M , then {v(h)} ≤ {v(h′)} if and only if {v′(h)} ≤ {v′(h′)} forevery h, h′ ∈ H.Proposition 59 ([AD94℄) The relation ∼M is an equivalen
e relation over the set of valu-ations with at most 23|H|−1 × |H|!× (M + 1)|H| equivalen
e 
lasses.ProofThe relation ∼M is de�ned as a 
onjun
tion of four properties. Ea
h property de�nes anequivalen
e relation; let us denote them by ∼M1 , . . . ,∼M4 , respe
tively. For ea
h of these fourrelations we will give an upper bound on the number of its equivalen
e 
lasses. The produ
tof these bounds will give an upper bound on ∼M as the later is the interse
tion of the fourequivalen
e relations.The relation de�ned by the �rst 
ondition has 2|H| equivalen
e 
lasses, as the only thingthat 
ounts is whether the value of a 
lo
k is bigger thanM or not. Similarly the third relation
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e 
lasses. The number of 
lasses of the se
ond relation is (M+1)|H| as thereareM+1 possible integer values of interest. Finally, the number of 
lasses of the fourth relationis bounded by the number of permutations of the set of 
lo
ks multiplied by 2|H|−1 as for everytwo 
lo
ks 
onse
utive in a permutation we need to de
ide if they are equal or if the se
ond isstri
tly bigger than the �rst.Summarizing, we get 23|H|−1|H!|(M + 1)|H|.
�We useReg(M) (or Reg for short) to represent the set of equivalen
e 
lasses of the relation

∼M .De�nition 60 A region [AD94℄ is an equivalen
e 
lass of the relation ∼M⊆ VH×VH de�nedabove.In Figure 4 we illustrate region for diagonal free 
onstraints for the maximal 
onstant
M = 2. In Figure 4 valuations earlier presented in Table 2 are not equivalent. A region inthe �gure is either a 
orner point (for example (0, 2)), an open line segment (for example
0 < h1 = h2 < 1) or an open box (for example 0 < h1 < h2 < 1).

0

1

2

0 1 2
h1

h2

v0

v4

v3

v2

v1

v5

Figure 4: Region illustration.From the de�nition of ∼M , it 
omes that an equivalen
e 
lass 
an be represented using atriangular 
onstraint in g. A

ording to the de�nition of ∼M , two valuations that belong tothe same equivalen
e 
lass satisfy 
onstraint of the form:
• h = ih or ih < h < ih + 1 for ea
h h ∈ H where ih ∈ {0, 1, . . . ,M} and we assume
M + 1 =∞. This is a 
onsequen
e of ∼M1 , ∼M2 , ∼M3 .

• h − h′ = ihh′ or ihh′ < h − h′ < ihh′ + 1 for ea
h 
ouple (h, h′) ∈ H2 su
h that h ⊲⊳ Mand h′ ⊲⊳ M with ⊲⊳∈ {=, <}. This is a 
onsequen
e of ∼M4 .
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essesProposition 61 Let G be a set ofM -bounded 
onstraints then Reg(M) satis�es the P1, P2,P3 mentioned above.ProofWe show P1 in the �rst item, P2 in the se
ond item and P3 in the last item.1. Let g ∈ G, from Proposition 57 let [[g]] =
⋃

gi∈RectM (g) [[ĝi]]. Ea
h ĝi is a re
tangular
onstraint. [[g]]∩ r =
⋃

gi∈RectM (g) [[ĝi]]∩ r). From Fa
t 48 there is at most one i su
h that
r interse
ts ĝi. It follows that r interse
ts a 
onstraint ĝi of RectM (g) if and only if ĝi
ontains r. We have that if v � r then v � g.2. Let v, v′ ∈ r, adding t to v may modify the integer part of the value (with respe
t to v)of some 
lo
ks or may modify the order on the fra
tional part of the value (with respe
tto v) of 
lo
ks. We aim at �nd a time t′ su
h that:- The integer part of the value of ea
h 
lo
k with respe
t to v′ + t′ is equal to the integerpart of the value of ea
h 
lo
k with respe
t to v + t- The order of the fra
tional parts of 
lo
ks in v′ + t′ is the same in v + t.- The set of 
lo
ks with zero fra
tional part in v + t is the same in v′ + t′.Let |H| = n and assume a permutation π of {1, . . . , n} su
h that:

{v(hπ1
)} ⊲⊳1 {v(hπ2

)} ⊲⊳2, . . . , ⊲⊳n−1 {v(hπn)}(∗)with ⊲⊳i∈ {<,=}.Let t ∈ R≥0. It is 
lear that {v(h) + t} = {v(h) + {t}}. Only the fra
tional part of tmay a�e
t the order in (∗).There may be a largest index j su
h that:
{v(hπj

) + {t}} = {v(hπj
)}+ {t}. In 
ase, no su
h j exists, take j = n.Clearly, {v(hπj

) + {t}} ≥ {v(hπj
)} and; ∀k > j we have:

{v(hπk
) + {t}} < {v(hπk

)} and {v(hπk
) + {t}} < {v(hπj

) + {t}}.We get that:
{v(hπj+1

) + {t}} ⊲⊳j . . . . . . ⊲⊳n−1 {v(hπn) + {t}} < {v(hπj
) + {t}}Similarly, we establish that

{v(hπj
) + {t}} < {v(hπj−1

) + {t}}⊲⊳j−2 . . . ⊲⊳1{v(hπ1
) + {t}}where ⊲⊳k => if ⊲⊳j∈ {<} otherwise ⊲⊳j∈ {=}, ∀k ≤ j

• If {v′(hπj+1
) + {t′}} 6= 0, in order to have

{v′(hπj+1
{t′}} ⊲⊳j . . . ⊲⊳n−1< {v

′(hπn{t
′}} < {v′(hπj

) + {t′}} and
{v′(hπj+1

) + {t′}} ⊲⊳j< {v
′(hπj−1

) + {t′}}⊲⊳j−2 . . . ⊲⊳1{v
′(hπ1

) + {t′}}We take {t′} ∈ [0, 1 − {v′(hπj
)}[∩[1− {v′(hπj+1

)}, 1[.
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• If {v′(hπj+1

) + {t′}} = 0 then {t} = 1 − {v(hπj+1
)}; and we take {t′} = 1 −

{v′(hπj+1
)}.It 
omes that ⌊{v′(hπi

)}+ {t′}⌋ = ⌊{v(hπi
)}+ {t}⌋.To ensure that ⌊{v′(hπi

)}+ t′⌋ = ⌊{v(hπi
)}+ t⌋ we must take ⌊t⌋ = ⌊t′⌋.3. Let v1, v2 ∈ r, then v1 and v2 satisfy all the 
onditions in the de�nition of an equivalen
e
lass. Its obvious that v1[h := 0] and v2[h := 0] also satisfy those three 
onditions andthen v1[h := 0] and v2[h := 0] belong to r[h := 0].If v ∈ r[h := 0]∩ r′ then every v′ ∈ r′ is equivalent to v whi
h is also equivalent to every

v′′ ∈ r[h := 0]. Thus v ∈ r[h := 0] if and only if v ∈ r[h := 0].
�2.2.2 Regions for General ConstraintsFor general 
onstraints, the ones in ΦH, we need to slightly modify the equivalen
e relationde�ned above. Considering a set G of 
lo
k 
onstraints, we 
onsider the equivalen
e relation

∼G de�ned in [Yov98℄ by v ∼G v′ if the following three 
onditions hold:1. v(h) > M implies v′(h) > M where M is the maximal 
onstant that o

urs in G2. if v(h) ≤M then(a) ⌊v(h)⌋ = ⌊v′(h)⌋ and(b) {v(h)} = 0 implies {v′(h)} = 03. For every 
lo
k 
onstraints in G of the form h − h′ ∼ c, v � h − h′ ∼ c implies v′ �

h− h′ ∼ c.The set of regions for a set of 
lo
k 
onstraints G is the set of equivalen
e 
lasses of therelation ∼G. Using similar argumentation as in the previous subse
tion, we 
an show that thenumber of equivalen
e 
lasses is �nite and the set of regions satis�es the properties P1, P2,P3 mentioned above.2.3 Zones and Di�eren
e Bounded Matri
es2.3.1 Zone and RepresentationWe de�ne zones that we use later for symboli
 analysis. Zones have been 
onsidered by severalauthors [Dil90, HNSY94, YL97℄ for analysing timed systems. They enable a �nite partitioningof valuations.De�nition 62 A zone is the set of valuations satisfying a 
onstraint. A k-bounded zone is azone de�ned by a k-bounded 
lo
k 
onstraint.
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essesFor a zone Z represented by the 
onstraint g, we de�ne the approximation operator
normM(Z) = normM(g)Given a zone Z, the set of k-bounded zones 
ontaining Z is �nite and not empty. Theinterse
tion of theses k-bounded zones is a k-bounded zone 
ontaining Z, and is the smallestone having this property.Sin
e it is obvious that several 
onstraints represent the same zone, among the set of 
on-straints with the same semanti
s we are interested in the so-
alled unique 
anoni
al 
onstraint ,the one that we 
an not strengthen any simple 
onstraint it 
ontains without modifying of thesemanti
s of the 
onstraint.A zone 
an be represented with a di�eren
e bounded matrix [Dil90℄ de�ned below.De�nition 63 A di�eren
e bounded matrix (DBM) for n 
lo
ks is an (n+1)× (n+1) squarematrix of pairs

(c; ⊲⊳) ∈ (Z× {<,≤}) ∪ {(∞;<)}A DBM D = (ci,j , ⊲⊳i,j)i,j=1..n de�nes the following subset of valuations (the 
lo
k h0 issupposed to be always equal to zero, that is, for ea
h valuation v, v(h0) = 0):
{v : {h1, h2, . . . , hn} → R+ | ∀0 < i, j < n, v(hi)− v(hj) ⊲⊳i,j ci,j}We will write v ∈ D if the valuation v belong to the set that de�ne D.It is obvious that a DBM D 
an be translated into a 
onstraint. That 
onstraint is justthe 
onjun
tion of simple 
onstraints of the form hi − hj ⊲⊳i,j ci,j. A DBM is 
anoni
al if the
onstraint asso
iated to it is 
anoni
al.2.3.2 Computation of some Operations on DBMsWe re
all operations on DBMs that are useful for the rea
hability analysis. These operationshave been ni
ely des
ribed in [BY04, CGP99℄. Some of these operations use the followingorder relation and the sum (+) operation between elements of DBMs. In Subse
tion 2.6.2,these operations are used to 
ompute some DBMs (presented there in a simple form).Given (c; ⊲⊳) and (c′; ⊲⊳′) two possible elements of a DBMs, we de�ne the order≤e⊆ ((Z×{<

,≤}) ∪ {(∞;<})2 by
(c; ⊲⊳) ≤e (c′; ⊲⊳′) =⇒







c < c′

or
c = c′ and either ⊲⊳=⊲⊳′ or ⊲⊳′=≤We de�ne (c; ⊲⊳) + (c′; ⊲⊳′) = (c′′; ⊲⊳′′) where c′′ = c+ c′ and ⊲⊳′′ is ≤ if both ⊲⊳ and ⊲⊳′ are

≤ and ⊲⊳′′ is < otherwise.Canoni
al Dbms: The 
omputation of 
anoni
al Dbms derives tightest simple diagonal
onstraints, one for ea
h simple diagonal 
onstraint in Dbms. A given Dbm is transformedinto a weighted graph where 
lo
ks are nodes and the simple 
onstraints are edges labeledwith bounds. A 
onstraints of the form h− h′ ⊲⊳ n (with ⊲⊳∈ {<,≤}) will be 
onverted to an
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es 47edge from node h′ to h labeled with (⊲⊳, n), namely the distan
e from h′ to h is bounded by n.Thus, deriving the tightest simple 
onstraint on a pair of 
lo
ks in a Dbm, is equivalent to �ndthe shortest path between their nodes in the weighted graph 
onstru
ted from the Dbm. TheFloyd-Warshall algorithm [Flo62℄ 
an be used to �nd shortest paths between nodes. There isa simple 
onstraint h − h′ ⊲⊳ n′ in the resulting 
anoni
al Dbm if the weight of the shortestpath from h′ to h is equal to (⊲⊳, n′).Interse
tion: Let D = (ci,j ; ⊲⊳i,j)i,j=1,...,n and D′ = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n be two DBMs. Con-sider the DBM D′′ = (c′′i,j ; ⊲⊳

′′
i,j)i,j=1,...,n de�ned by:

(c′′i,j ; ⊲⊳
′′
i,j) = min((ci,j ; ⊲⊳i,j), (c

′
i,j ; ⊲⊳

′
i,j))for all indexes i, j = 1 . . . nwhere min(x, y) denotes the minimum of x and y a

ording to the relation ≤e de�ned above.It has been established that v ∈ D′′ if and only if v ∈ D and v ∈ D′Future: This operation 
omputes the set of valuations that are rea
hable from a DBM whentime elapses. Given D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in normal form, the DBM D′ = (c′i,j ; ⊲⊳

′
i,j)i,j=1,...,nde�ned by :

{

(c′i,j ; ⊲⊳
′
i,j) = (ci,j; ⊲⊳i,j) if j 6= 0

(c′i,j ; ⊲⊳
′
i,j) = (∞;<)is su
h that v′ ∈ D′ if and only if there is t ∈ R+, v ∈ D su
h that v′ = v + t.Past: This operation 
omputes the set of valuations from whi
h a valuation in a DBM
an be rea
hed when time elapses. Given D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in normal form, the DBM

D′ = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n de�ned by :

{

(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if i 6= 0

(c′i,j ; ⊲⊳
′
i,j) = (0;≤) if i = 0is su
h that v′ ∈ D′ if and only if there is t ∈ R+, v ∈ D su
h that v = v′ + t.Image by resets: Assume thatD = (ci,j ; ⊲⊳i,j)i,j=1,...,n is a DBM in 
anoni
al form. Considerthe DBM Dhk:=0 = (c′i,j ; ⊲⊳

′
i,j)i,j=1,...,n de�ned by:















(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if i, j 6= k

(c′k,k; ⊲⊳
′
i,j) = (c′k,0; ⊲⊳

′
k,0) = c′0,k; ⊲⊳

′
0,k) = (0;≤)

(c′i,k; ⊲⊳
′
i,k) = (ci,0; ⊲⊳i,0) if i 6= k

(c′k,i; ⊲⊳
′
k,i) = (c0,i; ⊲⊳0,i) if i 6= kWe have that v′ ∈ Dhk:=0 if and only if there is v ∈ D su
h that v′ = v[hk := 0].

k-approximation: The k- approximation of a DBM D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in 
anoni
alform is the DBM Dk = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n de�ned by:







(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if −k ≤ ci,j ≤ k

(c′i,j ; ⊲⊳
′
i,j) = (∞;<) if ci,j > k

(c′i,j ; ⊲⊳
′
i,j) = (−k;<) if ci,j ≤ −kIf Z is the zone asso
iated to D then, the zone of Dk is equal to Normk(Z)
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essesEmptiness testing: A DBM D = (ci,j ; ⊲⊳i,j)i,j=1,...,n is empty if and only if there ex-ists a negative 
y
le in D, that means that there exists a sequen
e of distin
t indexes
(i1, i2, . . . , il−1, il = i1) su
h that

l−1
∑

j=1

(cij ,ij+1
, ⊲⊳ij ,ij+1

) < (0;≤)Equality testing D = (ci,j ; ⊲⊳i,j)i,j=1,...,n and D′ = (c′i,j; ⊲⊳
′
i,j)i,j=1,...,n be two DBMs as-sumed to be in 
anoni
al form. D is equal to D′ if and only if (ci,j ; ⊲⊳i,j) ≤e (c′i,j ; ⊲⊳

′
i,j) and

(c′i,j ; ⊲⊳
′
i,j) ≤ (ci,j ; ⊲⊳i,j)2.4 Models for Timed Pro
esses2.4.1 De�nitionsWe present models for timed pro
esses, their semanti
s and two alternative representa-tions for the semanti
s. Models for timed pro
ess are nothing else but event-re
ordingautomata [AFH99℄ without an a

eptan
e 
ondition. The semanti
s of timed pro
esses aretransition systems. States of semanti
s are 
ouple of the form (p, v) where p is a (
ontrol)state of a timed pro
ess and the valuation v gives the timing 
ontext of the exe
ution ofthe timed pro
ess. Transitions of semanti
s are of two sorts: delay transitions that representthe elapse of the time and dis
rete transitions that represent the o

urren
e of an event.Our presentation for Delay transition is not standard. Instead of labeling delay transitionwith real number t as it is 
ommonly done in [AD94, AFH99, DM02, BCL05℄ to representthe elapse of time from the 
on�guration (p, v), we 
hoose to label delay transitions withthe timing 
ontext v + t from (p, v) after t time units. The two representations for thesemanti
s su

essively repla
e valuations on transitions with atomi
 
onstraints and valuationin 
on�guration with regions.Let Σ = {a1, a2 . . . } be a set of events . We 
onsider HΣ = {h1, h2, . . . } the set of 
lo
ks.The 
lo
k hi is the unique 
lo
k asso
iated to the event ai. When there is no 
onfusion, a willdenote an event and ha will denote the unique 
lo
k asso
iated to a. There are as many 
lo
ksas events. The symbol GdsΣ will denote the set of 
onstraints de�ned over HΣ, the symbol

AgdsΣ will denote the set of re
tangular 
onstraints over HΣ, and the symbol VΣ will denotethe set of valuations over HΣ.De�nition 64 A timed pro
ess , or pro
ess for short, is a tuple
P = 〈P ,Σ, p0,∆P 〉where,

• P is a �nite set of states,
• p0 ∈ P is the initial state,
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• ∆P ⊆ P ×GdsΣ × Σ× P is a transition relation.Sometimes, we shortly write p

g,a
−→ p′ for a transition (p, g, a, p′) in ∆P . The bound of a timedpro
ess is the maximal 
onstant that o

urs in its guards. For a timed pro
ess P, MP denotesits bound. Given a 
onstant M , we say a timed pro
ess is M -bounded if its bound is smallerthan M .De�nition 65 A timed pro
ess is deterministi
 if whenever there are two transitions p

g1,a
−→ p1and p

g2,a
−→ p2 with p1 6= p2, the 
onstraint g1 ∧ g2 is in
onsistent.Figure 5,Figure 6 and Figure 7 present three timed pro
esses. The timed pro
ess in Figure 6and Figure 7 are deterministi
 and timed pro
ess in Figure 5 is not deterministi
.

p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < ha < 2, a

0 < hb < 2, b

tt , cFigure 5: A non deterministi
 timed pro
ess:P0.The timed pro
ess in Figure 5 is not deterministi
 as the 
onjun
tion of the guards in thetwo transitions outgoing from p0 is 
onsistent while their events are the same. In Figure 6, the
onjun
tion of the guards is in
onsistent and, in Figure 7 the transitions outgoing from p0 arenot labelled with the same event.
p3 p1 p0 p2

0 < ha < 1, a

0 < hb < 2, b

1 ≤ ha < 2, a

0 < hb < 2, b

tt , cFigure 6: A deterministi
 timed pro
ess:P1.
p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < hb < 2, b

0 < ha < 2, a

tt , cFigure 7: A deterministi
 timed pro
ess:P2.
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esses2.4.2 Semanti
sThe semanti
s of a timed pro
ess is a transition system that represents all possible behavioursof the timed pro
ess. The idea is that ea
h 
lo
k ha re
ords the amount of time elapsedsin
e the last o

urren
e of the 
orresponding event a. The time elapses 
ontinuously at astate. Whenever an a
tion a is exe
uted, the 
lo
k ha is automati
ally reset. No other 
lo
kassignments are permitted.
p0; v0(ha) = 0

v0(hb) = 0
v0(hc) = 0

{v0 + t : v0 + t � 0 < ha < 2}

p1; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

p2; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

t = 0.4

a a

{v1 + t : v0 + t � tt}

p3; v2(ha) = 2
v2(hb) = 2.4
v2(hc) = 0

c

t = 2

Figure 8: A part of the semanti
s of P0.De�nition 66 The semanti
s of a timed pro
ess P as above is the transition system
[[P]] = 〈P × VΣ,Σ ∪ VΣ, (p

0, v0),→〉where →⊆ (P × VΣ)× (Σ ∪ VΣ)× (P × VΣ) is de�ned by:- (p, v)
v+t
−→ (p, v + t) for every t ≥ 0.- (p, v)
a
−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P su
h that v ∈ [[g]].Delay transitions are transitions labelled with valuations and dis
rete transitions are tran-sitions labelled with events.Remark: When presenting the semanti
s of timed automata [AD94, DM02, BCL05℄ andevent-re
ording automata [AFH99℄, it is usual to label delay transitions with non negativereal numbers. In the semanti
s presented above, delay transition are labelled with valuations.We remark that these two presentations are equivalent. The 
hoi
e of the presentation abovewill be justi�ed in the next 
hapters when the semanti
s of formulas will be de�ned.Notation: Later we use the notation s

v,a
−→ s′ if there exists s′′ su
h that s v

−→ s′′ and
s′′

a
−→ s′.



2.4. Models for Timed Pro
esses 51Let us use the following example to illustrate the notion of semanti
s of timed pro
esses.We 
onsider pro
ess in Figure 5 and Figure 6 and transitions from p0 to p1 and p2. In Figure 8,we present the beginning of the semanti
s of the pro
ess in Figure 5. As that pro
ess is notdeterministi
, at the same time ( for example t = 0.4), it is possible to trigger the event a andeither move to p1 or p2. From p1 it is possible to do immediately c while it is not the 
asefrom p2.2.4.3 Representations for Timed Pro
essesThe above semanti
s is not very 
onvenient as both the set of states and the set of labelso

urring in transitions are un
ountable. We will 
onsider two more abstra
t semanti
s ofpro
esses. The �rst will abstra
t from valuations in the labels of transitions. The se
ond willrepla
e valuations in states by regions. In order for the abstra
tions to be �nite, they will beparametrized by a bound M on the 
lo
k values.De�nition 67 TheM -a
tion abstra
tion of a timed pro
ess P is the (Σ∪AgdsΣ(M))-labeledtransition system
〈[P]〉M = 〈P × VΣ,Σ ∪AgdsΣ(M), (s0, v0),∆v〉,where ∆v ⊆ (P × VΣ)× (Σ ∪AgdsΣ(M))× (P × VΣ) is de�ned by:- (p, v)

ĝ
−→ (p, v + t) for any t ∈ R+ su
h that v + t � ĝ and- (p, v)
a
−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with v � g.We observe that the M -a
tion representation is obtained from the semanti
s by repla
ingvaluations on delay-transitions with M -re
tangular 
onstraints they satisfy. Then for everytimed pro
ess P and every natural 
onstant M , there is an isomorphism between [[P]] and

〈[P]〉M .De�nition 68 TheM -region abstra
tion of a timed pro
ess P is the (Σ∪AgdsΣ(M))-labeledtransition system
〈[P]〉Mreg = 〈P ×Reg(M),Σ ∪Agds(M), (p0, r0),∆r〉,where v0 ∈ r0, ∆r ⊆ (P ×Reg(M)) × (Σ ∪AgdsΣ(M))× (P ×Reg(M)) is de�ned by:- (p, r)

ĝ
−→ (p, r′) with r′ ⊆ r↑ and r′ ⊆ ĝ.- (p, r)
a
−→ (p′, r[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with r ⊆ g.Notation: Later and parti
ularly in the next Chapter, given a (GdsΣ ∪ Σ)-LTS, we usethe notation s g,a

−→ s′ if there exists s′′ su
h that s g
−→ s′′ and s′′ a

−→ s′.Proposition 69 For every timed pro
ess P, and everyM ≥MP : 〈[P]〉M is bisimilar to 〈[P]〉Mreg.
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essesProofWe 
onsider a relation ∼⊆ (P × VΣ) × (P ×RegΣ(M)) de�ned by (p, v) ∼ (p, [v]) for every
p ∈ P , v ∈ VΣ. We show that it is a bisimulation.
• First, we 
onsider delay transitions. Assume that (p, v) ∼ (p, [v]). If (p, v)

ĝ
−→ (p, v′),then there is t ∈ R+ su
h that v + t ∈ [[ĝ]]. A

ording to Proposition 61, [v + t] ⊆ ĝ andobviously [v+t] ⊆ [v]↑. Then, we get that (p, [v])

ĝ
−→ (p, [v+t]) and (p, v+t) ∼ (p, [v+t]).Re
ipro
ally, if (p, r)

ĝ
−→ (p, r′), then r′ ⊆ ĝ and r′ ⊆ r ↑. Let v ∈ r a

ording toProposition 61, there is t ∈ R+ su
h that v+ t ∈ r′. Sin
e r′ ⊆ ĝ, we get v+ t ∈ [[ĝ]] andthen (p, v)

ĝ
−→ (p, v′).

• Next, we 
onsider dis
rete transitions. Assume that (p, v) ∼ (p, [v]). If (p, v)
a
−→ (p′, v′),then v′ = v[ha := 0] and there is p

g,a
−→ p′ su
h that v ∈ [[g]]. Let ĝ ∈ Agds(M) be anatomi
 guard su
h that v ∈ [[ĝ]]. Then we get (p, [v])

a
−→ (p′, [v′]) and (p, v′) ∼ (p, [v′]).Re
ipro
ally, if (p, r)

a
−→ (p′, r′), then r′ = r[ha := 0] and there is p

g,a
−→ p′ su
h that

r ∈ [[g]]. Let v ∈ r, obviously v ∈ [[g]], and v[ha := 0] ∈ r′. It follows that (p, v)
a
−→

(p′, v[ha := 0]) and (p, v[ha := 0]) ∼ (p, r′).
�2.5 Produ
t of Timed Pro
essesDe�nition 70 The produ
t of a timed pro
ess P = 〈P ,Σ, p0,∆P 〉 with a timed pro
ess

R = 〈S,Σ, s0,∆R〉 is the timed pro
ess denoted by P × R and de�ned by the tuple P ×
R = 〈P × S,Σ, (p0, s0),∆〉 where ((p, s), g, a, (p′ , s′)) ∈ ∆ if there is (p, g′, a, p′) ∈ ∆P ,
(s, g′′, a, s′) ∈ ∆R with g = g′ ∧ g′′.Example: The produ
t of the timed pro
ess in Figure 6 with the timed pro
ess in Figure 9is depi
ted in Figure 10

p3 p1 p0 p0

0 < ha < 2, a

1 ≤ hb < 3, b

0 < hb ≤ 1, b

hd ≤ 7, dFigure 9: A non deterministi
 timed pro
ess:P4.
�Now we show that the semanti
s of the produ
t of two timed pro
esses is the produ
t oftheir semanti
s.Lemma 71 Let P1 and P2 be two timed pro
esses, then [[P1 × P2]] is bisimilar to [[P1]]× [[P2]].
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p3 p1 p0

0 < ha < 1, a

1 ≤ hb < 2, b

0 < hb ≤ 1, bFigure 10: A non deterministi
 timed pro
ess:P5.ProofLet P1 = 〈P1,Σ, p
0
1 ,∆P 1〉 and P2 = 〈P2,Σ, p

0
2 ,∆P 2〉 and 
onsider the relation

R ⊆ (P1 × P2 × VΣ)× ((P1 × VΣ)× (P2 × VΣ))de�ned by (p1, p2, v)R((p1, v), (p2, v)). Now we show that R is a bisimulation between
[[P1 × P2]] and [[P1]]× [[P2]].
• It is obvious that (p1, p2, v)

v′
−→ (p′

1, p
′
2, v

′) is and only if ((p1, v), (p2, v))
v′
−→

((p′
1, v

′), (p′
2, v

′))

• Let us 
onsider dis
rete transitions. Assume that (p1, p2, v)R((p1, v), (p2, v)). If
(p1, p2, v)

a
−→ (p′

1, p
′
2, v

′) then v′ = v[ha := 0] and there is (p1, p2)
g,a
−→ (p′

1, p
′
2)su
h that v ∈ [[g]]. But (p1, p2)

g,a
−→ (p′

1, p
′
2) implies there is p1

g1,a
−→ p′

1 in P1 and
p2

g2,a
−→ p′

2 in P2 su
h that [[g]] = [[g1]] ∩ [[g2]]. As v ∈ [[g]], we get that v ∈ [[g1]]and v ∈ [[g2]] implying that (p1, v)
a
−→ (p′

1, v
′) and (p2, v)

a
−→ (p′

2, v
′) and then,we get that ((p1, v), (p2, v))

a
−→ ((p′

1, v
′), (p′

2, v
′)). Re
ipro
ally if ((p1, v), (p2, v))

a
−→

((p′
1, v

′), (p′
2, v

′)), then (p1, v)
a
−→ (p′

1, v
′) and (p2, v)

a
−→ (p′

2, v
′) with v = v[ha := 0].But (pi, v)

a
−→ (p′

i, v
′) for every i ∈ {1, 2} implies that there exists pi

gi,a−→ p′
i in Piwith v ∈ [[gi]] for every i ∈ {1, 2}. It is obvious that (p1, p2)

g1∧g2,a
−→ (p′

1, p
′
2) and be
ause

v ∈ [[g1 ∧ g2]] we get that (p1, p2, v)
a
−→ (p′

1, p
′
2, v

′).
�We remark that the relation R in the proof above is a bije
tive appli
ation between statesof [[P1 × P2]] and [[P1]]× [[P2]]. We get that [[P1 ×P2]] is isomorphi
 to [[P1]]× [[P2]].2.6 Rea
hability AnalysisFor veri�
ation purposes, the most fundamental properties that we should be able to verifyare rea
hability properties. We 
onsider the rea
hability analysis of timed pro
esses. Therea
hability analysis requires to 
he
k whether a system has an exe
ution from a given start(or sour
e) state to a given end (or target) state. There are two main algorithms for therea
hability analysis: the forward algorithm and the ba
kward algorithm.The forward analysis starts in a sour
e state with 
lo
ks initialized with some set of values.Then, it 
omputes states rea
hable within 1 steps, 2 steps, et
... until the target state is
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essesrea
hed or until the 
omputation terminates. The ba
kward algorithm starts in a target statewith 
lo
ks initialized with some set of values and it 
omputes states from whi
h we 
anrea
h target states within 1 steps, 2 steps, et
... until sour
e states are rea
hed or until the
omputation terminates. As timing information needs to be 
onsidered for taking transitionsin a timed pro
ess, simple algorithm may 
onsider semanti
s of timed pro
esses. Be
ause ofsemanti
s of timed pro
ess are in�nite state transitions systems where ea
h state 
ould havein�nitely many su

essors and prede
essors, an algorithm like depth in �rst sear
h (DFS) maynot terminate. Then, we need a �nite representation for semanti
s that preserves rea
habilityproperties. States in that �nite representation are pairs of a state of the timed pro
ess and arepresentable (in�nite) set of set of valuations (that may be a singleton).The forward algorithms are based on the 
omputation of the representable set of valuations
Post(V, tr) of time su

essors of a representable set of valuations V with respe
t to a transition
tr = p

g,a
−→ p′.

Post(V, tr) = {v + t[ha := 0], | v ∈ V ∃t ∈ R+ su
h that v + t ∈ [[g]]}Having Post(V, tr), the forward analysis 
onsists in 
omputing the following symboli
 states
Srci with i ≥ 0. Src0 is the symboli
 start state made of a start state from the timed pro
essand a set V 0 of initial valuations.

Src0 = {(p, V 0)|p is the start state and V 0 is an initial set of valuations}and iteratively
Srci+1 = {(p′, V ′)|∃tr = p

g,a
−→ p′∃(p, V ) ∈ Srci su
h that V ′ = Post(V, tr)}The ba
kward algorithms are based on the 
omputation of the representable set of valua-tions Pre(V, tr) of time prede
essors of a representable set of valuations V with respe
t to atransition tr = p

g,a
−→ p′.

