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摘摘摘要要要 227

经验模态分解(Empirical Mode Decomposition–EMD,又被称作Hilbert-Huang变换 228

(Hilbert-Huang Transform)–HHT) 是由黄锷等人 (Huang et al., 1998, 1999)于十年 229

前提出的一种新的分析非平稳和非线性数据的时频分析方法。在过去的十余年 230

中，有超过1000篇文献报道在工程应用及科学研究的不同领域中使用该方法。本 231

论文首次使用该方法分析湍流数据以及环境观测数据。在对湍流的数据分析中 232

发现EMD类似于一类二分滤波器(dyadic filter bank)。为了能使之刻画所分析信号 233

中的间歇性，我们将经典的Hilbert谱分析(Hilbert Spectral Analysis–HSA) 方法推 234

广为任意阶Hilbert谱分析。对HSA方法提供的联合概率密度分布函数p(ω,A) 对幅 235

值A 进行边际积分，就为我们提供了在幅值-频率空间中对尺度不变特性刻画的新 236

框架，其中ω 是瞬时频率，A 为幅值。我们首先对构造的分形布朗运动时间序列以 237

及多分形非平稳时间序列进行分析，从而来验证该方法的可行性和有效性。通过和 238

结构函数的结果相对比，我们发现新方法对间歇性参数提供了更加有效的预测。 239

通过统计平稳假设，我们提出了速度增量时间序列∆uℓ(t) 自相关函数的解析模 240

型，速度增量定义为∆uℓ(t) = u(t + ℓ) − u(t)。通过这个模型，我们解析证明了当 241

原始变量具有标度行为时，其速度增量的自相关函数将在相应的时间分隔ℓ 位置取 242

得最小值。同时该模型还表明该最小值存在标度行为，并被分形布朗运动以及湍流 243

实验数据所证明。通过定义自相关的累积函数，在傅立叶谱空间里对不同的尺度贡 244

献进行了刻画。我们发现对于自相关函数的主要贡献来自于大尺度部分。同样的分 245

析过程被应用于二阶结构函数。分析结果表明二阶结构函数强烈受到大尺度部分影 246

响，这表明结构函数并不适合用来提取标度指数，特别是当所分析的数据中含有大 247

尺度的含能结构的时候。 248

我们然后将该方法应用于均匀、近似各向同性的湍流实验数据来刻画湍流的间 249
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歇性，发现速度的联合概率密度分布函数p(ω,A) 本身具有标度趋势，相应的标度250

值很接近Kolmogorov值。我们随后在幅值-频率空间里对结果函数所提供的标度指251

数进行了重复。我们对局部各向同性假设在幅值-频率空间里进行检验，发现拓展252

的各向同性比值随着统计阶数q 线性减小。253

我们还使用该方法分析了射流实验中的一段温度数据，该数据有着较强的峭壁254

结构(ramp-cliff)。对于该数据，传统的结构函数方法不再适用。但是新方法在统计255

阶数高达8的时候仍然给出了清晰的标度行为，相应的标度指数ξθ(q) − 1 非常接近256

充分发展湍流中的流向速度的标度指数。257

最后，我们用该方法分析了河流数据以及近海海洋湍流数据，在Hilbert框架下258

刻画了其中的尺度不变特性。259



Abstract 260

Empirical Mode Decomposition (EMD), or Hilbert-Huang Transform (HHT) is a novel 261

general time-frequency analysis method for nonstationary and nonlinear time series, 262

which was proposed by Huang et al. (1998, 1999) more than ten years ago. During 263

the last ten years, there have been more than 1000 papers applying this new method 264

to various applications and research fields. In this thesis we apply this method to 265

turbulence time series for the first time, and to environmental time series. It is found 266

that the EMD acts a dyadic filter bank for fully developed turbulence. To characterize 267

the intermittent properties of a scaling time series, we generalize the classical Hilbert 268

spectral analysis to arbitrary order q, performing what we denoted “arbitrary order 269

Hilbert spectral analysis”. This provides a new frame to characterize scale invariance 270

directly in an amplitude-frequency space, by taking a marginal integral of a joint pdf 271

p(ω,A) of instantaneous frequency ω and amplitude A. We first validate the method 272

by analyzing a simulated fractional Brownian motion time series, and by analyzing 273

a synthesized multifractal nonstationary time series respectively for monofractal and 274

multifractal processes. Compared with the classical structure function approach, it 275

is found numerically that the Hilbert-based methodology provides a more precise 276

estimator for the intermittency parameter. 277

Assuming statistical stationarity, we propose an analytical model for the au- 278

tocorrelation function of velocity increments time series ∆uℓ(t), where ∆uℓ(t) = 279

u(t + ℓ) − u(t), and ℓ is the time increment. With this model, we prove analyti- 280

cally that, if a power law behaviour holds for the original variable, the location of the 281

minimum values of the autocorrelation function is equal exactly to the time separation 282
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ℓ when ℓ belongs to scaling range. A power law behaviour for the minimum values283

is suggested by this model, and verified by a fractional Brownian motion simulation284

and a turbulent database. By defining a cumulative function for the autocorrelation285

function, the scale contribution is then characterized in the Fourier frequency space.286

It is found that the main contribution to the autocorrelation function comes from the287

large scale part. The same idea is applied to the second order structure function. It288

is found the second order structure function is strongly influenced by the large scale289

part, showing that it is not a good approach to extract the scaling exponent from a290

given scaling time series when the data possess energetic large scales.291

We then apply this Hilbert-based methodology to an experimental homogeneous292

and nearly isotropic turbulent database to characterize multifractal scaling properties293

of the velocity time series in fully developed turbulence. We obtain a scaling trend294

in the joint pdf p(ω,A) with a scaling exponent close to the Kolmogorov value. We295

recover the structure function scaling exponents ζ(q) in amplitude-frequency space296

for the first time. The isotropy hypothesis is then checked scale by scale in amplitude-297

frequency space. It is found that the generalized isotropy ratio decreases linearly with298

the order q.299

We also perform the analysis on a temperature (passive scalar) time series with300

strong ramp-cliff structures. For these data, the traditional structure function fails.301

However, the new method extracts a clear power law up to q = 8. The scaling302

exponents ξθ(q) − 1 is quite close to the scaling exponents ζ(q) of the longitudinal303

velocity in fully developed turbulence.304

We then consider the traditional Extended Self-Similarity (ESS) (Benzi et al.,305

1993b) and the hierarchy model (She & Lévêque, 1994) under the Hilbert frame. For306

the case of ESS, we have here two special cases q = 0 and q = 3 to define the ESS in307

the Hilbert frame. Both of them work for the fully developed turbulence providing the308

same scaling exponents. Based on the turbulent database we have, it seems that the309

lognormal model with a proper chosen intermittency parameter μ provides a better310

prediction of the scaling exponents.311
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We finally apply the new method to daily river flow discharge and surf zone marine 312

turbulence to characterize the scale invariance under the Hilbert frame. 313
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Résumé 314

La Décomposition Modale Empirique (Empirical Mode Decomposition - EMD) ou la 315

Transformation de Hilbert-Huang (HHT) est une nouvelle méthode d’analyse temps- 316

fréquence qui est particulièrement adaptée pour des séries temporelles nonlinéaires 317

et non stationnaires. Cette méthode a été proposée par Huang et al. (1998, 1999) il 318

y a plus de dix ans. Pendant les dix dernières années, plus de 1000 articles ont ap- 319

pliqué cette méthode dans le cadre de diverses applications ou domaines de recherche. 320

Dans cette thèse, nous appliquons cette méthode à des séries temporelles de turbu- 321

lence, pour la première fois, et à des séries temporelles environnementales. Nous 322

avons obtenu comme résultat le fait que la méthode EMD correspond à un banc de 323

filtre dyadique (ou quasi-dyadique) pour la turbulence pleinement développée. Pour 324

caractériser les propriétés intermittentes d’une série temporelle invariante d’échelle, 325

nous avons généralisé l’analyse spectrale de Hilbert-Huang classique à des moments 326

d’ordre arbitraire q, pour effectuer ce que nous avons appelé “analyse spectrale de 327

Hilbert d’ordre arbitraire”. Ceci fournit un nouveau cadre pour analyser l’invariance 328

d’échelle directement dans un espace amplitude-fréquence, en estimant une intégrale 329

marginale d’une pdf jointe p(ω,A) de la fréquence instantanée ω et de l’amplitude A. 330

Nous validons tout d’abord la méthode en analysant des séries temporelles de mou- 331

vement Brownien fractionnaire, et en analysant des séries temporelles multifractales 332

synthétiques, en tant que modèle respectivement de processus monofractals et multi- 333

fractals. Nous comparons les résultats obtenus avec la nouvelle méthode, à l’analyse 334

classique utilisant les fonctions de structure: nous trouvons numériquement que la 335

méthodologie utilisant l’approche de Hilbert fournit un estimateur plus précis pour 336

xxiii
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le paramètre d’intermittence.337

Avec une hypothèse de stationarité, nous proposons un modèle analytique pour la338

fonction d’autocorrélation des incréments de séries temporelles de vitesse ∆uℓ(t), où339

∆uℓ(t) = u(t + ℓ)− u(t), et ℓ est l’incrément temporel. Dans le cadre de ce modèle,340

nous prouvons analytiquement que, si une loi de puissance est valide pour la série341

d’origine, la position minimisant la fonction d’autocorrélation de la variable d’origine342

est égale exactement au temps de séparation ℓ lorsque ℓ appartient à la zone invariante343

d’échelle. Ce modèle prédit une loi de puissance pour la valeur minimum, comporte-344

ment vérifié par une simulation de mouvement Brownien fractionnaire et à partir345

de données expérimentales de turbulence. En introduisant une fonction cumulative346

pour la fonction d’autocorrélation, la contribution en échelle est alors caractérisée347

dans l’espace de fréquence de Fourier. Nous observons que la contribution principale348

à la fonction d’autocorrélation provient des grandes échelles. La même idée est ap-349

pliquée à la fonction de structure d’ordre 2. Nous obtenons que celle-ci est également350

fortement influencée par les grandes échelles, ce qui montre que ceci n’est pas une351

bonne approche pour extraire les exposants invariants d’échelle d’une série temporelle352

lorsque les données sont caractérisées par des grandes échelles énergétiques.353

Nous appliquons ensuite cette méthodologie Hilbert-Huang à une base de données354

de turbulence homogène et presque isotrope, pour caractériser les propriétés multi-355

fractales invariantes d’échelle des série temporelles de vitesse en turbulence pleinement356

développée. Nous obtenons un comportement invariant d’échelle pour la pdf jointe357

p(ω,A) avec un exposant proche de la valeur de Kolmogorov. Nous estimons les ex-358

posants ζ(q) dans un espace amplitude-fréquence, pour la première fois. L’hypothèse359

d’isotropie est testée échelle par échelle dans l’espace amplitude-fréquence. Nous360

obtenons que le rapport d’isotropie généralisé décroit linéairement avec le moment q.361

Nous effectuons également l’analyse d’une série temporelle de température (scalaire362

passif) possédant un effet de rampe marqué (ramp-cliff). Pour ces données, l’approche363

traditionnelle utilisant les fonctions de structure ne fonctionne pas. Mais la nouvelle364

méthode développée dans cette thèse fournit un net régime invariant d’échelle jusqu’au365
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moment q = 8. Les exposants ξθ(q)− 1 sont très proches des exposants ζ(q) obtenus 366

par l’approche des fonctions de structure pour la vitesse longitudinale. 367

Nous nous intéressons ensuite à l’auto-similarité étendue (Extended Self Similarity 368

- ESS) (Benzi et al., 1993b) dans le cadre Hilbert-Huang. En ce qui concerne la 369

méthode ESS, qui est devenue classique en turbulence, nous adaptons l’approche 370

pour le cas Hilbert-Huang dans un espace de fréquence, et nous constatons que le 371

modèle lognormal, avec un coefficient adéquat, fournit une très bonne estimation des 372

exposants invariants d’échelle. 373

Finalement nous appliquons la nouvelle méthodologie à des données environ- 374

nementales: des débits de rivières, et des données de turbulence marine dans la zone 375

de surf. Dans ce dernier cas, la méthode ESS permet de séparer les ondes de vent de 376

la turbulence à petite échelle. 377
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Chapter 1399

An Informal Introduction to400

Time-Frequency Analysis401

In this chapter, we recall some general ideas of the time-frequency analysis, such as402

decomposition and representation, characteristic scale, nonlinear and nonstationary403

effects, etc.404

1.1 Decomposition and representation405

There are plenty of time-frequency analysis methods (Cohen, 1995; Flandrin, 1998).406

Their basic idea can be interpreted as representing a given signal/function, f(x), by407

a given basis408

f(x) =

∫ +∞

−∞

ψ(ν, x′)ϕ(x, x′, ν) dν dx′ (1.1.1)

where ϕ is a given basis (function), and ψ is the coefficient (function) which can be409

determined by410

ψ(x, ν) =

∫ +∞

−∞

f(x)ϕ(x, x′, ν) dx′ (1.1.2)

Here the basis function ϕ also can be interpreted as an integral kernel of the above411

equation (Cohen, 1995). It is an asymptotic approximation: the signal is asymptot-412

ically approximated by the chosen basis (function) ϕ. The property of the chosen413

3



4 Chapter 1. An Informal Introduction to Time-Frequency Analysis

basis are usually well known. Then we check ϕ to see how the given signal looks like 414

with the chosen basis (function) ϕ. For example, when the trigonometric function is 415

chosen, we obtain the classical Fourier transform 416

ψ(f) =

∫ +∞

−∞

f(x)ei2πfx dx (1.1.3)

Another example is the Wavelet transform 417

ψ(a, x) = |a|−1/2
∫

Rn
f(x′)ϕ(

x′ − x

a
) dx′ (1.1.4)

where n is the dimension of the space, ϕ(x) is the so-called mother wavelet and a is 418

a dilatation parameter1. This is the traditional approach for time-frequency analysis: 419

the basis are chosen before the decomposition. Therefore once we choose a basis 420

(function), the information that can be extracted from the data is determined. They 421

are also energy based approaches: only when the component contains enough energy, 422

it then can be detected by such methods (Huang et al., 1998; Huang, 2005). 423

Moreover, most a priori basis are defined in the global sense and they require 424

that the signal satisfies stationary and linearity assumptions (Cohen, 1995; Flandrin, 425

1998; Huang et al., 1998). Here the stationarity means that the statistical properties 426

are identical for different samples2. Many modifications, such as short-time Fourier 427

transform with various windows, Wigner-Ville distribution, have been designed to 428

overcome these obstacles (Cohen, 1995; Flandrin, 1998). However, they inherit more 429

or less the shortcoming of the Fourier transform (Huang et al., 1998, 1999). 430

1To be a mother wavelet, ϕ(x) should satisfy some conditions. For details on wavelet theory see
Daubechies (1992). We may also consider the wavelet transform approach as an adaptive-windows
Fourier transform (Huang et al., 1998).
2The mathematical definition of stationarity is more rigorous. In practice, if some statistical

quantities of a given time series do not change beyond a certain size of sample and are identical for
different samples, then the time series is called stationary process.



1.2. Characteristic scale 5

1.2 Characteristic scale431

The power of a time-frequency analysis method is determined by the chosen basis ϕ.432

Indeed, for a certain time-frequency analysis method, a characteristic scale (CS) is al-433

ways defined explicitly or implicitly. Once we choose a definition of the characteristic434

scale for a certain method, then the ability and property of this method is deter-435

mined/fixed. We compare here three different definitions of the CS, corresponding436

to Fourier transform, Wavelet transform and Hilbert-Huang transform (HHT) (see437

chapter 2 for more details of HHT).
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Figure 1.1: Demonstration of the characteristic scale of (a) Fourier analysis, (b)
Wavelet transform and (c) Hilbert-Huang transform, respectively.

438

• Fourier Transform:439

The length of one period of sine or cosine wave.440
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Figure 1.2: The characteristic scale in (a) frequency-time space, and (b) amplitude-
time space.

