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ABSTRACT

When a low-frequency laser pulse is focused to a high intensity into a gas, the
electric field of the laser light may become of comparable strength to that felt
by the electrons bound in an atom or molecule. A valence electron can then
be ’freed’ by tunnel ionization, accelerated by the strong oscillating laser field
and can eventually recollide and recombine with the ion. The gained kinetic
energy is then released as a burst of coherent XUV light and the macroscopic
gas medium then becomes a source of XUV light pulses of attosecond (1 as =
10718 5) duration. This is the natural time-scale of electron dynamics in atoms
and molecules.

The largest part of this thesis deals with experiments where molecules are
the harmonic generation medium and the recolliding electron wave packet
acts as a ‘self-probe’. In several experiments, we demonstrate the potential
of this scheme to observe or image ultra-fast intra-molecular electronic and
nuclear dynamics. In particular, we have performed the first phase measure-
ments of the high harmonic emission from aligned molecules. From mea-
surements characterizing in amplitude and phase the high harmonic emission
from CO; and N, molecules aligned in the laboratory frame, we extract the re-
combination dipole matrix element, i.e. the probability amplitude for the con-
tinuum electron to recombine into the bound state. This observable contains
signatures of quantum interference between the continuum and bound parts
of the total electronic wavefunction. It is shown how this quantum interfer-
ence can be utilized to shape the attosecond light emission from the molecules.
Furthermore, a set of recombination dipole matrix elements for electron-ion
recollision directions from 0° to 360° may contain sufficient information to re-
construct the bound-state wavefunction using a tomographic algorithm. The
theoretical basis of this method of molecular orbital tomography is examined,
the technique’s potential and limitations are presented and the experimental
feasibility is demonstrated. This opens the perspective of imaging ultra-fast
changes of, e.g., a frontier orbital during a chemical reaction.

In a second part of this thesis, we use the well characterized coherent XUV
light emitted by rare gas atoms to photoionize molecules. Measuring the
ejected photoelectron wave packet then allows to extract information on the
photoionization process itself, and possibly about the initial bound and final
continuum states of the electron. We measure how an auto-ionizing resonance
in N> molecules modifies the spectral phase of the photoelectron wavepacket.

The last chapter of this manuscript describes studies of high harmonic and
attosecond light pulse generation in a different medium: ablation plasmas.
We perform the first temporal characterization of such a source, demonstrat-
ing the femtosecond and attosecond structure of the emitted XUV intensity
profile.
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SYNTHESE

Quand on focalise une impulsion laser dans un gaz, le champ électrique du
laser peut atteindre des valeurs comparables a celle du champ ressenti par
les électrons liés dans un atome ou une molécule. Un électron de valence
peut donc étre ‘libéré’ par ionisation tunnel, accéléré par le fort champ laser
oscillant et peut finalement recollisionner et recombiner avec l'ion. L'énergie
cinétique gagnée est alors restituée sous la forme d’un flash de lumiére XUV
cohérente, de sorte que le milieu gazeux macroscopique devient une source
d’imgpulsions de lumiere XUV de durée de 1’ordre de 100 attoseconde (1 as =
10718 5). Ceci est ’échelle de temps naturelle des dynamiques électroniques
dans les atomes et les molécules.

La plus grande partie de cette these traite d’expériences ot les molécules
constituent le milieu de génération d’harmoniques et le paquet d’ondes
électronique recollisionnant joue le réle d'une ‘auto-sonde’. Dans plusieurs
expériences, nous démontrons le potentiel de ce schéma pour observer ou
imager des dynamiques électroniques et nucléaires intra-moléculaires ultra-
rapides. En particulier, nous avons effectué les premieres mesures de phase
de I'émission harmonique émise par des molécules alignées dans le référentiel
du laboratoire. Ces mesures ainsi que celles de I'amplitude harmonique pour
les molécules de CO, et N, nous permettent d’extraire 1'élément de matrice
du dipole de recombinaison, soit 'amplitude de probabilité pour la recombi-
naison de I’électron du continuum avec Iétat lié. Cette observable contient la
signature d’une interférence quantique entre les parties libre et liée de la fonc-
tion d’onde électronique totale. Il sera démontré que cette interférence quan-
tique peut étre utilisée pour mettre en forme 1’émission attoseconde par les
molécules. De plus, un jeu d’éléments de matrice du dipole de recombinaison
pour des directions de recollision électron-ion de 0° a 360° peut contenir des
informations suffisantes pour reconstruire la fonction d’onde de 1’état 1ié par un
algorithme tomographique. Les bases théoriques de cette méthode de tomo-
graphie d’orbitales moléculaires sont examinées, le potentiel de la technique
et ses limitations sont présentés et la faisabilité expérimentale est démontrée.
Ceci ouvre la perspective d'imager les distorsions ultra-rapides d'une orbitale
frontiere lors d"une réaction chimique.

Dans une deuxiéme partie de cette thése, nous utilisons la lumiere XUV
cohérente bien caractérisée émise par des atomes de gaz rare pour pho-
toioniser des molécules. La mesure du paquet d’ondes électronique émis
permet ensuite d’extraire des informations sur le processus de photoion-
isation méme, et potentiellement sur 1’état initial lié et 1'état final libre
de l’électron. Nous avons mesuré comment une résonance auto-ionisante
dans des molécules de N, modifie la phase spectrale du paquet d’ondes de
photoélectrons.

Le dernier chapitre de ce manuscrit décrit des études de génération
d’harmoniques et d’impulsions de lumiere attosecondes dans un milieu
différent: des plasmas d’ablation. Nous avons effectué la premiere car-
actérisation temporelle d'une telle source, démontrant la structure femtosec-
onde et attoseconde du profil d'intensité de 1’émission XUV.
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INTRODUCTION

The title of this thesis announces that it will be concerned with the generation
of attosecond pulses, i.e. pulses of light or matter that have a duration of about
100 attoseconds (as), 1 attosecond being 10718 s, or one billionth of a billionth
of a second.

Such pulses can play the role of a flash in photography, or that of a fast
shutter. In a sense, the research presented here thus inscribes itself in the tra-
dition of ultra-fast time-resolved observations started by british photographer
Eadweard J. Muybridge and french physiologist and chrono-photographer
Etienne-Jules Marey in the 1860s. Only in their days, “ultra-fast’ did not yet
mean attoseconds, but anything the human eye could no longer resolve, i.e.
milliseconds. One of the most famous examples of this work is Marey’s falling
cat (see figure 0.1), where the available precise knowledge about the cat’s
‘static structure’ before and after the fall did not suffice to infer how the cat
arrives to right itself and land on its feet, while preserving zero angular mo-
mentum. Only a time-resolved observation proved that the cat changes its
shape by curling up and twisting, thereby changing its moment of inertia. To-
day, model cats are still studied by mathematicians and whole journal issues
are devoted to them: (Enos [40]).

On the atomic-scale, where quantum mechanics govern the behavior of
matter, often the same problem arises: we have precise knowledge about the
static structure of systems (energy levels, equilibrium distances, initial and
final states), but this knowledge is not always sufficient to infer how these
systems actually ‘work’. Again, time-resolved observation can shed light on
this question. Dynamics or movement arises in quantum systems when two
eigenstates, |¢1) and |¢,), with energies differing by AE are superposed (which
is much like Schrodinger’s cat, by the way). A beating term appears with
a half-period of T = 7i1/AE, giving the fundamental time-scale of dynamics
between the two states.

During the last 25 years, femtosecond laser pulses have been success-
fully used in femto-chemistry, i.e. the study of the movement of atoms and
molecules involved in chemical reactions (Zewail [219]). The mass of the nu-
clei lead to typical energy distances between vibrational or rotational states of
~10meV, and thus the time resolution necessary to observe such dynamics is
T ~ 100 fs. Electronic bound states are much further apart on the energy axis,
and the corresponding dynamics are consequently much faster. For AE > 2¢€V,
the fundamental time-scale of dynamics becomes smaller than a femtosecond.
Attosecond pulses thus allow to observe electron dynamics inside atoms or
molecules, as demonstrated 7 years ago by (Drescher et al. [31]), shortly after
the first measurement of attosecond light pulses by (Paul et al. [160]) in Saclay
and by (Hentschel et al. [73]) in Vienna.

These studies can then again give input to femto-chemistry, because nu-
clei move in chemical reactions in a potential landscape set by the electrons —
attosecond electron dynamics thus directly govern the nuclear dynamics. At-

Figure 0.1. A modern version of Marey’s
ultra-fast falling cat imaging. Photograph
taken from (Stewart [189]).
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tosecond physics is thus relevant not only to fundamental atomic and molecu-
lar physics, but also for chemistry and materials science. The US Department
of Energy (Fleming et al. [44]) goes so far as to announce that the observa-
tion and understanding of electron dynamics on the quantum level can teach
us how to control matter at this most fundamental level: “We need to go be-
yond the study of how quantum systems are put together and organized to
the study of how they work. And we need to go still further, beyond how
they work to how to make quantum-scale systems work for us.” This ambi-
tious perspective is the grand idea behind attophysics.

High Harmonic Generation

Creating the shortest events always relies on non-linear processes, so that an
excitation ~ f(t) provokes a response ~ f(t)", with n > 1, which will be shorter
than the excitation. Attophysics, being concerned primarily with electrons,
needs a tool to efficiently act on them causing the said non-linear response,
and the electric field of ultra-short lasers proved to be such a tool. It is able to
drive a variety of strong-field process. One of the most remarkable of these can
be described in three steps (Corkum [22], Lewenstein et al. [117], Schafer et al.
[176]), the first of which provides the very strong non-linearity. The strong
laser pulse is focused into a cloud of atoms or molecules, where its electric
field becomes of comparable strength as that binding the valence electrons to
the nuclei. (i) It thus becomes possible for electrons to tunnel into the contin-
uum. (ii) The freed electron is then accelerated by the strong laser field and
(iii) eventually recollides with its parent-atom/molecule. One of the things
that can happen then is recombination of the electron to its initial state and
emission of a photon carrying away the energy gained by the electron in the
laser field plus its binding energy.

This light emission, the spectrum of which can extend into the VUV or
even the XUV and soft-X-ray region, has been discovered simultaneously in
Saclay by (Ferray et al. [42]) and in Chicago by (Mcpherson et al. [142]), and
was named ‘High Harmonic Generation” (HHG). The whole process is directly
laser driven and thus fully coherent, as shown by, e.g., (Salieres et al. [173]),
and for this reason alone it constitutes an extremely interesting source of XUV
light for interferometry (Merdji et al. [144]) and imaging experiments (Ravasio
et al. [165], Schwenke et al. [181]).

The most intriguing property of the HHG process, however, is its ultra-
short, sub-laser-cycle time scale. The continuum electron is in fact a wave
packet of attosecond duration. Since the above-described three-step process is
repeated in each half-cycle of the driving laser field, the XUV pulses produced
by HHG with femtosecond laser pulses consequently have features both on
the femtosecond and the attosecond time-scales. On the femtosecond scale,
they are conveniently described as high-order harmonics of the fundamental
driving laser frequency, while on the attosecond scale, the picture of a recollid-
ing electron wave-packet, emitting a short burst of XUV light every half-cycle
of the driving field, is more appropriate.

Finally, the short duration of the XUV pulses is not only interesting for
time-resolved studies, but it also concentrates the pulse energy in an ex-
tremely short time, allowing to combine high photon energies with high peak
intensities, hardly available otherwise. Non-linear processes in the XUV do-
main become possible (Descamps et al. [26], Sekikawa et al. [183], Tzallas
et al. [200]). Although short wavelength free-electron lasers such as FLASH
in Hamburg and LCLS in Stanford are going online at this time, providing
far superior photon numbers and intensities with (few) femtosecond pulse-
durations, their billion-$ cost, stadium-size and limited availability leaves un-
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challenged the status of HHG-based sources as relevant tools for ultra-fast
physics in the XUV.

Studying Molecules with High Harmonic Generation

This thesis will mainly be concerned with how molecules and their dynamics
can be studied using the process of HHG. Two basic experimental schemes
for doing so with attosecond pulses can be discerned. They are illustrated in
figure 0.2. In the first, the XU V-ionization scheme, the HHG process simply pro-
vides a source of ultra-short XUV pulses, used to pump or probe molecules by
exciting or photo-ionizing them. One then detects the ejected photo-electrons,
which carry information about the intra-atomic / molecular dynamics. In the
self-probing scheme, the recolliding electron wave packet takes the role of an
ultra-short probe pulse, while the emitted XUV light carries information about
the atom or molecule. The excitation process launching dynamics could then
directly be the tunnel-ionization or, more generally, a separate pump pulse.
While the XU V-ionization scheme is a logical extension of experiments like
the time-resolved observation of the Auger process by (Drescher et al. [31]), it
is much less obvious whether the self-probing scheme, based on the extremely
simplified three-step model, could actually be realized experimentally.

The idea to use molecules as an HHG medium came up soon after the dis-
covery of HHG itself and was first motivated by the greater de-localization
of valence electrons in molecules and the corresponding greater polarizabili-
ties, which promised larger conversion efficiencies. In 1994 (Liang et al. [119])
and two years later (Lynga et al. [122]) compared small molecules with rare
gas ‘reference atoms’ that have a similar ionization potential I,. The hopes
for more efficient HHG were disappointed and in the majority of cases, the
molecules gave results for the shape of the spectrum and achievable cut-off
positions reminiscent of those obtained with the reference atom, only with
somewhat lower conversion efficiency. The comparison of O, with xenon,
however, made an exception: the molecule lead to a higher signal and spectral
cut-off position, although its I, is very similar to that of xenon. This observa-
tion, eight years later explained by (Shan et al. [185]) as the result of ionization
suppression in O due to the symmetry of its highest occupied molecular or-
bital, constitutes the first observation of an effect of the bound state spatial
structure with its Angstrom features on the emission of high harmonics with
~10nm wavelength.

After a four year period of silence around molecules and HHG — at least
on the experimental side —, the group at Imperial College London relaunched
research in this direction and (Hay et al. [69, 70]) reported in 2000 HHG in
cyclic organic molecules, continuing to investigate the idea of using media
with strongly de-localized valence electrons. Indeed, an enhancement com-
pared to xenon was found, but only for a single harmonic order. This selectiv-
ity triggered a discussion about the role of VUV resonances in the molecules
as well as about the applicability of the three-step “‘wave packet recollision
model” to molecular systems in order to study intra-molecular electron dy-
namics.

The perspective thus evolved from the XUV-source optimization towards
studying molecular structure. It thus became necessary to align molecules in
the laboratory frame relative to the electron recollision direction, which was
first realized in the context of HHG in 2001 by (Hay et al. [71], Velotta et al.
[204]) and later refined by (de Nalda et al. [24]). It was concluded that the sym-
metry of the molecular ground state gets imprinted on the outcome of strong-
field phenomena such as HHG. An angle dependent phase of the molecular
dipole was invoked and a possible origin of such a phase dependence was

Figure 0.2. Different experimental
schemes: (a) The self-probing scheme,
where the recolliding electron wave packet
probes the parent atom or molecule. (b)
The XUV-ionization scheme, where
ultra-short XUV pulses interact with the
atom or molecule and the ejected
photo-electrons carry information.
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given shortly after by (Lein et al. [110, 111]). Although HHG in oriented
molecules had been studied earlier numerically by (Kopold et al. [95], Lap-
pas and Marangos [100], Yu and Bandrauk [217]), this work provided a ma-
jor breakthrough since numerical results obtained for Hj molecules could be
explained by an analytical model. It proved that destructive interference be-
tween the recolliding electron wave and the electron bound-state wavefunction
during the recombination step of HHG leaves a clear signature in the XUV
emission.

At the same time, (Niikura et al. [153, 154]) clearly formulated the self-
probing scheme and revealed its great potential for time-resolved measure-
ments by characterizing the time structure of the recolliding electron wave
packet itself and using it to trace the expansion of a D] ion immediately af-
ter ionization. The same dynamics were observed in greater detail in 2006
by (Baker et al. [5]) using a modified and experimentally more efficient (self-
probing) scheme based on theory developed by (Lein [109]).

In 2004, a work pushing the idea of molecular imaging in the self-probing
scheme to the extreme was published by (Itatani et al. [80]). It proposed a
tomographic analysis of HHG spectra acquired for a range of molecule align-
ment directions to reconstruct the electron bound-state wavefunction, which
certainly constituted a conceptual breakthrough, although based on many
controversial assumptions. Although in this work a static wavefunction had
been reconstructed, the potential of ultra-fast, possibly attosecond, time re-
solved imaging of electrons bound in molecules was evident. This paper
launched enthusiastic activity in both experimental and theoretical groups
and is also the main motivation behind most of the work in this thesis.

Almost simultaneously, intensity minima in HHG spectra generated in
aligned CO, molecules were reported by (Kanai et al. [86], Vozzi et al. [206])
and interpreted as the first experimental observation of destructive quantum
interference in the recombination step of HHG. Oddly enough though, the
spectral position of the interference-features were not the same in both labo-
ratories.

(Wabnitz et al. [210]) of our group at CEA Saclay published one year later a
first measurement of spectral phases of the high harmonic emission from un-
aligned N> molecules, without, however, finding clear signatures of molecular
structure. The attosecond temporal profile of the emission from the molecules
and from the reference atom argon was almost the same, which was explained
by the angular averaging in the isotropic molecular medium.

This work was continued in Saclay during the thesis of Willem (Boutu
[12]), who developed a new phase measurement setup in order to do the ex-
periment with aligned molecules. His work and this thesis overlapped by one
year and a large part of the results presented here have been obtained con-
jointly.

The Aim and Outline of this Thesis

This work thus started in 2006 in an environment of great scientific perspec-
tives and bright ideas that were already in the air, but rather little hard exper-
imental evidence. The principle aim of this thesis was thus to do measure-
ments that would help to assess and improve the existing models and to ob-
tain truly experimental tomographic images of electrons bound in molecules
based on a much reduced set of assumptions. The group in Saclay is one of the
few that are able to measure the spectral phase of the high harmonic emission
— an observable that had proved extremely valuable in the past and had so far
barely been exploited in the experiments on HHG in molecules.
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Chapters 1 and 2 give an overview of the theoretical and experimental
tools, respectively, at the base of attophysics in general and used in this work
in particular. The following chapters are essentially complements to the pa-
pers found at the end of the manuscript, describing in more detail the theoret-
ical bases, experimental conditions and data analysis as well presenting more
experimental data not discussed in the papers. We have tried to repeat as lit-
tle as possible the content of these papers but only briefly summarize their
main results. Their reading is thus highly recommended before reading the
corresponding part of the chapter.

The third and largest chapter of this thesis will present experiments in the
self-probing scheme. First, measurements of the recombination dipole matrix
element for aligned CO, molecules will be discussed. This is a full account
of the content of paper I, reporting the measurement of a spectral phase jump
that provides new experimental evidence for destructive quantum interfer-
ence in HHG. The control of this quantum interference for attosecond pulse
shaping is demonstrated and possible applications of coherent control in the
XUV and attosecond domain are discussed. Measurements of the same kind
are then presented for N, where the interpretation of the dipole matrix ele-
ments turned out to be much more difficult. In paper II, we invoke a contribu-
tion of a lower lying orbital to HHG that is maximum when the molecules are
aligned perpendicular to the driving laser field. Simultaneous ionization of
two orbitals in fact corresponds to the creation of a hole in the molecular ion
evolving with 1.5 fs period. The data analysis is then pushed further towards
molecular orbital tomography, main subject of paper II.

In a second part of chapter 3, the self-probing scheme is applied to the
probing of nuclear dynamics. Using a polarization-resolved detection scheme
of high harmonics from aligned N; we detect with greatly enhanced con-
trast rotational wave packet dynamics, which are at the basis of the molecule
alignment technique used in all our experiments. This work is the subject
of paper III. Much faster dynamics are studied in paper IV, commented at
the end of the third chapter. Here, we apply the PACER (probing attosec-
ond dynamics by chirp encoded recollision) technique, developed by (Baker
et al. [5], Lein [109]) to trace proton dynamics in molecular ions, and study
the spectral phase of the high harmonic emission as observable. The theoret-
ical studies, essential to the results discussed in this chapter have been done
in close collaboration with the group of Richard Taieb, Alfred Maquet and
Jérémie Caillat at the Université Pierre et Marie Curie, Paris. The develop-
ment of the ‘self-probing” experimental setup as well as the measurements for
paper IV have been done in collaboration with the group of Leszek Frasinski
at the University of Reading (now at Imperial College London). The experi-
ments for paper III have been obtained in collaboration with the group of Eric
Constant at CELIA Bordeaux.

Chapter 4 then turns to experiments in the XUV-ionization scheme, sub-
ject of paper V. Ionizing N> molecules with ultrashort XUV pulses generated
by HHG in argon, we measure the phase of the two-photon XUV-IR photo-
ionization matrix element. An auto-ionizing excited state of N, resonant with
harmonic 11 is shown to lead to a phase jump. The relation of this pertur-
bative two-photon measurement to a direct measurement of the phase of the
single-XUV-photon ionization dipole matrix element, which has yet to be rig-
orously studied, is discussed. Equivalence between the two would allow an
interpretation in terms of a time-delay imposed by the resonant photoioniza-
tion channel on the ejected photoelectrons. These experiments have again
been done together with the CELIA Bordeaux and for the relevant theory, we
worked with the Université Pierre et Marie Curie, Paris.

Chapter 5 presents experiments unrelated to molecules: the study of HHG
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in lowly ionized ablation plasma plumes. This medium had been reported to
yield intriguingly high XUV generation efficiencies and we teamed up with a
leading group of this field, lead by Tsuneyuki Osaki at INRS Montréal, to do
the first temporal characterization of this source. Part of the results, the mea-
surement of an attosecond pulse train, are subject of paper VI. For all ablated
target materials, we could show that the XUV emission is directly laser driven
and thus presents an envelope of femtosecond duration. The conversion effi-
ciency was, however, not as high as reported before. We attribute this to the
lower available laser intensity for HHG in our experiments.

Finally, the manuscript ends with general conclusions drawn from the
work done during the three years of this thesis, together with an outlook on
future developments.



CHAPTER 1

THEORETICAL TOOLS FOR ATTOSECOND
PHYSICS

We will make use of a number of theoretical tools essential to attophysics, ele-
ments of which will be described in this chapter. After a short introduction of
the concept of a wave packet, essential to the physics describing small objects
with rapid dynamics, we present the basics of the description of electrons in
atoms and molecules — first in the static nuclear potential landscape only, and
then in a time-dependent potential, created when a strong oscillating laser
field is added to the binding potential. For infrared laser wavelengths, we
focus on the process of high harmonic generation, which is at the heart of
all the experiments discussed in the following chapters. Finally, we consider
the presence of an high-frequency XUV field alone or in combination with an
infrared laser field to discuss the principles of XUV photo-ionization. This
process is used to characterize the attosecond light pulses generated via HHG
in chapters 3 and 5 and is itself under study in chapter 4.

RESUME DU CHAPITRE

Nous allons utiliser un certain nombre d’outils théoriques essentiels pour la
physique attoseconde et dans ce chapitre nous allons en introduire quelques
bases. 5i on étudie des objets petits et rapides — comme les électrons dans des
atomes ou des molécules ou bien des impulsions de lumiere — il sera toujours
avantageux de les décrire comme des paquets d’ondes, i.e. comme des super-
positions de composantes spectrales. Nous décrivons les propriétés les plus
importantes des paquets d’ondes au début de ce chapitre et détaillons les ex-
emples de la lumiere se propageant dans le vide ainsi que le cas d’un électron
libre.

Si I’électron se trouve dans un potentiel formé par le(s) noyau(x) d’un
atome / molécule, les états qu’il peut prendre et qui seront donc des
éléments de base naturels pour construire des paquets d’ondes changent dras-
tiquement. Nous introduirons donc les bases de la description des états
électroniques stationnaires dans les atomes et les molécules, I'importante no-
tion des orbitales ainsi que leurs symétries.

Pour “faire” de la physique attoseconde, c’est-a-dire observer et controler
les électrons dans les atomes et molécules, nous allons utiliser le champ
électrique de la lumiere laser. Nous allons donc ensuite étudier théoriquement
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la dynamique électronique dans et autour d’un atome / molécule induite par
un champ laser qui s’ajoute au potentiel atomique / moléculaire.

Pour des fréquences laser infrarouges, nous nous concentrerons d’abord
sur le processus de la génération d’harmoniques et ses trois étapes: ionisa-
tion par effet tunnel, propagation d’un électron (quasi-)libre dans le contin-
uum, et finalement recombinaison avec I’état fondamental. La description
classique — ot1 les premiére et derniére étapes n’apparaissent que comme des
événements ponctuels libérant ou capturant I'électron, et la deuxiéme étape,
comme la trajectoire classique d’un électron — donne déja une assez bonne
description du processus et des propriétés de la lumiére émise. La descrip-
tion complétement quantique ajoute ensuite d’importantes notions comme
I’élargissement latéral du paquet d’ondes électronique dans le continuum
di a la diffusion quantique ou I'image de la recombinaison comme une in-
terférence entre le paquet d’ondes du continuum et I’état lié. Cette idée est
au coeur du schéma d’auto-sondage qui donne le titre au chapitre 3. Finale-
ment, en faisant I’approximation de phase stationnaire, on retrouve la notion
des trajectoires électroniques qui sont maintenant des trajectoires quantiques
dominantes.

Dans une derniere partie seront traités les électrons des atomes et
molécules en présence d'un champ laser de fréquence élevée telle que
I’énergie d’un photon est suffisante pour amener un électron de valence
dans le continuum. C’est le cas des photons XUV produits par génération
d’harmoniques. Nous allons voir que le paquet d’ondes électronique émis
sera décrit en amplitude et phase spectrale comme une réplique du pa-
quet d’ondes optique avec un filtre ajouté par I'élément de matrice dipo-
laire décrivant le processus de photoionisation. Si de plus un champ laser
infrarouge est présent, il y a la possibilité de photoioniser par des proces-
sus a deux photons et deux couleurs — ce qui est a la base de nos techniques
de caractérisation d’impulsions attosecondes. Les équations essentielles pour
comprendre ces techniques seront donc dérivées et nous le ferons par deux ap-
proches différentes. L'une se base sur I’'approximation du champ fort et nous
allons considérer le champ infrarouge comme une porte de phase qui module
la phase spectrale du paquet d’ondes électronique émis lors de I'ionisation par
I'impulsion XUV. La deuxiéme approche utilise la théorie des perturbations de
deuxieme ordre pour calculer directement les éléments de matrice de la tran-
sition a deux photons. La phase de ces éléments de matrice a deux photons
apparaitra comme observable, ce qui n’était pas le cas dans le résultat de la
premiere approche. Ce fait est pertinent pour les expériences discutées dans le
chapitre 4, ot nous avons effectivement mesuré cette phase. L'interprétation
physique de cette observable implique donc une compréhension théorique
approfondie de son origine. La discussion de cette question marquera la fin
de ce chapitre.

1.1 Wave Packets

Wave packets are an extremely useful concept to describe objects localized in
space and time, arising from the superposition principle for the solutions of
the linear differential equations describing these objects. If traveling waves are
solutions then so is a superposition of them, which is called a wave packet. A
wave packet has a non-negligible amplitude only during a short time/space
span where all its components are in phase. It can be written as a complex
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amplitude that is a function of time, f, and space, r:
a(r,t) = f dk a(k)eilkr-«(1] (1.1)

where we have used traveling plane waves as components with the wave vec-
tor k, complex spectral amplitudes a(k) and angular frequencies w(k). Obvi-
ously, at f = 0, this corresponds to a spatial Fourier transform and for purely
real-valued a(k), the wavepacket is Fourier limited, i.e. its spatial spread, Ax,
is minimized for the bandwidth Ak given by the width of a(k). The way w
depends on k is called the dispersion relation and is decisive for the temporal
evolution of the wave packet.

Every component of the wave packet travels with a phase velocity
vp = w(k)/k into the direction pointed by k, i.e. different components gen-
erally travel at different velocities except when w(k) is linear in k. In a small
range around k., a linearization may approximate cw (k) :

W) =k +(52) (k-ko) 12)
ok k.
Inserting this into equation 1.1, yields
a(x,t) = ellker—wike)t] f dka(k)ei(k—kc)[x—(aw/ak)kct] ] (1.3)

One can then identify a carrier wave with angular frequency w(k.) traveling
with the phase velocity vp = w(kc)/kc, and an envelope |a(x, t)|, moving with
the group velocity vg = (dw/dk); . The shape of the envelope does not change
during propagation.

Considering larger regions of wave vectors k, one can in general no longer
neglect higher order terms in the dispersion relation. For different narrow
k-slices, the group velocity will then be different and the wave packet will
broaden during propagation. This effect is referred to as group velocity disper-
sion. To quantify it, consider an initially Fourier limited wave packet with a
bandwidth Ak around k. or correspondingly Aw around w,. Two wave packet
components on opposite edges of the bandwidth will take different times to
propagate over a certain distance L due to their different group velocities.
These times, 7 = L/vg, are called group delay and are defined relative to the
zero of the f-axis. The temporal duration of the wave packet during its prop-
agation will increase by

) (2
ow we=Dw/[2 ow wetAw /(2
9%k
~L|l—=| Aw. 1.4
i), M (14

The quantity relevant to the wave packet shape is the variation of group de-
lay in its spectrum. This is quantified by the group delay dispersion (GDD),
L |82k/8w2|w with the unit [s?], or the GDD per unit propagation length,

|82k/8w2|w , commonly referred to as group velocity dispersion.

From here on, the equations are given for one dimension only for the sake of clarity of no-
tation — to extend them to three dimensions, the derivatives d/dk are simply to be replaced by
V-
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Figure 1.1. Effect of different spectral
phases on the wave packet. ¢(w) =0 (a),
9() o< (w - we) (b) and

¢(w) o« (w - we)? (c). Upper panels show
the wave packet components, e+ ?()
with a small offset between them. Lower
panels show the total amplitude, a(t) of the
wave packet formed by these components
with Gaussian spectral amplitudes, a(w).
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1.1.1 Time-Frequency Properties

The same can be re-formulated by writing the wave packet as a function of
time, as seen from the perspective of an observer at the fixed position L:

a(t) = f dk a(k)ellFL-w®)]
:fdwa(w)ei"”(“’)e_i“’t, (1.5)

This is an w — t Fourier transform, and the term k(w)L can be regarded as a
phase ¢(w) added to the spectral amplitudes, i.e. as the spectral phase of the
wave packet. A ¢(w) linear in w, i.e. ¢(w) = Tw, corresponds simply to a
shift in time of the wave packet a(t) by . Now, the group delay and GDD can
be defined as properties of the wave packet at a fixed point in space:

Tg(w) = % (1.6)
GDD(w) - aziu(fgl) (1.7)

Note, that these definitions are completely equivalent to the ones made above.
This list can obviously be continued to include higher order terms in the spec-
tral phase but looking at the effect of the first two orders on the temporal
profile already captures the essential points. Figure 1.1 shows three proto-
typical cases: Starting from a Fourier-limited wave packet with ¢(w) =0, a
linear spectral phase, ¢(w) = T(w — w.), is added. This leads to a constant
group delay, 75 = 79 for all components and consequently the whole wave
packet is shifted in time without broadening. The term Thw. adds a total
phase shift, so the so called carrier-envelope phase changes. For the case of a
quadratic spectral phase, ¢(w) o< (w - w¢)?, the group delay is frequency de-
pendent: 75 o< 2(w - wc). Different groups of modes are in phase at different
times, leading to a time dependent instantaneous frequency of the total wave
packet, a(t), called a chirp. In the considered case, the group delay vanishes
for w = w, so the wave packet envelope broadens but its peak is not shifted
in time. Phase terms of higher order than 2 start inducing asymmetry to the
temporal envelope of the wave packet.