Pre(Z, tr) = {v| ∃t ∈ R+ su
h that v + t ∈ [[g]] and v + t[ha := 0] ∈ Z}Then the ba
kward analysis 
onsists in 
omputing the following symboli
 states:
Tgt0 = {(p, V 0)|p is the target state and V 0 is an initial set of valuations}and iteratively

Tgti+1 = {(p′, V ′)|∃tr = p
g,a
−→ p′∃(p, V ) ∈ Tgti su
h that V ′ = Pre(V, tr)}We will present algorithms that use regions and zones as representable set of valuations.2.6.1 Region-based AlgorithmsRegion based algorithms have been introdu
ed by Alur et Dill [AD94℄ for rea
hability analysisof timed automata. In region-based rea
hability algorithms, regions are used for representingsets of valuations. In this 
ase, rea
hability algorithms work on M -region representations asin that representation states of timed pro
esses are already paired with regions.We explain here how one 
an use the M -region representation for rea
hability analysis oftimed pro
esses.
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hability Analysis 55Lemma 72 For every M , a state is rea
hable in [[P]] if and only if it is rea
hable in 〈[P]〉M .ProofIt is enough to remark that 〈[P]〉M is obtained from [[P]] by renaming the labels of transitions.
� As AgdsΣ(M) and Σ are �nite, labels of transitions in 〈[P]〉M range over a �nite set, buta state may also have in�nitely many su

essors or prede
essors. Then the following lemma
omes as a 
orollary of Proposition 69. Let us re
all that MP is the maximal 
onstant thato

urs in the 
onstraints of the timed pro
ess P.Lemma 73 For every M ≥ MP , a state (p, v) is rea
hable in [[P]] if and only if (p, [v]) isrea
hable in 〈[P]〉MregProofBy Lemma 72 a state (p, v) is rea
hable in [[P]] if and only if it is rea
hable in 〈[P]〉M . Thenwe 
an use the bisimilarity result in Proposition 69 to 
on
lude. �In pra
ti
e the region 
onstru
tion is not used to 
he
k rea
hability properties as the num-ber of regions is too high. Algorithms for �minimizing� the region graph have been proposedfor example in [ACD+92, ACH+92, TY01℄ and other te
hniques for �minimizing� rea
habilitygraph have been proposed for example in [YL97, KL96℄. However in pra
ti
e on-the-�y te
h-niques are preferred sin
e the rea
hability graph need not be entirely 
onstru
ted before theanalysis.2.6.2 Zone-based AlgorithmsThe zone abstra
tion [LPY97℄ is a symboli
 approa
h in whi
h zones are used for representinga timing 
ontext.Ba
kward rea
hability algorithmFor a given tr = p

g,a
−→ p′ and a zone Z, the Pre operator de�ned above is spe
ialised for zoneas follows:

Pre(Z, tr) = {v| ∃t ∈ R+ su
h that v + t ∈ [[g]] and v + t[ha := 0] ∈ Z}We re
all the following result 
on
erning the termination and the 
orre
tness of the algorithmthat establishes that if a state is de
lared rea
hable by the 
omputation, then it is reallyrea
hable. This result is just a 
orollary of a similar result on timed automata presentedin [Bou03℄.Proposition 74 The ba
kward analysis algorithm terminates and is 
orre
t with respe
t torea
hability.
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essesForward rea
hability algorithmFor a given tr = p
g,a
−→ p′ and a zone Z, the Post operator de�ned above is spe
ialised forzones as follows:

Post(Z, tr) = {v + t[ha := 0], | v ∈ Z∃t ∈ R+ su
h that v + t ∈ [[g]]}But iterative 
omputations of the Srci will not terminates as Post(Z, tr) may introdu
e newzones. For ensuring termination, approximation of zones has been proposed leading to thefollowing algorithm.Algorithm The following forward algorithm 
omes from [BY04, Bou03℄ and has been imple-mented in several tools like Kronos [BTY97, Yov98℄, and Uppaal [BLL+96, LPY97, BDL04℄.Algorithm 1 Forward Analysis Algorithm for Timed pro
essesRequire: P = 〈P ,Σ, p0,∆P 〉Require: Target ⊆ P // the set of rea
hable stateEnsure: YES or NO a state of Target is rea
hable.
V isited← ∅;
Waiting ← {p0, Normk(Z0)};repeatGet and Remove (p, Z) from Waiting;if p ∈ Target thenRETURN �Y ES, p is rea
hable�;elseif there is no (q, Z ′) ∈ V isited su
h that Z ⊆ Z ′ then

V isited← V isited ∪ {(p, Z)};
Successor ← {(p′, Normk(Post(Z, e) | e transition from p to p′};
Waiting ←Waiting ∪ Successor;end ifend ifuntil Waiting = ∅RETURN NO;Corre
tness Bouyer [Bou03℄(see also [BLR05℄) has shown that the rea
hability algorithmis 
orre
t for timed automata that use only diagonal free 
onstraints; but is not 
orre
t fortimed automata that use general 
lass of 
onstraints. We show that the same is true for timedpro
esses (that are spe
ial kinds of timed automata). For that purpose, we 
onsider the timedpro
ess (we re
all that only the 
lo
k asso
iated to the event of a transition is reset when thetransition is 
rossed) in Figure 11. This example is a very minor modi�
ation of the examplefrom [Bou03℄.
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p0 p1 p2 p3 p4

p8 p7 p6 p5

hb ≤ 3, c ha ≤ 3, a hb = 3, b

ha = 2, a

hb = 2, b
ha = 2, a

hb = 2, bha = 3, ahb − ha < 2 ∧ hd − hc > 2, dFigure 11: A timed pro
essWe 
onsider a path from p0 to p7 in the timed pro
ess in Figure 11. If α is the date thetransition from p0 to p1 is taken, β is the date the transition from p1 to p2 is taken and γ isthe the number of loops taken along the run, the valuation v of the 
lo
ks when arriving in
p7 is de�ned by:

v(ha) = 0 v(hc) = 2γ + 5 + (β − α)

v(hb) = β v(hd) = 2γ + 5 + βClearly, v(hd)− v(hc) ≤ v(hb)− v(ha) as β ≥ α.If we 
onsider the forward algorithm for rea
hability that uses zones and that starts in p0with all the 
lo
ks set to 0, the set of valuation that 
an be rea
hed in p7 when loop is taken
γ times, is the following:































































ha = 0
hb ≥ 1
hc ≥ 2γ + 5
hd ≥ 2γ + 6
2γ + 6 ≤ ha − hd ≤ 2γ + 8
1 ≤ hb − ha ≤ 3
2γ + 5 ≤ hc − ha ≤ 2γ + 8
2γ + 2 ≤ hc − hb ≤ 2γ + 5
hd − hb = 2γ + 5
0 ≤ hd − hc ≤ 3Consider the 
onstraint hb − ha < 2 ∧ hd − hc > 2. If we require that hb − ha < 2 then,

hd − hc = (hd − hb) + (hb − ha) + (ha − hc)

≤ −2γ − 5 + 2 + 2γ + 5

≤ 2This means that the transition from p7 to p8 
an not be triggered from the zone above.
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essesIf we �x a maximal 
onstant k and we use the approximation operator Normk, then fora number of loops γ su�
iently large and su
h that k < 2γ + 2, the approximated zone weobtain is the following:






























































ha = 0
hb ≥ 1
hc > k
hd > k
ha − hd > k
1 ≤ hb − ha ≤ 3
hc − ha > k
hc − hb > k
hd − hb > k
0 ≤ hd − hc ≤ 3This zone is 
onsistent with the 
onstraint hb − ha < 2 ∧ hd − hc > 2 and then the state p8 isde
lared rea
hable from p0.2.7 Diagonal Constraints Can Be Safely RemovedWe will show that simple diagonal 
onstraints 
an be removed from timed pro
esses with-out redu
ing their behavioral properties. The proof of this result follows ideas in [BDGP98℄and uses indu
tion on the number of 
onstraints to be removed. It 
onsists of keeping theinformation on the truth of diagonal 
onstraints in the states of the timed pro
esses. Su
h atransformation indu
es an exponential blowup in the size of the initial timed pro
ess [BC05℄.We will �rst mark states of the semanti
s of timed pro
esses with a tuple of boolean val-ues representing the truth of simple diagonal 
onstraints with respe
t to the valuation in thestates.Assume that P is a timed pro
ess and the unique simple diagonal 
onstraint o

urring in

P is the simple 
onstraint C = (h− h′ ⊲⊳ c), with h, h′ ∈ HΣ, ⊲⊳∈ {≤, <,≥, >}. Then to ea
hstate (p, v) of [[P]], we assign the truth value of v ∈ [[C]]. The resulting transition system, thatwe 
all the marked semanti
s of P does not modify the behavioral properties of P.Observation 74.1 The marked semanti
s of P and the semanti
s of P are isomorphi
.Now, from P and C, we build a new timed pro
essR(P, C) = 〈P×{0, 1},Σ, (p0, tv0)),∆R〉where,
• tv0 is the truth value of v0 ∈ [[C]]. We re
all that v0 is the valuation that assigns the
onstant 0 to every 
lo
k in HΣ

• ∆R is a transition relation de�ned a

ording to ∆P as follows: Let (p, tv) be a state of Rand let p
g,a
−→ p′ be a transition in ∆P . Then there are three 
ases for de�ning transitionfrom (p, tv) depending on p

g,a
−→ p′ and C:1. if h 6= ha and h′ 6= ha, then we add the transition (p, tv)

g,a
−→ (p′, tv) in ∆R.2. if h′ = ha then the following transitions are added in ∆R
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g∧h⊲⊳c,a
−→ (p′, 1)(b) (p, tv)

g∧¬(h⊲⊳c),a
−→ (p′, 0)3. The last 
ase when h = ha is dual to the 
ase just above.To end the 
onstru
tion of R(P, C), we remove in it every transition of the form (p, 0)

g,a
−→

(p′, tv) where C o

urs in g and we delete every o

urren
e of C in the remaining transitions.We remark that by 
onstru
tion R(P, C) does not 
ontain any o

urren
e of the simplediagonal 
onstraint C and we show that [[R(P, C)]] is bisimilar to the marked semanti
s of P.Lemma 75 Let P be a timed pro
ess and C be a simple diagonal 
onstraint o

urring in P.The marked semanti
s of P and [[R(P, C)]] are bisimilar.ProofConsider the relation R de�ned by (p, v)R((p, tv), v) if tv is the truth value of v ∈ [[C]]. Weshow that R is a bisimulation. As the 
ases of delay transitions are obvious we 
onsider the
ases of dis
rete transitions. Assume that (p, v)R((p, tv), v) .1. if tv = 0 then v 6∈ [[C]].
=⇒ Now assume that (p, v)

a
−→ (p′, v′), then v′ = v[ha := 0] and there is p

g,a
−→ p′ su
hthat v ∈ [[g]] and C does not o

urs in g as v 6∈ [[C]].(a) if h 6= ha and h′ 6= ha, then the transition (p, 0)

g,a
−→ (p′, 0) exist in ∆R andbe
ause v ∈ [[g]] we get that ((p, 0), v)

a
−→ ((p′, 0), v′). As neither h nor h′ havebeen modi�ed, v′ 6∈ [[C]] and then (p′, v′)R((p′, 0), v′).(b) if h′ = ha then, the transitions (p, 0)
g∧h⊲⊳c,a
−→ (p′, 1) and (p, 0)

g∧¬(h⊲⊳c),a
−→ (p′, 0)exits in ∆R. But either v ∈ [[h ⊲⊳ c]] or v ∈ [[¬(h ⊲⊳ c)]].i. If v ∈ [[h ⊲⊳ c]] then v′ ∈ [[h− ha ⊲⊳ c]] as the 
lo
k ha is reset after the tran-sitions. Then we get that ((p, 0), v)

a
−→ ((p′, 1), v′) and (p′, v′)R((p′, 1), v′)ii. If v ∈ [[¬(h ⊲⊳ c)]] then v′ 6∈ [[h− ha ⊲⊳ c]] as the 
lo
k ha is reset af-ter the transitions. Then we get that ((p, 0), v)

a
−→ ((p′, 0), v′) and

(p′, v′)R((p′, 0), v′)(
) the last 
ase when h = ha is dual to the 
ase just above.
⇐= Now assume that ((p, 0), v)

a
−→ ((p′, tv′), v′). Then, there is (p, 0)

g,a
−→ (p′, tv′) su
hthat v ∈ [[g]] and C does not o

ur in g as tv = 0.(a) if h 6= ha and h′ 6= ha, then tv′ = tv = 0 and v′ 6∈ [[h− h′ ⊲⊳ c]] and there isa transition p

g,a
−→ p′ in ∆P . As v ∈ [[g]] we get that (p, v)

a
−→ (p′, v′) and

(p′, v′)R((p′, 0), v′).(b) if h′ = ha then g = g′ ∧ g′′ where g′′ = h ⊲⊳ c or g′′ = ¬(h ⊲⊳ c) and thereis a transition p
g′,a
−→ p′ in ∆P . As v ∈ [[g]] we get that (p, v)

a
−→ (p′, v′) and

(p′, v′)R((p′, tv′), v′) where tv′ = 1 if g′′ = h ⊲⊳ c otherwise tv′ = 0.(
) the last 
ase when h = ha is dual to the 
ase just above.2. The 
ase when tv = 1 is similar to the 
ase when tv = 0.
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esses
�Let P be a timed pro
ess, and let C1, C2, . . . , Cn be all the simple diagonal 
onstraintsin P. From the lemma above we 
an re
ursively remove ea
h 
onstraint obtaining a timedpro
ess without a diagonal 
onstraint that preserves the behavioral properties. We get thefollowing proposition.Proposition 76 For every timed pro
ess P that uses diagonal 
onstraints in its transitionrelation, there is a timed pro
ess P ′ that does not uses diagonal 
onstraints in its transitionrelation su
h that [[P]] is bisimilar to [[P ′]].2.8 Con
luding RemarksWe have presented timed pro
esses as models for real-time systems that use the time infor-mation on the o

urren
es of events for exe
uting 
orre
tly.We have re
alled that regions provide a good abstra
tion for theoreti
al analysis of timedpro
esses using diagonal free or general 
onstraints. We have also presented the rea
habilityanalysis through zone-based abstra
tion and we have shown that when timed pro
esses arede�ned using general 
onstraints the zone-based approa
h 
ombined with the approximationoperator that we have 
onsidered leads to in
orre
t results. Then, we wondered if we 
oulddis
ard diagonal 
onstraints from timed pro
ess without redu
ing their expressive power. Theanswer is yes and we have shown how to transform (with exponential 
ost) timed pro
esses withdiagonal 
onstraint into equivalent behavioral timed pro
esses with diagonal-free 
onstraintsonly. As we will not be interested in e�
ient pro
edures, but in understanding models andtheir properties, in the following we will 
onsider timed pro
esses with diagonal-free 
onstraintsonly.



Chapter 3Results on Event-Re
ording Logi
The design of models for systems, and real-time systems in parti
ular, is 
arried by require-ments. Requirements des
ribe desired or undesired properties of systems en
ompassing behav-ioral properties su
h as rea
hability, liveliness, deadlo
k and safety properties. For real-timesystems, requirements must 
onsider timing information. For example, a requirement must notonly de�ne the logi
al moment at whi
h events (tasks) must o

ur (terminate), but must alsodes
ribe the quantitative time information on o

urren
es of events (termination of tasks).Given a requirement, it is useful to 
he
k whether a given real-time system meets that re-quirement (model-
he
king), or to 
he
k whether we 
an 
onstru
t a real-time system thatmeets the requirement (satis�ability 
he
king).We 
onsider the logi
 Event-Re
ording Logi
(ERL) as a formal language for des
ribingproperties on timed pro
esses. Event-Re
ording Logi
 has been introdu
ed by Sorea [Sor02℄as a timed extension of the µ-
al
ulus [Koz82℄. In this logi
, modalities are indexed both withan event and a 
onstraint. We 
onsider the basi
 problems about this logi
 su
h as the model-
he
king problem, the satis�ability 
he
king problem and the equivalen
e between formulasand formulas in disjun
tive normal form.To solve the model-
he
king problem, we transform formulas into equivalent re
tangularformulas. Re
tangular formulas use only re
tangular 
onstraints. The later formulas are usedby the model-
he
king pro
edure. We show that 
he
king if a timed pro
ess is a model ofa formula is equivalent to 
he
k if the M -region representation of that timed pro
ess is amodel of the 
orresponding re
tangular formula. Then, our model-
he
king pro
edure worksas a model-
he
king pro
edure of the standard µ-
al
ulus. Intuitively, in that pro
edure, for
he
king if ϕ ∨ ψ is satis�ed in some state, it is enough to 
he
k if ϕ is satis�ed in that stateor ψ is satis�ed in that state; su
h a step is a non deterministi
 step. For 
he
king if a �xpointformula σX.ϕ(X) is satis�ed in some state, we 
he
k if ϕ(σX.ϕ(X)) (regeneration step) issatis�ed in that state. For 
he
king is a 
onjun
t ϕ ∧ ψ is satis�ed in some state, we 
he
kwhether ϕ is satis�ed in that state and whether ψ is also satis�ed in that state. For 
he
kingif 〈g, a〉ϕ is satis�ed in some state, we 
he
k that there is an outgoing transition from thatstate labelled with (g, a) that leads to a state satisfying ϕ. For 
he
king if [g, a]ϕ is satis�ed insome state, we 
he
k that every outgoing transition from that state labelled with the 
ouple
(g, a) leads to some state that satis�es ϕ. 61
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From the intuitive idea for the model-
he
king pro
edure of ERL, we provide a tableau-based de
ision pro
edure for the satis�ability 
he
king problem of ERL formulas. For thatpurpose, we de�ne a tableau system of rules ea
h rule of whi
h is made of a 
on
lusion andpremise. Con
lusions and premises are set of timed sequents. Ea
h timed sequent is a tuplemade of a set of a formulas and a timing 
ontext represented by a region. The use of a set offormulas in timed sequent is a 
onsequen
e of the fa
t that to 
he
k if a formula of the ϕ ∧ ψis satis�ed in some state, we must 
he
k that the state satis�es ϕ and ψ. We de�ne the notionof a tableau and we show that a formula is satis�able if and only if it 
ontains a parti
ular�good� sub-tableau. The �goodness� of a sub tableau is de�ned as the �goodness� of all thepaths it 
ontains and the �goodness� of a path is de�ned a

ording to tra
es and the numberof times �xpoint formulas are regenerated. Tra
es are links between formulas in premises andformulas in 
on
lusions; they are useful as they also keep tra
k of the regeneration of a �xpointformula. As timed sequent may 
ontain many �xpoint formulas, signature (tuple of ordinals)will be 
ombined with tra
es to keep tra
k of the number of time ea
h �xpoint formula will beregenerated along a path. We also 
ompare our satis�ability de
ision pro
edure with an earlierone proposed by Sorea [Sor02℄. We get that the tableau system of rules of Sorea is somehowambiguous as a parti
ular rule may have two interpretations. Moreover the system of Sorea isin
orre
t due to the use of zones for representing timing 
ontext in the tableau for formulasthat use diagonal 
onstraints.As timed sequents are labelled with set of formulas and we need to de
ompose a pathinto tra
es to de
ide if they are �good�, the satis�ability pro
edure is expensive (exponentialon the size of the formula) and di�
ult. Then we wondered if all these artifa
ts 
an beavoided and the answer is yes. An intuitive idea is to 
onsider only 
onjun
tions that do notrequire the use of sets of formulas in timed sequents. An example for su
h a 
onjun
tion is a
onjun
tion of the form 〈g1, a1〉ϕ∧ 〈g2, a2〉ψ where g1 ∧ g2 is in
onsistent or a1 6= a2. Anotheridea 
onsists, given a formula 〈g1, a〉ϕ ∧ 〈g2, a〉ψ where g1 ∧ g2 is 
onsistent, to assume thatthe models will have two outgoing transitions, one for ea
h member of the 
onjun
tion. Then,we introdu
e the notion of disjun
tive normal form for formulas. We show that every formulahas an equivalent disjun
tive normal form formula. From a given general ERL formula, we
onstru
t an equivalent ERL formula in disjun
tive normal form. The satis�ability 
he
king fordisjun
tive normal form formulas is easier than the satis�ability pro
edure of general formulas.Related results: The standard (untimed) µ-
al
ulus has been introdu
ed byKozen [Koz82℄. Model-
he
king and satis�ability of the µ-
al
ulus have been shown to havee�
ient (tableau-based) pro
edures [SE89, Eme97, GV08℄ and to have relations with othertheoreti
al obje
ts su
h as game [EJ91, NW96℄ and automata [Tho90, JW95℄. For the laterrelation, a disjun
tive normal form of formulas has been provided [JW95℄ to show the equiva-len
e between alternating automata on trees and non-deterministi
 automata on trees [MS95℄.The use of su
h kind of transformation has been presented in [AVW03, AW07, BCL05℄ for
ontroller synthesis of systems. As ERL extends the µ-
al
ulus, we have wondered if someof the results on the µ-
al
ulus 
ould be extended to ERL. Sorea [Sor02℄ has 
onsidered thetableau te
hnique, early used in the setting of the (untimed) µ-
al
ulus [JW95℄, to prove thede
idability of the model-
he
king and satis�ability problems on ERL. The di�
ulty with thepro
edure of Sorea is that it is based on zones and rule that redu
es modalities indexed witha 
onstraint and an event is not easy to understand. We have proposed new rules and we havetried to reuse as mu
h as possible standard results on the µ-
al
ulus.In the next se
tion, we present ERL and its semanti
s. In Se
tion 3.2, we 
onsider the
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 63model-
he
king problem of ERL formulas that we redu
e to the model-
he
king problem of
µ-
al
ulus formulas modalities of whi
h are indexed in a parti
ular alphabet. The satis�abilityproblem for ERL formulas is addressed in Se
tion 3.3. In that se
tion we provide a new tableausystem that uses regions for representing the timing 
ontext. From our tableau system weprovide disjun
tive normal form theorem in Se
tion 3.5.3.1 Event-Re
ording Logi
3.1.1 De�nitionsEvent-Re
ording Logi
 [Sor02℄ is an extension of the µ-
al
ulus; it has been introdu
ed to de-s
ribe properties on timed pro
esses. The extension is made on modal operators by 
onsideringmodal operators of the form 〈g, a〉 and [g, a].De�nition 77 Let Σ be a set of events, Var a set of variables. The set of formulas of Event-Re
ording Logi
 (ERL) denoted by Ferl is the set of formulas given by the following grammar:

ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈g, a〉ϕ | [g, a]ϕ | µX.ϕ | νX.ϕwhere,
• a is an event from Σ,
• g is a 
onstraint from GdsΣ,
• X is a variable from Var ,The bound of a formula is the maximal 
onstant that o

urs in its 
onstraints. For a formula

ϕ, Mϕ denotes its bound. Given a 
onstant M , we say that a formula is M -bounded if itsbound is smaller than M . The notions of sub formula, free variable, binding , dependen
yorder , expansion, senten
e, guarded formula , positive formula for the setting of ERL areobvious from the de�nitions of similar notions for the setting of the µ-
al
ulus in Se
tion 1.3.3.1.2 Semanti
sOur goal is to interpret a formula ϕ of Ferl over timed pro
esses. Be
ause the meaning of atimed pro
ess is a (VΣ ∪Σ)-labelled transition system, we give the interpretation of a formulaover su
h type of transition systems.Notation: We will write s v,a
−→ s′ when there is s′′ su
h that s v

−→ s′′ and s′′ a
−→ s′.As a formula may 
ontain free variables we will need a valuation of su
h variables. Givena valuation of variables Val : Var → P(S) and a set of states T ⊆ S, the valuation Val [X/T ]is the valuation Val with the substitution that asso
iates the set of states T with the variable

X. Formally, for Y ∈ Var , Val [X/T ](Y ) = T if Y = X and Val(Y ) otherwise. We write
S, s,Val �t ϕ when the formula ϕ holds in s or equivalently s satis�es ϕ.
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De�nition 78 (Meaning of a formula over (VΣ ∪ Σ)-labelled transition systems)For a given (VΣ ∪ Σ)-labelled transition system S, a given formula ϕ and an assignment
Val : Var → P(S), we de�ne the satisfa
tion relation �t and the set [[ϕ]]SVal indu
tively asfollows:
• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t [g, a]ψ if for every s v,a

−→ s′ ∈ ∆S su
h that v ∈ [[g]] we have S, s′,Val �t ψ.
• S, s,Val �t 〈g, a〉ψ if there exists s v,a

−→ s′ ∈ ∆S su
h that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal[X/T ] ⊆ T}.
• S, s,Val �t νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal[X/T ]}.
• [[ϕ]]SVal = {s | S, s,Val �t ϕ}.We will sometimes write s ∈ [[ϕ]]SVal instead of S, s,Val �t ϕ. If ϕ is a senten
e, i.e., doesnot have free variables, then its meaning does not depend on a valuation and we 
an writejust S, s �t ϕ. Finally, we will write S �t ϕ for S, s0 �t ϕ to say that S is a model of ϕ.Let us 
onsider ϕ a formula and P a timed pro
ess. We say that ϕ is satis�ed in a state

p, a valuation v : H → R+ and a valuation Val : Var → P(P ×VΣ) of propositional variablesand we write P, (p, v),Val � ϕ when [[P]], (p, v),Val �t ϕ.De�nition 79 (Meaning of a formula over timed pro
esses) The meaning [[ϕ]]PVal ⊆ P×(H →
R+) of a formula over a timed pro
ess P is de�ned by :

[[ϕ]]PVal = [[ϕ]]
[[P]]
ValWe will write P � ϕ if [[P]] is a model of ϕ and we say that P is a model of ϕ.Given two formulas ϕ1 and ϕ2, we often use the notation ϕ1 ≡ ϕ2 to say that ϕ1 isequivalent to ϕ2, meaning that for every timed pro
ess P, [[ϕ1]]

P
Val = [[ϕ2]]

P
Val .Remark: The presentation of the semanti
s above is di�erent (but it is equivalent) from theone in [Sor02℄. In parti
ular, the presentation of the semanti
s of modal operators indexedwith a 
onstraint and an event seems simpler as it bene�ts from that delay transitions in thesemanti
s of timed pro
esses (see De�nition 66) are labelled with valuations.Given the senten
e ϕ, and a (V∪Σ)-labelled transition system S, we introdu
e the negationoperator ¬ de�ned by: [[¬ϕ]]S = S \ [[ϕ]]S .Proposition 80 The following equivalen
es are true:

• ¬tt ≡ �
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• ¬� ≡ tt

• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬〈g, a〉ϕ ≡ [g, a]¬ϕ

• ¬[g, a]ϕ ≡ 〈g, a〉¬ϕ

• ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)

• ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)ProofLet a senten
e ϕ, a (V ∪ Σ)-labelled transition system S and let s be a state of S. The proofuses stru
tural indu
tion. All the 
ases but for modalities are standard.
• If s ∈ [[¬〈g, a〉ϕ]]S then s 6∈ [[〈g, a〉ϕ]]SVal . By de�nition it means that for every v′ ∈ [[g]],
s
v′,a
−→ s′ in S we have s′ 6∈ [[ϕ]]SVal . On
e again by de�nition s ∈ [[[g, a]¬ϕ]]SVal .

• The 
ase of ¬[g, a]ϕ uses a dual argumentation.
�We 
an assume that the grammar of the syntax of ERL is augmented with the negationoperator in the following way: if ϕ is an ERL senten
e, so is ¬(ϕ).Proposition 81 Let g, g1, g2, . . . , gn ∈ GdsΣ be su
h that [[g]] =

⋃

i=1..n [[gi]] then,1. 〈g, a〉ϕ ≡ ∨i=1..n〈gi, a〉ϕ2. [g, a]ϕ ≡
∧

i=1..n[gi, a]ϕProofLet S, s a 
on�guration of s, and Val a valuation of propositional variables.1. S, s,Val �t 〈g, a〉ϕ if and only if there is v ∈ [[g]] su
h that s v,a
−→ s′ and S, s′,Val �t

ϕ. Equivalently, S, s,Val �t 〈gi, a〉ϕ for some i ∈ {1, 2, . . . , n} su
h that v ∈ gi andequivalently S, s,Val �t
∨

i=1,...,n〈gi, a〉ϕ.2. From proposition 80 [[[g, a]ϕ]] = [[¬(〈g, a〉¬ϕ)]]. Then, use the �rst item to 
on
lude.
�
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3.2 Model-Che
kingIn this se
tion we address the model-
he
king problem that is to 
he
k if a given a systemis a model of a given spe
i�
ation. In the literature (see [CGP99, Mer01, BBF+01, GV08℄),this problem is known as the model-
he
king problem and it has been widely studied forseveral temporal logi
s [Var96, LP85, KVW00, S
h03, Ong02, LMS04℄ and parti
ularly the
µ-
al
ulus [SE89, NW96, Eme97℄.Here, we present an algorithm for the model-
he
king problem where, the system, P is atimed pro
ess and the spe
i�
ation, ϕ is a formula of ERL. That algorithm is based on theone for the µ-
al
ulus. Indeed, we show that 
he
king if a timed pro
ess is a model of an ERLformula 
an be redu
ed to 
he
king whether an untimed transition system is a model of aparti
ular µ-
al
ulus formula.Let S = 〈S,VΣ ∪ Σ, s,∆S〉 be a (VΣ ∪ Σ)-labelled transition system, ϕ an ERL formula.Informally, to 
he
k whether S is a model of ϕ, we work in the following way. First we assignthe initial 
on�guration s0 to ϕ meaning that we are 
he
king if s0 �t ϕ. Now, assume that a
on�guration s has been assigned to a sub formula ψ of ϕ. Depending of the the stru
ture of
ψ, we must 
he
k if some (or all) su

essors of s in S satisfy some sub formula of ψ.When ϕ is a senten
e and does not 
ontain free variables, the pro
edure works as follows:
• if ψ = tt the answer if �yes�;
• if ψ = � the answer is �no�;
• to verify that ϕ1∧ϕ2 is satis�ed at s, we 
he
k that ϕ1 is satis�ed at s and ϕ2 is satis�edat s;
• to verify that ϕ1 ∨ ϕ2 is satis�ed at s, we 
he
k if ϕ1 is satis�ed at s or if ϕ2 is satis�edat s;
• to verify that 〈g, a〉ψ is satis�ed at s, we 
he
k that s′ satis�es ψ where s′ is a 
hosen
on�guration su
h that s v′,a

−→ s′ in S and v′ ∈ [[g]] ;
• to verify that [g, a]ψ is satis�ed at s, we 
he
k that s′ satis�es ψ for every s′ su
h that
s
v′,a
−→ s′ in S and v′ ∈ [[g]];

• to verify that σX.ψ(X) is satis�ed at s, we 
he
k ψ(X) is satis�ed at s;
• to verify that X is satis�ed at s, we 
he
k that ψ(X) is satis�ed at s; assuming that Xis bound and Dϕ(X) = σX.ψ(X).When ϕ is not a senten
e, we need a valuation of free variables over the set of states S.To 
he
k whether a timed pro
ess P is a model of a formula ϕ, means to 
he
k whether

[[P]] is a model of ϕ. One 
ould wonder about the termination of su
h a pro
edure sin
e thestate spa
e of [[P]] is in�nite and there 
ould exists in�nitely many outgoing transitions from
on�gurations of [[P]].We intend to operate on a �nite stru
ture and try to use de
ision pro
edures for themodel-
he
king problem of the µ-
al
ulus. We 
onsider abstra
tion on models that preservetheir semanti
s.



3.2. Model-Che
king 671. We 
onsider �good abstra
tions� for timed pro
esses. These abstra
tions will be �nitelabelled transition systems.2. We 
onsider �good abstra
tion� for formulas. These abstra
tions will be formulas of �nitelength.3. We de�ne a �good abstra
t� satisfa
tion relation between a �good abstra
tion� of a timedpro
ess and �good abstra
tion� of a formula. This �good abstra
t� satisfa
tion relationmust be de�ned in su
h a way that a timed pro
ess satis�es a formula if and only if theabstra
tion of the timed pro
ess satis�es the abstra
tion of the formula.3.2.1 Abstra
t Semanti
s for FormulasWe propose in De�nition 82 the symboli
 relation, denoted by �g, of satisfa
tion between atimed pro
ess and a formula. This relation will serve as a �good abstra
t� satisfa
tion relationwe have dis
ussed before. We immediately remark that for any timed pro
ess P: 〈[P]〉M and
〈[P]〉Mreg are (AgdsΣ(M) ∪ Σ)-LTS. 〈[P]〉M has in�nitely many states while 〈[P]〉Mreg has �nitelymany states. Our obje
tive will be to redu
e the model 
he
king over [[P]] to the model 
he
kingover 〈[P]〉Mreg for suitable M .Notation: We will write s g,a

−→ s′ when there is s′′ su
h that s g
−→ s′′ and s′′ a

−→ s′.De�nition 82 [Abstra
t meaning of a formula over a (GdsΣ ∪Σ)-LTS)℄ Let ϕ be a formula,
S = 〈S,GdsΣ ∪ Σ, s0,∆S〉 be a (GdsΣ ∪ Σ)-LTS. For a 
on�guration s of S, a valuation
Val : Var → P(S) of propositional variables, we de�ne the symboli
 relation of satisfa
tion
�g and the set g[[ϕ]]SVal as follows:
• S, s,Val �g tt .
• S, s,Val �g X if s ∈ Val(X).
• S, s,Val �g ϕ1 ∨ ϕ2 if S, s,Val �g ϕ1 or S, s,Val �g ϕ2.
• S, s,Val �g ϕ1 ∧ ϕ2 if S, s,Val �g ϕ1 and S, s,Val �g ϕ2.
• S, s,Val �g [g, a]ψ if for every s g,a

−→ s′ ∈ ∆S , we have S, s′,Val �g ψ.
• S, s,Val �g 〈g, a〉ψ if there exist s g,a

−→ s′ ∈ ∆S and S, s′,Val �g ψ.
• S, s,Val �g µX.ϕ(X) if s ∈ ⋂{T ⊆ S | g[[ϕ(X)]]SVal [X/T ] ⊆ T}.
• S, s,Val �g νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆g [[ϕ(X)]]SVal [X/T ]}.
• g[[ϕ]]SVal = {s : S, s,Val �g ϕ}If ϕ is a senten
e, i.e., does not have free variables, then its meaning does not depend ona valuation and we 
an write just S, s �g ϕ. Finally, we will write S �g ϕ for S, s0 �g ϕ.
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We propose the symboli
 de
ision pro
edure for the model 
he
king of a pro
ess P againsta formula φ. This pro
edure is similar to the real-time de
ision pro
edure de�ned above. Thedi�eren
e o

urs when we 
he
k if a state satis�es a sub formula of the form 〈g, a〉ψ and
[g, a]ψ. In these 
ases, the pro
edure works as follows:
• to verify that 〈g, a〉ψ is satis�ed at s, we 
he
k that s′ satis�es ψ where s′ is a 
hosen
on�guration su
h that s g,a

−→ s′ in S
• to verify that [g, a]ψ is satis�ed at s, we 
he
k that s′ satis�es ψ for every s′ su
h that
s

g,a
−→ s′ in SIt should be quite 
lear that for timed pro
esses, we 
an not just substitute the symboli
de
ision pro
edure for the real-time de
ision pro
edure.We expe
t to apply the symboli
 de
ision pro
edure on representations of timed pro
essesand formulas that use 
onstraints in a same �nite set. Then, we will 
onsider bounded 
on-straints, and we will ensure that any 
onstraint in that set 
an not be split into 
onstraintsthat use smaller 
onstants. A

ording to Fa
t 48, re
tangular 
onstraints are appropriate forthis obje
tive.De�nition 83 An M -re
tangular formula is a formula using 
onstraints in AgdsΣ(M).Given a formula ϕ, and a bound M , we de�ne the M -re
tangular formula RectM (ϕ) as theformula obtained from ϕ by repla
ing ea
h 
onstraint g that o

urs in ϕ by the disjun
tionof atomi
 M -re
tangular 
onstraints 
ontained in g. From Proposition 81, this de�nition issound and RectM (ϕ) is a formula of Ferl.De�nition 84 The M -re
tangular ERL formula asso
iated to an ERL formula ϕ, RectM (ϕ)is the formula de�ned indu
tively as follows:

• RectM (�) = �
• RectM (tt) = tt

• RectM (X) = X

• RectM (ϕ1 ∧ ϕ2) = RectM (ϕ1) ∧RectM (ϕ2)

• RectM (ϕ1 ∨ ϕ2) = RectM (ϕ1) ∨RectM (ϕ2)

• RectM (〈g, a〉ϕ) =
∨

ĝ∈RectM (g)〈ĝ, a〉RectM (ϕ)

• RectM ([g, a]ϕ) =
∧

ĝ∈RectM (g)[ĝ, a]RectM (ϕ)

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}We remark that the size of RectM (ϕ) 
ould be exponential in the size of ϕ.We show in the following proposition that for M ≥Mϕ (Mϕ is the maximal 
onstant thato

urs in ϕ) formulas and their M -re
tangular forms are equivalent over transition systemsthat represents the semanti
s of timed pro
esses.
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king 69Proposition 85 Let ϕ be a formula and S be a (VΣ∪Σ)-LTS. For everyM ≥Mϕ, S, s,Val �t

ϕ if and only if S, s,Val �t RectM (ϕ).ProofWe use stru
tural indu
tion. Let M ≥Mϕ.
• The basi
 
ases of �, tt , X are obvious.
• The 
ases of ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 are also obvious.
• The 
ase when ϕ = 〈g, a〉ψ. RectM (ϕ) =

∨

ĝ∈RectM (g)〈ĝ, a〉ϕ. From Proposition 57,
[[g]] =

∨

ĝ∈RectM (g) [[ĝ]]. We use Proposition 81 to 
on
lude.
• The 
ase when ϕ = [g, a]ψ. RectM (ϕ) =

∧

ĝ∈RectM (g)[ĝ, a]ϕ. We use Proposition 57 andProposition 81 to 
on
lude.
• When ϕ = σX.ψ(X). RectM (ϕ) = σX.RectM (ψ(X)). By indu
tion hypothesis ψ(X) ≡
RectM (ψ(X)), then we get the result.

�The �good abstra
tion� for formulas that we use later for the model-
he
king algorithm isthe re
tangular form.3.2.2 Fixpoint ApproximationNow we introdu
e the notion of 
omputation of a �xpoint by su

essive steps that gives us apowerful tool to understand the semanti
s of formulas. Let S be a (GdsΣ ∪Σ)-LTS.De�nition 86 For every ordinal λ, we de�ne 
onstru
tions for the �xpoints µλX.ϕ(X) and
νλX.ϕ(X) the semanti
s of whi
h is indu
tively de�ned as follows:
• g[[µ0X.ϕ(X)]]

S
Val = ∅, and g[[ν0X.ϕ(X)]]

S
Val = g[[tt ]]SVal .