• Wavelet Transform: 441

The shape of the mother wavelet together with the dilation factor. 442

• Hilbert-Huang Transform: 443

The distance between successive local extrema maxima (resp. minima) points. 444

We illustrate the corresponding CS in Fig. 1.1: (a) Fourier analysis, (b) Mexican hat 445

wavelet, and (c) Hilbert-Huang transform (HHT). As we have mentioned above, for 446

an a priori approach, once the basis (function) ϕ is chosen, the shape of CS is then 447

fixed. We illustrate here two examples for a priori approach: the Fourier transform 448

and Mexican hat wavelet. However, the shape of the CS of HHT can be varied from 449

time to time. In other words, these three time frequency analysis methods describe 450

the characteristic scale globally, regionally, and locally, respectively (Huang, 2005). 451

Frequency-Modulation 452

Figure 1.2 shows the CS in both frequency-time view and amplitude-time view. The 453

difference among them are clear. For further discussion convenience, we introduce 454
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here the concepts of frequency-modulation and amplitude-modulation. Let us con-455

sider here a monochromatic wave456

x(t) = a cos 2πνot (1.2.1)

where the constants a and νo are the amplitude and the frequency. It is natural to457

extend this point of view to evolutionary situations458

x(t) = a(t) cos 2πνo(t)t (1.2.2)

where the amplitude a and the frequency νo now may vary in time. Let us first keep459

the amplitude a as a constant, and let the frequency νo vary in time. We call this460

“frequency modulation”.461

Definition 1.2.1 (Frequency-Modulation). Frequency νo may vary in time.462

Both the Fourier analysis and Wavelet transform3 do not allow the frequency463

modulation, since the frequency for each component is fixed, see Fig. 1.2 (a). On464

the contrary, the HHT does allow frequency-modulation, since the idea of the in-465

stantaneous frequency (Cohen, 1995; Flandrin, 1998) is employed to describe the466

frequency. We will see this point in chapter 2, the fact that frequency modulation467

may be further termed into two different types: interwave-frequency-modulation and468

intrawave-frequency-modulation. The latter one can be associated to a nonlinear469

mechanism (Huang et al., 1998, 1999).470

Amplitude-Modulation471

Now we consider another situation, the so-called amplitude-modulation. Let us keep472

the frequency νo constant, and let the amplitude a vary in time. It is then called473

3In fact, Wavelet may detect the so-called interwave-frequency-modulation (Huang et al., 1998,
1999). However, this ability comes from the amplitude-modulation: the wavelet coefficient ϕ(x, a)
may be zero at some locations and scales.
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amplitude-modulation. 474

Definition 1.2.2 (Amplitude Modulation). Amplitude a may vary in time. 475

Figure 1.2 (b) shows the amplitude of the above mentioned three approaches 476

in amplitude-time view. Here again, the Fourier representation does not allow the 477

amplitude-modulation, since it describes the scale in a global sense. Due to a com- 478

pact support property of the wavelet in physical domain, it allows the amplitude- 479

modulation (Daubechies, 1992). HHT allows the amplitude-modulation mechanism. 480

Therefore, it allows the frequency-modulation and amplitude-modulation simultane- 481

ously (Huang et al., 1998, 1999; Huang, 2005). 482

Potential Shortcoming of Fourier-Based Approach 483

We then reproduce the main properties of the Fourier analysis, Wavelet transform 484

and HHT in Table 1.1 from Huang (2005). These properties determine the power of 485

each method and also the potential shortcoming of each one. We then list the main 486

potential shortcoming of the Fourier-based approach here 487

• a priori 488

The basis ϕ are given before decomposition. 489

• Stationary 490

They require that the data satisfy the stationarity assumption. 491

• Asymptotical approximation 492

They are a linear asymptotical approximation to the original data. 493

• Global uncertainty 494
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They are limited by the so-called Heisenberg-Gabor uncertainty principle4.495

Due to the above mentioned properties of the Fourier-based time-frequency analysis496

methods, they require high order harmonic component to mimic a transit signal, in497

which both the amplitude and the frequency may vary in time.498

For more details on the time-frequency analysis and potential shortcomings of the499

Fourier-based approach, we suggest Cohen (1995) and Flandrin (1998).500

Table 1.1: Comparison of the main properties of the Fourier analysis, Wavelet trans-
form and Hilbert-Huang transform.

Frequency-Modulation Amplitude-Modulation
Interwave Intrawave

Fourier analysis No No No
Wavelet transform Yes No Yes
Hilbert-Huang transform Yes Yes Yes

1.3 Nonstationary and nonlinear effects501

In the real world, most data are nonlinear, nonstationary and noisy. A general method502

to deal with nonlinear and nonstationary time series is required. The terminology503

‘nonlinear’ here means that the underling mechanism is nonlinear. Below, we il-504

lustrate the nonstationary and nonlinear effects on both the Fourier analysis and505

Hilbert-Huang transform.506

4The Heisenberg-Gabor uncertainty principle (Cohen, 1995; Flandrin, 1998) means that the time
resolution δt and the frequency resolution δf are restricted by the following relation

δt δf ≥
1

4π
(1.2.3)



10 Chapter 1. An Informal Introduction to Time-Frequency Analysis

Nonstationary Effect 507

Definition 1.3.1 (Stationarity). A time series x(t) is stationary in the weak sense, 508

if, for all t 509

E(|x(t)|2) <∞ (1.3.1a)
510

E(x(t)) = m (1.3.1b)
511

C(x(t1), x(t2)) = C(x(t1) + τ, x(t2) + τ) = C(t1 − t2) (1.3.1c)

where E(∙) is the expected value, and C(∙) is the covariance function. 512
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Figure 1.3: Example of a nonstationary event x(t): the amplitude on range 5 ≤ t ≤ 6
is 20% higher, which is marked by a rectangle.

In practice, we only have a finite size sample. Obviously, the data we have may 513

not satisfy the above condition, which means it is nonstationary. We give an example 514

of a nonstationary effect here. We produce a sine wave x(t) on the range 0 < t < 10 515

x(t) =





sin(2πt) t < 5

1.2 sin(2πt) 5 ≤ t ≤ 6

sin(2πt) 6 < t < 10

(1.3.2)

where a nonstationary event with 20% higher amplitude is superposed on range 516

5 ≤ t ≤ 6, see Fig. 1.3, in which the nonstationary event is marked by a rectan- 517

gle. The sampling frequency is set as 100Hz. Figure 1.4 shows the intrinsic mode 518
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Figure 1.4: Intrinsic mode functions from empirical mode decomposition.
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Figure 1.5: Instantaneous frequency of each mode: (a) instantaneous frequency, (b)
the relative energy. The vertical solid lines indicate the location of the nonstationary
event.

functions (IMF) from the empirical mode decomposition (EMD)5. Figure 1.5 shows519

the corresponding (a) instantaneous frequency, and (b) energy ratio, where the verti-520

cal solid lines indicate the location of nonstationary event. The nonstationary event521

is well captured by HHT in a very local level. We compare the Hilbert marginal spec-522

trum with the Fourier spectrum in Fig. 1.6, where the thin solid line is the Fourier523

power spectrum of the signal without perturbation. The Fourier power spectrum is524

5The concept of intrinsic mode function and the empirical mode decomposition methodology will
be presented in chapter 2.
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Figure 1.6: Comparison of the Hilbert marginal spectrum and Fourier spectra.

directly estimated by a Fourier transform without any window. All these three curves 525

detect the domain frequency. For the Fourier power spectrum, there are some fluc- 526

tuation on the high frequency range, indicating the presence of high order harmonic 527

component. For the Hilbert marginal spectrum, we note that it does not require 528

any high order harmonic component to mimic the nonstationary effect, since it allows 529

amplitude-modulation. We also note some energy leakage on the low frequency, which 530

may be the end-point effect in the empirical mode decomposition. 531

Nonlinear Effect 532

We turn to nonlinear effect. There is no general definition of nonlinearity for a discrete 533

time series, since we may represent it by a linear asymptotical approximation way. 534

Therefore, we propose here a definition of the nonlinearity for a discrete time series: 535

Definition 1.3.2 (Nonlinearity). If the underlying mechanism behind a time series 536

is nonlinear, we then call the dataset itself nonlinear. 537
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Figure 1.7: A 5th order Runge-Kutta numerical solution of the Duffing equation.

Here we consider the classical Duffing equation with a periodic forcing. The538

Duffing equation is written as539

d2x

dt2
+ x(1− εx2) = b cosωt (1.3.3)

where ǫ is a nonlinear parameter, b cosωt is a periodic forcing. It can be considered540

as a nonlinear spring system with a nonlinear spring (1− εx2), and a periodic forcing541

b cos(ωt). The parameter and inertial condition are taken as b = 0.1, ε = 1, ω =542

2π/25, and [x(0), x′(0)] = [1, 1]. A 5th order Runge-Kutta scheme is performed to543

integrate the equation numerically with ∆t = 0.1. Figure 1.7 shows the corresponding544

numerical solution. Due to the nonlinear mechanism, the wave profile of the numeri-545

cal solution departures from a sine wave. We show the corresponding intrinsic mode546

functions from EMD decomposition in Fig. 1.8. The original time series is separated547

into five modes with one residual. Figure 1.9 shows the corresponding instantaneous548

frequency for each mode. A frequency-modulation is clearly observed for the first549

mode. As we will show in chapter 2, it belongs to the intrawave frequency-modulation550

family. We compare the corresponding Hilbert marginal spectrum and the Fourier551
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Figure 1.8: Intrinsic mode functions from empirical mode decomposition for numerical
solution of the Duffing equation.

power spectrum in Fig. 1.10. They are significantly different. Both approaches cap- 552

ture the domain frequency and the periodic forcing. However, the Fourier analysis 553

needs high order harmonic components to mimic the nonlinear process, which is in- 554

deed a requirement of mathematics without physics sense. It stems from the linear 555

asymptotic representation of the nonlinear process. As we already have pointed out 556

previously, due to the nonlinear mechanism, the wave profile of the Duffing equation 557
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Figure 1.9: Instantaneous frequency for the Duffing equation: (a) instantaneous fre-
quency, (b) the relative energy. Frequency modulation is observed for the first IMF
mode.
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Figure 1.10: Comparison of the Hilbert marginal spectrum and Fourier power spec-
trum for Duffing equation. High order harmonic components are required by Fourier
analysis to mimic the nonlinear distortion of the nonlinear wave.

solution is in far deviation from a pure sine wave. High order harmonic components558

are thus required by the Fourier analysis to mimic this deviation, namely nonlinear559

distortion. For HHT, since it allows frequency- and amplitude-modulation simulta-560

neously, it does not need the high order harmonic component any more to describe561

the nonlinear distortion (Huang et al., 1998, 1999).562

1.4 Alternative Approach?563

About ten year ago, Huang et al. (1998, 1999) introduced a novel time-frequency anal-564

ysis method, the Hilbert-Huang transform, or Empirical Mode Decomposition called565

by some authors6, to deal with general nonstationary and nonlinear time series. This566

6In fact, a complete Hilbert-Huang transform has two steps. They are the empirical mode
decomposition and Hilbert spectral analysis. However, we note that some authors call the empirical
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method has a very local level ability both in physical domain and spectral domain. 567

It also possesses fully self-adaptiveness ability, since there is no basis assumption a 568

priori (Huang et al., 1998, 1999; Flandrin & Gonçalvès, 2004). As an alternative 569

method to the Fourier-based approach, we will apply this methodology on turbulent 570

and environmental time series in this thesis. 571

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 572

This thesis is organized as follows. In chapter 2, we present more details on the 573

traditional Hilbert-Huang transform, including Empirical Mode Decomposition, the 574

classical Hilbert Spectral Analysis. We generalize the latter one into arbitrary order 575

to consider the scale invariant properties of intermittent multifractal time series in 576

an amplitude-frequency space with validation in chapter 3. 577

In chapter 4, we recall the classical Kolmogorov’s 1941 theory on local homogenous 578

and isotropic turbulence together with intermittency and multifractal cascade ideas. 579

In chapter 5, we present an analytical model of the classical structure function analysis 580

to show its potential shortcoming. A similar analytical model is proposed to the 581

autocorrelation function of the velocity increment time series. It is found that the 582

autocorrelation function is a better inertial range indicator than structure functions. 583

In chapter 6, we apply the new Hilbert-based methodology to a turbulent database 584

from an experimental homogeneous and nearly isotropic turbulence experiment. We 585

recover the classical structure function scaling exponents ζ(q) in spectral space for the 586

first time. In chapter 7, we analyze a passive scalar (temperature) turbulence data 587

with very strong ramp-cliff structure, in which the classical structure function analysis 588

mode decomposition as Hilbert-Huang transform.



1.4. Alternative Approach? 17

fails. In chapter 8, we generalize the Extended-Self-Similarity (ESS) into Hilbert589

frame to compare the scaling property of turbulent velocity with various turbulent590

intermittency models. We finally apply the new methodology to environmental time591

series: river flow discharge data in chapter 9, and surf zone marine turbulence data592

in chapter 10, to characterize the scale invariant properties in amplitude-frequency593

space. In chapter IV, we draw the main conclusions of this thesis.594
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Chapter 2595

Norden Huang’s 1998 Proposal:596

Hilbert-Huang Transform597

About ten year ago, Huang et al. (1998, 1999) introduced a new method, namely598

Hilbert-Huang transform or Empirical Mode Decomposition, to deal with time se-599

ries analysis that was claimed to be well adapted for nonlinear and nonstationary600

data. During the last ten years, there have been more than 1000 papers devoted to601

apply this new method to various engineering applications and many different sci-602

ence research fields. For example, waves (Hwang et al., 2003; Veltcheva & Soares,603

2004; Schmitt et al., 2009), biological applications (Echeverria et al., 2001; Baloc-604

chi et al., 2004; Ponomarenko et al., 2005), financial studies (Huang et al., 2003b),605

meteorology and climate studies (Coughlin & Tung, 2004; Jánosi & Müller, 2005;606

Molla et al., 2006; Solé et al., 2007; Wu et al., 2007; Huang et al., 2009b), mechanical607

engineering (Loh et al., 2001; Chen et al., 2004), acoustics (Loutridis, 2005), aquatic608

environment (Schmitt et al., 2007), and turbulence (Huang et al., 2008), to quote a609

few. In this chapter, we introduce this method in detail.610

19
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2.1 Empirical mode decomposition 611

The most innovative part of the HHT is the Empirical Mode Decomposition. The 612

starting point of the EMD is that most of the signal are multi-component, which 613

means that there exist different scales simultaneously (Cohen, 1995; Huang et al., 614

1998, 1999). This may be considered as faster oscillations superposed to slower ones 615

at very local levels (Rilling et al., 2003; Flandrin & Gonçalvès, 2004). We illustrate 616

this idea in Fig. 2.1.The characteristic scale is taken, for EMD method, as the dis- 617

tance between two successive maxima positions. This idea was at the original of the 618

introduction of Intrinsic Mode Function (IMF in the following). The definition of 619

an IMF is: (i) the difference between the number of local extrema and the number 620

of zero-crossings must be zero or at most one; (ii) the running mean value of the 621

envelope defined by the local maxima and the envelope defined by the local minima 622

is zero. Figure 2.2 shows an example of IMF. The next step is to consider how IMFs 623

can be extracted from time series. 624

+=

Figure 2.1: A schematic illustration of the basic idea of EMD. The original signal
(thick line in the left diagram) is considered as the superposition of a faster oscillation
(middle diagram) on a slower oscillation (right diagram).

Norden Huang et al. (1998, 1999) introduced the Empirical Mode Decomposition 625

algorithm, called by himself “sifting process”, to decompose a given signal into several 626
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Figure 2.2: An example of IMF from EMD decomposition.

IMF modes (Flandrin et al., 2004). The corresponding flow chart of this sifting process627

is shown in Fig. 2.3.628

The first step of sifting process is to identify all the local extrema maxima (resp.629

minima) points for a given time series x(t). Once all the local extrema maxima630

points are identified, the upper envelope emax(t) is constructed by a cubic spline. The631

the procedure is repeated for the local extrema minima points to produce the lower632

envelope emin(t). Then the mean between these two envelope is defined as633

m1(t) =
emax(t) + emin(t)

2
(2.1.1)

The first component is then estimated by634

h1(t) = x(t)−m1(t) (2.1.2)

The procedure is illustrated in Fig. 2.4, where the the original data x(t) are shown635

as thin solid line. Ideally, h1(t) should be an IMF as expected. In reality, however,636

h1(t) may not satisfy the condition to be an IMF. We thus take h1(t) as a new time637

series and repeat the sifting process j times, until h1j(t) is an IMF638

h1j(t) = h1(j−1)(t)−m1j(t) (2.1.3)
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Figure 2.3: The flowchart of sifting process for EMD algorithm.

We thus extract the first IMF component C1(t) 639

C1(t) = h1j(t) (2.1.4)

and the residual r1(t) 640

r1(t) = x(t)− C1(t) (2.1.5)

from the data x(t). An illustration of the first sifting process for a real time series 641

is shown in Fig. 2.4. The sifting procedure is then repeated on residual until rn(t) 642

becomes monotonic function or at most has one local extreme point. This means no 643

more IMF can be extracted from rn(t). We finally have n − 1 IMF modes with one 644
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(1)

(2)

(3)

Figure 2.4: Illustration of the sifting process of EMD algorithm: (1) identify all the
local extrema points (#), and construct the upper envelop emax(t), and the lower
envelop emin(t), (2) calculate the running average m1(t), and (3) get the local detail
h1(t) after 1st sifting. The original time series x(t) is shown as thin solid line.

residual rn(t). The original data x(t) is then rewritten as645

x(t) =
n−1∑

i=1

Ci(t) + rn(t) (2.1.6)

Due to a dyadic filter bank property of the EMD algorithm (Wu & Huang, 2004;646

Flandrin et al., 2004; Huang et al., 2008), usually in practice, the number of IMF647

modes is less than log2(N), where N is the length of the data set.648

The above sifting process severs as two purposes: (i) to eliminate the riding wave,649

(ii) to make the wave profiles more symmetric. Therefore, the sifting process should650

be repeated enough times. However, if too many times sifting are performed, the651

amplitude of the IMF modes will become constant, and the nonlinear wave profiles652

is then distorted, which means the modes lose their physical meaning (Huang et al.,653
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1998, 1999). To guarantee that the IMF modes retain enough physical sense for both 654

amplitude and frequency modulations, a stopping criterion has to be introduced to 655

stop the sifting process. Different types of stopping criteria have been introduced by 656

several authors (Huang et al., 1998, 1999; Rilling et al., 2003; Huang et al., 2003a; 657

Huang, 2005). We only describe here what we used in this thesis. The first stop 658

criterion is a Cauchy-type convergence criterion. In this we introduce the standard 659

deviation (SD), which is defined for two successive sifting process as 660

SD =

∑T
t=0 |hi(j−1)(t)− hj(t)|

2

∑T
t=0 h

2
i(j−1)(t)

(2.1.7)

If a calculated SD is smaller than a given value, then the sifting stops and gives an 661

IMF. A typical value proposed by Huang et al. (1998) is 0.2 ∼ 0.3, proposed based 662

on their experience (Huang et al., 1998). Another widely used criterion is based on 3 663

thresholds α, θ1 and θ2, which are designed to guarantee globally small fluctuations 664

in the mean while taking into account locally large excursions (Rilling et al., 2003). 665

Mode amplitude and evaluation functions are then given by 666

a(t) =
emax(t)− emin(t)

