Expressive Sound Synthesis For Animation

Cécile Picard-Limpens

University of Nice/Sophia-Antipolis
École Doctorale STIC

REVES INRIA Sophia-Antipolis, France

Advisors: George Drettakis, INRIA Sophia Antipolis (Reves)
François Faure, INRIA Rhône-Alpes (Evasion)
Nicolas Tsingos, DOLBY Laboratories, CA, USA

Defense for Ph.D. in Computer Science
Outline

1 Sound and Virtuality

2 Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3 Example-Based Synthesis
 - Flexible Sound Synthesis

4 Perspectives on a Hybrid Model
 - Motivation and Application

5 Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Sound Rendering for Virtual Reality and Games

Interactive Audio Rendering

(R. Vantielcke - WipeoutHD on Playstation 3)
Interactive Audio Rendering

(R. Vantielcke - WipeoutHD on Playstation 3)

Traditional Approach
Pre-Recordings Triggered

+ : Easy to implement
- : Repetitive audio, discrepancies, lack of flexibility
From Playback of Samples to Synthesis

- **Digital Sound Synthesis**
 - Source modeling
 - Sound propagation, Sound reception

- **Techniques**
 - Rigid body simulation
 - Finite Element Method (FEM)
Sound and Virtuality

General Background

Motivation

Physics-Based Synthesis

Example-Based Synthesis

Perspectives on a Hybrid Model

Conclusion and Discussion

From Playback of Samples to Synthesis

- Digital Sound Synthesis
 - Source modeling
 - Sound propagation, Sound reception

- Techniques
 - Rigid body simulation
 - Finite Element Method (FEM)

- Physical Sound Simulation
 - Physical approach, easy parametrization, Low memory usage
 - Preprocess computation, Interface between physics and sound system
Controlling the Sound Simulation

Challenges

- **Sound Coherent With Visuals**
 - Unpredictable character of sounds
 - Real-time sound synthesis

- **Parametrization and Expressiveness**
 - Control and interactivity
 - Authoring
Our Contribution

Three Research Axes

- Physics-Based Sound synthesis
 - Contact modeling
 - Resonator modeling
Our Contribution

Three Research Axes

- Physics-Based Sound synthesis
 - Contact modeling
 - Resonator modeling

- Example-Based Sound Synthesis
 - Automatic analysis of pre-recordings
 - Flexible synthesis for physics-driven animation
Our Contribution

Three Research Axes

- Physics-Based Sound synthesis
 - Contact modeling
 - Resonator modeling

- Example-Based Sound Synthesis
 - Automatic analysis of pre-recordings
 - Flexible synthesis for physics-driven animation

- Perspectives on a Hybrid Model
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Sound from Contacts

- **Dichotomy**
 - Impacts
 - Continuous contacts

- **Two Schemes for Contact Force Modelling**
 - Feed-forward scheme
 [van den Doel et al. '01]
 - Direct computation of contact forces
 [Avanzini et al. '02]
Contact Modeling

What Are The Current Limitations for Continuous Contacts?

- Rate for physics engine report
- No geometric details when using visual textures
- Authoring and control are challenging
What Are The Current Limitations for Continuous Contacts?

- Rate for physics engine report
- No geometric details when using visual textures
- Authoring and control are challenging

HOW Can We Solve Them?

By extracting

- **Excitation profiles** from visual textures

with

- **Adaptive resolution**

 [Picard et al., VRIPHYS’08]
Method for Impact Sounds
Method for Continuous Contact Sounds

Extraction of Excitation Profiles
Synthesis of Excitation Profiles
For the Audio Force Modelling

- **Technique**
 - Extraction from the visual texture image
 - Re-sampling along the trajectory of the contact interaction (60Hz vs 44kHz)

- Based on the Complexity of the Histogram
 - Simple texture image: Gradient of the image intensity
 - Complex texture image: Isocurves of constant brightness (isophotes)
Complex Textures

Coding the Excitation Profiles

- Isophotes = Large amount of data
 How Can We Lighten the Info?