1.1.2 Optical Wave Packets

Optical wave packets, i.e. light pulses, are built of traveling plane waves,
which solve the electromagnetic wave equation for an isotropic, non-magnetic

medium:
e 92

2or
where ¢ is the dielectric constant and c is the speed of light in vacuum. These
solutions have the dispersion relation

E(r,t) = V2E(r,t), (1.8)

w(k) = n(’,‘() 1.9)

with the refractive index n(k) = y/e(k). The wave packet amplitude given
by equation 1.1 is one component of the complex electric field and |a(r, t)|? is
proportional to the intensity. The phase and group velocities are then found

to be: -
C C n
Z)pzi vg:n(k)(l_n(k)ak) (110)
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When the refractive index is independent of k, which in particular is the case
in vacuum with n = 1, the two velocities are the same and the optical wave
packet propagates without changing its shape. Group velocity dispersion is
thus a medium property in the optical case and GDD is the distortion of a
wave packet after traversing an optical element. In most transparent media
in the visible spectral region, 3’k/dw? > 0, i.e. the group velocity decreases
with increasing angular frequency. This ‘normal dispersion’ thus leads to a
positive chirp.

1.1.3 Electron Wave Packets

Free electron wave packets (free EWP) are put formed of traveling plane
waves solving the Schrédinger equation for a free electron:

2

ih%tp(r,t) = ( v+ Vo) W(r,t), (1.11)

- 2me

with the reduced Planck constant #, the electron mass m, and some constant
potential Vj. These waves, for w > 0, have the dispersion relation

hk?
2Me

w(k) = (1.12)
This is a pleasing result as it recovers the classical relation between kinetic
energy, Eyin, and mechanical momentum, p, with de Broglie’s Ey;, = fiw and
p = Tik. The wave packet amplitude given by equation 1.1 is the electron wave-
function. The phase and group velocities are then given by:

ik Lk
C 2me C

v . (1.13)
P Me
An electron with the mechanical momentum p obviously moves with the
group velocity vg. The group velocity increases with k even in vacuum, i.e.
group velocity dispersion is intrinsic to the physics of electrons and their

wavefunctions broaden during propagation.

1.2 Electrons in Atoms and Molecules

As discussed in the introduction chapter, attophysics is concerned with elec-
trons in atoms and molecules. The states these electrons can take are very
different from those of the free electron. This is due to the presence of the
spatially varying potential, V(r), felt by the electron, replacing Vp in the
Schrodinger equation 1.11.

As long as the Hamiltonian, H = —%Vz +V(r), is time-independent, one
can easily show that the solutions take the form y(r,t) = e iEfpr(r) and the
Schrodinger equation for ¢(r) writes

Egr(r) - (—%vz . V(r))gbg(r). (1.14)

Here and in all this thesis, atomic units (%2 = ¢ = me = 47¢( = 1) are used except
stated otherwise — refer to Appendix A for the translation to the SI system.
Equation 1.14 takes the form of an eigenvalue equation for the Hamiltonian
‘H with eigenstates ¢r and eigenvalues E, identified with the total energy of
the electron. Stationary electron wavefunctions are thus eigenstates of the
Hamiltonian describing the system. Besides the mathematics of equation 1.14,
a physical electron wavefunction has to be square integrable, i.e. [ dr|<[>(r)|2 is
finite.

11
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Figure 1.2. Arbitrary one-dimensional
potential with a bound state of energy Ey,
and a continuum state of energy Es.. For
bound states, the wavefunction has to be
square integrable which allows states to
exist only for discrete E < 0, whereas for
continuum states (E > 0), all solutions for
continuous E are allowed.
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1.2.1 Bound and Scattering States

Bound states are defined as square integrable eigenstates of the Hamiltonian. It
is this physical requirement that allows only those discrete energy eigenval-
ues E that come with a square integrable eigenstate. (Cohen-Tannoudji et al.
[20]) demonstrates that for any potential that approaches zero (or any constant
value — which is a mere question of calibration) sufficiently fast for r — oo,
there can only be discrete bound states and their energy is negative. For a
potential like the one shown in figure 1.2, in the region where V(x) ~ 0 one
approaches the situation of a free particle as described by equation 1.11, where
the solutions are plane waves, e***, with k = /2(E - V).

For E < 0, the wave vector k is imaginary, and one is easily convinced that
for the solution to be square integrable, it has to drop exponentially to zero for
X — o0, i.e. go as eX* for x < 0 and e™** for x > g, with x = v/-2E. The solu-
tion within the potential well, governed by the precise shape of the potential
V(x), has to be continuously connected to these exponential functions, which
is always possible on one side but on the other side only for the said discrete
E.

For E > 0, k is always real-valued, and thus the eigenstates approach plane
waves as x — oo. It is hopeless to find square integrable eigenstates like
this, but as seen in section 1.1.3, a superposition of such states, i.e. a wave
packet, can be square-integrable and thus can represent an electron wave-
function. All eigenstates with continuously varying energies E > 0 are thus
physically valid. These eigenstates of the Hamiltonian with positive energy eigen-
values are referred to as continuum states or scattering states. An electron cannot
be in a pure scattering eigenstate but only in a superposition, which is not
stationary. In appendix B, an analytic solution of the Schrodinger equation
1.14 for a finite square well potential is demonstrated for energies E > 0. It
is found that the plane wave solutions for the free electrons are modified by
E-dependent phases, i.e. the scattering states for different energies will have
different phases. This is a general property of scattering states and plays a
crucial role in papers I and II.

1.2.2 Atomic States

An electron in an atom interacting with the approximately point-shaped nu-
cleus of charge Z at r = 0 feels a Coulomb potential,

V(r)=-Z/r. (1.15)

Although the Coulomb potential nowhere strictly takes the value zero, the
conclusions of the previous section remain valid. It is one of the few poten-
tials, for which the Schrédinger equation 1.14 can be solved analytically and
the procedure — at least for the bound states — is found in virtually any quan-
tum physics text book (Cohen-Tannoudji et al. [20], Fick [43]).

Bound states ¢,,,,, associated with energy eigenvalues E, = —-Z2/(2n?),
and characterized by three quantum numbers n ¢ N*, I = 0,...,n -1 and
m=—-l,...,1, can be written as a product of a radial and an angular part:

Puim (T) = Rnl(r)ylm(gr (P) . (1.16)

The radial part is of the form R,;(r) o< e”’/n (21’/71)1Lil_+11_1 (2r/n), where the
Lilfll_l(Zr/n) are the associated Laguerre polynomials. The angular part,
Yim (6, @) o< P/"(cos6)e'™?, are the spherical harmonics, i.e. the eigenfunctions
of the angular part of the Laplace operator, A = V2, in spherical coordinates.

Here, P/"(cos 0) are the associated Legendre polynomials.
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The precise functional form of all these elements combined into ¢,,;,,, is not
easy to see but the quantum numbers already tell about the important qual-
itative properties: n — 1 gives the total number of nodes and ! is the number
of non-centrosymmetric nodes, i.e. planes or cone-shaped nodes, all crossing
in ¥ = 0. The numbers | = 0,1,2,3,... are also associated with the letters s,
p, d, f,.... Non-centrosymmetric nodes can obviously have different possible
orientations in three-dimensional space, r. We, or some external field or close
particle, can select a preferred direction and m denotes the orientation of the
nodes relative to this direction. For example, a p-electron-state will have n — 2
centrosymmetric nodes and one nodal plane, which can be perpendicular to
the x,y or z-direction. There are thus three p-states: px, py and p,. Figures 1.3
and 1.4 show some electron wavefunctions for the hydrogen atom, i.e. Z =1,
as given by equation 1.16 and including normalization.

These results are only exact for single electron atoms since in a multi-
electron atom, the potential seen by the different electrons is no longer given
by equation 1.15 — the spherical symmetry can be significantly perturbed and
the strength of the interaction with the nucleus reduced due to the shield-
ing by other electrons. Of course one could include the electron-electron-
interaction in the Hamiltonian as };.;1/rj, but then analytic solutions to
equation 1.14 become impossible and even a numerical solution becomes ex-
tremely costly due to the high dimensionality.

For sufficiently simple systems one can model the shielding and find
pseudo-potentials for a single active electron, which typically are /-dependent
(Muller [150]). This is easy to comprehend: The higher /, the more nodes are
crossing at r = 0, i.e. the further away the electron density is from the nu-
cleus and the stronger these electrons are thus shielded from the nucleus. An
s-electron, on the other hand, has its ¢,,0o()-maximum at r = 0 and is less af-
fected by the presence of its neighbors. This I-dependent shielding is also the
reason why in multi-electron atoms, states of equal n and different I are no
longer degenerate as in the one-electron case.

In the general case, one applies elaborate numerical techniques, which
are at the core of the domain named quantum chemistry. One of the sim-
plest of these is the Hartree-Fock (HF) method, sometimes also called self-
consistent-field method. Here, the basic assumption is that the electron-
electron-interaction };.;1/r;; can be replaced by a sum of potentials, each
for one electron i, exerted by the mean field created by the remaining ones:
> Viel(ri). Then, the n-electron wavefunction, ¢(ry,...,7,), of the atom can be
approximated by an antisymmetrized product of one-electron wavefunctions,
¢(r;), referred to as orbitals. Starting from a basis of one-electron wavefunc-
tions?, linear combinations of the basis elements for each one-electron wave-
function are varied and at each step the orbital energy, i.e. expectation value of
the single-electron Hamiltonian, is determined. The variation is then contin-
ued until the energy is minimal. This method, implemented in the GAMESS
code package (Schmidt et al. [178]), has been used to calculate the theoretical
electron wavefunctions for the reference atoms and for the molecules used in
papers I and II.

Effectively, orbitals in a multi-electron atom have modified R,; () as com-
pared to the solutions 1.16, whereas the Y}, (0, ¢) are barely affected. This
means that the main symmetry properties remain intact and the quantum
numbers remain a valid concept.

Scattering states for the Coulomb potential 1.15 can again be written as a

2This could in principle be any complete basis set and the ¢;,,, of the one-electron atom
(equation 1.16) should be a good choice. In practice, often another more or less elaborate and at
least approximately complete basis set is chosen, so as to make the iterations converge faster.
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Figure 1.3. Electron wavefunctions of the

hydrogen atom. Upper: Is state, i.e.
¢100(x,y,z = 0). Middle: 2s state, i.e.
¢200(x,y,z =0). Lower: 2py state, i.e.
4)211(X,y,2 = 0),
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Figure 1.4. Electron wavefunctions of the

hydrogen atom. Upper: 3s state, i.e.
¢300(x,y,z = 0). Middle: 3py state, i.e.
¢311(x, ¥,z = 0). Lower: 3dyy state, i.e.
¢322(x,y,z = 0). Note, that the x and
y-scales are changing.
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product of a radial and an angular part:

Prim (1) = Ra (1) Y1(0, @), (1.17)

where k is continuous and the associated energy eigenvalue is E = k?/2.
The quantum numbers | € IN*, and m = -I...,] remain discrete. Ry (r) o<
ek (2kr)! 1Fi(I+1+iZ/k; 21 + 2;2ikr) takes a rather complicated form, with
1Fi(a;b;c) being the confluent hypergeometric function. For large 7,
Ry (r) 750 sin(kr — 51 +6;)/r, i.e. k is identified as the asymptotic wave vec-
tor of a spherical wave, modulated by the spherical harmonics Y, (6, ¢). The
functions ¢y, are referred to as partial waves, because they are a set of (in-
finitely many) degenerate eigenfunctions to the energy eigenvalue E. The
phase 9, = arg[T'(I +1+iZ/k)] is referred to as the partial wave (radial) phase
shift and depends on k and hence on the energy E.

In practice, one is often concerned with an electron moving in the contin-
uum in a certain direction with velocity v = k (in atomic units, cp. equation
1.13), which is described by a superposition of (infinitely many) partial waves

¢klm:
o | .
Pp(r) o< X ie Y (Bk, k) Pram (1) - (1.18)

I m=-I]
Here, Y}, (6k, ¢x) denotes the complex conjugate of the spherical harmonic
and gives the probability amplitude for an electron in state ¢, to move into
the direction k/k. The phase factor e takes care that the boundary condi-
tion ¢ ()75 €*" be obeyed. The wavefunction then has a total energy de-
pendent phase i, given by the combined influence of the partial wave phase
shifts ¢;.

These analytic equations are again only valid for a single electron in a
Coulomb potential — computing scattering states for multi-electron atoms is
possible only numerically. This still poses important problems today and most
quantum chemistry codes are optimized for bound states in that they use ba-
sis sets of spatially very localized functions. If a pseudo-potential is avail-
able, finding scattering states is ‘only” a matter of numerically integrating the
Schrodinger equation, as was done for instance by (Worner et al. [216]).

1.2.3 Molecular States

In molecules, the N nuclei can interact with each other and with each of the n
electrons, and in general the Hamiltonian writes:

N1 LA 1 ZyZ Z
H=Y - V243 ov2e Yy = Y S (g9
=1 2Ma i 2 i<i Tij  a<p Tap in Tin

Here, the first two terms are the kinetic energy operators for the nuclei with
masses M, and for the electrons, respectively, whereas the remaining three
terms describe the potential, V(ry,1;), felt by the nuclei at positions 7, and
the electrons at positions ;. Obviously, the number of degrees of freedom,
and hence the dimensionality of the problem of solving the Schrodinger
equation quickly becomes overwhelming. Yet, the quantum chemistry com-
munity has had impressive success in describing molecular properties (Hall
[68], Lennard-Jones [113], Schneider and Merkel [179], Szabo and Ostlund
[193]) by making smart approximations and great computational efforts.

The Born-Oppenheimer Approximation (BO) is one of the fundamental
approximations made. The huge mass difference of nuclei and electrons al-
lows in most cases to consider the positions of the nuclei to be fixed with
respect to the electronic movement. The kinetic energy of the nuclei is thus
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crossed out of the Hamiltonian 1.19 and the fourth term becomes just a con-
stant depending on the fixed nuclear coordinates. The total wavefunction
of the molecule can then be factorized into a nuclear and an electronic part:
¥ = ¢(r,) (1)) x(r2). The subscript on the electronic part, ¢, denotes that it
obviously still parametrically depends on the — now fixed — nuclear coor-
dinates in that the electrons move in the potential landscape given by the
positions of the nuclei. For one such set of nuclear positions, suppose the
Schrodinger equation (with the reduced Hamiltonian) can be solved to obtain
the electronic wavefunction ¢(,,)(r;) together with the corresponding energy
eigenvalue E(, ). Repeating this computation for a range of nuclear config-
urations, (), yields en electronic potential — referred to as the BO-potential
VBo(7a) = E(y,)(r) — and the electronic wavefunctions for each (ry). The nu-
clear part, x(r), of the wavefunction now obeys the Schrodinger equation
with the Hamiltonian (Fabre [41]):

N
1 2
Hne = Z - Va+ Veo(ra) - (1.20)
o 2M, ®

We computed the eigenstates of this Hamiltonian and superposed them to
describe the dynamics of H3 and D3 molecular ions in paper IV.

Having split off the nuclear degrees of freedom, one is still concerned with
a multi-electronic wavefunction. The next level of approximation is thus again
the HF approximation, i.e. replacing the third term in the Hamiltonian 1.19
by ¥; Vfl(rl-), which allows factorization of the multi-electron wavefunction
into single-electronic orbitals, ¢(r;). The HF method, introduced in section
1.2.2, can then be applied to find molecular orbitals (MOs). Computing first
the atomic orbitals and then combining these, each centered on their respec-
tive nucleus, the energy is minimized for varying combinations of atomic or-
bitals. Sometimes, the step of calculating atomic orbitals is omitted and func-
tions out of another suitable basis set are directly combined on the different
atoms to find the MOs. These other basis sets are chosen to be of a more

‘computationally friendly” form — typically with Gaussian radial dependence,

I \—ar

i.e. o rle™ instead of the e *"-dependence of real atomic orbitals — which
speeds up calculations significantly although one might need more basis el-
ements. This is the method we applied in papers I and II and for the MOs
shown in figures 1.5 and 1.6. The orbital of highest energy that is still occu-
pied by an electron in the electronic ground state of the molecule (which is
the one found by the HF algorithm), is called lowest occupied molecular orbital
(HOMO). Counting down towards occupied orbitals with lower energies, one
speaks of (HOMO-1), (HOMO-2), and so forth. The energetically lowest unoc-
cupied molecular orbital is abbreviated (LUMO).

Linear Combination of Atomic Orbitals (LCAO) is the extremely useful
and illustrative concept of constructing molecular orbitals by linearly combin-
ing atomic orbitals centered on the respective atoms. It was first proposed as
early as 1929 by (Lennard-Jones [113]) and further generalized by (Roothaan
[169]). It is applied in the HF method and, in principle, the basis set that
should work best for the HF scheme is the set of all atomic orbitals of all atoms
of the molecule. But even with a much reduced basis set, one can obtain at
least qualitatively correct results.

Consider a molecule made up of two atoms of the same element — say ni-
trogen, N, the molecule relevant to papers II, IIl and V — and set the distance
of the two nuclei to R with the inter-nuclear axis defining the x-direction. The
reduced basis set to be used for the ‘quick and dirty” LCAO are all occupied
atomic orbitals, y(r), but combining only (r) of the same kind to progres-
sively build MOs: ¢(r) = cap(r + 2R/2) + cpp(r— &R /2). Since the molecule

15
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Figure 1.5. Projection of N, orbitals onto
the x-y-plane. The inter-nuclear axis is
along the x-axis and the inter-nuclear
distance is R = 2 a.u.. Upper: ¢, (r) — the
HOMO of N,. This MO is dominated by a
(2p, — ¥2p, ) combination. Middle: One of
the two degenerate ¢y, (r) — the HOMO-1
of N,. This MO is dominated by a

(2p, + Y2p ) combination. Lower: ¢oq, (r)

— the HOMO-2 of N. This MO is
dominated by a (s — o) combination.
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is symmetric, so must be the electron probability density, ¢*(r)¢(r). It fol-
lows that cy = +cg. From every pair of atomic orbitals, an even and an odd
molecular orbital can be formed. The modulus of the coefficients is then
simply given by the normalization: cy/g = +1/\/2(1+5), with the overlap
S=[dry*(r+&R/2)yp(r-xR/2).

In the nitrogen atom with its seven electrons, following Pauli’s principle?,
the occupied atomic orbitals are: (1s)? (2s)? (2p)3, where, according to Hund’s
rule?, the last three electrons occupy the 2py, 2py and 2p, orbitals, respectively.
The simplest molecular orbitals resulting from these are thus®:

P10y = P15 + Pis, (1.21)
P10 = P15 — P1s, (1.22)
P20, = P25 + P25, (1.23)
$20, = P25 — P25, (1.24)
Py = Y2p,, +P2p, 0 (1.25)
P30, = Y2p_— P2p_ - (1.26)

Here, the greek letters ¢ and 7t denote the rotational symmetry about the
inter-nuclear axis of the MO: o-orbitals are completely invariant against rota-
tion whereas 7r-orbitals are anti-symmetric against rotation by 180°. In other
words: When viewed along the inter-nuclear axis, c-orbitals look like an s-
atomic-orbital, whereas 7r-orbitals look like a p-atomic-orbital. The subscripts
g, for gerade (even), and u, for ungerade (odd), stand for the parity of the MO:
If the MO is symmetric against ¥ — —r, with r = 0 in the center of symmetry of
the molecule, the MO is classified as even, if it is anti-symmetric, it is classi-
fied as odd. This obviously only makes sense for molecules for which a center
of symmetry exists — for Ny, it is just half way between the two nuclei on the
inter-nuclear axis. The different types of orbitals are then numbered according
to increasing energy.

As a general rule, the energy of each type of MO (¢ or 1) constructed of
orbitals of the same atomic shell, increases with the number of inter-nuclear
nodes. The relative order of the o and 7r-orbitals cannot be predicted readily —
one has to calculate the expectation value of the single-electron Hamiltonian
H= —%V% + Viel(rl-) +V"(r;), where V"°(#;) denotes the last two terms of equa-
tion 1.19 for electron i and for a fixed nuclear configuration (r,). The MOs 1.21
to 1.26 are already ordered by increasing energies so obtained. The HOMO is
obviously a linear combination of 2p-orbitals oriented along the inter-nuclear
axis (i.e. their nodal planes are parallel to the y-z-plane), the HOMO-1 is
built of two 2p-orbitals oriented perpendicular to the inter-nuclear axis, and
so forth. The HOMO-1 is degenerate: it can be made up of two 2py, or two
2p, orbitals. The ground state electron configuration of the nitrogen molecule
N> is thus: (10'g)2, (10y)?, (20g)2, (20w)?, (1710)4, (30'g)2. A more precise cal-
culation with the HF method shows that the overall shape of the orbitals is
very well described by this construction, but for quantitatively satisfactory re-
sults, the basis set has to be enlarged: for o/ r-orbitals, one needs to include
all atomic orbitals of o/ symmetry with respect to the internuclear axis. In-
deed, the No-HOMO, shown in figure 1.5, is found to be ‘contaminated” by
some 2s admixture, so the simple combination 1.26 should be replaced by

3No two electrons can occupy states with the same quantum numbers 7,/,m and s in an atom,
where s = +1/2 is the spin of the electron. Each atomic orbital ,,;,, can thus be occupied by a pair
of electrons with opposite spins.

4To minimize the total energy, the multiplicity 25 + 1, where S is the sum of all electron spins
in the atom, has to be maximum.

5The normalization factors are ignored here for clarity.
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P30, = (P2p_ — P2p ) = (P25 + P2s). Such admixtures are much less important
for the HOMO-1 and HOMO-2, also shown in figure 1.5. They agree very
well with what is expected from the combinations 1.25 and 1.24, respectively.
For molecules with more than two atoms (possibly of different elements),
the same principles apply but one has to use more atomic orbitals to construct
MOs, which then spread over the entire molecule, not just two adjacent atoms.
It is thus less simple to develop a “quick and dirty” picture for — say carbon-
dioxide®, CO,, the molecule relevant to paper I - in the way just done for Ny.
One can, however, interpret the results of a HF calculation for CO, with its 20
electrons in total, which yields the electron configuration (10'g)2, (10w)?, (ZUg)Z,
(Bog)?, (20u)%, (40g)?, (Bow)?, (171u)*, (1714)?. The three energetically highest or-
bitals are shown in figure 1.6. The HOMO is the second 7r-orbital to occur and
thus has one internuclear node. For this structure to appear, it must be domi-
nated by a 1/Jg)py/z - 1/12)”2 contribution, with oxygen atomic orbitals © — which

is confirmed by the coefficients found by the HF algorithm. The HOMO-1, as

the first rr-orbital, has no internuclear nodes and is built approximately like

1p§)p Lt 1/)2Cp Lt gb% T The HOMO-2 is the fourth o-orbital made up from n = 2
y/z y/z y/z

atomic orbitals’, hence the three inter-nuclear nodes. It turns out to be a fairly
complicated combination® of ¢20pX - l[J?S - l/JZCpX - 1/120S + tpzopx.

Scattering states of electrons in molecules, are, for the same reason as for
multi-electron atoms, extremely difficult to compute. The applied methods
have been developed by the quantum chemistry community for a quite long
time and are based on advanced scattering theory, as for instance described by
(Gianturco and Lucchese [57], Lucchese et al. [121]). The knowledge of proper
scattering states turns out to be of great importance for attosecond physics
with molecules, as will become clear in the course of this thesis, and several
groups bringing together specialists on laser-matter interaction and quantum
chemistry are working on this subject. So far, only few authors have reported
results (Le et al. [102, 103], Walters et al. [215]).

1.3 Electron Dynamics

So far, the considered electrons have only felt a static potential. Speaking of
attosecond physics, one of course thinks of extremely rapid dynamics, induced,
and in the ideal case controlled, by a rapidly varying potential such as the one
of a laser field. The theoretical tools most important for attophysics are thus
the ones that help solve the time-dependent Schrédinger equation (TDSE):

290 =AY (127)

In general, this is possible only numerically and in the waste majority of cases,
the single-active-electron approximation is adopted. The laser field strengths
typical in attosecond physics and the photon numbers per unit volume associ-
ated with them completely justify the classical treatment of the laser-electron
interaction.

1.3.1 Tunnel ionization

Tunnel ionization is maybe the fundamental process of attophysics as it pro-
vides the extreme non-linearity required to push the limits of temporal reso-

6CO, is a linear molecule: O=C=0.

"The first three MO will most likely be combinations of the 1s orbitals of the three atoms.

8Note that we omit here the exact value of the coefficients found by the HF algorithm and
simply list those orbitals of the basis that contribute significantly with the sign of their coefficient.
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Figure 1.6. Projection of CO, orbitals onto
the x-y-plane. The inter-nuclear axis is
along the x-axis and the inter-nuclear
distance is R = 4.3 a.u.. Upper: One of the
two degenerate $1 ., (r) — the HOMO of

CO,. This MO is dominated by a
(t,bgJ - 472) ) combination. Middle: One of
y y
the two degenerate ¢, (r) — the HOMO-1
of CO,. This MO is dominated by a
(wg) + 1,(J2Cp + 1/’2, ) combination. Lower:
y y y
¢3¢, (r) — the HOMO-2 of CO;. This MO is
dominated by a
(¢] (¢] C (¢] (¢]
(IPZPX - lsz - lprX - lsz + lprX)
combination.
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Energy (a.u.)

Figure 1.7. Potential (1.28) with Zqg = 1
and E=0 (dash-dotted line), E=-0.04 a.u.
(solid line) and E=-0.084 a.u. (dashed line),
corresponding to the barrier suppression
limit for a single active electron in a bound
state with energy -0.58 a.u., marked by the
horizontal dotted line.
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lution into the attosecond regime. This section will not describe tunnel ion-
ization in detail but merely define a parameter range where tunnel ionization
occurs and plays an essential role in the electron dynamics.

When an atom is subjected to a strong electric field, E = XE, the total po-
tential felt by the single active electron writes (in length gauge):

V(x)=Vy(x)+xE, (1.28)

where V(x) is an effective binding potential resulting from the Coulomb po-
tential and the shielding by the remaining electrons. For the following, as-
sume that Vy(x) = —-Zg/|x|, i.e. the remaining electrons shield the nucleus
in a spherically symmetric way and the outermost electron sees an effective
positive charge of Z.¢. As seen in figure 1.7, the electric field lowers the po-
tential on one side and at some finite distance, V(x) falls below the binding
energy, —Ip, of the electron. There is thus a finite probability that the electron
tunnels through the potential barrier into a continuum state. Precisely speak-
ing, the wavefunction of the electron falls exponentially within the classically
forbidden region where V(x) > ~Ip,, but as this region has a finite width, the
wavefunction will have a finite amplitude after the barrier. How much of the
wavefunction tunnels into the continuum obviously depends on the height
and width of the barrier and on the time during which the barrier is lowered.
The two extreme cases are E = 0 when the probability is zero, and a field
strength Egg, that completely suppresses the potential barrier, i.e. V(x) < -1,
everywhere on one side, represented in figure 1.7 by the dashed line. One
then speaks of barrier suppression ionization and the rate at which the electron
wavefunction tunnels into the continuum increases drastically. This case is
reached when the potential barrier maximum at distance xg = \/Zg/E is low-
ered to V(xg) = ~Ip. This directly leads to the field strength and corresponding
intensity of

? IS IX[eV]
Fps= -, Igg=—1-,  Igs[W/em?]=4x10°2L 1.29
BS = 4 BS = 172 ps[W/cm?] = 4 x 72 (1.29)
For the rare gases krypton and argon, where Z,; = 1, this implies

Igsr =1.5x 10" W/cm? and I‘g‘sr = 2.5 x 10" W/cm?. The values in figure 1.7 cor-
respond to those for argon.

As soon as these intensities are approached, the tunnel ionization rate be-
comes significant. Practically, this is possible by focusing a laser, the instan-
taneous electric field of which writes E(t) = XEj cos(wyt), into a gas of atoms.
(Keldysh [91]) defined an adiabaticity parameter, <, as the ratio of the time the
electron would need to cross the barrier and the laser period Ty = 27t/w di-
vided by’ 471. Approximating the barrier width as I,/E and assuming a mean
velocity of the electron of \/T , one finds

wo I
:w/ZI:\}, 1.
=7 2Up (1.30)

where Up = E?/4w} is the ponderomotive potential, i.e. the mean quiver en-
ergy of a free electron in a laser field. For a laser field with strong amplitude
and low frequency, the potential barrier is low during a long time and y « 1.
As long as the laser field remains below Egg, one can thus speak of the tunnel-
ing regime of ionization. If, on the contrary, the laser field is rather weak and
its frequency high, v > 1 and tunnel ionization cannot be efficient. As long as

9This is an arbitrary choice that just simplifies the final formula for « — but it is plausible as it
defines a small fraction of Ty around the laser field maximum, during which the potential barrier
can be assumed to be suppressed sufficiently.
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w < I, only the absorption of several laser photons can transfer the electron
into the continuum and one speaks of the multi-photon regime of ionization. In
the experiments presented in this thesis, a laser of 800 nm wavelength focused
to ~ 10'* W/cm? and atoms or molecules with I, ~15eV are used. This yields
v 51, corresponding to the tunneling regime with a low ionization rate.

The tunneling rate, I', depends on the probability density at the “exit” of
the tunnel. Since within the forbidden region, the wavefunction decreases
exponentially, one can expect an exp[-I,/E]-dependence of the tunneling rate
(with the above estimate of I,/E for the barrier width). A proper calculation
for the Coulomb potential, done by (Ammosov et al. [3], Gamow [48], Gurney
and Condon [65]) leads to a very similar answer: I o< exp[—Z(ZIp)3/ 2/(3E)].

1.3.2 Semi-classical Description of High-order Harmonic
Generation

Virtually any attophysics experiment — the ones presented in this thesis
make no exception — involves the process of high-order harmonic generation
(HHG). Its theoretical description in three steps (Corkum [22], Schafer et al.
[176]), introduced already in the introductory chapter, is probably the most
often used theoretical tool. Even in its semi-classical formulation, it allows
qualitative understanding of the relevant physics and does, in some aspects,
even yield quantitative agreement with the experiment.

In the first step, at some time t;, tunnel ionization leads to an electron being
“born” in the continuum!® with initially zero velocity. From this moment on,
the electron is considered as a classical point charge, and during the second
step one considers the driving laser field, E(t) = Eq cos(wyt) , to completely
govern its evolution. The classical equation of motion is

%(t) = —Eg cos(wot) . (1.31)

The initial conditions are x(#;) = 0 and x(t;) = 0. The second of these is a sim-
plification neglecting the finite distance from the nucleus xp ~ 10 a.u.= 0.5 nm
(cp. figure 1.7) at which the electron is “born”. Although the electron will
follow trajectories leading it only a few nm away from its parent ion, it is not
worth worrying about this, since at this birth instant, the electron has so little
kinetic energy (actually, in this model none at all), that its de Broglie wave-
length is much larger than the “problem’ anyhow. Integration of equation 1.31
then leads to

x(t) = —f}—?) [sin(wqt) - sin(wpti)] , (1.32)

x(t) = % [cos(wot) — cos(wok;)] + % sin(wob)(F=£).  (1.33)
0

Equation 1.33 shows that not for every electron birth time, t;, does the elec-
tron trajectory lead back to the parent ion at x = 0 — the slope of the second
member could dominate the trajectory and the electron just drifts away. For
0 <t < /2wy, however, the trajectory does reach x = 0 again and by nu-
merically finding these roots, one determines pairs of ionizations times, #; and
recollision times ¢,. Obviously, there may be several roots, i.e. recollisions, in
the trajectory corresponding to one t;. We will , however, only consider the
first recollision, because the EWP will spread during propagation (cp. section

10The electrons we are concerned with — the ones that eventually recollide with the parent ion
— are never really ionized because this would mean they remain in the continuum after the process
is over. In fact, they must be considered quasi-bound. It is thus more precise to speak of “birth in
the continuum” instead of ionization.
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Figure 1.8. Classical calculation of ionization and recollision times as a function of the
electron recollision energy, for an 800 nm laser and an intensity of I = 1.2 x 10" W/cm?.
The electric field of the driving laser has a cosine time-dependence, i.e. time zero
marks the field maximum. Full and dashed lines mark the short and long trajectories,
respectively.