2
(2.1.8)

and 667

σ(t) = |m(t)/a(t)| (2.1.9)

The sifting is iterated until σ(t) < θ1 for some prescribed fraction 1 − α of the total 668

duration, while σ(t) < θ2 for the remaining fraction. The typical values proposed by 669

Rilling et al. (2003) are α ≈ 0.05, θ1 ≈ 0.05 and θ2 ≈ 10 θ1, respectively based on their 670

experience. We also set the maximal iteration number, for example 300, to avoid to 671

over-decompose the time series. In practice, if one of these criteria is satisfied, then 672

the sifting process stops to give an IMF. 673
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The above described EMD algorithm does the decomposition in a very local level674

in physical domain without a priori basis. It also means that it is an a posteriori675

method, since the basis (function) is induced by the data itself (Huang et al., 1998,676

1999; Flandrin & Gonçalvès, 2004). The fully adaptiveness ability of this method677

explains that it can be considered to be well adapted for nonlinear and nonstationary678

data. However, the main drawback of this method is that it is not mathemati-679

cally proved (Huang, 2005). More detail about the EMD algorithm can be found in680

Refs. Huang et al. (1998, 1999); Rilling et al. (2003); Flandrin et al. (2004); Flandrin681

& Gonçalvès (2004); Huang (2005).682

2.2 Hilbert spectral analysis683

After having extracted the IMF modes, one can apply the associated Hilbert spectral684

analysis to each IMF component Ci in order to extract the energy-time-frequency685

information from the data (Long et al., 1995; Huang et al., 1998, 1999). The Hilbert686

transform of a function C(t) is written as687

C̃(t) =
1

π
P

∫ +∞

0

C(t′)

t− t′
dt′ (2.2.1)

where ‘P ’ means the Cauchy principle value (Cohen, 1995; Long et al., 1995; Huang688

et al., 1998). It is a singularity integration, which means that it should have a very689

local ability to denoting fluctuations. For each IMF mode, one can construct the690

analytic signal (Cohen, 1995), Ci(t), as691

Ci(t) = Ci(t) + jC̃i(t) = Ai(t)e
jθi(t) (2.2.2)

where692

Ai(t) = |Ci(t)| = [Ci(t)
2 + C̃2i (t)]

1/2, θi(t) = arctan

(
C̃i(t)

Ci(t)

)
(2.2.3)
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Hence the instantaneous frequency can be defined by using the information of phase 693

function θi(t), which is written as 694

ωi =
dθi(t)

dt
(2.2.4)

The original signal is finally represented (excluding the residual rn(t)) as 695

x(t) = RP
N∑

i=1

Ai(t)e
jθi(t) = RP

N∑

i=1

Ai(t)e
j
∫
ωi(t) dt (2.2.5)

where ‘RP’ means real part. The Hilbert-Huang transform can be taken as a gener- 696

alization of Fourier transform, see Eq. (1.1.3): it allows a frequency-modulation and 697

amplitude-modulation simultaneously. A Hilbert spectrum, H(ω, t) = A2(ω, t), is 698

thus designed to represent the energy in time-frequency representation (Long et al., 699

1995; Huang et al., 1998). We further can define the Hilbert marginal spectrum as 700

h(ω) =

∫ +∞

0

H(ω, t) dt (2.2.6)

This is similar with the Fourier spectrum, and can be interpreted as the energy 701

associated to each frequency. We however underline the fact that the definition of 702

frequency here is different from the definition in the Fourier frame (Huang et al., 703

1998, 1999). 704

We do not give the validation and calibration detail of the Hilbert-Huang trans- 705

form here. For details of the validation and calibration, we suggest Refs. Huang et al. 706

(1998, 1999). 707
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2.3 Intrawave frequency modulation and nonlinear708

mechanism709

We have mentioned in chapter 1 that the the frequency modulation can be further710

termed into two different types, intrawave frequency modulation and interwave fre-711

quency modulation. Indeed, the former one may be linked to the nonlinear distortion.712

More precisely, it may be considered as a signature of nonlinear mechanism. We show713

this by an example.714

Intrawave Frequency Modulation715

We have taken Duffing equation as an example to show the nonlinear distortion of716

Fourier representation. Figure 2.5 (a) reproduces the instantaneous frequency ω of the
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Figure 2.5: Illustration of the Intrawave Frequency Modulation by using Duffing equa-
tion: (a) instantaneous frequency of the 1st mode, (b) the Fourier energy spectrum
of the instantaneous frequency of 1st mode, respectively.

717

first IMF mode of the numerical solution of the Duffing equation. One can find that718

the instantaneous frequency ω itself varies with the time t between 0.05 ∼ 0.15Hz,719

with a mean value of 0.1Hz. This corresponds to frequency-modulation. We take ω as720

a new time series and calculate it Fourier power spectrum. The corresponding Fourier721

power spectrum is shown Fig. 2.5 (b). The dominant frequency is 0.21Hz, twice of the722
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mean frequency of the 1st IMF mode. This means that the instantaneous frequency 723

does vary within one period. This is an intrawave type of frequency modulation. We 724

argue that it corresponds to a nonlinear mechanism behind the time series. 725

Interwave Frequency Modulation 726

We consider another type of FM here, interwave frequency modulation. We construct 727

a linear chirp signal as (Flandrin, 1998): 728

x(t) = sin(
π

20
t+

π

100
t2), 0 ≤ t ≤ 50 (2.3.1)

The corresponding instantaneous frequency is written 729

ω(t) =
1

40
+
1

200
t (2.3.2)

Figure 2.6 shows (a) the constructed chirp signal and (b) the corresponding instan- 730

taneous frequency. As a comparison with Fig. 2.5, one can immediately find the 731

difference between them: the instantaneous frequency ω here is linearly increasing 732

with time t.
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Figure 2.6: Illustration of the Interwave Frequency Modulation: (a)a chirp x(t) =
sin( π

20
t+ π

100
t2), (b) the instantaneous frequency ω(t) = 1

40
+ 1
200
t, respectively.

733
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Nonlinear Mechanism734

For comparison convenience, we replot the first IMF mode of Duffing equation (top)735

and the chirp signal (bottom) in Fig. 2.7. This illustrates the difference between736

them. The former one provides a departure from the sine wave due to a nonlinear737

mechanism. The latter still keeps sine wave profile from period to period. Thus,738

any nonlinear distorted waveform has been referred to as “harmonic distortions for739

Fourier based methods”.

Figure 2.7: Comparison of the wave profiles of the first IMF mode of Duffing equation
(top) and the chirp signal (bottom). The former one deviates from a pure sine wave
profile with nonlinear distortion. The latter still keeps sine wave profile.

740

2.4 Summary741

We introduced the Hilbert-Huang transform above, including the empirical mode742

decomposition and the Hilbert spectral analysis. The combination of EMD and HSA743

also is called Hilbert-Huang transform (HHT). It is have been shown that the HHT has744

fully self-adaptiveness and very local ability in both physical and spectral domains.745

It is particular suitable for nonstationary time series analysis.746



30Chapter 2. Norden Huang’s 1998 Proposal: Hilbert-Huang Transform

The main drawback of the HHT is its lack of solid theoretical ground, since the 747

EMD part is almost empirical (Huang, 2005). Recently, Flandrin et al. have obtained 748

new theoretical results on the EMD method (Flandrin & Gonçalvès, 2004; Rilling & 749

Flandrin, 2006, 2008, 2009). However, more theoretical work is still needed to fully 750

mathematically understand this method. 751
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Our Generalization: Arbitrary753

Order Hilbert Spectral Analysis754

We consider here the main contribution of our work: the generalization of the classical755

Hilbert-Huang approach for arbitrary order moments, in order to deal with scaling756

intermittent multifractal time series. The results presented in this chapter are pub-757

lished in Huang et al. (2008, 2009a,d) [Y. Huang, et al.Europhy. Lett., 84, 40010, 2008.;758

Y. Huang, et al. Traitement du Signal, 25, 481-492, 2008; Y. Huang, et al. Phys. Rev. E,759

2009 (submitted). ]760

3.1 Definition761

The Hilbert marginal spectrum is defined as a marginal integration of the Hilbert762

spectrum H(ω, t) over t, which is written as763

h(ω) =

∫ +∞

0

H(ω, t) dt (3.1.1)

where H(ω,A) is the Hilbert spectrum. There is another equivalent definition, which764

is based on the joint probability density function p(ω,A) of the instantaneous fre-765

quency ω and the amplitude A (Long et al., 1995; Huang et al., 2008, 2009a). The766

31
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Hilbert marginal spectrum is thus rewritten as the marginal integral of the joint pdf 767

p(ω,A) over A2 768

h(ω) =

∫ +∞

0

p(ω,A)A2 dA (3.1.2)

One can find that the above definition is no more than a second order statistical 769

moment. This constatation leads us to generalize this approach to arbitrary order 770

moment 771

Lq(ω) =

∫ +∞

0

p(ω,A)Aq dA (3.1.3)

where q ≥ 01 (Huang et al., 2008, 2009a). In case of scale invariance, we expect a 772

power law of the form 773

Lq(ω) ∼ ω−ξ(q) (3.1.4)

where ξ(q) is the corresponding Hilbert-based scaling exponent. Due to the integra- 774

tion operator, ξ(q)− 1 can be associated to the classical ζ(q) from structure function 775

analysis: 〈∆xqℓ〉 ∼ ℓζ(q). Therefore, the generalized Hilbert spectral analysis provides 776

a new methodology to characterize the scale invariance in an amplitude-frequency 777

space (Huang et al., 2008, 2009d,a). 778

In the following context, we validate and calibrate the idea of the arbitrary or- 779

der HSA methodology by fractional Brownian motion simulations and a synthesized 780

multifractal nonstationary time series. 781

1In fact here q can be take as q ≥ −1. However, we only consider the case q ≥ 0 in this thesis.
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3.2 Calibration and validation782

3.2.1 Fractional Brownian motion and multifractal time se-783

ries784

Fractional Brownian Motion785

Fractional Brownian motion (fBm) is a continuous-time random process proposed786

by Kolmogorov (1940) in the 1940s and Yaglom (1957) and later named ‘fractional787

Brownian motion’ by Mandelbrot & Van Ness (1968). It consists in a fractional in-788

tegration of a white Gaussian process and is therefore a generalization of Brownian789

motion, which consists simply in a standard integration of a white Gaussian pro-790

cess (Mandelbrot & Van Ness, 1968; Flandrin, 1992; Samorodnitsky & Taqqu, 1994;791

Beran, 1994; Rogers, 1997; Doukhan et al., 2003; Gardiner, 2004; Biagini et al., 2008).792

Because it presents deep connections with the concepts of self-similarity, fractal, long-793

range dependence or 1/f -process, fBm quickly became a major tool for various fields794

where such concepts are relevant, such as in geophysics, hydrology, turbulence, eco-795

nomics, communications, etc (Samorodnitsky & Taqqu, 1994; Gardiner, 2004; Biagini796

et al., 2008).797

For a fBm X(t) process, the autocorrelation is well known to be the following798

RH(t, t
′) =

σ2

2

(
|t|2H + |t′|2H − |t− t′|2H

)
(3.2.1)

where σ is the variance of X(t), and H is the so-called Hurst number (Samorodnitsky799

& Taqqu, 1994; Beran, 1994; Gardiner, 2004; Biagini et al., 2008). The process is said800

to be self-similar, since in terms of distributions for any real a801

X(at) ∼ |a|HX(t) (3.2.2)
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Figure 3.1: Illustration of fractional Brownian motion with various Hurst number H.

It is also well known for its stationary increments 802

X(t)−X(τ) ∼ X(t− τ) (3.2.3)

For the case H > 1/2, the process exhibits long-range dependence, which means that 803

∫ +∞

0

C(τ) dτ =∞ (3.2.4)

where the autocorrelation function is written as 804

C(τ) = 〈X(t)X(t+ τ)〉 (3.2.5)

in which 〈 〉 means ensemble average. 805

The fBm is a classical monofractal process. It requires only one parameter, the 806
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Hurst number H, to characterize the stochastic process. For structure function anal-807

ysis, the scaling exponents is well known to be the following808

〈|X(t+ τ)−X(t)|q〉 ∼ τ ζH(q), ζH(q) = qH (3.2.6)

where ζH(q) is the scaling exponent from structure functions. We thus expect for the809

HSA approach the corresponding scaling exponents ξH(q) to be the following810

Lq,H(ω) ∼ ω−ξH(q), ξH(q) = qH + 1 (3.2.7)

where the ‘+1’ corresponds to the integration operator in Eq. (3.1.3).811

We consider here a Wavelet based algorithm to simulate the fBm process, which812

was first proposed by Meyer (n.d.) and Sellan (1995), then developed by Abry &813

Sellan (1996). Starting from the expression of the fBm process as a integral of the814

fractional Gaussian noise process, the idea of the algorithm is to build a biorthogonal815

wavelet depending on a given orthogonal one and adapted to the parameter H. Then816

the generated sample path is obtained by the reconstruction using the new wavelet817

starting from a wavelet decomposition at a given level designed as follows: details818

coefficients are independent random Gaussian realizations and approximation coeffi-819

cients come from a fractional Autoregressive Integrated Moving Average (ARIMA)820

process. A MATLAB R© code, namely wfbm, to realize this algorithm can be found821

in the Wavelet toolbox of MATLAB R©.822

Figure 3.1 illustrates a 212 data points portion of fBm with various Hurst numbers823

H by using above mentioned algorithm with db2 wavelet. One can find that for the824

long-range dependence case, H > 1/2, an increasing pattern in the previous steps is825

likely to be followed by the current increasing step as well.826
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The validation of the new arbitrary order Hilbert spectral analysis using this data 827

series will be considered below. 828

Nonstationary Multifractal Time Series 829

Since the introduction of multifractal concepts in the 1980s (Parisi & Frisch, 1985; 830

Grassberger & Procaccia, 1983; Benzi et al., 1984; Grassberger, 1986) in the field of 831

turbulence and chaos, this approach has met huge success. 832

Figure 3.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2n.

Multifractal properties have been found in may fields, such as, turbulence (Ansel- 833

met et al., 1984; Frisch, 1995), financial time series (Ghashghaie & Dodge, 1996; 834

Schmitt et al., 1999; Lux, 2001; Calvet & Fisher, 2002), physiology (Ivanov et al., 835

1999), rainfall (Schertzer & Lovejoy, 1987; Schmitt et al., 1998; De Lima & Gras- 836

man, 1999; Venugopal et al., 2006), etc. A multifractal process is a generalization 837

of monofractal process, in which a single exponent, such as Hurst number H, is 838

not enough to describe its dynamics; instead, a continuous spectrum of exponents is 839
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Figure 3.3: A sample for one realization 217 points with μ = 0.25: (a) the multifractal
measure (b) the constructed multifractal nonstationary process.

needed.840

For a few years now, new methods to generate nonstationary multifractal time se-841

ries mimicking turbulent velocity or passive scalar time series have been proposed (Muzy842

& Bacry, 2002). Here we adapt the idea of multifractal random walks using discrete843

multiplicative cascades (Schmitt, 2003).844

We consider here a synthesized multifractal nonstationary time series, which is845

constructed based on a multiplicative discrete cascades (Schmitt, 2003). Figure 3.2846

illustrates the cascade process algorithm. The larger scale corresponds to a unique847

cell of size L = ℓ0λ
n
1 , where ℓ0 is a fixed scale and λ1 > 1 is dimensional scale ratio.848

For discrete model, this ratio is often taken as λ1 = 2. The model being discrete,849

the next scale involved corresponds to λ1 cells, each of size L/λ1 = ℓ0λ
n−1
1 . This is850

iterated and at step p (1 ≤ p ≤ n) there are λp1 cells, each of size L/λ
p
1 = ℓ0λ

n−p
1 .851
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Figure 3.4: Illustration of synthesized nonstationary multifractal time series with
various intermittent parameters μ.

There are n cascade steps, and at step n there are λn1 cells, each of size ℓ0, which 852

is the smallest scale of the cascade. To reach this scale, all intermediate scales have 853

been involved. Finally, at each point the multifractal measure writes as the product 854

of n cascade random variables 855

ǫ(x) =
n∏

p=1

Wp,x (3.2.8)

where Wp,x is the random variable corresponding to position x and level p in the 856

cascade (Schmitt, 2003). Following multifractal random walk ideas (Bacry et al., 857

2001; Muzy & Bacry, 2002), we generate a nonstationary multifractal time series as 858

u(x) =

∫ x

0

ǫ(x′)1/2dB(x′) (3.2.9)

where B(x) is Brownian motion. Taking lognormal statistic for ǫ, the scaling exponent 859
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ζ(q) such as 〈|∆uτ (t)|
q〉 ∼ τ ζ(q) is written as860

ζ(q) =
q

2
−
μ

2
(
q2

4
−
q

2
) (3.2.10)

where μ is the intermittency parameter (0 ≤ μ ≤ 1) characterizing the lognormal861

multifractal cascade (Huang et al., 2009d).862

A sample for one realization is shown in Fig. 3.3 (a) the multifractal measure, and863

(b) the nonstationary multifractal time series, with μ = 0.25, and n = 17 levels, cor-864

responding to data sets with data length 217 points. Figure 3.4 shows the synthesized865

nonstationary multifractal time series with various intermittent parameters μ.866

As for fBm time series, these multifractal synthetic time series are analyzed below867

using our new method.868

3.2.2 Calibration and validation869

Monofractal Processes: Fractional Brownian Motions870

For the fBm process, we simulate 500 segments of length 212 data points each, using871

above mentioned wavelet based algorithm (Abry & Sellan, 1996), with db2 wavelet872

and various Hurst values from 0.1 to 0.9. The Hilbert transform is numerically esti-873

mated by using a FFT based method (Marple Jr, 1999). Figure 3.5 shows the first six874

order Hilbert marginal spectrum for H = 0.4 and 0.6. Power law is observed for each875

curve as expected. The scaling exponent ξ(q) is then estimated on the corresponding876

power law range by a first order least square fitting algorithm. We then represent the877

corresponding scaling exponents ξ(q) for various value of q from 0 to 6 in Fig. 3.6,878

in which perfect straight lines of equation 1 + qH confirms the usefulness of the new879

method to estimate ξ(q).880
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Figure 3.5: The first six order Hilbert marginal amplitude spectra of fractional Brow-
nian motion with Hurst number (a) H = 0.4, and (b) H = 0.6. Power law behaviour
is observed for each curve as expected.