- By Coding the Excitation Profiles
 = Main Features + Noise Part

- Noise Part: Statistical approximation
Real-Time Audio Management
A Flexible Audio Pipeline

- Simulations Driven by Ageia’s PhysX (now NVIDIA)
Audio Texture Synthesis
A Solution for Interactive Simulations

- A Sound in Coherence with Visuals
- Flexible Resolution
- Adapted to Procedural Generation
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Vibration Models
Modal Analysis

- Generating Sounds Based on Physics Simulation
 - In computer musics
 [lovino et al. ’97, Cook ’02]
 - In computer graphics
 [Van Den Doel ’01, O’Brien et al. ’02]

- Improvements for Interactive Sound Rendering
 - Modal parameter tracking
 [Maxwell et al. ’07]
 - Frequency content sparsity
 [Bonneel et al.’08]
Vibration Models

Modal Analysis

1. Get a Sounding Object and its Geometry

2. Construct the FEM (ex: Tetrahedral Mesh)

3. Apply Newton Second Law to DOF

\[
M \ddot{d} + C \dot{d} + Kd = f
\]

4. Eigendecomposition \(\Rightarrow \) Modal Parameters

\[
M = LL^{-T}; \quad L^{-1}KL^{-T} = V\Lambda V^T
\]

where \(V \) = matrix of eigenvectors
\(\Lambda \) = diagonal matrix of eigenvalues
Vibration Models
Modal Analysis

In Real-time:
- Modal synthesis

\[s(t) = \sum_{n=1}^{1} a_i \sin(w_i t) e^{-d_i t} \] \hspace{1cm} (3)

- Control for vibration models
Vibration Models
Modal Analysis

- What Are The Current Limitations?
 - Meshing is difficult
 - No real control on the FEM resolution
 - No clear interface between physics and audio
Vibration Models

Modal Analysis

■ What Are
 The Current Limitations?
 ■ Meshing is difficult
 ■ No real control on the FEM resolution
 ■ No clear interface between physics and audio

■ HOW Can We Solve Them?
 By proposing
 ■ A **robust** and **multi-scale** modal analysis
 which is
 ■ **Coherent** with the physics simulation
 [Picard et al., DAFx’09]
Our Deformation Model

- Inspired from Work by Nesme et al. [Nesme et al.’06]

- Technique
 Merged voxels used as **Hexahedral Finite Elements**

- Implementation with the **Sofa Framework**

- Validation of the Model
 Tests on a metal cube
Robustness

Robust Even for Non-Manifold Geometries

Material: Aluminium
Multi-Scale for Efficient Memory Usage

A Squirrel in Pine Wood

3x3x3

4x4x4

8x8x8

9x9x9

C. Picard-Limpens

December 4, 2009
Multi-Scale for Efficient Memory Usage

A Squirrel in Pine Wood: Different FE resolutions

3x3x3 4x4x4 8x8x8 9x9x9

Frequency Content = f(Hexahedral FE Resolution)

- Higher resolution models
- Frequency centroid shift
- Convergence of the frequency content
Comparison with Classical Approach

Sounding Bowl - Material: Aluminium

Classical Approach (816 modes)
Our Approach (75 modes)

<table>
<thead>
<tr>
<th>FREQUENCY CONTENT</th>
<th>FREQUENCY CONTENT</th>
</tr>
</thead>
</table>

Comparison with Classical Approach

Sounding Bowl - Material: Aluminium

Classical Approach (816 modes)
Our Approach (75 modes)

<table>
<thead>
<tr>
<th>FREQUENCY CONTENT</th>
<th>FREQUENCY CONTENT</th>
</tr>
</thead>
</table>

C. Picard-Limpens
December 4, 2009
Expressive Sound Synthesis For Animation
A Robust and Multi-Scale Modal Analysis
A Solution for Sound Synthesis

- Realistic
- Adapted to Non-Manifold Geometries
- Resources Flexibility
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Implementation of Signal-Based Models

- Concatenative Synthesis [Roads '91, Schwarz '06]
- Sound Textures Based on Physics [Cook '99] [Dobashi et al. '03, Zheng et al. '09]
- Authoring and Interactive Control [Cook '02]

[Dobashi et al.'03]

[Cook '99]
Implementation of Signal-Based Models

What Are
The Current Limitations?