1.1.3), also in the direction perpendicular to its motion, thus reducing the im-
portance of the subsequent recollisions. Phase matching effects further reduce
the contribution of longer trajectories to the macroscopic signal measured in
experiments (Antoine et al. [4]).

For every pair (t, f;), the kinetic energy at recollision, J'c(tr)2 /2 can be de-
termined. Figure 1.8 shows a plot of the ionization times, t;, and recollision
times, t;, as a function of the associated electron energy at the instant of rec-
ollision. With every recollision energy, a long (dashed lines) and a short tra-
jectory (solid lines) are associated, which join for the very highest recollision
energy. Electrons are born in the continuum during the first quarter period
of the driving laser. The short trajectories then lead to recollision mainly after
the subsequent laser field minimum (i.e. after Tp/2) and electrons with the
highest return energies recollide at 3T /4, i.e. at a zero-crossing of the driving
laser field. In the last quarter period, the long trajectories recollide.

At recollision, the electrons may recombine to the ground state, which is
the third step of the three-step model. The emitted XUV photon has an en-
ergy of %(t;)?/2 + I,. The highest of these energies turns out to be gmaxwo =
I, +3.2Up, which is the intensity and medium dependent cut-off law, found
empirically by (Krause et al. [97]).

From figure 1.8, one can infer that recollision and thus XUV emission takes
place only during a fraction of the driving laser cycle, i.e. in the form of ex-
tremely short XUV bursts. Furthermore, different spectral components are
emitted at different instants, implying a chirp of the XUV emission, which is
of different sign for the short and long trajectories. For now it is only plausible
that the calculated recollision times correspond to the group delay of the XUV
bursts, but in the following section, it will become clear that this is indeed the
case.

It is also clear from these considerations that for efficient HHG, the driv-
ing laser must be linearly polarized. A small perpendicular component of the
electric field that is 7t out of phase with the principle component, will lead to
a perpendicular component of the electron trajectory, that drives the electron
away from the parent ion. Only if there is a non-zero perpendicular compo-
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nent in the initial electron velocity at birth in the continuum, the trajectory
may be closed. We simulate this case in section 3.2.2. The probability for such
a component is, however, very low, and the HHG signal will rapidly drop
with increasing ellipticity.

The three-step process is repeated every half-cycle of the driving laser
field, i.e. with a Typ/2 periodicity. The driving laser field obviously has a
different sign in every other half-cycle, implying a sign change in the XUV
emission. In a spectrometer, the contributions of the individual XUV bursts in
the attosecond pulse train (APT) will interfere and one is easily convinced!!
that the resulting spectrum consists of peaks at the odd harmonic orders of the
driving laser. The finite duration of the XUV emission imposes an envelope in
the time domain and consequently a broadening of the peaks in the spectral
domain.

1.3.3 Quantum Description of High-order Harmonic Generation

The semi-classical model sheds light on many experimental observations and
provides an easily comprehensible framework. However, the use of classi-
cal physics is hardly justified and instead of a point-shaped electron flying
along a trajectory and releasing a flash of light as it bounces back on its par-
ent ion, the correct picture would be an electron wavefunction, bound in an
atom or molecule, which is drastically deformed by a strong laser field. Part
of the wavefunction is pulled away from the binding potential through the
classically forbidden barrier and eventually interferes with the part left in the
bound state.

With the constraints mentioned in relation to equation 1.27, the TDSE for
the single active electron writes (in length gauge):

{3000 =[5 V24 Volr) +r-E(O) ), (134

where E(f) is the electric field of the laser and Vj () represents the interaction
of the electron with the nucleus (or nuclei in the case of a molecule) shielded
by the remaining bound electrons, which will in the following be referred to as
the core. Initially, the atom/molecule is supposed to be in its ground state, i.e.
P(r,t = 0) is given by the energetically highest orbital, 1y(r), of this ground
state.

The direct numerical solution of this equation is possible, using e.g. a
pseudo-potential for Vj(r). Suitable approximations can, however, make pos-
sible a fully analytical solution which will make it easier to shed light on the
physics involved than an interpretation of a numerical solution could. Such
an approximative solution has been demonstrated by (Lewenstein et al. [117])
shortly after the semi-classical model was proposed. The derivation is based
on the strong-field approximation (SFA) of the TDSE (Keldysh [91]), which
makes the following assumptions:

(i) Only the ground state of the atom/molecule is considered, all other
bound states are neglected.

(ii) The influence of the core-potential Vj(r) on the electron in the contin-
uum is neglected, i.e. it is assumed to be small against the laser-electron
interaction Hamiltonian r- E(t).

'ATrite, in the time domain, the pulse train as a convolution of one XUV burst with a variant of
the dirac comb: A(t) = 322 . (-1)"6(t — nTp/2). This comb-function is even in ¢ and Tp-periodic

Nn=—o0

(mind the sign change!). It can thus be expanded into a Fourier series Y7 ; am cos[m(27/Ty)t],
with coefficients an = 2/To ft:)“”“ A(t) cos[m(27t/Tp)t]dt = 2/Tp[1 - cos(mr)], which turn out to
be non-zero only for odd m.
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The laser field has to be sufficiently strong for (ii) to hold, and of sufficiently
low frequency for assumption (i). These conditions overlap with those defin-
ing the tunneling regime (cp. section 1.3.1). Assuming for simplicity the
ground state depletion to be negligible, i.e. a laser intensity I < Igg, we can
now make the ansatz

) 3 .
P(r,t) = el [%(r) + f (;i%%u(k,t)elk"] , (1.35)

i.e. the electron is in a superposition of states: mainly in its bound state y(r)
with energy —I,, but with a small time-dependent amplitude a(k, t) also in
continuum states |k), which are written here as plane waves because the core-
potential has been neglected for these continuum electrons. The amplitudes,
a(k,t), are complex valued and their phase is defined relative to that of the
bound part, (7). Introducing this ansatz into the TDSE 1.34 and projecting
onto the space spanned by ¢y (r) and the |k) states, transforms the TDSE into
an equation for a(k,t), which can be solved analytically. This yields an ex-
pression for the time-dependent electron wavefunction ¢ (r, ) containing the
complete information about the system.

Extracting the XUV spectrum — different forms for the dipole operator

The complex XUV spectrum exyy(w) radiated by a single atom or molecule
is given by the Fourier transform F;_, of the dipole acceleration. The latter
should be obtained as the expectation value of the dipole acceleration operator
a=-v,V(r) ("acceleration form’):

exvv(w) = Frow [(§(r, 1) [ 9(r, 1)) ] (1.36)

Via the Ehrenfest theorem, one can replace (a) in equation 1.36 by d/dt(p) ("ve-
locity form’), where p = iV, is the dipole momentum operator. Alternatively,
(a) may be replaced by d?/dt?(#), where # = r is the dipole moment operator

('length form’). Depending on the choice of form for the dipole operator, d,
equation 1.36 thus transforms to'?

xve(@) = Fioes [ 35 WD D190 )] = 0P 90D B9 (137

2
exv (@) = Finea [jﬂ W(r I ¢<r,t>>] — - Fia [, 1) R (1, ))]
(1.38)

The equivalence of these forms only holds if the continuum wave packet in
equation 1.35 is composed of exact scattering wavefunctions, i.e. eigenfunc-
tions of the same Hamiltonian as the bound state wavefunction 1y (r). Within
the plane wave approximation for the continuum, however, these three forms
are not equivalent any more and one cannot say which of the three is a priori
the best choice. Until recently, it was the length form, i.e. equation 1.38, that
was used almost exclusively, including Lewenstein’s original paper. In con-
nection to HHG in molecules, this matter is now being debated: (Gordon and
Kartner [61]) claim that the acceleration form should be preferred whereas
(Chirild and Lein [16]) showed that the velocity form yields very reliable re-
sults, while being easier and faster to evaluate than the acceleration form.

12
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Whatever the choice of form for the dipole operator, &, the time dependent
dipole moment / momentum / acceleration d(t) = ((r, t)|d|w(r, t)), writes:

t .
d(t) = i fo dt [ Lo, a0 @SSP E(h) -dlp ) - (1.39)

Note that in this expression, only bound-continuum cross-terms are consid-
ered. Continuum-continuum transitions, which do not contribute to HHG,
are omitted, as is the time-independent (ipy(r)|d|w(r)), which anyway van-
ishes for bound states with defined parity, which is the case for atoms and
symmetric molecules.

S(p,ti,t) = —ﬂtolt”[[wAz(t")]2 +Ip] (1.40)

is the action of the continuum electron, p = k — A(t;) is its canonical momen-
tum and A(t) = - ffoo E(t")dt’ is the vector potential of the laser field. In
equation 1.39, the three steps of the semi-classical approach (section 1.3.2)
are recovered as three factors in the integrand as follows: (i) At time #,
part of the electron wavefunction makes a transition to a continuum state
with canonical momentum p, the transition amplitude for which is given by
E(t;)- dl;;+A(ti)' Here, d;jJrA(ti) = (p+A(t)[?|po(r)) is a dipole matrix elemerlt
(DME) in length form since the operator is not selected by our choice of d,
but comes from the length gauge interaction Hamiltonian r- E(t) in the TDSE
1.34. (ii) In the continuum, the electron propagates under the influence of the
laser field only, acquiring a phase relative to the ground state of S(p, t;, t). (iii)
At time ¢, the electron has a mechanical momentum k = p + A(t) and recom-
bines with the core, the amplitude of which is given by the matrix element

d;+A(t) = (wo(r)|d|p + A(t)), which is the only term in equation 1.39, that de-

pends on the choice for d.
According to equations 1.36 to 1.38, the complex XUV spectrum, Exyy(w),
is proportional to the Fourier transform of equation 1.39:

. t .
exov(w) o f d(t) e“tdt = / dt fo dt; f bt b, p) eV AP | (141)

with
@xuv(t, ti,p) :wt+5(p,ti, t), (142)

where b(t, ti,p) = d,, 41 E(t) - d;j a(t;) is the amplitude of each contribution.
Equation 1.41 is an integral over infinitely many quantum paths, i.e. triplets
of canonical momentum, p, ionization times, t; and recombination times, ,
which makes its evaluation in general very costly.

Saddle-point approximation

The quintuple integral in equation 1.41 can be drastically simplified, and the
analogy to the semi-classical model can at the same time be driven further,
by realizing that those contributions for which the phase ¢xyy is stationary
with respect to the variables (t,t;, p) will largely dominate, whereas a rapidly
varying phase will make the contributions of most quantum paths vanish.
In analogy to the classical principle of stationary action, one can thus find
three equations, corresponding to the derivative of ¢xyv with respect to the
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Figure 1.9. Real part of ionization and recombination times as a function of the har-
monic order, i.e. the emitted XUV photon energy in units of the driving laser pho-
ton energy, obtained by solving the coupled equations 1.43 to 1.45 for HHG in argon,
Ip = 15.7 eV, with an 800 nm laser and an intensity of I = 1.2 x 10 W/cmz. The electric
field of the driving laser has a cosine time-dependence, i.e. time zero marks the field
maximum. Full and dashed lines correspond to the short and long trajectories, respec-

tively. The thin lines shown again the results of the classical calculation from figure
1.8.

variables tj, p and t = t:

[p+A(H)] Ll

. =0 (1.43)

fr[pm(t')] dr' =0 (1.44)
2

[P*Az(tr)] bl =w (1.45)

Each of these three equation reflects one of the three steps of the semi-classical
model: (1.43) implies that the kinetic energy of the electron at the time of
birth in the continuum is negative, which is classically impossible, but can be
reached mathematically by a complex valued ionization time, #;. Its imagi-
nary part can be seen as a trace of the tunnel ionization process. (1.44) means
simply that the dominating quantum paths correspond to closed trajectories.
Finally, (1.45) states that the energy of the emitted XUV photon is given by
the sum of the ionization potential and the kinetic energy of the continuum
electron at the (complex valued) recombination instant, ¢;. Solving these three
coupled equations yields triplets, (t;, ¢, p), allowing e.g. to plot the real part
of ionization and recombination times as a function of the XUV photon en-
ergy, shown in figure 1.9. This calculation was done by Armelle de Bohan and
Thierry Auguste.

The saddle-point equations 1.43 to 1.45 select a finite number of quan-
tum paths contributing to each frequency component of the atomic/molecular
dipole and thus of the XUV emission. The different quantum paths are or-
dered according to the continuum electron excursion time, 7, = t; - ¢, and
the first two of these, 71 and 1, shown in figure 1.9, can be identified as the
short and long trajectory found in the classical treatment. The simple semi-
classical model turns out to be in reasonable agreement but, obviously, the
more rigorous quantum-mechanical calculation yields a more precise descrip-
tion — notably in the cut-off region, i.e. the classically forbidden region of the
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highest photon energies. The major difference must come from the tunneling
step which can obviously not be treated classically. With the finite number of
saddle-point trajectories, equation 1.41 can be re-written as a sum

exuv(w,I) = Zb”(w,l) explipyy(w, )], (1.46)

where [ is the driving laser intensity, for which the saddle point equations
have been solved. The amplitude b is largest for the first two trajectory classes,
n=1,2,1i.e. the short and long trajectory already mentioned above.

Macroscopic XUV emission

The XUV light that is measured and used in experiments is obviously not
radiated by a single atom or molecule but by an HHG medium consisting of
many emitters with a certain density profile n(r). This medium interacts with
a focused laser beam with a transverse and longitudinal intensity distribution
I(r). All emitters radiate according to the local laser intensity and phase and
propagate in a dispersive medium. The macroscopic XUV spectrum Exyy(w)
in the far field is obtained as a solution of Maxwell’s wave equation with a
source term o n(r)exyy(w, I(r)). This calculation corresponds essentially to
coherently summing up the contributions of all single-emitters in the medium,
and the macroscopic field can be obtained as (L'Huillier et al. [118]):

eik(cu)|1"—r|
Bu(w,r) o« 3 [ S mn bl 1] exp ligfenlo, 10)1] €. (147)
n

Interference is constructive mostly in the forward (i.e. driving laser propaga-
tion) direction and significant amplitude in the far field is obtained when the
wave front mismatch between the newly generated field exyy and the phase
front of the propagating field Exyy is minimized at each point in the medium.
Much theoretical and experimental effort has been invested into approach-
ing this condition and studying the effects caused by deviations from it, see
e.g. (Balcou et al. [7], Constant et al. [21], Durfee et al. [36], Gaarde et al.
[47], L'Huillier et al. [118], Ruchon et al. [171], Salieres et al. [172]). In particu-
lar several thesis works in Saclay (Hergott [74], Kovacev [96], Le Déroff [107])
have focused on this subject.

Since for increasing #, the phase ¢}y (w, I) varies more and more rapidly
with I, phase matching is increasingly hard to achieve. A number of stud-
ies have shown that, consequently, the contribution of only a single trajectory
class can be retained in the macroscopic emission if phase matching is opti-
mized for this class (see, e.g., (Saliéres et al. [172])). Then, one term of the sum
in equation 1.47 will completely dominate.

This thesis will mainly deal with HHG on the single-emitter level and we
will in section 2.1 briefly motivate a few experimental strategies to ensure
good phase matching such that the macroscopic XUV field can be considered
an ‘amplified true replica’ of the single-atom /molecule emission, restricted to
the shortest trajectory. This is strictly the case only for perfect phase matching
throughout the medium and it may appear to be a crude over-simplification
for realistic conditions. At least for the phase of the macroscopic XUV field,
however, it turns out to be a valid description. (Ruchon et al. [171]) theoret-
ically finds only very small modifications of the phase due to macroscopic
effects. Furthermore, the XUV spectral phases measured by different groups,
including us, are generally in very good agreement with single-emitter theory,
restricted to the shortest trajectory and done for some effective intensity close
to the peak intensity of the driving laser pulse (Doumy et al. [30], Dudovich
et al. [33], Goulielmakis et al. [64], Mairesse et al. [127], Varja et al. [203]) .
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Figure 1.10. Real part of the
recombination times for the short
trajectories as function of harmonic order,
obtained from the saddle-point equations
for HHG in argon, I = 15.7 eV, with an 800
nm laser and an intensity of

9 x 103 W/cm? (solid line) and

1.2 x 10" W/cm? (dashed line).
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Time profile of the XUV emission

If only one class, n, of trajectories dominates the macroscopic XUV emis-
sion, which is usually ensured by phase-matching, equation 1.46 simplifies to
exuv(w, I) =b(w,I) exp[ipxuv(w,I)]. When the phase of b(w, I) varies slowly,
which is the case for atoms but in general not for molecules, gxyv(w,I) im-
poses the most important spectral phase variation of the emitted XUV wave
packet. As shown by (Mairesse et al. [127]), using equations 1.42 - 1.45, the
XUV group delay can then be calculated as:

Wy O I i g g 0P ey (1as)
: 1 i,o_/ Or
=lr =0 =

The XUV group delay is thus equal to the recombination time. The intuitive
picture of different spectral components being emitted at different times, cor-
responding to a non-zero GDD and thus a chirped XUV emission, holds even
in the quantum mechanical model and contains the essential physics on the
attosecond time scale. The group delay has thus also been called emission time
in (Mairesse et al. [127]).

The dependence of the recombination times on experimental parameters,
like the ionization potential of the generating medium or the laser intensity,
thus directly translates to the group delay of the XUV wave packets, which
governs their attosecond structure. An example for this is shown in figure
1.10: The GDD of the XUV emission, i.e. the slope of the group delay in the
region before the cut-off, is inversely proportional to the laser intensity. At the
same time, the cut-off position increases — two effects, that may help shorten
the attosecond XUV bursts!®.

In the above considerations, a temporally constant laser intensity has al-
ways been assumed. The fact that the generating laser pulses are not infinitely
long but have a temporal envelope on the femtosecond time scale leads to fea-
tures of the XUV emission on the femtosecond scale. Roughly, the attosecond
XUV bursts, produced in each laser half-cycle, will vary according to the vary-
ing intensity envelope. (Varju et al. [203]) give a review of the rich physics
connected to the time profile of the XUV emission on different time scales.
This thesis, however, will, with an exception in chapter 5, exclusively be con-
cerned with the sub-laser-cycle structure of the XUV emission. We will study
attosecond pulses which represent an average over the train of varying pulses.

1.3.4 XUV Photoionization

Many attosecond physics experiments eventually use the generated XUV
wave packets to ionize atoms or molecules — either to characterize the XUV
pulses or the study the ionized species. The probability of finding the ejected
electron in a continuum state with momentum k, is |a(k)|?, where a(k) is the
transition amplitude. According to first-order perturbation theory, under the
single-active electron approximation, and at times large enough for the XUV
pulse to have passed, this is given by

a(k) = —i[m dt d(k) - Exoy (t)e (PTF2)E (1.49)

where [, is the ionization potential of the target atom/molecule and d(k) the
DME (k|d|0) between the bound state |0) and the continuum state |k). If d(k)

BBAs long as the GDD is large, increasing the spectrum will, however, not necessarily shorten
the wave packet. The opposite might actually happen if the synchronization of the new spectral
components with the others is bad.



Theoretical Tools for Attosecond Physics

were simply unity, equation 1.49 would be a Fourier transform and the EWP
would be an exact replica of the XUV pulse in amplitude and phase, only
shifted in energy by I,. However, since d(k) is a complex vector,

(k) = u(k) eit"®) (1.50)

with amplitude vector u and a phase ¢, it leaves an imprint of the ionization
process on the electron ‘replica’ of the XUV pulse. A dependence of y on k can
easily be corrected for by known ionization cross-sections. If the phase depen-
dence ¢4(k) is known from either theory or experiment, it can be corrected
for as well. The task of measuring the XUV-field can thus be accomplished by
measuring the spectral amplitude and phase of the EWP.

Conversely, when ionizing with a known XUV pulse, the characterization
of the EWP amplitude and phase can in principle yield a measurement of
the matrix element d(k). In the absence of resonances in the continuum, the
phase ¢4 has its origin in the energy dependent phases of exact scattering
wave functions |k) (see end of section 1.2.2). Near resonances, another impor-
tant contribution comes into play, which is the subject of paper V.

Two-color ionization

When additionally an IR laser field, Ey (t) = —0A/0t, is present, the created
EWP may also exchange energy with the laser field . Using the SFA, i.e.
neglecting the influence of the core-potential on the continuum electron, is
justified even for weak IR fields if the XUV photon energy is much larger than
Ip. With this additional approximation, once both the XUV and the IR laser
fields have vanished, the transition amplitude a(k, T) to the final continuum
state |k), for a delay T between the two fields, is given by (Quéré et al. [162]):

a(kt)=-i [ " At RO d[k + A(H)] - Exoy (t - 1)l PR (151)

Pr(t) = -ftm 4 [k- A() + A2(£)/2]. (1.52)

The main effect of the laser field is obviously to induce a temporal phase mod-
ulation ¢r(#) upon the continuum EWP.

To see what this modulation looks like, consider a linearly polarized IR
pulse, Ep(t) = 2Ey(t) cos(wgt), the envelope Ey(t) of which is sufficiently
long for the slowly-varying envelope approximation to be valid, so that
A(t) = —éESU—(Ot) sin(wot). Equation 1.52 then writes

$r(t) = ¢p(t) + psp(k,e,t), with

o) =- [ delp(o), (1.5)
psp(k,8,t) = % [4V/Up (k- & cos(wot) - Up(t) sin(2wot) | - (1.54)
0

For a constant Up = Eg / 4w§, i.e. in the limit of an IR pulse much longer than
the XUV pulse, ¢p is linear in time, inducing an energy shift of —~Up of the pho-
toelectrons, according to the Fourier transform shift-theorem (cp. also section
1.1.1). This is called the ponderomotive shift and can be seen as an increase of
the effective ionization potential.

In most cases, k% /2> Up: for an IR intensity of 5 x 1012 W/cm?, Up =0.3eV
at a wavelength of 800 nm, whereas the photoelectron energies one typi-
cally looks at are ~ 10 eV. The term o< cos(wyt) in equation 1.54 then dom-
inates the phase modulation. Note that the scalar product k - & implies that

4This is only possible as long as the EWP is in close proximity to the core — a free electron
(spin 1/2) cannot absorb photons (spin 1) as angular momentum would not be conserved.
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the phase modulation depends on the observation direction, k/k, but varies
slowly around the laser polarization direction &.

The effect of this oscillating phase variation can be very complex and de-
pends on the duration of the XUV pulse. As just discussed, a linear phase
variation in time causes an energy shift, AW, of the photoelectrons:

oPR
ot

AW(t) = - ~ AWp sin(wqt) oc A(t), (1.55)
where the approximative expression is valid for K?/2 > Up.

When photoionizing with an isolated XUV pulse much shorter than an IR
half-cycle, the phase modulation imposed on the very short EWP can be con-
sidered as linear in time. The EWP is then shifted by AW according to the
XUV-IR delay, i.e. the EWP samples small temporal slices of the IR wave. The
spectrogram, i.e. a set of photoelectron spectra for different XUV-IR delays,
then maps the shape of the vector potential A(t) of the IR field, leading to the
famous “direct image of a light wave” of (Goulielmakis et al. [62]). For a some-
what longer XUV pulse (yet shorter than an IR half cycle), one has to consider
that at the extrema of Ey (t), the phase modulation is approximately quadratic
with different signs for maxima and minima. A quadratic modulation of the
temporal phase modifies the spectral width of the EWP (cp. section 1.1.1): dif-
ferent temporal slices of the EWP experience different energy shifts. From the
evolution of the EWP spectral width with the XUV-IR delays, the quadratic
component of the XUV spectral phase can be extracted, which is the essence
of the ‘attosecond streak camera’ technique, proposed by (Itatani et al. [79]).
The method applied by (Hentschel et al. [73]) for the first measurement of an
isolated attosecond XUV pulse is closely related to this effect.

An XUV wave packet with a total duration on the order of an IR field cy-
cle or longer will create an EWP, different temporal parts of which experience
different phase modulations and thus energy shifts. Electrons, ionized at dif-
ferent times during the interaction with the XUV pulse may end up at the
same final energy and thus interfere in the spectral domain. These interfer-
ences lead to complex modulations of the photoelectron spectrum, which are
hard to interpret intuitively.

Nonetheless, (Mairesse and Quéré [126]) have developed a method to ex-
tract both the complete, arbitrarily complex XUV and IR light fields from such
a measurement, by recognizing the spectrogram as a FROG (Frequency Re-
solved Optical Gating) trace, with the IR field taking the role of an ultra-
fast phase gate. Existing iterative phase-retrieval algorithms for this prob-
lem, pioneered by (Trebino [199]), could thus be transferred to the attosec-
ond domain. The ‘FROG for Complete Reconstruction of Attosecond Bursts’
method (FROG-CRAB) has been applied successfully by different groups to
measure both isolated attosecond pulses (Goulielmakis et al. [63], Sansone
et al. [174], Thomann et al. [195]) and APTs (Kim et al. [92]).

Sidebands

For APTs, the photoelectron spectrogram simplifies again due to the dis-
cretization of the photoelectron spectrum. (Quéré et al. [162]) describe the
transition into this regime in terms of the difference of phase modulations
¢r(t) experienced by successive XUV bursts in an APT.

A more intuitive multi-photon picture can be obtained by recognizing
the exponential exp[igsg(t)] as an infinite sum over generalized Bessel func-
tions (Kitzler et al. [93], Madsen [124]):

o) - 3 |2k 2v/Tp (D)o, Up(1)/(2wp) | ™0 (1.56)
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Each term in the sum contributes a linear phase with slope nwy, correspond-
ing to an energy shift of —nwy, i.e. the stimulated emission (n > 0) or the
absorption (n < 0) of |n| IR photons.

The expansion 1.56 transforms equation 1.51 into an infinite sum:

too +00 . )
alkr) =i 3, [ dtdlk A B (-0l ) 000
Nn=—oo0 ¥ =X

<] [2k~é\/llp(t)/cu0, up(t)/(zwo)] elnwot  (1.57)

This expansion is exact and independent of the particular shape of the
XUV field, but is particularly valuable for APTs, because their spectra consist
of discrete peaks, spaced by 2wy. Then, ¢1r(t) causes clearly distinguishable
sidebands to appear in the photoelectron spectra at energies corresponding to
even multiples of wy. Figure 1.11 shows how the main harmonic peaks get
depleted with increasing IR intensity (given by [Jj|*). Higher-order sidebands
then appear one after the other.

RABITT

For a rather long APT, such that the individual attosecond bursts vary slowly
within the train, it is useful to consider the harmonics as a comb of discrete,
i.e. monochromatic, modes, with amplitude vectors A; and a phases ¢;. Ne-
glecting the finite spectral width and the phase variation within the harmonic
peaks amounts to neglecting the femtosecond structure of the APT, i.e. the
temporal envelope and variations between successive IR half-cycles (Varju
et al. [203]). The attosecond structure, i.e. the shape of an average attosec-
ond pulse in the train, is entirely described by the (A4, ¢;), to which the XUV
field is related by a Fourier transform:

IN
Exuv(t) = Y. Ag exp[-iqwot +igg], (1.58)
q=q1

where harmonic orders g1 to gy of the fundamental IR laser frequency wy
have been taken into account '°.

If the IR laser intensity is kept low enough so that the [J;,|* are negligible
for |n| > 2, i.e. in the example shown in figure 1.11, I < 2.5 x 10" W/cm?, a
very intuitive two-photon picture, illustrated in figure 1.12, can be devised: at
each sideband energy qwy - I,,, a spectrally shifted replica 16 of the harmonic

|2

peaks at (g - 1)wp — Ip and (g + 1)wp - I, overlap and interfere 7. Assuming
the spectral phase of the XUV pulses to vary in a very similar way within
the widths of two neighboring harmonic peaks, ‘(g -1)" and ‘(g + 1), one can
define a relative phase, Ag;,, of two neighboring harmonics, which governs

I5Experimentally, the spectral range can be limited in such a way by a high-pass filter, such
as aluminum foils of some 100 nm thickness. It is in fact necessary to do so in order to obtain a
‘clean’ APT on target, as otherwise the low order harmonics, generated in the ‘usual perturbative’
process, strongly dominate the XUV temporal structure. Such filters can also have negative dis-
persion, therefore counteracting the intrinsic GDD of the short-trajectory contributions (Martens
et al. [135]). One can, of course, also simulate such filters by artificially considering only some
limited spectral range-of-interest in equation 1.58.

16 Again, the term ‘replica’ is to be taken with some care: The J, are real valued and their
variation within the width of one harmonic peak is negligible. The term e"“0f induces only an
energy-shift and no other phase modulation. However, the transition amplitude to the sideband
contains the single-XUV-photon matrix element d(k) for the final state of the two-photon transi-
tion, i.e. for the sideband-energy and not for the energy of the harmonic peak. The difference
of the d(k) for these two slightly different continuum states, separated by wy in energy, causes a
deviation from the idea of a perfect ‘replica’.

17The RABITT-method thus bears a strong resemblance to SPIDER, as pointed out by (Muller
[151]).

| 2

a

IR intensity (102 W/cm?)

Figure 1.11. Square of the generalized
Bessel functionsn = 0,1,2,3 with
arguments as in equation 1.56. The

photoelectron final energy is k*/2 = 30 eV
and k || &. The IR laser has a wavelength of
800 nm.
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quantum paths, (+) and (-), leading to one
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the interference in the sidebands. Attributing one (absolute) phase ¢; to a
harmonic order is thus valid.

A very low IR intensity also implies that kéxl > A% ~ Up and we can thus
simplify equation 1.57 by omitting A(t) in the argument of the (single-XUV-
photon) matrix element d and by neglecting ¢p. If we are only interested in the
transition amplitudes to a sideband ‘g’, it will be sufficient to consider only the
two quantum paths depicted in figure 1.12. The path (+), involving absorption
of an IR photon, is described by the n = —1 term of 1.57 and the spectral com-
ponent (g —1)wp of Exyy. With equation 1.58, we can thus use Exyv(t —7) =
Ay 1exp[-i(g - Dwo(t - T) +i@y-1]. Analogously, for the path (-), it is suffi-
cient to consider the n = +1 term of 1.57 and the spectral component (g + 1)wp
of the XUV field, i.e. Exuv(t - T) = Agy1exp[-i(q +1)wo(t - T) +igg41]. The IR
field can be taken with a constant value, i.e. Up =const.. Equation 1.57 for the
(+) path now writes:

a* (k) = —i /+oo at d(k)A, - oi(g-D)wo(t=7)+igy 1 ei(1p+k2/2)t]/_1(k)e—iwot

- 2T (k) () Ag g €TV B g [ (1,+ £)],
(1.59)

where the generalized Bessel function is taken with arguments as in equation
1.56, # and ¢? are the amplitude vector and phase of the DME d(k) (cp. equa-
tion 1.50), and Jp is a Dirac-delta function. Analogously, for the (-) path, one
has:

a~(k,7) = -2 ], (k) p(k)Aga el(a+DwoT gy +ig” (k) op [qwo - (Ip + k;)] .