• g[[σλ+1X.ϕ(X)]]
S
Val = g[[ϕ(X)]]S

Val[ g[[σλX.ϕ(X)]]SVal/X]

• When β is a limit ordinal,� g[[µβX.ϕ(X)]]
S
Val =

⋃

λ<β
g[[µλX.ϕ(X)]]

S
Val ,� g[[νβX.ϕ(X)]]

S
Val =

⋂

λ<β
g[[νλX.ϕ(X)]]

S
Val .We re
all the Knaster-Tarski theorem [Tar55℄ showing how to approximate �xpoint byiterative 
omputations.Theorem 87 ([Tar55℄)

• S, s,Val �g µX.ϕ(X) if and only if s ∈ ⋃β
g[[µβX.ϕ(X)]]

S
Val .

• S, s,Val �g νX.ϕ(X) if and only if s ∈ ⋂β
g[[νβX.ϕ(X)]]

S
Val .A de�nition and a theorem analogous to De�nition 86 and Theorem 87 is made 
onsidering

(VΣ ∪ Σ)-LTS, �t and [[ϕ]] instead of (GdsΣ ∪ Σ)-LTS, �g and g[[ϕ]].
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3.2.3 Model-Che
king ResultsThe next step in our abstra
tion is to show that the real-time algorithm for the model-
he
kingproblem, de�ned above, 
an be repla
ed by a symboli
 algorithm. In order words, we makea relation between �t and �g. Given a timed pro
ess P and an Mϕ-re
tangular formula ϕ,we show that the result of the �real-time� de
ision pro
edure for [[P]] �t ϕ is the same asthe result of the symboli
 de
ision pro
edure for 〈[P]〉M �g ϕ with M ≥ Mϕ. Re
all that inaforementioned real-time algorithm as in the symboli
 algorithm, the veri�
ation task 
onsistsin moving from a veri�
ation goal into another and the verdi
t depends on the number oftimes parti
ular variables are regenerated. If we show that a su

ession of moves in the real-time pro
edure 
an be mimi
ked in the symboli
 pro
edure in su
h a way that formulas andthe lo
ations in the veri�
ation goal are preserved then the verdi
t of the two pro
edures willalways be the same. That is what we show in Lemma 88 below.Lemma 88 For every MP -bounded pro
ess P, for every Mϕ re
tangular formula, for every
M ≥Mϕ, [[P]], (p, v),Val �t ϕ if and only if 〈[P]〉M , (p, v),Val �g ϕ.ProofThe proof uses stru
tural indu
tion. Let M ≥Mϕ.
• The basi
s 
ases when ϕ is of the form tt , �, X are obvious.
• The 
ases of ϕ1 ∧ ϕ2, or ϕ1 ∨ ϕ2 are also obvious.
• Assume that ϕ = 〈g, a〉ψ,

(=>) If [[P]], (p, v),Val �t 〈g, a〉ψ then there is v′ ∈ [[g]] su
h that (p, v)
v′,a
−→ (p′, v′[ha :=

0]), and [[P]], (p′, v′[ha := 0]),Val �t ψ. By indu
tion hypothesis 〈[P]〉M , (p′, v′[ha :=

0]),Val �g ψ. But, v′ � g implies that (p, v)
g,a
−→ (p′, v′[ha := 0]) and then

〈[P]〉M , (p, v),Val �g 〈g, a〉ψ.
(<=) If 〈[P]〉M , (p, v),Val �g 〈g, a〉ψ, then there is v′ ∈ [[g]], (p, v)

g,a
−→ (p′, v′[ha :=

0]) in 〈[P]〉M su
h that 〈[P]〉M , (p′, v′[ha := 0]) �g ψ. By indu
tion hypothesis
[[P]], (p′, v′[ha := 0]),Val �t ψ. But, if (p, v)

g,a
−→ (p′, v′[ha := 0]) in 〈[P]〉M , thenthere is (p, v)

v′,a
−→ (p′, v′[ha := 0]) in [[P]]. This implies that [[P]], (p, v),Val �t

〈g, a〉ψ.
• The 
ase when ϕ = [g, a]ψ uses a dual argument to the 
ase when ϕ = 〈g, a〉ψ.
• Sin
e interse
tion and union of set preserves monotoni
ity, the 
ases of �xpoint formula
ome as a 
onsequen
e of the above ones

�As 〈[P ]〉M has in�nitely many states, the real-time model-
he
king pro
edure may notterminate. By the following proposition, we 
an 
onsider the M -region representation that is�nite to ensure termination. The following 
orollary is just an extension of Theorem 26 totimed pro
essed and ERL formulas.
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king 71Corollary 89 Let S and S ′ be two bisimilar timed pro
esses and let ϕ be a formula. S �g ϕif and only if S �g ϕProposition 90 For any timed pro
ess P, any formula ϕ, for every M ≥ max(Mϕ,MP ),
[[P]], (p, v),Val �t ϕ if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ)ProofBy Proposition 85, [[P]], (p, v),Val �t ϕ if and only if [[P]], (p, v),Val �t RectM ′(ϕ) for every
M ′ ≥ Mϕ. From Lemma 88, this is equivalent to 〈[P]〉M , (p, v),Val �g RectM ′(ϕ) for every
M ′ ≥Mϕ. From Proposition 69, 〈[P]〉M is bisimilar to 〈[P]〉Mreg then using Corollary 89, we get
〈[P]〉M , (p, v),Val �g RectM ′(ϕ) if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ) �We get the following theorem.Theorem 91 There is an e�e
tive pro
edure that 
he
ks whether a timed pro
ess P is anmodel of a formula ϕ assuming an initial valuation v0.ProofBy Proposition 90, we get that to 
he
k if P satis�es ϕ is equivalent to 
he
k that 〈[P]〉Mreg �g

RectM (ϕ) for M su�
iently big. But the relation �g between 〈[P]〉Mreg and RectM (ϕ) is thesame (modulo the labels on transition of the models and the index in the modalities) as therelation � between a labelled transition system and a µ-
al
ulus formula. Then it 
omes thatthe model-
he
king pro
edure for the µ-
al
ulus 
an be used for the model-
he
king of ERL.
�3.2.4 ComplexityThe 
omplexity for our model-
he
king algorithm is immediate from the 
omplexity of themodel-
he
king problem for the µ-
al
ulus. In Theorem 25, the 
omplexity of the model-
he
king for the µ-
al
ulus depends on the size of the models, the alternation depth and the size(number of sub formulas) of the formulas. For the model-
he
king algorithm of ERL, modelsare M -region representations and formulas are M -re
tangular. Let M be an integer, thereare at most (2×M + 1)|HΣ| re
tangular 
onstraints. For a timed pro
ess P = 〈P ,Σ, p0,∆P 〉,the M -region region representation 〈[P]〉Mreg has at most |P | × |Reg(M)| states and at most
|∆P | × |Agds(M)| transitions. The M -re
tangular formula RectM (ϕ) for a given formula ϕhas at most |sub(ϕ)| × |Agds(M)| sub formulas and is of the same alternation depth as ϕ.The we get the following 
orollary.Corollary 92 Let ϕ be a formula, and P = 〈P ,Σ, p0,∆P 〉 be a timed pro
ess. Our model-
he
king problem pro
edure pro
edure works in
O

(

|∆P | × |Agds(M)|2 × |sub(ϕ)| ×

(

2× |P | × |Reg(M)| × |sub(ϕ)| × |Agds(M)|

alt(ϕ)

)⌈alt(ϕ)/2⌉
)We re
all that alt(ϕ) is the alternation depth of the formula ϕ.
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From 
orollary 92, we get that our model-
he
king algorithm is exponential time in the size ofthe timed pro
ess and the length of the binary en
oding of the largest 
onstant in the formulaand in the timed pro
ess.We remark that a standard zone-based model-
he
king algorithm for WTµ will remain inEXPTIME; but it may be an interesting alternative in pra
ti
e.3.3 Satis�abilityThe satis�ability problem for ERL is: given a senten
e of Event-Re
ording Logi
 ϕ, 
he
kwhether there exists a timed pro
ess P that is a model of ϕ with respe
t the initial valuation v0.By Propositions 56 and 81 we 
an assume that the formula uses only re
tangular 
onstraints.We 
onsider this problem and we propose a tableau-based de
ision pro
edure. We proposea new tableau system of rules that we use to 
onstru
t tableaux. From tableaux we 
he
k theexisten
e of �good� fragments to de
ide if formulas are satis�able. In our tableau system ofrules, timing 
ontexts are represented by regions while the tableau system of rules proposedby Sorea [Sor02℄ for the satis�ability of ERL uses zones. Later in Se
tion 3.4 we make someobservations on the interpretations of some rules of Sorea and we show that it is in
orre
t forthe satis�ability of a formula that uses general (diagonal) 
onstraints as originally 
onsideredby Sorea.Let us �rst extend the syntax of Event-re
ording logi
 formula by 
onsidering the newmodal operator (g, a)→ that extends the operator (a)→ for the µ-
al
ulus and that has thesame expressive power that the former ones that is 〈g, a〉 and [g, a].De�nition 93 Let Γ be a set of formulas. We de�ne the modal operator (g, a)→Γ by:
(g, a)→Γ ≡

∧

ϕ∈Γ

〈g, a〉ϕ ∧ [g, a]
∨

ϕ∈Γ

ϕRe
all that the 
onjun
tion of an empty set is equal to tt and the disjun
tion of an empty setis equal to �; So (g, a)→∅ ≡ [a, a]�.We immediately remark that:
[g, a]ϕ ≡ (g, a)→{ϕ} ∨ (g, a) →∅

〈g, a〉ϕ ≡ (g, a)→{ϕ, tt}In 
onsequen
e, every formula of event-re
ording logi
 is equivalent to a formula using only thenew modal operator. Later we 
onsider re
tangular formulas that only use the new modalityoperator in addition to the boolean and �xpoints operators.3.3.1 TableauAs 
he
king if P is a model of ϕ 
onsists to 
he
k if [[P]] �t ϕ, we des
ribe the set of formulas,that we 
alled the satis�ability obje
tive, assigned to 
on�gurations (or state) of a (V∪Σ)-LTSthat models a formula ϕ. This assignment pro
edure will give intuitions for the rules of the
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tives to states from whi
h there is at least onetransition labelled with a valuation.Initially, {ϕ} is assigned to the initial state s0. The tuple (s,Γ) of a state s and its satis-�ability obje
tive Γ is a veri�
ation obje
tive. We write {ϕ,Γ} as a short
ut for {ϕ} ∪ Γ.Assuming that the 
urrent veri�
ation obje
tive is (s, {ϕ,Γ}), and depending on the stru
-ture of ϕ, we use the veri�
ation pro
edure des
ribed in the previous se
tion to generate thenext satis�ability obje
tives. We �rst 
onsider the 
ases when only the satis�ability obje
tive
hanges. A

ording to the veri�
ation pro
edure the 
hange is done by the following rules:
• if ϕ = ϕ1 ∧ϕ2, then the next satis�ability obje
tive is {ϕ1, ϕ2,Γ} sin
e we would like toverify that s satis�es ϕ1 and s satis�es ϕ2;
• if ϕ = ϕ1 ∨ϕ2, then the next satis�ability obje
tive is {ϕ1,Γ} or {ϕ2,Γ} sin
e we wouldlike to verify that s satis�es ϕ1 or s satis�es ϕ2;
• if σX.ψ(X), then the next satis�ability obje
tive is {ψ(σX.ψ(X)),Γ}. This is a regen-eration step.From a veri�
ation obje
tive (s,Γ), if we apply the rules above, we do not 
hange the 
urrentstate in the transition system, but, we end up in a veri�
ation obje
tive (s,Γ) where Γ issu
h that every formula in it is in one of the form tt , �, or (g, a)→Θ. Then, we 
onsider thefollowing 
ases:
• if Γ 
ontains the formula �, then Γ is not satis�ed in s;
• if tt is the unique formula in then Γ is satis�ed in s;
• else, Γ 
ontains at least one formula of the form (g, a) →Θ then:� for every (g, a)→Θ ∈ Γ, and ψ ∈ Θ, we must 
reate a veri�
ation obje
tive

(s′, {ψ} ∪ {
∨

Θ′ | (g′, a)→Θ′ ∈ Γ and v ∈ [[g′]]}) for some s′ and v ∈ [[g]] with
s

v,a
−→ s′,� for every (v, a) and every s′ su
h that s v,a

−→ s′, we must �nd a formula (g′, a)→Θ ∈
Γ with v ∈ [[g′]] and ψ ∈ Θ; and we 
reate the veri�
ation obje
tive (s′, {ψ} ∪
{
∨

Θ′ | (g′′, a)→Θ′ ∈ Γ and v ∈ [[g′]]}).As a 
onsequen
e of Lemma 88, 
onsidering [[P]] and 〈[P]〉M withM ≥Mϕ, we get that theset of veri�
ation obje
tives in the real-time veri�
ation pro
edure is the same as the set ofveri�
ation obje
tives in the symboli
 veri�
ation pro
edure. Moreover real-time rules 
an bemimi
ked by symboli
 rules. Of 
ourse while 
he
king for satis�ability, we do not have statesof a system. So we will use the pro
edure as above with �imaginary� states. For this to workwe will need to keep the timing information in a form of regions.Now we formalise the rules and the pro
edure above by de�ning the tableau system of rulesfor Event-Re
ording Logi
 following the one introdu
ed for the µ-
al
ulus [Koz82, Wal95℄ andother temporal logi
s [GM96, Gor99, LS01℄. We 
laim that our tableau system of rules isdi�erent and simpler than the one proposed by Sorea [Sor02℄.
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A tableau system of rules is a 
olle
tion of rules. A rule is of the form
T1 T2 . . . Tn

Twhere T and Ti for every i = 1..n are tuples made of a set of formulas (satis�ability obje
tives)and a region (timing 
ontext). The tuples over the lines of a rules (Ti for every i = 1..n) are
alled the premises of the rules and the tuple T below the line of a rule is 
alled 
on
lusion ofthe rule. A rule as above is interpreted as follows: verifying whether the satis�ability obje
tivesin the 
on
lusion are satis�able from the timing 
ontext is redu
ed to 
he
king if all (some)satis�ability obje
tives in the hypothesis are satis�able in their 
orresponding timing 
ontext.De�nition 94 (The System of Tableau Rules) The system of tableau rules Sϕparametrised by a formula ϕ (or rather its binding fun
tion Dϕ) and the set of regions RegMis de�ned by:
{�};�
{ϕ,Γ};� (�r)

{ϕ1,Γ}; r {ϕ2,Γ}; r

{ϕ1 ∨ ϕ2,Γ}; r
(∨)

{ϕ1, ϕ2,Γ}; r

{ϕ1 ∧ ϕ2,Γ}; r
(∧)

{ϕ(X),Γ}; r

{µX.ϕ(X),Γ}; r
(µ)

{ϕ(X),Γ}; r

{νX.ϕ(X),Γ}; r
(ν)

{ϕ(X),Γ}; r

{X,Γ}; r
(reg) Dϕ(X) = σX.ϕ(X)

ϕ ∪ {
∨

Θj | (g, a)→ Θj ∈ Γ, Θj 6= Θi}; (g ∧ r↑)[ha := 0]for every{ (g, a)→ Θi ∈ Γ,
ϕ ∈ Θi

Γ; r
(mod)We remark that if g is re
tangular then (g ∧ r↑) is a region (or is in
onsistent). Thus, if westart with a re
tangular formula then all time-
ontexts obtained by appli
ations of the ruleswill be regions.We give the intuitive idea behind the rule (mod). The 
on
lusion Γ; r of the rule (mod)is su
h that every formula in Γ is of the form (g, a)→Θ where Θ is a set of formulas. Re
allthat (g, a)→Θ ≡

∧

ϕ∈Θ〈g, a〉ϕ ∧ [g, a]
∨

ϕ∈Θ ϕ. Then the presen
e of existential modalityrequires that when the time elapses, the 
onstraint o

urring in a formula (g, a)→Θi of Γshould be satis�ed (when Θi 6= ∅) and then every ϕ ∈ Θi should also be satis�ed. We needsomething more though as Γ may 
ontain a 
olle
tion of formulas of the form (g, a)→Θj , forthe same guarded-event (g, a). In this 
ase we need when to 
he
k if ϕ ∈ Θi together with thedisjun
tions ∨Θj are satis�ed.De�nition 95 (Tableau) A tableau for a re
tangular formula ϕ from a region r0 is a pair
τϕ
r0

= 〈T ,L〉, where T = 〈N,E〉 is a tree, and L is a labeling fun
tion su
h that:



3.3. Satisfiability 751. The root n0 of τϕ
r0

is labeled by {ϕ}; r02. The sons of any node n are 
reated and labeled a

ording to the rules of system Sϕ. Itis required the rule (mod) is applied only when no other rule is appli
able.Example: Let us present a fragment of the tableau for a formula
ϕ = (0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}where, r0 is the region satisfying the 
onstraint ha = 0∧hb = 0, r1 is the region satisfying the
onstraint ha = 0∧0 < hb < 1 and, r2 is the region satisfying the 
onstraint 0 < ha < 1∧hb = 0

{ϕ1, ϕ3}; r1 {ϕ2, ϕ3}; r1 {ϕ3, ϕ1 ∨ ϕ2}; r1 {ϕ4}; r2
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3}, (0 < ha < 1, b)→{ϕ4}}; r0
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0
{(0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0

� If n is a node of the tableau and L(n) = Γ; r, then LERL(n) = Γ and Lρ(n) = r denotethe formula part and the timing part of L(n).We remark that the appli
ation of a rule at some node n depends both on some formula
ϕ ∈ LERL(n) and the time 
ontext Lρ(n). We say that the rule is dire
ted by the tuple
ϕ;Lρ(n).We remark that the tableau of a formula ϕ is a �nite bran
hing tree nodes of whi
h arelabeled on the �nite alphabet 2sub(ϕ) ×Reg.De�nition 96 A modal node is a node in whi
h the rule (mod) is applied; A disjun
tive(resp.
onjun
tive) node is a node in whi
h the rule ∨ (resp ∧) is applied. Sin
e a modal nodemay has several su

essors, a (g, a)-son of a modal node is the son obtained by 
onsideringthe guarded event (g, a) for some ϕ ∈ Θi with (g, a)→ Θi ∈ Γ.Example: In the example just above, the node labelled with

{(0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0is a 
onjun
tive node. The node labelled with
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3}, (0 < ha < 1, b)→{ϕ4}}; r0is a modal node whi
h has three (0 < ha < 1, a)-sons and one (0 < ha < 1, b)-son. �De�nition 97 (Choi
e node, near to) A 
hoi
e node is a root node or a son of a modalnode. A node m is near to a node n if and only if there is a path from n to m in a tableauwithout an appli
ation of the rule (mod) in-between.We remark that the root of a tableau 
an be a 
hoi
e node and a modal node. A leaf node, amodal node, or a disjun
tive node, or a 
onjun
tive node 
an also be a 
hoi
e node.
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3.3.2 Semanti
s of TableauA path in a tableau represents of partial task in the satis�ability 
he
king of a set of formulas.Given Γ1; r1 and Γ2; r2 two 
onse
utive nodes of the tableau, su
h that Γ2; r2 derived from
Γ1; r1, there is a formula ϕ1 ∈ Γ1 that has been redu
ed a

ording to an appropriate rule andthere is a formula ϕ2 ∈ Γ2 whi
h is one of the results of the redu
tion of ϕ1. Su
h a relationbetween formulas in the premises and formulas in the 
on
lusion keeps tra
k of de
ompositionof ea
h formula. We follow [JW95, NW96℄ and we formalise this relation by de�ning tra
es.De�nition 98 (Tra
e) Given a path π of τϕ

r0
= 〈T ,L〉, a tra
e on π will be a fun
tion Fwhi
h assigns a tuple made of a formula and a region to ea
h node in some initial segment of

π, a

ording to the rules applied for the 
onstru
tion of π. FERL and Fρ denote the formulapart and the timing part of F(n). We require that F satis�es the following 
ondition: let n bethe su

essor of m on π then1. if the rule applied m is not (mod) and it is not dire
ted by F(m) then F(m) = F(n);2. if the rule applied at the node m is not (mod) but it is dire
ted by F(m) then Fρ(n) =
Fρ(m) and FERL(n) is one of the results of the appli
ation the rule in m.3. if the rule (mod) is applied at m and the son n ∈ π of m is labeled by ϕ ∪ {∨Θj :
(g, a) → Θj ∈ Γ, Θj 6= Θi}; r↑∧g[ha := 0] for some (g, a) → Θi ∈ LERL(m) and ϕ ∈ Θithen F(n) = ϕ; r↑∧g[ha := 0] if F(m) = (g, a) → Θi; r and F(n) =

∨

Θj; r↑∧g[ha := 0]if F(m) = (g, a)→ Θj; r.In order to establish whether a formula is satis�able are not, we distinguish �good tra
e�from �bad tra
e�. Intuitively, a �bad tra
e� is something that 
annot appear in a 
orre
texe
ution of the veri�
ation pro
edure sket
hed on page 73. We also 
onsider �good path�and �bad path�. Again a �bad path� is a path that 
annot o

ur during 
orre
t exe
ution ofthe veri�
ation pro
edure. To 
hara
terise �good� and �bad� paths we need to 
onsider �niteand in�nite paths.A �nite tra
e is �good� if it ends in a tuple the formula part of whi
h is tt or (g, a) →∅.Otherwise it is �bad�.If a tra
e is in�nite, there is are �xpoint variables that are in�nitely often regenerated.Following [Koz82, JW95℄, we give the de�nition of variable regeneration.De�nition 99 A variable X is regenerated on a tra
e F of some path if and only if for some
m and its son n on the path FERL(m) = X and FERL(n) = ψ(X) with Dϕ(X) = σX.ψ(X).As stated later in Theorem 87, the �goodness� of a tra
e may depend on the nature ofvariables that are in�nitely often regenerated. As introdu
ed in the above examples, �good�and �bad� tra
es depends on the order between variables and the nature of the oldest variablethat is in�nitely often regenerated.We formalise the notion of �good� and �bad� tra
es by de�ning µ-tra
es.De�nition 100 (µ-tra
e) A µ-tra
e is an in�nite tra
e on whi
h the oldest variable regen-erated in�nitely often is a µ-variable; or a �nite tra
e, ending with a tuple the formula partof whi
h 
ontains �.
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e is a µ-tra
e and a �good� is a tra
e that is not �bad�. It follows that a�bad� path is a path that 
ontains a µ-tra
e. We 
all su
h a path a µ-path. A �good� path isa path that does not 
ontains a µ-tra
e.Now that we have formally de�ned �good� paths and �bad� paths, we look for a distributionof �good� paths in the tableau in order to de
ide whether a set of formulas is satis�able or not.De�nition 101 (Pre-model) A pre-model PM is a fragment of a tableau τϕ
r0

satisfying thefollowing 
onditions:
• The root of τϕ

r0
belongs to PM.

• If a disjun
tive node belongs to PM, then only one of its sons belongs to PM.
• If a modal node belongs to PM, then all its sons belong to PM.
• There is no path with a µ-tra
e in PM.De�nition 102 (refutation) A refutation RF is a fragment of a tableau τϕ

r0
satisfying thefollowing 
onditions:

• The root of τϕ
r0

belongs to RF .
• If a disjun
tive node belongs to RF , then all its sons belongs to RF .
• If a modal node belongs to RF , then at most one of its sons belong to RF .
• There is a µ-tra
e on every path of RF .In the next se
tion we show the following theorem.Theorem 103 A guarded re
tangular formula ϕ is satis�able if and only if there exists apre-model for ϕ.3.3.3 Satis�ability ResultsIn this se
tion, we present a proof of Theorem 103. As remarked before we 
an restrain tore
tangular formulas.As formulas may 
ontain many �xpoint operators, then we need a stru
ture to handle thevariation of ordinals asso
iated to ea
h �xpoint operator after a 
omputation step. For thatpurpose, we 
onsider the notion of signature (also see [Wal95℄).De�nition 104 (Signature, µ-signature, ν-signature) A signature sig =

(α1, α2, . . . , αn) is a sequen
e of ordinals value of whi
h depends on a state. We distin-guish µ-signature from ν-signature that we simply 
all signature when it is 
lear from the
ontext.Let a formula ψ without free variables, if S, s � 〈[ψ]〉Dϕ
then, ψ has the µ-signature

µsig(ψ, s) = (α1, . . . αdµ) in s if µsig(s, ψ) is the least (in lexi
ographi
al order) sequen
e of
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ordinals su
h that S, s � 〈[ψ]〉D′
ϕ
where D′

ϕ is obtained from the binding fun
tion Dϕ by 
hang-ing de�nitions of Xi (for i = 1, . . . , dµ) from Dϕ(Xi) = νXi.ϕi(Xi) to D′
ϕ(Xi) = ναiXi.ϕi(Xi).If S, s 6� 〈[ψ]〉Dϕ

then, ψ has the ν-signature νsig(ψ, s) = (α1, . . . αdν ) in s if νsig(s, ψ) isthe least (in lexi
ographi
al order) sequen
e of ordinals su
h that S, s 6� 〈[ψ]〉D′
ϕ
where D′

ϕ isobtained from the binding fun
tion Dϕ by 
hanging de�nitions of Yi (for i = 1, . . . , dν) from
Dϕ(Yi) = µYi.ϕi(Yi) to D′

ϕ(Yi) = µαiYi.ϕi(Yi).In the de�nition of the notions of µ-signature and ν-signature just above S is either a
(Σ ∪ ValΣ)-labelled transition system representing the semanti
s of a timed pro
ess, and inthis 
ase � is the relation �t; or a (Σ ∪ Gds)-labelled transition system representing thesemanti
s of a timed pro
ess, and in this 
ase � is the relation �g.Lemma 105 (µ-Signature) Let µsig(ϕ, s) the signature of ϕ at s, it is true that:
• µsig(ϕ1 ∧ ϕ2, s) = max{µsig(ϕ1, s),

µ sig(ϕ2, s)}

• µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ1, s) or µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ2, s)

• for all ϕ ∈ Θ, there is s′ su
h that s ĝ,a
−→ s′ and µsig(ϕ, s′) ≤ µsig((ĝ, a) → Θ, s);and for every s′ su
h that there is a transition from s

ĝ,a
−→ s′, we have µsig(

∨

Θ, s′) ≤µ

sig((ĝ, a)→ Θ, s)

• if Xi is the i − th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�xes of length
i− 1 of µsig(µXi.ϕ(Xi), s) and µsig(ϕ(X), s) are equal
• µsig(νX.ϕ(X), s) = µsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• if Dϕ(Y ) = µY.ϕ(Y ), then µsig(Y, s) > µsig(ϕ(Y ), s)

• if Dϕ(Y ) = νY.ϕ(Y ), then µsig(Y, s) = µsig(ϕ(Y ), s)ProofThe 
ase of (ĝ, a)→Θ is a generalisation of the 
ases of ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2 whi
h themselvesare immediate.Considering the last 
ases, we suppose that S, s � 〈[Xi]〉Dϕ
with Dϕ(Xi) = µXi.ψi(Xi).

Xj o

urs in ψi(Xi) implies that Xi ≤ϕ Xj and Xj is free ψi(Xi). Let µsig(Xi, s) =
(α1, α2, . . . , αn) and D′ obtained from Dϕ by 
hanging de�nitions of Xi (for i = 1, . . . , dµ)from Dϕ(Xi) = µXi.ψi(Xi) to D′

ϕ(Xi) = µαiXi.ψi(Xi).It follows from the de�nition of the signature that S, s �g µαiXi.ψ(Xi). This impliesthat αi is a su

essor ordinal. It follows that S, s �g ψ(µαi−1X.ψ(Xi)). This means that thesignature of ψ(µαi−1Xi.ψ(Xi)) at s is (α1, . . . , αi−1, αi− 1, α′
i+1, . . . , α

′
dµ) and is smaller than

sig(Wi, s). The di�eren
e o

urs at the position i. �Lemma 106 (ν-Signature) Let νsig(ϕ, s) the signature of ϕ at s, the following assertionshold:
• νsig(ϕ1 ∨ ϕ2, s) = max{νsig(ϕ1, s),

ν sig(ϕ2, s)}
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• νsig(ϕ1 ∧ ϕ2, s) = νsig(ϕ1, s) or νsig(ϕ1 ∧ ϕ2, s) = νsig(ϕ2, s)

• Either exists ϕ ∈ Θ su
h that for all s′, if s ĝ,a
−→ s′ for some ĝ, then we have νsig(ϕ, s′) ≤ν

sig((ĝ, a) → Θ, s); or there is s′ su
h that s ĝ,a
−→ s′, and νsig(

∨

Θ, s′) ≤ν sig((g, a) →
Θ, s).
• If Xi is the i− th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�x of length i−1of νsig(µXi.ϕ(Xi), s) and νsig(ϕ(X), s) are equal.
• νsig(νX.ϕ(X), s) = νsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• If Dϕ(Y ) = µY.ϕ(Y ), then νsig(Y, s) = νsig(ϕ(Y ), s)

• If Dϕ(Y ) = νY.ϕ(Y ), then νsig(Y, s) > νsig(ϕ(Y ), s)ProofDual to Lemma 105. �Proposition 107 Any tableau for a formula ϕ 
ontains either a pre-model or a refutation.Proof(Sket
h) The proof of this result is the same as the proof of a similar result in the setting of thefor µ-
al
ulus [Wal95℄. The proof uses some results on two player parity games. One de�nes atwo player parity game and shows that a player has a winning strategy if and only if there isa pre-model for ϕ and its adversary has a winning strategy if and only if there is a refutationfor ϕ. The 
on
lusion 
omes from the fa
t that two player parity games are determined (seeTheorem 11). �Proposition 108 Any tableau of a satis�able re
tangular guarded formula ϕ 
ontains a pre-model for ϕ.ProofThe proof follows the ones in [Koz82, Wal95℄.Suppose that there is timed pro
ess P su
h that 〈[P]〉M , s0 �g ϕ.Let τϕ
r0

a tableau for ϕ. We aim at 
onstru
ting a pre-model PM for ϕ whi
h is in fa
t asub tree of τϕ
r0
. It means to 
hoose the nodes of τϕ

r0
that we will in
lude in PM. Of 
ourse,the root of τϕ

r0
will be in
luded in PM. We assign to ea
h node n that has been in
luded in

PM, a state sn ∈ S su
h that 〈[P]〉Mreg, sn �g 〈[ψ]〉Dϕ
for every ψ ∈ LERL(n). This assignmentwill be done through the so-
alled marking relation M : N → S. So we will have(1) if sn = M(n) then 〈[P]〉M , sn �g 〈[ψ]〉Dϕ

for every ψ ∈ LERL(n).We set s0 = M(n0) where n0 is the root of τϕ
r0
.This satis�es (1).Now, assume that a node n has been in
luded in PM with sn = M(n). We use the rulesfor the tableau to sele
t the next nodes that we in
lude in PM. The sele
tion works as follows:

• The only son of some node n, marked with sn, on whi
h an unary rule (�r,∧, reg, µ, or
ν) was applied is in
luded in PM; this son is marked with sn.
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• If n is a disjun
tive node, then sn is put into the marking of the son for whi
h it has theleast signature. Su
h a son exists by Lemma 105.
• If n is a modal node, then we add all the sons of n in PM. Ea
h son n′ of n is the resultof the redu
tion of a formula (ĝ, a) → Θ ∈ LERL(n) with respe
t to some ψ ∈ Θ. Set
M(n′) = sn′ where sn′ is su
h that sn ĝ,a

−→ sn′ , and µsig((ĝ, a)→ Θ, sn) ≥
µ sig(ψ, sn′).Su
h a 
on�guration exists by Lemma 105.By Property (1) above, it is obvious that no leaf of PM 
ontains �. It remains to showthat the tree we have 
onstru
ted does not have an in�nite path with a µ-tra
e.Now, assume that there is an in�nite path π that has a µ-tra
e on it. Then, there is theoldest µ-variable Xi in�nitely often regenerated along the tra
e. A

ording to Lemma 105,from the point when no variable older that Xi is regenerated, µ-signatures of formulas on thattra
e never in
rease on positions 1, . . . , i−1. Then maximal signature of formulas on the tra
e
onsidered up to position i never in
reases and de
reases every time Xi is regenerated. Thisis a 
ontradi
tion be
ause sequen
es of ordinals of bounded length are well-ordered. �From the de�nition of the system of tableau rules, applying a rule di�erent from (mod)and ∨ to a node of a tableau generates a unique su

essor. In a pre-model we 
hoose only oneson of a disjun
tive node and all the sons of a modal node. It follows that in a pre-model, anode with more that one su

essor is a modal node. Given a node n of PM we denote des(n)the 
losest des
endant of n or n itself in that is either a modal node or a leaf.De�nition 109 (sharply guarded model for a pre-model) Given a pre-model PM = 〈K,L〉,the sharply guarded model based on PM is the timed pro
ess S = 〈S,Σ, s0,∆S〉 su
h that:1. S 
onsists of all nodes of PM that are either leaves, or modal nodes.2. (s, ĝ, a, s′) ∈ ∆S if there is in PM a son n of s with des(n) = s′, su
h that the label of

n was obtained from the label of s by redu
ing a formula of the form (ĝ, a)→ Θ.We remark that the maximal 
onstant that o

urs in the sharply guarded model is smaller orequal to the maximal 
onstant that o

urs in the formula.Proposition 110 Formula ϕ is satis�able in the sharply guarded model asso
iated to a pre-model of ϕ.ProofThe proof is dual to the one of Proposition 108. We will assume that PM is a pre-model for
ϕ and ϕ is not satis�able in the sharply-guarded model P asso
iated to PM. Then, we obtaina 
ontradi
tion.If ϕ is not satis�able in P then 〈[P]〉Mreg, s

0 6�g ϕ. Re
all that states of 〈[P]〉Mreg are the leavesor the modal nodes of PM. Using the assumption that 〈[P]〉Mreg, s
0 6�g ϕ, we show that PM
ontains a path π with a µ-tra
e F = {ϕn; rn}n∈π. The expe
ted path π and the µ-tra
e are
onstru
ted as follows:
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• π starts at n0 and ϕn0 = ϕ. By the hypothesis, 〈[P]〉Mreg, des(n

0) 6�g ϕ sin
e n0 is the nodeof PM asso
iated to the initial 
on�guration of 〈[P]〉Mreg.
• Now assuming that we have 
onstru
ted F up to the node ϕm; r ∈ LERL(m) × Lρ(m)su
h that 〈[P]〉Mreg, des(m) 6�g 〈[ϕm]〉Dϕ