We then consider estimation of the H value. For this, we consider different es- 881

timators. They involve the first and second order moment. These estimators are 882

883

H† = ξ(1)− 1 (3.2.11a)
884

H⋆ = (ξ(2)− 1)/2 (3.2.11b)

and using the least square fitting for all q 885

H⋄ = (ξ(q)− 1)/q (3.2.11c)

The estimated Hest are shown in Fig. 3.7 for H
† (⊲), H⋆ (#) and H⋄ (�). They 886

are good agreement with the theoretical H. The mean error for each estimator are 887

5.3%, 3.1% and 9.4%. For comparison, we reproduce the estimated value H from 888

Ref. Rilling et al. (2005), in which two estimators Ĥ1 (▽), Ĥ2 (△) based on IMF 889

modes and one estimator based on discrete wavelet transform HW (♦) are presented. 890

We also show the absolute error |Hest −H|, the estimated values departure from the 891

given Hurst number H as inset, where the gray patch indicates the deviation less 892

than 5%. We underline that Rilling et al. (2005) simulated the fractional Gaussian 893
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Figure 3.6: Scaling exponents ξH(q) for fractional Brownian motion simulations with
H from 0.1 to 0.9.

noise by using the algorithm proposed by Wood & Chan (1994). Their proposed894

estimators Ĥ1 and Ĥ2 are based on the assumption of a dyadic filter bank for the895

EMD method (Rilling et al., 2005). If the absolute error is less than 5%, then there896

is no significant difference between estimators. Their results show two different range897

for H < 1/2 and 1/2 < H, see Fig. 3.7, in which it is indicated by the vertical dashed898

line. They argued that for the case where H < 1/2, the dyadic filter bank property899

which underlies the EMD approach is only an approximation that has to be refined900

further (Rilling et al., 2005). The estimators H†, H⋆ and H⋄ we proposed here may901

provide more precise estimators, since they do not require the dyadic property.902

The above numerical experiment confirms the usefulness of the arbitrary order903

Hilbert spectral analysis methodology for the monofractal case.904
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Figure 3.7: Representation of the estimation Hurst number H† (⊲), H⋆ (#) and H⋄

(�) with the theoretical values H used for simulations. For comparison, the values
from Ref. Rilling et al. (2005) are also presented, using the estimator Ĥ1 (▽), Ĥ2 (△)
and discrete wavelet transform HW (♦). The inset shows the absolute error for each
estimator. The gray patch indicates when the absolute error |Hest −H| is less than
5%.

Multifractal Process: Nonstationary Multifractal Time Series 905

We then validate the Hilbert-based methodology for intermittent time series by con- 906

sidering the synthesized nonstationary multifractal time series, and quantify the error 907

parameter estimation. For each realization, we choose n = 17 levels with data length 908

217 points each. We estimated the structure function on the range 2 < τ < 10000. The 909

corresponding scaling exponents ζ(q) are then estimated on the range 10 < τ < 1000. 910

For the HSA approach, the 217 points are divided into several segments, each one 911

with 214 points. This averaged Hilbert marginal spectrum is taken for each realiza- 912

tion. Power law behaviour is found on the range 0.0002 < ω < 0.3, corresponding to 913

3 < τ < 5000. The corresponding scaling exponents ξ(q) are then estimated on this 914
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Figure 3.8: Structure function and Hilbert marginal spectra for one 217 points realiza-
tion (a) the second order structure function, (b) the six order structure function, (c)
the second order Hilbert marginal spectrum and (d) the six order Hilbert marginal
spectrum, where the dashed line in each figure is the best fit in least square sense.

range. Figure 3.8 shows the second and the sixth order structure functions and the915

corresponding Hilbert marginal spectra for one realization, where the dashed line is916

the least square fitting of the power law. For comparison convenience, we consider in917

the following ξ(q)− 1.918

We then consider the convergence of the scaling exponents. For this we consider919

the number of realization n and for each n, for i ∈ [1, n], we estimate separately each920

value ζi (or ξi). We also take921

ζ(q) = lim
n→∞

1

n

n∑

i=1

ζi(q) (3.2.12)

Then the convergence is characterized by the ratio922

Rn(q) =
1

n

∑n
i=1 ζi(q)

ζ(q)
(3.2.13)
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Figure 3.9: The n-dependence of the average estimator ζ̃n(q) for various q, where n
is the number of realization. The vertical solid line indicates the number n = 1000.

where limn→∞Rn(q) = 1. Figure 3.9 shows the convergence of this ratio for n between 923

1 and 70,000 for the case μ = 0.25. It shows that if one wants an error of 1% in the 924

estimation of ζ, n = 100 realizations are enough. In the following we consider 70,000 925

realizations corresponding in average to an error 100 × |1−Rn| in the estimation of 926

ζ(q) (resp. ξ(q)) of 0.02% for q = 2, 0.07% for q = 4 and 0.13% for q = 6 for structure 927

functions, and 0.03% for q = 2, 0.04% for q = 4 and 0.05% for q = 6 for HSA. This 928

shows that we obtain very precise estimates of ζ(q) (resp. ξ(q)). 929

Fig. 3.10 shows the pdf of the scaling exponents provided by structure functions 930

and the HSA approach for q = 2 and 6 estimated for individual realizations, where 931

the solid line is the Gaussian distribution fitting. These graphics show the spreading 932

of the scaling exponents estimates. The number n = 70, 000 of realizations considered 933

here is rather huge compared to other multifractal studies, and represents a rather 934

consequent numerical effort. Graphically, for small values of q, the variability in the 935
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Figure 3.10: pdf of scaling exponents ζ(q) (resp. ξn(q) − 1) for 70,000 realizations
with μ = 0.25. The solid line is the Gaussian fitting.

estimation of scaling exponents provided by both approaches are quite close to the936

Gaussian distribution. We also note that the shape of the pdf corresponding to the937

HSA approach is narrower, which indicates that this approach provides a more precise938

estimator of multifractal parameters.939

We show the scaling exponents predicted by the structure functions (�) and the940

HSA approach (#) in Fig. 3.11 for the cases μ = 0.25 with n = 70, 000, where the941

inset shows the departure from q/2. The curves provided by the two methods are in942

good agreement with each other.943

We synthesized the multifractal time series with various intermittent parameter944

μ from 0.1 to 0.5, and 1000 realizations for each case (except the case μ = 0.25). We945

estimate μ by considering the first order derivative of Eq. (3.2.10). We then have the946
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estimator μ⋆ given by 947

μ⋆ =
2− 4ζ ′(q)

q − 1
(3.2.14)

where ζ ′(q) is the first derivative of ζ(q). The first order derivative can be estimated 948

by the central finite difference algorithm with a second order accuracy 949

ζ ′(q) ≃
ζ(q + δq)− ζ(q − δq)

2δq
(3.2.15)

where δq is the increment of the order q. To estimate the first order derivative more 950

accurately, we may firstly fit the scaling exponents ζ(q) by a quadratic polynomial, 951

which is suggested by Eq. (3.2.10) 952

ζ(q) ≃ p1q
2 + p2q + p3 (3.2.16)

where p1, p2 and p3 are fitting coefficients in least square sense. We thus have 953

ζ ′(q) ≃ 2p1q + p2 (3.2.17)



3.3. Marginal pdf of the Instantaneous Frequency ω 47

We show the estimated μ⋆ with q = 2 in Fig. 3.12, where the inset shows the relative954

error (in %) from the theoretical μ values. It seems that both methods slightly overes-955

timate μ; however, the HSA provides a better estimation of μ, which may be linked to956

the local ability of the method both in the physical and frequency domains (Huang957

et al., 1998, 2008). We thus have shown above the usefulness of the present new958

methodology to extract multifractal exponents with values consistent with structure959

functions.
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Figure 3.12: Representation μ⋆, which is estimated by μ⋆ = 2 − 4ζ ′(2). We first fit
the corresponding scaling exponent by a quadratic polynomial. Then the first order
derivative is estimated by Eq. (3.2.17).

960
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3.3 Marginal pdf of the Instantaneous Frequency 961

We consider here a special case, the zeroth order Hilbert marginal spectrum, which 962

is written as 963

L0(ω) =

∫ +∞

0

p(ω,A) dA (3.3.1)

a marginal integration over A. More precisely, it is the marginal pdf of the instan-
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Figure 3.13: The zeroth order Hilbert marginal spectrum LH,0(ω) for various H. It
is also the marginal pdf for the instantaneous frequency ω. The value of the scaling
exponent is found as ξH(0) = 0.967± 0.007. The slope of the dashed line is -1.

964

taneous frequency ω. We note that the scaling exponent ξ(0) ≃ 1 for all H and μ, 965

for example, see Fig. 3.6 and Fig. 3.112. Figure 3.13 shows the corresponding zeroth 966

order Hilbert marginal spectra LH,0(ω) for various H, where the dashed line indicates 967

the line with slope -1. The scaling exponents are then estimated on each power law 968

range. The mean scaling exponent is calculated as ξH(0) = 0.967± 0.007. A ‘-1’ like 969

2For the other µ, the zeroth scaling exponents are also quite close to 1.
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power law for the zeroth order Hilbert marginal spectrum is also found in various970

experimental data, for example, turbulence velocity (Huang et al., 2008) (�), turbu-971

lence temperature (�), Seine river flow discharge (Huang et al., 2009b) (N), surf-zone972

fluctuation (◭), etc. Figure 3.14 represents the corresponding ξ(0) for different types973

data. A mean scaling exponent is then estimated as974

〈ξ(0)〉 = 0.968± 0.054 (3.3.2)

It seems that the zeroth order scaling exponent ξ(0) ≃ 1 is a quite general property975

of the present Hilbert-based methodology (Huang et al., 2008). This brings us a976

question: whether this exponent ξ(0) = 1 for the zeroth order Hilbert marginal977

spectral L0(ω) is physically meaningful? If yes, what does it really mean? It should978
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be a subject of further studies for future work. 979

3.4 Summary 980

In this chapter we have proposed a new methodology, namely arbitrary order Hilbert 981

spectral analysis, to characterize the scale invariance directly in amplitude-frequency 982

space (Huang et al., 2008, 2009d,a). We have calibrated and validated the new method 983

by fractional Brownian motion simulation for the monofractal case and by synthe- 984

sized multifractal time series for the multifractal intermittent case. We found that 985

the Hilbert-based methodology provides a better Hurst estimator for 0 < H < 1. 986

The numerical experiments, performed for n = 70, 000 realizations each of size 217 987

for multifractal time series, have shown that the HSA approach provides a better 988

estimator than structure function. We have also found that the scaling exponent for 989

the zeroth order Hilbert marginal spectrum or the marginal pdf of the instantaneous 990

frequency is quite close to 1. It seems that it is a general property of the present 991

method, still to be further understood. 992

We provide some comments on the present methodology, that we called “Arbitrary 993

Order Hilbert Spectral Analysis”. The arbitrary order Hilbert spectral analysis is 994

an extended version of the Hilbert-Huang transform. Therefore, it inherits all the 995

advantages and shortcomings of the HHT. The main drawback of the HHT method is 996

its lack of solid mathematical ground, since the EMD part is almost empirical (Huang, 997

2005). It has been found experimentally that the method, especially for the HSA, is 998

statistically stable with different stopping criteria (Huang et al., 2003a). Furthermore, 999

the present method measures the scale invariant properties directly in an amplitude- 1000

frequency space (Huang et al., 2008, 2009d,a). For the joint pdf, it seems that it 1001
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requires a large sample size to get a good statistical quantities. We find that the joint1002

pdf itself may be scattered, but the Hilbert marginal spectrum may converge (Huang1003

et al., 2008). However, we need more theoretical/experimental work to help us to1004

fully understand the present Hilbert-based method.1005
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Chapter 41009

Homogeneous Turbulence and1010

Intermittency: Velocity and1011

Passive Scalar1012

It is well-known that turbulence is the “last great unsolved problem of the classical1013

physics” (Feynman, 1964). Let us recall the problem of turbulence here.1014

Since Reynolds’ very famous experiment and seminal paper of 1894 (Reynolds,1015

1883, 1894), turbulence has attracted many researchers interest. However, even after1016

long time studies (Navier-Stokes equations date back to 1821), the problem of tur-1017

bulence is still open. It is often believed that turbulence researches are still in their1018

infancy (Lumley, 1992; L’vov & Procaccia, 1997; Yaglom, 2001; Lumley & Yaglom,1019

2001; Tsinober, 2001). Let us quote Sir Lamb’s famous story here (L’vov & Procac-1020

cia, 1997). In 1932, in an address to the British Association for the Advancement of1021

Science, he wittily expressed the difficulty of explaining and studying turbulence in1022

fluids. He said1023

“ I am an old man now, and when I die and go to Heaven there are two1024

matters on which I hope enlightenment. One is quantum electro-dynamics1025

and the other is turbulence of fluids. About the former, I am really rather1026

55
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optimistic. ” 1027

Soon after this Kolmogorov’s 1941 (K41) phenomenological theory of turbulence was 1028

one of the main successful phenomenological theories to help us quantitatively un- 1029

derstanding the turbulence. In this chapter, we will recall the classical framework of 1030

K41 and its continuation dealing with intermittency and multifraction cascade 1031

The Navier-Stokes equations for the velocity field u of an incompressible fluid are 1032

∂tu+ (u ∙ ▽)u =
▽p

ρ
+ ν△u+ f, ▽ ∙ u = 0 (4.0.1)

where p is the pressure, ρ the density, f an external force and ν the kinematic viscosity. 1033

The flow is controlled by the Reynolds number 1034

Re =
UL

ν
(4.0.2)

where U andL are the characteristic velocity and length scale of the fluid. It measures 1035

the ratio between the inertial forces and the viscous forces. The number of degrees of 1036

freedom may link to the Reynolds number as Re9/4 by a dynamical arguments (Bohr 1037

et al., 1998). As a consequence, for high Reynolds number turbulent flows, it is im- 1038

possible to produce a direct numerical analysis/simulation of Navier-stokes equations. 1039

Furthermore, a numerical simulation just reproduces the turbulent flow phenomena 1040

numerically. It does not reveal the underlying mechanisms. The difficulties also come 1041

from the fact that the Navier-Stokes equations are nonlinear, nonintegrable and non- 1042

local simultaneously (Tsinober, 2001). We still need a statistical theory to describe 1043

the turbulent flows, and more experiments to accumulate knowledge about the turbu- 1044

lent flows (Lumley & Yaglom, 2001; Yaglom, 2001; Tsinober, 2001). Here we consider 1045

the homogeneous and locally isotropic turbulence and focus on 1D turbulent time 1046

series. 1047
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4.1 Kolmogorov’s 1941 theory1048

Richardson Cascade1049

We quote Richardson’s famous words here (Richardson, 1922):1050

Big whirls have little whirls

that feed on their velocity

and little whirls have lesser whirls

and so on to viscosity in the molecule sense.

1051

Figure 4.1: Illustration of the cascade process: the eddy is broken from integral scale
L, where the energy injects into turbulent flow, to Kolmogorov scale η, where energy
converts into heat.