(1.60)
The Dirac-delta functions are obviously an artefact due to the infinite duration
of IR and XUV fields in this model. Here, they simply confirm that the +1
terms in the development 1.56 lead to peaks in the EWP spectrum at an energy
decreased or increased by one IR photon energy. The contributions of the (+)
lzind (-) paths thus overlap at (), = ké /2 = qwo — Ip. The measurable signal will

e:

S(Qg,7) =a* (kg T) +a” (kg T)

(1.61)
o< S0+ S1€08(2wWoT + Pygi1 — Py-1) -

The sideband oscillates with frequency 2wy and by extracting its phase, one
can obtain the relative phase of two neighboring harmonics. This leads to a
method allowing direct reconstruction of an average XUV pulse in the train,
which has been called ‘Reconstruction of Attosecond Beating by Interference
of Two-photon Transitions’ (RABITT) (Muller [151]), and served for the first
measurement of an APT (Paul et al. [160]). This is the technique applied for
the attosecond measurements presented in this thesis. Its experimental imple-
mentation is discussed in section 2.3.

Note that the J;, in equation 1.56 are real valued. This implies that only the
sideband amplitude varies with the observation direction relative to the IR laser
polarization due to the scalar product k - &, whereas the phase modulation
explinwyt] is angle-independent. One can thus use an angle-integrating de-
tector for RABITT measurements, which greatly increases the signal-to-noise
ratio and decreases acquisition time.

It is somewhat counter-intuitive that the phase ¢ acquired by the EWP
during the absorption of the XUV photon does not seem to play a role here.
This is because in the above SFA formulation, the DME is taken for the final
energy of the continuum electron, which is obviously the same for both quan-
tum paths, (+) and (-). The two-photon picture is apparently not adequately
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described by the SFA model — there is no notion of an intermediate state of the
two-photon process and thus no phase difference due to different intermedi-
ate states for the (+) and (-) paths appears.

The atomic/molecular phase

It turns out that our intuition is not mistaken in this case and a more rigor-
ous two-photon calculation resolves this problem. The second-order pertur-
bative matrix elements ' of the two quantum paths (+) and (-) write (Toma
and Muller [196], Véniard et al. [205]):

(flr-2li) (ilr-elg)

M = M expligd ] = , 1.62

o= il expliolf) = 3 T (162
- _f cof 1 _~f {flr-eli) (ilr-2lg)

My, = M8/, exp[1¢>q+1]_§lf IR (1.63)

where g, i, and f denote ground, intermediate and final state, respectively (cp.
figure 1.12), ¢; is the energy of the intermediate state, and & is a unit vector in
the common polarization direction of the IR and XUV fields. The ¢§£1 are
the phases of these matrix elements, usually referred to as atomic/molecular
phases.

The integral runs over the complete set of eigenstates |i) of the
atomic/molecular Hamiltonian. Since in our case (q+1)wp—1Ip > 0, there
is always a (continuum) state for which the integrand has a 1/x-singularity.
The integration can nonetheless be done via the Cauchy principle value, as
e.g. described by (Toma and Muller [196]).

These matrix elements 1.62 and 1.63 have to be calculated for all possible
ground states of energy -1, (e.g. in argon, 3p electrons are ionized, and sepa-
rate calculations for m = 0 and +1 have to be done) and all possible final states
with the same energy. For each of these possible processes (the number of
which remains small due to the severe selection rules of dipole transitions),
transition amplitudes to the final states with energy () are found as:

a5 (1) = /_ :o de e ORI ME L Efy @0 Ay @i (07D @0l g

- 2t EQedg 1T D00 s ()], (164)
ag7(Q,7) = [ :o dr e O N D @0 4, e D@0l gy

) ZHM§{1 E?RAq+1ei(q+l)w°T+i%”+i‘/’§{1 Splqwo— (Q+1,)], (1.65)

where we used the IR and XUV fields as discussed in the above paragraph.
The structure of these amplitudes is the same as in equations 1.59 and 1.60 and
the contributions of (+) and (-) path interfere at (), = gwo - I,. The difference
is that here, a transition matrix element appears, which is different for the
two quantum paths and thus induces an additional phase shift of the RABITT
signal. Again, the measurable signal, associated to one process g — f, is

S(Qy,T) = lat(Q,7) +a5,.(Q, 1)
(Qg, T) = lag(Q, ) +a,¢(Q, T)| 166

o< S0+ 51€08(2wWoT + Pgi1 — Pg-1 + 4>gf - 4’37]_(1) .

q+1

180nly those where the XUV photon is absorbed before the IR photon are considered (Toma
and Muller [196], Véniard et al. [205]).
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1.3.4 XUV Photoionization
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Figure 1.13. Atomic phase correction A(]Jgt
for argon (empty squares) and neon (full
circles) as a function of the harmonic, or
rather sideband order. On the right
ordinate, the same quantity is converted to
a group delay correction Aqb;t /(2wy) (cp.
section 2.3).
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For the total, angle-integrated sideband, all participating processes have to be
added up:

T(Qy7) = ¥ lai,(Q,7) +agp(Q,7)P
&) (1.67)
o< Ty + T cos(2wyT + Pg+1 — Pg-1— A‘Pz?t) ’

where
Ay’ = arg ((Z}r) MM, exp[i(gbj{l - 4)5{1 ]) ) (1.68)
g

Equation 1.67 gives the correct expression for the sideband signal observed in
experiments. In the experiments presented in papers I, II, IV, and VI, where
the aim was to characterize the attosecond XUV emission, i.e. to measure
®g+1 — ¢4-1 Over a range of harmonic orders, the atomic phase A(pgt, character-
istic of the detection gas, should be corrected for. We used argon or neon as
detection gases, the atomic phases for which are shown in figure 1.13, as cal-
culated by Richard Taieb with the method described above. They agree very
well with those extracted from TDSE simulations (Mauritsson et al. [138]),
using the same pseudo-potentials, confirming the validity of a perturbative
treatment.

Physical meaning of the atomic/molecular phase

This phase correction, qug‘t, due to the ionization process is a non-trivial
quantity, rigorously defined via equation 1.68 for the IR-XUV two-photon-
ionization process. This process is actually used only to probe the EWP re-
leased upon single-XUV-photon ionization. Yet, the relation between A4)3t and
the single-photon matrix element phase as defined in equations 1.49 and 1.50
is not well understood. This leaves us in the awkward situation of having
an experimental observable, that is both well defined as well as directly mea-
surable (see paper V and section 4.1), but the meaning of which relative to
photoionization dynamics remains somewhat unclear.

In the literature, most authors argue in the picture invoked above to de-
scribe the attosecond pulse measurement techniques based on two-color pho-
toionization: XUV photoionization creates a continuum EWP that is a replica
of the XUV pulse, except for the imprint left by the amplitude and phase of the
single-photon DME. The IR probe field then acts as a pure phase gate, creating
again replicas of the EWP, shifted in energy by +wy, without, this time, adding
another phase. It is thus sometimes accepted that the atomic/molecular phase
is equal (or at least very close to) the phase difference of the XUV single-
photon DMEs, as defined in equation 1.50, for two neighboring harmonics.
Measuring the Agbf;t would thus mean measuring the group delay, character-
istic of the ionized system, added by the single-XUV-photon photoionization
process. This idea is further discussed in section 4.1.5, in connection to a mea-
surement of Angt for nitrogen molecules.

(Mauritsson et al. [138, 139]) do indeed use the phase difference of single-
photon matrix elements synonymous with the atomic/molecular phase, with-
out, however, formally justifying it. Also, no direct comparison of the ‘proper’
atomic phases, as defined by equation 1.68, and the much easier to calculate
phase difference of single-XUV-photon matrix elements has been published so
far. (Mauritsson et al. [138]) do, however, report several interesting observa-
tions on TDSE solutions: (i) The atomic phases extracted from TDSE calcula-
tions have been found to be very similar for processes ¢ - f with different de-
generate final states |f) as long as the intermediate state, |i), is the same. This
has been verified for different rare gas atoms, for which pseudo-potentials are
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available. (ii) Prominent features in the single-XUV-photon matrix element,
such as the phase jump due to the Cooper minimum in argon, appear in the
atomic phase as soon as the two harmonics and thus the intermediate states,
i}, are on opposite sides of the resonance (see (Mauritsson et al. [138]) and
figure 1 in paper V). (iii) Studying the transition towards vanishing IR in-
tensity, the atomic phase first decreased until it saturates at some low value
> 0. For IR intensities typically used in RABITT measurements, the value has
already saturated and does not decrease further when the IR intensity is fur-
ther decreased. These results combined provide strong support that the major
contribution to the phase ¢8f, as defined in equations 1.62 and 1.63, comes
from the absorption of the XUV photon, i.e. from the process that takes the
system from the initial to the intermediate state. Claiming equality of the dif-
ference of single-XUV-photon DME phases ¢9, defined in equation 1.50, and
the atomic/molecular phase is, however, admittedly still arguable.

To recover this simple picture, allowing to identify the atomic/molecular
phase as the phase shift imposed onto the outgoing EWP by the single-XUV-
photon DME, one had to modify equations 1.59 and 1.60 ‘by hand’, and eval-
uate the matrix elements p(k) exp[i¢? (k)] for the intermediate instead of the
final states, i.e. at k' = \/k? - 2wy in equation 1.59 and k" = \/k? + 2wy in equa-
tion 1.60. This would make the phase difference of the single-photon DME
appear in the argument of the cosine in equation 1.61, just as it does in the
equations used by (Mauritsson et al. [139]). Such tinkering is obviously utterly
unsatisfactory and a rigorous way of simplifying the second-order perturba-
tive matrix elements 1.62 and 1.63 is desirable.

The “soft-photon” approximation (Kroll and Watson [98], Maquet and Taieb
[133]), where the probe laser photon energy is small against the energy of the
outgoing electrons (wy < k?/2), simplifies the two-photon matrix elements,
M;J,, but does not directly help on, as it recovers the SFA-based result of equa-
tions 1.59 and 1.60, valid under the same condition as the soft-photon approx-
imation. In this limit, the energies of the intermediate and the final state of the
two-photon transition coincide and, as in the SFA-based model, no explicit
atomic/molecular phases appear.

The question raised in this paragraph leads to a formidable theoretical
problem, which is beyond the scope of this thesis. It is, however, a challenge
most worthwhile to tackle, as a clear understanding of the information con-
tent of the atomic/molecular phases would put interpretations of experiments
measuring them on a sound basis and possibly allow to infer detailed at-
tosecond time-resolved dynamics of the interaction of matter with ultrashort
XUV pulses. This question is also relevant to streaking experiments like that
of (Cavalieri et al. [15]).
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CHAPTER 2

EXPERIMENTAL TOOLS FOR ATTOSECOND
PHYSICS

The experiments of attosecond physics are based upon the interaction of a
wave packet of attosecond duration with the studied system. An experiment
including HHG intrinsically contains a source of sub-femtosecond EWP on
the single-atom/molecule level and the XUV emission may take the role of
the signal carrying information about the core, which corresponds to the self-
probing scheme in figure 0.2a. Other types of experiments use HHG purely
as a source of XUV wave packets, which are potentially further shaped and fi-
nally used in an XUV-ionization scheme as depicted in figure 0.2b. Both types
of experiments are realized with essentially the same experimental setup and
in this chapter, the principle components will be introduced.

All experiments in this thesis — with the exception of some of the mea-
surements presented in paper III — have been done with the Laser Ultra-Court
Accordable (LUCA) at the Saclay Laser-matter Interaction Center (SLIC). It has
a spectrum centered around 795 nm and delivers to our experiment pulses of
55 fs duration at 20 Hz repetition rate with up to 30m] per pulse. It is run as
a server, being entirely taken care of by a dedicated laser-development group.
The laser drives HHG and the emitted XUV wave packets are subsequently
characterized by measuring their spectral amplitude and phase. Since XUV
light is strongly absorbed at atmospheric pressures, all experiments have to
be done in vacuum.

The HHG stage, described in section 2.1, obviously does not consist of a
single driven atom or molecule, as was the case in the theoretical discussion of
the previous chapter, but of a macroscopic number of such emitters, the radi-
ated XUV fields of all of which coherently add up to a detectable macroscopic
signal. For the self-probing scheme, it is crucial that this macroscopic signal be
a true representation of the single-atom/molecule emission, which is possible
only if all emitters radiate in phase. Similarly, for the XUV-ionization scheme,
one requires a sufficiently large number of photons and ideally temporally
well confined XUV wave packets. This, again, requires good phase matching
within the HHG medium.

The experiments described in papers III, I and II have used molecules
aligned relative to the driving laser polarization. The preparation of this gen-
erating medium is described in section 2.2.

For full characterization of the XUV wave packets, a rather elaborate de-
tection stage follows, based on photo-ionization of a suitable detection gas
and described in section 2.3.
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RESUME DU CHAPITRE

Les expériences de physique attoseconde se basent sur l'interaction d’un pa-
quet d’ondes de durée attoseconde avec le systéme étudié. Une expérience qui
comporte une étape de génération d’harmoniques contient intrinsequement
une source de paquet d’ondes électronique sub-femtoseconde au niveau de
I'atome / molécule unique et I’émission XUV peut jouer le réle du signal en-
codant I'information sur I'atome / molécule, ce qui correspond au schéma
d’auto-sondage illustré dans la figure 0.2a. D’autres types d’expériences
utilisent la génération d’harmoniques uniquement comme source de paquets
d’ondes XUV, qui peuvent encore étre mis en forme et finalement étre utilisés
dans un schéma d’ionisation XUV, montré en figure 0.2b. Ces deux types
d’expériences sont réalisés avec essentiellement le méme dispositif et nous
allons introduire ses composants principaux dans ce chapitre.

Toutes les expériences dans cette thése — a I’exception de certaines mesures
présentées dans I’article III — ont été faites avec le Laser Ultra-Court Accord-
able (LUCA) du Saclay Laser-matter Interaction Center (SLIC). Son spectre
est centré autour de 795 nm et les impulsions fournies avec un cadence de
20 Hz a notre dispositif ont une durée de 55 fs et une énergie allant jusqu’a
30 mJ. Il est exploité comme un serveur entiéerement géré par un groupe de
développement laser. Le laser géneére des harmoniques d’ordre élevé et les
paquets d’ondes XUV ainsi formés sont ensuite caractérisés en mesurant leur
amplitude et phase spectrale. Toutes les expériences sont faites sous vide car
la Iumiére XUV est absorbée trés fortement dans I'air.

La partie génération d’harmoniques du dispositif, décrite dans le para-
graphe 2.1, ne contient évidemment pas seulement un atome ou une
molécule unique — comme c’était le cas dans la discussion théorique du
chapitre précédent — mais un nombre macroscopique de tels émetteurs. Les
champs XUV rayonnés s’ajoutent de fagon cohérente pour donner un signal
détectable. Pour le schéma d’auto-sondage, il est trés important que ce sig-
nal macroscopique soit une représentation fidéle de I’émission de I’atome /
molécule unique, ce qui est possible uniquement si tous les emetteurs rayon-
nent en phase. De fagon similaire, pour le schéma d’ionisation XUV, nous
avons besoin d’un nombre suffisant de photons et idéalement de paquets
d’ondes XUV bien confinés temporellement. Encore une fois, cela nécessite un
bon accord de phase dans le milieu de génération d’harmoniques. Travaillant
dans des conditions avec une trés faible ionisation et des longueurs de mi-
lieu tres faibles, il est raisonnable de supposer un accord de phase (presque)
parfait dans nos expériences.

Dans les expériences présentées dans les articles III, I et II, nous avons
utilisé des molécules alignées par rapport a la direction de polarisation
du laser. La préparation de ce milieu de génération sera décrite dans le
paragraphe 2.2. Bien que ce chapitre soit principalement dédié aux out-
ils expérimentaux, nous détaillerons les aspects théoriques de I'alignement.
Nous utilisons la technique d’alignement impulsionel o1 une impulsion laser
crée par effet Raman stimulé un paquet d’ondes rotationel dans la molécule
qui va ensuite évoluer librement. Comme tous les niveaux rotationnels | ont
des énergies de valeur harmonique de I’énergie de | = 0, ce paquet d’ondes
va régulierement reproduire la distribution partiellement alignée atteinte peu
aprés que Iimpulsion laser soit passée. Pour prendre en compte la distri-
bution thermique des niveaux rotationnels dans I’'ensemble des molécules
de notre milieu de génération, nous devrons ensuite faire une moyenne in-
cohérente. La compréhension de la dynamique moléculaire a la base de
cette technique d’alignment nous permet ensuite de I’'optimiser et d’estimer
la qualité d’alignement obtenue dans nos expériences.
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Pour la caractérisation compléte des paquets d’ondes XUV, un dispositif de
détection assez sophistiqué est nécessaire, basé sur Iionisation d'un gaz cible
adapté. Les bases théoriques des méthodes de caractérisation sont décrites
dans le paragraphe 1.3.4 du chapitre pécédent. Ici sera décrit comment une
impulsion moyenne du train d’impulsions attosecondes peut étre reconstru-
ite a partir d’une série de spectres de photoélectrons obtenus par photoionisa-
tion a deux couleurs en fonction du délai entre les deux champs (XUV et IR),
controlé avec une précision supérieure a la demi-période du laser IR. Nous
discutons les différentes étapes de I’analyse des données.

Finalement, les dispositifs expérimentaux utilisés pour les travaux de cette
thése sont présentés.

2.1 The Attosecond Pulse Source

Apart, of course, from the needed driving laser, HHG is experimentally fairly
simple: It comes down to focusing a laser pulse, sufficiently energetic and
short to reach the required intensity, into a gas cloud being provided either
by a cell with static pressure or, as was the case for all experiments presented
in this thesis, by a pulsed gas jet. This has the advantage of providing the
HHG medium with relatively high density while keeping the amount of gas
injected low.

A cold HHG medium As explained in section 2.2, we need rotationally cold
molecules to achieve a high degree of molecular alignment. This is achieved
by forcing gas with high pressure (a few bars backing pressure) through a
small orifice (a few hundred microns) into vacuum, forming a so called su-
personic jet. This is because the molecules are accelerated to become faster
than the local speed of sound, which in turn decreases rapidly as the gas den-
sity drops during the expansion. In this adiabatic process, the heat energy of
the gas (i.e. random translation, vibration, rotation) is converted into directed
translational energy through numerous collisions. Very rapidly, the gas plume
has expanded so far that the individual particles do no longer collide. Full
thermodynamic equilibrium is lost during the expansion and the different de-
grees of freedom must be represented by different temperatures. Important to
us is the rotational temperature, Tyot, which typically decreases to a few tens of
kelvin. To minimize Tyot, the backing pressure can be increased (we typically
use 2-3 bars), the orifice diameter decreased (we used between 100 and 1000
microns) and the distance to the orifice increased (we use about 500 microns).
Obviously, there is a trade-off to be made between high gas density (and thus
high XUV signal), low rotational temperature (which decreases while the gas
expands and thus always comes at the price of rather low gas density), and
sufficient pumping power (we have a 1300 1 turbo-molecular pump directly
under the gas jet) balancing the gas injection in order to maintain a low resid-
ual pressure in the experimental chambers.

Phase matching As mentioned on page 25 in the theory chapter, it is nec-
essary to ensure good phase matching in the experiment in order to obtain
a strong macroscopic signal and to be able to infer single-atom / molecule
information from it. This means that one has to arrange conditions that mini-
mize the phase difference between the propagating XUV field and the driving
polarization over the medium length.

Essentially three contributions cause a phase mismatch between along the
medium length (Haessler and Swoboda [67]): (i) The Gouy phase shift of 7t
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of the driving laser as is goes through its focus (Svelto [192]). (ii) The dipole
phase, i.e. the phase of the radiating atomic/molecular dipole, ¢xyy, given
by equation 1.42, which varies approximately linearly with intensity (Varja
et al. [203]). (iii) Dispersion, i.e. the difference of phase velocity between the
driving laser and the XUV radiation, dominated by the free electrons created
by ionization!, the density of which obviously strongly depends on the local
intensity.

Loose focusing can slow down the first two of these variations. In addi-
tion, one can arrange that the phase mismatch due to the intensity dependent
dipole phase of the short trajectory contribution cancels out that caused by
the Gouy phase shift at a short distance after the laser focus (Haessler and
Swoboda [67], Salieres et al. [172]). Placing a rather short generation medium
at this distance thus allows to approach perfect on-axis phase matching. Sig-
nificant ionization does, however, cause strong dispersion that rapidly ruins
any phase matching. Moreover, it depletes the ground state of the emitters.
The pulsed gas jet, used in all experiments in this thesis, except the ones of
chapter 5, provided a medium with an effective length of < 1 mm. Ionization
was kept at very low level and no important dependence on the longitudinal
medium position was observed, other than that due to the intensity variation.
This confirms that phase matching was excellent and that the measured signal
was a true amplification of the single-atom/molecule emission. Moreover, the
emission times measured for atomic gases was in very good agreement with
the single-atom theory described in section 1.3.3.

The dipole phase, ¢%,(w, I) (cp. equation 1.46) changes about ten times
faster for the long trajectories (1 = 2) than for the short ones (n = 1). This im-
plies that the radial intensity profile of the driving laser beam translates to an
XUV phase front curvature that is larger for the long trajectory contribution.
The different divergences thus cause the contributions of short and long tra-
jectories to spatially separate in the far field. In our experiments, we always
select the on-axis emission, and thus the short-trajectory contribution.

2.2 Molecular Alignment

The experiments in papers I, II and III have used as generation medium
molecules aligned relative to the driving laser polarization. Alignment and
anti-alignment conventionally refer to head-on versus broadside localization
of some particular axis of a molecule, whereas orientation refers to control of
the up and down directions of an aligned molecule. Within this thesis, only
linear symmetric molecules have been used so that alignment is completely
sufficient. We will use a non-adiabatic alignment scheme, first proposed
by (Seideman [182]) and later demonstrated by (Rosca-Pruna and Vrakking
[170]), where a relatively strong laser pulse ‘kicks’ the molecules and creates
a wave-packet of rotational states, which evolves freely after the pulse has
passed. It will regularly re-phase and lead to an effectively aligned angular
distribution in field-free conditions.

When injecting the molecules into the experiment chamber, their axes are
of course randomly aligned. To get them to align along a certain direction in
space, a torque has to be applied and strong electric fields are a good tool to do
so. The oscillating electric field, E, of an IR laser induces a molecular dipole,
«-E, due to the oscillating electrons, where « is the polarizability tensor. The
molecule then has a potential energy, U = —(« - E) - E, and it will only feel a
torque, —dU/d¥, if its polarizability tensor « is anisotropic, i.e. there is a most-

INote that these are not the quasi-bound continuum electrons of the three step model, but
those permanently detached from the core forming a free electron gas in the HHG medium.
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polarizable axis, along which the polarizability component is «. Along the
second-most-polarizable axis, perpendicular to the first one, we have a; <« I’
and it can be shown that the potential, time-averaged over one laser cycle 2,
writes (Friedrich and Herschbach [46]):

1
u(e, ) = —1AaE§f2(t) cos? 0 = —Uy(t) cos® 0, (2.1)

where Ej is the maximum field strength of the laser pulse with envelope f(t),
varying much slower than the field oscillations, Aa = ) —a,, and 6 is the angle
between the laser polarization direction and the molecule’s most-polarizable
axis, which, for the linear molecules dealt with in this thesis, is always the
internuclear axis. The molecules will thus see an angular potential well with
minima for parallel alignment of their internuclear axis to the laser polariza-
tion. This potential is also known as the angular AC Stark shift.

Quantum evolution The angular part, (6, ¢,t) of the nuclear wavefunc-
tion of molecules (cp. section 1.2.3) is conveniently expressed on the basis of
eigenfunctions of the rotational energy operator, BJ? = BoJ(J +1), where By
has the unit of a frequency and is referred to as the rotation constant. These
are the spherical harmonics Yjp1(0, ¢), with the orbital momentum quantum
number | =0,1,2,... and its projection, M = -J,—(J-1),...,(J-1),], onto a
particular direction of space, which in our case is the laser polarization direc-
tion. The evolution of (6, ¢, t), including interaction with a linearly polarized
laser pulse as described above, follows the TDSE

i%w(& ¢,t) = [BJ* - Uy(t) cos® 8] (6, ¢, ). 2.2)

Molecules are no rigid rotors, i.e. in high orbital momentum states J, their
bonds stretch and thus their moment of inertia increases. This is taken into
account by a correction to the rotational energy operator 3: BJ? = BoJ(J +1) -
Do[J(J +1)]? (Svanberg [191]). Since typically Dy ~ 107°By, this only becomes
significant for rather high J.

To solve equation 2.2, the initial condition has to be fixed. Rotational levels
of small molecules are only about 1 meV apart (Svanberg [191]), so that even
at the low rotational temperatures reached through supersonic expansion, the
thermal ensemble will correspond to a statistical mixture — or an incoherent
superposition - of rotational eigenstates Yjy1(6, ¢). The weights are given by
the Boltzmann distribution

Py = g;(2] +1)e EifkeTior 2.3)

where E; = BoJ(J +1) - Do[J(J +1)]? is the rotational energy of the state
Yim(0, @), the (2J+1) term accounts for the degeneracy of a given | level due to
the different M sub-levels, and g; is a factor controlling the relative weight be-
tween even and odd | states, arising from nuclear spin statistics (Dooley et al.
[29]). Figure 2.1 shows some of these initial distributions for CO,, N, and Hjp
for rotational temperatures typical in our experiments. The used molecular
properties are compiled in table 2.1.

2The IR laser field we use is far off resonance with rotational transitions and oscillates too fast
for the nuclei to follow directly.

SFurther corrections arising from vibrational excitation can be neglected as (i) low-lying vi-
brational energy levels are ~ 100 meV apart, such that even at room temperature (kgT = 25 meV)
essentially no thermal excitation exists, (ii) the spectra of the laser pulses used in our experiments
are too narrow to excite vibrations via a stimulated Raman-process, and (iii) the linear symmet-
ric molecules we use have no permanent electric dipole moment and can thus not be excited by
direct absorption of an IR photon, i.e. they are IR inactive (Svanberg [191]).
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Figure 2.1. Boltzmann distributions of
rotational levels |, populated in the initial
thermal ensemble for different molecules
and rotational temperatures.
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Figure 2.2. Results of a calculation for N,
molecules with rotational temperature

Trot = 90 K, interacting with a laser pulse of
duration T = 55 fs and peak-intensity of

5x 108 W/cm?. In panel (a), the full line

shows the cos? 8-measure during the first
picosecond as well as the laser pulse
intensity envelope f%(t). In panel (b), the
evolution of the cos? f-measure is traced
over more than one rotational period of N,.
The first recurrence of alignment at the
so-called half-revival at t = 4.135 ps as well
as the immediately following
anti-alignment at t = 4.38 ps are marked as
(i) and (ii), respectively. Panel (c) then
shows the angular distributions P(6) of the
molecules at these times (i) and (ii). Panel
(d) contains the same information, but
integrated over the azimuthal angle ¢:

o(0) = 27tP(0) sin6, which is proportional
to the probability of finding the molecule
found with an angle between 6 and 6 + df.
The dotted line shows an isotropic
distribution for comparison.
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Molecule By (ecm™) Dp(em™)  Ax (A%)  geven Sodd
N, 1.9896 5.67x107° 1.0 2 1
CO, 0.3902 0.135x107° 2.0 1 0
H, 59.322 0.0471 0.2 1 3
D 29.90 0.01141 0.2 2 1

Table 2.1: Properties of the different molecules considered in this thesis (Hu-
ber and Herzberg [78], Miller [145, 146]).

Equation 2.2 is solved for each rotational state Yjp1(6, ¢) with a signif-
icant relative weight as the initial condition (6,¢,t = 0). For example
for N, molecules with Tyt = 200K, this has to be done for | = 0,...,21,
which amounts in total to $3'(J + 1) = 253 times * of solving equation 2.2.
The laser pulse envelope, with full width at half maximum 7, is taken as
F2(t) = sin®[(7rt)/(27)] for 0 < t < 27 and f2(t) = 0 otherwise. Sébastien Weber
wrote the program that numerically calculates the evolution of ¢(6, ¢, t) using
the fourth-order Runge-Kutta method (Press et al. [161]) over the duration of
the laser pulse.

During the solution of equation 2.2, it turns out that the laser couples only
J < J+2and | « ] -2 via a stimulated Raman process, while different M
states are not coupled (Dooley et al. [29]). Gradually, more rotational levels
J are populated and a coherent rotational wave packet is formed. For a laser
pulse duration on the order of the rotational period of the molecules, this will
lead to the molecules becoming trapped in the potential well o cos?# (cp.
figure 2.3e). One then speaks of adiabatic alignment. This scheme has the
disadvantage that molecular alignment disappears again when the aligning
pulse is gone. However, during laser pulse durations of < 200 fs, as typi-
cally used in our experiments, molecules like N, or CO, barely move: the
aligning pulse rather gives them a strong ‘kick” towards alignment. This
is followed by free propagation of the rotational wave packet according to
l[)(@, (P,t) = Z] A]’M exp[iE]t] |Y]M>, with A],M = (Y]MWJ(Q, ¢, t= 2T)>. As we
will see in the next paragraph, the molecules will align after the laser pulse
has passed, and since the rotational energies Ej are all even integer multiples
of the fundamental frequency By (neglecting the small correction o D), the
wave packet will re-phase with a period Tyet = 77/By (or, with By in [em™],
Trot = (2Boc)™!)), which is equal to the rotational period of the molecules.
Such behavior is called a wave packet revival °.

Angular distribution The angular distribution of the molecular ensemble at
any instant is now given by a statistical average —i.e. an incoherent sum with
weights given by the initial Boltzmann distribution (equation 2.3) — over the
different (y; pm|tp;,m), obtained for the different initial conditions:

Sy mgre BT (o vl ) (6,6, 1)

P(e/t) = ((lp|¢>>stat - Z] P] (24)

Note that we always have all M sub-levels present with equal weights, be-
cause the initial angular distribution was isotropic and the Hamiltonian in
equation 2.2 is ¢-independent and thus does not couple different M-states.
The angular distribution is thus at every instant ¢-independent: P = P(0,t).

4Note that it is sufficient to do the calculation for M = 0, ..., ], since the result for M is the
same as that for -M.

5In this sense, the recurrence of XUV light pulses in an attosecond pulse train is also a wave
packet revival.
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While looking at the angular distribution at different instants is very clear
and graphic, a rigorous quantification of the degree of alignment is desir-
able. Many possible ways could be found to do so, but the standard measure
of alignment is defined as the statistical average over the expectation value
(| cos? 8]). This measure approaches unity for an angular distribution per-
fectly peaked along 6 = 0 and 7, {cos?6) = 0 for a disk-shaped distribution
peaked along 6 = 77/2, and (cos? 8) = 1/3 for an isotropic distribution.

The time-dependent cos>-measure is plotted for an exemplary case in fig-
ure 2.2. This calculation was done for parameters typical for our experiments.
During the pulse duration, which is much shorter than the rotational period
of Ny molecules, T;ot = 8.38 ps, the molecules start rotating towards alignment,
but is it is really only the onset of the wave packet evolution. After 15 = 190 fs,
(cos? 0) goes through a maximum, i.e. a situation of (imperfect) alignment oc-
curs, referred to as ‘prompt’ alignment. One rotational period later, i.e. at the
wave packet revival at t = 19 + Trot = 8.57 ps, this situation is reproduced. Inter-
estingly, the alignment also recurs in between: (cos? 0) (ti) =4.135ps) = 0.53,
shortly before tiy = To + Trot/2 = 4.38 ps, where the opposite situation, an anti-
alignment, occurs. At the instant (i), the angular distribution P() is strongly
peaked at 6 = 0, albeit having a certain width A8 ~ 30°. To calculate the frac-
tion of all molecules within a certain 6-range, P has to be integrated over the
azimuthal angle ¢, which leads to the distributions ¢(6,t) = 2P (6, t) sinf. At
the instant of alignment, (i), this distribution is peaked at 6 = 7r/6 = 30°.