. The formula of the next tuple (the timing part isobvious) is sele
ted as follows:1. If m is not a modal node, then the only son m′ of m is su
h that� ϕm′ = ϕm if ϕm was not redu
ed by the rule.� ϕm′ = ϕ1 if ϕm = ϕ1 ∧ ϕ2 and νsig(ϕm, desm) ≥ νsig(ϕ1, desm);� ϕm′ = ϕ2 if ϕm = ϕ1 ∧ ϕ2 and not above;� ϕm′ is the formula that o

urs in LERL(m′) if ϕm = ϕ1 ∨ϕ2. Observe that the
hoi
e is dire
ted by PM.� In the other sub 
ases: �r, ν, µ, reg, just take the resulting formula as the nextelement of the tra
e.2. If m is a modal node and ϕm = (ĝ, a)→Θ then� either there is ψ ∈ Θ, su
h that for every son m′ of m and s
ĝ,a
−→

s′ with des(m′) = s′ we have 〈[P]〉Mreg, s
′ 6�g 〈[ψ]〉Dϕ

and νsig(ψ, s′) ≤
νsig((ĝ, a)→Θ, s). In this 
ase, just take ϕm′ = ψ;� or, there is a sonm′ ofm with des(m) = s′, and s ĝ,a

−→ s′ su
h that 〈[P]〉Mreg, s
′ 6�g

∨

Θ and ν sig(
∨

Θ, s′) ≤ν sig((ĝ, a)→ Θ, s). In this 
ase 
onsider m′ and set
ϕm′ =

∨

Θ or γ ∈ Θ depending on whi
h one appears in L(m′).There are two 
ases:1. The above tra
e is �nite. If the last element is �, there is a 
ontradi
tion with that thesharply guarded model 
orrespond to the pre-model; and a pre-model does not 
ontain a
µ-tra
e, in parti
ular it does not 
ontain a tra
e that ends with a tuple the formula partof whi
h is �. If the last tuple does not 
ontain the formula �, it 
ontains a formula ψof the form (ĝ, a)→ ∅ or tt ; from the de�nition of the sharply guarded model, it followsthat 〈[P]〉Mreg, des(m) �g 〈[ψ]〉Dϕ

, this is in 
ontradi
tion with the third item of Lemma106, be
ause we assumed that 〈[P]〉Mreg, des(m) is not satis�ed the formula assigned to m.In fa
t, if the last tuple o

urs in the node m and 
ontains the formula:
• tt , then 〈[P]〉Mreg, des(m) �g tt and we get a 
ontradi
tion with the hypothesis.
• (ĝ, a)→∅, then m is either a modal node or a leaf. In both 
ases, m does nothave a son n obtained from it by redu
ing a formula (ĝ, a)→Θ with respe
t tosome Θ and ϕc ∈ Θ as otherwise the that 
ould not end with (ĝ, a)→∅. As

(ĝ, a)→∅ ≡ [ĝ, a]�, by de�nition of �g we get the 
ontradi
tion with the hypothesisthat 〈[P]〉Mreg, des(m) 6�g (ĝ, a)→∅.2. If the tra
e is in�nite, the only way to have an in�nite tra
e is to have a regeneration ofa �xpoint variable. It 
annot be a µ-variable as we are in a pre-model. Hen
e it must bea ν-variable. As by Lemma 106 the ν-signature de
reases along the 
onstru
ted tra
e,this is impossible.
�



82 Chapter 3. Results on Event-Re
ording Logi
3.3.4 Complexity IssuesWe have redu
ed the satis�ability of a formula to the existen
e of a pre-model in its tableau.Then the 
omplexity for the satis�ability of a formula is the same as the 
omplexity of 
he
kingthe existen
e of a pre-model in its tableau. The pro
edure for 
he
king the existen
e of a pre-model in the tableau is the same as the pro
edure for 
he
king the existen
e of a pre-model inthe tableau for µ-
al
ulus formula whi
h is exponential in the size of the formula. In the 
aseof ERL, our algorithm is also exponential in the size of the formula.3.4 Comparison With Earlier WorksIn the se
tion we 
ompare results in previous se
tions with Sorea's results on ERL. In [Sor02℄Sorea proposed de
ision pro
edures for the model-
he
king and satis�ability of ERL formulas.These pro
edures were supposed to work even for general 
onstraints (diagonal 
onstraintswere allowed). The Sorea [Sor02℄ pro
edure for the satis�ability problem of ERL is based on atableau system of rules. Sequents in rules are 
ouples, made of a set of formulas and a timing
ontext. Timing 
ontext are represented by zones. In that tableau system, one parti
ularrule 
ould be interpreted in two ways. One way is wrong as it forbids the �division� of thetime satisfying a 
onstraint in the existential modality. The se
ond interpretation is 
orre
tas it enables the �division� of the time. Nevertheless, the pro
edure for the satis�ability isnot 
orre
t. Re
all that the satis�ability pro
edure requires to 
he
k the existen
e of a �good�fragment in the tableaux. Indeed, the appli
ation of a rule in some node of the tableau dependson the 
onsisten
e of the zone in that node and the rule uses the time elapse operation on zones.Normally, labelling of nodes will range over an in�nite set and the satis�ability pro
edure maynot terminate. To ensure �nite set of labels for the nodes of a tableau, Sorea has proposedto approximate zones. As diagonal 
onstraints were allowed, the pro
edure of Sorea de
laressome fragments of tableaux �good� while in reality they are not.3.4.1 Sorea's Semanti
s for Timed Pro
ess and ERL FormulasLet us brie�y 
omment the Sorea' semanti
s for timed pro
ess and the relation with thesemanti
s in De�nition 66. Sorea's semanti
s for timed pro
esses is standard. They Sorea'ssemanti
s of a timed pro
ess is a (R+ × Σ)-LTS where there is transition (p, v)
t,a
−→ (p′, v +

t[ha := 0]) whenever there is a transition p
g,a
−→ p′ and a delay t ∈ R+ su
h that v+t ∈ [[g]]. Thatrepresentation for Sorea's semanti
s for timed pro
esses is isomorphi
 to the representation inwhi
h delays on transitions are repla
ed with valuations and de�ned in su
h a way that thereis transition (p, v)

v+t,a
−→ (p′, v+ t[ha := 0]) whenever there is a transition p

g,a
−→ p′ and a delay

t ∈ R+ su
h that v + t ∈ [[g]]. This latter representation is a (ValΣ × Σ)-LTS.Semanti
s in De�nition 66 is a (ValΣ∪Σ)-LTS. Using the notation just after De�nition 66, one
an observe that, there is a transition (p, v)
v+t,a
−→ (p′, v + t[ha := 0]) in the Sorea's semanti
sfor a timed pro
ess P if and only if there is a transition (p, v)

v+t,a
−→ (p′, v + t[ha := 0]) in

[[P]]. The same remark holds for representations that label transitions with 
onstraints. Dueto the relation between Sorea's semanti
s and our semanti
s for timed pro
esses, the Sorea'sinterpretation of an ERL formula over a timed pro
ess is exa
tly the same as our interpretationof the formula over the timed pro
ess.



3.4. Comparison With Earlier Works 833.4.2 Sorea's Tableau System of RulesLet us �rst re
all the tableau system of rules of Sorea [Sor02℄. Let ϕ = 〈g, a〉ψ be an ERLformula, and Γ be a set of formulas, su
h that ea
h formula in Γ is a variable X, or a formulaof the form 〈g′, a′〉ψ′ or [g′, a′]ψ′ for some 
onstraint g′, and event a′. Let the set tob(g, a,Γ)be de�ned by:
tob(g, a,Γ) = {[g′, a]ψ ∈ Γ | [[g ∧ g′]] 6= ∅}The tableau system of rules proposed by Sorea [Sor02℄ is presented below. A rule is made ofsome number of premises and a 
on
lusion. The timing 
ontext is represented with a zone.

{�};�
{ϕ,Γ};� (�Z)

{ϕ1,Γ};Z {ϕ2,Γ};Z

{ϕ1 ∨ ϕ2,Γ};Z
(∨)

{ϕ1, ϕ2,Γ};Z

{ϕ1 ∧ ϕ2,Γ};Z
(∧)

{ϕ(X),Γ};Z

{µX.ϕ(X),Γ};Z
(µ)

{ϕ(X),Γ};Z

{νX.ϕ(X),Γ};Z
(ν)

{ϕ(X),Γ};Z

{X,Γ};Z
(reg) Dϕ(X) = σX.ϕ(X)

{{Γg′ ;Z
′
g′ | g

′ ∈ Gg} | 〈g, a〉ϕ ∈ Γ}

Γ;Z
(mod)where

Gg =
⋃

J⊆tob(g,a,Γ)

{g ∧
∧

g′∈J

g′ ∧
∧

g′ 6∈J

¬g′}denotes a set of all 
onstraints in
luded in g, and Γg′ ;Z
′
g′ is de�ned by:

Γg′ ;Z
′
g′ =

{

{ϕ}; (Z↑∧g′)[ha := 0]) if Γ = ∅ or tob(g, a,Γ) = ∅
{ϕ} ∪ Φg′ ; (Z↑∧g

′))[ha := 0] if tob(g, a,Γ 6= ∅with Φg′ = {ψ | [g′′, a]ψ ∈ tob(g, a,Γ) 6= ∅ and g′ ⊆ g′′}.3.4.3 Existential Modality May Cause Constraint DivisionIn the tableau system of rules above, it is not 
lear what happens in the rule (mod). For agiven formula 〈g, a〉ϕ in the 
on
lusion of the rule (mod), we 
onsider a set of 
onstraints Ggwhi
h is su
h that the interse
tion of every 
onstraint in it with g is 
onsistent. As no pre
isionis done in [Sor02℄ on the use of this rule when 
he
king the satis�ability of a formula, thereare two possible interpretations:1. The �rst interpretation may 
onsist to 
onsider all the timed sequents in the set
{Γg′ ;Z

′
g′ | g

′ ∈ Gg}.
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2. The se
ond may 
onsist to 
onsider only one sequent in that set.The �rst interpretation gives in
orre
t result as it may be enough to 
onsider only onetimed sequent to ensure the satis�ability of the formula. For instan
e 
onsider the examplebelow.Example: Let the formula ϕ0 = 〈1 ≤ ha < 2, a〉tt ∧ [ha = 1, a]� ∧ 〈ha = 1, b〉tt . Consider thefollowing sets of sub formulas of ϕ0:
Γ0 = {〈1 ≤ ha < 2, a〉tt ∧ [ha = 1, a]� ∧ 〈ha = 1, b〉tt}

Γ1 = {〈1 ≤ ha < 2, a〉tt , [ha = 1, a]� ∧ 〈ha = 1, b〉tt}

Γ2 = {〈1 ≤ ha < 2, a〉tt , [ha = 1, a]�, 〈ha = 1, b〉tt}

Γ3 = {tt ,�}
Γ4 = {tt}The formula ϕ0 has two existential modal operators and one universal modal operator. A
-
ording to the tableau system of rules, we should 
onsider the sets tob(1 ≤ ha < 2, a,Γ2) =

{ha = 1}, tob(ha = 1, a,Γ2) = {ha = 1}, and the sets G1≤ha<2 = {ha = 1, 1 < ha < 2}.
Gha=1 = {ha = 1},Then the tableau for ϕ0 starting from the Z0 in whi
h the value of ha = 1 is depi
ted inFigure 12.

Γ1;ha = 0 ∧ hb = 0

Γ1;ha = 0 ∧ hb = 0

Γ2;ha = 0 ∧ hb = 0

Γ3;ha = 0 ∧ hb = 1 Γ4;ha = 1 ∧ hb = 0 Γ4;ha = 0 ∧ 1 < hb < 2

∧

∧

(mod), ha = 1, a (mod), ha = 1, b (mod), 1 < ha < 2, a

Figure 12: The beginning part of the symboli
 tableau.The tableau does not 
ontain a disjun
tive node. As Γ3 
ontains � and is in
luded in thepre-model, the pro
edure of Sorea will assert that ϕ0 does not have a model. This is not truesin
e the timed pro
ess in Figure 13 is a model of ϕ0.
�



3.4. Comparison With Earlier Works 85
p1

p0 p2

1 < ha < 2, a

ha = 1, bFigure 13: A timed pro
ess.But, even the se
ond interpretation gives in
orre
t result. As we show in the next subse
-tion, the use of the approximation operation on zones to ensure �nite set of labels of nodes ofthe tableau and then to ensure the termination of the satis�ability pro
edure, will make somepaths �good� while they are not.3.4.4 Zone Approa
h Is Not Corre
tConsider the formula ϕ de�ned by ϕ = 〈hb ≤ 3, c〉ϕ1 where,
ϕ1 = 〈ha ≤ 3, a〉ϕ2

ϕ2 = 〈hb = 3, b〉ϕ3

ϕ3 = µX.ϕ4

ϕ4 = ϕ5 ∨ ϕ6

ϕ5 = 〈ha = 3, a〉ϕ7

ϕ6 = 〈ha = 2, a〉ϕ8

ϕ7 = 〈ha = 2, a〉ϕ9

ϕ8 = 〈hb = 2, b〉X

ϕ9 = 〈hb = 2, b〉ϕ11

ϕ11 = 〈ha = 3, b〉ϕ12

ϕ12 = 〈hb − ha < 2 ∧ hd − hc > 2〉ttObserve that ϕ has been inspired by the timed pro
ess in Figure 11 (Page 57) and ea
hsub formula ϕi intends to des
ribe the property of some state of that timed pro
ess.A tableau for ϕ that uses the of rules of Sorea presented in Subse
tion 3.4.2 is presentedin Figure 14. In this tableau every set of formulas in ea
h timed sequent is a singleton. Ev-ery modal node has a single su

essor. There are disjun
tive nodes {ϕ4};Z
i
4 where i is andinteger. From a disjun
tive node {ϕ4};Z

i
4 we 
an take the path {ϕ4};Z

i
4 → {ϕ6};Z

i
6 →

{ϕ8};Z
i
8 → {X};Z

i
10 → {ϕ4};Z

i+1
4 or take the path from {ϕ4};Z

i
4 to {tt};Zi12. To 
he
kthat ϕ is satis�able, we must 
he
k that there is a pre-model in the tableau. As X is thesingle µ variable in ϕ, it must be regenerated only �nitely times in a tra
e of the pre-model. As every node ex
ept disjun
tive nodes has a single su

essor, the unique tra
e ofthe pre-model is of the form {ϕ};Z0 → {ϕ1};Z1 → {ϕ2};Z2 → {ϕ4};Z

0
4 → {ϕ6};Z

0
6 →

{ϕ8};Z
0
8 → {X};Z

0
10 → {ϕ4};Z

1
4 → · · · → {ϕ4};Z

k
4 → {ϕ6};Z

k
6 → {ϕ8};Z

k
8 → {X};Z

k
10 →

{ϕ4};Z
k+1
4 → {ϕ5};Z

k+1
5 → {ϕ7};Z

k+1
7 → {ϕ9};Z

k+1
9 → {ϕ11};Z

k+1
11 where k is the numberof times the variable X is regenerated.
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{ϕ};Z0

{ϕ1};Z1

{ϕ2};Z2

{ϕ3};Z3

{ϕ4};Z
k
4

{ϕ4};Z
k+1
4

{ϕ5};Z
k
5

{ϕ6};Z
k
6

{ϕ7};Z
k
7

{ϕ8};Z
k
8

{tt};Zk9

{X};Zk10

{ϕ11};Z
k
11

{tt};Zk12

(mod), 〈hb ≤ 3, c〉

(mod), 〈ha ≤ 3, a〉

(mod), 〈hb = 3, b〉

(µ.)

(∨)

(mod), 〈ha = 2, a〉(mod), 〈hb = 2, b〉

(mod), 〈ha = 3, a〉

(mod)〈hb − ha < 2 ∧ hd − hc > 2, d〉

(mod), 〈ha = 2, a〉

(mod), 〈hb = 2, b〉

(reg)

Figure 14: A tableau for ϕ.It is not di�
ult to see that satis�ability of ϕ is redu
ed to the rea
hability problem of
{tt};Zk+1

12 . This problem has been dis
ussed in Subse
tion 2.6.2 where we present an automa-ton that has the same stru
ture as our tableau.Following remarks we have done in Subse
tion 2.6.2, The zone Zk+1
11 is the following































































ha = 0
hb ≥ 1
hc ≥ 2γ + 5
hd ≥ 2γ + 6
2γ + 6 ≤ ha − hd ≤ 2γ + 8
1 ≤ hb − ha ≤ 3
2γ + 5 ≤ hc − ha ≤ 2γ + 8
2γ + 2 ≤ hc − hb ≤ 2γ + 5
hd − hb = 2γ + 5
0 ≤ hd − hc ≤ 3
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tive Normal Form 87and Zk+1
11 ↑ the zone obtained from Zk+1

11 by repla
ing the 
onstraint ha = 0 with 0 < ha.We remark that the bounds of diagonal 
onstraints are not modi�ed. It is 
lear that Zk+1
11 ↑

∧hb − ha < 2 ∧ hd − hc > 2 is in
onsistent as taking hb − ha < 2 implies (using 
onstraints in
Zk+1

11 ↑) that hd − hc ≤ 2. Then the appli
ation of the rule (mod) in {ϕ11};Z
k+1
11 may produ
ethe timed sequent {�};�. That is enough to 
on
lude that ϕ is not satis�able.In [Sor02℄, Sorea uses the normalisation (approximation) operator NormM on zone thato

urs in the tableau to ensure the termination of its tableau-based de
ision pro
edure for thesatis�ability of formulas. When applying the normalisation operator at ea
h node, Zk+1

11 willbe
ome the zone de�ned by the following 
onstraints:






























































ha = 0
hb ≥ 1
hc > k
hd > k
ha − hd > k
1 ≤ hb − ha ≤ 3
hc − ha > k
hc − hb > k
hd − hb > k
0 ≤ hd − hc ≤ 3For a su�
iently big k, Zk+1

11 ↑∧hb − ha < 2 ∧ hd − hc > 2 is 
onsistent and {tt};Zk+1
12 is thelast node of the path. As the unique tra
e is �nite and ends with a tuple formula part of whi
his tt . We will get that ϕ is satis�able, whi
h is not 
orre
t.3.5 Disjun
tive Normal FormThe use of 
onjun
tions in formulas and the alternation of �xpoint operators has required theuse of set of formulas in timed sequent of the tableau leading to exponential algorithm for thesatis�ability. Are there some kind of formulas for whi
h sets of formulas do not need to be
onsidered in timed sequents? If so, what is the expressive power of this kind of formulas? Aswe will see the answer to the �rst problem is yes for disjun
tive normal form formulas thathave the same expressive power as formulas in general form. In this se
tion we 
onsider thetransformation of general ERL formulas into equivalent formulas in disjun
tive normal formand we 
onsider the satis�ability of later formulas. For that purpose we 
onstru
t disjun
tiveformulas from tableau and we use the equivalen
e between tableaux of the disjun
tive formulaand the initial formula to show their equivalen
e.3.5.1 De�nition and Satis�ability ResultsLet us �rst de�ne disjun
tive normal form for formulas.De�nition 111 (Disjun
tive normal form) The set Fd of formulas in disjun
tive normal form,is the smallest set de�ned by the following 
lauses:1. Every variable is a disjun
tive formula.
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2. If ϕ,ψ ∈ Fd then ϕ∨ψ ∈ Fd; If moreover X does not o

ur in a sub formula of ϕ of theform X ∧ γ, then µX.ϕ(X), νX.ϕ(X) ∈ Fd.3. Formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn ∈ Fd provided that every ϕi is in {tt ,�} or a formula of theform ϕi = (ĝi, ai)→Θi with Θi ⊆ Fd. We require that for any pair of guarded-events
(ĝi, ai) and (ĝj , aj), ai = aj implies that ĝi 6= ĝj.We remark that modulo the order of appli
ation of the rule (and), disjun
tive formulashave unique tableaux. Moreover on any in�nite path there is one and only one in�nite tra
e.The proof of the following theorem uses similar argument to the proof of a similar resulton the standard µ-
al
ulus [JW95℄.Theorem 112 A 
losed disjun
tive formula ϕ is satis�able if and only if the formula ψ ob-tained from ϕ by repla
ing all o

urren
es of µ-variables by � and all o

urren
es of ν-variablesby tt is satis�able.ProofLet τϕ
r0

and τψ
r0

be the tableaux for ϕ and ψ. The tableau τψ
r0

is a �nite tree while the tableau
τϕ
r0

is not ne
essarily a �nite tree. But observe that τϕ
r0


an be seen as an unfolding of agraph obtained from τψ
r0

by adding ba
k edges from every node labelled with tt or � to theunique node formula part of whi
h 
ontains the de�nition of the 
orresponding variable; thatde�nition should be a µ-formula for all the nodes labelled with {�} with � 
orresponding tothe substitution of a µ-variable, and it should be a ν-formula for all the nodes labelled with
{tt} with tt 
orresponding to the substitution of a ν-variable. So, we 
an assume the existen
eof a surje
tive fun
tion f : τϕ

r0
→ τψ

r0
that assigns to a node of τϕ

r0
a unique 
orrespondingnode in τψ

r0
.It is easy to show, using stru
tural indu
tion, that if ϕ is satis�able, so is ψ.Conversely, assuming that ψ is satis�able, then ψ has a model. Let P be a model for ψ. From

P, we 
an build a pre-model PMψ for ψ and from PMψ we build a sub tree PMϕ of τϕ
r0
ontaining any node n of τϕ

r0
su
h that f(n) belongs to PMψ. It is easy to show that theresulting sub tree is a pre-model of τϕ

r0
meaning that ϕ is satis�able. �In what follows, we will prove the equivalen
e between ERL formulas and ERL formulasin disjun
tive normal form.Theorem 113 (disjun
tive normal form) For every formula ϕ, there exists an equivalentdisjun
tive formula ϕ̆ su
h that for any timed pro
ess P, P � ϕ if and only if P � ϕ̆.3.5.2 Tableau Equivalen
e and Tableau With Ba
k EdgesFor the proof of Theorem 113, we will de�ne the notion of equivalen
e between tableaux. Wewill show that the equivalen
e between tableaux of two formulas implies the equivalen
e ofthe meaning of formulas. We will introdu
e the notion of tableau with ba
k edges whi
h area kind of graphs obtained from tableaux by 
utting su�xes of some in�nite paths and byadding 
onveniently ba
k edges from the root of the su�xes that have been 
ut to one of theiran
estors. Then given a formula, we will build from one of its tableau, a tableau with ba
kedges. From that tableau with ba
k edges, we will 
onstru
t a formula in disjun
tive formhaving a tableau equivalent to the tableau of the given formula.
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tive Normal Form 89Tableau equivalen
eDe�nition 114 (tableau equivalen
e) Let τ1 and τ2 be two tableaux. The tableaux τ1 and
τ2 are equivalent if and only if there is a bije
tive mapping E between 
hoi
e nodes, modalnodes and leaf nodes of τ1 and τ2 su
h that :1. E(n) = m implies that n is root of τ1 and m is root of τ2, or n and m are both disjun
tivenodes or both modal nodes.2. If n1 is a des
endant of n then E(n1) is a des
endant of E(n). Moreover if n1 is a (ĝ, a)-sonof n, then E(n1) is a (ĝ, a)-son of n.3. The set of literals in LERL(n) is equal to the set of literals of LERL(E(n)).4. There is a µ-tra
e on a path π of τ1 if and only if there is a µ-tra
e on the image of πunder E in τ2Observation 114.1 If E : τϕ

r0
→ τψ

r0
is a fun
tion showing the equivalen
e of τϕ

r0
and τψ

r0
then

E−1 : τψ
r0
→ τϕ

r0
is also a fun
tion showing the equivalen
e of τψ

r0
and τϕ

r0
.Proposition 115 If two guarded formulas have equivalent tableaux then, they admit thesame set of modelsProofLet ϕ and ψ two M -re
tangular formulas. Let τϕ

r0
and τψ

r0
be the tableaux for ϕ and ψ thatare equivalent. Then, there is a bije
tive mapping E : τϕ

r0
→ τψ

r0
showing the equivalen
e. Wewill show that for any M -re
tangular timed pro
ess P, state p and valuation Val , we havethat P, p0,Val � ϕ if and only if P, p0,Val � ψ.If P, p0,Val � ϕ then, by Proposition 88 [[P]]M , (p0, v0),Val �g ϕ. Under this assumption,we will exhibit a pre-model in τϕ

r0
. We use 
onstru
tions similar to the ones in the proof ofProposition 108. We 
onsider a marking M : N → P × VΣ that satis�es: if (pn, vn) ∈ M(n)then 〈[P]〉Mreg, (pn, vn) �g LERL(n). We 
onstru
t a pre-model PM of τϕ

r0
. Now 
onsider theimage E(PM) whi
h maps a node n of PM to the node E(n) in τψ

r0
. Be
ause τϕ

r0
is equivalentto τψ

r0
, the literals in every node n of PM and in LERL(E(n)) are the same. There is abije
tive fun
tion between the (g, a) sons of n and the (g, a)-sons of E(n) implying that a
on�guration (p, v) appears inM(n′) where n′ is a son of n if and only it appears inM(E(n′)).Finally E maps the root of τϕ

r0
with the root of τψ

r0
and E(PM) does not 
ontain a µ-tra
eas PM does not 
ontain a µ-tra
e. Be
ause E(PM) is a pre-model of τψ

r0
, the formula ψ issatis�able. Next, by using a 
ontradi
tion argument, we show that P is also a model of ψ.Assume that P is not a model of ψ, then [[P]]M , (p0, v0),Val 6�g ϕ. Then, using 
onstru
tionssimilar to the ones in the proof of Proposition 110 we 
an show that E(PM) 
ontains apath π 
ontaining a µ-tra
e and we immediately get a 
ontradi
tion as we have shown that

E(PM) is a pre-model and a pre-model does not 
ontain a µ-tra
e.If P, p0,Val � ψ then P, p0,Val � ϕ as E−1 is also tableaux equivalen
e. �
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The 
onverse of that proposition is not true; take for example the formulas (ĝ, a)→{tt} ∧
(ĝ, a)→{tt} and (ĝ, a)→{tt}.Tableau with ba
k edges Re
all that nodes of a tableau have �nitely many di�erent labels.Then, an in�nite path in a tableau has node labels that in�nitely often o

ur in that path.For �good� paths, the ones that do not 
ontain a µ-tra
e, we will 
ut a su�x starting at somenode label of whi
h o

ur in�nitely often and we will add a ba
k edge to some an
estor ofthat node equipped with the same label. We do the same for �bad� paths, the ones having a
µ-tra
e. When adding a ba
k edge, we will 
are that ea
h path, among all the paths obtainedby taking the ba
k edge, 
orresponds to a path of the tableau with the same nature (�good�or �bad�).Let us take a tableau τϕ

r0
= 〈T ,L〉 of a formula ϕ with respe
t to some region r0.Proposition 116 There is an automaton that distinguishes µ-tra
es from ν-tra
es in atableau for ϕ.ProofRe
all that a formula is of �nite length and therefore uses a �nite number of variables. Theautomaton is a Rabin automaton whose states are variables, and who is always in the state
orresponding to the last variable read. A

eptan
e 
ondition is a set of pairs of subsets ofstates su
h that a right member of a pair 
ontains a µ-variable X; the left member 
ontainsall the ν-variables that are older than X. This automaton a

epts a tra
e if and only if it is a

µ-tra
e. �Corollary 117 There is a deterministi
 parity ω-regular automaton whi
h de
ides if a path
ontains a µ-tra
e.ProofIn every node, a transition of the automaton is the disjun
tion of transitions of the automatonof Proposition 116 on ea
h formula in that node. Su
h an automaton is a non-deterministi
Rabin automaton whi
h 
an be translated into an equivalent deterministi
 parity automaton.
� Form a tableau, we show how to build a tableau with ba
k edges that preserves the natureof the path of the tableau.Lemma 118 (ba
k edge tableau) Given τϕ

r0
= 〈T ,L〉 a tableau of a formula ϕ, it is possi-ble to 
onstru
t a �nite tree with ba
k edges τ = 〈T ,L〉 satisfying the following 
onditions:1. τ unwinds τ ,2. Every node to whi
h a ba
k edge points 
an be assigned 
olor red or green in su
h a waythat for any in�nite path from the unwinding of τ we have : there is a µ-tra
e on thepath if and only if the highest node of τ through whi
h the path goes in�nitely often is
olored red.
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tive Normal Form 91ProofConsider a tableau τ for ϕ, 
learly τ is �nite bran
hing and labelled over a �nite alphabet. Apath π of τ that 
ontains a µ-tra
e is su
h that there is a highest node n in π from whi
h a
µ-variable is regenerated in�nitely often in the same time-
ontext. There is a deterministi
 ω-regular automaton with parity 
ondition that separates paths that 
ontain µ-tra
e from pathsthat do not. That automaton assigns a state to ea
h node of τ . Formally, let S = 〈S, s0, δ,Acc〉be that deterministi
 automaton, where Acc is a parity 
ondition using a fun
tion c : S → N.The �nite tree with ba
k edges τ = 〈T ,L〉, where L ⊆ 2sub(ϕ) ×Reg × S, is 
onstru
ted from
τ as follows:
• if m is a root of τ , L(m) = {ϕ}; r, and δ(s0, ({ϕ}; r)) = s then m added to nodes of τand set L(m) = L(m)× {s}.
• if m is a node of τ with L(m) = (Γ; r, s), and n is a son of the unique 
orrespondent of min τ , then n is added in τ as a son of m and, L(n) = L(n)×{s′} with s′ = δ(s,L(n)). Anex
eption to this o

urs when there is an an
estor n′ of m in τ with L(n′) = L(n) and
c(LS(n)) = max{c(m′) |m′ o

urs between n′ and m}. In this 
ase, a ba
k edge from
m to n′ is added in τ . If c(LS(n′)) is even, then assign the 
olor red to n′, else assignthe 
olor green.By 
onstru
tion, τ unwinds to τ . Consider an in�nite path π = n1, n2, n3, . . . of the un-winding of τ ; this path has a unique 
orrespondent in τ and therefore it 
ontains either a

µ-tra
e or a ν-tra
e. Moreover, there is i and j su
h that ni = nj and ni is the highest nodefrom whi
h the type of the path is de
ided. By 
onstru
tion we get that ni is of 
olor red ifand only if the path π 
ontains a µ-tra
e. �End of the proof of Theorem 113 Here, we end the proof of Theorem 113 and we
onstru
t the equivalent disjun
tive normal form formula to a given formula. The idea is touse the tableau with ba
k edges de�ned above to get the formula in the desired form. Forthat purpose, a formula will be assigned to ea
h node of tableau with ba
k edges dependingon the rule applied in the node. This should be 
lear for all nodes, ex
ept nodes with a ba
kedge and nodes at whi
h the rule (mod) is applied. Let us go into the proof that shows the
onstru
tion of an equivalent disjun
tive normal form formula.Re
all that a tableau with ba
k edges does not have an in�nite path. A leaf of su
h atableau 
ontains either tt ,� or formulas of the form (ĝ, a)→∅. We start the 
onstru
tion ofthe disjun
tive normal form formula from the leaf of the tableau with ba
k edge and we moveto its root by assigning a disjun
tive formula ϕ̆n to ea
h node of the tableau with ba
k edgein the following way:1. If n is a leaf then ϕ̆n is the 
onjun
tion of all the literals and formulas of the form
(ĝ, a)→∅ in LERL(n).2. In the 
ase that there are outgoing edges from n, we assume that every son of n hasassigned some disjun
tive formula. We also assume that a formula assigned to a son isassigned to an edge leading from n to this son. We assign the variable Xm to a ba
k edge,if this ba
k edge leads to an an
estor m. An auxiliary formula γn is assigned to ea
hinternal node n a

ording to the rule applied in n. This assignment works as follows:
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• if one of the rules (∧), (reg), (ν), or (µ) was applied in n, and γ′ is the formula onthe unique edge leading from n, then an auxiliary formula γn = γ′ is assigned to n.
• if the rule (∨) was applied in n, then the auxiliary formula γn = ϕ̆n1

∨ ϕ̆n2
isassigned to n where ϕ̆n1

and ϕ̆n2
are the disjun
tive formulas assigned to ea
h edgeleading from n;

• if the rule (mod) was applied in n then let Γĝ,a be the set of all the formulas assignedto edges leading from n to some node labeled by a result of redu
tion of the guardedevent (ĝ, a). We let γn be the 
onjun
tion of all the literals and formulas of the form
(ĝ, a)→∅ appearing in L(n) together with all the formulas of the form (ĝ, a)→Γĝ,a.In the 
ase that there is no ba
k edge leading to n, then ϕ̆n = γn. Otherwise ϕ̆n = µXn.γnif n is 
olored red and, ϕ̆n = νXn.γn is 
olored green.To end the proof of the theorem 113, we 
laim that, using the 
onstru
tion of ϕ̆, is easy to
onstru
t a tableau τ ϕ̆

r0
for ϕ̆ and a fun
tion E : τ ϕ̆

r0
→ τϕ

r0
that de�nes an equivalen
e between

τ ϕ̆
r0

and τϕ
r0
. In 
onsequen
e ϕ̆ and ϕ are equivalent.3.6 Con
luding RemarksWe have 
onsidered Event-Re
ording Logi
 as a language for des
ribing properties of timedpro
esses. We have presented an algorithm for the model-
he
king problem of ERL formulas.The algorithm uses theM -region representation of timed pro
esses and that is similar to a wellknown algorithm for the model-
he
king problem of the standard µ-
al
ulus. We wondered,if other results in the setting of the standard µ-
al
ulus 
ould be transferred to the settingof Event-Re
ording Logi
. We have shown that the answer is yes for the satis�ability, andthe disjun
tive normal form property. From the model-
he
king algorithm, we have provideda new tableau system for the satis�ability 
he
king problem of Event-Re
ording Logi
. Ourtableau system of rules is di�erent and simpler than the tableau system proposed earlier bySorea. Then we have pointed out some ambiguities when using tableau system of Sorea andsome in
orre
tness 
aused by the use of approximation operation on zones. The simpli
ity ofour tableau system of rules has enabled us to provide a disjun
tive normal form theorem forERL formulas.