It describes qualitatively a picture of an energy flux from large vortices to small ones.1052

It is often believed that the energy injects into the flow from large forcing scale L,1053

called integral scale. The energy transforms the energy from a large scale to a small1054

scale on the inertial subrange, η ≪ ℓ≪ L, until one reaches the finest scale η, namely1055
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Kolmogorov scale. Due to the fluid viscosity, the energy is then converted into heat 1056

at this finest scale. Figure 4.1 demonstrates this procedure. 1057

Kolmogorov’s 1941 Phenomenological Theory 1058

In 1935, Sir G.I. Taylor postulated the concept of homogeneous and isotropic turbu- 1059

lence behind a grid, which is an ideal model of turbulence (Taylor, 1935). In the same 1060

time, he introduced the powerful Fourier analysis into turbulence research (Taylor, 1061

1935, 1938). In 1941, Kolmogorov proposed a different version of homogeneous and 1062

locally isotropic turbulence (Kolmogorov, 1941a), in which the statistical properties 1063

of turbulent quantities of the velocity field are independent of the position and ro- 1064

tation of the axes. Based on the Richardson cascade, he postulated the famous two 1065

universality hypotheses (Kolmogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995): 1066

Hypothesis 4.1.1 (Kolmogorov’s First Universality Hypothesis). At very high, but 1067

not infinite Reynolds numbers, all the small scale statistical properties are uniquely 1068

and universally determined by the scale ℓ, the mean energy dissipation rate ǫ and the 1069

viscosity ν. 1070

Hypothesis 4.1.2 (Kolmogorov’s Second Universality Hypothesis). At very high, 1071

but not infinite Reynolds numbers, if η ≪ ℓ ≪ L, then the statistical properties at 1072

scale ℓ are uniquely and universally determined by the scale ℓ, and the mean energy 1073

dissipation rate ǫ. 1074

In his original paper Kolmogorov considered only the second order structure function 1075

Bdd(r) = 〈∆u(r)
2〉 (4.1.1)
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where ∆u(r) = u(x+ r)−u(x) is the velocity increment and r is the separation scale.1076

Kolmogorov’s second universality hypothesis together with dimensional consideration1077

gives1078

Bdd(r) ∼ cǫ2/3r2/3 (4.1.2)

where c is the Kolmogorov constant and is believed to be universal (Kolmogorov,1079

1941a; Monin & Yaglom, 1971; Frisch, 1995). Independently from Kolmogorov,1080

Obukhov (1941) used the power spectrum of the velocity field and obtained the -1081

5/3 power law1082

E11(k) = C0ǫ
2/3k−5/3 (4.1.3)

where C0 is the Kolmogorov constant and k is the wavenumber. These two 2/31083

and -5/3 laws are mathematically equivalent and have since been verified by many1084

experiments (Grant et al., 1962; Anselmet et al., 1984).1085

4.2 Intermittency and Kolmogorov’s 1962 theory1086

Energy Dissipation and Intermittency1087

In his original postulation, Kolmogorov assumed that the energy dissipation rate of1088

each unite ǫ is almost constant. The energy dissipation ratio ǫ is defined as1089

ǫ =
ν

2

∑

i,j

(
∂ui
xj
+
∂uj
xi

)2
(4.2.1)

where ν is the kinematic viscosity. Soon after Kolmogorov’s K41 theory, Landau1090

gave his famous remark that the energy dissipation can not be a constant1 (Landau1091

1The Russian edition of the book on Fluid Mechanics was published in 1944. In the later versions,
the footnote was moved to the main text.
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& Lifshitz, 1987). Batchelor & Townsend (1949) also found by experiments that the 1092

energy dissipation is intermittent. 1093

Kolmogorov’s 1962 (K62) Theory 1094

In order to take into account intermittency, K41 theory had to be revised. This was 1095

done in 1962 by Obukhov and Kolmogorov. Concerning intermittent of the energy 1096

dissipation, Obukhov (1962) suggested to replace the mean energy dissipation rate ǫ 1097

by a local space averaged energy dissipation rate 1098

ǫℓ(x) =
6

πℓ3

∫

r′<ℓ/2

ǫ(x+ r′) dr′ (4.2.2)

where ℓ is radius of the sphere. Following Obukhov (1962), Kolmogorov (1962) further 1099

proposed the hypothesis that fluctuations of the energy dissipation rate ǫ(x) satisfy 1100

a lognormal distribution or have a scaling representation. Denoting σ2ℓ the variance 1101

of log ǫℓ, he assumed 1102

σ2ℓ = A+ μ ln(ℓ0/ℓ) (4.2.3)

where A and μ are constants (μ is often called the intermittency exponent). He 1103

then postulated two refined hypotheses2 (Kolmogorov, 1962; Monin & Yaglom, 1971; 1104

Stolovitzky & Sreenivasan, 1994; Frisch, 1995; Sreenivasan & Antonia, 1997). 1105

Hypothesis 4.2.1 (Kolmogorov’s First Refined Hypothesis). If r ≪ L then the 1106

conditional probability distribution function for the dimensionless relative velocities 1107

V =
∆u(ℓ)

(ℓǫℓ)1/3
(4.2.4)

depends only on the local Reynolds number Reℓ = ℓ(ℓǫℓ)
1/3/ν. 1108

2In fact, in Kolmogorov’s 1962 paper, there are three hypotheses. We only consider the first
two here. The third hypothesis is “Two subsets of values in the set (11) (the first hypothesis) are
stochastically independent, if in the first set |X(k) − X| ≥ r1, in the second |X

(k) − X| ≤ r2, and
r1 ≫ r2”.
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Hypothesis 4.2.2 (Kolmogorov’s Second Refined Hypothesis). If Reℓ ≫ 1 then the1109

conditional probability distribution function indicated in the first hypothesis of V1110

does not depend on Reℓ, i.e., it is universal.1111

Following the above two refined hypotheses, the structure function is then rewritten1112

as1113

Sq(ℓ) = 〈∆uℓ(x)
q〉 = Cq〈ǫ

q/3
ℓ 〉ℓ

q/3 (4.2.5)

where ∆uℓ(x) = u(x + ℓ) − u(x) is the velocity increment with separation scale ℓ.1114

Assuming the lognormal distribution of the energy dissipation ǫ, one can obtain the1115

scaling exponent ζ(q) of the lognormal model1116

ζ(q) =
q

3
−

μ

18

(
q2 − 3q

)
(4.2.6)

4.3 Multifractality1117

A few years after K62 theory, Gurvich & Zubkovskii (1963); Pond & Stewart (1965)1118

shown that the dissipation field possesses long-range power-law correlations1119

〈ǫ(x)ǫ(x+ ℓ)〉 ∼ ℓ−μ (4.3.1)

This was not included in the K62 proposal. It leads Yaglom (1966) to attempt to con-1120

ciliate his “Master” Kolmogorov and experiment results: the lognormal distribution1121

of the energy dissipation ǫ and the long-range correlations of the energy dissipation,1122

by building a recursively nested cascade model, see also Schmitt (2003).1123

Let us consider a multiplicative discrete cascades process to simulate a multifractal1124

measure ǫ(x). Fig. 4.2 illustrates the multiplicative discrete cascade process. The1125

larger scale corresponds to a unique cell of size L = ℓ0λ
n
1 , where ℓ0 is a fixed scale1126
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Figure 4.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2n .

and λ1 > 1 is dimensional scale ratio. For discrete models, this ratio is often taken 1127

as λ1 = 2. The model being discrete, the next scale involved corresponds to λ1 cells, 1128

each of size L/λ1 = ℓ0λ
n−1
1 . This is iterated and at step p (1 ≤ p ≤ n) there are λp1 1129

cells, each of size L/λp1 = ℓ0λ
n−p
1 . There are n cascade steps, and at step n there are 1130

λn1 cells, each of size ℓ0, which is the smallest scale of the cascade. To reach this scale, 1131

all intermediate scales have been involved. Finally, at each point the multifractal 1132

measure writes as the product of n cascade random variables 1133

ǫ(x) =
n∏

p=1

Wp,x (4.3.2)

where Wp,x is the random variable corresponding to position x and level p in the 1134

cascade (Schmitt, 2003). Since eachWp,x for different cells are assumed independent, 1135

their moment of order q > 0 can be estimated as 1136

〈ǫ(x)q〉 =
n∏

i=0

〈W q
p,x〉 = 〈W

q〉n (4.3.3)
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This gives1137

〈ǫqλ〉 ∼ λK(q) (4.3.4)

where λ = L/ℓ = 2n is the scale ratio, K(q) = log2〈W
q〉. The conservative property1138

〈W 〉 = 1 gives K(1) = 0 and also 〈ǫ〉 = 1. One can obtain finally for the scaling1139

exponents ζ(q)1140

ζ(q) =
q

3
−K(

q

3
) (4.3.5)

where K(q) = μ
2
(q2 − q) for lognormal model.1141

Later, to explain Anselmet et al. (1984) results, Parisi & Frisch (1985) proposed1142

a multifractal formalism. The multifractal idea have been proposed in parallel by1143

several authors in turbulence (Parisi & Frisch, 1985; Benzi et al., 1984) and chaos1144

(Hentschel & Procaccia, 1983; Halsey et al., 1986). The early Yaglom (1966) pa-1145

per, together with Mandelbrot (1974) cascades, were recognized as belonging to the1146

multifractal framework.1147

These papers also gave a link between fractal singularities, their dimensions, and1148

the moment functions through a Legendre transform (Parisi & Frisch, 1985; Benzi1149

et al., 1984; Halsey et al., 1986).1150

Now, the accepted approach for multifractal cascades using singularities can be1151

written as (Schertzer & Lovejoy, 1987)1152

ǫℓ ∼ ℓ−γ, p(γ) ∼ ℓc(γ), c(γ) = d− d(γ) (4.3.6)

where γ is a singularity, d(γ) its dimension, c(γ) the codimension. Singularities and1153

codimensions can be related to moments through a Legendre transform1154

〈ǫqℓ〉 ∼ ℓ−K(q), K(q) = max
γ
(qγ − c(γ)) (4.3.7)
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This expresses a one-to-one relation between singularities (γ, c(γ)) and moments 1155

(ζ(q),K(q)). This is for the cascading quantity ǫ representing the flux, becoming 1156

the dissipation ǫ at small scales. For the velocity fluctuations, the framework is the 1157

same: locally, velocity are singular, ∆u(ℓ) ∼ ℓh (where h can be < 0, but is most of 1158

the time > 0) with codimension on the form 1159

p(h) ∼ ℓc(h) (4.3.8)

and momemts 1160

〈∆u(ℓ)q〉 ∼ ℓζ(q) (4.3.9)

where ζ(q) = min {qh+ c(h)}. In the multifractal framework, one usually considers 1161

the scaling properties of fluctuations using the dimension or codimension, or more 1162

frequently, the moment functions K(q) or ζ(q). 1163

4.4 Intermittency models 1164

Many statistical models have been proposed since the introduction of the multifractal 1165

formalism or even before. Let us only recall the most well known here. The debate 1166

still exists to known which one is the closest to the data for turbulent fluctuations. 1167

• The β model: This model was introduced by Frisch et al. (1978) but already 1168

presented by Mandelbrot (1974) or Novikov (1969) 1169

K(q) = μ(q − 1), ζ(q) =
q

3
− μ(

q

3
− 1) (4.4.1)

This model is monofractal K(q) or ζ(q) are liner and there is only one fractal 1170

dimension. 1171
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• The lognormal model: This model is introduced by Kolmogorov (1962) and1172

Obukhov (1962)1173

K(q) =
μ

2
(q2 − q), ζ(q) =

q

3
−

μ

18
(q2 − 3q) (4.4.2)

where μ is the intermittent exponent. For this model, the most famous multi-1174

fractal model, the moment functions are quadratic.1175

• The log-Poisson model: This model was introduced by She & Lévêque (1994),1176

Dubrulle (1994) and She & Waymire (1995)1177

K(q) = c[(1− γ)q − 1 + γq], ζ(q) =
q

3
− c

[
(1− γ)

q

3
− 1 + γq/3

]
(4.4.3)

where c is the codimension and γ is linked to the maximum singularity events.1178

She & Lévêque (1994) original proposed c = 2 and γ = 2/3 providing a relation1179

without adjustable parameters1180

ζ(q) =
q

9
+ 2− 2(2/3)q/3 (4.4.4)

For this model, the nonlinear part is exponential.1181

• The log-stable model: This model was proposed Schertzer & Lovejoy (1987)1182

and Kida (1991); see also Schertzer et al. (1997)1183

K(q) =
C1
α− 1

(qα − q), ζ(q) =
q

3
−

C1
α− 1

[(q
3

)α
−
q

3

]
(4.4.5)

where C1 is the codimension of the mean events (0 ≤ C1 ≤ d, where d is the1184

dimension of the observation space), and α is the Lévy index, bounded between1185

0 and 2. When α = 2 one recovers the lognormal model and when α = 0 the1186

β model. For α = 1 one has a log-Cauchy model. For this model the nonlinear1187

term is a power law.1188
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The log-Poisson and log-stable (including lognormal) belong to the log-1D (in- 1189

finitely divisible) models, whereas the log-stable is based on a stable property. Let us 1190

note that the ζ(q) is concave and has two fixed points ζ(0) = 0 by its definition and 1191

ζ(3) = 1 (Kolmogorov, 1941c), but there are no more result on ζ(q), and the precise 1192

analytical form depend on the model. The best model for turbulence intermittency 1193

is still a matter of debate. 1194

4.5 Passive scalar 1195

Another important topic in turbulence research is the passive scalar turbulence (Sreeni- 1196

vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). We recall the Kolmogorov- 1197

Obukhov-Corrsin theory here. 1198

Governing Equation 1199

The advection/diffusion equation for a scalar Θ reads as 1200

∂tΘ(x, t) + u(x, t) ∙ ▽Θ(x, t) = κ▽
2 Θ(x, t) (4.5.1)

where Θ is the scalar field (for example, temperature or dye concentration), u(x, t) 1201

is the velocity field, and κ is molecular diffusivity. We consider here only the case of 1202

passive scalar, in which it has a negligible back effect on the flow (Shraiman & Siggia, 1203

2000; Warhaft, 2000). 1204
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Kolmogorov-Obukhov-Corrsin Theory1205

Following Kolmogorov’s argument (Kolmogorov, 1941a), Obukhov (1949); Corrsin1206

(1951) extended the K41 theory for passive scalar. It is well-known now as Kolmogorov-1207

Obukhov-Corrsin (KOC) theory. The KOC theory prediction of 1D spectrum of scalar1208

is1209

Fθ(k) = Cθ〈ǫ〉
−1/3〈ǫθ〉k

−5/3 (4.5.2)

where ǫ is the energy dissipation rate, and

0 1 2 3 4 5 6 7 8
0   

0.5 

1   

1.5 

2   

2.5 

3   

q

S
ca
li
n
g
E
x
p
o
n
en
ts

 

 

ζθ(q) F.G. Schmitt 2005

ζ (q) F.G. Schmitt2006

q/3 K41

Figure 4.3: Comparison of the scaling exponents ζ(q) and ζθ(q). It is notable that
ζ(q) > ζθ(q) for q > 2. The data are compiled by Schmitt (2005) and Schmitt (2006).

1210

ǫθ = 2κ(∂Θ/∂xi)(∂Θ/∂xi) (4.5.3)

is the scalar dissipation rate. It also implies for the structure functions1211

Sqθ(r) = 〈∆Θ(r)
q〉 ∼ 〈ǫ−1/6ǫ

1/3
θ 〉

qrq/3 ∼ rζθ(q) (4.5.4)
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where ∆Θ(r) = Θ(x+ r)−Θ(x) is the scalar increment with scale separation r, and 1212

ζθ(q) is the corresponding scaling exponent. Let us note that we have the only fixed 1213

point ζθ(0) = 0 but we do not have ζθ(3) = 1 as in velocity because of the nonlinear 1214

mixing of the two fluxes (or dissipations) ǫ and ǫθ. We should note that structure 1215

functions for velocity and passive scalar are quite stable experimentally and seem to 1216

such ζ(q) > ζθ(q) for q > 2, see Fig. 4.3. 1217

Intermittency and Ramp-cliff Structures 1218

For a time, people thought that the passive scalar field is just a complementary of the 1219

velocity field (Shraiman & Siggia, 2000; Warhaft, 2000). Thus the statistical proper- 1220

ties of the passive scalar field should be determined by the velocity field. However, 1221

experimental and numerical experiments indicate a more intermittent field than the 1222

velocity field (Celani et al., 2000; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy 1223

et al., 2001; Gylfason & Warhaft, 2004). It is usually believed that the so-called 1224

ramp-cliff structures play an important role in the passive scalar field. Ramp-cliffs 1225

are large scale structures with sharp frontiers. Thus there is a coupling with the small 1226

scales by this frontier (Shraiman & Siggia, 2000; Warhaft, 2000), see more discussion 1227

in chapter 5 and chapter 7. 1228

4.6 Summary 1229

In this chapter, we recalled the classical Kolmogorov’s 1941 and 1962 phenomenologi- 1230

cal theories of turbulence. Historically, Kolmogorov 1941 theory is the first successful 1231

phenomenological theories about the turbulence, and provides a quantitative descrip- 1232

tion of the turbulent phenomena. In his theory, the structure functions play an 1233
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important role to characterize the scale invariant properties of intermittency in the1234

physical domain. We will emphasize on the structure functions analysis in chapter 5.1235
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Chapter 51236

Structure Functions and1237

Autocorrelation Functions of1238

Increments1239

Since Kolmogorov’s 1941 milestone work, the structure function analysis is widely1240

used to extract scaling exponents in turbulent research (Monin & Yaglom, 1971;1241

Anselmet et al., 1984; Frisch, 1995). In his original proposal, Kolmogorov considered1242

a tensor ∆Vαβ in space, whereas we consider here a 1D process: we do not consider1243

the tensor and analyze time series. For this, we implicitly involve Taylor’s hypothesis1244

to consider scaling 1/3 properties of turbulent time series (Taylor, 1938; Frisch, 1995).1245

The structure function itself is seldom investigated (Nichols Pagel et al., 2008;1246

Podesta et al., 2009). In this chapter, based on statistical stationary assumption,1247

we present an analytical analysis of the structure function to characterize the scale1248

contribution and the influence of a single scale (Huang et al., 2009d,a,e). The re-1249

sults presented in this chapter are for most of them are published in Huang et al.1250

(2009a,d,e). [Y. Huang, et al. Traitement du Signal, 25, 481-492, 2008 ; Y. Huang, et al.1251

Phys. Rev. E, 2009 (submitted); Y. Huang, et al.Phys. Rev. Lett., 2009 (in preparation).]1252

71



72 Chapter 5. Structure Functions and Autocorrelation Functions

5.1 Second order structure function 1253

We investigate here the second order structure function of velocity increments in fully 1254

developed turbulence. For this, we use some properties of the Fourier transform. We 1255

will obtain results about the scale contribution and an influence of single scale to the 1256

second order structure function. 1257

Statistical Stationary Assumption 1258

Considering the statistical stationarity assumption (Monin & Yaglom, 1971; Frisch, 1259

1995), the velocity u(t) may represent in Fourier space as 1260

Û(f) = F(u(t)) =

∫ +∞

−∞

u(t)e−i2πft dt (5.1.1)

where F means Fourier transform. Then the velocity u(t) may be reconstructed by 1261

u(t) = F−1(Ût(f)) =

∫ +∞

−∞

Û(f)ei2πft df (5.1.2)

and u(t+ ℓ) as 1262

u(t+ ℓ) = F−1(Ût+ℓ(f)) =

∫ +∞

−∞

Û(f)ei2πf(t+ℓ) df (5.1.3)

where F−1 means inverse Fourier transform, and ℓ is a separation time scale. There- 1263

fore the velocity increment ∆uℓ(t) = u(t + ℓ) − u(t) in structure functions may be 1264

represent as 1265

∆uℓ(t) =

∫ ∞

−∞

Û(f)(ei2πf(t+ℓ) − ei2πft) df (5.1.4)

This means that Û(f)(ei2πfℓ − 1) is the inverse Fourier transform of ∆uℓ(t). The 1266

Fourier transform of the velocity increment is thus written as 1267

Sℓ(f) = F(∆uℓ(t)) = Û(f)(e
i2πfℓ − 1) (5.1.5)



5.1. Second order structure function 73

The corresponding Fourier power spectrum is expressed as1268

E∆(f) = |Sℓ(f)|
2 = Ev(f)(1− cos(2πfℓ)) (5.1.6)

where Ev(f) = 2|Û(f)|
2 is the Fourier power spectrum of original velocity (Frisch,1269

1995; Hou et al., 1998; Huang et al., 2009c,e). When f∆ = n/ℓ, where n = 0, 1, 2 ∙ ∙ ∙ ,1270

we have1271

1− cos(2πf∆ℓ) ≡ 0 (5.1.7)

showing that the contributions of frequency sequences f∆ are cancelled. In other

0 50 100 150 200 250 300
-2

0

2
(a)

0 50 100 150 200 250 300

-2

0

2 (b)

0 50 100 150 200 250 300

-2
0
2 (c)

0 50 100 150 200 250 300
-2

0

2

t

∆
τ
x
(t
)

(d)

Figure 5.1: Illustration of the nonstationary effect on velocity increments: the velocity
increment ∆x(τ) = x(t)− x(t+ τ) with different time delay, (a) τ = 1, (b) τ = 2, (c)
τ = 10, and (d) τ = 20 points, respectively. The nonstationary effect is marked as a
rectangle. Here x(t) is taken from Eq. (5.1.8).