- Processing is not generic
- Parametrizing is difficult
Implementation of Signal-Based Models

What Are The Current Limitations?
- Processing is not generic
- Parametrizing is difficult

HOW Can We Solve Them?
By
- Retargetting example sounds To physics-driven animation

[Picard et al., AES’09]
Our Approach

1. Dictionary of Audio Grains: Impulsive / Continuous
2. Correlation Patterns

Retargetting to Animation

Audio Recording

SINUSOIDAL

Transient

Object Geometry
Virtual Environment

Retargetting Example Sounds

Rigid-Body Simulation

Define Procedures

Build Collision Structures

Video Renderer

Audio Renderer

Preprocessing Interactive

Retargetting With Audio

Our Contributions

C. Picard-Limpens December 4, 2009 Expressive Sound Synthesis For Animation
Preprocess: A Generic Analysis

- Impulsive and Continuous Contacts
 - Spectral Modeling Synthesis (SMS) [Serra ’97]

- Automatic Extraction of Audio Grains
 - Dictionary: Impulsive/Continuous

- Generation of Correlation Patterns between original recordings and audio grains
On-Line: Flexible Sound Synthesis

- Resynthesis of the Original Recordings
 - Candidate grains: max. correlation amplitude
On-Line: Flexible Sound Synthesis

- Resynthesis of the Original Recordings
 - Candidate grains: max. correlation amplitude

- Interactive Physics-Driven Animations
 - Physics Info for Retargetting
 - Contact type: impulsive or continuous?
 - Penetration force and relative velocity
On-Line: Flexible Sound Synthesis

- Resynthesis of the Original Recordings
 - Candidate grains: max. correlation amplitude

- Interactive Physics-Driven Animations
 Physics Info for Retargetting
 - Contact type: impulsive or continuous?
 - Penetration force and relative velocity

- Flexible Audio Shading Approach
 Additional, User-defined Resynthesis Schemes
 - Spectral domain adaptation/modification
Resynthesis of the Original Recordings

- 94 recordings (14.6Mb)
 ≈ 5000 grains + 94 Correlation Patterns (20% Gain)

- Breaking Glass
- Shooting Gun
- Rolling

Additional Material:
http://www-sop.inria.fr/members/Cecile.Picard/
"Supplemental AES"
Flexible Audio Shading Approach

- Easy Implementation of Time-Scaling
 - Faster Rolling
 - Slower Breaking

- Synthesis of An Infinity Similar Audio Events by varying the audio content
 - Rythmic pattern from Breaking Stone
 New material content: *stone* and *gun*
 - Rythmic pattern from Breaking Glass
 New material content: *ceramic*
Interactive Physics-Driven Animations

Simulations Driven by *Sofa Framework*

[Image of simulations driven by Sofa Framework]
Retargetting Example Sounds
A Solution for Interactive Simulations

- Variety
- Adapted to Scenarios
- Small Memory Footprint
 Real-Time Rendering

An attractive solution for industrial applications
(Eden Games, an ATARI game studio)
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Sound Modeling
When Nonlinearity Occurs

- Problems of Single Models
 - Vibration models assume linearity
 - Example-based sounds are hard to parametrize

Motivation
A Hybrid Model for Fracture Events

Conclusion and Discussion
Sound Modeling
When Nonlinearity Occurs

- Problems of Single Models
 - Vibration models assume linearity
 - Example-based sounds are hard to parametrize

- Previous Work
 - Modeling nonlinearities
 - [O’Brien et al. ’01, Chadwick et al. ’09]
 - [Cook ’02]
Fracture Events

- **Background**
 - Frequently occur in virtual environments
 - Visual rendering
 - \textit{O’Brien et al.} ‘99, ’02
 - \textit{Parker and O’Brien}. ‘09
 - Sound rendering: Little research
 - \textit{Warren et al.} ‘84
 - \textit{Rath et al.} ‘03
Fracture Events