Chapter 4The Logi
 WTµAn important modality over o

urren
es of an event in a real-time system is the the ne
essitymodality on the time periods at whi
h the event 
an o

ur. The ne
essity modality allowsto des
ribe general properties like �An event 
an be 
ompleted at every time instan
e when a
ondition on the time is satis�ed�. Examples of su
h kinds of properties are: �After a 
oin isinserted, 
o�ee is 
ontinuously available for 30 se
onds� or �the brake system of a 
ar operatesat any time within the 10 time units�. We 
laim that the modalities of ERL 
an not be usedto handle su
h important kinds of properties.In this 
hapter, we introdu
e a new logi
 that we 
all WTµ. The logi
 WTµ is a weak timedextension of the standard µ-
al
ulus. Formulas of WTµ are interpreted over timed pro
esses.Its modalities are indexed with either 
onstraints or events, while modalities of ERL areindexed with pairs made of a 
onstraint and an event. We show that WTµ is more expressivethan ERL as every formula of ERL 
an be translated into an equivalent WTµ formula; andthere are some formulas of WTµ that 
an not be translated into formulas of ERL. Modalitiesof WTµ are of the form 〈g〉 and [g] in addition to the 
lassi
al modalities of the µ-
al
ulusindexed with event (〈a〉 and [a]). Intuitively, a state of a timed pro
ess p satis�es 〈g〉ϕ froma given time-
ontext with a valuation v if by letting the time elapse in it, it is possible torea
h a moment when the values of the 
lo
ks satisfy g and in that moment, the formula ϕ issatis�ed. A state p of a timed pro
ess satis�es [g]ϕ from a time-
ontext v if whenever startingfrom v we let the time pass and rea
h a moment when g is satis�ed then ϕ is satis�ed in thatmoment. We 
onsider the model-
he
king and the satis�ability problems for WTµ as they 
anbe then used for the 
ontroller synthesis.For the model-
he
king problem, we use our approa
h to the model-
he
king of ERL, sowe redu
e the model-
he
king problem of WTµ to the model-
he
king problem of the standard
µ-
al
ulus.For the satis�ability, we will 
onsider fragments of WTµ as the satis�ability of WTµ itselfis di�
ult. We 
onsider a �rst fragment that we 
all WG-WTµ (for Well Guarded WTµ)and a se
ond fragment that we 
all C-WTµ (for WTµ for 
ontroller synthesis). Roughlyspeaking, Formulas WG-WTµ are formulas of WTµ su
h that every modality indexed witha 
onstraint is immediately followed by a boolean 
ombination of formulas all starting witha modality indexed with an event; and a modality indexed with an event is pre
eded bya modality indexed with a 
onstraint. Formulas of C-WTµ disallow an existential modality93
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 WTµindexed with a 
onstraint (〈g〉) to be followed with a 
ombination of formulas 
ontaining aformula starting with a universal modality indexed with an event ([a]) ex
ept [a]tt . C-WTµ isa fragment of WG-WTµ. We provide a tableau system of rules for C-WTµ and we show, byusing te
hniques similar to the ones in the previous 
hapter, that the satis�ability problem for
C-WTµ is de
idable. Then, we wonder whether we 
ould use our tableau system of rules forde
iding whether a C-WTµ formula has a deterministi
 model. We show that this problem isnot easy as it 
ould involve the use of new integer 
onstants in the models.Related results: Logi
s (TML [HLY91℄, Ltµ [SS95℄ Lν [LLW95℄) that enable to de-s
ribe the the ne
essity modal operator has been 
onsidered for des
ribing properties oftimed automata but the de
idability of the satis�ability problem has not been established.Laroussinie et al. [LLW95℄ have introdu
ed the logi
 Lν as a more powerful logi
 than the onein [HLY91, SS95℄ but its satis�ability problem is still open and no disjun
tive normal form hasbeen provided [BCL05℄. The logi
s Lν and WTµ are in
omparable as they are not interpretedover the same model and Lν does not allow the least �xpoint operator. But, if we restri
t theinterpretation of Lν to timed pro
esses, we get that 〈g〉ϕ has the same meaning as the Lνformula 〈δ〉(g ∧ ϕ), [g]ϕ has the same meaning as the Lν formula [δ](g → ϕ), 〈a〉ϕ has thesame meaning as 〈a〉(xa in ϕ) and [a]ϕ has the same meaning as [a](xa in ϕ).This 
hapter is organised as follows: We de�ne WTµ, WG-WTµ and C-WTµ in the nextse
tion. In Se
tion 4.2 we 
onsider the model-
he
king of WTµ and we present the relationbetween WTµ and ERL. In Se
tion 4.3 we use tableau-based te
hnique to show the de
idabilityof the satis�ability problem for C-WTµ.4.1 Syntax and Semanti
sWe de�ne the syntax of WTµ,WG-WTµ and C-WTµ formulas. WTµ formulas have modalitiesindexed with 
onstraints and modalities indexed with events. We de�ne re
tangular formulasthat use only re
tangular 
onstraints and we show that every formula 
an be transformed intoan M -equivalent re
tangular formula. Then we show that modalities of ERL 
an be simulatedby 
ombinations of modalities of WTµ, meaning that ERL is a fragment of WTµ.4.1.1 De�nitionsThe logi
 WTµ is a variant of the µ-
al
ulus and ERL. The formulas of WTµ des
ribe prop-erties on timed pro
esses. Apart from the usual events modalities of the standard µ-
al
ulus,it has also modalities indexed by 
onstraints. Modalities of WTµ 
an also be seen as an adap-tation of modalities of Lν for timed pro
esses.De�nition 119 Let X,Y range over the set of variables denoted Var . A formula ϕ of WTµis generated using the following grammar:

ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕwhere a ∈ Σ is an event and g ∈ GdsΣ is a 
onstraint.The bound of a formula is the maximal 
onstant that o

urs in its 
onstraints. For aformula ϕ, Mϕ denotes its bound. Given a 
onstant M , we say that a formula is M -boundedif its bound is smaller than M .
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s 95Notion of bound variables, senten
es, sub formulas, well named formula, ν-variable, µ-variable, dependen
y order, alternation depth, guarded formulas, expansion, and binding fun
-tion are analogous to the de�nitions of similar notions for the setting of the µ-
al
ulus inSe
tion 1.3.4.1.2 Semanti
s of WTµA formula is interpreted over timed pro
esses, or rather their semanti
s. Intuitively, we saythat a state (p, v) satis�es a formula [g]ϕ, if whenever starting from v we let the time pass andrea
h a valuation v′ � g then (p, v′) �t ϕ. Similarly, a formula 〈g〉ϕ is satis�ed if by lettingthe time pass it is possible to go from valuation v to a valuation v′ � g with (p, v′) �t ϕ. Themeaning for the modalities [a] and 〈a〉 is 
lassi
al.We will be mainly interested in des
ribing timed pro
esses, but a
tually the formulas ofWTµ 
an be evaluated in any (VΣ ∪ Σ)- labelled transition system. Let us �x su
h a system
S = 〈S,Σ ∪ VΣ, s

0,∆S〉. The semanti
s of a formula ϕ, denoted [[ϕ]]SVal , de�ned with respe
tto an assignment Val : Var → 2S is the set of states of S whi
h satisfy ϕ.We write S, s,Val �t ϕ to say that the state s satis�es ϕ with respe
t to the valuation
Val .De�nition 120 For a given (VΣ ∪Σ)-labelled transition system S, a given formula ϕ and anassignment Val : Var → P(S), we de�ne the satisfa
tion relation �t and the semanti
s [[ϕ]]SValindu
tively as follows:
• [[ϕ]]SVal = {s | S, s,Val �t ϕ}

• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t 〈a〉ϕ if there is s a

−→ s′ su
h that S, s′,Val �t ϕ.
• S, s,Val �t 〈g〉ψ if there is s v

−→ s′ su
h that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t [a]ϕ if for all s a

−→ s′ we have S, s′,Val �t ϕ.
• S, s,Val �t [g]ψ if for all s v

−→ s′ with v ∈ [[g]], we have S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal[X/T ] ⊆ T}.
• S, s,Val �t νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal[X/T ]}.We will write S �t ϕ for S, s0 �t ϕ to say that S is a model of the senten
e ϕ.To ensure the existen
e of �xpoints, we need to show that modal operators indexed with
onstraints and modal operators indexed with events are monotone.
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 WTµProposition 121 The operators 〈α〉 and [α] are monotone for every α ∈ GdsΣ ∪ Σ.ProofThe 
ases for operators other than 〈g〉 and [g] are standard. We show that modal operatorsindexed with 
onstraints are monotoni
. Assume that we have ϕ1 and ϕ2 and a transitionsystem S su
h that [[ϕ1]]
S
Val ⊆ [[ϕ2]]

S
Val

• If s ∈ [[〈g〉ϕ1]]
S
Val then there is s v

−→ s′ with v ∈ [[g]] su
h that s′ ∈ [[ϕ1]]
S
Val and then

s ∈ [[ϕ2]]
S
Val as [[ϕ1]]

S
Val ⊆ [[ϕ2]]

S
Val . Then s ∈ [[〈g〉ϕ2]]

S
Val

• If s ∈ [[[g]ϕ1]]
S
Val and s 6∈ [[[g]ϕ2]]

S
Val then there is s v

−→ s′ with v ∈ [[g]] su
h that
s′ 6∈ [[ϕ2]]

S
Val . As s′ 6∈ [[ϕ2]]

S
Val and [[ϕ1]]

S
Val ⊆ [[ϕ2]]

S
Val we get that s′ 6∈ [[ϕ1]]

S
Val . Then thereis s v

−→ s′ with v ∈ [[g]] su
h that s′ 6∈ [[ϕ1]]
S
Val . So s 6∈ [[[g]ϕ1]]

S
Val , a 
ontradi
tion.

�We write ϕ1 ≡ ϕ2 when the formulas ϕ1 and ϕ2 are equivalent.We introdu
e the negation operator ¬. Given a senten
e ϕ, a (V × Σ)-labelled transitionsystem S, and a valuation Val , we de�ne [[¬ϕ]]SVal = S \ [[ϕ]]SValProposition 122 We have the following equivalen
es.1. ¬tt ≡ �2. ¬� ≡ tt3. ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ24. ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ25. ¬〈α〉ϕ ≡ [α]¬ϕ for α ∈ Σ ∪Gds6. ¬[α]ϕ ≡ 〈α〉¬ϕ for α ∈ Σ ∪Gds7. ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)8. ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)ProofLet S be a (Σ ∪ VΣ)-labelled transition system and let s be a state of S. As the 
ases foroperators other than 〈g〉 and [g] are standard, we 
onsider the following:
• If s ∈ [[¬〈g〉ϕ]] then s 6∈ [[〈g〉ϕ]]. It is equivalent to say that for every v ∈ [[g]], for every
s

v
−→ s′, we have that s′ 6∈ [[ϕ]] meaning by de�nition that s′ ∈ [[[g]¬ϕ]].

• The 
ase of ¬[g]ϕ ≡ 〈g〉¬ϕ is obvious from the previous 
ase.
�Proposition 123 Let g, g1, g2, . . . , gn su
h that [[g]] =

⋃

i=1..n [[gi]] then,
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s 971. 〈g〉ϕ ≡ ∨i=1..n〈gi〉ϕ2. [g]ϕ ≡
∧

i=1..n[gi]ϕProofWe will 
onsider the �rst 
ase sin
e the proof of the se
ond 
ase is easy by using Proposi-tion 122. Let S be a (Σ ∪ VΣ)-labelled transition system and s be a state of S(=⇒) If S, s �t 〈g〉ϕ then there is s v
−→ s′ with v ∈ [[g]] su
h that S, s′ �t ϕ. As [[g]] =

⋃

i=1..n [[gi]], there is i ∈ [1..n] su
h that v ∈ [[gi]]. Then, s v
−→ s′ with v ∈ [[gi]] and

S, s′ �t ϕ, meaning that S, s �t 〈gi〉ϕ hen
e S, s �t
∨

i=1..n〈gi〉ϕ.(⇐=) If S, s �t
∨

i=1..n〈gi〉ϕ then S, s �t 〈gi〉ϕ for some i ∈ [1..n] meaning that, there is s v
−→ s′with v ∈ [[gi]] su
h that S, s′ �t ϕ. But v ∈ [[gi]] implies v ∈ [[g]] as [[g]] =

⋃

i=1..n [[gi]].Then we get that S, s �t 〈g〉ϕ.
�Meaning of a formula over a timed pro
ess Consider ϕ a formula, and P a timedpro
ess. We say that ϕ is satis�ed in a state p, a valuation of 
lo
ks v : H → R, and avaluation Val : Var → P(P × VΣ) of propositional variables and we write P, (p, v),Val � ϕwhen [[P]], (p, v),Val �t ϕ.The meaning [[ϕ]]PVal ⊆ P × VΣ of a formula over a timed pro
ess P is de�ned by

[[ϕ]]PVal = [[ϕ]]
[[P]]
ValWe will write P � ϕ if [[P]] is a model of ϕ and we say that P is a model of ϕ.4.1.3 Restri
ted Logi
s: WG-WTµ and C-WTµWe will 
onsider fragments of WTµ. The �rst fragment of WTµ we will 
onsider isWG-WTµand the se
ond one is WTµ for the 
ontrol (C-WTµ). C-WTµ is itself a fragment ofWG-WTµ.De�nition 124 The set of WG-WTµ formulas is de�ned by the following rules:

• tt , � and X are formulas of WG-WTµ.
• 〈g〉ϕ and [g]ϕ are formulas of WG-WTµ provided that ϕ is a boolean 
ombination offormulas of the form 〈a〉ψ or [a]ψ where ψ is a formula of WG-WTµ
• ϕ ∧ ψ and ϕ ∨ ψ are formulas of WG-WTµ provided that ϕ and ψ are formulas of
WG-WTµ.
• µX.ϕ and νX.ϕ are formulas of WG-WTµ provided that ϕ is a formula of WG-WTµ.
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 WTµWe remark that a formula of WG-WTµ is also a formula of WTµ. Formulas of WG-WTµare su
h that if we look at a formula as a tree, then the modalities indexed with 
onstraintsand with events must alternate on ea
h path.We also remark that 〈g〉� is equivalent to 〈g〉∨a∈Σ〈a〉� and 〈g〉tt is equivalent to
〈g〉
∧

a∈Σ[a]tt . By the duality prin
iple, [g]� is equivalent to [g]
∨

a∈Σ〈a〉� and [g]tt is equiv-alent to [g]
∧

a∈Σ〈a〉tt . Then we 
an allow modalities indexed with 
onstraints to be followedby tt and � without 
hanging the de�nition of WG-WTµ syntax.De�nition 125 The set of C-WTµ formulas are de�ned by the following rules:
• tt , � and X are formulas of C-WTµ.
• 〈g〉ϕ is a formula of C-WTµ provided that ϕ is a positive boolean 
ombination of formulasof the form 〈a〉ψ where ψ is a formula of C-WTµ.
• [g]ϕ are formulas of C-WTµ provided that ϕ is a boolean 
ombination of formulas ofthe forms 〈a〉ψ or [a]ψ where ψ is a formula of C-WTµ.
• ϕ∧ψ and ϕ∨ψ are formulas of C-WTµ provided that ϕ and ψ are formulas of C-WTµ.
• µX.ϕ and νX.ϕ are formulas of C-WTµ provided that ϕ is a formula of C-WTµ.By de�nition C-WTµ is a fragment of WG-WTµ. Indeed, in formulas of C-WTµ a formulaof the form [a]ϕ is not allowed after an existential delay modality. We remark that sin
e

tt ≡ [a]tt , we 
an allow formulas of the form [a]tt to o

ur in the set of formulas parti
ipating inthe boolean 
ombination that follows an existential delay modality indexed with a 
onstraint;this does not 
hange the expressive power of C-WTµ.Example: In the WG-WTµ formula ϕ = 〈0 < ha < 1〉((〈b〉tt ∧ [a]�) ∨ 〈c〉tt ) events a, b and
c are in the s
ope of the modality 〈0 < ha < 1〉. The formula ϕ says that there is a time atwhi
h 0 < ha < 1 is satis�ed and at that time, the event c 
an be 
ompleted or the event b
an be 
ompleted and the event a 
an not be 
ompleted. We observe that ϕ is not a formulaof C-WTµ. �4.1.4 Re
tangular FormulasWe introdu
e re
tangular form for WTµ formulas and we show the equivalen
e between aformula and its re
tangular form.De�nition 126 A re
tangular formula is a formula de�ned using re
tangular 
onstraints.Re
all that RectM (g) was presented in De�nition 56. The M -re
tangular formula asso
i-ated to the formula ϕ is the formula RectM (ϕ) indu
tively de�ned by:
• RectM (�) = �
• RectM (tt) = tt

• RectM (X) = X
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• RectM (ϕ1 ∧ ϕ2) = RectM (ϕ1) ∧RectM (ϕ2)

• RectM (ϕ1 ∨ ϕ2) = RectM (ϕ1) ∨RectM (ϕ2)

• RectM (〈g〉ϕ) =
∨

ĝ∈RectM (g)〈ĝ〉ϕ

• RectM ([g]ϕ) =
∧

ĝ∈RectM (g)[ĝ]ϕ

• RectM (〈a〉ϕ) = 〈a〉RectM (ϕ)

• RectM ([a]ϕ) = [a]RectM (ϕ)

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}We 
an state the following proposition.Proposition 127 For every M ≥Mϕ, S, s,Val �t ϕ if and only if S, s,Val �t RectM (ϕ)ProofThe proof uses stru
tural indu
tion.
• The 
ases of �, tt , X are standard.
• The 
ases of formulas of the form ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 are also standard.
• If S, s,Val �t 〈a〉ϕ, then there is s a

−→ s′ with v′ = v[ha := 0] su
h that S, s′ �t ϕ. Byindu
tion hypothesis, S, s′ �t RectM (ϕ). It follows that S, s,Val �t RectM (〈a〉ϕ). Theother way of the proof uses similar argumentation.
• The 
ase of [a]ϕ uses dual argumentation.
• The 
ase when ϕ = 〈g〉ϕ. RectM (ϕ) =

∨

ĝ∈RectM (g)〈ĝ〉ϕ. From Proposition 57, [[g]] =
⋃

ĝ∈RectM (g) [[ĝ]]. We use Proposition 123 to 
on
lude.
• Argumentation for the 
ase when ϕ = [g]ϕ is similar to the 
ase when ϕ = 〈g〉ϕ.
• The 
ases of �xpoint formulas are standard.

�4.1.5 Relation between ERL and WTµWe show that ERL is a fragment of WTµ. With an example, we show that modal operators wehave introdu
ed are useful for des
ribing some relevant real-time properties on timed pro
essesin parti
ular the ne
essity modal property on time delay.Proposition 128 Consider a property that 
an be written using a WTµ formula ϕ or anERL formula ψ, then for every timed pro
ess P, state p of P and valuation v ∈ VΣ,
• P, (p, v),Val �t 〈g〉〈a〉ϕ if and only if P, (p, v),Val �t 〈g, a〉ψ.
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• P, (p, v),Val �t [g][a]ϕ if and only if P, (p, v),Val �t [g, a]ψ.Lemma 129 There is a property that 
an be des
ribed with a WTµ formula and that 
annot be des
ribed with an ERL formula.ProofConsider the property �in the time interval (0, 1) there is a time instan
e when no a
tion a ispossible�.. This property 
an be expressed by WTµ formula:

ϕ = 〈0 ≤ ha < 1〉[a]ffObserve that we use the 
lo
k asso
iated to a
tion a, but we 
ould use any other 
lo
k aswe assume that initial valuation of all 
lo
ks is 0. Of 
ourse ϕ is satis�able, moreover it is
onsistent with the formula
ϕ′ = 〈0 ≤ ha < 1〉〈a〉ttsaying that there is a time instan
e when a is possible. We show that ϕ is not equivalentto a ERL formula. We 
laim that any ERL formula 
onsistent with ϕ′ is not equivalent to

ϕ. Indeed, every ERL formula 
an be transformed into a boolean 
ombination of formulasstarting with modalities 〈g, b〉 or [g, b]. It is easy to verify that every su
h formula that is
onsistent with ϕ′ has a model where a
tion a is possible at every time instan
e between 0and 1. �In 
onsequen
e of Lemma 129 and Proposition 128 we get the following.Theorem 130 WTµ is stri
tly more expressive than ERLExample: Assume that we aim at 
he
king the following property of timed pro
ess in Fig-ure 15.
p2 p3

p0 p1

p7 p6

tt , d

hd ≤ 5, d

hb ≤ 10, b

hb > 10, s

7 < hd ≤ 10, d hb ≤ 10, b

hb > 10, sFigure 15: A toy-
ar model.The system operates at any time within the 10 time units after the �rst d signal by sendinga se
ond d signal; it should send signal s at least 10 time units after the se
ond d or re
eivesignal b at most 10 time units after the se
ond d.This property is des
ribed with the following WTµ formula:
ϕ ::= [tt ][d][hd ≤ 10]〈d〉(〈hb ≤ 10〉〈b〉tt ∨ 〈hd > 10〉〈s〉tt)
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he
king 101The system modeled in Figure 15 is not a model of ϕ. For example, if the se
ond �dangersignal� o

urs 6 time units after the �rst �danger signal� the system will never 
ompute thefollowing �brake signal� unless another �danger signal� o

urs 2 time units after the se
ond.So there is a risk that the 
ar goes into 
ollision. �4.2 Model-
he
kingWe 
onsider the model-
he
king of WTµ. We de�ne the abstra
t semanti
s of formulas inwhi
h formulas are interpreted over (GdsΣ ∪Σ)-labelled transition systems. In that semanti
s
onstraints in transitions are dire
tly 
ompared (identity test) with the 
onstraints in formulas.Then we use that semanti
s for the model-
he
king by showing that 
he
king if a timed pro
essis a model of a formula is the same as 
he
king if theM -region semanti
s of that timed pro
essis an abstra
t model (with respe
t to the abstra
t semanti
s) of the M -re
tangular formula ofthe formula for M su�
iently big.4.2.1 Abstra
t Semanti
s for FormulasWe would also like to evaluate our formulas in models of the form 〈[P]〉 or 〈[P]〉Mreg. Moregenerally, we 
an de�ne a semanti
s of WTµ in any (GdsΣ ∪ Σ)-labelled transition system
S = 〈S,GdsΣ ∪ Σ, s0,→〉 as follows:De�nition 131 The symboli
 relation of satisfa
tion, S, s,Val �g, and symboli
 meaning ofa formula g[[ϕ]]SVal are de�ned for a symboli
 representation S, a valuation of variables Val anda formula ϕ indu
tively as follows:
• S, s,Val �g tt

• S, s,Val �g X when s ∈ Val(X)

• S, s,Val �g ϕ1 ∨ ϕ2 when S, s,Val �g ϕ1 or S, s,Val �g ϕ2.
• S, s,Val �g ϕ1 ∧ ϕ2 when S, s,Val �g ϕ1 and S, s,Val �g ϕ2.
• S, s,Val �g 〈a〉ψ if there is s a

−→ s′ su
h that S, s′,Val �g ψ

• S, s,Val �g 〈g〉ψ if there is s g
−→ s′ su
h that S, s′,Val �g ψ

• S, s,Val �g [a]ψ if for all s a
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g [g]ψ if for all s g
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g µX.ϕ(X) if s ∈ ⋂{T ⊆ S | 〈[ϕ(X)]〉SVal[X/T ] ⊆ T}

• S, s,Val �g νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ 〈[ϕ(X)]〉SVal [X/T ]}

• g[[ϕ]]SVal = {s | S, s,Val �g ϕ}
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 WTµWe will write S �g ϕ for S, s0 �g ϕ to say that S is an abstra
t model of the senten
e ϕ.Observe that this is nothing else, but the semanti
s of the standard µ-
al
ulus. We usethis observation in the next subse
tion for the model-
he
king de
ision pro
edure. Results wepresent in that subse
tion use the framework of Subse
tion 3.2.3. Constru
ts for approximating�xpoints in WTµ formulas are analogous to the ones in Subse
tion 3.2.2.4.2.2 Model-Che
king ResultsLet us now 
onsider the model-
he
king of WTµ. From Proposition 127, we 
an 
onsiderre
tangular formula as �good� abstra
tion of formula and for su�
iently big M , we will usethe M -region representation of timed pro
ess P, to 
he
k whether it is a model of a givenformula.Proposition 132 For every pro
ess P, for every Mϕ-re
tangular formula ϕ, for every M ≥
Mϕ: [[P]], (p, v),Val �t ϕ if and only if 〈[P]〉M , (p, v),Val �g ϕ.ProofThe proof is by indu
tion on the stru
ture of the formula. The 
ases of �, tt , ϕ∨ϕ, ϕ∧ϕ and
σX.ϕ(X) are immediate. We 
onsider the 
ases of 〈g〉ϕ, [g]ϕ, 〈a〉ϕ and [a]ϕ.
• Assume that the formula has the form 〈g〉ϕ where, g ∈ Agds(M).
⇒ if [[P]], (p, v),Val �t 〈g〉ϕ, then there is (p, v)

v′
−→ (p, v′) su
h that v′ ∈ [[g]] and

[[P]], (p, v′),Val �t ϕ. By the indu
tion hypothesis, 〈[P]〉M , (p, v′),Val �g ϕ. But,
(p, v)

v′
−→ (p, v′), v′ ∈ [[g]] and g ∈ Agds(M) involve that (p, v)

g
−→ (p, v′) is atransition in 〈[P]〉M . It follows that 〈[P]〉M , (p, v),Val �g 〈g〉ϕ.

⇐ 〈[P]〉M , (p, v),Val �g 〈g〉ϕ, then there is (p, v)
g
−→ (p, v′) su
h that [[P]], (p, v′),Val �g

ϕ. By the indu
tion hypothesis, [[P]], (p, v′),Val �t ϕ. But if (p, v)
g
−→ (p, v′) is atransition in 〈[P]〉M then v′ ∈ [[g]] and there is t ∈ R+ su
h that v′ = v+ t. It followsthat, the transition (p, v)

v′
−→ (p, v′) belong to [[P]] and then [[P]], (p, v),Val �t 〈g〉ϕ.

• In the 
ase of [g]ϕ, we use a dual argumentation.
• Assume that the formula has the form 〈a〉ϕ,
⇒ if [[P]], (p, v),Val �t 〈a〉ϕ, then there is (p, v)

a
−→ (p′, v′) su
h that [[P]], (p, v′),Val �t

ϕ with v′ = v[ha := 0]. By the indu
tion hypothesis, 〈[P]〉M , (p′, v′),Val �g ϕ. Butif (p, v)
a
−→ (p′, v′) is a transition of [[P]] then, there is a transition p

g,a
−→ p′ in Pfor whi
h v ∈ [[g]]. A

ording to the de�nition of 〈[P]〉M , there is also the transition

(p, v)
a
−→ (p′, v′) in 〈[P]〉M . It follows that 〈[P]〉M , (p, v),Val �g 〈a〉ϕ.

⇐ if 〈[P]〉M , (p, v),Val �g 〈a〉ϕ then there is (p, v)
a
−→ (p′, v′) su
h that

[[P]], (p, v′),Val �g ϕ with v′ = v[ha := 0]. By the indu
tion hypothesis,
[[P]], (p′, v′),Val �t ϕ. Be
ause (p, v)

a
−→ (p′, v′) belong to [[P]], we get that

[[P]], (p, v),Val �t 〈g〉ϕ.
• A dual argumentation holds in the 
ase of [a]ϕ.
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�Using bisimilarity between 〈[P]〉Mreg and 〈[P]〉M , for su�
iently bigM , and that every formulais equivalent to some re
tangular formula (see Proposition 127) we get the following lemma.Lemma 133 For every pro
ess P, for every formula ϕ, for every M ≥ max(Mϕ,MP ):

[[P]], (p, v),Val �t ϕ if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ).Theorem 134 is nothing else but a 
onsequen
e of Lemma 133 and Theorem 25 as ourmodel-
he
king pro
edure is just the one of the µ-
al
ulus over (AgdsΣ(M) ∪ Σ)-labelledtransition systems.Theorem 134 There is an exponential time pro
edure that 
he
ks whether a pro
ess is a modelof a formula.4.3 Satis�ability of the C-WTµ FragmentIn this se
tion we 
onsider the satis�ability problem for C-WTµ formulas. We will show thatit is de
idable whether a C-WTµ formula has a model. We re
all that formulas of the form
〈g〉[a]ϕ or more generally, 〈g〉ϕ where, ϕ is a boolean 
ombination of formulas 
ontaininga formula of the form [a]ψ (with ψ 6= tt), are not admitted as C-WTµ formulas. We usetableau-based method.4.3.1 TableauxWe present the tableau system of rules for C-WTµ. We will assume that formulas are M -re
tangular. We also de�ne the notions of tra
es, µ-tra
es and pre-model.Let us introdu
e a notation. Given a set of formulas Γ and a region r, we de�ne the set
Γr = {(g)ϕ | r ⊆ g}.De�nition 135 (Tableau system of rules) Let a ϕ be a C-WTµ formula and let Dϕ beits binding fun
tion. We de�ne the system of tableau rules Sϕc parametrised by ϕ, its bindingfun
tion and the set of regions RegM :

{�};�
{ϕ,Γ};� (�r) {�};�

{〈g〉ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(fte)

{Γ}; r

{[g]ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(wtt)

{ϕ1,Γ}; r {ϕ2,Γ}; r

{ϕ1 ∨ ϕ2,Γ}; r
(∨)

{ϕ1, ϕ2,Γ}; r

{ϕ1 ∧ ϕ2,Γ}; r
(∧)

{ϕ(X),Γ}; r

{µX.ϕ(X),Γ}; r
(µ)

{ϕ(X),Γ}; r

{νX.ϕ(X),Γ}; r
(ν)

{ϕ(X),Γ}; r

{X,Γ}; r
(reg) Dϕ(X) = σX.ϕ(X)

{ϕ | (g)ϕ ∈ Γri}; ri ∀ri ∈ r↑∩RegM
Γ; r

(delay)
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ϕ ∪ {ψ | [a]ψ ∈ Γ}; r[ha := 0] for ea
h 〈a〉ϕ ∈ Γ

Γ; r
(mod)When applying the rule (delay) we require that every formula in the 
on
lusion should be inone of the forms �, tt , 〈g〉ψ or [g]ψ and when applying the rule (mod) we require that everyformula in the 
on
lusion should be in one of the forms �, tt , 〈a〉ψ or [a]ψ.De�nition 136 (Tableau) A tableau for a formula ϕ from a region r0 is a pair τϕ

r0
= 〈T ,L〉,where T = 〈N,E〉 is a tree, and L is a labeling fun
tion su
h that:1. The root n0 of τϕ

r0
is labeled by {ϕ}; r02. The sons of any node n are 
reated and labeled a

ording to the rules of systems Sϕ. Itis required the rules (mod) and (delay) are applied only when no other rule is appli
able.Given a node n su
h that L(n) = Γ; r, LF (n) = Γ and Lρ(n) = r denote the formula part andthe timing part of L(n).If we 
onstru
t a tableau for a C-WTµ formula, a 
on
lusion never 
ontains at the sametime a formula starting with a modality indexed with a guard and a formula starting with amodality indexed with an event. So, in a tableau, the formula part of timed sequents on whi
hno rule is appli
able never 
ontain formulas of the forms 〈a〉ψ, 〈g〉ψ and [g]ψ.De�nition 137 (Tra
e) Given a path π of τϕ

r0
= 〈T ,L〉, a tra
e on π is a fun
tion F thatassigns a tuple made of a formula and a region to ea
h node in some initial segment of π,a

ording to the rules applied for the 
onstru
tion of π. FF and Fρ denotes the formula partand the timing part of F(n). F satis�es the following 
onditions:1. if F(n) is de�ned then FF(n) ∈ LF (n) and Fρ(n) = Lρ(n);2. if the rule applied at the node m is not dire
ted by F(m) then the son n ∈ π of m issu
h that F(m) = F(n);3. if the rule is dire
ted by F(m) but it is not (mod), then the tuple F(n) for the son n ∈ πof m is one of the results of the appli
ation appli
ation of the rule;4. if the rule (delay) is applied at the node m and the son n ∈ π of m is labeled by

{ϕ | (g)ϕ ∈ Γri}; ri then:
• F(n) is equal to ϕ; ri if F(m) = (g)ϕ; r;
• otherwise F(n) is unde�ned;5. if the rule (mod) is applied at m and the son n ∈ π of m is labeled by ϕ ∪ {ψ | [a]ϕ ∈

Γ}; r[ha := 0] for some 〈a〉ϕ ∈ Γ then:
• F(n) = ϕ; r[ha := 0] if F(m) = 〈a〉ϕ; r;
• F(n) = ψ; r[ha := 0] if F(m) = [a]ψ; r;
• otherwise F(n) is unde�ned and F(m) is the last element of the tra
e.
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e F of some path if and only if for some m and itsson n on the path FF (m) = X and FF (n) = ψ(X) with Dϕ(X) = σX.ψ(X).A µ-tra
e is a in�nite tra
e on whi
h the oldest variable regenerated in�nitely often is a
µ-variable; or a maximal �nite tra
e, ending with a tuple the formula part of whi
h 
ontains�. An pre-model PM is a fragment of a tableau τϕ

r0
satisfying the following 
onditions:

• the root of τϕ
r0

belongs to PM;
• if a disjun
tive node belongs to PM, then only one of its sons belongs to PM;
• for all other kinds of nodes, if a node belongs to PM then all its su

essors too;
• there is no path with a µ-tra
e in PM.The notions of signature, µ-signature, and ν-signature are de�ned as in Chapter 3, De�ni-tion 104. The proof of the following lemma is the same as the analogous lemma (Lemma 105)in Chapter 3.Lemma 138 (µ-Signature) Let µsig(ϕ, s) the signature of ϕ at s, it is true that:
• µsig(ϕ1 ∧ ϕ2, s) = max{µsig(ϕ1, s),

µ sig(ϕ2, s)}

• µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ1, s) or µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ2, s)

• µsig(〈a〉ϕ, s) = µsig(ϕ, s′) for some s′ su
h that s a
−→ s′

• µsig([a]ϕ, s) = max{µsig(ϕ, s′) for all s' su
h that s a
−→ s′}

• µsig(〈g〉ϕ, s) = µsig(ϕ, s′) some s′ su
h that s g
−→ s′

• µsig([g]ϕ, s) = max{µsig(ϕ, s′) for all s′ su
h that s g
−→ s′}

• If Xi is the i− th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�x of length i−1of µsig(µXi.ϕ(Xi), s) and µsig(ϕ(X), s) are equal
• µsig(νX.ϕ(X), s) = µsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• If Dϕ(Y ) = µY.ϕ(Y ), then µsig(Y, s) > µsig(ϕ(Y ), s)

• If Dϕ(Y ) = νY.ϕ(Y ), then µsig(Y, s) = µsig(ϕ(Y ), s)Properties for the ν-signature νsig(ϕ, s) 
an be de�ned in a dual way. An analogous lemmato Lemma 138 
onsiders (VΣ ∪ Σ)-LTS and �t instead of (GdsΣ ∪Σ)-LTS and �g.
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 WTµ4.3.2 Satis�ability ResultsWe show in Theorem 139 that a formula is satis�able if and only if its tableau 
ontains apre-model. In Proposition 142 we show that a formula has a model if there is a pre-modelin its tableau and in Proposition 140 we show that if a formula has a model then there isa pre-model in its tableau. The 
omplexity of the satis�ability 
he
king is the same as the
omplexity of 
he
king the existen
e of a pre-model in a tableau.Theorem 139 There is an exponential time pro
edure in the size of the formula that 
he
ksif a formula ϕ is satis�able.The proof is a 
onsequen
e of the two following propositions.Proposition 140 If ϕ is satis�able then there is a pre-model in τϕ
r0
.ProofIf ϕ is satis�able, then there exists a pro
ess P su
h that P �t ϕ. Without the loss of generalitywe 
an assume that ϕ is re
tangular. By Lemma 133, for every M ≥ max(MP ,Mϕ), we havethat 〈[P]〉Mreg �g ϕ.Consider τϕ

r0
the tableau for ϕ; then we 
hoose the nodes of τϕ

r0
that we in
lude in thepre-model PM a

ordingly to a marking relation M : N → 2S . It will be de�ned in su
h away that s ∈ M(n) implies 〈[P]〉Mreg, s,Val �g 〈[ψ]〉Dϕ

for every ϕ ∈ LF (n). First, we put s0 in
M(n0) with n0 being the root of τϕ. This is 
onsistent as 〈[P]〉Mreg �g ϕ.Then, if we assume that the node n has been in
luded in the pre-model PM with sn ∈
M(n), we 
hoose the next node to in
lude in the tableau using the following rules:
• The only son n′ of some node n, marked with sn, on whi
h an unary rule (wtt,∧, reg, µ,or ν) was applied is in
luded in PM and we set sn ∈M(n′).
• If n is a disjun
tive node, then sn is put into the marking of the son for whi
h it has theleast µ-signature. By Lemma 138, su
h a son exists.
• If n is a delay node, then we add all the sons of n in PM. Ea
h son n′ of n is the resultof the redu
tion of a set of formulas of the form 〈g〉ψ or [g]ψ with respe
t to a region ri.Then, we set sn′ ∈M(n′) where sn′ is the unique state su
h that sn g

−→ sn′ .
• If n is a modal node, then we add all the sons of n in PM. Ea
h son n′ of n is the resultof the redu
tion of a formula of the form 〈a〉ψ. Then, we set sn′ ∈ M(n′) where sn′ isa state su
h that sn a

−→ sn′ and µsig(〈a〉ϕ, sn) ≥
µ sig(ϕ, sn′). By Lemma 138, su
h ason exists.Using similar argumentation des
ribed at the end of the proof of Proposition 108 we 
an showthat every path in the above pre-model does not 
ontain a µ-tra
e. �From the de�nition of the tableau rules, applying a rule di�erent from (mod), (delay) and

(∨) to a node of a tableau generates a unique su

essor. In a symboli
 pre-model we 
hooseonly one son of a disjun
tive node and all the sons of a modal or a delay node. It follows thatin a symboli
 pre-model, the nodes with more that one su

essor are modal or delay nodes.