Optimizing alignment Sébastien Weber’s code allows to extensively study
theoretically the dependence of the achievable alignment quality on exper-
imental parameters. In figure 2.3, for instance, we show the evolution of
(cos?8) for different pulse durations. We found the best alignment to be
achievable with T ~ 120 fs. Longer pulses start distorting the rotational wave
packet during the prompt alignment and in figure 2.3e a situation corre-
sponding to adiabatic alignment is reached. Experimentally, we could stretch
LUCA’s pulses to 120 fs by propagating them through a glass block, while in-
creasing the pulse energy to keep the intensity constant. For the experiments
in this thesis, the alignment pulse had a duration of T ~ 55fs.

The simulations also show that, of course, a more intense aligning pulse
also improves the maximum (cos? #) achievable. This is easy to understand,
since a longer and more intense pulse enhances the coupling and leaves more
time to gradually populate a spectrally broad rotational wave packet, leading
to sharper revivals with higher degree of alignment. Experimentally, there are
of course certain boundaries. The laser intensity we can use is not only limited
by the onset of ionization of the molecules, but already by HHG. We want to
generate APTs in aligned molecules, i.e. with a second laser pulse, delayed
such that it interacts with the molecular medium at the half-revival, i.e. the
instant marked as (i) in figure 2.2. Any harmonic signal already produced by
the collinearly propagating alignment pulse would thus be a nuisance. This
effectively limits us to I = 5x 10> W/cm?. Using a small angle between be-
tween alignment and HHG beam would allow higher intensities to be used,
but complicates the optical setup.

The rotational temperature of the molecules is another very important pa-
rameter. Only the wave packets created starting from one particular Y
eigenstate are coherent. A high Tt causes a wide J-distribution over which
is averaged incoherently. This significantly decreases the achievable degree of
alignment, as shown in figure 2.4a. This dependence can be observed exper-
imentally. Although we did not directly measure (cos?#), as is possible us-
ing Coulomb explosion (Dooley et al. [29]), the dependence of the harmonic
intensity is closely related to it (Ramakrishna and Seideman [163]). Indeed,
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Figure 2.3. Calculated dependence of the
alignment quality on the laser pulse
duration. The parameters are the same as
in figure 2.2, except for the pulse duration,
which is 55 fs (a), 120 fs (b), 200 fs (c), 500 fs
(d) and 2500 fs (e).

41



2.3 Attosecond Pulse Measurement

{cos?08)

3 3.5 4 4.5 5
,\2'5 T T T
]
3 b
8 2 rF 1
2
‘@
e
o 15 |
£
L
5 1
g !
S
T
05
1 1 1
3 3.5 4 4.5 5

Time (ps)

Figure 2.4. Dependence of the degree of
alignment on the rotational temperature.
Panel (a) shows calculations for the same
parameters as in figure 2.2, except for the
temperature: Tror = 20 K (dash-dotted line),
Trot = 90 K (solid line), Tyot = 200 K (dashed
line). Panel (b) shows measurements of the
intensity of harmonic 21 as a function of
the delay between aligning and
HHG-pulse for two gas jet orifice
diameters: 300 microns (solid line) and 1
mm (dashed line). The rotational
temperatures reached with these were
estimated as 90 K and 200 K, respectively.
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in N molecules, the intensity of harmonics, generated at varying delays af-
ter the aligning pulse, follows closely the (cos? 8)-measure. In figure 2.4, we
compare calculations for different rotational temperatures with such measure-
ments. The rotational temperature of our gas jet was discussed in section 2.1.
The trade-off between medium density, temperature and pumping power led
us to use an orifice of 300 microns and a backing pressure of 3 bar in most
experiments. The temperature then was estimated to be Ty, = 90 K. This es-
timate is based on the Fourier transform of measured revival curves, which
show peaks corresponding to the beating between the different J-levels. These
are compared to Fourier transformed theoretical (cos? 8)-curves for different
initial Tyot. This allows a determination of the experimental temperature up
to +10K, but the precise value might fluctuate between different measure-
ment runs due to possible variations of the distance between orifice and HHG
source as well as the proper functioning of the jet.

2.3 Attosecond Pulse Measurement

Ultra-short light pulses are, almost by definition, shorter than the response
time of any electronic instrument. Additionally, photodetectors are intrinsi-
cally intensity-detectors, i.e. insensitive to the phase of incident electric field.
Numerous methods overcoming these limitations exist today for light pulses
in the IR and visible domain, all consisting of at least one time-nonstationary
and one time-stationary filter (Walmsley and Wong [214]). See (Walmsley and
Dorrer [213]) for an extensive tutorial on these techniques. Their direct ap-
plication to the XUV and attosecond domain is, however, not straightforward
because of the extraordinarily large bandwidth of typically tens of eV and the
mean wavelength of the pulses being in a spectral region where there are no
standard linear or nonlinear materials. Therefore there are only limited op-
tions for optics that can be used to manipulate these pulses.

Nonetheless, ‘classical’ all-optical methods like intensity auto-
correlation (Sekikawa et al. [183], Tzallas et al. [200]) and interferometric
auto-correlation (Nabekawa et al. [152]) have been demonstrated on APTs
using XUV multi-photon-ionization of a target gas as non-linear element,
i.e. time-gate and thus non-stationary filter. ‘Spectral phase interferometry
for direct electric field reconstruction’” (SPIDER) has been demonstrated to
measure the femtosecond profile of one harmonic peak (Mairesse et al. [128]),
and (Cormier et al. [23]) have proposed a scheme to transfer the ‘spatially
encoded arrangement for SPIDER’ (SEA-SPIDER) to the attosecond domain.

RABITT

The most successful techniques thus far, one of which is the RABITT method
applied in the experiments presented in this thesis, are based on converting
the optical wave packet Exyy(t) to an EWP, by ionizing a target gas. The rele-
vant physics have been discussed in section 1.3.4.

The formulae relevant to the measurement of an average pulse in an APT
with RABITT are equations 1.58 and 1.67. The electric field of the XUV pulse
is obtained from

qaN
Exov(t) = Y. fiyAq exp[-iquot +igq], (2.5)
9=n

with the scalar amplitudes A; and phases ¢, of the discrete harmonics and the
unit-vectors #1; describing their polarization state. The latter is linear and par-
allel to the driving laser for atoms due to their spherical symmetry, whereas
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for molecules this is in general not the case. In paper III, we measure the po-
larization of the high-order harmonics emitted by aligned nitrogen molecules.
The amplitudes A, are easily accessible via an intensity spectrum, obtained for
example with a grating and an XUV-sensitive detector.

For the phase measurement, one extracts by a fast Fourier transform the
phase of the oscillating part of the sidebands at energies qw - I, given as

Sq(T) = cos(2woT + Pgi1 = Pg-1 - A‘P;t) , (2.6)

and corrects for the atomic phase A(P;t. In this measurement of the relative
phases @41 — ¢4-1, the IR probe beam is the phase reference.

In many experiments, however, the IR HHG driving laser would be an even
more interesting phase reference. In other words, one wants to shift the origin
of the time-axis by 1y, such that the HHG driving laser field is maximum at
t' =t — 19 = 0. One easily verifies® that such a change of the time-origin adds an
additional phase term 2¢yot = +2wp Ty to the argument of the cosine in equation
2.6.

The delay 1y between the two IR fields can be measured by making the
IR driving beam, o< cos[wy(t — Tp — T)], interfere with the IR probe beam,
o< cos(wot), in the HHG medium. With typically three orders of magnitude
lower intensity, the IR probe beam cannot generate harmonics on its own, but
will very weakly modulate the total intensity according to cos[wo(T + 19)].
Due to the high non-linearity of the HHG process, this weak modulation will
become perceptible as a small modulation of the total (i.e. spectrally inte-
grated) XUV intensity. From this oscillation, superposed on the complete
RABITT scan, one can extract ¢yt = woTp and finally subtract 2¢yot from the
measured sideband oscillation phases.

From the so-obtained relative phases of neighboring harmonics
®g+1 — ¢g-1, one can calculate the XUV group delay, also called emission
time, t,, as:

o0 N Pg+1 — Pg-1

- 2.7
0w lgey 2wy 27)

te(quo) =
As the phase reference is the IR driving laser field, e = 0 coincides with a
driving laser field maximum. The slope of these emission times correspond to
the intrinsic chirp of the XUV emission on an attosecond time-scale, which is
thus referred to it as the attochirp. The absolute values of the emission times
correspond to the delay between the attosecond XUV burst and a preceding
IR driving field maximum. It is determined by the measurement of ¢+ and
referred to as the absolute timing.

The XUV spectral phase ¢(w) can finally be obtained at the discrete har-
monic frequencies g, by integration of the group delay. This implies that the
spectral phase is measured up to an integration constant ¢, which takes the
role of an absolute phase of the XUV field given by equation 2.5, and has no
influence on the temporal intensity profile. In the experiments presented in
papers I and II, however, this absolute phase becomes of importance.

Since the sidebands have to be kept very weak so as to avoid distortions
due to higher-order processes (i.e. sidebands of second order and higher), the
harmonic peaks in the spectra are very weakly affected. We can thus extract
the spectral intensity from a RABITT scan by integrating over 7 and obtain
the same spectrum as we would have by taking a separate spectrum with no
IR probe beam present.

Data analysis Concretely, an example of a RABITT scan is shown in figure
2.5. This scan was taken with a generation intensity of I = 1.2 x 10'* W/cm? in

®Just replace t — t' =  — 19 in the derivation of equation 1.67.
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Figure 2.5. Raw data of a RABITT scan,
taken with an HHG intensity of

I=12x10" W/cm? in nitrogen molecules

aligned parallel to the driving laser
polarization and detecting in neon. The

piezo step size is 20 nm and 100 laser shots
are averaged per spectrum. The acquisition

of this scan thus took about 10 minutes.
The ordinate is scaled according to the
time-of-flight of the detected
photoelectrons, but the corresponding
harmonic orders are marked.
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Figure 2.6. Analysis of the RABITT scan shown in figure 2.5. The total, i.e. spectrally
integrated, signal (a) is modulated with frequency wy. From its FFT (b), we obtain iot.
Sideband 22 (c), normalized by the total signal, oscillates at 2w, with strong contrast.

The phase of its FFT (d) at 2wy equals g3 — g1 — AP35 + 2¢or. Before doing the FFT,
the dc-component of the signal has been subtracted in both cases.

nitrogen molecules aligned parallel to the driving laser polarization and using
neon, I, = 21.57 eV = 13.9wy, as the detection gas. The lowest order harmonic
detected is thus g1 = 15. Integrating the whole scan over the photoelectron
energies leads to the total signal as shown in figure 2.6a. A clear peak is seen
at frequency wy in the squared modulus of the fast Fourier transform (FFT)
(i.e. the spectral density) of this total signal and ¢t can now be obtained
by averaging the phase over the full width at half maximum (FWHM) of the
wo-peak.

In order to remove the wp-modulation of the total signal as well as fluc-
tuations, the RABITT trace is now normalized by the total signal. Then, for
each sideband, integrating over its spectral width yields the sideband-signal,
shown for sideband 22 in figure 2.6¢c. The spectral density peaks at frequency
2wy and the phase — again averaged over the FWHM of the 2wy-peak — yields
the sideband phase @23 — ¢21 - A¢'§‘5 + 2¢tot. It remains to subtract 2¢ot and to
correct for the atomic phases to finally obtain the relative phase of harmonics
23 and 21.

The error bar to each point is given by the standard deviation of the side-
band FFT phase within the FWHM of the 2wy-peak plus twice the standard
deviation of the FFT phase of the total signal, within the FWHM of the wy-
peak.

The spectral density of the sideband still shows a small peak at wy despite
the normalization by the total signal. This is due to some IR radiation of the
HHG driving laser being diffracted in the HHG medium and thus not being
blocked completely before focusing harmonics and IR probe beam into the
MBES. This diffracted radiation then interferes with the probe beam, adding
an additional dc and wp-component to the sideband signal. These do, how-
ever, not perturb the modulation at 2wy and thus the measurement of relative
phases (Dinu et al. [27]).

7 Actually, we usually omit correcting for them, since they are very small and mainly con-
tained within the error bars.
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Magnetic Bottle Electron Spectrometer The EWPs, the characterization of
which most of our experiments are based on, are generated in the small source
volume of the magnetic bottle electron spectrometer (MBES). This apparatus
was developed by (Kruit and Read [99]), and consists of a ‘normal’ time-of-
flight electron spectrometer with the addition of a strong magnetic field (» 1T)
in the source region, which gradually reduces to ~ 1073 T towards the flight
tube, where it remains constant. The field lines are parallel to the flight tube
direction. The electrons spiral around these field lines and convert their initial
velocity to longitudinal velocity, i.e. along the flight-tube direction, without,
however, changing their kinetic energy. All electrons emitted in the source
point which initially have a velocity component along the flight-tube direc-
tion will thus eventually reach the detector. Thus, electrons ejected with the
same kinetic energy into a solid angle of 27 all arrive at the same time at the
end of the flight tube. A microchannel plate detector converts the impinging
electrons into a time-dependent voltage proportional to the time-dependent
electron current, dN/dt, integrated over the detector area. This signal is read
out with an oscilloscope.

The time-of-flight, tToF, of the electrons can be converted to kinetic energy,
Evin, by a suitable calibration. For our purposes, where the central energies of
the electron spectral peaks are known to be given by the odd harmonic orders
of the driving laser and the ionization potential, I,, of the target gas, a rough
calibration based on the distance, L = 1.5m, between the source point and the
detector, proved to be sufficient:

m L 2
Ekm:hw—lp:;(tTOF) . (2.8)

Here, SI units are used and m, is the electron mass.

Since we detect the signal in equally spaced time-bins, it is clear that the
spectral resolution of the MBES decreases rapidly with increasing kinetic en-
ergy. On the other hand, the signal-to-noise ratio increases with kinetic energy.
For RABITT measurements, one usually only requires sufficient spectral res-
olution to discern harmonics and sidebands. In the experiment discussed in
paper V, these constraints do, however, play a role.

The detection gas is injected directly into the MBES source volume by an
effusive jet, providing a static pressure in the source region of ~ 10~* mbar.
This ensures sufficient density for good XUV detection efficiency while avoid-
ing space charge effects which would deteriorate the spectral resolution. The
detection gas is chosen according to its ionization potential and cross section.
The total, i.e. angle-integrated, ionization cross-sections of argon and neon
are shown in figure 2.7. Argon detects lower harmonic orders more efficiently
but from harmonic 23 on, neon is the better choice.

24 The Experimental Setup

The setup used for the experiments presented in papers I, II, IV, and V is
shown in figure 2.8. The original scheme was developed by Willem Boutu
during his thesis (Boutu [12]). The work of paper III was partly carried out in
Saclay on almost the same setup, except for the necessary additions to perform
polarimetry measurements.

The heart of this setup is the Mach-Zehnder type interferometer for the
RABITT measurement. Drilled mirrors separate the annular generating beam
(outer diameter cut to 17 mm by an iris), which contains most of the energy
(~ 1m]), and the weak central part (~ 50 ], diameter ~4 mm). The latter can
be delayed by a piezoeletric translation stage with interferometric stability,

)
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Figure 2.7. Total photo-ionization cross
sections for argon (black line) and neon
(gray line) as function of the harmonic
order of an 800 nm laser.
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i.e. the stability of the optical path difference between the two interferome-
ter arms has to be ~ 50 nm. In both arms, combinations of half-wave plate
and polarizer allow to finely control the pulse energy. The two beams are
then collinearly focused by the same lens of 1 m focal length ~5 mm before
the HHG gas jet (Fy ~ 60 for the generating beam and Fy ~ 250 for the probe
beam). An iris then blocks the annular generating beam in the far field and
the high harmonic beam together with the on-axis probe beam are focused by
a broad-band toroidal gold mirror into the MBES. In its detection volume,
the target gas neon, injected by a permanent leak, is photoionized by the
high harmonics. With the HHG and detection gas jet running, the pressure
is ~ 1073 = 1072 mbar in the HHG chamber, ~ 10~> mbar in the toroidal mirror
chamber, ~ 107 mbar in the MBES interaction volume and ~ 10~ mbar in the
MBES flight tube.

The stability of this interferometer is one crucial and delicate part of the ex-
periment, the correct alignment of the toroidal mirror is the other. The optical
table the RABITT interferometer is mounted on is apart from the one carrying
the vacuum chambers and thus decoupled from the vibrations induced by the
vacuum pumps. As for the alignment of the toroidal mirror, we image the
focal spot in the MBES detection volume on a camera after the MBES. This
allows to verify that (i) the focal spot of the annular generating beam (pass-
ing when the motorized iris before the toroidal mirror is opened somewhat
more) is free of aberrations and (ii) this focal spot overlaps well in space and
time with the central IR probe beam. This makes sure that wavefront distor-
tions are minimized and the wavefronts of the XUV and IR probe beams are
parallel.

The toroidal mirror together with the following flat mirror cause two
grazing-incidence (11.5°) reflections of the HHG radiation on Au-surfaces,
preferentially transmitting the s-polarized component into the MBES (with
a 2:1 contrast). The generating laser is kept s-polarized while the molecular
alignment axis is rotated in order to predominantly detect the HHG polariza-

, delay stage for
molecular alignment beam

piezo-electric
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At ~ 100 as

Au-covered effusive detection
gas jet

I toroidal mirror
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Figure 2.8. Setup used for the experiments discussed in chapters 3, 3.5 and 4, and
papers papers I to V. The laser beam enters at the upper left of the scheme. The part
transmitted through the first beam splitter is the alignment beam. In the lower left part
of the figure, the drilled mirror based interferometer for the RABITT measurement is
depicted. Here, the large annular beam is the harmonic generating beam, whereas the
small central part is the probe beam for RABITT. From the focusing lens on, the setup
is placed under vacuum.
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tion component parallel to the driving laser.

To align molecules in the HHG gas jet, a third laser pulse with controllable
delay, polarization and intensity is needed. To this end, a larger interferome-
ter, based on amplitude beam splitters, is set up around the compact RABITT
interferometer. One fifth of the incoming pulse energy is transmitted into the
arm for the aligning beam and passes a motorized delay stage. Here, the sta-
bility requirements are much less severe than for the RABITT interferometer,
since the angular distribution of the molecules varies on a ~ 10 fs timescale
(cp. section 2.2). The central part (~ 4 mm diameter) of this beam is blocked
so as to limit the amount of its energy passing into the MBES and thus prevent
above-threshold ionization. The polarization direction of the aligning beam
is set by a motorized half-wave plate, thus controlling directly the aligning
angle of the molecular ensemble with respect to the generating laser polariza-
tion direction at the half-revival delay. The pulse energy in the aligning beam
is limited by an iris (cutting the beam to typically 12 mm diameter), thereby
limiting the aligning beam intensity to ~ 5 x 101> W/cm? in the HHG gas jet.
This also ensures that the aligning beam focal spot is larger than that of the
HHG beam.

For the experiments presented in chapter 5 and paper VI, we generated
high-order harmonics in a laser ablation plasma plume. To this end, part of
the uncompressed laser output (300 ps) was split off and focused onto a a solid
metal target with a lens of focal length f = 20 cm (Fy ~ 40). The remaining
part is delayed by ~ 80ns, thus requiring a ~ 20 m long delay line, before
being compressed to the usual 55 fs. The so modified setup is shown in figure
2.9. The major experimental difficulty was the deterioration of spatial beam
quality in this long delay line, leading to a reduced attainable peak intensity
in the HHG medium as well as worsened phase matching conditions. More
details are given in chapter 5.

piezoelectric translation
At ~100as detection gas jet

p target iris toroidal mirror @
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i e
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magnetic bottle

electron

spectrometer

<l0m),55fs ns delay line
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compressor from LUCA laser system

Figure 2.9. Setup used for the experiments discussed in chapter 5 and paper VI. The
RABITT-part is the same as in the standard setup shown in figure 2.8. Here, the HHG
medium is an ablation plasma plume, generated by focusing part of the uncompressed
laser output onto a a solid metal target. HHG and probe pulse are delayed by ~ 80 ns.
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CHAPTER 3

SELF-PROBING OF ELECTRONS IN MOLECULES

This chapter — the most extensive of this thesis — will deal with experiments
making use of the self-probing scheme, illustrated in figure 3.1. The electron-
core recollision (third step of the three-step model) is considered as a probe
process, where the attosecond EWP interrogates the molecule!. The quantity
of interest in these experiments is the recombination dipole matrix element
(DME) d,. The latter is not directly measurable but extracted from a more
readily accessible observable — in our case the XUV field emitted when the
recollision leads to a radiative transition to the neutral ground state.

The DME, d,, is a very interesting and rich observable because it is a com-
plex valued vector quantity, i.e. one can in principle measure intensity and
phase of its three components as a function of the recolliding electron energy
and its recollision angle #. This is plenty of information to test theoretical
models. From a conceptual point of view, d, is interesting because, if one has
sufficient knowledge of the recolliding electron, one can extract information
about the molecule and its dynamics.

After demonstrating how the DME can be extracted from measured XUV
spectral intensities and phases, we will discuss experiments with CO, and
N» molecules, also subject of papers I and II, essentially testing the methods
for extracting the DME and imaging the active electronic orbital(s). In the
case of Ny, we develop an interpretation revealing electron dynamics in the
molecular ion on a sub-femtosecond time-scale.

In the last section of this chapter, measurements of nuclear dynamics are
presented — first on a picosecond timescale for rotating N, molecules and fi-
nally on attosecond time scale for vibrating HJ ions.

RESUME DU CHAPITRE

Ce chapitre — le plus gros de cette these — traitera des expériences utilisant
le schéma d’auto-sondage, illustré par la figure 3.1. La recollision électron-
coeur (troisieme étape du modele en trois étapes) est considérée comme un
processus de sondage, oti le paquet d’ondes électronique attoseconde inter-
roge la molécule. La quantité intéressante dans ces expériences est I'élément
de matrice dipolaire de la recombinaison d;. Ce dernier n’est pas directement

!Note that one can neither say that the molecular ion would be probed, nor the neutral
ground state. As shown in section 3.4.3, one has to think of a somewhat more complicated ob-
ject: the Dyson-orbital, which is, illustratively speaking, the result of projecting out the difference
between the neutral multi-electron ground state and the multi-electron ionic state.
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Figure 3.1. Illustration of the Self-probing scheme.

mesurable mais sera extrait d’une observable plus directement accessible —
dans notre cas le champ XUV émis si la recollision méne a une transition ra-
diative vers I’état fondamental neutre.

L’élément de matrice dipolaire, d;, est particuliérement intéressant car il
s’agit d’une quantité vectorielle complexe et on peut, en principe, mesurer
les intensités et phases des trois composantes en fonction de I’énergie et de
I’angle de recollision 0 de I’électron. Cela donne des informations abondantes
pour tester des modéles théoriques. D’un point de vue conceptuel, d, est
intéressant parce qu'une connaissance suffisante de I’électron recollisionnant
permet d’extraire des informations sur la molécule et sa dynamique.

Dans le cadre du modeéle de Lewenstein, le champ XUV émis par une
molécule peut étre écrit comme le produit de I'élément de matrice dipo-
laire de recombinaison et de I'amplitude spectrale complexe, a(k), du pa-
quet d’ondes électronique recollisionnant. L’idée centrale pour accéder a
I’'élément de matrice dipolaire recherché est de calibrer les amplitudes a(k)
avec une deuxiéme mesure effectuée avec un atome de référence, ayant un
potentiel d’ionisation trés similaire a la molécule étudiée. On se base donc sur
I'hypothése que I'amplitude a(k) ne depend que trés peu de la structure spa-
tiale de I'orbitale active et est surtout déterminée par le potentiel d’ionisation:
le processus d’ionisation tunnel agit comme un filtre spatial trés efficace. Nous
déterminons donc I'amplitude et la phase de d, par le rapport des amplitudes
et la difference des phases spectrales mesurés pour la molécule et ’atome de
rétérence. La direction du vecteur d; est la méme que la direction de polarisa-
tion de I"émission XUV de la molécule considérée.

Résultats principaux

Nous avons mesuré les amplitudes et phases spectrales pour des molécules
de CO, alignées, en variant 6 de 0° a 90° par pas de 10°, ainsi que I'amplitude
et la phase spectrale de référence dans le krypton. Ces mesures nous per-
mettent d’extraire d.. Nous observons un minimum d’amplitude et un saut
de phase de < 2.7 rad autour de 0 = 0°, correspondant a un changement de
signe de la partie réelle de d.. Le méme changement de signe est obtenu
par un calul théorique pour d; = (o(r)|d|e'*"), ot d est I'opérateur dipo-
laire et i est I'orbitale moléculaire occupée la plus élevée (HOMO) de CO.
C’est une interférence quantique destructive entre iy et la fonction d’onde de
I’électron recollisionnant qui provoque ce changement de signe. Ce resultat
vient conforter la possiblité de sonder des molécules — et dans ce cas une or-
bitale électronique dans une molécule — par le schéma d’auto-sondage. De
plus, nous démontrons comment I'interférence quantique peut étre utilisée
pour mettre en forme le profil temporel attoseconde de I’émission XUV.
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Les mémes données mesurées pour des molécules de N, (et I'atome de
référence argon) s’averent beaucoup plus difficiles a interpréter. Nous avons
développé une interprétation faisant appel a une contribution supplémentaire
ajoutée a celle de la HOMO: celle de I'orbitale énergétiquement directement
dessous (HOMO-1).

L’analyse des données peut étre poussée plus loin en lisant d, =
(1po(r)|d|e*T) comme une transformée de Fourier de I'orbitale “active’ {(r).
Une mesure de d, pour une gamme spectrale et angulaire suffisante permet
donc en principe de recontruire la fonction d’onde y(r) par une méthode to-
mographique. Cette méthode et les approximations faites dans le traitement
théorique seront discutées en détail, basé sur des simulations et sur des recon-
structions d’orbitales a partir de nos données expérimentales. 1l est impor-
tant de garder en vue que nos mesures sont toujours incomplétes et que nous
sommes pour le moment obligés d’'imposer la symétrie des orbitale reconstru-
ites. Pour une comparaison entre les orbitales théoriques et expérimentales,
nous avons donc besoin de propriétés structurales caractéristiques autres que
la symétrie qui domine I'aspect visuel.

Cela n’est pas vraiment possible pour la HOMO de CO, et la reconstruc-
tion expérimentale ne peut donc pas strictement étre considérée comme une
imagerie réussie. Pour N, la symétrie différente des deux orbitales actives
permet de séparer leurs contributions a 1’élément de matrice dipolaire total
mesuré, et nous pouvons en extraire des images des deux orbitales. C’est
la HOMO de N, qui se préte particulairement bien a une comparaison avec
des simulations et nous en concluons que la reconstruction est réussie. Cela
constitue une démonstration convaincante du potentiel du schéma d’auto-
sondage et de la faisabilité de la tomographie d’orbitales moléculaires. Com-
binée a I'image de la HOMO-1, également extraite de nos mesures, nous avons
en fait accés a un paquet d’ondes dépendant du temps créé lors de I'ionisation
tunnel, interprété comme le trou laissé dans I'ion. Ce trou évolue sur un
échelle de temps sub-femtoseconde: nous avons donc démontré la possibilité
d’imager des dynamiques électroniques intra-moléculaires.

Dans la derniére partie de ce chapitre, une autre variante du schéma
d’auto-sondage est appliquée a I’'obervation des dynamiques nucléaires dans
des molécules. L’evolution des paquets d’ondes rotationnels dans N, et CO,
— au coeur de la technique d’alignment non-adiabatique utilisée dans nos
expériences — peut étre suivie facilement car elle se passe sur une échelle de
temps picoseconde. Nous démontrons une technique capable d’augmenter le
contraste de la détection d’un facteur 8 en ne détectant que la composante de
polarisation des harmoniques perpendiculaire au champ laser de génération.
La dynamique vibrationelle dans les molécules les plus legeres, H, et D, peut
étre trés rapide et nous utilisons la technique PACER (‘Probing Attosecond
dynamics by Chirp-Encoded Recollision’) pour la suivre avec une résolution
attoseconde. Nous avons verifié expérimentalement le lien entre la fréquence
de la lumiére XUV détectée et le délai attoseconde aprés lequel I'évolution
du paquet nucléaire dans I’ion moléculaire est sondée. Théoriquement, nous
démontrons comment la phase de I’émission XUV encode la dynamique
nucléaire et nous comparons a nos mesures de phase.

Conclusions

Dans plusieurs exemples, le potentiel du schéma d’auto-sondage pour
I'imagerie de dynamiques électroniques et nucléaires intra-moléculaires ultra-
rapides a pu étre démontré expérimentalement. En particulier, nous avons
fait les premieres mesures de phase de I’émission harmonique émise par
des molécules alignées. Celles-ci ont permis de confirmer sans ambiguité
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I'interprétation en termes d’interférences quantiques des mesures d’intensité
spectrale faites auparavant par d’autres groupes. La tomographie d’orbitales
était — et reste— un sujet vivement débattu dans la communauté. Nous avons
fait des progres majeurs du coté experimental ainsi que sur la compréhension
théorique, ce qui nous amene a la conclusion que cette imagerie est bien
réalisable expérimentalement. Les distortions spatiales de I'orbitale recon-
struite resteront vraisemblablement importantes — comme dans nos recon-
structions expérimentales — mais ne devraient pas empécher qu’un change-
ment ultra-rapide puisse étre imagé. La perpective la plus intéressante est
donc la tomographie dynamique plutét que I'imagerie d’orbitales statiques a
haute résolution spatiale.

3.1 Measuring the Recombination Dipole Matrix Element

In the framework of the Lewenstein model, discussed in section 1.3.3, the
high-order harmonic field, exyv(w), emitted by a single atom or a molecule
is given by equations 1.37 or 1.38 in velocity or length form, respectively. We
omit here the acceleration form because in general the corresponding operator
is unknown. Assuming the driving laser field to be linearly polarized along
the x axis, we expand the total electron wavefunction similar to the SFA ansatz
1.35 into a sum of a bound part:

Po(r,t) = po(r)e’?’, (3.1)

and a continuum plane-wave packet:
ge(rt) = [ dka(eler- 0421, (32)

with complex-valued amplitudes a(k), including e.g. the intrinsic chirp. The
electron wave vector k = (k,0,0) is parallel to the driving laser polarization
direction. Neglecting, as discussed in connection with equation 1.39, bound-
bound and continuum-continuum matrix elements, one finds a complex har-
monic spectrum

exuv (@) o Frowo (o7, 1)[dlge(r, 1)) +cc.
:[dtei“’t/dka(k)e_i(kz/z”l’)t(lpo(r)\él|eikx)+c.c.

:andka(k) (go(r)]dle’™) op(k2/2+ T - w)
=27 a(k) (wo(r)|d[e®*)  forw =K*2+1,, (3.3)

where only positive XUV frequencies w have been considered and the dipole
operator is d = r in length form and d = -iV, in velocity form. Note that
the above laser-field-free derivation is only ‘intuitive” — for a more rigorous
analysis, see (? ]). The single-emitter XUV field exyy is thus proportional to the
product of the recombination DME and the complex valued continuum EWP
amplitude. The latter contains both the result of the tunnel-ionization and
the continuum acceleration step. This remarkably simple result has first been
noted by (Itatani et al. [80]) and has later been more firmly established by (Le
et al. [102, 103]) for rare gas atoms and the simplest of all molecules, HJ. For
good agreement between exact 2 TDSE simulations and the result of equation
3.3, however, the plane-wave DME, appearing in the Lewenstein model, has

2For the rare gases, well established single-active-electron pseudo-potentials have been used.
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to be replaced by a more accurate version, including exact scattering waves.
Equation 3.3 should thus be re-written as

exov(@) = a(k) (YoMIAK),  w=K/2+1, (3.4)

where 7 is a proportionality constant, essentially describing an overall tun-
neling probability, and the scattering state |k) is labeled by the asymptotic
momentum (in the driving laser polarization direction, x) of the continuum
electron. The wave packet amplitudes, a(k), can still be calculated with the
SFA.