- **Background**
 - Frequently occur in virtual environments
 - Visual rendering
 - [Parker and O’Brien. ’09]
 - Sound rendering: Little research
 - [Warren et al. ’84]
 - [Rath et al. ’03]

- **Challenges**
 - Event depends on the material involved
 - Differents phases emerge from fracture event
Parametrization of Our Hybrid Model

- **Selection Criteria**
 - Hybrid model applied when nonlinearity occurs

- **Techniques**
 - FM synthesis
 - Audio grains

- **Parametrization**
 - Smooth transition with vibration model
 - Coherence inside the hybrid model
Discussion

- Prospective model
- Possible problem: report from the physics engine
- Simplicity of the tools allows real-time rendering
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Synthesis of Sounds for Animation

Difficulties

- Audio-Visual Coherence
- Extremely Dynamic Character
- Precision of Synthesis
- Large Variety of Objects
Contributions

An Overview

- **Complex Contact Modeling**
 - 2D visual textures used as roughness maps
 - Audible and position-dependent variations
 - Detail-layer mechanisms
Contributions
An Overview

- **Complex Contact Modeling**
 - 2D visual textures used as roughness maps
 - Audible and position-dependent variations
 - Detail-layer mechanisms

- **Improved Modal Analysis for Resonator Modeling**
 - Complex non-manifold geometries can be handled
 - Multi-scale resolution
 - Coherence between simulation and audio
Contributions

An Overview

- **Complex Contact Modeling**
 - 2D visual textures used as roughness maps
 - Audible and position-dependent variations
 - Detail-layer mechanisms

- **Improved Modal Analysis for Resonator Modeling**
 - Complex non-manifold geometries can be handled
 - Multi-scale resolution
 - Coherence between simulation and audio

- **Flexibility of Sound Design**
 - Audio grains and correlation patterns
 - Dynamic retargetting to events
 - Extended sound synthesis capabilities
Contributions

Perspectives

- A Prospective Hybrid Model for Complex Physical Phenomena
 - Focus on Nonlinearity
 - Combination of physically based and example-based methods
 - Application Case: Fracture Events
Overview

1. Sound and Virtuality

2. Physics-Based Sound Synthesis
 - Contact Modeling
 - Resonator Modeling

3. Example-Based Synthesis
 - Flexible Sound Synthesis

4. Perspectives on a Hybrid Model
 - Motivation and Application

5. Conclusion and Discussion
 - Contributions
 - Extensions and Applications
Promising Directions for Future Work

- **Complex Contact Modeling**
 - Two interacting textures
 - Surface-based interactions
 - Adequate perceptual experiments
Promising Directions for Future Work

- **Complex Contact Modeling**
 - Two interacting textures
 - Surface-based interactions
 - Adequate perceptual experiments

- **Improved Modal Analysis for Resonator Modeling**
 - Recent work from [Nesme et al. Siggraph'09]
 - Investigations with GPU for in-line computation
 - Complete integration in a virtual scene
Promising Directions for Future Work

- **Complex Contact Modeling**
 - Two interacting textures
 - Surface-based interactions
 - Adequate perceptual experiments

- **Improved Modal Analysis for Resonator Modeling**
 - Recent work from [Nesme et al. Siggraph'09]
 - Investigations with GPU for in-line computation
 - Complete integration in a virtual scene

- **Example-Based Technique**
 - Clustering of similar grains
 - Statistical analysis of correlation patterns
 - Physics engine design
Promising Directions for Future Work

- Hybrid Model for Fracture Events
 - Fracture sound simulation framework
 - Tracking of relevant physical data
Conclusion

- New Physically Based Algorithms for Sound Rendering
- Flexibility of Sound Modeling
- Ideas on an Adequate Hybrid Sound Model

Additional info:
http://www-sop.inria.fr/members/Cecile.Picard/
Acknowledgements

- George Drettakis, François Faure, and Nicolas Tsingos
- REVES Team
 Marie-Paule Cani and the Evasion Team
- Paul G. Kry at the McGill University, Montréal
- Eden Games, an ATARI game studio, Lyon