4.3. Satisfiability of the C-WTµ Fragment 107Given a node n of PM we denote desα(n) the 
losest des
endant of n or n itself in PMthat is either a delay node, a modal node, or a leaf. Observe that, if n is the root of PMor n is a su

essor of a modal node of PM, then desα(n) is a delay node or a leaf; if n is asu

essor of a delay node of PM, then desα(n) is a modal node.De�nition 141 (model for a pre-model) Given a pre-model PM for a formula ϕ, themodel based on PM is the timed pro
ess P = 〈P ,Σ, p0,∆P 〉 su
h that:1. p0 = desα(n0) where n0 is the root of PM.2. P 
onsists of all the leaves and delay nodes of PM.3. (p, g, a, desα(n′)) ∈ ∆P if there is in PM a su

essor n of p obtained by redu
ing aregion ri ⊆ g with g ∈ Agds(Mϕ) and a su

essor n′ of desα(n) obtained by redu
ingan a
tion a.Remark: From the de�nition above, the maximal 
onstant that o

urs in the model P 
on-stru
ted from a pre-model PM is the same as maximal 
onstant that o

urs in the formula.Moreover, the 
onstraints in the model are re
tangular.Proposition 142 Given a formula ϕ, if there is a pre-model in τϕ
r0
, then ϕ is satis�able.ProofAssume that ϕ has a pre-model PM and ϕ is not satis�able. Let M = Mϕ. Consider P, themodel based on PM. From the remark above,MP = Mϕ. If P 6� ϕ, then by Lemma 133 we getthat, 〈[P]〉Mreg 6�g ϕ. If so, we show that PM 
ontains a path π with a µ-tra
e F = {ϕm; rm}m∈π.The path π and the tra
e F are built in the following way:

• π starts at m0 and ϕm0
= ϕ.

• Assume that, we built F up to the tuple ϕm; rm with, ϕm ∈ LF (m) and rm = Lρ(m),su
h that 〈[P]〉Mreg, (des
α(m), rm) 6�g 〈[ϕm]〉Dϕ

. The formula of the next tuple (the timingpart is obvious) is sele
ted as follows:1. If m is not a delay nor a modal node, then the only son m′ of m is su
h that� Lρ(m) = Lρ(m
′) and there are equal to rm.� if ϕm was not redu
ed by the rule then ϕm′ = ϕm.� if ϕm = ϕ1 ∧ ϕ2 is redu
ed then ϕm′ = ϕ1 if νsig(ϕm, (des

α(m), r)) ≥ν

sig(ϕ1, (des
α(m), r)), otherwise ϕm′ = ϕ2.� if ϕm = ϕ1 ∨ϕ2 is redu
ed then ϕm′ is the formula that o

urs in LF (m′). Weremark that, the 
hoi
e in this 
ase is dire
ted by PM.� In the other sub 
ases (i.e �, f te, wtt, µ, ν,, or reg), we just take the resultingformula as the one for the next tuple of the tra
e.2. If m is a delay node and ϕm is of the form 〈g〉ψ or [g]ψ and there is a son m′ of mthe formula part of whi
h 
ontains ψ, then we take ϕm′ = ψ.3. If m is a modal node, it is ne
essarily the 
losest des
endant of a su

essor n′ (withrespe
t to some region rm) of some delay node n; then,
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 WTµ� if ϕm = 〈a〉ψ, there is a son m′ of m the formula part of whi
h was obtained byredu
ing ϕm, and the timing part of whi
h is rm[ha := 0]. We take ϕm′ = ψ.� if ϕm = [a]ψ, then be
ause (desα(m), rm) 6�g 〈[ϕm]〉Dϕ
, there exists a state

p′, a 
onstraint g su
h that desα(n)
g,a
−→ p′ is a transition in P and

νsig([a]ψ, (desα(n), rm)) =ν sig(ψ, (p′, rm[ha := 0]) with rm ⊆ g and g ∈
Agds(Mϕ). We take ϕm′ = ψ and rm′ = rm[ha := 0].We remark that F is a valid tra
e of PM and we distinguish two 
ases:1. The tra
e is �nite;

• If the tra
e ends with the formula �, then we get a 
ontradi
tion with that Pderived from PM; Indeed a tra
e of PM never ends with �.
• If the tra
e ends at the node m with the formula ϕm = tt , then m is a leaf or adelay node and obviously, 〈[P]〉Mreg, (des

α(m), rm) �g tt , leading to a 
ontradi
tionwith the hypothesis.
• If the tra
e ends with a formula of form [g]ϕ, then the region at node m 
ould neverrea
h g meaning that [g]ϕ is satis�ed at m. We also get a 
ontradi
tion with ourhypothesis.
• Assume that the tra
e ends at the node m with a formula of the form [a]ϕc. Thereis the 
losest an
estor n of node m whi
h is a delay node. The sele
ted formula atthe node n that o

urs in the tra
e has the form [g]ψ or 〈g〉ψ and ψ is a boolean
ombination of formulas 
ontaining [a]ϕc.Let p be the state in P that 
orresponds to the node n. Su
h a state exits be-
ause n is a delay node. Let r be the region at the node m and r′ be region atthe node n. Be
ause m is a son of n, we have that r ∈ r′↑. Additionally, by hy-pothesis, 〈[P]〉Mreg, (p, r

′) 6�g 〈[(g)ψ]〉Dϕ
. Be
ause the tra
e is maximal, there is notransition from p labelled with (g, a) for the unique 
onstraint g ∈ Agds(M)su
h that r ⊆ g. It follows that in 〈[P]〉Mreg there a unique outgoing transition

(p, r′)
g
−→ (p, r) and there is no outgoing transition from (p, r) labelled with

a. This implies 〈[P]〉Mreg, (p, r) �g 〈[[a]ϕc]〉Dϕ
. Contradi
tion with that in the tra
e

νsig((g)ψ, (p, r′)) = νsig([a]ϕ, (p, r)). Indeed, re
all that the tra
e has been builtby 
hoosing at every node, the formula and the 
on�guration with the least ν-signature.2. If the tra
e is in�nite, then be
ause the ν-signature de
reases along the tra
e and theformula is of �nite length, there is ne
essarily a µ-variable X that is in�nitely oftenregenerated and no older variable than X is in�nitely often regenerated. This is a 
on-tradi
tion with that PM does not 
ontain a µ-tra
e.
�Proposition 140 and Proposition 142 ends the proof of Theorem 139.4.3.3 Existen
e of Deterministi
 Models for FormulasWe may wonder if a formula has a deterministi
 model. The solution to that question is di�
ultas deterministi
 models may need 
onstants that are stri
tly greater than the maximal 
onstant
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luding Remarks 109o

urring in formulas. This is the 
ase with the following formula. Let ϕ be the formula de�nedby:
ϕ = (〈ha > 1〉〈a〉〈0 < ha < 1〉〈c〉tt) ∧ (〈ha > 1〉〈a〉[0 < ha < 1][c]�).Observe that ϕ 
an be rewritten using the syntax of ERL; so, the same problem appears forERL. The formula ϕ says that there are two time instants satisfying ha > 1 at whi
h event

a must o

ur. In one of these time instants the event c must o

ur when 0 < ha < 1 issatis�ed and for the other time instant the event c never o

urs in time instants satisfying
0 < ha < 1. Using our pro
edure for the satis�ability, the resulting model will be of the formof the timed pro
ess in Figure 16 with g1 and g2 are instantiated to ha > 1. Model in Figure 16is deterministi
 if 
onjun
tion of g1 and g2 is in
onsistent. For example, g1 and g2 
ould berespe
tively instantiated to 1 < ha < 3 and 4 < ha.

p1

p0 p2 p3

g1, a

g2, a 0 < ha < 1, cFigure 16: A Timed pro
ess.We 
an also 
onsider a situation when we impose a maximal 
onstant with whi
h the 
lo
ks
an be 
ompared in the models. Su
h a 
onstant 
an be greater than the maximal 
onstanto

urring in the formula. Under su
h an assumption, 
he
king the existen
e of a deterministi
models forWG-WTµ formulas (not only C-WTµ formulas) is done by repla
ing the rule (mod)of the tableau by the following rule:
{ψ | (a)ψ ∈ Γ}; r[ha := 0] for ea
h a s.t 〈a〉ϕ ∈ Γ

Γ; r
(moddet)We remark that our tableau system of rules for theM -bounded satis�ability 
he
king problemof WG-WTµ is the same as the tableau system of rules for the satis�ability of C-WTµ; onlythe nature of the formulas in the timed sequents 
hanges.If we 
onsider the formula ϕ presented just above and we exe
ute our satis�ability pro
e-dure for 
he
king whether ϕ has a deterministi
 model of bound M = 1, it will result that

ϕ does not have a deterministi
 M -bounded model. This is be
ause in our models 
lo
ks are
ompared with integer. But, if we 
he
k for models of bound M = 2, our satis�ability de
isionpro
edure will return that ϕ has a deterministi
 model.4.4 Con
luding RemarksWe have de�ned a new logi
 
alled WTµ that is interpreted over timed pro
esses. The logi
WTµ is a �weak� real-time extension of the µ-
al
ulus. The logi
 WTµ is expressive enough tohandle the ne
essity modal operator on time delay and 
an be used to des
ribe properties like�An event 
an be 
ompleted at every time a 
ondition on the time is satis�ed�. We have usedthe region abstra
tion to show that it is de
idable whether a timed pro
ess satis�es a formula.Our te
hnique leads to an exponential algorithm that requires the 
onstru
tion of M -region
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 WTµrepresentations of timed pro
esses. Also based on the region representation, we have shownthat it is de
idable whether there exists a timed pro
ess that satis�es a formula of C-WTµ. Wehave shown that 
he
king the existen
e of deterministi
 model for a formula may require theuse of 
onstants greater than the ones used in the formula. This problem 
an be avoided if weassume that there is a maximal value with whi
h the 
lo
ks 
an be 
ompared. These resultsare fundamental for the 
ontroller synthesis problems that we 
onsider in the next 
hapter.



Chapter 5Centralised Controller Synthesis usingC-WTµ Spe
i�
ation
It 
ould happen that behaviours of a real-time system (
alled a plant) do not satisfy a property,be
ause for example, either that property is the result of a modi�
ation of an initial propertyor, there are bugs in the real-time system; then we would like to provide a new system thatsatis�es the property. To ta
kle this problem two approa
hes 
an be 
onsidered: either wedestroy the old system and we design (when it is possible) a new one, or we design (when itis possible) another system (
alled a 
ontroller) that we 
ombine with the plant in su
h a waythat the resulting system (
alled the 
ontrolled or supervised system) satis�es the expe
tedproperty. The �rst approa
h is expensive for big systems or for systems that only need smallmodi�
ations that 
an be done by another system. The se
ond approa
h is 
heap if the plant
an be 
ontrolled by disabling some events and the 
ontroller is small 
ompared to the 
on-trolled system. In this 
hapter we 
onsider the se
ond approa
h. Given a plant and a property,the 
ontroller synthesis problem 
an be understood as the sear
h for a 
omponent, 
alled the
ontroller su
h that the the 
ontrolled system satis�es the property. Systems are rea
tive andevolve in some environment. We make some 
onvenient and pra
ti
al assumptions on events.We distinguish un
ontrollable events (for example, the ones that 
ome from the environment)from 
ontrollable events (for example the ones that 
ome from the system). We assume that,
ontrollers 
an never prevent un
ontrollable events to happen whatever is the time they o

ur.In our framework, plants and 
ontrollers are modelled with timed pro
esses. Propertiesare des
ribed with C-WTµ formulas. The 
ombination between a plant and a 
ontroller isthe produ
t of their models (timed pro
esses). We de�ne modal automata whi
h are, roughlyspeaking, another way for presenting WTµ formulas. Modal automata are interpreted overtimed pro
esses. We show that modal automata are 
losed under interse
tion. We translateWTµ formulas into equivalent modal automata and re
ipro
ally we translate modal automatainto an equivalent WTµ formulas. As formulas use �xpoint operators that are di�
ult to han-dle; then we use modal automata to des
ribe properties of systems. We 
onsider sub
lasses ofmodal automata that we 
alled well guarded modal automata (WG-MA) and modal automatafor 
ontrol (C-MA). The 
lass of WG-MA is equivalent to 
lass of WG-WTµ formulas, andthe 
lass C-MA is equivalent to the 
lass of C-WTµ formulas. In 
onsequen
e, the empti-ness 
he
king problem for C-MA is the same as the satis�ability 
he
king problem of C-WTµ111
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ifi
ationformulas. Both problems are de
idable.We 
onsider two 
ontroller synthesis problems: the 
entralised 
ontroller synthesis problemand the ∆-dense-time 
ontrol.The 
entralised 
ontroller synthesis problem (CCP) is the following:(CCP) Given the model of a plant P and a property des
ribed with a C-MA A, does there exitsa 
ontroller R su
h that P × R � A and satisfying also the following 
ontrol 
ondition(CC):Control 
ondition(CC) R does not restri
t environment events.Our solution to CCP 
onsist to de�ne the quotient of automata by the plants. The result ofthat operation is a modal automaton that the 
ontroller must satisfy in addition to the 
ontrol
ondition. The 
ontrol 
ondition will be des
ribed with a modal automaton. Then, a 
ontrollerwill be the model resulting from the satis�ability 
he
king pro
edure of an automaton whi
his semanti
ally equivalent to the interse
tion of the quotient automaton with an automatonthat des
ribes the 
ontrol 
ondition.The ∆-dense-time 
ontrol amounts to �nding a 
ontroller (also 
alled a ∆-
ontroller) for asystem su
h that at least ∆ ≥ 0 time units elapse between two 
onse
utive 
ontrollable events.We will show that this problem is de
idable and it is a 
orollary to (CCP) as properties on a
∆-
ontroller 
an be des
ribed in a C-MA. We will be able to 
onstru
t a witness ∆-
ontroller.Related results: The 
ontroller synthesis problems have been introdu
ed by Ramadgeand Wonham [RW89℄ and sin
e then, they have been 
onsidered by many authors in thesettings of untimed systems [PR05, BK06, AW07℄ and timed systems [Sav01, DM02, BDMP03,BCL05℄. The framework of Arnold et al. [AVW03, AW07℄ is a 
onsiderable extension of theframework of Ramadge et al. as it 
onsiders bran
hing-time properties and the µ-
al
ulus isexpressible enough for des
ribing the 
ontrol 
ondition. Arnold et al. [AVW03, AW07℄ also usemodal automata instead of formulas for des
ribing spe
i�
ations. These modal automata aresome kind of alternating automata [Tho97℄ over labelled trees. The Madhusudan et al. [DM02,BDMP03℄ framework for the 
ontroller synthesis is an extension of the framework of Ramadgeand Wonham [RW89℄ and Pnueli et al. [AMP95℄ to real-time systems modeled with timedautomata and it does not 
onsider more general timed bran
hing-time properties. In theframework of Laroussinie et al. [BCL05℄ the logi
 Lν is used for the 
entralised 
ontrollersynthesis and the ∆-dense-time 
ontrol of timed automata. The solution provided in [BCL05℄gives an answer to the existen
e of a 
ontroller; it does not show how to build 
ontrollers. Thisis be
ause the satis�ability problem of Lν are still open. Our 
ontributions pla
e themselvesbetween the framework of Arnold et al. and the framework of Laroussinie et al. as our modelis a sub
lass of timed automata and we use the te
hniques of Arnold et al.The 
hapter is organized as follows: In the next se
tion, we de�ne modal automata, theirsemanti
s; we show that they are 
losed under interse
tion and we present an algorithm forthe model-
he
king of modal automata. The translation between modal automata and WTµformulas is presented in Se
tion 5.2. In Se
tion 5.3, we de�ne well guarded modal automata(WG-MA) and modal automata for 
ontrol (C-MA). We de�ne the quotient of WG-MA bytimed pro
esses that we use in Se
tion 5.4 for 
ontroller synthesis.



5.1. Modal Automata and Modal Automata for Controller Synthesis 1135.1 Modal Automata and Modal Automata for Controller Syn-thesisWe de�ne modal automata that are interpreted over timed pro
esses. The interpretation of amodal automaton is presented as a two player parity game and a

eptan
e is de�ned in termsof winning strategy for a player in that game. We show that modal automata are 
losed underinterse
tion and we 
onsider the model-
he
king problem for modal automata. This problemis redu
ed to 
he
king the existen
e of a winning strategy in the a

eptan
e game. We willalso de�ne sub
lasses of modal automata. The �rst one is the sub
lass of well guarded modalautomata (WG-MA) and the se
ond sub
lass is the one modal automata for 
ontrol (C-MA).5.1.1 De�nition and Semanti
sModal automata are nothing else but WTµ formulas written in the automata syntax; theyare kinds of timed alternating automata with parity a

eptan
e 
ondition. They use modalformulas in their transition relations.De�nition 143 The set of modal formulas over Σ and Q, denotedMF(Σ, Q) is the smallestset 
losed under the following rules:
• tt , �, q are modal formulas, where q ∈ Q.
• ϕ ∨ ψ, ϕ ∧ ψ are modal formulas for all ϕ,ψ ∈MF(Σ, Q).
• 〈g〉ψ, 〈a〉ψ, [g]ψ, [a]ψ are modal formulas for all ψ ∈MF(Σ, Q) where g ∈ GdsΣ.De�nition 144 A modal automaton (MA for short) over Σ is a tuple

A = 〈Q,Σ, q0,∆A : Q→MF(Σ, Q),AccA ⊆ Q
ω〉where:

• Q is a �nite set of states.
• q0 ∈ Q is the initial state.
• ∆A is a transition relation.
• AccA is the max-parity 
ondition given by the parity fun
tion rank : Q→ N.Modal automata a

ept timed pro
esses and their semanti
s is de�ned using a

eptan
egames.We de�ne the real-time a

eptan
e game of a timed pro
ess P = 〈P ,Σ, p0,∆P 〉 and a modalautomaton A. Let F be the set of formulas 
ontaining all the formulas appearing as values oftransition fun
tion ∆A and 
losed under sub formulas. The game G(P,A) is 〈NE , NA, T,AccG〉where:
• NE = P × FA

E × V and FA
E ⊆ F is a the set of modal formulas of the form �, ϕ ∨ ψ,

〈g〉ϕ, 〈a〉ϕ .
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ifi
ation
• NA = (P ×F × V) \NE.
• There is no move from either (p, tt , v) or (p,�, v) for every v ∈ V.
• From (p, ϕ∧ψ, v) as well as from (p, ϕ∨ψ, v) there are moves to (p, ϕ, v) and to (p, ψ, v).
• From (p, [g]ϕ, v) and from (p, 〈g〉ϕ, v) there are moves to (p, ϕ, v + t) for every t su
hthat v + t ∈ [[g]].
• From (p, [a]ϕ, v) and from (p, 〈a〉ϕ, v) there are moves to (p′, ϕ, v[ha := 0]) for every p′su
h that p

g,a
−→ p′ and v ∈ [[g]].

• There is a move from (p, q, v) to (p,∆(q), v).
• AccG is the set of in�nite sequen
es proje
tion of whi
h on Q is in Acc.We say that A a

epts P (or P is a model of A) and we write P ∈ L(A) or P � A if andonly if there is a winning strategy for the player Eve from the position (p0, q0, v0) in G(P,A).We de�ne the language of an automaton A denoted by L(A), as the set of pro
esses it a

epts.Formally

L(A) = {P |P � A}We show that modal automata are 
losed under interse
tion. Let us de�ne an interse
tionoperation between modal automata.De�nition 145 Let
A1 = 〈Q1,Σ, q

0
1 ,∆1 : Q1 → F(Σ, Q1),Acc1 ⊆ Q

ω
1 〉and

A2 = 〈Q2,Σ, q
0
2 ,∆2 : Q2 → F(Σ, Q1),Acc2 ⊆ Q

ω
2 〉be two modal automata. Consider the automaton

A1 ∧ A2 = 〈Q,Σ, q0,∆ : Q→ F(Σ, Q),Acc ⊆ Qω〉where
• Q = Q1 ∪Q2 ∪ {q

0}

• q0 is the initial state.
• ∆ is de�ned by:

∆(q) =







∆1(q) if q ∈ Q1

∆2(q) if q ∈ Q2

∆1(q
0
1) ∧∆2(q

0
2) if q = q0

• Acc = Acc1 ∪ Acc2Proposition 146 Given two automata A1 and A2, for every timed pro
ess P, P ∈ L(A1) ∩
L(A2) if and only if P ∈ L(A1 ∧A2).



5.1. Modal Automata and Modal Automata for Controller Synthesis 115ProofIf P ∈ L(A1 ∧A2), then Eve has a winning strategy in G(P,A1 ∧A2), meaning that Eve winsevery play starting from (p0, q0, v0) and 
onsistent with that strategy. From (p0, q0, v0) thereis a move to n0 = (p0,∆1(q
0
1)∧∆2(q

0
2), v

0). There are moves from n0 to n1 = (p0,∆1(q
0
1), v

0)and n2 = (p0,∆2(q
0
2), v

0) and Eve has a winning strategy from n1 and a winning strategyfrom n2. These strategies are also winning for Eve in G(P,A1) and G(P,A2).Conversely, from winning strategies in G(P,A1) and G(P,A2), the winning strategy in
G(P,A1 ∧ A2) mimi
s either the winning strategy in G(P,A1) or the winning strategy in
G(P,A2), depending on the �st move of Eve. �5.1.2 Model- Che
kingWe address the model-
he
king problem of modal automata whi
h is to 
he
k if an automatona

epts a given timed pro
ess. For this question we use similar te
hnique to the model-
he
kingproblem of WTµ formulas in Se
tion 4.2. As real-time a

eptan
e game arena is in�nite, weneed to abstra
t that game in su
h a way that the arena of the resulting game is �nite.Symboli
 a

eptan
e game of a timed pro
ess Let P = 〈P ,Σ, p0,∆P 〉 be a timed pro-
ess and A a modal automaton as above. Let, as before, F be the set of formulas 
ontaining allthe formulas that are the values of ∆A and all their sub formulas. The M -symboli
 a

eptan
egame of P and A is the stru
ture Ĝ(P,A,M) = 〈NE , NA, T,Acc〉 where
• NE = P ×FA

E ×Reg(M) and FA
E ⊆ F is the set of modal formulas of the form �, ϕ∨ψ,

〈g〉ϕ, 〈a〉ϕ .
• NA = P ×F \NE.
• There is no move from (p, tt , r), nor (p,�, r) for every r ∈ Reg(M).
• From (p, ϕ∧ψ, r) as well as from (p, ϕ∨ψ, r) there are moves to (p, ϕ, r) and to (p, ψ, r).
• From (p, [g]ϕ, r) and from (p, 〈g〉ϕ, r) there are moves to (p, ϕ, r′) for every r′ ∈ r↑ su
hthat r′ ⊆ g.
• From (p, [a]ϕ, r) and from (p, 〈a〉ϕ, r) there are moves to (p′, ϕ, r[ha := 0]) for every p′su
h that p

g,a
−→ p′ and r ⊆ g.

• There is a move from (p, q, r) to (p,∆(q), r).
• AccĜ is the set of in�nite sequen
es proje
tion of whi
h on Q is in Acc.We say that P is an M -symboli
 model of A and we write P �M A if and only if there is awinning strategy for the player Eve in Ĝ(P,A,M).Proposition 147 For every automaton A, for every timed pro
ess P, for every M ≥

max(MA,MP ), Eve has a winning strategy in G(P,A) if and only if Eve has a winningstrategy in Ĝ(P,A,M).
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ifi
ationProofThe 
hoi
e ofM ≥ max(MA,MP ) follows from a similar argument as in the 
ase of Lemma 133In the setting of modal automata, a

eptan
e is de�ned in terms of a parity game. We showthat if Eve player has a winning strategy in G(P,A) then she also has a winning strategy in
Ĝ(P,A,M) and re
ipro
ally. For this, we show how a move of a player from a position (p, ϕ, v)to some position (p′, ϕ′, v′) 
an be mimi
ked by moves of the same player from (p, ϕ, [v]M ) to
(p′, ϕ′, [v′]M ) and re
ipro
ally.We note that a play in G(P,A) starts in (p0, q0, v0) and a play in Ĝ(P,A,M) starts in
(p0, q0, r0) with r0 = [v0]M .Assume that the 
urrent position in G(P,A) is n = (p, ϕ, v), and the 
urrent position in
Ĝ(P,A,M) is n = (p, ϕ, r) with r = [v]M .
• If ϕ = tt or ϕ = � then there is no move neither from n nor n.
• If ϕ = q then there is a move from n to (p,∆(q), v) and there is a move from n to

(p,∆(q), r).
• If ϕ = ϕ1∨ϕ2, and the player Eve moves to (p, ϕi, v), then in Ĝ(P,A,M), she 
an moveto (p, ϕi, r) with i ∈ {1, 2} and 
onversely.
• If ϕ = ϕ1 ∧ ϕ2, and the player Adam moves to (p, ϕi, v) with i ∈ {1, 2}, then in
Ĝ(P,A,M), he 
an move to (p, ϕi, r) and 
onversely.

• Assume that ϕ = 〈g〉ψ.� Assume that the player Eve moves to (p, ψ, v′), for some v′ ∈ v ↑ ∩[[g]]. Let
r′ = [v′]M . From Proposition 61, we get that if M ≥ MA ≥ Mg, then r′ ⊆ g andby de�nition r′ ∈ r↑. Eve 
an move to (p, ψ, r′).� Re
ipro
ally, if Eve moves to (p, ψ, r′), then r′ ⊆ g. Let v ∈ r, a

ording toProposition 61, there is v′ ∈ v↑∩r′. Sin
e r′ ⊆ g, then v′ ∈ [[g]] and the player Eve
an move to (p, ψ, v′).

• The 
ase when ϕ = [g]ψ is obvious from the previous one.
• Assume that ϕ = 〈a〉ψ,� Assume that Eve moves to (p′, ψ, v′), then v′ = v[ha := 0] and there is p

g,a
−→ p′with v ∈ [[g]]. Let r = [v]M . From Proposition 61, we get that if M ≥ MP ≥ Mg,then r ⊆ g. Eve 
an move to (p′, ψ, r[ha := 0]).� Conversely, if Eve moves to (p′, ψ, r′), then r′ = r[ha := 0] and there is p
g,a
−→ p′su
h that r ⊆ g. Let v ∈ r, then v ∈ [[g]] and Eve 
an move to (p′, ψ, v′) with

v′ = v[ha := 0]. By Proposition 61, v′ ∈ r′.
• The 
ase when ϕ = [a]ψ be
omes obvious.

�



5.1. Modal Automata and Modal Automata for Controller Synthesis 117From Proposition 147, if we want to 
he
k whether a timed pro
ess is a

epted by a modalautomaton, we 
he
k the existen
e of a winning strategy in the symboli
 game with the suitable
M parameter.In 
onsequen
e of Proposition 147 and Theorem 11, we 
an state the following result.Theorem 148 It is de
idable whether a modal automaton A a

epts a timed pro
ess P.5.1.3 Restri
ted Modal Automata: WG-MA and C-MAWe de�ne two sub
lasses of modal automata that intend to be equivalent to WG-WTµ for-mulas, and C-WTµ formulas (see Subse
tion 4.1.3). We 
all these automata well guardedautomata (WG-MA for short) and modal automata for 
ontrol (C-MA for short). These au-tomata use well guarded modal formulas and modal formulas for 
ontrol in their transitionrelations. The de�nition of modal formulas and well guarded modal formulas use dis
retemodal formulas.De�nition 149 Let S be a set. The set of dis
rete modal formulas over (Σ,S) is de�ned bythe following rules:
• 〈a〉s and [a]s are dis
rete modal formulas provided that a ∈ Σ and s ∈ S.
• ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 is a dis
rete modal formulas provided that ϕ1 and ϕ2 are dis
retemodal formulas.De�nition 150 Let S be a set. The set of well guarded modal formulas over (Σ, S),

MFwg(Σ, S) is de�ned by the following re
ursive set of rules:
• tt , � and s are well guarded modal formulas where s ∈ S.
• 〈g〉ϕe and [g]ϕe are well guarded modal formulas provided that ϕe is a dis
rete modalformula over (Σ,MFwg(Σ, S)) and g ∈ GdsΣ.
• ϕ1∧ϕ2 and ϕ1∨ϕ2 are well guarded modal formulas provided that ϕ1, ϕ2 ∈MFwg(Σ, S).De�nition 151 A well guarded modal automaton (WG-MA) is a modal automaton transitionrelation of whi
h uses formulas ofMFwg(Σ, Q) where Q is the set of states of the automaton.De�nition 152 The set MF c(Σ, S) of modal formulas for 
ontrol over a set S is de�nedlike MFwg(Σ, S), but we require that for every formula of the form 〈g〉ϕ, the formula ϕ is aboolean 
ombination of formulas of the form 〈a〉ψ, with ψ ∈MF c(Σ, S).De�nition 153 A modal automaton for 
ontrol(C-MA) is a modal automaton transitionrelation of whi
h uses formulas ofMFc(Σ, Q) where Q is the set of states of the automaton.
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ifi
ation5.2 Automata and Logi
Now, we 
onsider the relation between modal automata and WTµ formulas. We show howto translate formulas of WTµ into equivalent modal automata and vi
e versa. Su
h kind oftransformation has been 
onsidered earlier for temporal [Var96, Var07℄ and modal logi
s [SE89,Wal95℄. The proof of the translation is similar to the proof of a similar result [Wal01℄ in thesetting of the µ-
al
ulus. Assuming that ξ is one of {WG,C}, at the end of this se
tion, weshow that ξ-WTµ formulas 
an be translated into an equivalent ξ-MA and, 
onversely. As wehave proved that the satis�ability problem of C-WTµ is de
idable, so will be the emptinessproblem of C-MA.5.2.1 From Formulas to Modal AutomataNow we give the 
onstru
tion of a modal automaton Aϕ whose language is the set of timedpro
esses satisfying the formula ϕ. W.l.o.g, we assume that ϕ does not 
ontain sub formulasof one of the forms tt , � (indeed, the o

urren
e of su
h kinds of formulas in ϕ 
an be easilyrepla
ed with �xpoint formulas without 
hanging the meaning of ϕ).A state in Aϕ 
orresponds to a sub formula of ϕ that we aim at verifying in a 
urrent stateof a (VΣ ∪ Σ) labelled-transition system. The following 
lauses present how to redu
e a lo
alveri�
ation of a formula into lo
al veri�
ations of its sub formulas:
• To verify that ϕ1 ∧ ϕ2 in sub(ϕ), we 
he
k ϕ1 and ϕ2 in the 
urrent state.
• To verify that ϕ1 ∨ ϕ2 in sub(ϕ), we 
he
k in a non deterministi
 way ϕ1 or ϕ2 in the
urrent state.
• To verify that 〈g〉ψ in sub(ϕ), we 
he
k the existen
e of a su

essor of the 
urrentvaluation of the 
lo
ks whi
h satis�es g, then we 
he
k ψ in the 
urrent state of thetransition system with respe
t to the new values of the 
lo
ks.
• To verify that [g]ψ in sub(ϕ), we 
he
k the existen
e of an eventual su

essor of the
urrent valuation of the 
lo
ks (time elapse) whi
h satis�es g, then we 
he
k ψ in the
urrent state of the transition system with respe
t to the new values of the 
lo
ks.
• To verify that 〈a〉ψ in sub(ϕ), we 
he
k the existen
e of an a-su

essor of the 
urrentstate of the transition system. Then we 
he
k ψ on that su

essor whi
h be
ame the
urrent state.
• To verify that [a]ψ in sub(ϕ), we 
he
k the existen
e of an eventual a-su

essor of the
urrent state of the transition system. Then we 
he
k ψ on that su

essor, whi
h be
omesthe 
urrent state.
• To verify that σX.ϕ(X) in sub(ϕ), we 
he
k ϕ(X) in the 
urrent state with respe
t tothe 
urrent valuation.
• To verify that X in sub(ϕ), we 
he
k ϕ(X) in the 
urrent state, where D(X) = σX.ϕ(X).
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 119Finally, in the 
onstru
tion of the automaton we must ensure 
onstraints on �xpoints.That is, every µ-variable Y is in�nitely often regenerated only when there ν-variable X thatis greater that Y and in�nitely often regenerated.We will now give the transformation from a formula into an equivalent automaton. Firstwe de�ne a fun
tion tr that transform a WTµ formula into a modal formula. The symbol
V ar(ϕ) denotes the set of variables that o

ur in ϕ.De�nition 154 Given a WTµ formula ϕ, the transition relation asso
iated to ϕ is the modalformula tr(ϕ) ∈MF(Σ, V ar(ϕ)) de�ned indu
tively as follows:
• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

• tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2)

• tr(〈g〉ψ) = 〈g〉tr(ψ)

• tr([g]ψ) = [g]tr(ψ)

• tr(〈a〉ψ) = 〈a〉tr(ψ)

• tr([a]ψ) = [a]tr(ψ)

• tr(σX.ψ(X)) = X

• tr(X) = XRemark: By 
onstru
tion, it is not di�
ult to remark that, if ϕ is a formula of WG-WTµ,then tr(ϕ) is a modal formula of MFwg(Σ, V ar(ϕ)); and if ϕ is a formula of C-WTµ, then
tr(ϕ) is a modal formula ofMFc(Σ, V ar(ϕ))The transformation of a formula into an equivalent automaton is the following.De�nition 155 For a formula ϕ, 
onsider the automaton