In the theoretical study of (Le et al. [102, 103]) it was found that these am-
plitudes, a(k), essentially depend on the driving laser field but not on the pre-
cise structure of the ground state, except for a constant scaling factor, which is
included in #. The tunnel ionization step thus acts as a strong spatial filter.

This directly leads to a scheme, proposed by (Itatani et al. [80]), where
the recombination DME for a system under study - in our case a molecule —
can be measured by calibrating the continuum EWP amplitudes in a mea-
surement with a suitable known reference system. ‘Known’ means that the
DME can be calculated accurately, as is the case for rare gas atoms. This is
based on using the expressions 3.3 and 3.4 for the macroscopic XUV field Exyy
— an experimental observable. The validity of doing so has very recently been
studied theoretically by (Jin et al. [82]), concluding that in reasonably good
phase matching conditions, one can just replace the EWP amplitude a(k) by a
‘macroscopic’ EWP amplitude 4 (k) that is largely independent of the medium.
‘Reasonably good’ means that the free electron density and absorption should
negligible, which is the case in out experiments (cp. section 2.1). Experiments
by (Levesque et al. [116]) with rare gas atoms confirm this result.

Thus, using a reference with the same ionization potential as the studied
molecule (so that one harmonic order is associated with the same continuum
electron momentum k) in the same experimental conditions (so that phase
matching is the same) the macroscopic EWP can indeed be calibrated. Taking
then the ratio of the measured complex XUV spectra of the studied molecule
and the reference, the electron wavepacket amplitudes (k) will cancel out:

E%C{}(w) _ Nmol <lpmol(r),\|a|k> )
Eg(%fv(w) Mref (¢ref(r)|dx|k>

Note that we divide here by a scalar: the XUV field emitted by an atom is
polarized parallel to the driving laser and thus to the electron re-collision di-
rection k/k || x, and we normalize by this component. The orbitals 1,1 () and
Pres(r) are of course oriented in some way in the laboratory frame. As for the
reference atom, the laser polarization direction, x, also fixes the quantization
direction. The reference atoms used in the experiments presented in this thesis
are argon and krypton, for which the relevant orbital is 3p or 4p, respectively.
For symmetry reasons, only the py-orbitals will contribute to HHG?, so these
are used for the calculation of the matrix element. For the (linear) molecule,
the internuclear axis imposes the quantization direction and this axis can be
aligned with respect to the laser field at an angle 6. The matrix element is thus
f-dependent and so is 1. Writing the complex XUV spectra as in equation 2.5,
i.e. splitting them into spectral amplitudes A(w) and phases ¢(w), one can
write the sought-for molecular DME as

(3.5)

A N et Amol(@W,0) i, (wW,0)-grer(@)]
9 dk =1 w/g e Pmol (W, Pref
(¢mol( )| | ) mol( )Umol(e) Aref(w)

x (Yrep(r)|dxlk) . (3.6)

3This was experimentally demonstrated by (Shafir et al. [184]) for neon and its 2p orbitals
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The spectral amplitudes, Ao1(w, ) and Aef(w), and phases, @o1(w, 6)
and @.¢(w), for the molecule at some alignment angle 6 and the reference
atom, respectively, can be measured in two separate RABITT scans, keeping
the same experimental conditions. The measurement of the polarization state,
fimol (w, ), of the harmonics emitted by the aligned molecule requires a sepa-
rate experiment, as demonstrated e.g. in paper III for nitrogen. As mentioned
in section 2.4, in our setup, the component of the XUV light parallel to the
driving laser is transmitted preferentially to the detector. We make the ap-
proximation that the polarizing elements are perfect and assume to measure
only this component and thus access in our measurements the molecular re-
combination DME projected onto the driving laser polarization direction. The
ionization probabilities could be measured in a separate experiment as well 4,
or calculated with ADK theory.

3.1.1 Sticking to the Plane-Wave Approximation

The computation of exact scattering states |k) is much harder than for bound
states but it is becoming possible today. The ‘exact” photo-ionization DME
used by (Le et al. [102, 103]) contain characteristic features, notably intensity
spikes and phase jumps at resonances (shape resonances and auto-ionizing
resonances like that discussed in section 4.1) induced by the precise shape of
the potential landscape seen by a continuum electron. Many of these fea-
tures are, however, spectrally very sharp and it would be worth studying
whether such features would not disappear in photo-recombination DME rel-
evant to HHG. This is because for the (short) quantum paths relevant to a
macroscopic HHG signal (see page 25), the electron spends less than a laser
cycle in the continuum. One would expect that sharp features, often associ-
ated with multiple-scattering, can simply not develop during so short times.
The result would then be that in HHG, one is sensitive to a strongly smoothed
DME as compared to photo-ionization. Note that this does not violate the
detailed-balance principle stating that photo-ionization is nothing else but re-
versed photo-recombination and that the corresponding DMEs are simply the
complex conjugate of one another. It is the difference in the involved time-
scales (in photo-ionization, one considers the ejected electron long after the
interaction is over whereas in HHG the electron spends only ~ 1.5fs in the
continuum) that would lead to differences in the relevant DME. Note also that
shape resonances are strongly aligned along the molecular axis and may be
smoothed out by the angular distributions provided by non-adiabatic align-
ment in our conditions.

Thus, for the sake of simplicity as well as due to lack of more appro-
priate description, we will in the theoretical treatment stick to plane waves:
k) = exp[ikx]. This will also have the great advantage, that the matrix ele-
ments will take the form of a Fourier transform with all its handy symmetry
properties.

As we argue in paper 1II, a first correction for the error introduced by com-
ing back to plane waves is a heuristic adjustment of the relation between the
frequency w of the high order harmonic emission and the electron energy k?/2.
Equation 3.4 states w = k?/2 + I, which is true for the asymptotic value of k, i.e.
far from the potential of the core. Close to the core, where the interference
between the re-colliding continuum electron and its bound state generates the
XUV radiation, k?/2 will have increased due to the acceleration into the core

4In such an experiment, it is, however, not immediately clear how to separate multi-photon
absorption (i.e. above-threshold ionization) from tunnel ionization, which is the process relevant
to HHG.
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potential, which has a depth of approximately I,. Thus, the heuristic relation
w = k?/2 is often used.

3.1.2 Two-center Interference

Which obvious features can be expected to appear in those molecular DMEs
and how can they be easily related to the molecular structure? Consider a
simple, diatomic, mono-nuclear molecule whose HOMO can be written as an
antisymmetric combination of two atomic orbitals: §,1(8) = ¢o(r-R/2) -
¢o(r+R/2), where R is the internuclear distance vector, making an angle 6
with the driving laser polarization direction and thus with the re-colliding
electron wave vector k = (k,0,0). The recombination DME in velocity form
then reads:

($emat ()] 7) = 2ik sin (%R cosG) (po(1)[e*T) . (3.7)

This result is simply a consequence of the Fourier shift theorem. Obviously,
destructive quantum interference, i.e. a sign change of the recombination
DME, occurs for

Rcos =nA,, (3.8)

where n is an integer and A, = 27t/k is the electron de Broglie wavelength.
Destructive interference thus occurs if the re-collinding electron wavelength
is equal to the internuclear distance projected on the recollision direction. The
molecule thus behaves like a two-point emitter whose emissions are dephased
due to i) the path difference between the centers, ii) the symmetry of the or-
bital.

If, instead, one considers an symmetric combination of atomic orbitals,
Prmo1(0) = po(r—R/2) + po(r+ R/2), one finds along the same lines destructive
interference for:

Rcos9:(n—%))\g, (3.9

i.e. if half the re-collinding electron wavelength is equal to the internuclear
distance projected on the recollision direction. The latter relation together
with the heuristic dispersion relation w = k?/2 predicts an interference posi-
tion in the harmonic spectrum that agrees well with that obtained from TDSE
simulations (Ciappina et al. [19], Kamta and Bandrauk [84]) for H.

Such destructive interference, i.e. a recombination DME going through
zero and changing phase by 77, should leave a clear trace in the high harmonic
spectrum of aligned molecules. This was first observed in numerical exper-
iments by (Lein et al. [110, 111]), who solved the TDSE for H; and indeed
observed minima in the spectral intensity and phase jumps of ~ 7t value at the
positions predicted by equation 3.9.

Note that the recombination DME in length form can be expressed in a
similar, yet more complicated form as equation 3.7. It also presents a sign
change, but not necessarily at the same position as in velocity form, which
is due to the error introduced by using plane waves in the model (cp. the
discussion of different forms of the DME in section 1.3.3).

3.2 CO, Experiments

’

For an experimental observation of this interference effect, a ‘candidate
molecule has to be found, which can be well aligned and has a combination of
I, and internuclear distance R, allowing the interference position to fall within
the observable range of harmonic orders.
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Figure 3.2. Angular distribution of CO,
molecules (full line) at the half-revival,

T = 21.1 ps, calculated for the conditions of
our experiments, i.e. are the same
parameters as in figure 2.2. The
distribution peaks at 6 = 30°. For
comparison, an isotropic distribution is
shown (dotted line).
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The CO, molecule, although triatomic, is a good prototype for the simple
two-center model as its HOMO is a I1 orbital essentially formed by an anti-
symmetric combination of two p orbitals centered on the oxygen atoms (cf.
figure 1.6). It thus comes as no surprise that the plane-wave recombination
DME calculated with the CO; HOMO, shown in figure 1 of paper I, presents
a sign change that agrees very well with the prediction of equation 3.8, except
for a small shift. This deviation is ascribed to the admixture to the HOMO of
the dyy (x along the internuclear axis) carbon orbital ( 7%), and also to a lesser
extent of the dxy oxygen orbitals ( 2%). The dipole contribution of the dyy car-
bon orbital obviously does not present any interference. As for the dxy oxygen
orbitals, they contribute to the total HOMO as a symmetric combination and
thus give rise to a destructive interference following equation 3.9.

For 6 = 0, the predicted interference position is harmonic 23 if w = k?/2 is
used, falling into an easily observable spectral range. Moreover, with krypton,
a suitable reference atom exists: Igr =14.00eV = Ig ©2 _1377eV.

In measured harmonic intensities, alignment-dependent minima have
been observed by (Kanai et al. [86], Vozzi et al. [206]), but as pointed out by
(Le et al. [101]), these could be explained by the interplay between the angular
distributions of the partially aligned molecules and the angle-dependence of
the harmonic yield. For a more convincing observation of two-center quan-
tum interference, it is thus required to also observe the spectral phase of the
high harmonic emission.

We have measured, using the setup shown in figure 2.8, the spectral inten-
sity and phase for CO, molecules aligned at angles from 6 = 0 to 8 = 90°, in
steps of 10°, as well as for krypton under the same experimental conditions.
The angular distribution of the CO, molecules in this experiment (i.e. at the
half-revival, T = 21.1 ps), shown in figure 3.2, peaks at 6 = 30°.

Applying equation 3.6, we can extract the recombination DME for CO, as
a function of the alignment angle. Since the ratio of overall ionization prob-
abilities #yef/fmo1(6) is real-valued and varies smoothly with angle, and the
Kr dipole, (ip,.¢(#)|d|e’*"), presents a smooth behaviour with k, the essential
features of the CO, dipole, ({01(0)|d|e’*"), should directly show up in the
experimental data. Note that the normalization of the CO, measurements
by a krypton measurement under the same experimental conditions also cor-
rects for any possible influence of the experimental apparatus possibly not
corrected for during the usual data analysis procedure.

The observation of a phase jump at the same spectral position as the inten-
sity minimum (harmonic 23) is one of the major results we present in paper I.
This position also agrees with that of the sign change in the theoretical plane-
wave DME for the CO, HOMO if the dispersion relation w = k?/2 is used. We
find that the emission times for CO, molecules aligned perpendicular to the
driving laser polarization are in perfect agreement with those measured with
krypton, thus verifying that the continuum dynamics of the EWP are the same
for the reference atom and the molecule. When aligning the molecules parallel
to the driving laser polarization, the phase jumps by 2.0 + 0.6 rad. This value
is averaged over 8 independent RABITT scans for 6 = 0 and the measurement
shown in figure 2 in paper I is the extreme case. When the molecules are
rotated away from parallel alignment, the phase jump decreases and finally
disappears completely from 6 = 30° on (cp.figure 3 in paper I).

The observed phase jump is not sudden but rather stretched out over two
harmonic orders, as opposed to the theoretical plane wave dipole which is
purely real-valued and changes its sign, corresponding to a sudden 7 phase
jump. A convolution with the real-valued alignment distribution cannot ex-
plain the decreased and stretched phase jump, corresponding to a complex-
valued DME. As we argue in paper I, this deviation may be due to the dis-
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tortion of the re-colliding EWP by the core potential, i.e. due to the exact
scattering states which are not included in the model. Indeed, (Ciappina et al.
[19])observed such smoothed and reduced phase jumps when using Coulomb
waves in SFA simulations for Hj .

Very recently, (Chirild and Lein [18]) reported an additional explanation of
the smoothness of the structural phase jump. An SFA calculation for Hy with-
out stationary phase approximation for the momentum integration in equa-
tion 1.41 yielded a smoothed ~ 7 phase jump. The uncertainty in the re-
combination momentum due to non-saddle-point dynamics in the full SFA
stretches the phase jump further than is expected from Coulomb distortion
effects, without, however, significantly reducing its size. This effect, which
remained unseen in HHG with atoms and is now detected for the first time in
molecules, thus complements the conclusions reported in paper I.

3.2.1 Details on the Data Analysis

These results are obtained from a series of RABITT measurement with CO,
molecules aligned at different angles as well as one RABITT scan with krypton
under the same experimental conditions. From these scans, harmonic inten-
sities, i.e. the square of the amplitudes Ao (w,0) and Aef(w) are extracted,
as well as emission times, dp/dw (cp. equation 2.7). Already in the measured
emission times, shown in figure 3.3a,b and figure 2 of paper I, a phase jump
is clearly apparent as a ‘hump’ of the emission times superposed on the linear
increase of emission times with harmonic order typical for the short trajectory
contribution to HHG and studied in detail by (Mairesse et al. [127]). In order
to apply equation 3.6, we need to integrate these emission times to obtain the
spectral phases @1 (w, ) and @rer(w).

Fluctuations of the absolute timing At this step, special care needs to be
taken: Small fluctuations within the error bars of the emission times accumu-
late to large errors on the obtained phase. The most important source of such
errors is the absolute timing, i.e. the absolute position of the emission time
curve on the time-axis. It is determined by the measurement of ¢t (cp. sec-
tion 2.3) and is found to be rather sensitive to fluctuations of experimental con-
ditions. It systematically shifts, in every generation gas, molecular or atomic,
as soon as significant free electron densities occur in the HHG medium. In-
creasing the HHG intensity or increasing the medium density have the same
effect. The attochirp, i.e. the slope of the emission time vs. harmonic order
curve, remains unaffected while its absolute position moves. These shifts can
become quite important (several hundreds of attoseconds) when ionization
in the HHG medium is strong. In a series of RABITT scans, however, the
absolute timing fluctuations remain fairly small (typically £50 as), see figure
3.3a. Since we have never observed a systematic shift of the absolute timing
with the molecule alignment angle, we are sure that the observed shifts are
a measurement error rather than a real single-molecule effect. Albeit being
small, these fluctuations induce rather large errors in the integration to obtain
the spectral phases, which is why we usually remove them. To this end, we
choose a sideband order where the fluctuation of the emission time is small
— in general the lowest order — and add a constant value to every curve of
the series such that the emission time for the chosen sideband agrees for all
curves and is equal to the average value over the fluctuating values. A result
is shown in figure 3.3b.

We assume, that these fluctuations are no single-emitter effect but rather
a macroscopic one as indicated by their dependence on the medium ioniza-
tion. (Dinu et al. [27]) have analyzed the issue of phase drifts between the
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Figure 3.3. The steps of data analysis:
from the measured emission times to the
DME phase. These data are some of those
plotted in figure 3 in paper I: Krypton (m),
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Figure 3.4. Classical electron trajectories
(a) in a driving laser field with ellipticity

€ = 0.28 and an intensity of 1.8 x 101
W/cm?. Only some of the short trajectories
are shown here, and the longer and darker
the line, the higher the re-collision energy,
i.e. the higher the associated harmonic
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29. The arrow indicates the direction of
propagation. Panel (b) shows the
re-collision angles « as a function of
ellipticity for a constant intensity, where
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larger to smaller |¢| are for harmonics 17 to
29.
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IR driving and probe fields on the way between HHG medium (where the
interference serving for the measurement of absolute timing occurs) and the
detector (where the interference serving for the measurement of the attochirp
takes place) and concluded that these will be negligible. Additional terms
in the argument of the ‘RABITT-cosine’ in equation 2.6, owing to the different
intensity depedence of the phase of different harmonic orders (and thus differ-
ent ‘harmonic chirps’ in the language used by (Varjt et al. [203])) are expected
to be too small to account for the observed shift. The same conclusion can be
drawn for the influence of phase matching in the HHG medium, simulated
with the model described by (Ruchon et al. [171]).

We assume that this shift is a distortion induced by the influence of the
free electron dispersion in the HHG medium on the IR probe beam. Another
possibility could be the perturbation of the IR probe beam in the detection
region by part of the IR driving beam, diffracted due to a free electron density
gradient in the HHG medium and thus passing the iris that is supposed to
block it.

The integration constant A second point to discuss in connection to the cal-
culation of the spectral phases @1 (w, ) and @¢(w), is the integration con-
stant. As mentioned in section 2.3, RABITT measures the derivative of the
spectral phase with respect to the XUV frequency, not the spectral phase it-
self. Methods exist to measure the §-dependence of the phase at a partic-
ular harmonic order, which would give the complementary information to
the RABITT result. One of these is based on far field interference of the
XUV emission from aligned molecules with that of a reference, such as an
unaligned sample of the same molecules (Mairesse et al. [129], Smirnova
et al. [186], Zhou et al. [220]). Another one is based on HHG in a gas mix-
ture (Kanai et al. [88, 90], Wagner et al. [211]), where the contributions of
both species interfere in the macroscopic signal and their relative phase can
be extracted if those contributions are known from a measurement in the pure
gases. With both these techniques, no significant variations of the spectral
phase of low harmonics, such as g = 15 with the alignment angle 0 has been
observed (Mairesse et al. [129], Wagner et al. [211]). We thus set the integration
constant to zero for every angle when calculating the spectral phases from the
measured emission times. Figure 3.3c shows the phases obtained by integra-
tion of the emission times in figure 3.3b. The integration is performed as a
simple summation of the sideband phases, equal to t.2wy, where the phase of
harmonic 15 is set to zero for all angles and for the krypton scan. According to
equation 3.6, subtracting the phase for krypton from the phase for CO, at the
different angles 6 finally yields the phase of the DME, shown in figure 3.3d
and figure 3 of paper L.

3.2.2 Adding Ellipticity

A second way to observe the dependence on the re-collision direction
of the quantum interference in the recombination DME is to use a driv-
ing laser with elliptical polarization, i.e. with a field Ejg = (EX,EY) =
(Eg cos(wot),eEgsin(wpt)), where € is the ellipticity. Classsical electron tra-
jectories in such a field can be calculated in the way discussed in section
1.3.2, only that here, the calculation has to be done in two dimensions, x
and y. The initial condition x(#;) = y(¢;) = 0 obviously remains unchanged,
as does x(tj) = 0. Additionally, we demand that the trajectory be closed,
x(tr) = y(t;) = 0, which is possible only if the electron has a non-zero ini-
tial velocity component in the y-direction, i(#;). The pair (#, f;) is fixed by the
x-component of the trajectory, as in section 1.3.2, and y(#;) is then fixed by the
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condition y(f;) = 0. For a laser intensity of 1.8 x 10" W/cm? and an ellipticity

€ = 0.28, this leads to the trajectories shown in figure 3.4a. The direction of the
velocity vector at the re-collision instant, (X(#;),y(¢;), corresponds to the re-
collision angle, «, shown in figure 3.4b. Obviously, for the cut-off harmonics,
the y-component of the velocity at re-collision vanishes and the re-collision
angle approaches « = 0°. In the plateau, lower harmonics are associated with
a larger (modulus of the) re-collision angle «, where the sign of « is different
for short and long (not shown in figure 3.4) trajectories. Varying the ellipticity
thus corresponds to a control of the continuum electron trajectories and is a
means to vary the re-collision angle.

Experimentally, we added a a half-wave plate followed by a quarter-wave
plate to the setup shown in figure 2.8, between the drilled mirror recombin-
ing HHG and probe beam and the beam splitter recombining the two with
the aligning beam. If the laser polarization direction is along the x-direction
(corresponding to s-polarization in our setup), orienting the fast axis of the
half-wave plate at an angle J from the x direction, laser polarization is rotated
by 26. With the fast axis of quarter-wave plate along the x-direction, it im-
poses an ellipticity € = tan(2J) upon the laser beam, with the major axis of the
ellipse along the x-direction.

The measured spectral intensity of harmonics 21 to 31, generated in CO,
aligned at # = 0° and € = 90°, is shown in figure 3.5 as function of the el-
lipticity. Each curve was normalized to the average value of the intensities
measured with the three lowest ellipticity values, i.e. € =0 and € = +0.035. The
HHG intensity in this experiment was I = 1.25 x 10'* W /cm?. For harmonics
21 and 23, the ellipticity dependence is the same at both parallel and perpen-
dicular alignment. The harmonic orders 25 and 27, in contrast, show a strong
difference: For parallel alignment, the signal of H25 is barely affected up to
€ = 0.014, for H27 even up to € = 0.21, whereas for perpendicular alignment,
the harmonic yield shows the same dependence as the lower orders. Similar
results have been reported by (Vozzi et al. [206]).

A possible interpretation is that at these orders, 25 and 27, destructive
quantum interference occurs for molecules aligned parallel to the recollision
direction for € = 0. As the ellipticity is increased, the re-collision angle, ini-
tially zero, increases and the destructive interference gets weaker. This seems
to compensate for the drop of signal due to the decreasing probability of a
non-zero y-component of the initial electron velocity, which dominates the
curves for 8 = 90° and the low harmonics. From a certain ellipticity value
on, the re-collision angle has increased to a value that shifts the respective
harmonic order out of ‘resonance’ with the interference condition. This obvi-
ously happens at higher € for the higher harmonic, 27, and one would expect
a signal suppression due to destructive interference to appear at harmonic 29.
Due to the low signal-to-noise ratio for the H29 signal, this is, however, not
clearly visible. A quantitative comparison between the experiment and the
classical calculation ° is probably not justified, as classical trajectories are not
precise enough (cp. figure 1.9), all the more so close to the cut-off region. The
classical calculation in figure 3.4 had to be done with a higher intensity than
that actually estimated in the experiment, because otherwise the classical cut-
off would have limited the calculation to orders 23 and below. The qualitative
trend, however, should be valid.

RABITT measurements in these conditions were only possible up to € =
0.175 and the low signal posed serious signal-to-noise problems. Figure 3.6
shows for increasing ellipticity the ratio of spectra obtained with CO; aligned

5One could compare the re-collision angle found for H25 at € = 0.175 with the angular width
of the alignment distribution, shown in figure 3.2, and conclude that interference should still be
dominating.
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Figure 3.5. Dependence of the normalized
intensity of harmonics 21 to 31 generated in
CO, aligned at6 = 0° (©) and 6 = 90° (m)
on the driving laser ellipticity. These results
are obtained in the same experimental
conditions as the data shown in figure 2 of
paper I, i.e. with an intensity of
I=1.25x10" W/cm?. This reproduces the
result reported by (Vozzi et al. [206]), but
with a lower interference position at
harmonic 25.
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at 6 = 0° and 0 = 90° and the difference of harmonic spectral phases between
those two cases. This corresponds to using the perpendicular-aligned CO,
as a reference system in equation 3.6, which is not unreasonable since at this
alignment, CO; gives very similar results to krypton (cp. figure 3.3 and paper
I). The expected spectral minimum and phase jump are detected at harmonic
25-27. Similar to the data shown in figure 3 of paper I, it is not very clear
whether one can say that a shift of the interference features to higher orders
with increasing ellipticity is observed, or rather a vanishing without a shift.
On the other hand, these ellipticity values are quite low and since the inter-
ference position is rather close to the spectral cut-off, one would not expect an
important increase of the re-collision angle with ellipticity.

3.2.3 Question Marks

So far, the observations presented here and in paper I could be successfully
explained by quantum interference in the recombination step. With our exper-
imental conditions, the spectral minimum and phase jump are in the cut-off
region and we cannot clearly observe their shift to higher harmonic orders as
the alignment (or re-collision) angle increases, which is predicted by equation
3.8. We do, however, observe the disappearance of these traces of quantum
interference with increasing angle. (Mairesse et al. [130]) have used shorter
driving laser pulses and only measured the harmonic intensity, which allowed
them to increase to intensity further than in our case before being hampered
by strong ionization in the HHG medium. They were able to clearly see the
interference minimum shift with angle, shown in figure 5 in (Mairesse et al.
[130]).

Missing sign change? A second problematic point is the fact that the theo-
retical DME in figure 1 of paper I changes sign from one quadrant to another,
i.e. when crossing 6 = 0° and 6 = 90°. This sign change is due to the -
symmetry of the CO, HOMO (see section 3.4.2). There are two reasons why
such a sign change does not appear in our data: We measure the frequency-
derivative of the spectral phase, not the spectral phase itself, i.e. we measure
the change of the dipole phase only along the radial direction in figure 1 of
paper I. A sign change, and thus 7t phase jump, of the dipole for all electron
energies from one angle to another, i.e. in the polar direction of figure 1 of
paper I, is simply not detectable with RABITT. Actually, this sign change of
the plane-wave dipole is probably not detectable in the high harmonic emis-
sion at all; or at least not without special arrangements. This is because we
apply a self-probing scheme: in the recombination step of HHG, the orbital is
not probed by an external plane wave, but by part of the same electron wave-
function that has been teared away by the strong laser field. This part stems
from outermost ‘tail” of the bound state orbital in the laser field direction at
the tunneling instant, i.e. if the orbital changes sign from one angle to an-
other, so does the EWP. In the recombination dipole, formed by interference
of the bound state orbital and the EWP, the sign will thus always be the same.
In brief: As long as the continuum EWP is driven by a linearly polarized laser
field, the rr-symmetry of the HOMO will not show up in the HHG recombi-
nation dipole. Finding ways to experimentally detect this fundamental sym-
metry of the active orbital is an interesting problem. The work of (Shafir et al.
[184]) opens this perspective, based the control of the continuum electron tra-
jectory by the addition of a weak, perpendicularly polarized second harmonic
laser field. Illustratively, thinking in terms of classical trajectories, one can
imagine to make the electron exit from one orbital lobe and steer it to recom-
bine on another. This technique is currently being explored by Dror Shafir and



Self-probing of Electrons in Molecules

Nirit Dudovich at Weizmann Institute in Isreal as well as Hiromichi Niikura
at NRC Canada.

Intensity dependent interference position? There is nonetheless one point
that remains unsettling with regard to the quantum interference interpreta-
tion. The position of the spectral minimum and the phase jump found in
our experiments shift towards higher XUV frequencies with higher HHG in-
tensity. We could not explore a large intensity range since at low intensity
(I £ 7x10 W/cm?), the signal quickly gets too weak to perform RABITT
scans. Note that, in contrast to Ny, the harmonic signal actually decreases
for parallel aligned CO, as compared to the unaligned molecules and that
the RABITT signal is observed on the sidebands, which are a about a factor
3 weaker than the harmonic peaks in the photoelectron spectra. If, on the
other hand, the HHG intensity is increased above I ~ 1.3 x 104 W/cm?, the
free electron dispersion generated by ionization in the HHG medium starts to
seriously perturb the IR beams and RABITT measurements start to give un-
reliable results. In the remaining intensity range, though, we observed the
spectral minimum and phase jump at harmonic 23 for I = 9.5 x 10'3 W/cm?
(this data is shown in figure 3.3 as well as figure 3 in paper I), whereas for
I =1.25x 10 W/cm?, the interference position was found to be at harmonic
25 (shown in figure 3.6 and figure 2 in paper I). (Mairesse [125]), who observed
the harmonic intensity minimum with aligned CO, molecules in experiments
at the NRC Canada, found this trend to continue when further increasing the
intensity, which is possible with shorter driving pulses.

This may in fact explain the different interference positions reported by
(Kanai et al. [86]) (harmonic 25) and (Vozzi et al. [206]) (harmonic 33), although
both claim a generating intensity of 2 x 101 W/cm?. We observe rather strong
ionization already well below this intensity (setting in at ~ 1.3 x 10'* W/cm?),
which could mean that in those two experiments, HHG was actually happen-
ing at lower effective intensities, which are rather difficult to estimate from
harmonic intensities only. The shorter pulse duration in the experiment of
(Vozzi et al. [206]) may well allow a significantly higher effective generating
intensity and lead to the observation of the interference features at higher har-
monic orders.

Such an intensity dependence does, however, come as a surprise as the
quantum interference in the DME should depend solely on the spatial struc-
ture of the HOMO and not at all on the laser field. (Smirnova et al. [186])
thus propose an alternative explication of both the intensity minimum and
the phase jump, based on the contribution of the HOMO-2 (cp. figure 1.6) to
HHG. This contribution may become significant at 6 = 0° since at this angle,
tunnel-ionization of the HOMO-2 is favored over that of the HOMO due to
its ¢ symmetry. The ionization of the HOMO, having rr-symmetry, might be
so strongly suppressed at 6 = 0° (and 8 = 90°), that even though the HOMO-2
has a higher ionization potential, it may contribute significantly to the XUV
emission. The different contributions would then interfere and lead to the
observed effects on the spectral intensity and phase. The observed intensity
dependence may then be explained by the relative weight of the two contri-
butions, depending strongly on the driving laser intensity.

On the other hand, the theoretical results reported by (Le et al. [104, 105])
reproduce well the data in figure 2 of paper I. They are based on equation 3.4
with accurate (yet laser field-free) DMEs for the HOMO, including scattering
states from advanced quantum-chemistry calculations but do not take other
orbital contributions into account. This agreement is again much in favor of
an interpretation in terms of structural interference and it shows that exact
scattering states still allow a ‘clean’ observation of the interference features.

61



3.2.4 Coherent Control of the Attosecond XUV Emission

XUV Intensity / IR field modulus (arb.u.)

-~
S 47N, Lo,
s N AN /
S \ / /
& \ / \ ] \
- \ ! \ 210as / \
35 \ I \ H .
-_— \ 1 \ I |
3 \ I \ ' \
-l \ 1 \ ]
<] \ / \ /
£ I 1
’l 1
z / /
Q ] ]
L= 1] 1
x h i
== 1] ]
~ {0 1
Z )
7] n 1 i) H
c g il
[} (o W
=] Ve " |/
= iy o
\ 1
1 1}
5 u' \r
X H )
T 1 1
0 | 2 3
Time (fs)

Figure 3.7. Attosecond pulse trains
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Following (Marangos et al. [134]), we assume both effects, structural interfer-
ence as well as multi-orbital contributions, to play a role and the challenge is

to disentangle them.