1272

words, the difference operator acts as a kind of filter operator, where the corresponding1273
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frequencies f∆ are filtered. This means that the structure function analysis provides 1274

a statistical information without taking into account the corresponding scales 1/f∆. 1275

The scale invariance properties are indirectly measured. Furthermore, the structure 1276

function analysis is a global operator in physical space, since the difference operator 1277

is manipulated on the same data for each separation scale (Huang et al., 2009d,e). 1278

We illustrate the nonstationary effect on structure functions by constructing a 1279

signal x(t) with a nonstationary perturbation as following 1280

x(t) =





sin(t) 0 ≤ t < 20 π

1.5 sin(t) 20 π ≤ t ≤ 24 π

sin(t) 24 π < t < 100 π

(5.1.8)

where the sampling frequency is set as 10Hz. Figure 5.1 shows the increments for 1281

various time delay (a) τ = 1 point, (b) τ = 2 points, (c) τ = 10 points, and (d) τ = 20 1282

points, where the nonstationary effect is marked by the rectangle. Graphically, the 1283

nonstationary event does have influence on all scales, since the increment operator is 1284

manipulated on the same data for each time delay. We then compare the statistical 1285
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moments with non-perturbation case1286

xo(t) = sin(t) , 0 ≤ t ≤ 100 π (5.1.9)

Figure 5.2 shows (a) the absolute error 〈|∆x(τ)|q〉 − 〈|∆xo(τ)|q〉, (b) the relative1287

error 〈|∆x(τ)|q〉/〈|∆xo(τ)|q〉 − 1 for various time lag τ . The influence increases with1288

the order q. The relative error shows the same evolution trend with q. This shows1289

experimentally that the difference operator is still a global operator in the physical1290

domain.1291

Cumulative function1292

The mean kinetic energy (one-half of the variance of the random function) is the1293

integral of the energy spectrum over all frequencies1294

1

2
〈u2〉 =

∫ +∞

0

Ev(f) df (5.1.10)

where Ev(f) is the Fourier power spectrum of the velocity u (Frisch, 1995). Assuming1295

statistical stationarity, the second order is thus rewritten as1296

〈∆uℓ(t)
2〉 = 2〈u2〉 − 2〈u(t)u(t+ ℓ)〉 = 2〈u2〉 − 2Γ(ℓ) (5.1.11)

where Γ(ℓ) is the autocorrelation function of the velocity u. The Wiener-Khinchin1297

theorem shows that (Percival & Walden, 1993; Frisch, 1995),1298

Γ(ℓ) =

∫ +∞

−∞

Ev(f)e
2iπfℓ df (5.1.12)

Here, E(f) is extended to negative frequencies by E(−f) = E(f). Thus the the1299

second order structure function is finally rewritten as (Monin & Yaglom, 1971; Frisch,1300

1995)1301

〈∆uℓ(t)
2〉 = 4

∫ +∞

0

Ev(f)(1− e
i2πfℓ) df (5.1.13)
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Let us introduce here a cumulative function for the second order structure function 1302

P(f, ℓ) =

∫ f
0
E∆(f

′) df ′
∫ +∞
0

E∆(f ′) df ′
(5.1.14)

where E∆(f) = Ev(f)(1− cos(2πfℓ)). It is increasing 0 and 1, and measures the rel- 1303

ative contribution to the second order structure function from 0 to f . When f = 1/ℓ, 1304

the cumulative function P1(f) = P(1/ℓ, ℓ) thus characterizes the contribution from 1305

the large scale part for frequencies larger than the one associated to the increment 1306

time scale ℓ. We further assume a pure power law for the original velocity Fourier 1307

power spectrum 1308

Ev(f) = cf
−β, c > 0 (5.1.15)

where the value of β will be specified later. When substituted into Eq. (5.1.13), this 1309

gives an integral which is divergent for some values of β. The convergence condition 1310

requires 1 < β < 3 (Frisch, 1995; Hou et al., 1998; Huang et al., 2009e). A scaling 1311

calculation (Frisch, 1995; Huang et al., 2009e) leads to 1312

〈∆uℓ(t)
2〉 ∼ ℓβ−1 (5.1.16)

For fully developed turbulence, the Kolmogorov spectrum corresponds to β = 5/3. 1313

Experimental Results 1314

We apply here the above arguments to an homogeneous and nearly isotropic turbulent 1315

flow1 at downstream x/M = 20, where M is the mesh size. The flow is characterized 1316

by the Taylor microscale based Reynolds number Reλ = 720 (Kang et al., 2003). 1317

Details about the experiment can be found in chapter 6. Let us note here Ts = 1/fs 1318

the time resolution of these measurements, where fs = 40000Hz is the sampling 1319

1We will present more analysis results using these data in chapter 6 and chapter 8.
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frequency. Figure 5.3 shows the compensated spectra E(f)fβ for both longitudinal1320

(thick line, β ≃ 1.63) and transverse (thin line, β ≃ 1.62) velocity components,1321

showing a more than two decades inertial range. The Fourier spectra are taken from1322

Ref. Kang et al. (2003), which are estimated by a window Fourier transform, see Kang1323

et al. (2003) for more information. The scaling exponent β is estimated from each1324

spectrum by a least square fitting algorithm.1325
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Figure 5.3: Compensated spectrum E(f)fβ of longitudinal (β ≃ 1.63) and transverse
(β ≃ 1.62) velocity at x/M = 20, where β is the corresponding power law estimated
from the power spectrum. The plateau is observed on the range 20 < f < 2000 Hz
and 40 < f < 4000 Hz for longitudinal and transverse velocity, respectively.

f 0.01 0.04 0.1 0.2 0.5 1 10 100
P (%) 0.5 3.0 10.0 24.1 62.9 78.8 95 99

Table 5.1: A numerical solution of cumulative function P(f, ℓ) with β = 5/3 and
ℓ = 1, which corresponds to the Kolmogorov scaling.
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Figure 5.4: Cumulative function P(f, ℓ) estimated from turbulent experimental data
for transverse velocity with ℓ in the inertial range, where the numerical solution is
shown as inset with ℓ = 1. The inertial range is denoted as IR. Vertical solid lines
demonstrate the corresponding scale in spectral space.

To avoid the effect of measurement noise, see Fig. 5.3, we only consider the trans- 1326

verse velocity here. Figure 5.4 shows the cumulative function P estimated from the 1327

transverse velocity data, in which the spectrum Ev(f) is directly estimated from the 1328

data. The inertial range is marked as IR. We choose two time scales ℓ/Ts = 20 and 1329

ℓ/Ts = 100 in the inertial range. The large scale contribution range is more than 1330

1.4 decades wide. A numerical solution of Eq. (5.1.14) for a pure power law by tak- 1331

ing Ev(f) = f−5/3 is performed on range 10−4 < f < 104 with ℓ = 1 and the step 1332

∆f = 10−6 by using a fourth order accurate Simpson rule. The numerical solution 1333

is shown as inset in Fig. 5.4, where the vertical solid line indicates the location of 1334

1. The shape of the numerical solution is the same as the experimental one. We list 1335

various value of P in Tab. 5.1. Not surprisingly, the large scale contribution P1(1) 1336
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Figure 5.5: Cumulative function P1(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various ℓ.

is about 79%, which is consistent with experimental result, see Fig. 5.5. One can1337

find that the contribution from the first decade large scale, 0.1 < f < 1, is about1338

69%. Even for the second decade part, 0.01 < f < 0.1, the contribution is about1339

9.5%. These results show the important contribution of the large scales to the second1340

order structure function statistic. Figure 5.5 shows the corresponding P1(f) directly1341

estimated from turbulent experimental data for longitudinal (�) and transverse ( )1342

velocity on range 40 < f(= 1/ℓ) < 4000Hz, where the spectrum Ev(f) is taken the1343

Fourier power spectrum of each velocity component. Both curves have a similar evo-1344

lution trend, which may be termed into three terms: i) near forcing scale range, in1345

which the large scale contribution is less than 0.75, ii) unaffected inertial range, in1346

which the large scale contribution is on range 0.75 < P1(f) < 0.85, close to the value1347

0.79 indicated by the numerical solution, and iii) near dissipation range, in which the1348

large scale contribution is larger than 0.85. Taking the transverse velocity as example,1349
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the unaffected range is found around 1 decade, on range 200 < f < 2000Hz. It is 1350

good agreement with the observation in Fig. 5.18, see next section. In the first and 1351

the third terms of the cumulative function P1(f), the large scale contribution signif- 1352

icantly deviates from the pure power law value 0.79. This indicates that these two 1353

range are strongly influenced by either the large forcing scales or dissipation scales. 1354

Furthermore, we note that the deviation may come from the following reasons: (i) 1355

the finite power law range (Hou et al., 1998), (ii) the spectrum of the original velocity 1356

is not a pure power law (Nelkin, 1994; Frisch, 1995) and (iii) the violation of the sta- 1357

tistical stationary assumption. In any case, the above results indicate that structure 1358

functions are strongly influenced by the large scales. 1359

Influence by a Single Scale: Deterministic Forcing 1360

We then consider the influence of a single scale both on the structure function and 1361

the arbitrary order Hilbert spectral analysis. 1362
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Figure 5.6: (a) A portion of fBm data with (bottom) and without (top) a sine wave
perturbation (middle), and (b) the corresponding Fourier power spectrum.

We simulate a fBm time series X(t) with Hurst number H = 1/3, corresponding 1363

to the Hurst value of turbulent velocity. We first normalize the time series by its 1364



5.1. Second order structure function 81

1    10   100  1000 10000
10

-3

10
-2

10
-1

10
0

10
1

ℓ (points)

〈∆
x
(ℓ
)2
〉

 

 

IF

(a)

0.0001 0.001 0.01  0.1   1     
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ω

L
2
(ω
)

IF

(b)

 

 

I = 0.2 I = 0.4 I = 0.6 I = 0.8 H = 1/3

Figure 5.7: Influence of a single scale on (a) the second order structure function,
and (b) the second order Hilbert marginal spectrum with various intensities I. The
vertical solid line indicates location of disturbance.

variance and then add on these data a pure sine wave with a disturbance frequency1365

f0 = 0.001 and various intensities I. This is written as1366

X(t) = X(t)/σ + I sin(2πf0t) (5.1.17)

where σ is the variance of X(t). We show a 214 points portion of the simulated1367

fBm data in Fig. 5.6 (a) fBm data with (bottom) and without (top) a sine wave1368

perturbation (middle) with intensity I = 0.4, and (b) its corresponding Fourier power1369

spectrum. We then apply the structure function analysis and the arbitrary order1370

Hilbert spectral analysis on these data with various intensities I. For the former1371

approach, we consider time lags on the range 0 < τ < 10000 points. For the original1372

fBm data, a power law behaviour is found on the range 5 < τ < 10000 points.1373

The latter methodology is performed on each realization and the ensemble averaged1374

spectrum is taken as final spectrum. For the original fBm data, we find that a power1375

law behaviour holds on the range 0.0002 < ω < 0.2, corresponding to 5 < τ < 50001376

points. Figure 5.7 shows (a) the second order structure function, and (b) the second1377
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order Hilbert marginal spectrum, where the solid vertical line indicates the location 1378

of the disturbance frequency f0. The second order structure function is strongly 1379

influenced by the single scale. An influence range down to the small scale is found 1380

to be as large as 2 decades, which is marked by IF in Fig. 5.7. However, for the 1381

Hilbert-based method, the influence range down to the small scale is constrained to 1382

0.3 decades, which might be link to the fact that the EMD acts a dyadic filter bank 1383

for several types of time series (Wu & Huang, 2004; Flandrin et al., 2004; Flandrin & 1384

Gonçalvès, 2004; Huang et al., 2008). 1385

We may also consider here the single scale as a periodic component (Huang et al., 1386

2009d). A quite general common property of multifractal time series (turbulent-like 1387

stochastic dynamics) in the nature and geophysical sciences is superposed to a de- 1388

terministic forcing associated to astronomical events (tide, daily cycle, annual cycle, 1389

etc). This may pose a problem for the estimation of scaling exponents. This is the 1390

case, for example, for river flow time series (Tessier et al., 1996; Kantelhardt et al., 1391

2003; Huang et al., 2009b), oceanic monitoring time series (Dur et al., 2007; Schmitt 1392

et al., 2008), etc, also see chapter 9. As already noticed by several authors, the struc- 1393

ture function may fail when a periodic component is present in the data (Kantelhardt 1394

et al., 2003, 2006). Thus, we show here numerically that this influence on the struc- 1395

ture function. We also show that the Hilbert-based methodology can constrain this 1396

effect in an amplitude-frequency space (Huang et al., 2009d). 1397

Passive Scalar: An Example of Ramp-Cliff Structures 1398

The above arguments and results indicate that the structure function may not con- 1399

sidered a proper tool for scaling exponent extraction when the data possess energetic 1400
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Figure 5.8: One 0.2s portion of the temperature time series, showing strong ramp-cliff
structure.

large scales. This is the case of ramp-cliff structure in scalar turbulence (Sreeni-1401

vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000; Celani et al., 2000): the struc-1402

ture induced by shear effect (Staicu & van de Water, 2003; Xia et al., 2008). To1403

show this experimentally, we consider a temperature time series with strong ramp-1404

cliff structure. The data is obtained in a shear layer of the mixing between a jet1405

flow and a cross flow, provided by Prof. Y. Gagne. The bulk Reynolds number is1406

about Re = 60000. The initial temperature of the two flows are TJ = 27.8
◦C and1407

T = 14.8◦C. The measurement location is close to the nozzle of the jet. For more1408

detail about this experiment, see chapter 7. Figure 5.8 shows a 0.2s portion temper-1409

ature data, showing strong ramp-cliff structures. Figure. 5.9 shows the compensated1410

spectra directly estimated by the Fourier analysis (solid line), the second order struc-1411

ture function (�), the Hilbert spectral analysis (#) and the autocorrelation function1412

(♦) (see Eq. (5.2.10) in next section). Both the structure function and the auto-1413

correlation function are converted from from physical domain to spectral domain by1414

taking f = 1/ℓ. Except for the structure function, the others show a clear plateau,1415

on the range 100 < f < 2000Hz. For the structure function, an ambiguous plateau is1416
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Figure 5.9: Compensated spectrum of transverse velocity. Plateau is observed on
range 80 < f < 2000Hz for both Fourier spectrum (solid line) and Hilbert spectrum
(�). For comparison, the compensated spectra estimated from the second order
structure function (#) and the autocorrelation function (♦) are also shown.

found on the range 300 < f < 2000Hz; for higher order structure function, we even 1417

cannot find an ambiguous inertial range, see chapter 7. However, the Hilbert spectral 1418

analysis shows a clear inertial range even for q up to 8. We reproduce the scaling 1419

exponent estimated by the Hilbert methodology (#) in Fig. 5.10. It seems that the 1420

scaling exponent ξ(q)−1 is quite close to the scaling exponent ζ(q) for the velocity by 1421

using the extended self-similarity approach (dash line) (Arneodo et al., 1996). The 1422

scaling exponent provided directly by the structure function (♦) seems to saturate 1423

when q > 3. 1424

The comparison between scaling exponents for temperature and velocity shows 1425

that for q > 2 1426

ζθ(q) < ζv(q) (5.1.18)
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(dashed-line) are also shown.

this is interpreted as an evidence that the scalar turbulence is more intermittent than1427

the velocity field (Frisch, 1995; Warhaft, 2000). The experimental results shown here1428

indicate that the effect of ramp-cliff structures for passive turbulence may be given1429

more attention. The passive turbulent field may be less intermittent than what we1430

believed before. We will present more detail and discussion in chapter 7.1431

5.2 Autocorrelation function of velocity increments1432

We consider in this section the autocorrelation of velocity increments (without abso-1433

lute value), inspired by a remark found in Anselmet et al. (1984). In this reference,1434

it is found that the location of the minimum value of the autocorrelation function1435
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Figure 5.11: Autocorrelation function Γℓ(τ) of the velocity increment ∆u(ℓ) esti-
mated from an experimental homogeneous and nearly isotropy turbulence time series
with various increments ℓ. The location of the minimum value is very close to the
separation time ℓ. The inset shows the rescaled autocorrelation function Υ(ς).