Aϕ = 〈Q,Σ, q0,∆A : Q→MF(Σ, Q),Acc ⊆ Qω〉where,
• Q = V ar(ϕ) ∪ {q0},
• q0 is the initial state of the automaton.
• The transition relation ∆ : Q→MF(Σ, Q) is de�ned by:� ∆(q0) = tr(ϕ)� if q = X then ∆(q) = tr(ψ(X)) where Dϕ(X) = σX.ψ(X),
• The a

eptan
e 
ondition is the parity 
ondition that uses the parity fun
tion rank :
Q→ N de�ned by:

rank(q) =







0 if q = q0

2× alt(Dϕ(X)) where q = X and X is a ν-variable
2× alt(Dϕ(X)) + 1 where q = X and X is a µ-variable
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ifi
ationThe alternation depth alt(ϕ) of a WTµ formula is de�ned like the alternation depth of µ-
al
ulus formulas (see De�nition 22). We also remark that the initial state q0 never o

urs inthe transition relations of the states.Lemma 156 Let ϕ be a formula and let Aϕ be the automaton obtained from ϕ using thetransformation above. If ϕ is a formula of of WG-WTµ (resp. C-WTµ) then Aϕ is a WG-MA(resp. C-MA).ProofIf q = q0 then ∆(q) = tr(ϕ). A

ording to the remark above, if ϕ is a formula of WG-WTµ(resp. C-WTµ) then tr(ϕ) ∈MFwg(Σ, Q) (resp. tr(ϕ) ∈MFc(Σ, Q).If q = X is a variable, then ∆(q) = ∆(ψ(X)) where, Dϕ(X) = ψ(X). If ϕ is a formula of WG-WTµ (resp. C-WTµ) then, by de�nition, ψ(X) is also a formula of WG-WTµ (resp. C-WTµ).We use the remark above to 
on
lude. �Theorem 157 Given a formula ϕ, for every timed pro
ess P,
P � ϕ if and only if P ∈ L(Aϕ)Proof(=⇒) We show that if P � ϕ, then P ∈ L(Aϕ). For this we show the existen
e of a winningstrategy for the player Eve in G(P,Aϕ). Re
all that in G(P,Aϕ), the player Eve makesa 
hoi
e in positions of the form (p, ϕ1 ∨ϕ2, v) or (p, 〈g〉ψ, v) or (p, 〈a〉ψ, v). The 
hoi
eshould be done as follows:� In a position (p, ϕ1 ∨ ϕ2, v) he should 
hoose (p, ϕi, v) with i ∈ {1, 2} and

µsig((p, v), ϕ1 ∨ ϕ2) = µsig((p, v), ϕi).� In a position (p, 〈g〉ψ, v) he should 
hoose the (p, ψ, v′) with v′ ∈ v↑, v′ ∈ [[g]] and
µsig((p, v), 〈g〉ψ) = µsig((p, v′), ψ).� In a position (p, 〈a〉ψ, v) he should 
hoose the (p, ψ, v′) with µsig((p, v), 〈a〉ψ) =
µsig((p, v′), ψ) v′ = v[ha := 0], and p′ is su
h that there is p

g,a
−→ p′ and v ∈ [[g]].We show that su
h a strategy is winning for the player Eve. Indeed, assume that thereis a play (p1, ϕ1, v1)(p2, ϕ2, v2) . . . 
onsistent with the above strategy on whi
h some oddpriority p is the greatest priority appearing in�nitely often. This means that on this playwe in�nitely often meet the µ-variable Xl where l = (p − 1)/2. Let m be a step of theplay after whi
h no priority greater than p appears. In parti
ular it means that after

m there are no variables with indexes greater than l. By the signature de
rease lemma(see Lemma 138), the signatures of positions of the play after m never in
rease on the�rst l positions. They de
rease every time we meet Xl. But this is impossible as thelexi
ographi
 order on l-tuples of ordinals is well ordering. Hen
e, su
h a play 
an notexist, and the strategy we have de�ned is winning for player Adam.(⇐=) In this dire
tion of the proof, we show that if P ∈ L(Aϕ), then P � ϕ. We assumethat P ∈ L(Aϕ) and P 6� ϕ, then we exhibit a winning strategy for the player Adam in
G(P,Aϕ). If P 6� ϕ, the strategy for the player Adam is dual to the one of the player
Eve stated in the previous dire
tion. It works as follows:
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 121� In a position (p, ϕ1 ∧ ϕ2, v) he should 
hoose (p, ϕi, v) with i ∈ {1, 2} and
νsig((p, v), ϕ1 ∧ ϕ2) = νsig((p, v), ϕi).� In a position (p, [g]ψ, v) he should 
hoose the (p, ψ, v′) with v′ ∈ v↑, v′ ∈ [[g]] and
νsig((p, v), [g]ψ) = νsig((p, v′), ψ).� In a position (p, [a]ψ, v) he should 
hoose the (p, ψ, v′) with νsig((p, v), [a]ψ) =
νsig((p, v′), ψ) v′ = v[ha := 0], and p′ is su
h that there is p

g,a
−→ p′ and v ∈ [[g]].Using a similar argument as in the dire
tion (=⇒), we show that there is not a µ-variablewhi
h is in�nitely often regenerated in the game. Then, we get a 
ontradi
tion with that

P ∈ L(Aϕ).
�5.2.2 From Modal Automata to FormulasThis transformation is similar to the transformation in [Wal01℄ for the 
ase of the µ-
al
ulusand it uses ve
torial formulas (see [Bek84, AN01℄).De�nition 158 A system of equations of WTµ is a system:

X1
σ1= ϕ1(X1, · · · ,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn)where for every i ∈ {1, · · · , n}, σi is a �xpoint operator and ϕi is an WTµ formula that doesnot have a �xpoint sub formula.The solution of a system of n equations is a ve
tor of n formulas of WTµ de�ned byindu
tion on n as follows:

• The solution of a system made of a unique equation X1
σ1=ϕ1(X1) is the formula

σ1X.ϕ1(X1)

• The solution of a system of n equations:
X1

σ1= ϕ1(X1, · · · ,Xn−1,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn−1,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn−1,Xn)is the ve
tor (ψ1, · · · , ψn−1, σnXn.ϕn(ψ1, · · · , ψn−1,Xn)) where (ψ1, · · · , ψn−1) is thesolution of the system of n − 1 equations obtained by repla
ing Xn with the formula

σnXn.ϕn(X1, · · · ,Xn−1,Xn):
X1

σ1= ϕ1(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))

X2
σ2= ϕ2(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))...

Xn−1
σn−1
= ϕn−1(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))



122 Chapter 5. Centralised Controller Synthesis using C-WTµ Spe
ifi
ationThe use of system of equations do not add the expressive power of WTµ; indeed, everyformula ϕ of WTµ 
an be de�ned as the �rst 
omponent of the solution of the system ofequations in whi
h ea
h equation X σ
=ψ(X) 
orresponds to a sub formula σX.ψ(X) of ϕ andthe order on the equations depends on the dependen
y order between variables in ϕ.In what follows, we give the transformation of an automaton into an equivalent formula.The resulting formula is the 
omponent of a system of equations su
h that ea
h equation
orresponds to a unique state of the modal automaton. We use the parity indexes to de�nethe order between two equations.De�nition 159 Take an automaton

A = 〈Q,Σ, q0,∆A : Q→ F(Σ, Q),Acc ⊆ Qω〉and q1, · · · , qn an order over the states of A su
h that for i < j, we have rank(qi) ≥
rank(qj). If the initial state of A is qk a

ording to the order above, we de�ne the formula ϕAas the kth 
omponent of the solution of the following system of equations:

X1
σ1= ϕ1(X1, · · · ,Xn−1,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn−1,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn−1,Xn)

Xi is the variable asso
iated to qi and ϕi(X1, · · · ,Xn−1,Xn) is obtained from ∆(qi) by re-pla
ing ea
h state by the 
orresponding variable. We put σi = µ if rank(qi) is odd and σi = νif rank(qi) is even.The proof of the following theorem is similar to the proof of Theorem 157; it also usessignature de
rease lemma (see Lemma 138).Theorem 160 Given an automaton A, for every timed pro
ess P,
P ∈ L(A) if and only if P � ϕAThe following 
orollary is a 
onsequen
e of Lemma 156, Theorem 157 and, Theorem 160.Corollary 161 Every WG-WTµ formula 
an be translated into an equivalent WG-MA and
onversely. Every C-WTµ formula 
an be translated into an equivalent C-MA and 
onversely.In 
onsequen
e of Corollary 161 and the result in Theorem 160, we get the de
idabilityof the emptiness problem of C-MA whi
h is to 
he
k whether there exists a timed pro
esspro
ess P that satis�es a given C-MA.Theorem 162 There is de
ision pro
edure that 
he
ks whether a C-MA is empty. Moreover,if a C-MA is not empty, we 
an 
onstru
t one of its models.



5.3. Quotient for Automata 1235.3 Quotient for AutomataWe 
onsider WG-MA and we de�ne the quotient A/P of a WG-MA A over a timed pro
ess
P that satis�es the following property:

R×P � A if and only if R � A/P.We show that the quotient of a C-MA over a timed pro
ess is still a C-MA. Later inSe
tion 5.4, we use this quotient to provide a solution to 
ontroller synthesis problems.De�nition 163 Given a WG-MA
A = 〈Q,Σ, q0,∆ : Q→MF(Σ, Q),Acc ⊆ Qω〉and a timed pro
ess

P = 〈P ,Σ, p0,∆P 〉we 
onstru
t the WG-MA A/P.Firstly, we propose the division ϕ/p of a formula ϕ ∈ MFwg(Σ, Q) by a state p ∈ P . Let
M be the biggest 
onstant used in P. We assume that ϕ is M -re
tangular. The result of thedivision is a well guarded modal formula fromMFwg(Σ, Q× P) as stated below:

tt/p = tt�/p = �
q/p = (q, p)

(ϕ ∨ ψ)/p = (ϕ/p) ∨ (ψ/p)

(ϕ ∧ ψ)/p = (ϕ/p) ∧ (ψ/p)

([g]ϕ)/p = [g](ϕ/(p, g))

(〈g〉ϕ)/p = 〈g〉(ϕ/(p, g))

(〈a〉ϕ)/(p, g) = 〈a〉







∨

p
g,a
−→p′

(ϕ/p′)







([a]ϕ)/(p, g) = [a]







∧

p
g,a
−→p′

(ϕ/p′)





Given two dis
rete modal formulas ϕ and ψ, we de�ne (ϕ∨ψ)/(p, g) = ϕ/(p, g)∨ψ/(p, g)and (ϕ ∧ ψ)/(p, g) = ϕ/(p, g) ∧ ψ/(p, g).By 
onvention, a disjun
tion over an empty set is false, and a 
onjun
tion over an emptyset is true.Finally, we de�ne the quotient,
A/P = 〈Q× P ,Σ, (q0, p0),∆/ : Q× P →MF(Σ, Q),Acc ⊆ Qω〉where ∆/(q, p) = ∆(q)/p.
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ifi
ationLemma 164 Let ϕ ∈ MF c(Σ, S) and let p ∈ P be a state of a timed pro
ess. The quotient
ϕ/p is a formula ofMFc(Σ, S).ProofThe proof uses the indu
tion prin
iple, on the size of the formula. All the 
ases but when ϕ isin one of the forms [g]ψ or 〈g〉ψ are obvious.
• if ϕ = 〈g〉ψ, then ψ is a boolean 
ombination of the form 〈a1〉ψ1 ⊲⊳1 . . . ⊲⊳n−1 〈an〉ψnwhere ⊲⊳i∈ {∨,∧} and all ψi are inMFc(Σ, Q).Now we show that ϕ/p belongs to MFc(Σ, Q × P). Obviously, ϕ/p = 〈g〉((〈a1〉ψ1 ⊲⊳1

. . . ⊲⊳n−1 〈an〉ψn)/(p, g)) whi
h is equal to 〈g〉((〈a1〉ψ1)/(p, g) ⊲⊳1 . . . ⊲⊳n−1

(〈an〉ψn)/(p, g)). We show that ea
h member of the 
ombination has the appro-priate form. By de�nition (〈ai〉ψi)/(p, g) = 〈ai〉(
∨

p
g,a
−→p′

(ψi/p
′)). We remark that

(〈ai〉ψi)/(p, g) may be equal to 〈ai〉� if there is no p′ su
h that p
g,a
−→ p′.As by indu
tion hypothesis ψi/p

′ ∈ MF c(Σ, S), it follows that ϕ/p belongs to
MF c(Σ, Q × P) as ea
h formula parti
ipating in the boolean 
ombination after 〈g〉is the of form 〈a〉ψ.

• if ϕ = [g]ψ, then ψ is a boolean 
ombination of the form 〈a1〉ψ1 ⊲⊳1 . . . ⊲⊳n−1 〈an〉ψn ⊲⊳
[an+1]ψn+1 ⊲⊳n+1 . . . ⊲⊳n+m−1 [an+m]ψn+m where ⊲⊳i∈ {∨,∧} and ψi is in MF c(Σ, Q)with (i = 1..n +m).Now we show that ϕ/p belongs to MFc(Σ, Q × P). Obviously, ϕ/p =
[g]((〈a1〉ψ1)/(p, g) ⊲⊳1 . . . ⊲⊳n−1 (〈an〉ψn)/(p, g) ⊲⊳n ([an+1]ψn+1)/(p, g) ⊲⊳n+1

. . . ⊲⊳n+m−1 ([an+m]ψn+m)/(p, g)). We need to show that ea
h member of the 
om-bination has the appropriate form. We 
onsider the following two 
ases:� By de�nition (〈ai〉ψi)/(p, g) = 〈ai〉(
∨

p
g,a
−→p′

(ψi/p
′)). We remark that (〈ai〉ψi)/(p, g)may be equal to 〈ai〉� if there is no p′ su
h that p

g,a
−→ p′.� By de�nition ([ai]ψi)/(p, g) = [ai](

∧

p
g,a
−→p′

(ψi/p
′)). We remark that ([ai]ψi)/(p, g)may be equal to [ai]tt if there is no p′ su
h that p

g,a
−→ p′.As by indu
tion hypothesis ψi/p′ ∈MFc(Σ, S), it follows from the two 
ases just abovethat ϕ/p belongs toMF c(Σ, Q× P).

�In 
onsequen
e of Lemma 164, we get the following 
orollary.Corollary 165 The quotient of a C-MA by a timed pro
ess is a C-MA.Now, we show the main property of the quotient operator.Theorem 166 Let P be a timed pro
ess and A be a modal automaton, both over an alphabet
Σ. The modal automaton A/P is su
h that for every timed pro
ess R over Σ :

P ×R � A if and only if R � A/P
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onsider G(R × P,A) = 〈NE , NA, T,Acc〉 and G(R,A/P) = 〈NE ,NA, T ,Acc ′〉. Wesay that a position n = ((s, p), ϕ, v) of the game G(R × P,A) is relevant if ϕ ∈ MF(Σ, Q).We write n→∗ n
′ if n and n′ are positions and there is a path from n to n′.Let us de�ne the map f from the positions of G(R×P,A) to those of G(R,A/P). To a po-sition ((s, p), ϕ, v) we asso
iate (s, ϕ/p, v) with one ex
eption when ϕ starts with modality 〈a〉or [a], for some a
tion a. In this later 
ase we asso
iate to ((s, p), ϕ, v) the node (s, ϕ/(p, g), v)where g is the unique atomi
 
onstraint su
h that v � g.Let us take a pair of positions n and f(n). We will show how a move of a player from n tosome n′ 
an be mimi
ked by moves of the same player from f(n) to f(n′). Similarly, we willshow that a sequen
e of moves from f(n) to some f(n′) 
an be mimi
ked by a move from nto n′.The proof is easy for all but positions with formulas starting with an a
tion modality. Letus 
onsider several 
ases:

• Suppose n = ((s, p), 〈a〉ϕ, v). Then f(n) = (s, (〈a〉ϕ)/(p, g), v) where g is the uniqueatomi
 
onstraint su
h that v � g. From n Eve 
an go to a position ((s′, p′), ϕ, v[ha := 0]);where s gs,a
−→ s′ and p gp ,a

−→ p′ with v � gs and v � gp. Observe that gp = g as gp is anatomi
 
onstraint. By de�nition
(〈a〉ϕ)/(p, g) = 〈a〉







∨

p
g,a
−→p1

(ϕ/p1)





This means that from f(n) Eve 
an go to (s′,
∨

p
g,a
−→p′

(ϕ/p′), v[ha := 0]). By 
hoosingthe disjun
t with p′ she 
an get to f(n′) = (s′, ϕ/p′, v[ha := 0]).
• Let us take n and n′ as above and show that every 
hoi
e of Eve from f(n) 
an bemimi
ked from n. By this we mean that after making two moves from f(n) Eve has tohit a position of the form f(n′) for some n′ and we will show that Eve 
an rea
h n′ from
n.As f(n) = (s, (〈a〉ϕ)/(p, g), v), Eve 
an move to






s′,

∨

p
g,a
−→p1

(ϕ/p1), v[ha := 0]





where s
gs,a
−→ s′ and v � gs. Then Eve 
an 
hose one of the disjun
ts and get to

(s′, ϕ/p′, v[ha := 0]). Clearly this node is of the form f(n′) for n′ = ((s′, p′), ϕ, v[ha := 0]).Sin
e v � g we have that from n = ((s, p), 〈a〉ϕ, v) Eve 
an get to n′ = ((s′, p′, ϕ, v[ha :=
0]) as required.We remark that the 
ase when n = ((s, p), [a]ϕ, v) is dual to the 
ase above. We have shownthat a move in G(P × R,A) 
an be mimi
ked by a unique sequen
e of moves in G(R,A/P)and re
ipro
ally. We have also shown that the set of states of A o

urring in a move of

G(R × P,A) is the same as the set of states of A o

urring in G(R,A/P). As the winning
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ondition in G(R × P,A) and G(R,A/P) depends on states of A en
ountered along a play,we get that there a play is winning for some in G(P ×R,A) if and only if the mimi
ked playis winning for the same player in G(R,A/P). Then we get that A a

epts R×P if and onlyif A/P a

epts R. �5.4 Centralised Controller Synthesis for C-WTµWe use the quotient operation for two 
ontroller synthesis problems. In Theorem 162, we haveestablished the de
idability of the emptiness of C-MA. Moreover we are able to 
onstru
tmodels for a non empty C-MA. We use that result to provide solutions to the 
entralised
ontroller synthesis problem and ∆-dense-time 
ontrol problem. Controllers will be modelsof quotients of spe
i�
ations over plants. Controllers will also satisfy additional properties.An additional property is for example a 
ontrol 
ondition (hypothesis) that we des
ribe with
C-MA.5.4.1 Centralised Controller SynthesisWe assume that Σ, the set of events is partitioned into the set Σu of un
ontrollable eventsand, the set Σc of 
ontrollable events; in the other words Σ = Σu ∪Σc with Σu ∩ Σc = ∅.The 
entralized 
ontrol problem(CCP) we 
onsider is the following:CCP: Given Σ = Σu ∪Σc, a timed pro
ess P and a C-MA over Σ, does there exists a timedpro
ess R over Σ, satisfying the 
ontrol 
ondition (CC), su
h that P ×R � A.Control 
ondition (CC): R does not forbid o

urren
es of un
ontrollable events.The 
ondition (CC) needs some attention and a 
onstru
tion. We need to des
ribe aproperty that prevents R from restri
ting the o

urren
e of an un
ontrollable event at anymoment of time; we also need to des
ribe a property that makes it possible for R to forbidthe o

urren
e of a 
ontrollable event in some time instan
es.We 
laim that these two properties for R 
an be des
ribed with the C-modal automaton Bde�ned as follows:

B = 〈{q0},Σ, q0,∆B : Q→MFc(Σ, Q),Acc = (q0)ω〉where,
∆B(q0) =

(

∧

a∈Σu

[tt ]〈a〉q0

)

∧

(

∧

a∈Σc

[tt ][a]q0

)Proposition 167 R � B if and only if R satis�es the 
ontrol 
ondition (CC) above.ProofLet R = 〈S,Σ, s0,∆R〉 be a timed pro
ess su
h that R � B; then there is a winning strategyfor the player Eve in the a

eptan
e game G(R,B). We will show that in every state of R any
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ontrollable event 
an happen at any time and some 
ontrollable events may not happenat some time instan
e.A play in G(R,B) starts in (s0, q0, v0) whi
h is a position for Adam, but a winning positionfor Eve. Assume that a play is in a winning position (s, q0, v). There is two 
ases:1. Adam moves to (s,
∧

a∈Σu
([tt ]〈a〉q0), v) whi
h is position for Adam, then he 
an moveto (s, [tt ]〈a〉q0, v) for any a ∈ Σu and then move to (s, 〈a〉q0, v + t) for any t ∈ R+ as

v+ t ∈ [[tt ]]. The later position is a position for Eve. As there is a winning strategy fromthat later position, the player Eve 
an move to (s′, q0, v+t[ha := 0]) meaning that, thereis a transition s g,a
−→ s′ with v + t ∈ [[g]]. Obviously, R does not prevent the o

urren
eof the event a at the time v+ t for any time t ∈ R+ and any event a ∈ Au. The position

(s′, q0, v + t[ha := 0]) is a position for Adam but also a winning position for Eve fromwhi
h we 
an repeat the argument.2. Adam moves to (s,
∧

a∈Σc
([tt ][a]q0), v) whi
h is a position of Adam, then he 
an moveto (s, [tt ][a]q0, v) for any a ∈ Σu and then moves to (s, [a]q0, v + t) for any t ∈ R+ as

v + t ∈ [[tt ]]. The later position is a position for Adam and there are two 
ases:(a) There is no move from that later position meaning that there is not transition
s

g,a
−→ s′ with v + t ∈ [[g]]. Obviously, the 
ontroller prevents the o

urren
e of theevent a at the time v + t.(b) There is a move from that later position to some position (s′, q0, v + t[ha := 0]),meaning that R does not prevent the event a at the time 
ontext v+t. The position

(s′, q0, v + t[ha := 0]) is a position for Adam but also a winning position for Evefrom whi
h we 
an apply a similar argument.We have shown that a state s of R that o

urs in a winning position in the a

eptan
e gamesatis�es the 
ondition (CC). Be
ause from a winning position we always move to anotherwinning position 
ontaining s or a su

essor of s, we get that every state of R satis�es the
ondition (CC). �A solution the the 
ontroller synthesis problem is given by the following resultTheorem 168
R � (A/P) ∧ B if and only if { P ×R � A

R � BProof
P × R � A if and only if (see Theorem 166) R � A/P. From Proposition 146, R � B and
R � A/P if and only if R � (A/P) ∧ B �Corollary 169 The CCP problem is de
idable.5.4.2 The ∆-Dense-Time Control ProblemThe 
entralised ∆-dense-time 
ontrol amounts to �nding a 
ontroller (also 
alled a ∆-
ontroller) for a system su
h that at least ∆ ≥ 0 time units elapse between two 
onse
utive
ontrollable events. The ∆-
ontrol 
ondition is the following.
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∆ 
ontrol 
ondition (∆-CC) The intervals between any two 
ontrollable events are greateror equal to ∆.Our solution to the 
entralised ∆-dense-time 
ontrol is to build an automaton, 
alled the
∆-automata. A ∆-
ontroller should also satisfy the 
ontrol 
ondition (CC) above.Let B∆ be the C-MA de�ned as follows:

B∆ = 〈Q,Σ, q0, δ∆ : Q→MFc(Σ, Q),Acc ⊆ Qω〉where
• Q = {q0}∪

⋃

a∈Σc
{qa} is the set of states. The state qa is the one asso
iated to the event

a.
• q0 is the initial state and it is not asso
iated to any event.
• The transition relation is de�ned by:

δ∆(q0) = [tt ]
∧

u∈Σu

〈u〉q0 ∧ [tt ]
∧

a∈Σc

[a]qaand for every a the transition from the 
orresponding state qa is de�ned by:
δ∆(qa) = [tt ]

∧

u∈Σu

〈u〉qa ∧





(

[ha < ∆]
∧

b∈Σc

[b]�) ∨ ([ha ≥ ∆]
∧

b∈Σc

[b]qb
)





• Acc is the parity 
ondition de�ned with a fun
tion rank whi
h assigns the value 0 toevery state in Q.Let us 
omment the modal automaton B∆. The automaton B∆ has |Σc| + 1 states. Theinitial state q0 des
ribes what happens in the 
ontroller when no 
ontrollable event has o
-
urred. At this step, any un
ontrollable event may happen whatever is the time instan
e andany 
ontrollable event may happen at any time 
ontext; this is be
ause no 
ontrollable eventhas o

urred. The other states, one per 
ontrollable event, enable to save the information onthe last 
ontrollable event that has o

urred. At a state qa, we assume that a is the last eventthat has o

urred. At qa, an o

urren
e of an un
ontrollable event, u 
an not be preventedwhatever is the timing 
ontext. Additionally, a 
ontrollable event b may o

ur if the amountof time elapsed sin
e the o

urren
e of a (re
all that a is the last event that has o

urred),measured with the 
lo
k ha, is greater or equal to ∆.We state that a timed pro
ess satisfying B∆ also satis�es the 
ondition ∆−(CC). Theproof of this proposition is similar to the proof of Proposition 167.Proposition 170 For any timed pro
essR,R ∈ L(B∆) if and only ifR satis�es the 
ondition
∆−(CC).In 
orollary to Theorem 168, we get the de
idability of the ∆-dense-time 
ontrol.Corollary 171 The ∆-dense-time 
ontrol is de
idable; moreover, we 
an build a ∆-
ontroller.



5.5. Con
lusion 1295.5 Con
lusionIn this 
hapter we have 
onsidered two 
ontroller synthesis problems for plants des
ribed bytimed pro
esses and spe
i�
ations des
ribed by C-WTµ: the 
entralised 
ontroller synthesisproblem and the ∆-dense-time 
ontrol problem. As a plant is a rea
tive system, we haveassumed that events 
an be 
ontrollable (event 
ompleted by the plant) or not (events 
om-pleted by the environment of the plant) and, only the o

urren
es of 
ontrollable events 
anbe disabled by 
ontrollers.We have shown that these two problems are de
idable and, 
ontroller 
an be 
onstru
ted whenplants are 
ontrollable.
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Con
lusion and Perspe
tivesThe main goal of this thesis was to provide methods to synthesise 
ontrollers for a 
lass of real-time systems and real-time 
ontrol obje
tives. In re
ent years a framework for the supervisory
ontrol of untimed rea
tive systems have been developed, in parti
ular the framework that usesKripke stru
ture models with the standard µ-
al
ulus. We wanted to use a 
lass of real-timemodels for systems that 
ould provide a framework for the supervisory 
ontrol of real-timesystems and if possible, reuse te
hniques proposed for the setting of untimed rea
tive systems.Relying on some theoreti
al results on event-re
ording automata in
luding 
losure underboolean operations and 
losure under 
omplementation, we have 
hosen to work with thesemodels. To des
ribe real-time 
ontrol obje
tives, we have 
hosen Event-Re
ording Logi
 (ERL)be
ause it is a de
idable timed extension of the µ-
al
ulus and there are signi�
ant results forthe 
ontrol of untimed rea
tive systems with the µ-
al
ulus.Following our intuitions, we were interested in the similarities between untimed models andour models. These similarities 
on
ern some basi
 problems in
luding the rea
hability analysis,the model-
he
king, the satis�ability, the disjun
tive normal form theorem, the existen
e ofdeterministi
 models for spe
i�
ations. These basi
 problems have been fundamental for thesolution to the supervisory 
ontrol of untimed systems.ERL is too weak Our intuitions were good as, we had provided new de
ision pro
eduresfor the model-
he
king and the satis�ability problems of ERL. These pro
edures are newand interesting in the way that they reuse de
ision pro
edures for the model-
he
king inthe setting of the µ-
al
ulus with Kripke stru
tures. A great bene�t of the similarity of thetwo aforementioned problems, is that they have allowed us to provide a disjun
tive normalform theorem for ERL. We had at that time, some useful theoreti
al ingredients to apply themethods Arnold et al. [AVW03, ABPV05, AW07℄ for the supervisory 
ontrol. Unfortunately,we have dis
overed that ERL is not expressive enough to des
ribe interesting properties forthe 
ontrollers like �An un
ontrollable event 
an be 
ompleted at every time�.Over
ome the weakness of ERL: the new logi
 WTµ We have introdu
ed a new lan-guage that we have 
alled WTµ. The logi
 WTµ is a weak real-time extension of the standard
µ-
al
ulus. Compared to ERL, WTµ 
onsiders modality indexed with timing 
onstraints andmodalities indexed with events. We have shown that WTµ is stri
tly more expressive thanERL. We have hoped that the modi�
ation of the 
ontents of modalities will be without ad-verse 
onsequen
es. For the model-
he
king problem of WTµ, we have provided a de
isionpro
edure similar to a pro
edure for the model-
he
king problem of the (untimed) µ-
al
ulus.We have presented a fragment for WTµ 
alled WTµ for 
ontrol (C-WTµ). We have provided131



132 Con
lusion and Perspe
tivesa de
ision pro
edure for the satis�ability problem of C-WTµ; this pro
edure does not assumea limit on the 
onstants of the models, and it shows how to 
onstru
t a witness model for asatis�able formula.Centralised Control Result Relying on satis�ability results on C-WTµ, we have proposeda quotient-based approa
h to a 
entralised 
ontroller synthesis problem and a 
entralised ∆-dense time 
ontroller synthesis problem for the 
lass of real-time systems we have 
onsidered.Perspe
tivesThis thesis makes a progress in the domain of the 
ontroller synthesis of real-time systems.Presented results do not 
over the 
lass of real-time systems that 
an be modelled with timedautomata, but they 
an be useful for the 
lass of systems that we have 
onsidered. We thinkthat our 
ontribution 
an be useful for some parts of automated 
ars systems 1 and proto
ols(for instan
e Philips audio proto
ol). The approa
h that has been proposed in this thesisshould be followed to provide more general results in
luding the de
idability of the existen
eof deterministi
 models for C-WTµ, the de
idability of the satis�ability problem of WTµ, andthe de
entralised 
ontroller synthesis with WTµ. We think that, if one assumes a bound onthe 
onstants used by the 
ontrollers, it will not be very di�
ult to provide a solution to thede
entralised 
ontroller synthesis with WTµ (and WG-WTµ). Works in that dire
tion mayfollow some results for the setting of the µ-
al
ulus [AW07℄. We also hope that works in theaforementioned dire
tions 
an enable a better understanding of real-time models in
ludingtimed automata models, and the logi
 Lν [BCL05℄.

1See for example the European Proje
t CityMobil at http://www.
itymobil-proje
t.eu



Bibliography[ABPV05℄ André Arnold, Xavier Briand, Gérald Point, and Aymeri
 Vin
ent. A generi
approa
h to the 
ontrol of dis
rete event systems. In 44th IEEE Conferen
eon De
ision and Control 2005 and 2005 European Control Conferen
e (CDC-ECC'05), pages 1�5. IEEE Computer So
iety, de
ember 2005.[ACD+92℄ Rajeev Alur, Costas Cour
oubetis, David L. Dill, Ni
olas Halbwa
hs, and HowardWong-Toi. An implementation of three algorithms for timing veri�
ation basedon automata emptiness. In Pro
eedings of the 13th Symposium on Real-TimeSystems(RTS'92:), pages 157�166. IEEE Computer So
iety Press, de
ember 1992.[ACD93℄ Rajeev Alur, Costas Cour
oubetis, and David Dill. Model-
he
king in dense real-time. Information and Computation, 104(1):2�34, 1993.[ACH+92℄ Rajeev Alur, Costas Cour
oubetis, Ni
olas Halbwa
hs, David L. Dill, and HowardWong-Toi. Minimization of timed transition systems. In Pro
eedings of the ThirdInternational Conferen
e on Con
urren
y Theory (CONCUR '92), pages 340�354,London, UK, 1992. Springer-Verlag.[AD89℄ André Arnold and Anne Di
ky. An algebrai
 
hara
terization of transition systemequivalen
es. Information and Computation, 82(2):198�229, 1989.[AD94℄ Rajeev Alur and David L. Dill. A theory of timed automata. Theoreti
al ComputerS
ien
e, 126(2):183�235, 1994.[AFH96℄ Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The bene�ts of relaxingpun
tuality. Journal of the ACM, 43(1):116�146, 1996.[AFH99℄ Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-
lo
k automata: Adeterminizable 
lass of timed automata. Theoreti
al Computer S
ien
e, 211(1-2):253�273, 1999.[AH93℄ Rajeev Alur and Thomas A. Henzinger. Real-time logi
s: 
omplexity and expres-siveness. Information and Computation, 104:390�401, 1993.[AH94℄ Rajeev Alur and Thomas A. Henzinger. A really temporal logi
. Journal of theACM, 41(1):181�203, 1994.[AMP95℄ Eugene Asarin, Oded Maler, and Amir Pnueli. Symboli
 
ontroller synthesis fordis
rete and timed systems. In Hybrid Systems II, Le
ture Notes in ComputerS
ien
e, pages 1�20, London, UK, 1995. Springer-Verlag.133



134 BIBLIOGRAPHY[AN01℄ André Arnold and Damian Niwi«ski. Rudiments of µ-
al
ulus, volume 146 ofStudies in Logi
 and the Foundations of Mathemati
s. North-Holland, 2001.[AVW03℄ André Arnold, Aymeri
 Vin
ent, and Igor Walukiewi
z. Games for synthesis of
ontrollers with partial observation. Theoreti
al Computer S
ien
e, 303(1):7�34,2003.[AW07℄ André Arnold and Igor Walukiewi
z. Nondeterministi
 
ontrollers of nondeter-ministi
 pro
esses. In Logi
 and Automata, Texts in Logi
 and Games, pages29�52. Amsterdam University Press, 2007.[B�62℄ J. R. Bü
hi. On a de
ision method in restri
ted se
ond-order arithmeti
. In Pro
.1960 Int. Congr. for Logi
, Methodology, and Philosophy of S
ien
e, pages 1�1.Stanford Univ. Press, 1962.[BBC06℄ Patri
ia Bouyer, Laura Bozzelli, and Fabri
e Chevalier. Controller synthesis forMTL spe
i�
ations. In Pro
eedings of the 17th International Conferen
e on Con-
urren
y Theory (CONCUR'06), volume 4137 of Le
ture Notes in Computer S
i-en
e, pages 450�464. Springer-Verlag, Bonn, Germany, august 2006.[BBF+01℄ Béatri
e Bérard, Mi
hel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit,Laure Petru

i, and Philippe S
hnoebelen. Systems and Software Veri�
ation.Model-Che
king Te
hniques and Tools. Springer-Verlag, 2001.[BC96℄ Girish Bhat and Ran
e Cleaveland. E�
ient lo
al model 
he
king for fragmentsof the modal 
al
ulus. In Pro
eedings of the 2nd International Conferen
e onTools and Algorithms for the Constru
tion and Analysis of Systems (TACAS'96),volume 1055 of Le
ture Notes in Computer S
ien
e, pages 107�126. Springer-Verlag, 1996.[BC05℄ Patri
ia Bouyer and Fabri
e Chevalier. On 
on
iseness of extensions of timedautomata. Journal of Automata, Languages and Combinatori
s, 10(4):393�405,2005.[BCL05℄ Patri
ia Bouyer, Fran
k Cassez, and François Laroussinie. Modal logi
s for timed
ontrol. In Pro
eedings of the 16th International Conferen
e on Con
urren
y The-ory (CONCUR'05), volume 3653 of Le
ture Notes in Computer S
ien
e, pages81�94, San Fran
is
o, CA, USA, august 2005. Springer.[BDFP04℄ Patri
ia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Up-datable timed automata. Theoreti
al Computer S
ien
e, 321(2-3):291�345, august2004.[BDGP98℄ Béatri
e Bérard, Volker Diekert, Paul Gastin, and Antoine Petit. Chara
terizationof the expressive power of silent transitions in timed automata. FundamentaInformati
ae, 36(2):145�182, November 1998.[BDL04℄ Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal.In Formal Methods for the Design of Real-Time Systems: 4th International S
hoolon Formal Methods for the Design of Computer, Communi
ation, and SoftwareSystems (SFM-RT '04), volume 3185 of Le
ture Notes in Computer S
ien
e, pages200�236. Springer�Verlag, September 2004.