3.2.4 Coherent Control of the Attosecond XUV Emission

Generating attosecond pulse trains in aligned molecules does not only pro-
vide a signal that encodes information about the molecular structure, but it
also provides a means to coherently control the attosecond time profile of the
XUV emission. We discuss the pulse-shaping potential offered by this new
means of control in paper I. Figure 3.7 shows reconstructions of the APT inten-
sity profile, i.e. the square of equation 2.5, emitted by CO, molecules aligned
at 6 = 0° and 90° for two slightly different spectral ranges. For these, the data
shown in figure 2a of paper I with the corresponding spectra (not shown) have
been used. Due to the spreading of the phase jump over 3 harmonic orders,
the corresponding emission times are shifted to larger values, resulting in a
delayed attosecond emission. Including only the harmonic orders undergo-
ing the phase jump in the APT reconstruction, the obtained intensity profile
for 0 = 0° is delayed by 210 as with respect to the case of 6 = 90°, as compared
to 150 as in the measurement shown in figure 4b of paper I. Including one
more harmonic order before the phase jump position, as done in figure 3.7a,
causes a strong distortion of the pulse profile, with destructive interference
causing a dip just at the temporal position where constructive interference of
all spectral components builds up the pulse peak in the case of 8 = 90°. We are
approaching the double-pulse profile simulated in figure 4c in paper I.

What are the possible applications of this pulse shaping method? XUV
pulse shaping can be achieved, of course, partly by amplitude shaping using
filters or specifically designed mirrors. Including only certain harmonic or-
ders in the APT reconstruction is already a ‘virtual” amplitude shaping. The
most interesting feature of aligned molecules as an APT source is the phase
jump that can be ‘switched’ on and off and placed at a chosen spectral posi-
tion according to the molecule and its alignment. The capability of adding a
phase jump, close to 77, at some spectral position is a central element in any
pulse shaping scheme, like the one presented by (Monmayrant and Chatel

[149]), which has until recently not been available in the XUV. Such a phase
jump, placed at the transition energy, can serve to transiently enhance a res-
onant transition (Dudovich et al. [32]), which is one of the simplest coherent
control schemes. Below- and above-resonance contributions to the excited
state population then interfere constructively and result in so called coherent
transients. The phase jump in the XUV emission from aligned molecules can
thus be used to drive a transient enhancement of the population of a spectrally

large resonance in the XUV region.

3.3 The difficult Case of N,

The nitrogen molecule has many properties making it favourable for experi-
ments (it is inert and non-toxic, can be well aligned, yields a good HHG ef-
ficiency, argon is a suitable reference atom) but the interpretation of the ob-
tained results has caused a lot of headaches in Saclay and around the world.
It is clear that the nitrogen molecule, with its HOMO that is neither a purely
symmetric nor purely antisymmetric combination of atomic orbitals, will lead
to a sign change in the corresponding DME, which cannot be described as
easily as that for CO;. The principle is the same, only the analytic equations
to describe the sign change position become much more complex, as shown
by (OdZak and Milosevi¢ [156]). Nonetheless, one can calculate the DME for
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the HOMO and plane waves, and see what structures to look for in the data.
One should, however, keep in mind that such a plane-wave calculation can
give qualitative predictions at best, since the result will depend on the chosen
dipole operator (i.e. the choice of length or velocity form) and the relation be-
tween harmonic order and electron wave number is no longer clearly defined
(see section 3.1.1).

Theoretical DMEs, calculated with the N, HOMO, ¢rjonmo (shown in fig-
ure 1.5), and plane waves are shown in figure 3.8. There, the component paral-
lel to k, and thus parallel to the driving laser polarization direction, is plotted
for electron recollision energies k?/2 from 0.4 a.u. (corresponding to harmonic
17 with w = k*/2+ L) to 1.9 a.u. (corresponding to harmonic 33 with w = k?/2).
This means that the plotted electron energy range covers approximately the
range of XUV photon energies that we can expect to detect. Length and ve-
locity form of the matrix element clearly give different predictions, notably on
the position of the sign change. Neither of the two forms is a priori superior to
the other, though, which leaves quite some uncertainty. The sign change does,
however, qualitatively still follow the two-center interference model in that it
appears at higher energies for higher recollision angles |6].

Our experiments with aligned N, molecules (the angular distribution at
the half-revival calculated for our experimental conditions is shown in figure
2.2) have been done in the same way as those with CO; discussed in section
3.2. The reference atom is now argon (IP/,“ =15.76eV » Ig 2 =15.58eV) and the
analysis of the RABITT data follows the scheme outlined in section 3.2.1. The
effective intensity of the generating laser was 1.2 x 10'* W/cm? in all experi-
ments presented in this section, unless otherwise stated.

A number of results on HHG with aligned N, molecules have been pub-
lished. All groups (see e.g. (Itatani et al. [80], Mairesse et al. [130])) report a
spectral intensity minimum at harmonic 25, corresponding to k/2 = 1.4 a.u.
with w = k?/2, or k*/2 = 0.8 a.u. with w = k*/2 + I, appearing independently
of the alignment angle 6. We have observed the same, as shown in figure 1b of
paper II. Given the uncertainty in the theoretical model using plane waves, it
is not problematic to find a minimum at a different spectral position than pre-
dicted, but a minimum due to structural interference should really move to
higher harmonic orders when the molecules are rotated towards perpendic-
ular alignment. Even a convolution with a rather large angular distribution
of the molecules in the experiment cannot explain the fact that the minimum
always appears at the same angle. So far, no explanation has been proposed
for this peculiar minimum.

3.3.1 XUV Polarization State

When high harmonics are produced in an isotropic medium, the polarization
of the XUV field is parallel to that of the driving laser field. As soon as there
is an anisotropy in the generating medium, the polarization of the harmonics
will in general be different from the laser polarization, leading to the appear-
ance of an orthogonal component of the XUV field. In figure 3.8a, only the
component parallel to k is plotted. In fact, there is a non-zero perpendicular
component, thus leading for the harmonic emission to the prediction of lin-
ear polarization with a finite angle between the XUV field and k, and thus the
driving laser polarization direction. Note that the velocity form DME in figure
3.8b cannot account for this perpendicular component since for plane waves,
it is always parallel to k.

With the setup shown in figure 2 of paper III, polarimetry measurements
of the high-order harmonic emission from aligned N, molecules have been
done. The result, shown in figure 4 of paper III, is in qualitative agreement

Imaginary dipole (a.u.)

k?/2

Real dipole (a.u.)
-4 0 5
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Figure 3.8. Dipole transition matrix
elements (Promold|e’™™), calculated with
the N, HOMO, yomo (shown in figure
1.5a), and plane waves. Plotted is the
component parallel to k as a function of the
electron recollision angle 6 (i.e. the angle
between k and the internuclear axis) and
the electron recollision energy k? /2. The
energy range corresponds to typical
electron recollision energies in HHG. Due
to the HOMO symmetry, these matrix
elements are even in kx and ky. One could
thus extend these plots to the third and
fourth quandrant by mirroring
horizontally. (a) Length form, i.e. d = r. (b)
Velocity form, i.e. d = -iV,. Note that here,
the DME is always parallel to k.
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3.3.2 Adding Ellipticity

Intensity (arb.u.) Intensity (arb.u.)

Intensity (arb.u.)

1.4
1.24
1.0
0.8
0.6
0.4
0.2

0.0

1.4
1.2
1.04
0.8+
0.6
0.4

0.2
=

0.0

Ellipticity

1.4
1.2
1.04
0.8+
0.6
0.4+
0.2+

0.0

Ellipticity

Ellipticity

Figure 3.9. Dependence of the intensity of harmonics 17 to 31 generated in argon (®) and N, aligned at 6 = 0° (m)
and 6 = 90° (A) on the driving laser ellipticity. All curves have been normalized such that the average value for
€ = 0,+0.035 be unity. These results are obtained in the same experimental conditions as the data shown in paper

11, i.e. with an intensity of I = 1.2 x 10" W/cm?.
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with that of (Levesque et al. [115]), who have first reported such measure-
ments. Quantitative differences probably originate from a lower alignment
quality in our case.

(Levesque et al. [115]) found qualitative agreement between the measured
polarization angle for different alignment directions and the plane-wave,
length-form DME, using w = k2 /2 + I,. However, to obtain this agreement,
they had to add exchange terms to their model, shown by (Patchkovskii et al.
[158, 159], Santra and Gordon [175]) to occur when the recombination DME is
written in its full, multi-electronic form. This formulation will be discussed in
section 3.4.3, where it will also be explained why it is questionable whether
such exchange terms calculated with plane waves lead to an improvement of
the theoretical description, or whether they rather worsen the error intro-
duced by plane waves.

(Zhou et al. [221]) have reported the observation of an ellipticity of high-
order harmonics generated in aligned N, molecules with a linearly polarized
driving laser, which is confirmed by recent measurements of (Mairesse [125]).
This means that there is a phase lag of the orthogonal XUV field component,
not predicted by the plane-wave DME, whether exchange terms are included
or not. Exact scattering states could already introduce such a phase differ-
ence, as could contributions of other orbitals but the HOMO. At this time, no
theoretical study has been published.

3.3.2 Adding Ellipticity

First experiments on the driving laser ellipticity dependence of harmonic in-
tensity spectra generated in unaligned N, and argon have been reported by
(Flettner et al. [45]). Aligning the N, molecules at 6 = 0°, (Kanai et al. [87]),
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report a behavior of the 31st harmonic intensity very similar to the one we
have observed for harmonic 25 emitted by CO, aligned at 6 = 0° (see figure
3.5), with a maximum of the 31st harmonic signal for € = +0.05 and a local
minimum for € = 0. They interpret this result as a signature of structural inter-
ference but give no indication about the behavior of other harmonic orders.

We have done the same measurements, analogous to those already dis-
cussed for CO, (see figure 3.5), aligning Nj at 6 = 0° or 90° and tracing the
intensity of harmonics as a function of the driving laser ellipticity. Results
are shown in figure 3.9. Up to harmonic 25, we consistently observe a slower
drop of signal for Ny at 6 = 0° as compared to N, at 6 = 90°, as also measured
by (Mairesse et al. [130]). For harmonic orders close to the cut-off (27-31), the
data become rather noisy.

The argon curve, shown as a reference in figure 3.9, is located in between
the two Nj-curves and consistently drops slightly faster than that for N at
0 = 0°. Our data thus show the same trend as those of (Kanai et al. [87]) (who
normalized differently, namely such that all curves coincide in the wings, i.e.
for large €) already at lower harmonic orders (clearly from harmonic 19 on).
Comparing to CO, (see figure 3.5), the effect is much more subtle here, though,
and we tend to reject for the lower orders the interpretation by means of struc-
tural interference. Whether structural interference occurs at harmonic 31 can-
not be concluded from these data. The main limitation in these experiments
was the precision and reproducibility of the ellipticity values (see e.g. in some
curves with two data points for € = 0) due to setting the wave plate orienta-
tions by hand instead of a step motor.

Another interpretation was proposed by (Mairesse et al. [130]). The differ-
ent widths of the harmonic intensity vs. ellipticity curves could be a signature
of the different continuum EWP spreads due to a narrower /larger width of
the ‘tunnel” through which the initial continuum EWP is created at 6 = 0° and
90°, respectively. The same difference of EWP lateral spreads has also been
assumed by (Itatani et al. [80]).

3.3.3 Phase Measurements

Up to now, there is not much agreement between the experiments and the
predictions of the plane-wave DME for the HOMO - but there are also no
clear hints as to where the simple model, introduced in section 3.1 and justi-
fying this comparison, fails. New information from phase measurements will
definitely be interesting in this regard.

We thus made series of RABITT scans, analogous to those done for CO,,
leading to emission times as shown in figure 3.10. At first sight, one concludes
that the difference with the emission times measured for the reference atom ar-
gon varies with harmonic order, but it does so quite smoothly over the whole
spectral range and no clear jump - like that seen with CO, —is observed. Ad-
ditionally, this phase variation seems to be similar at all angles 6. The latter
conclusions is, however, not confirmed when the spectral phase is calculated.
Rather small differences in the emission times, when integrated, become sig-
nificant. As shown in figure 1c of paper 1II, there is a quite regular variation
of the spectral phase with the alignment angle. This behavior is reproducible:
emission times for § = 0° and 90°, taken from a second, independent series of
RABITT scans, are shown in figure 3.10b.

A set of RABITT scans done with increasing ellipticity of the driving laser,
analogous to the study with CO, summarized in figure 3.6, has been done
with N molecules aligned at § = 0°. Apart from the intensity decrease visible
in figure 3.9, no significant modification of the emission times was found.
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Figure 3.10. Emission times measured for
N, aligned at# = 0° (0) and 6 = 90° (1),
and the reference atom argon (11). The data
in (a) and (b) are taken from two
independent series of RABITT scans, both
done with the experimental parameters
given in paper II, such as a laser intensity

of I =12 x 10" W/cm?.
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3.3.3 Phase Measurements
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Figure 3.11. Phase of the DME for N,
molecules, obtained from the experiment
according to equation 3.6 as described in
section 3.2.1. This data is the same as that
shown in figure 1c of paper IL
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Interplay between HOMO and HOMO-1 contributions

In the first part of paper II we describe how our measured phases can be
understood when a contribution of the HOMO-1 of N; (shown in figure 1.5)
is brought into play. Due to the greater size of molecules as compared to
atoms, valence orbitals are energetically closer. One thus can no longer safely
assume that only the energetically highest occupied orbital is ionized in the
tunnel-ionization step, as was always done for rare-gas atoms. (McFarland
et al. [141]) have reported first indications in intensity measurements around
the half-revival for a significant HOMO-1-contribution for N close to perpen-
dicular alignment, 6 = 90°. This is due to the greater extent of the HOMO-1
probability density in the direction perpendicular to the internuclear axis, fa-
voring it in tunnel ionization over the HOMO, despite its Ae = 1.4 eV larger
binding energy (see the vertical distance of the potential curves for the X and
A states of N3 shown in figure 4.2). Additionally, the plane-wave recombina-
tion DME turns out to be larger for the HOMO-1 than for the HOMO close to
6 =90°.

We thus invoke a transition from a dominating HOMO contribution to
a dominating HOMO-1 contribution to the emitted XUV field when the N,
molecules are rotated from 6 = 0° towards 6 = 90°. The key idea in this inter-
pretation is the fact that the recombination DME, calculated with plane waves
for the N, HOMO is purely imaginary valued, whereas that for the HOMO-1
is purely real-valued. This separation in the complex plane is due to the dif-
ferent symmetries of the two relevant orbitals and the symmetry properties of
the Fourier transform, as will be demonstrated in section 3.4.2.

Paper II explains that the value of the relative phase A¢ = ¢romo-1 —
¢romo of the two orbital contributions is not simply given by that of the
recombination DME. Rather, it is a sum, Ap = A¢; + Apc + A¢r, of the phase
differences A¢; acquired during tunnel ionization, A¢. accumulated during
the continuum acceleration, and A¢r due to the recombination DMEs. As for
ionization, we assume A¢; = 0, relying on the result of (Smirnova et al. [186])
for CO,, who claim that this value is ‘expected in the tunnelling regime’. For
A, we derive AP = —AeT, where T is the continuum electron excursion time,
and we find A¢. ~ —7 for our experimental spectral range. Finally, A¢, = +77/2
for the plane-wave DMEs, which we assume to still hold for DMEs including
proper scattering states. In paper II, we support this by a calculation using
Coulomb waves. More precisely, one should ask how similar are the scatter-
ing states of equal energy in the continua of the ions in the X and A state?
We assume, that they are almost equal. It is at this time unclear to us how to
decide on the sign of A¢; — it depends on the signs of the two DMEs, which
we feel cannot be determined reliably in a plane-wave calculation. In total,
we find A¢ ~ +77/2 in the spectral region accessible to our experiments. A¢c
decreases with the electron recollision energy (see figure 2a of paper II), but
it is uncertain whether the total phase difference, A¢, then evolves towards 0
or —7r with increasing harmonic order, i.e. towards constructive or destructive
interference.

The measured DME phase, shown in figure 3.11 as well as figure 1c of pa-
per 11, decreases between harmonic 17 and 25/27 — very little around parallel
alignment (6 = 0°), and by ~ 71/2 close to perpendicular alignment (6 = 90°).
This phase shift may indicate a regular transition between two contributions
with » 71/2 relative phase — as is the case for the HOMO-1 and HOMO contri-
butions. At the end of the spectrum, from harmonic 27 on, the phase increases
rather rapidly, by ~ 71/2 at all angles. For close to parallel alignment, this
could be a signature of structural interference associated with the HOMO, if
one reads this phase increase as a beginning phase jump.
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For larger angles 0, where the HOMO-1 contribution is supposed to be
dominant, this rapid phase increase should then not occur. The phase should
deviate from -7/2 due to the decreasing A¢., but the direction of this devia-
tion is unclear due to the uncertainty on the the sign of A¢.. In any case, this
drift is expected to be fairly slow (cp. figure 2a in paper II) and cannot explain
the rather rapid increase observed at the end of the spectrum for large 6. There
might thus be an additional effect, such as the HOMO contribution becoming
dominant again at all angles, thus reversing the initial phase decrease. Such
a ‘transient’ dominance of the HOMO-1 contribution might be induced by IR
laser driven dynamics in the molecular ion during the electron excursion, i.e.
the second step of the HHG process. Laser coupling of the X and A ion states
is very likely in N since they are only separated by about one laser photon.
The model of (Smirnova et al. [186]) is able to treat such dynamics. We do,
however, not include it in our analysis in paper II.

While the analysis of the different phase terms adding up to the total A¢
has a firm theoretical basis, the interpretation of the specific features of the
measured DME phase, shown in figure 3.11, is fairly complicated and cer-
tainly not bullet-proof. One should keep in mind that the relative amplitudes
of the HOMO and HOMO-1 contributions are expected to vary with harmonic
order and alignment angle. This will lead to a complicated behavior of the to-
tal recombination DME, D, defined in equation 1 of paper II as a coherent sum
of the two recombination DMEs associated with the HOMO and HOMO-1.

The presented phase measurements suffer from a limitation that was al-
ready mentioned in section 3.2.1: our measured phases are determined only
up to an integration constant, which we arbitrarily set to zero for all angles 0.
This means that we suppose that the phase of harmonic 17, and thus the phase
of the associated DME, is equal for all 8. Measuring this missing element is
highly desirable, as it would provide us with true ab inito data and provide a
more sound basis for the above interpretation. In different generation condi-
tions, the variation of the phase of harmonic 17 as a function of 8 was indeed
found to be small (~ 0.5rad), as measured at the NRC Canada by (Mairesse
[125]) with the two-source method, also used for the results of (Smirnova et al.
[186]).

Intensity dependence

Not mentioned in paper II but relevant to the interpretation are phase mea-
surements with different driving laser intensities. If the phase decrease from
harmonic 17 to 27 in figure 3.11 is due to a transition to a dominating HOMO-1
contribution, it may occur at different spectral positions for different laser in-
tensities. The exp[—Z(ZIp)3/ 2/(3EL)]-dependence of the tunneling rate on the
peak laser field Ey (see section 1.3.1), will cause the difference in binding en-
ergies of the HOMO-1 and HOMO to be less and less important. Thus, the
HOMO-1 contribution should show up more prominently when the laser in-
tensity is increased.

DME phases, extracted from measurements with N> aligned at 6 = 0° and
argon at four different laser intensities are shown in figure 3.12. It cannot
be guaranteed that the alignment quality is the same for all curves in this
figure since they have not been measured in one series, but are compiled from
various data acquisition runs. The alignment may thus be rather mediocre in
some of these measurements, which may be considered an advantage, though,
since this leads to more molecules being aligned at large angles with the laser
polarization direction and thus increases the HOMO-1 contribution. It is clear
from the curves in figure 3.12 that the decreasing-phase-feature in the data
shifts towards higher harmonic orders when the laser intensity, I, is increased.
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Figure 3.12. Phase of the recombination
DME measured with different laser
intensities for N, aligned at 6 = 0°. These
data are obtained according to equation 3.6,
ie. as a difference of the spectral phases
measured for high-order harmonics
generated in N, and argon under the same
conditions. The intensities (estimated from
the slope of the emission times obtained
with argon) are 1.2 x 10" W/cm? (full and
dashed black line), 1.6 x 10" W/cm? (full
gray line), 1.7 x 10 W/cm? (dashed gray
line), and 2.0 x 10" W/cm? (dash-dotted
gray line). The data represented by the full
black line is taken from the series shown in
figure 1 of paper II.
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Figure 3.13. Spectral position where the
relative phase, A¢, between the HOMO
and HOMO-1 contribution takes the value
—71/2 (full line), corresponding to an
electron excursion time T ~ 1.5 fs,
compared to the spectral position of the
negative-phase feature in the measured
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3.4 Molecular Orbital Tomography

z|

Figure 3.14. Coordinates in the
description of molecular orbital
tomography. The two spheres mark the
nuclei of a simple linear molecule — the
internuclear axis is along the x-axis. The
electron wave vector k, confined to the
(x,y)-plane, makes an angle 6 with the
internuclear axis. The angle 6 is known and
can be varied because we can align the
molecule in the lab frame.
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Eventually, for I = 2.0 x 1014 W/cm?, it appears to have moved to the very end
of the accessible spectral range.

As shown in figure 3.13, the harmonic order where the minimum of the
decreasing-phase-feature occurs, is in very good agreement with the har-
monic order where the relative phase of the two orbital contributions takes
the value A¢ ~ +7/2 (calculated as described in paper II). This spectral po-
sition increases with laser intensity because it includes a term proportional
to the continuum electron excursion time (A¢. in paper II). This also means
that the measured phase minimum always occurs at the same electron ex-
cursion time T » 1.5fs. The phase increase at the highest harmonic orders,
interpreted as the beginning of a structural phase jump in the HOMO contri-
bution, does not seem to move with intensity except where it fully overlaps
with the decreasing-phase-feature. Both these observations support our inter-
pretation.

3.4 Molecular Orbital Tomography

It has been mentioned that one of the motivations to stick to plane waves for
the description of the recolliding EWP in the self-probing scheme is that the
recombination DME, (i1 (r)|d|e*"), takes the form of a Fourier transform,
Fik- (Itatani et al. [80]) recognized that this formulation implies a potential
for imaging electrons in molecules. We can thus push the analysis of the mea-
sured DMEs one step further and extract an image of the bound electron.

3.4.1 Concept

The recombination DME, d, measurable as described in section 3.1, is in gen-
eral a complex-valued vector. Let (x,y,z) be the coordinates of the molecu-
lar reference frame, with the internuclear axis (or any other distinct axis on a
more complicated molecule) along x. Being able to align molecules means that
(x,y,z) can also be used for the laboratory frame, and the (x, y, z)-coordinates
of the laser polarization direction and thus k are known®. We can arrange that
z is the light propagation direction, such that k; = 0 (the electron is driven by
the laser field which has no component in its propagation direction). The sit-
uation is depicted in figure 3.14. Furthermore, although d may have non-zero
z-component, we cannot measure it since the XUV light polarized along this
direction cannot propagate to the detector. We will thus only consider the x
and y-components of d.

The g-component (g = x, y) of the matrix element in length form then writes

24(6) = (a1 = [[ [0 [ 9y 2)de] 50 dady. @10

Each component of d thus contains the Fourier transform of qi,0(x,y) =
q [ ¢r ., (x,y,2)dz, i.e. g times the bound state orbital” projected onto the plane
perpendicular to the laser propagation direction. This implies that an orbital
odd in z will not contribute and e.g. only one of two degenerate rr-orbitals
need be considered (the driving laser should impose the quantization axis).
For orbitals that are even in z, this projection contains the complete informa-
tion and is in fact the quantity shown in all 2D-plots of orbitals in this thesis.

®Note that in section 3.1 we considered the laser polarization and thus k to be fixed rotated
the orbitals. Here, we will rather think of fixed-in-space orbitals and rotate the laser polarization
direction.

"The star denotes complex conjugation, but the orbital can be chosen to be real-valued and
the star might as well be omitted.
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Measuring d; for one alignment angle 6 thus yields data points in Fourier
space of the object g (x,y) — points at the coordinates (ky, k) that all lie
on a line, given by the recollision angle, 6, and the length of the electron
wave vectors, k, of the recolliding EWP components. These are associated
with the harmonic photon energy, w, via energy conservation: k%/2 = w. For
aligned molecules, such that the molecular frame is fixed in some orientation
in the laboratory frame, each harmonic order is thus associated with one point
(kx,ky). A whole spectrum consequently yields a slice through one quadrant
of Fourier space, as illustrated in figure 3.15. Repeating the measurement for
more B-values, slice per slice of Fourier space is collected until it is sufficiently
well sampled®.

The inverse 2D Fourier transform, Fy_,,, applied to the so obtained data,
thus yields g1 (X, ¥) in real space, and the sought-for molecular orbital (pro-
jection) can be reconstructed as

Pmol (5:¥) = f"*’[dqq(k"’ky”- (3.11)
The explicit, discretized version of this equation is given as equation 2 in paper
IT (using a different notation, though).

From both DME components, x and y, i.e. parallel and perpendicular to
the internuclear axis, the same orbital can be reconstructed. Due to the lim-
ited discrete sampling in Fourier space, they will, however, not give the same
result and in general

B () = 3 (Praa(59) + Py (1) 6.12)

is used as the definition of the reconstructed molecular orbital (projection). The
three dimensional orbital can be obtained if it is even in z.

Velocity form

The same scheme can be written based on the velocity form of the recombina-
tion DME, i.e. with d = -iV,. Equation 3.10 is then replaced by

g (k) = =i <¢;01<r>|§q|ei’”> ~ky [ | [ 9mary2)de e dxay.

(3.13)
It follows that the orbital can be obtained via equation 3.12 using
- dg(kx, ky)
Pro (0 y) = Fioy [quy] : (3.14)
q

Again, neither this nor equation 3.11 is a priori superior to the other and they
may give different results.

3.4.2 Symmetry Considerations

It will be helpful to consider the connection between the symmetry of
Pmol (¥, y) in real space and properties of the corresponding plane-wave DME
d. The symmetry properties of the Fourier transform’ are summarized in ap-
pendix C.

With these, for the HOMO of N (see figure 1.5) which is chosen to be
real-valued and even in x and y, we find for the length form:

8What ‘sufficiently’ means has yet to be figured out in simulations, discussed in section 3.4.4.

91n appendix C, the much more common ‘minus i’-transform is considered, i.e. there is a
minus in the argument of the exponential in F,_, ;. As in a plane wave, there is no such minus,
our matrix elements are a ‘plus i’-transform. This difference in conventions has no influence on
the symmetry properties to be used here — it merely swaps F(k) for F(-k).

A ky

Figure 3.15. Fourier space of the object
JPmol (X, ). A measurement for one
molecule alignment angle 6 yields a line of
data points (shown in black). Repeating the
measurement for more 0-values, slice per
slice of Fourier space is collected. If the
symmetry of qPmoi(x,y) is known, one can
limit the §-range to one quadrant and
complete the Fourier space data according
to this symmetry (see section 3.4.2).
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® XPmo1(x,y) is real-valued, odd in x, even in y
— dy is imaginary valued, odd in ky, even in ky,.

¢ Analogously: ¥y (x,y) is real-valued, even in x, odd in y
— dy is imaginary valued, even in ky, odd in k.

¢ The two components of d thus do not have the same symmetries. For
the component parallel to k, d | = dycosf +dy,sinf, we find that it is
imaginary valued and even in ky as well as in k.

For the velocity form, these results are to be multiplied by an imaginary
unit, i.e. in the end, d is real-valued and even in ky as well as in k,. The
harmonic emission nonetheless has the same phase, whatever formulation is
used, because the dipole momentum (i.e. the velocity form DME) has to be
differentiated only once to obtain the dipole acceleration, whereas the dipole
moment (i.e. the length form DME) has to be differentiated twice. For the fol-
lowing argumentation based on the symmetry-induced phase of the recombi-
nation DME to make sense, we have to take care to compare matrix elements
using the same dipole operator. Whether one matrix element may be imagi-
nary or real-valued is thus not very important, but it is relevant whether there
is a 7t/2 or zero phase difference between two matrix elements.

Repeating this consideration for the length form and the HOMO-1 of N,
(see figure 1.5) which is real-valued, even in x and odd in y, leads to:

® XPmol(x,y) is real-valued, odd in x, odd in y
— dy is real valued, odd in ky, odd in ky,.

* Analogously: yim01(x,y) is real-valued, even in x, even in y
— dy is real valued, even in ky, even in k.

* d| is thus real valued and even in ky and odd in k.

For the same reason, the length form DMEs for our reference atoms ar-
gon/krypton are real-valued!’. One considers the 3p/4p orbitals aligned par-
allel to the laser polarization direction and thus to k (the laser field aligns
the orbitals and HHG is largely dominated by the one parallel to the field, as
demonstrated by (Shafir et al. [184]) for neon and its 2p orbitals).

In conclusion, one could give the following simple rules, valid for the
length as well as the velocity form: The DME component parallel to the driv-
ing laser polarization, d|, has the same symmetries in k, and k, as the orbital
in x and y. ‘Oddness’ in real space creates an imaginary unit in Fourier space
- so if one orbital is odd in n more dimensions than the other, there will be an
nm/2 phase difference (modulo 1) between the DMEs for the two.

Completing the data for tomography

These symmetry considerations are of course also relevant for the inverse
Fourier transform and thus for the tomographic reconstruction via equations
3.11 and 3.14. If the real-space symmetry of the ‘active’ orbital is known, one
can limit the measurement of d(ky, ky) to the first quadrant of real space, i.e.
scan only 6 = 0°...90°, and then complete the Fourier space data according to
the symmetry. In this way, a certain symmetry is imposed to the reconstructed
orbital and one should be careful not to confuse this perfect symmetry in the
result with a proof for the successful reconstruction of a molecular orbital.
What if one had an outstandingly long-term-stable experimental setup and
just rotates the laser polarization all the way around 360°? Unfortunately, this

19Consequently, the velocity form matrix elements are imaginary-valued, contrary to what is
written in paper L.
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would not immediately render superfluous the above symmetry considera-
tions. The reason is discussed in section 3.2.3 under the point “Missing sign
change”: a purely 0-dependent sign change in the DME is not easily detectable
— neither with RABITT nor one of the other techniques measuring the phase
as a function of 0. Special arrangements, such as the control of the continuum
electron trajectory demonstrated by (Shafir et al. [184]), would be necessary to
obtain an ab inito measurement of d(ky, k,) by means of a self-probing scheme.

3.4.3 Too Good to be True?

This scheme for reconstructing molecular orbitals from measured data is
based on a strongly simplified physical picture invoking a whole range of
approximations. It would thus be pretentious to speak of measuring orbitals,
as pointed out by (Schwarz [180]) in his essay on the question “Measuring
Orbitals: Provocation or Reality?”. Purists and enthusiasts of proper quan-
tum theory thus need not be alarmed as no-one is going to claim that with
the extraction of a (Hartree-Fock type) orbital from a set of measured data,
all further measurements become redundant since now, the wave function is
known and every observable can be calculated. Even if the models at the ba-
sis of the orbital tomography scheme were to be more and more refined and
thus approach further and further something that is commonly considered
‘exact’!!, the measurement necessarily remains incomplete. Whether one day
a wave function can be reconstructed that is more precise than a theoretical
one — which would be a great reward for going through the trouble of doing
the experiment — remains unclear. Certainly, for static bound states, this is
close to impossible — the true motivation, however, are dynamic systems, for
which computations are orders of magnitude harder.