Γ(τ) of velocity increment ∆uℓ(t) of fully developed turbulence with time separa- 1436

tion ℓ is approximately equal to ℓ. The autocorrelation function of the increment 1437

Vℓ(t) = ∆uℓ(t) time series is defined as 1438

Γℓ(τ) = 〈(Vℓ(t+ τ)− μ)(Vℓ(t)− μ)〉 (5.2.1)

where μ is the mean value of Vℓ(t), and τ ≥ 0 is the time lag. 1439

We show the autocorrelation function Γℓ(τ) of the velocity increments ∆uℓ(t) for 1440

the longitudinal velocity in Fig. 5.11, where the rescaled autocorrelation function is 1441

shown as inset. The location τo of the minimum value of each curve is graphically 1442

very close to ℓ, which confirms Anselmet’s observation (Anselmet et al., 1984). 1443

Let us define the minimum value of an autocorrelation function 1444

Γo(ℓ) = min
τ
{Γℓ(τ)} (5.2.2)
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Figure 5.12: Location τo(ℓ) of the minimum value of the autocorrelation function
estimated from experimental data, where the inertial range is marked as IR. The
solid line indicates τo(ℓ) = ℓ.

and τo the location of the minimum value1445

Γo(ℓ) = Γℓ(τo(ℓ)) (5.2.3)

We show the estimated τo(ℓ) for both longitudinal and transverse velocity on the1446

range 2 < ℓ/Ts < 40000 in Fig. 5.12, where the inertial range is indicated by IR. The1447

solid line illustrates τo(ℓ) = ℓ. When ℓ is larger than 20Ts, τo is very close to ℓ even1448

when ℓ is in the large forcing scale range, in agreement with the remark of Anselmet1449

et al. (1984). We prove this observation analytically in the following.1450

An Analytical Model1451

We have shown previously that the Fourier transform of the velocity increment ∆u(ℓ)1452

is written as1453

Sℓ(f) = F(∆u(ℓ)) = Û(f)(e
2πifℓ − 1)
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Figure 5.13: Numerical solution of the rescaled autocorrelation function Υ(ς) with
various β from 0.5 to 2.5 estimated from Eq. (5.2.8).

where ∆u(ℓ) = u(x + ℓ) − u(x) and Û(f) is the Fourier transform of the original 1454

velocity. Hence, the 1D power spectral density function of velocity increments E∆(f) 1455

is expressed as 1456

E∆(f) = |Sℓ(f)|
2 = Ev(f)(1− cos(2πfℓ)) (5.2.4)

where Ev(f) = 2|Û(f)|
2 is the velocity power spectrum (Frisch, 1995). 1457

Let us consider now the autocorrelation function of the increment. The Wiener- 1458

Khinchin theorem relates the autocorrelation function to the power spectral density 1459

via the Fourier transform (Percival & Walden, 1993; Frisch, 1995) 1460

Γℓ(τ) =

∫ +∞

0

E∆(f) cos(2πfτ ) df (5.2.5)

The theorem can be applied to wide-sense-stationary random processes, signals whose 1461

Fourier transforms may not exist, using the definition of autocorrelation function in 1462

terms of expected value rather than an infinite integral (Percival & Walden, 1993). 1463
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Figure 5.14: Comparison of the autocorrelation function, which is predicted by
Eq. (5.2.19) (solid line) and estimated from fBm simulation (�) with ℓ = 200 points.

Substituting Eq. (5.2.4) into the above equation, we thus have1464

Γℓ(τ) =

∫ +∞

0

Ev(f)(1− cos(2πfℓ)) cos(2πfτ ) df (5.2.6)

Assuming a power law for 1D velocity spectrum (a hypothesis of similarity)1465

Ev(f) = cf
−β, c > 0 (5.2.7)

we obtain1466

Γℓ(τ) = c

∫ +∞

0

f−β(1− cos(2πfℓ)) cos(2πfτ ) df (5.2.8)

The convergence condition requires 0 < β < 3. It implies a rescaled relation, using1467

scaling transformation inside the integral. This can be estimated by taking ℓ′ = λℓ,1468

f ′ = fλ, τ ′ = τ/λ for λ > 0, providing the identity directly from Eq. (5.2.8)1469

Γλℓ(τ) = Γℓ(τ/λ)λ
β−1 (5.2.9)
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If we take ℓ = 1 and replace λ by ℓ, we then have 1470

Γℓ(τ) = Γ1(τ/ℓ)ℓ
β−1 (5.2.10)

Thus, we have a universal autocorrelation function for each ℓ 1471

Γℓ(ℓς)ℓ
1−β = Υ(ς) = Γ1(ς) (5.2.11)

This universal autocorrelation function is shown as inset in Fig. 5.11. A derivative of 1472

Eq. (5.2.9) gives Γ′λℓ(τ) = Γ
′
ℓ(τ/λ)λ

β−2. The minimum value of the left-hand side is 1473

τ = τo(λℓ), verifying Γ
′
λℓ(τo(λℓ)) = 0 and for this value we have also Γ

′
ℓ(τo(λℓ)/λ) = 0. 1474

This shows that τo(ℓ) = τo(λℓ)/λ. Taking again ℓ = 1 and λ = ℓ, we have 1475

τo(ℓ) = ℓτo(1) (5.2.12)

Showing that τo(ℓ) is proportional to ℓ in the scaling range (when ℓ belongs to the 1476

inertial range). With the definition of Γo(ℓ) = Γℓ(τo(ℓ)) we have, also using Eq. (5.2.9), 1477

for τ = τo(λℓ): 1478

Γλℓ(τo(λℓ)) = Γℓ(τo(λℓ)/λ)λ
β−1

= Γℓ(τo(ℓ))λ
β−1

(5.2.13)

Hence Γo(λℓ) = λ
β−1Γo(ℓ) or 1479

Γo(ℓ) = Γo(1)ℓ
β−1 (5.2.14)

We consider the location τo(1) of the autocorrelation function for ℓ = 1. We take 1480

the first derivative of Eq. (5.2.8), written for ℓ = 1 1481

R(τ) =
dΓ1(τ)

dτ
= −

∫ +∞

0

f 1−β(1− cos(2πf)) sin(2πfτ ) df (5.2.15)

where we left out the constant in the integral. The same rescaling calculation leads 1482

to the following expression 1483

R(τ) =
[
(1 + 1/τ)β−2 + (1− 1/τ)β−2 − 2

]
M/2, τ 6= 1

R(τ) =
(
2β−3 − 1

)
M, τ = 1

(5.2.16)
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where M =
∫ +∞
0

x1−β(1 − cos(2πx)) sin(2πxτ) dx and M > 0 (Samorodnitsky &1484

Taqqu, 1994). The convergence condition requires 1 < β < 4. When β < 2, one1485

can find that both left and right limits of R(1) are infinite, but the definition of1486

R(1) in Eq. (5.2.15) is finite. Thus τ = 1 is a second type discontinuity point of1487

Eq. (5.2.15) (Malik & Arora, 1992). It is easy to show that1488





R(τ) < 0, τ ≤ 1

R(τ) > 0, τ > 1
(5.2.17)

It means that R(τ) changes its sign from negative to positive when τ is increasing1489

from τ < 1 to τ > 1. In other words the autocorrelation function will take its1490

minimum value at location where τ is exactly equal to 1. We thus see that τo(1) = 11491

and hence from Eq. (5.2.12) we proved that1492

τo(ℓ) = ℓ (5.2.18)

For the fBm, the autocorrelation function of the increments is known to be the1493

following (Biagini et al., 2008)1494

Γℓ(τ) =
1

2

{
(τ + ℓ)2H + |τ − ℓ|2H − τ 2H

}
(5.2.19)

where H is Hurst number, and τ ≥ 0. We compare the autocorrelation (coefficient)1495

function estimated from fBm simulation (�) with Eq. (5.2.19) (solid line) in Fig. 5.14,1496

where ℓ = 200 points. Eq. (5.2.19) provides a very good agreement with numerical1497

simulation. Based on this model, it is not difficult to find that Γo(ℓ) ∼ ℓ2H when1498

0 < H < 1, corresponding to 1 < β < 3, and τo(ℓ) = ℓ when 0 < H < 0.5,1499

corresponding to 1 < β < 2. One can find that the validity range found here for1500

the scaling exponent β is only a subset of the validity range for Wiener-Khinchin1501

theorem.1502
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Experimental Results 1503

There is no analytical solution for Eq. (5.2.8). Above we could only give a rescaling 1504

property of this function, and also give its explicit form for the fBm. It can also be 1505

solved by a proper numerical algorithm. We perform this here using a fourth order 1506

accurate Simpson rule of Eq. (5.2.8) on range 10−4 < f < 104 with ℓ = 1 for various β 1507

with ∆f = 10−6. We show the rescaled numerical solutions for various β values Υ(ς) 1508

in Fig. 5.13. We can verify that the location τo(1) of the minimum autocorrelation 1509

function is exactly equal to 1 when 0 < β < 2. 1510
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Figure 5.15: Representation of the minima value Γo(ℓ) of the autocorrelation function
estimated from synthesized fBm time series with H = 1/3 (+), and the experimental
data for longitudinal (�) and transverse (#) turbulent velocity components, where
the corresponding inertial range is denoted as IR. Power law behaviour is observed
with scaling exponent β − 1 = 2/3 and β − 1 = 0.78 ± 0.04 for fBm and turbulent
velocity, respectively.

We then check the power law for the minimum value of autocorrelation function 1511



5.2. Autocorrelation function of velocity increments 93

given in Eq. (5.2.10). We simulate 100 segments of fBm with length 106 data points1512

each, by performing a Wavelet based algorithm (Abry & Sellan, 1996). We take db21513

wavelet with H = 1/3 (corresponding to the Hurst number of turbulent velocity). We1514

plot the estimated minima value Γo(ℓ) (+) of the autocorrelation function in Fig. 5.15,1515

where the solid line demonstrates Γo(ℓ) ∼ ℓ2/3. A power law behaviour is observed1516

with the scaling exponent β − 1 = 2/3 as expected. It confirms Eq. (5.2.10) for fBm,1517

the monofractal case. We also plot Γo(ℓ) estimated from turbulent experimental data1518

for both longitudinal (�) and transverse (#) velocity component in Fig. 5.15, where1519

the inertial range is marked by IR, which is provided by the Fourier power spectrum1520

of the original velocity. Power law behaviour is observed on the corresponding inertial1521

range, with scaling exponent β − 1 = 0.78 ± 0.04. This scaling exponent is larger1522

than 2/3, which may be an effect of intermittency. The exact relation between this1523

scaling exponent with intermittent parameter should be investigated in future work.1524

The power law range is almost the same as the inertial range estimated by Fourier1525

power spectrum. It indicates that autocorrelation function can be used to determine1526

the inertial range. Indeed, as we show later, it seems to be a better inertial range1527

indicator than structure function.1528

Cumulative function1529

As we have done for the second order structure function, we define here a cumulative1530

function1531

Q(f, ℓ, τ ) =

∫ f
0
K(f ′, ℓ, τ ) df ′

∫ +∞
0

K(f ′, ℓ, τ ) df ′
(5.2.20)

where1532

K(f, ℓ, τ ) = Ev(f)(1− cos(2πfℓ)) cos(2πfτ ) (5.2.21)
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Figure 5.16: Cumulative function Q(f, ℓ, τ ) estimated from turbulent experimental
data for transverse velocity with τ = ℓ in the inertial range, where the numerical
solution is shown as inset with ℓ = 1. The inertial range is denoted as IR. Vertical
solid lines demonstrate the corresponding scale in spectral space. For comparison, we
also show the cumulative function P(f, ℓ) for the second order structure function.

is the integration kernel of Eq. (5.2.6). It measures the contribution of the frequency 1533

from 0 to f at a given time scale ℓ and time delay τ . We are particularly concerned 1534

by the case τ = ℓ. To avoid the measurement noise, we only consider here the 1535

transverse velocity. We show the estimated Q in Fig. 5.16 for two scales ℓ/Ts = 20 1536

and ℓ/Ts = 100 (solid line) in the inertial range, in which the spectrum Ev(f) in 1537

Eq. (5.2.21) is directly estimated for the transverse velocity from the experimental 1538

turbulent data. The vertical solid line illustrates the location of the corresponding 1539

time scale in spectral space by taking f = 1/ℓ. The corresponding inertial range is 1540

denoted by IR. We show the numerical solution of Eq. (5.2.20) for a pure power law 1541

with ℓ = 1 (solid line) as inset, in which the spectrum Ev(f) in Eq. (5.2.21) is taken 1542

as Ev(f) = f
−5/3 for a pure Kolmogorov power law. We notice that both curves cross 1543
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Figure 5.17: Cumulative function Q1(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various ℓ. The numerical solution
shows Q1 ≃ 0.49. For comparison, we reproduce the cumulative function P1(f) for
the second order structure function.

the line Q = 0, which is marked by �. We denote fo such as Q(fo) = 0. It has the1544

advantage that the contribution from the large scale part, ℓ > 1/fo, is canceled by1545

itself, and the small-scale and large-scale contributions are equal (Huang et al., 2009c).1546

In the inertial range, the distance between fo and the corresponding scale ℓ is less than1547

0.3 decade. The numerical solution indicates that this distance is about 0.3 decade.1548

We then separate the contribution into a large scale part and a small scale part.1549

We denote the contribution from the large scale part as Q1(f) = Q(1/ℓ, ℓ, ℓ). The1550

experimental result is shown in Fig. 5.17 for both longitudinal (�) and transverse (#)1551

velocity components. The mean contribution from the large scale is found graphically1552

to be 0.64. It is significantly larger than 0.5, the value indicated by the numerical1553

solution. It means that the autocorrelation function is influenced more by large scales1554
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Figure 5.18: Compensated spectrum of transverse velocity. A plateau is observed on
the range 40 < f < 4000Hz and 20 < f < 2000Hz for Fourier spectrum (solid line)
and Hilbert spectrum (#), respectively. For comparison, the compensated spectra
for the second order structure function (�) and the autocorrelation function (♦) are
also shown.

than by small scales. 1555

For comparison, we reproduce the cumulative function P(f, ℓ) and P1(f) for the 1556

second order structure function in Fig. 5.16 (dash line) and Fig. 5.17 (filled symbol). 1557

The contribution range from the large scale part to the second order structure function 1558

is much larger than the contribution range of the autocorrelation function. It is also 1559

confirmed by Fig. 5.17 that the large scale contribution of the second order structure 1560

function is larger than the large scale contribution of the autocorrelation function, 1561

which can be linked to the cancellation property of the large scale part f < fo of the 1562

autocorrelation function. This explains that the autocorrelation function is a better 1563

inertial range indicator than the second order structure function (Huang 1564

et al., 2009c). 1565
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We now consider the inertial range provided by the different methods. We replot1566

the corresponding compensated spectra estimated directly by Fourier power spectrum1567

(solid line), the second order structure function (�), the Hilbert spectral analysis (#)1568

and the autocorrelation function (♦) in Fig. 5.18 for transverse velocity. For compar-1569

ison convenience, both the second order structure function and the autocorrelation1570

function are converted from physical space into spectral space by taking f = 1/ℓ.1571

Graphically, except for the second order structure function, the others show a clear1572

plateau more than two decades wide. The similar shape for the compensated sec-1573

ond order structure function can be found in Refs. Anselmet et al. (1984, Figure 101574

and Figure 11) and Frisch (1995, P128, Figure 8.6). We have focused here on the1575

existence of the power law, not the value of the scaling exponent or the range of the1576

plateau. Thus we do not compare the scaling exponents here. Based on this obser-1577

vation, we state that the autocorrelation function is a better inertial range indicator1578

than structure functions (Huang et al., 2009c).1579

5.3 Summary1580

In this chapter, we considered the second order structure function and the autocor-1581

relation function of the velocity increment time series ∆uℓ(t), where ℓ is a time scale.1582

Taking statistical stationary assumption, we proposed an analytical model of the sec-1583

ond order structure function and the autocorrelation function. Within this model,1584

for the second order structure function, we found that it is strongly influenced by the1585

large scale part. Furthermore, the influence range down to the small scale part is as1586

large as two decades. However, the Hilbert-based methodology seems to constrain1587

the periodic effect in 0.3 decade, which may be linked to the fact that EMD acts a1588
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dyadic filter bank. We thus argued that the widely used structure function method 1589

is not a good method to extract the scaling exponents from a given time series when 1590

the data possess energetic large scales. We showed this experimentally by analyzing 1591

a passive turbulence data, a temperature time series obtained from a jet experiment. 1592

For the autocorrelation function, we proved analytically that the location of the 1593

minimum autocorrelation function is exactly equal to the separation time scale ℓ 1594

when the scaling of power spectrum of the original variable belongs to the range 1595

0 < β < 2. In fact, this property was found experimentally to be valid outside 1596

the scaling range, but our demonstration here concerns only the scaling range. This 1597

model also suggests a power law expression for the minimum autocorrelation Γo(ℓ). 1598

Considering the cumulative integration of the autocorrelation function, it was shown 1599

that the autocorrelation function is influenced more by the large scale part. We thus 1600

argued that the autocorrelation function is a better indicator of the inertial range 1601

than second order structure function. These results have been illustrated using fully 1602

developed turbulence data; however, they are of more general validity since we only 1603

assumed that the considered time series is stationary and possesses scaling statistics. 1604