BIBLIOGRAPHY 135[BDM+98℄ Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis,and Sergio Yovine. Kronos: A model-
he
king tool for real-time systems (tool-presentation for ftrtft '98). In Pro
eedings of the 5th International Symposiumon Formal Te
hniques in Real-Time and Fault-Tolerant Systems (FTRTFT'98),pages 298�302, London, UK, 1998. Springer-Verlag.[BDMP03℄ Patri
ia Bouyer, Deepak D'Souza, P. Madhusudan, and Antoine Petit. Timed 
on-trol with partial observability. In Warren A. Hunt, Jr and Fabio Somenzi, editors,Pro
eedings of the 15th International Conferen
e on Computer Aided Veri�
ation(CAV'03), volume 2725 of Le
ture Notes in Computer S
ien
e, pages 180�192,Boulder, Colorado, USA, july 2003. Springer.[Bek84℄ Hans Beki
. De�nable operation in general algebras, and the theory of automataand �ow
harts. In Programming Languages and Their De�nition - Hans Beki
,pages 30�55, London, UK, 1984. Springer-Verlag.[BK06℄ Samik Basu and Ratnesh Kumar. Quotient-based 
ontrol synthesis for non-deterministi
 plants with µ-
al
ulus spe
i�
ations. In Pro
eedings of the 45thConferen
e on De
ision and Control, 2006.[BL05℄ Dietmar Berwanger and Gia
omo Lenzi. The variable hierar
hy of the µ-
al
ulus isstri
t. In Pro
eedings of the 22nd Symposium on Theoreti
al Aspe
ts of ComputerS
ien
e (STACS'05), volume 3404 of LNCS, pages 97�109. Springer-Verlag, 2005.[BLL+96℄ Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and WangYi. Uppaal�a tool suite for automati
 veri�
ation of real-time systems. In Pro-
eedings of the DIMACS/SYCON workshop on Hybrid systems III : veri�
ationand 
ontrol, pages 232�243, Se
au
us, NJ, USA, 1996. Springer-Verlag New York,In
.[BLR05℄ Patri
ia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diagonal 
on-straints in timed automata: Forward analysis of timed systems. In Paul Petterssonand Wang Yi, editors, Pro
eedings of the 3rd International Conferen
e on FormalModelling and Analysis of Timed Systems (FORMATS'05), volume 3829 of Le
-ture Notes in Computer S
ien
e, pages 112�126, Uppsala, Sweden, november 2005.Springer.[Bou03℄ Patri
ia Bouyer. Untameable timed automata! In Helmut Alt and Mi
hel Habib,editors, Pro
eedings of the 20th Annual Symposium on Theoreti
al Aspe
ts of Com-puter S
ien
e (STACS'03), volume 2607 of Le
ture Notes in Computer S
ien
e,pages 620�631, Berlin, Germany, february 2003. Springer.[Bra98℄ J. C. Brad�eld. The modal µ-
al
ulus alternation hierar
hy is stri
t. Theoreti
alComputer S
ien
e, 195(2):133�153, 1998.[BTY97℄ Ahmed Bouajjani, Stavros Tripakis, and Sergio Yovine. On-the-�y symboli
 model
he
king for real-time systems. In Pro
eedings of the 18th IEEE Real-Time Sys-tems Symposium (RTSS '97), pages 232�243. IEEE Computer So
iety, 1997.



136 BIBLIOGRAPHY[BY04℄ Johan Bengtsson and Wang Yi. Timed Automata: Semanti
s, Algorithm and tools,pages 87�124. Le
ture Notes in Computer S
ien
e. Springer Berlin/Hidelberg,2004.[Cas87℄ Ilaria Castellani. Bisimulations and abstra
tion homomorphisms. Journal of Com-puter and System S
ien
es, 34(2/3):210�235, 1987.[CCG00℄ Sérgio Campos, Edmund M. Clarke, and Orna Grumberg. Sele
tive quantitativeanalysis and interval model 
he
king: Verifying di�erent fa
ets of a system. FormalMethods in System Design, 17(2):163�192, 2000.[CCG+02℄ Alessandro Cimatti, Edmund M. Clarke, Enri
o Giun
higlia, Fausto Giun
higlia,Mar
o Pistore, Mar
o Roveri, Roberto Sebastiani, and Armando Ta

hella. Nusmv2: An opensour
e tool for symboli
 model 
he
king. In Pro
eedings of the 14thInternational Conferen
e on Computer Aided Veri�
ation(CAV '02), pages 359�364, London, UK, 2002. Springer-Verlag.[CE82℄ Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn
hronizationskeletons using bran
hing-time temporal logi
. In Logi
 of Programs, Workshop,pages 52�71, London, UK, 1982. Springer-Verlag.[Cer93℄ Karlis Cerans. De
idability of bisimulation equivalen
es for parallel timer pro-
esses. In Pro
eedings of the 4th International Workshop on Computer AidedVeri�
ation (CAV '92), pages 302�315, London, UK, 1993. Springer-Verlag.[CGP99℄ Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model 
he
king. MITPress, Cambridge, MA, USA, 1999.[CPHP87℄ P. Caspi, D. Pilaud, N. Halbwa
hs, and J. A. Plai
e. Lustre: a de
larative languagefor real-time programming. In Pro
eedings of the 14th ACM SIGACT-SIGPLANsymposium on Prin
iples of Programming Languages (POPL'87), pages 178�188,New York, NY, USA, 1987. ACM.[Dil90℄ David L. Dill. Timing assumptions and veri�
ation of �nite-state 
on
urrentsystems. In Pro
eedings of the international workshop on Automati
 veri�
a-tion methods for �nite state systems, pages 197�212, New York, NY, USA, 1990.Springer-Verlag New York, In
.[DM02℄ Deepak D'Souza and P. Madhusudan. Timed 
ontrol synthesis for external spe
-i�
ations. In Pro
eedings of the 19th Annual Symposium on Theoreti
al Aspe
tsof Computer S
ien
e (STACS '02), pages 571�582, London, UK, 2002. Springer-Verlag.[EH83℄ E. Allen Emerson and Joseph Y. Halpern. "sometimes" and "not never" revisited:on bran
hing versus linear time (preliminary report). In Pro
eedings of the 10thACM SIGACT-SIGPLAN symposium on Prin
iples of programming languages(POPL '83:), pages 127�140, New York, NY, USA, 1983. ACM.[EJ91℄ E. Allen Emerson and Charanjit S. Jutla. Tree automata, µ-
al
ulus and determi-na
y. In Pro
eedings of the 32nd annual symposium on Foundations of 
omputers
ien
e (SFCS '91), pages 368�377, Washington, DC, USA, 1991. IEEE ComputerSo
iety.



BIBLIOGRAPHY 137[Eme85℄ E. Allen Emerson. Automata, tableaux and temporal logi
s (extended abstra
t).In Pro
eedings of the Conferen
e on Logi
 of Programs, pages 79�88, London, UK,1985. Springer-Verlag.[Eme90℄ E. Allen Emerson. Temporal and modal logi
, volume B: formal models and se-manti
s, pages 995�1072. MIT Press, Cambridge, MA, USA, 1990.[Eme97℄ E. Allen Emerson. Model 
he
king and the mu-
al
ulus. In DIMACS Series inDis
rete Mathemati
s, pages 185�214. Ameri
an Mathemati
al So
iety, 1997.[EMSS91℄ E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla, and Jai Srinivasan. Quan-titative temporal reasoning. In Pro
eedings of the 2nd International Workshopon Computer Aided Veri�
ation (CAV '90), pages 136�145, London, UK, 1991.Springer-Verlag.[Fle02℄ Emmanuel Fleury. Les automates temporisés ave
 mises à jour. Thèse de do
torat,Laboratoire Spé
i�
ation et Véri�
ation, ENS Ca
han, Fran
e, De
ember 2002.[Flo62℄ Robert W. Floyd. Algorithm 97: Shortest path. Communi
ations of the ACM,5(6):345, 1962.[Fre05℄ Goran Frehse. Phaver: Algorithmi
 veri�
ation of hybrid systems past hyte
h. InPro
eedings of the 8th International Workshop Hybrid Systems : Computation andControl (HSCC'05), pages 258�273, 2005.[Fre08℄ Goran Frehse. Phaver: algorithmi
 veri�
ation of hybrid systems past hyte
h.International Journal on Software Tools for Te
hnology Transfer, 10(3):263�279,2008.[Gen34℄ Gerhard Gentzen. Untersu
hungen über das logis
he s
hlieÿen i. Mathematis
heZeits
hrift, 39(1)(39):176�210, 1934.[GH82℄ Yuri Gurevi
h and Leo Harrington. Trees, automata, and games. In Pro
eedingsof the fourteenth annual ACM symposium on Theory of 
omputing (STOC '82),pages 60�65, New York, NY, USA, 1982. ACM.[GHKK05℄ Hermann Gruber, Markus Holzer, Astrid Kiehn, and Barbara König. On timedautomata with dis
rete time - stru
tural and language theoreti
al 
hara
terization.In Developments in Language Theory (DLT '05), pages 272�283, 2005.[GM96℄ Giuseppe De Gia
omo and Fabio Massa

i. Tableaux and algorithms for propo-sitional dynami
 logi
 with 
onverse. In Pro
eedings of the 13th InternationalConferen
e on Automated Dedu
tion (CADE-13), volume 1104 of Le
ture notesin arti�
ial intelligen
e (LNAI), pages 613�628. Springer, 1996.[Gor99℄ Rajeev Gore. Tableau methods for modal and temporal logi
s, pages 297�398.Springer, 1999.[GV04℄ Alain Gri�ault and Aymeri
 Vin
ent. The me
 5 model-
he
ker. In Pro
eedingsof the 16th International Conferen
e on Computer Aided Veri�
ation(CAV'04),volume 3114 of Le
ture Notes in Computer S
ien
e, pages 488�491. Springer, july2004.



138 BIBLIOGRAPHY[GV08℄ Orna Grumberg and Helmut Veith, editors. 25 Years of Model Che
king - History,A
hievements, Perspe
tives, volume 5000 of Le
ture Notes in Computer S
ien
e.Springer, 2008.[Hen96℄ Thomas A. Henzinger. The theory of hybrid automata. In Pro
eedings of the11th Annual IEEE Symposium on Logi
 in Computer S
ien
e (LICS,96), pages278�292, Washington, DC, USA, 1996. IEEE Computer So
iety.[HHWT97℄ Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
he
ker for hybrid systems. International Journal on Software Tools for Te
hnol-ogy Transfer, 1(1�2):110�122, 1997.[HLY91℄ Uno Holmer, Kim Larsen, and Wang Yi. De
iding properties of regular real timedpro
esses. In Pro
eedings of the 3th International Conferen
e on Computer AidedVeri�
ation (CAV '91), volume 575 of Le
ture Notes in Computer S
ien
e, pages432�442. Springer-Verlag, 1991.[HM80℄ Matthew Hennessy and Robin Milner. On observing nondeterminism and 
on
ur-ren
y. In Pro
eedings of the 7th International Colloquium on Automata, Languagesand Programming (ICALP'80), pages 299�309, London, UK, 1980. Springer-Verlag.[HMP92℄ Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.In Pro
eedings of the Real-Time: Theory in Pra
ti
e, REX Workshop, pages 226�251, London, UK, 1992. Springer-Verlag.[HNSY94℄ Thomas A. Henzinger, Xavier Ni
ollin, Joseph Sifakis, and Sergio Yovine. Sym-boli
 model 
he
king for real-time systems. Information and Computation,111(2):193�244, 1994.[Hol97℄ Gerard J. Holzmann. The model 
he
ker spin. IEEE IEEE Transa
tions onSoftware Engineering, 23(5):279�295, 1997.[HP85℄ David Harel and Amir Pnueli. On the development of rea
tive systems, pages477�498. Springer-Verlag New York, In
., New York, NY, USA, 1985.[HR04℄ Yoram Hirshfeld and Alexander Rabinovi
h. Logi
s for real time: De
idabilityand 
omplexity. Fundamenta Informati
ae, 62(1):1�28, 2004.[IPPA00℄ Anna Ingólfsdóttir, Mikkel Lykke Pedersen, Jan Poulsen, and Lu
a A
eto. Char-a
teristi
 formulae for timed automata. RAIRO, Theoreti
al Informati
s and Ap-pli
ations, 34(34):565�584, 2000.[Jur00℄ Mar
in Jurdzinski. Small progress measures for solving parity games. In Pro-
eedings of the 17th Annual Symposium on Theoreti
al Aspe
ts of Computer S
i-en
e(STACS '00), pages 290�301, London, UK, 2000. Springer-Verlag.[JW95℄ David Janin and Igor Walukiewi
z. Automata for the modal µ-
al
ulus and relatedresults. In Pro
eedings of the 20th International Symposium on Mathemati
alFoundations of Computer S
ien
e (MFCS '95), pages 552�562, London, UK, 1995.Springer-Verlag.



BIBLIOGRAPHY 139[KL96℄ Inhye Kang and Insup Lee. An e�
ient state spa
e generation for analysis ofreal-time systems. SIGSOFT Software Engineering Notes, 21(3):4�13, 1996.[Koy90℄ Ron Koymans. Spe
ifying real-time properties with metri
 temporal logi
. Real-Time System, 2(4):255�299, 1990.[Koz82℄ Dexter Kozen. Results on the propositional µ-
al
ulus. In Pro
eedings ofthe 9th International Colloquium on Automata, Languages and Programming(ICALP'82), pages 348�359, 1982.[KVW00℄ Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoreti
approa
h to bran
hing-time model 
he
king. Journal of the ACM, 47(2):312�360,2000.[L�99℄ Christof Löding. Optimal bounds for transformations of ω-automata. In Pro
eed-ings of the 19th Conferen
e on Foundations of Software Te
hnology and Theoreti-
al Computer S
ien
e (FSTTCS'99), pages 97�109, London, UK, 1999. Springer-Verlag.[Lar05℄ François Laroussinie. Model 
he
king temporisé � Algorithmes e�
a
es et 
om-plexité. Mémoire d'habilitation, Université Paris 7, Paris, Fran
e, de
ember 2005.[LL98℄ François Laroussinie and Kim G. Larsen. CMC: A tool for 
ompositional model-
he
king of real-time systems. In Pro
eedings of IFIP Joint Int. Conf. Formal De-s
ription Te
hniques & Proto
ol Spe
i�
ation, Testing, and Veri�
ation (FORTE-PSTV'98), Paris, Fran
e, Nov. 1998, pages 439�456. Kluwer A
ademi
, 1998.[LLW95℄ François Laroussinie, Kim G. Larsen, and Carsten Weise. From timed automatato logi
 - and ba
k. In Pro
eedings of the 20th International Symposium on Math-emati
al Foundations of Computer S
ien
e (MFCS '95), pages 529�539, London,UK, 1995. Springer-Verlag.[LMS04℄ François Laroussinie, Ni
olas Markey, and Philippe S
hnoebelen. Model 
he
kingtimed automata with one or two 
lo
ks. In Pro
eedings of the 15th InternationalConferen
e on Con
urren
y Theory (CONCUR'04), volume 3170 of Le
ture Notesin Computer S
ien
e (LNCS), pages 387�401, London, UK, august 2004. Springer.[LP85℄ Orna Li
htenstein and Amir Pnueli. Che
king that �nite state 
on
urrent pro-grams satisfy their linear spe
i�
ation. In Pro
eedings of the 12th ACM SIGACT-SIGPLAN symposium on Prin
iples of programming languages (POPL '85), pages97�107, New York, NY, USA, 1985. ACM.[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journalon Software Tools for Te
hnology Transfer, 1:134�152, 1997.[LPZ85℄ Orna Li
htenstein, Amir Pnueli, and Lenore D. Zu
k. The glory of the past. InPro
eedings of the Conferen
e on Logi
 of Programs, pages 196�218, London, UK,1985. Springer-Verlag.[LS01℄ Martin Lange and Colin Stirling. Fo
us games for satis�ability and 
ompletenessof temporal logi
. In Pro
eedings of the 16th Annual IEEE Symposium on Logi




140 BIBLIOGRAPHYin Computer S
ien
e(LICS '01), page 357, Washington, DC, USA, 2001. IEEEComputer So
iety.[LY97℄ Kim G. Larsen and Wang Yi. Time abstra
ted bisimulation: Impli
it spe
i�
ationand de
idability. Information and Computation, 134:75�103, 1997.[Mer01℄ Stephan Merz. Model 
he
king: A tutorial overview. In F. Cassez et al., editor,Modeling and Veri�
ation of Parallel Pro
esses, volume 2067 of Le
ture Notes inComputer S
ien
e, pages 3�38. Springer-Verlag, Berlin, 2001.[Mos85℄ A. W. Mostowski. Regular expressions for in�nite trees and a standard form ofautomata. In The 5th Symposium on Computation Theory, volume 208 of Le
tureNotes in Computer S
ien
e, pages 157�168. Springer-Verlag, 1985.[MS87℄ David E. Muller and Paul E. S
hupp. Alternating automata on in�nite trees.Theor. Comput. S
i., 54:267�276, 1987.[MS95℄ David E. Muller and Paul E. S
hupp. Simulating alternating tree automata bynondeterministi
 automata: new results and new proofs of the theorems of Rabin,M
Naughton and Safra. Theoreti
al Computer S
ien
e, 141(1-2):69�107, 1995.[Niw88℄ Damian Niwinski. Fixed points vs. in�nite generation. In Pro
eedings of the ThirdAnnual Symposium on Logi
 in Computer S
ien
e (LICS'88), pages 402�409, 1988.[NW96℄ Damian Niwi«ski and Igor Walukiewi
z. Games for the µ-
al
ulus. Theoreti
alComputer S
ien
e, 163(1-2):99�116, 1996.[Ong02℄ C.-H. Luke Ong. Model 
he
king algol-like languages using game semanti
s. InPro
eedings of the 22nd Conferen
e Kanpur on Foundations of Software Te
hnol-ogy and Theoreti
al Computer S
ien
e (FST TCS '02), pages 33�36, London, UK,2002. Springer-Verlag.[OW05℄ Joël Ouaknine and James Worrell. On the de
idability of metri
 temporal logi
. InPro
eedings of the 20th Annual IEEE Symposium on Logi
 in Computer S
ien
e(LICS '05), pages 188�197, Washington, DC, USA, 2005. IEEE Computer So
iety.[OW06a℄ Joël Ouaknine and James Worrell. On metri
 temporal logi
 and faulty turingma
hines. In Pro
eedings of the 9th International Conferen
e on Foundationsof Software S
ien
e and Computation Stru
tures (FoSSaCS'06), pages 217�230,2006.[OW06b℄ Joël Ouaknine and James Worrell. Safety metri
 temporal logi
 is fully de
idable.In Pro
eedings of the 12th International Conferen
e on Tools and Algorithms forthe Constru
tion and Analysis of Systems (TACAS'06), volume 3920 of Le
tureNotes in Computer S
ien
e, pages 411�425. Springer, 2006.[Par81℄ David Park. Con
urren
y and automata on in�nite sequen
es. In Pro
eedings ofthe 5th GI-Conferen
e on Theoreti
al Computer S
ien
e, pages 167�183, London,UK, 1981. Springer-Verlag.



BIBLIOGRAPHY 141[Pnu77℄ Amir Pnueli. The temporal logi
 of programs. In Pro
eedings of the 18th AnnualIEEE Symposium on Foundations of Computer S
ien
e (FOCS'77), pages 46�57,1977.[PR05℄ Sophie Pin
hinat and Stéphane Riedweg. A de
idable 
lass of problems for 
ontrolunder partial observation. Information Pro
essing Letter, 95(4):454�460, 2005.[PZ93℄ Amir Pnueli and Lenore D. Zu
k. Probabilisti
 veri�
ation. Information andComputation, 103(1):1�29, 1993.[Rab69℄ Mi
hael O. Rabin. De
idability of se
ond order theories and automata on in�nitetrees. Transa
tions of the Ameri
an Mathemati
al So
iety, 141:1�35, 1969.[RS99℄ Jean-François Raskin and Pierre-Yves S
hobbens. The logi
 of event 
lo
ks -de
idability, 
omplexity and expressiveness. Journal of Automata, Languages andCombinatori
s, 4(3):247�286, 1999.[RW89℄ Peter J. Ramadge and W. Murray Wohnam. The 
ontrol of dis
rete event systems.In Pro
eedings of the IEEE Computer So
iety, volume 77, pages 81�98, 1989.[Sav01℄ Alexandru Tiberiu Sava. Sur la synthèse de la 
ommande des systèmes à événe-ments dis
rets temporisés. PhD thesis, Institut National Polyte
hnique de Greno-ble - INPG, 11 2001.[S
h03℄ Philippe S
hnoebelen. The 
omplexity of temporal logi
 model 
he
king. InSele
ted Papers from the 4th Workshop on Advan
es in Modal Logi
s (AiML'02),pages 393�436, Toulouse, Fran
e, 2003. King's College Publi
ation.[SE89℄ Robert S. Streett and E. Allen Emerson. An automata theoreti
 de
ision pro
e-dure for the propositional µ-
al
ulus. Information and Computation, 81(3):249�264, 1989.[SI94℄ Bernhard Ste�en and Anna Ingólfsdóttir. Chara
teristi
 formulae for pro
esseswith divergen
e. Information and Computation, 110(1):149�163, 1994.[Sif01℄ Joseph Sifakis. Modeling real-time systems-
hallenges and work dire
tions. InPro
eedings of the First International Workshop on Embedded Software(EMSOFT'01), pages 373�389, London, UK, 2001. Springer-Verlag.[Sor01℄ Maria Sorea. Tempo: A model-
he
ker for event-re
ording automata. In Pro
eed-ings of the 2nd Workshop on Real-Time Tools (RT-TOOLS'01), Aalborg, Den-mark, August 2001.[Sor02℄ Maria Sorea. A de
idable �xpoint logi
 for time-outs. In Pro
eedings of the 13thInternational Conferen
e on Con
urren
y Theory (CONCUR '02), pages 255�271,London, UK, 2002. Springer-Verlag.[SS94℄ Oleg V. Sokolsky and S
ott A. Smolka. In
remental model 
he
king in the modal
µ-
al
ulus. In Pro
eedings of the 6th International Conferen
e on Computer AidedVeri�
ation (CAV '94), pages 351�363. Springer-Verlag, 1994.



142 BIBLIOGRAPHY[SS95℄ Oleg Sokolsky and S
ott A. Smolka. Lo
al model 
he
king for real-time systems(extended abstra
t). In Pro
eedings of the 7th International Conferen
e on Com-puter Aided Veri�
ation (CAV'95), pages 211�224, London, UK, 1995. Springer-Verlag.[Sti96℄ Colin Stirling. Modal and temporal logi
s for pro
esses. In Pro
eedings of theVIII Ban� Higher order workshop 
onferen
e on Logi
s for 
on
urren
y : stru
tureversus automata, pages 149�237, Se
au
us, NJ, USA, 1996. Springer-Verlag NewYork, In
.[Tar55℄ Alfred Tarski. A latti
e theoreti
al �xpoint theorem and its appli
ations. Pa
i�
Journal of Mathemati
s, 5:285�309, 1955.[Tho90℄ Wolfgang Thomas. Automata on in�nite obje
ts. In Handbook of theoreti
al
omputer s
ien
e, volume B: formal models and semanti
s, pages 133�191. MITPress, Cambridge, MA, USA, 1990.[Tho97℄ Wolfgang Thomas. Languages, automata, and logi
. In G. Rozenberg and A. Sa-lomaa, editors, Handbook of Formal Languages, volume 3. Springer-Verlag, 1997.[TXJS92℄ T.A. Henzinger, X. Ni
ollin, J. Sifakis, and S. Yovine. Symboli
 Model Che
k-ing for Real-Time Systems. In Pro
eedings of the 7th. Symposium of Logi
s inComputer S
ien
e(LICS'92), pages 394�406, Santa-Cruz, California, 1992. IEEEComputer S
ienty Press.[TY01℄ Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstra
ting bisimulations. Formal Methods in System Des
ription, 18(1):25�68,2001.[Var96℄ Moshe Y. Vardi. An automata-theoreti
 approa
h to linear temporal logi
. InPro
eedings of the VIII Ban� Higher order workshop 
onferen
e on Logi
s for
on
urren
y : stru
ture versus automata, pages 238�266, Se
au
us, NJ, USA, 1996.Springer-Verlag New York, In
.[Var07℄ Moshe Y. Vardi. Automata-theoreti
 model 
he
king revisited. In Pro
eedingsof the 8th International Conferen
e on Veri�
ation Model Che
king and Abstra
tInterpretation (VMCAI'07), volume 4349 of Le
ture Notes in Arti�
ial Intelligen
e(LNAI), pages 137�150. Springer-Verlag, 2007.[vG97℄ R. J. van Glabbeek. Notes on the methodology of CCS and CSP. In Pro
eedingsfrom the international workshop on Algebra of 
ommuni
ating pro
esses (ACP'95), pages 329�349, Amsterdam, The Netherlands, The Netherlands, 1997. Else-vier S
ien
e Publishers B. V.[VJ00℄ Jens Vöge and Mar
in Jurdzi«ski. A dis
rete strategy improvement algorithmfor solving parity games. In Pro
eedings of the 12th International Conferen
eon Computer Aided Veri�
ation(CAV '00), pages 202�215, London, UK, 2000.Springer-Verlag.[Wal95℄ Igor Walukiewi
z. Notes on the propositional µ-
al
ulus: Completeness and re-lated results. Te
hni
al Report NS-95-1, Aarhus University, Basi
 Resear
h InComputer S
ien
es, 1995.



BIBLIOGRAPHY 143[Wal01℄ Igor Walukiewi
z. Automata and logi
,notes from e� summer s
hool'01, 2001.[Wil01℄ Thomas Wilke. Alternating tree automata, parity games, and modal µ-
al
ulus.Bulletin of the Belgian Mathemati
al So
iety, 8(2), May 2001.[Yi90℄ Wang Yi. Real-time behaviour of asyn
hronous agents. In CONCUR '90 Pro
eed-ings on Theories of 
on
urren
y : uni�
ation and extension, pages 502�520, NewYork, NY, USA, 1990. Springer-Verlag New York, In
.[YL97℄ Mihalis Yannakakis and David Lee. An e�
ient algorithm for minimizing real-timetransition systems. Form. Methods Syst. Des., 11(2):113�136, 1997.[Yov98℄ Sergio Yovine. Model 
he
king timed automata. In Le
tures on Embedded Sys-tems, European Edu
ational Forum, S
hool on Embedded Systems, pages 114�152,London, UK, 1998. Springer-Verlag.[Zie98℄ Wieslaw Zielonka. In�nite games on �nitely 
oloured graphs with appli
ationsto automata on in�nite trees. Theoreti
al Computer S
ien
e, 200(1-2):135�183,1998.



144 BIBLIOGRAPHY



Index Symbols
• C-MA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
• C-WTµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
• NormN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
• TF (Q,Σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
• WG-MA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
• WG-WTµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
• AgdsH(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
• ΦH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
• TgdsH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
• TgdsH(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
• GdsH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
• VΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
• 〈[ψ]〉Dϕ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
• h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
• ≤ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
• µ-variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
• �g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
• �t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
• 〈[P]〉Mreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
• 〈[P]〉M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
• [[P]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
• [[ϕ]]SVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
• µsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
• νsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
• g[[ϕ]]SVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67A
• a

eptan
e 
ondition . . . . . . . . . . . . . . . . . . . . 16Bü
hi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16max-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . 17parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Rabin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
• a
tion abstra
tion. . . . . . . . . . . . . . . . . . . . . . .51
• alternation depth . . . . . . . . . . . . . . . 20, 71, 120
• atomi
 
onstraint . . . . . . . . . . . . . . . . . . . . . . . 35
• atomi
 
onstraints . . . . . . . . . . . . . . . . . . . . . . 37
• automaton

ω-automaton . . . . . . . . . . . . . . . . . . . . . . . . . 16

B
• ba
kward algorithm . . . . . . . . . . . . . . . . . . . . . . 7
• binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
• binding de�nition . . . . . . . . . . . . . . . . . . . . . . . 19
• binding fun
tion . . . . . . . . . . . . . . . . . . . . . . . . 19
• bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
• bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19C
• 
anoni
al 
onstraint. . . . . . . . . . . . . . . . . . . . .46
• 
entralised . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 112
• 
entralised 
ontrol . . . . . . . . . . . . . . . . . . . . . . 10
• 
lo
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 48
• 
lo
k 
onstraint . . . . . . . . . . . . . . . . . . . . . . . . . 36
• 
lo
k variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
• 
losure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
• 
onstraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36atomi
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36diagonal-free. . . . . . . . . . . . . . . . . . . . . . . . . .36in
onsistent. . . . . . . . . . . . . . . . . . . . . . . . . . .36re
tangular . . . . . . . . . . . . . . . . . . . . . . . . . . . 37simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
• 
ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 10
entralised . . . . . . . . . . . . . . . . . . . . . . . 10, 112de
entralised . . . . . . . . . . . . . . . . . . . . . . . . . 10
• 
ontrol obje
tive . . . . . . . . . . . . . . . . . . . . . . . . 10external. . . . . . . . . . . . . . . . . . . . . . . . . . .10, 28internal . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 29
• 
ontrollability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
• 
ontroller . . . . . . . . . . . . . . . . . . . . . . . . . 2, 10, 25D
• DBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
• de
entralised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
• de
entralised 
ontrol . . . . . . . . . . . . . . . . . . . . 10
• delay transition . . . . . . . . . . . . . . . . . . . . . . . . . 50145



146 INDEX
• dependen
y order . . . . . . . . . . . . . . . . . . . 19, 63
• determinedgame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• deterministi
. . . . . . . . . . . . . . . . . . . . . . . . . . . .15
• diagonal-free 
onstraint . . . . . . . . . . . . . . . . . 36
• di�eren
e bounded matrix . . . . . . . . . . . . . . 46
• dis
rete modal formula. . . . . . . . . . . . . . . . .117
• dis
rete transition. . . . . . . . . . . . . . . . . . . . . . .50
• distinguishability . . . . . . . . . . . . . . . . . . . . . . . 10E
• event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 25, 48
ontrollable . . . . . . . . . . . . . . . . . . 10, 25, 111un
ontrollable . . . . . . . . . . . . . . . . 10, 25, 111
• expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 63
• external . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10F
• formula

M -bounded . . . . . . . . . . . . . . . . . . . . . . . 63, 94abstra
t model . . . . . . . . . . . . . . . . . . . . . . 102bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 94equivalent. . . . . . . . . . . . . . . . . . . . . . . . .21, 64model. . . . . . . . . . . . . . . . . . . . . . . . . . . . .64, 95re
tangular . . . . . . . . . . . . . . . . . . . . . . . 68, 98
• forward algorithm. . . . . . . . . . . . . . . . . . . . . . . . 7
• free variable . . . . . . . . . . . . . . . . . . . . . . . . . 19, 63G
• game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17winning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17parity game . . . . . . . . . . . . . . . . . . . . . . . . . . 17position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17strategywinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• guarded variable . . . . . . . . . . . . . . . . . . . . . . . . 20
• guarded formula. . . . . . . . . . . . . . . . . . . . .20, 63I
• in
onsistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
• internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10L
• labelled transition system . . . . . . . . . . . . . . . 15�nite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
• language

automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . 17M
• MA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
• marked semanti
s . . . . . . . . . . . . . . . . . . . . . . . 58
• max-parity 
ondition. . . . . . . . . . . . . . . . . . . .17
• modal automaton . . . . . . . . . . . . . . . . . . . . . . 113a

eptan
e game . . . . . . . . . . . . . . . . . . . . 113for 
ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . 117symboli
 a

eptan
e game . . . . . . . . . . . 115well guarded. . . . . . . . . . . . . . . . . . . . . . . . .117
• modal automaton for 
ontrol . . . . . . . . . . .117
• modal formula . . . . . . . . . . . . . . . . . . . . . . . . . 113for 
ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . 117dis
rete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117well guarded. . . . . . . . . . . . . . . . . . . . . . . . .117
• modal formula for 
ontrol . . . . . . . . . . . . . . 117
• model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 64N
• node
hoi
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
onjun
tive . . . . . . . . . . . . . . . . . . . . . . . . . . . 75disjun
tive. . . . . . . . . . . . . . . . . . . . . . . . . . . .75modal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75near . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
• normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37O
• observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
• older than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19P
• parity 
ondition. . . . . . . . . . . . . . . . . . . . . . . . .17
• parity index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
• playgame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• positional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• pre-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
• pro
ess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

M -bounded . . . . . . . . . . . . . . . . . . . . . . . . . . 49bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49deterministi
 . . . . . . . . . . . . . . . . . . . . . . . . . 49produ
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50timed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48



INDEX 147
• produ
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 28
• program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Q
• quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123R
• re
tangular 
onstraint . . . . . . . . . . . . . . . 35, 37
• refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
• region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 43
• region abstra
tion. . . . . . . . . . . . . . . . . . . . . . .51
• relation of satisfa
tionsymboli
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
• relation of satisfa
tionsymboli
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
• rule
on
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74premise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
• runautomaton . . . . . . . . . . . . . . . . . . . . . . . . . . . 16S
• satis�ability obje
tive . . . . . . . . . . . . . . . . . . . 72
• semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
• senten
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
• signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

µ-signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ν-signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

• simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
• strategy
onsistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17positional. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
• sub formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
• sub formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
• system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
entralised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
ontrolled . . . . . . . . . . . . . . . . . . . . . . 2, 10, 25de
entralised. . . . . . . . . . . . . . . . . . . . . . . . . . .1intera
tive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1rea
tive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1real-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1T
• tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, 104rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
• timed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
• tra
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 104

µ-tra
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
µ-variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

• transition system . . . . . . . . . . . . . . . . . . . . . . . 15
• transition formula. . . . . . . . . . . . . . . . . . . . . . .23
• triangular 
onstraint . . . . . . . . . . . . . . . . 35, 37
• two players parity game. . . . . . . . . . . . . . . .113U
• untimed system . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
• valuationsu

essor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
• variablebound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19senten
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
• veri�
ation obje
tive . . . . . . . . . . . . . . . . . . . . 73W
• well guarded modal automaton . . . . . . . . 117
• well guarded modal formula. . . . . . . . . . . .117
• winning 
onditiongame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
• word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
• WTµ

C-WTµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
WG-WTµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Z

• zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45