Other than the impossibility of a {-meter, i.e. an apparatus that would
directly measure the wave function of a system, there is no law ruling out the
possibility of inferring a wave function from a set of measured data. In fact,
this is done by many physicists with great success — see e.g. (Raymer [166])
for a review or the ‘Special Issue on Quantum State Preparation and Measure-
ment’ of the Journal of Modern Optics, edited by (Schleich and Raymer [177]).

Besides these fundamental questions, there are obviously many technical
points that raise doubt about whether or not this scheme can work. The arti-
cle of (Itatani et al. [80]) launched a lively discussion and a multitude of pa-
pers — mainly based on numerical experiments — have since been published,
for example by (Gibson and Biegert [58], Jordan and Scrinzi [83], Le et al.
[106], Patchkovskii et al. [158, 159], Torres and Marangos [197], van der Zwan
et al. [202], Walters et al. [215]). On can easily write down a list of issues that
could potentially destroy all hope for experimental orbital tomography but
it is much harder to actually estimate the importance of each of these issues.
Three major simplifications made for the orbital imaging scheme lined out in
section 3.4.1, shall be discussed here.

The plane wave approximation is responsible for the surprisingly simple
direct reconstruction by means of an inverse Fourier transform. It is also the
approximation that is most under attack while unfortunately being extremely
hard to improve on. If one measures a DME between two states — bound
and continuum - one cannot avoid making an educated guess about one of
the two if one wants to directly extract the other. This could only be avoided

IThere is no such thing as a properly exact description of reality. What we call exact, is typ-
ically a mathematically exact solution of the TDSE, which itself has a limited region of validity,
and, most of all, contains a Hamiltonian which always describes no more than an idealized model
of reality.
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by developing algorithms that iteratively improve this guess, such as the one
sketched by (Patchkovskii et al. [159]).

Numerical experiments that use ‘exact’ scattering states and then apply
the tomographic reconstruction procedure based on plane waves give rather
mixed results. (van der Zwan et al. [202]), who have calculated harmonic
spectra by solving the TDSE, tend to be optimistic and obtain very good re-
constructions. (Walters et al. [215]), on the other hand, who calculate DMEs
using scattering states obtained from a specialized quantum chemistry code,
reports significant distortions of the orbitals reconstructed using electron rec-
ollision energies as low as those in typical HHG experiments (i.e. below, say,
100 eV). This is the same method as that used by (Le et al. [102, 103]). Note
the comment made in section 3.1.1 concerning these ‘exact’ photo-ionization
DMEs and the fact that DMEs relevant to HHG may be expected to be signifi-
cantly less ‘distorted’. Calculating these seems, however, even harder than for
photoionization.

Our answer is based on a less sophisticated calculation but it gives very
interesting insight. In figures 2b,c of paper II, we compare the DME for the
N> HOMO calculated using plane waves and Coulomb waves, i.e. scatter-
ing states of the Coulomb potential (see section 1.2.2). This can be seen as
a first order improvement on plane waves since, from far away, the N ion
seen by the recolliding electron looks just like a proton. The result is that the
distortions of the Coulomb-wave completely ruin the features of the plane-
wave DME at very low electron energies < 10 eV (these energies are defined
asymptotically, i.e. far away from the ion). For very high electron energies
(2 300 eV), plane waves do yield a very good description. At intermediate
energies, one can say that all features of the plane wave DME containing the
information needed for orbital tomography are conserved, only translated by
~ Ip to lower electron energies. This nicely corresponds to the idea that the
recolliding electrons are accelerated by the ionic potential gaining ~ I, in en-
ergy before recombining. For relatively narrow spectral windows like those
considered in our experiments, one can define an absolute phase shift added
to the Coulomb-wave-DME (the Coulomb phase shift), which can be factored
out and thus translates into an absolute phase shift of the final reconstructed
orbital.

The next improvement would be the use of two-center Coulomb waves
as done by (Ciappina et al. [19]). Here, again, the main structures of the
plane wave DME are well recovered, only with smoothed and slightly re-
duced phase jumps.

A single active electron is assumed in the SFA upon which all our data
analysis including the orbital tomography scheme is based. From the start,
i.e. already in the ansatz 1.35, only one-electron wavefunctions are consid-
ered. (Patchkovskii et al. [158, 159], Santra and Gordon [175]) have shown
that in a multi-electron system, i.e. in all the HHG media we use, the recom-
bination DME should be written using (properly anti-symmetrized) multi-
electron wavefunctions: ¥y (ry, .. .,rf) for the neutral with f electrons and
Y*(r1,...,7r-1)x(ry) for the ionized system, where ¥ describes the (f-1) elec-
trons of the ionic core and x the correlated continuum electron. The length-
form recombination DME can then be transformed to

f
d=(¥o| 3 rul¥*x) = (¢Plrslx) +d%, (3.15)
m=1

where d®* is an exchange correction term and wD(rf) = \/7 (Po|P™) is the
Dyson-orbital — the scalar product of the multi-electron wavefunctions of the
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neutral and the ionic core. Calculating the Dyson orbital can be interpreted
as projecting out the difference between the neutral and the ionic core, which
could be seen as a ‘hole in the ion’.

These terms become transparent within the Hartree-Fock framework (i.e.
the multi-electron wavefunctions are expressed as products of single-electron-
orbitals, ¢y, see section 1.2.2) and using Koopmans’ approximation (Bransden
and Joachain [13], Koopmans [94]), i.e. any relaxation of the one-electron or-
bitals in the ion upon ionization is neglected and the ionic wavefunction, ¥,
is built with the same single-electron orbitals as the neutral — taking out only
the the “active orbital’, i.e. the one-electron orbital from which electron f has
been ionized. Then,

WP (rp) = pp(rp), (3.16)

i.e. the Dyson-orbital is identical to the orbital from which electron f has been
ionized (i.e. in most cases the HOMO). Furthermore,

A% =3 (dum (Pf1X) — d g (PmlX)) (3.17)

m

where the d;;;;, are permanent dipole moments, which vanish for centrosym-
metric molecules, and the d,, are transition dipole moments between the oc-
cupied one-electron orbitals and the ‘active orbital” f. The crucial terms to
consider are, however, the scalar products of the bound state orbitals ¢, with
the scattering state ). Since y is a one-electron eigenstate of the neutral and
the ¢, are one-electron eigenstates of the ion, they are orthogonal as long as
Koopmans” approximation is valid. The scalar products (¢,;|x) thus rigor-
ously vanish in Koopmans’ approximation. It is the amount of relaxation in
the ion that decides about the relevance of exchange terms.

We think that calculating exchange terms using plane waves for ), as done
by (Levesque et al. [115], Patchkovskii et al. [158, 159]) due to lack of a more
precise description of the continuum, artificially blows up their importance
and introduces spurious contributions. Thus, we will rather neglect exchange
terms in the following, since we expect them to be very small anyhow. In this
case, orbital tomography yields an image of the Dyson orbital, which resem-
bles very closely the active Hartree-Fock orbital ¢y

A single active orbital has so far been assumed, i.e. in the above multi-
electron description, ¢y is the HOMO. Both for CO, and Nj, it has already
been mentioned, though, that several orbitals may be ionized. In this case,
¥* is a superposition of ionic states!?, with an electron ‘missing’ in differ-
ent orbitals. This situation still involves a single active electron only, which
is delocalized within the neutral molecule due to its indistiguishability from
the others and thus the anti-symmetry of ¥. Illustratively speaking, the con-
tinuum electron cannot be sure from which orbital is has been ionized and
neither can the ion. There are however weights for the different possibilities
given by the tunneling rate for each orbital. The corresponding Dyson or-
bital - the object that is imaged by orbital tomography (as long as exchange
terms are negligible) — is then time dependent due to the energy difference of
the contributing active orbitals. If this energy difference is larger than ~ 1 eV,
which is the case for the small molecules considered here, this dynamics hap-
pens on an attosecond timescale. It was proposed by (Smirnova et al. [186]) to
consider this object as a time-dependent hole in the ion, which is the interpre-
tation we adopted in paper II.

121t is actually a touchy question whether this statement is correct and whether one can speak
of a ‘wave packet in the ion’. The answer is yes, if the different continuum wavefunctions, y,
correlated to each ion state are equal or at least have a large overlap. (Smirnova et al. [187])
recently showed for CO; that this is indeed the case.
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Figure 3.16. Simulation of a tomographic
reconstruction, sampling k-points
corresponding to harmonics 1 to 999 and
an angular step of A6 = 10°, (a) with and
(b) without restricting the DME to its
parallel component, d, only.
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3.4.4 Simulations

These simulations do not aim at testing the above approximations used to
derive the orbital tomography scheme itself but rather suppose that we are
able to measure accurate DME and address the question of how precise the
discrete sampling has to be. This issue will be studied on the example of the
N, HOMO, which is a good candidate as it has very distinct features besides
its 0; symmetry that can serve as a reference, such as the nodes at the nuclei
positions (at x = 1 a.u.) and the diamond-shaped central lobe. We thus start
from the Hartree-Fock HOMO (see figure 1.5), which will be considered ‘ex-
act’, and calculate the plane-wave DME vector, d, at k-points given by a range
of harmonic orders of an 800 nm laser (wy = 0.057 a.u.) with w = k?/2, and an
angular step Af. All simulations will consider the length form only, i.e. the
DME will be calculated in length form and the reconstruction will be based
on equations 3.11 and 3.12.

The first question to be addressed is whether it will be necessary to mea-
sure the DME vector or whether it can be sufficient to suppose it to be parallel
to k. In order to stay close to the experiment, we project the calculated DME
vector on the laser polarization direction, obtaining d). We then re-calculate
the x- and y-component of the DME as dy = cosfd| and dy = sinfd. This
means that in these simulations, we neglect the DME component perpendic-
ular to k. This is done because in the experiment, only the XUV polarization
component parallel to the driving laser is measured and then, the DME, d, is
supposed to have no perpendicular component. This is obviously a simplifi-
cation, but with the limited k-ranges explored in the experiment, we have not
found any visible differences between orbitals reconstructed from the “full’ d
and orbitals reconstructed from d| only. The distortions introduced by the
limited sampling are much more important.

Concerning the sampling, there are essentially two questions to be an-
swered: Which k-range in the recombination DME has to be taken into account
for a reasonably good reproduction of the orbital and with which density does
this range have to be sampled? A very large spectral range (harmonic 1 to
991) is considered in figure 3.16. With this gigantic spectral width, the recon-
struction is close to perfect if the full vector DME is considered, whereas the
approximation of using only d causes the outer part of the orbital in figure
3.16a to be more spherical than the exact N, HOMO. For strongly restricted
spectral widths, this distortion appears as well but the one caused by limited
sampling is largely dominant.

In figure 3.17, only dH is used for the reconstructions and Af is varied,
considering only the experimentally accessible spectral range (harmonics 17
to 31). Between A6 = 5° (figure 3.17a) and A8 = 10° (figure 3.17b and, larger, in
figure 3.19¢), not difference is visible. Zooming out from the orbitals, another
effect of the discrete sampling becomes apparent. If the sampling of the DME
were done with an equidistant grid in k-space, the result would be a periodic
repetition of the reconstructed orbital in real space, thus imposing a certain
minimal sampling density. In the experiment, we sample points equidistant
on a k?-scaling, along lines with an angular step Af. This leads to the effect
shown in figure 3.17b,c, were the reconstructed orbital is repeated on the x
and y axes, with a period inversely proportional to the sampling steps in k-
space. Due to the non-equidistant sampling, the repetitions become smeared
out more and more as the distance from the origin increases. With Af = 20°,
the first repetition gets dangerously close to the actual reconstructed orbital,
whereas Af = 10° again turns out to be sufficiently small.

We have seen above that the narrow experimental spectral range allows
to recover the principle structure of the N, HOMO. How sensitive is this on
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the exact position of the narrow spectral window and how fast does the re-
construction improve if the spectrum is enlarged? Looking at the N, HOMO,
one can already guess that there is some characteristic spatial frequency that
should be included in the k-range if the essential shape of the orbital should
be reproduced. This frequency is k = 27t/L = 1.75 a.u., and corresponds to the
distance L ~ 3.6 a.u. of the two negative lobes (see figure 1.5). What other
frequencies are important?

Figure 3.18 shows reconstructions using Af = 10° and different large spec-
tral ranges. The reconstruction is still fairly close to the exact HOMO using
harmonics 3 to 99, which, in comparison with figure 3.16, shows that the im-
provement by including 900 more harmonic orders is rather marginal. Cutting
the highest orders further and including only harmonics 3 to 53 completely
ruins the reconstruction, though. It is due to the dominant low frequency
components, that the characteristic shape of the HOMO is hidden. Cutting
these, as done in figures 3.18c,d, very quickly allows to recover the character-
istic shape of the N; HOMO. If one is constrained to limit the used spectral
range, it should thus be cut on the low frequency side as well as on the high
frequency side around the characteristic spatial frequency.

Still, these simulations involve rather large spectra and high harmonic or-
ders that we have not been able to generate. In the difficult phase measure-
ments, we have been limited to 8 harmonic orders, from H17 to H31 — and
we have already seen in figure 3.17, that these may contain sufficient informa-
tion. Figure 3.19 shows reconstructions using only 8 harmonic orders. Clearly,
when the considered spatial frequencies are too low and the above mentioned
characteristic spatial frequency is not contained in the range, the orbital struc-
ture is not reproduced. Around the characteristic frequency, the exact position
of the narrow spectral window is crucial - in the experiment one thus really
has to hit the ‘sweet spot” of the DME. Using harmonics 17 to 31 indeed seems
to be very close to this optimal situation'®. With only too high frequencies, the
reconstructions turn out less satisfactory again.

These simulations show that it is realistic to acquire experimental data that
contain sufficient information to recover the shape of the active orbital beyond
its essential symmetry. When using spectra as narrow as those in our experi-
ments, though, tomographic reconstruction becomes a game of chance about
just hitting the essential part of the DME. For a reliable extraction of an a pri-
ori unknown orbital, the used experimental spectra clearly have to be rather
large, which could be achieved using mid-IR lasers!#. However, even if the
spectral width is driven to extreme values, the reconstructions of static or-
bitals will probably never be precise enough to be considered a benchmark
for calculations. On the other hand, for the observation of dynamics, the at-
tainable spatial resolution should be sufficient for most cases and it will be the
temporal resolution that makes molecular orbital tomography relevant to scien-
tific applications. This perspective will be further discussed in section 3.4.6.

3.4.5 Experimental Orbital Reconstructions

Molecular orbital tomographic using our N, data is treated in detail in paper
II. It turns out that with these data, we indeed reconstruct an experimental
image of the N, HOMO with distortions very similar to those obtained in

131t should again be noted that these simulations are based on length-form DME and w = k2/2
is used. The conclusions drawn here can thus only be qualitative and there is significant uncer-
tainty in the link of the harmonic orders considered here to those observed in the experiment.

4The ponderomotive potential as Up o< IA? (with I .. intensity), such with longer laser wave-
lengths, A, at constant intensity, much higher cut-off positions are possible.
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Figure 3.17. Simulation of a tomographic
reconstruction, based on the parallel
component, d|, of the DME only, sampling
k-points corresponding to harmonics 17 to
31 and an angular step of (a) A6 = 5°, (b)
A6 =10° and (c) A6 = 20°.
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Figure 3.18. Tomographic reconstructions and the slice of the DME that have been used. These slices are sampled

at points corresponding to harmonic orders of an 800 nm laser and an angular step of A = 10°. The considered
harmonic range is (a) H3-H99, (b) H3-H53, (c) H7-H53 and (d) H21-H53.
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Figure 3.19. Tomographic reconstructions and the slice of the DME that have been used. These slices are sampled
at points corresponding to harmonic orders of an 800 nm laser and an angular step of A8 = 10°. The considered

harmonic range is (a) H9-H23, (b) H15-H29, (c) H17-H31 and (d) H31-H45.

the above simulations (figure 3.19¢c). According to our analysis, this image
is contained in the imaginary part of the measured DME, further completed
with the corresponding symmetry (i.e. Im(d) is completed such that it is even
in both ky and ky). The real part contains the contribution of the HOMO-1 and
when imposing the corresponding symmetry (Re(d|) is completed such that
it is even in ky and odd in ky), we can extract an experimental image of the
HOMO-1.

It should also be noted that the separation of both contributions in real
and imaginary part of the DME is not perfect and there is an approximately
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linear variation of their relative phase over the spectral range. Furthermore,
the relative weight of both contributions is not constant but varies both with
frequency and angle, which introduces an additional filter-function in Fourier
space and thus distortions in real space.

While the image of the HOMO contains clear spatial structure that is not
simply imposed by the symmetric extrapolation of the DME, this is not the
case for the image of the HOMO-1. It is essentially a result of the considered
spectral range and the imposed symmetry: when setting the DME amplitudes
to unity and the phases to zero for all angles and frequencies, the obtained
image is almost the same as that extracted from the real part of the measured
DME. Although this is expected for the HOMO-1, the DME of which does not
have any particular structure in the considered spectral range, the absence of
structure in both simulation and experimental result does not allow to claim
a reconstruction of the HOMO-1. It is rather an indication of the consistency
of our experimental observations and their interpretation.

This issue is also raised in the case of CO,, where the data shown in fig-
ure 3 of paper I can be used to perform a tomographic reconstruction as well.
Imposing the corresponding symmetry (odd in both ky and k;, which implies
that the DME is set = 0 at § = 0°,90°) we obtain the results shown in figure
3.20b. It is not possible to say whether the experimental result is closer to
the simulation based on a calculated DME for the CO, HOMO, or whether
it is simply a consequence of the spectral range and the imposed symmetry,
simulated in figure 3.20c. Nonetheless, the comparison of the measured DME
phases with the plane wave simulation, done in paper I, leads to very satis-
factory agreement such that we can safely say that the spatial structure of the
CO, HOMO is encoded in the measured data.

3.4.6 Considerations on Dynamic Orbital Tomography

We have seen that the attainable precision of the reconstructed orbitals will
probably be insufficient to be a relevant benchmark to calculated static or-
bitals. This is due to the necessarily limited spectral range sampled in experi-
ments but also due to the simplifications made in the model the tomography-
scheme itself is based on. It is nonetheless worthwhile to continue research
on molecular orbital tomography because it contains the potential of time re-
solved imaging of intra-molecular electron dynamics — with temporal resolu-
tion essentially limited by the attochirp that spreads the recollision instants
associated with different spectral components over typically a few hundred
attoseconds.

Therefore, as we argue in paper II, the images we reconstruct from the
Nj-data have been made with an ‘exposure time” of ~600 as at ~ 1.5 fs after
the ionization instant. Furthermore, if our interpretation is accurate, we can
sum the two orbitals we extract from the real and imaginary part of the exper-
imental DME to obtain a snapshot of the time-dependent Dyson orbital, inter-
preted as a hole in the ion by (Smirnova et al. [186]). This certainly qualifies
as imaging of intra-molecular electron dynamics — the simplest possible kind
of such dynamics, namely a beating of two pure quantum states. It is not ob-
vious, though, how to interpret this dynamics: it is not immediately clear that
one can speak of electron re-arrangement upon ionization as does (Vrakking
[208]). Also, the connection of this ‘hole’, or more precisely Dyson orbital, to
the concept of an exchange-correlation hole and its dynamics, treated e.g. by
(Breidbach and Cederbaum [14], Remacle and Levine [167]), is not clear to us
at this point.

The snapshot of the "hole” shown in figure 3e,f of paper II is based on
a number of assumptions and one should refrain from pushing the analysis

a 6 T T T T T 0.4
0.3
4 -
- - 02
2 — -
b~ 0.1
- -
a0 1H o
> - . -0.1
2+ - :
-0.2
.. B N
-0.3
6 L 04
6 4 2 0 2 4 6
X (a.u.)
[a 6 T T T T T 0.3
4 - 0.2
-
Tsas
el
a0 4H o
> .
2 - . — 0.1
4 -1 -0.2
6 [T S R 03
6 4 2 0 2 4 6
x (a.u.)
6 T T T T T 0.4
0.3
4 -
’ ‘ 0.2
- |
—_ 0.1
- .
S0k 1H o
>
0.1
NS 1 e
- P 02
4 18 -0.3
6 L L1 04
6 4 2 0 2 4 6
X (a.u.)

Figure 3.20. Tomography with the CO,
data, based on the velocity form. (a)
Simulation using the experimental

sampling (Af = 10°, harmonics 17-29). (b)

Using the experimental DME, the phase

and squared amplitude of which are shown
in figure 3 of paper I. (c) Using a DME with

unity amplitude and zero phase, i.e.
without any information content.
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further based on this image. Some of the most important assumptions could
be lifted by measuring the full phase of the DME, i.e. its spectral and angular
dependence, without having to impose its value at some spectral component
(as we did at harmonic 17) and without having to complete three quadrants of
k-space according to an assumed symmetry. In section 3.2.3, it was discussed
how these improvements could be made. Then, one could really speak of an
ab initio imaging method. This would also fulfill one necessary condition for
the reconstruction of asymmetric (Dyson-) orbitals. These would lead to a
DME that is asymmetric in k-space as well.

A second necessary condition is that one has to be able to discern between
6, -0 and 6 + 180° — i.e. one has to orient molecules instead of only aligning
them. Techniques for doing this are being developed, e.g. by (Dion et al.
[28], Goban et al. [60], Kanai and Sakai [85], Machholm and Henriksen [123],
Vrakking and Stolte [209]). Furthermore, the electron recollision has to be
limited to one side of the molecule only, as pointed out by (van der Zwan
et al. [202]), which requires either half-cycle laser pulses or some means of
control over the continuum electron trajectory, such as a driving laser field
with the second harmonics added (see e.g. (Mauritsson et al. [140])).

Dynamics that are not launched by the ionization-step but by an ultra-
short pump-pulse will pose a contrast problem: the pump pulse will always
only excite a more or less important fraction of all molecules contributing to
the XUV signal. It is thus going to be necessary to arrange for a preferential
detection of the XUV light generated in the excited species. This is, however,
a ‘classic” problem in experimental physics and numerous approaches exist
to solve it. In the case of HHG in molecules, two techniques have been de-
veloped: polarization resolved detection, which is the subject of section 3.5.1
and paper III, and transient grating spectroscopy, demonstrated by (Mairesse
etal. [131]).

3.5 Probing Nuclear Dynamics in Molecules with
Attosecond Electron Wave Packets

In the preceding sections, the probed or imaged objects were electrons, bound
in molecules. The self-probing scheme can, however, also provide information
about nuclear dynamics in the molecule. These can happen on quite different
time scales, depending on the degree of freedom and, obviously, the mass
of the nuclei. In the vast majority of cases, the nuclear dynamics take very
long compared to the sub-IR-cycle dynamics of the EWP probing the molecule
at re-collision. In this case, the whole 3-step process of HHG can be used
as a probe process!® of dynamics initiated by a preceding pump pulse and
temporal resolution is limited by the total duration of the HHG driving pulse.
This is the kind of experiments discussed in section 3.5.1. The lightest nuclei,
the extreme case of which is the hydrogen nucleus, i.e. a single proton, may
move significantly during an IR field cycle. Then, the three steps of HHG
may be used as a pump, delay stage, and probe, which is the essence of the
experiment presented in section 3.5.2.

3.5.1 High-contrast Measurement of Rotational Revivals

A measurement of rotational dynamics has actually been part of the data ac-
quisition runs in all the experiments where aligned molecules have been used.
As mentioned in connection to figure 2.4, the XUV yield from N, molecules

15This constitutes a special variant of the self-probing scheme, differing from the one intro-
duced so far.
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as a function of the delay between aligning and HHG pulse bears a strong re-
semblance to the calculated (cos? #)-measure of molecular alignment. So does
the CO;,-signal, expect that it always evolves in the opposite sense, i.e. it de-
creases for increasing (cos? ) and vice versa. Calculated (cos? )-curves and
measured XUV signals as a function of the aligning pulse - HHG pulse delay
are shown in figure 3.21.

In paper III, we discuss in detail the technique of polarization resolved
spectroscopy with high-order harmonics to strongly enhance the contrast of
this kind of measurement. It is based on the detection of a selected component
of the field that vanishes if the effect to be observed is absent, thus detecting
with a vanishing background signal.

As discussed in section 3.3.1, aligning a molecular sample produces an
anisotropy and a selective detection of the orthogonal XUV field component
thus allows to observe with high contrast the re-phasing of the rotational wave
packet created by the aligning pulse. To this end, we added a pair of uncoated
silver mirrors at 60° incidence between the toroidal mirror and the detection
(cp. figure 2.8). These act as a polarizer with a 30 times higher reflectivity for
s-polarization than for p-polarization at harmonic order 21 (see figure 3.22).
Since the HHG beam was p-polarized, the harmonic signal detected with un-
aligned molecules was strongly reduced and represents the background sig-
nal. In these experiments, we measured only harmonic intensities and since
the transmission of the polarizer was quite low, we detected with a photon
multiplier instead of the MBES, which offers very high gain with high signal-
to-noise ratio. Using this technique, we reached an enhancement of the con-
trast from ~ 2 with the conventional detection scheme (see figure 3.21b), to
8 (see figure 3.23 and figure 6 in paper III) when aligning the molecules at
6 = 40° from the HHG beam polarization, which provided the strongest per-
pendicular XUV field component.

In a second series of experiments at CELIA Bordeaux using the setup
shown in figure 2 of paper III, providing very similar conditions as the setup
in Saclay, we could show that with polarization resolved spectroscopy, one can
easily detect the alignment of N, molecules in a 1:1 mixture with argon gas.
This is hardly possible without the polarization resolution since argon gen-
erates harmonics with about a factor of 3 higher efficiency than N, and thus
strongly dominates the XUV emission of the gas mixture. This result shows
that with suitable contrast enhancing techniques, another example of which is
transient grating spectroscopy (Mairesse et al. [131]), even weak contributions
to a signal can be detected efficiently. The problem of such weak contributions
is posed for example if a carrier gas has to be used, which is what we mimic
with the Nj-argon mixture, or if the studied system is in a weakly populated
excited state.

3.5.2 Sub-laser-cycle Vibrational Dynamics of Protons

In the vibrational degrees of freedom, nuclear dynamics are usually much
faster than the rotation considered above. In particular in the molecule with
the lightest nuclei, molecular hydrogen, the protons may indeed move on an
attosecond timescale. This movement is understood most easily within the
Born-Oppenheimer approximation, introduced in section 1.2.3. The nuclei,
described by a nuclear part, x(R), of the total molecular wavefunction, then
move in a potential of electron energy. The ground state BO potentials for
Hj, and Hj are shown in figure 3.24. Since the equilibrium internuclear dis-
tance of the ion is larger than that of the neutral molecule, the nuclei will
move apart as soon as the molecule is ionized. As the H ground state is a
bound state, the molecular ion will, however, not dissociate but rather vibrate
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section 2.2). Measured dependence of the
intensity of harmonic 21 generated in N,
(b) on the delay between HHG pulse and
aligning pulse. Same dependence, for
harmonic 25 generated in CO, (d).
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Figure 3.22. Reflectivity of a pair of silver
mirrors with 60° incidence (defined with
respect to the surface normal) for
s-polarized light (left). Reflectivity ratio for
s- and p-polarized light (right), i.e. the
extinction ratio of the polarizer. These data
are based on (Henke et al. [72]).
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3.5.2 Sub-laser-cycle Vibrational Dynamics of Protons
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Figure 3.23. Intensity of harmonic 21
generated in N, as function of the aligning
pulse - HHG pulse delay. The dashed line
shows the results recorded with the
conventional setup (figure 2.8), equivalent
to the data shown in figure 3.21b. The solid
line is the result of polarization resolved
spectroscopy, detecting preferentially the
XUV field component orthogonal to the
driving laser. Both data sets are normalized
to the level of signal detected with
unaligned molecules.
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— the H-H bond will be stretched and compressed with an oscillation period
of 2rth/AE, ~ 17 fs, where AE, ~ 0.25€V is the energy separation of the two
lowest vibrational states of H .

PACER

(Lein [109]) first studied the role played by this expansion in the HHG pro-
cess by analyzing results of non-BO TDSE simulations. He normalized the
HHG spectrum generated in Hj by that generated in D5, having nuclei twice
as heavy as those of H,. Within the BO approximation, the sole difference be-
tween these two molecules lies in the nuclear part of their wavefunctions, so
any difference in the high harmonic spectra must come from there. A Lewen-
stein (SFA) theory with nuclear motion incorporated within the BO approx-
imation, developed by (Lein [109]) and discussed in paper IV, gives results
that compare very well to the exact TDSE calculations — at least for an 800 nm
laser and an intensity of ~ 1 x 10 W/cm?. Besides the computational sim-
plification, the SFA theory reveals a beautifully simple scheme, illustrated in
figure 3.24, to explain the influence of nuclear motion on HHG. Based on this
scheme, the nuclear dynamics can be retrieved by means of a genetic algo-
rithm (Lein [109]).

This was experimentally demonstrated by (Baker et al. [5]), who measured
intensities of high harmonics generated in H and D; and analyzed their ra-
tio just as (Lein [109]) did with his TDSE results. They termed the technique
PACER: ‘Probing Attosecond dynamics by Chirp-Encoded Recollision’. The
three steps, commonly used to describe HHG, are considered as a pump, a
delay-stage, and a probe process: (i) A strong laser field ionizes the molecule,
launching simultaneously an electron wavepacket of attosecond duration into
the continuum and a time dependent nuclear wavepacket onto the electronic
ground state potential surface of the molecular ion. (ii) The continuum EWP
is subsequently accelerated and driven back to the ion by the laser field, while
the nuclear wavepacket evolves in parallel. (iii) At recollision, there is a cer-
tain probability for recombination to the ground state, releasing the accu-
mulated kinetic energy of the electron in the form of an attosecond burst of
XUV light. For coherent emission, recombination has to lead back to the ini-
tial state ¢, the nuclear part of which is the vibrational ground state of the
neutral molecule. The probability of this transition depends on the overlap of
this ground state nuclear wavefunction with the evolved nuclear wavepacket
of the molecular ion at the recombination time, i.e. recombination will be all
the less likely the further the ion has evolved. In his SFA theory, reviewed in

16The coherence of the whole HHG process is crucial so that many molecules in a macroscopic
medium emit high harmonic radiation coherently, their contributions adding up to a macroscopic
signal. Of course, the HHG process could, for instance, start with the molecule in the ground state
and end with a vibration excited molecule. This excited state would, however, have an arbitrary
phase relative to the continuum electron, which is ‘phase locked” to the ground state and the light
emission would consequently be incoherent and not participate to the high harmonic spectrum
detected in experiments. Obviously, the initial state of the molecule can already be a coherent
superposition of vibrational states. In the experiment, before the IR laser pulse, all molecules
are in the vibrational ground state: We are using a supersonic jet, i.e. our molecules are cold.
But even at room temperature, kgT = 0.025 eV is much smaller than the energy difference of
two vibrational states of Hy / Dy: AE, = 0.5eV /0.35eV. The IR laser may then vibrationally
excite the neutral molecules, e.g. via a Raman process. The laser bandwidth, however, is by
far insufficient to drive a stimulated Raman process (one would need 250 nm laser bandwidth
to couple vibrational states in H, with an 800 nm laser) so only spontaneous Raman scattering
could populate higher vibrational states. This process is not only very inefficient but it would
also not create a coherent vibrational wavepacket in the molecules. (Lein et al. [112]) have done
TDSE calculations without adopting the BO or single-active-electron approximation for a 1D Hy
model molecule in laser fields of 0.75 — 2 x 10" W/cm?. The results showed that the nuclei of
the neutral molecules remain very close to their equilibrium distance which means that high
harmonic generation starts from a situation that is very close to the field-free ground state of Hy.
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Figure 3.25. Encoding of the nuclear dynamics within harmonic spectra. Upper panel:
The trajecto