Chapter 61605

Experimental Homogeneous and1606

Locally Isotropic Turbulence1607

Since Kolmogorov (1941c,a,b) proposed his very famous K41 turbulence theory, the1608

studies to extract the scaling exponents from various turbulent flows becomes one1609

central problem in turbulent research (Monin & Yaglom, 1971; Anselmet et al., 1984;1610

Antonia et al., 1984; Kraichnan, 1991; Frisch, 1995; Kahalerras et al., 1998; van de1611

Water & Herwijer, 1999; Sreenivasan & Antonia, 1997; Tsinober, 2001; Moisy et al.,1612

2001; Tsuji, 2004; Chevillard et al., 2005). The structure function scaling exponent1613

ζ(q) extracted from various turbulent flows are well documented (Frisch, 1995; Sreeni-1614

vasan & Antonia, 1997). In this chapter, we apply the arbitrary order Hilbert spectral1615

analysis on an experimental homogeneous and nearly isotropy turbulent data to char-1616

acterize the scale invariant properties in amplitude-frequency space for the first time.1617

The results presented in this chapter are for part of them published in Huang et al.1618

(2008) [Y. Huang, et al.Europhy. Lett., 84, 40010, 2008.].1619

99
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6.1 Experimental data 1620

The database we consider here is the same database we used in chapter 5. Here we 1621

present it on more details. 1622

Conventional passive grid wind tunnels of normal laboratory size allow to gen- 1623

erate only moderate Reynolds number turbulent flow, with Taylor microscale based 1624

Reynolds numbers typically less than 150. The main reason is that the root-mean- 1625

square (r.m.s.) velocity downstream of a passive grid is relatively low (Kang et al., 1626

2003). As an alternative, the ‘active grid’ technique, which allows to achieve higher 1627

Reynolds number turbulent flow, has been studied by several authors (Makita, 1991; 1628

Mydlarski & Warhaft, 1996, 1998; Kang et al., 2003). 1629

Table 6.1: Some parameters of the turbulent flow consider here at four different
locations: mean velocity 〈u〉, r.m.s velocity ur.m.s.(〈(u − 〈u〉)

2〉1/2) , isotropy ratio
I, turbulence intensity (%), Kolmogorov scale η ((ν3/ǫ)1/4), Taylor microscale λ
((15u21r.m.s.ν/ǫ)

1/2) and corresponding Reynolds number Reλ. The details about this
experiment and data can be found in Kang et al. (2003).

x1/M = 20 x1/M = 30 x1/M = 40 x1/M = 48
〈u1〉 (ms

−1) 12.0 11.2 11.0 10.8
u1r.m.s. (ms

−1) 1.85 1.43 1.19 1.08
u2r.m.s. (ms

−1) 1.64 1.25 1.04 0.932
I = u1r.m.s./u2r.m.s. 1.13 1.14 1.14 1.16
u1r.m.s./〈u1〉 (%) 15.4 12.8 10.8 10.0
η (mm) 0.11 0.14 0.16 0.18
λ (mm) 5.84 7.13 8.25 8.78
Reλ = u1r.m.s.λ/ν 716 676 650 626

Experiments are performed downstream of an active grid in the return-type Corrsin 1630

wind tunnel (Comte-Bellot & Corrsin, 1966, 1971) in the Johns Hopkins University’s 1631

Corrsin wind tunnel (Kang et al., 2003). The wind tunnel has primary and secondary 1632
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Figure 6.1: Schematic representation of the wind tunnel. Taken from Ref. Kang et al.
(2003).

contraction ratios of 25:1 and 1.27:1, respectively. The active grid is placed down-1633

stream of the secondary contraction, see the schematic of the wind tunnel in Fig. 6.1.1634

The test section length is 10m and the cross-section is 1.22m by 0.91m. The span-1635

wise width of the wind tunnel gradually increases along the test section to account for1636

boundary layer growth. Figure 6.1 demonstrates the schematic of the wind tunnel,1637

where the measurement locations are marked by ×.1638

The design of the active grid follows that of Makita (1991) and Mydlarski &1639

Warhaft (1996, 1998). The active grid is composed of five horizontal and seven vertical1640

rotating shafts to which diamond-shaped winglets are attached. The shafts are made1641

of 19.05mm square aluminium channel with 3.18mm-thick walls. The horizontal and1642

vertical shafts have eight and six winglets, respectively, so that the grid size, M , is1643

0.152m. The 0.102×0.102m2 square winglets are made of 3.18mm-thick aluminium1644

plate. Along each shaft, the winglets are attached to opposite sides in an alternating1645

fashion to help reduce vibrations (Kang et al., 2003). A schematic diagram of the1646

active grid is shown in Fig. 6.2. Each shaft is independently driven by a 1/4 hp1647

AC motor (Baldor Industrial Motor, CNM20252) and each motor is controlled by an1648
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Figure 6.2: Schematic representation of the active grid. Taken from Ref. Kang et al.
(2003).

inverter (ABB Industrial Systems Inc., ACS 140). The control signal is generated by 1649

a PC and sent to the twelve inverters through two six-node RS-485 serial networks, 1650

using a National Instruments AT-485 card. Each motor is set to randomly change 1651

rotational speed and direction once every second. The speed is selected from a uniform 1652

distribution in the range of about 210-420 r.p.m., in both directions. 1653

Figure 6.1 shows the schematic of the experimental wind-tunnel setup, in which the 1654

active grid is located at the beginning of the test section. The measurement locations 1655

in the streamwise (longitudinal) direction (x1 ) are at x1/M = 20, 30, 40 and 48 and 1656

marked by ×. An X-wire probe array described in Kang & Meneveau (2001) is used 1657

for measuring two velocity components in the (x1 , x2 )-plane. The probe array is 1658

composed of four custom-made miniature X-type hot-wire probes. The signals are 1659

sampled at fs = 40 kHz, low-pass filtered at a frequency of 20 kHz and digitized with 1660
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Figure 6.3: One 1s portion of longitudinal velocity at location x/M = 48, showing
the intermittency nature of turbulent velocity field.

a 12-bit simultaneous sample and hold A/D converter (United Electronic Industries,1661

WIN-30DS). The sampling time is 30×30 s, so the total number of data points per1662

channel for each measurement location is 36×106. The array is located at the centre1663

of the wind tunnel and is moved manually to various downstream locations. The data1664

are recorded in the central core region (0.25m< x2 <0.65m and 0.25m< x3 <0.95m).1665

To obtain the spatial quantities in the streamwise direction from the temporal data,1666

Taylor’s hypothesis is invoked.1667

Table 6.1 shows the main parameters of each experimental data set, including the1668

mean longitudinal velocity 〈u1〉, the r.m.s. velocities u1r.m.s. and u2r.m.s., the isotropy1669

ratio I = u1r.m.s./u2r.m.s., the turbulence intensity u1r.m.s./〈u1〉, the Kolmogorov scale1670

η = (ν3/ǫ)1/4, the Taylor microscale λ = (15u21r.m.s.ν/ǫ)
1/2, and the Taylor microscale1671

based Reynolds number Reλ = u1r.m.s.λ/ν. A 1 s portion of velocity at downstream1672

x/M = 48, where M is the mesh size, is displayed in Fig. 6.3 to demonstrate the1673

intermittency and stochastic natural of the turbulent velocity field. We then show1674

the Fourier spectrum and the corresponding second order Hilbert marginal spectrum1675

at the downstream x/M = 48 in Fig. 6.4, where the compensated spectrum E(f)f5/31676
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Figure 6.4: Comparison of the Hilbert marginal spectrum (dashed-dotted line) and
Fourier spectrum (dashed line) at downstream x/M = 48. Both of them predict the
inertial subrange on the range 10 ≤ ω ≤ 1000Hz. The inset shows the corresponding
compensated spectra E(f) f5/3.

is shown as inset. The Hilbert marginal spectrum which is shown here is the first 1677

experimental estimate of a Kolmogorov 5/3 spectrum in Hilbert spectral frame that 1678

we published in a recent work (Huang et al., 2008). We can find that both spectra 1679

predict an almost two decades inertial subrange on the range 10 ≤ f(orω) ≤ 1000Hz, 1680

which is illustrated as vertical dashed line. Therefore, the data we have chosen here 1681

have a sufficient inertial subrange to test our new Hilbert-based methodology. For 1682

more details about the experiment and the data see Kang et al. (2003); the data can 1683

be found at http://www.me.jhu.edu/˜meneveau/datasets.html. 1684

http://www.me.jhu.edu/~meneveau/datasets.html
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Figure 6.5: IMF modes of one 214 points segment from EMD.

6.2 EMD decomposition of turbulent data1685

The original velocity time series is divided into 73 segments (without overlapping)1686

of 214 points each. After decomposition, the original velocity series is decomposed1687

into several IMFs, from 11 to 13 modes with one residual. Figure 6.5 shows the IMF1688

modes of one segment from EMD algorithm. The time scale increases with the mode1689

index n. We note that the number of IMF modes is deduced by the data themselves,1690

and depends on the length and the complexity of the data. In practice, based on1691

the dyadic filter bank property of the EMD algorithm, this number is usually less1692

than log2(N), where N is the length of the database (Flandrin & Gonçalvès, 2004;1693

Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008).1694

The time scale is increasing with the mode index n; and each mode can be char-1695

acterized by its mean frequency, which is estimated by considering the Fourier energy1696
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Figure 6.6: Mean frequency ω vs mode index n for the longitude velocity time series.
There is an exponential decrease with a slope very close to 1, which indicates that
EMD acts as a dyadic filter bank. The inset shows the local slope ρ(n).

weighted mean frequency, ω. The mean frequency ω is defined as 1697

ωi =

∫
f |Si(f)|

2 df∫
|Si(f)|2 df

(6.2.1)

where Si(f) is the Fourier power spectrum of each IMF mode Ci(t). Figure 6.6 shows 1698

the mean frequency ω(n), where the inset shows local slope. The straight line in 1699

log-linear plot suggests the following relation 1700

ω(n) = ωoρ
−n (6.2.2)

where ωo ≃ 22000, and ρ = 2.0 ± 0.1, very close to 2. This implies that the EMD 1701

algorithm acts as a dyadic filter bank in the frequency domain. An analogous property 1702

was obtained using stochastic simulations of Gaussian noise and fractional Gaussian 1703

noise (Wu & Huang, 2004; Flandrin & Gonçalvès, 2004), and it is interesting to note 1704

here that the same result holds for fully developed turbulence time series. 1705
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Figure 6.7: Fourier spectra for IMF modes. The vertical dashed lines indicate the
inertial subrange 10 ≤ f ≤ 1000Hz. One can find that the modes belonging to the
inertial range have a similar shape.

We then interpret each mode according to their characteristic time scale. When1706

compared with the original Fourier spectrum of the turbulent time series, see Fig. 6.7,1707

these modes can be termed as follows: the first mode, which has the smallest time1708

scale, corresponds to the measurement noise; modes 2 and 3 are associated with the1709

dissipation range of turbulence. Mode 4 corresponds to the Kolmogorov scale, which1710

is the scale below which dissipation becomes important; it is a transition scale between1711

inertial range and dissipation range. Modes 5 to 10 all belong to the inertial range,1712

corresponding to the scale-invariant Richardson-Kolmogorov energy cascade (Frisch,1713

1995); larger modes belong to the large forcing scales. Figure 6.7 represents the1714

Fourier power spectra of each mode. It shows that each mode in the inertial range is1715

narrow-banded. This confirms that the EMD approach acts as a filter bank for turbu-1716

lence time series and that each mode can be associated to a given part of the different1717
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Figure 6.8: Fourier spectra for successive sums of IMF modes
∑
Ci. The lope of the

reference line is -5/3. The vertical dashed lines indicate the corresponding inertial
subrange 10 ≤ f ≤ 1000Hz. With the mode index increasing, the spectrum is then
asymptotic approached to the original spectrum.

zones of turbulence (injection scales, inertial range, dissipation scales) (Huang et al., 1718

2008). We then plot the Fourier spectrum of the cumulative sum of these IMF modes 1719

in Fig. 6.8. For comparison, we also represent the Fourier spectrum of the original 1720

longitude velocity u. The addition of more and more modes in the decomposition 1721

is a progressive reconstruction of the original time series as can been seen from the 1722

spectrum which asymptotically reaches the -5/3 behaviour. 1723

6.3 Joint pdf and dimensional analysis 1724

Here we consider the joint pdf in amplitude-frequency space, and obtain experimen- 1725

tally new scaling result, for which we give some interpretation using dimensional 1726
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Figure 6.9: Representation of the joint pdf p(ω,A) (in log scale) of turbulent fluc-
tuations in an amplitude-frequency space. The scaling range 10 < ω < 1000Hz
for frequencies is shown as vertical dashed-dotted lines. The dashed line shows the
skeleton As(ω) of the joint pdf, which is the amplitude for which the conditional pdf
p(A|ω) is maximum.

analysis.1727

Joint pdf p(ω,A)1728

The arbitrary order HSA methodological framework provides a way to represent tur-1729

bulent fluctuations in an amplitude-frequency space (Huang et al., 2008, 2009d,a).1730

We represent the joint pdf p(ω,A) in Fig. 6.9 in a log-log view, where the vertical1731

dashed-dotted lines demonstrate the inertial subrange, 10 ≤ ω ≤ 1000Hz. It can1732

be seen that the joint pdf p(ω,A) decrease with increasing frequencies, with a scal-1733

ing trend. We show in the same graph the skeleton As(ω) of the joint pdf which1734
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Figure 6.10: The skeleton of the joint pdf (a) As(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.38, which
is close to the Kolmogorov value 1/3, and (b) pmax(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.63. The vertical
dashed lines show the corresponding inertial subrange 10 < ω < 1000Hz.

corresponds to the amplitude for which the conditional pdf p(A|ω) is maximum 1735

As(ω) = A0 ; p(A0, ω) = max
A
{p(A|ω)} (6.3.1)

We then reproduce the skeleton in Fig. 6.10 in two different views: (a) As(ω) in a 1736

log-log plot; (b) skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)} in a log-log 1737

plot, where the vertical dashed line indicates the inertial subrange. It is interesting 1738

to note that a power law behaviour is found for both representations 1739

As(ω) ∼ ω−β1 (6.3.2a)

where β1 ≃ 0.38, and 1740

pmax(ω) ∼ ω−β2 (6.3.2b)

where β2 ≃ 0.63. Dimensional analysis to interpret these results is provided below. 1741
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Table 6.2: The dimension of several physical quantities: wave number, k, arbitrary
order Hilbert marginal spectrum Lq(k) and mean energy dissipation rate ǫ.

Quantity Dimension
Wave number k 1/length (L−1)
arbitrary order HMS Lq(k) length

q+1 /timeq (Lq+1T−q)
Energy dissipation rate ǫ energy/time (L2T−3)

Dimensional Analysis1742

We rewrite here the arbitrary order Hilbert marginal spectrum in a wavenumber form1743

Lq(k) =

∫
p(k,A)Aq dA (6.3.3)

where k is the instantaneous wavenumber in the spatial domain, which corresponds1744

to the instantaneous frequency ω in the temporal domain, and A is the instantaneous1745

amplitude. We list the dimensions for the arbitrary order Hilbert spectrum Lq(k),1746

the instantaneous wavenumber k, and the mean energy dissipation rate ǫ in Table 6.2.1747

The amplitude A has the same dimension as the velocity u1748

[As] = [A] = [u] = LT
−1 (6.3.4)

in which [ ] means dimension of a variable. The dimension of the arbitrary order1749

Hilbert marginal spectrum by its physical meaning is1750

[Lq(k)] =
[A]q

[k]
= Lq+1T−q (6.3.5)

The dimension balance requires1751

[Lq(k)] = [p(k,A)][A]
q+1 (6.3.6)

We thus have the dimension of p(k,A)1752

[p(k,A)] = T (6.3.7)
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If we take the mean energy dissipation rate ǫ and the wavenumber k as basic dimen- 1753

sions, then we have 1754

[Lq(k)] = [ǫ]
q/3[k]−(q/3+1) (6.3.8a)

1755

[As] = [ǫ]
1/3[k]−1/3 (6.3.8b)

1756

[pmax(k)] = [p(k,A)] = [ǫ]
−1/3[k]−2/3 (6.3.8c)

Considering the Kolmogorov’s first and second universality similarity hypothesis (Kol- 1757

mogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995), we thus have the following 1758

power law in the so-called inertial subrange 1759

Lq(k) = Cq ǫ
q/3k−(q/3+1) ∼ k−(q/3+1) (6.3.9a)

1760

As = D0 ǫ
1/3k−1/3 ∼ k−1/3 (6.3.9b)

1761

pmax(k) = P0 ǫ
−1/3k−2/3 ∼ k−2/3 (6.3.9c)

where Cq, D0 and P0 are Kolmogorov constant
1. The argument presented above 1762

indicates that the arbitrary order HSA methodology can be used to characterize the 1763

intermittent properties of turbulence. We will further consider this topic in the next 1764

section. 1765

We notice that the difference between the estimated values β and the Kolmogorov 1766

nonintermittent values may be an effect of the turbulent intermittency. We also note 1767

that the value β1 = 0.38 is comparable with ζ(1) = 0.37 estimation given in Ref 1768

van de Water & Herwijer (1999). 1769

1However, these Kolmogorov constants may depend on the detail of the turbulent flow. There is
no reason to require them to be universal.
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Maxima Amplitude1770

Inspired by the log-Poisson model (She & Lévêque, 1994; Dubrulle, 1994; She &1771

Waymire, 1995), Vainshtein (2003) studied the most dissipative, most intense struc-1772

tures using a high Reynolds number experimental data. He found that the most
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Figure 6.11: Representation of the maxima amplitude (a) Amax(ω) in log-linear plot,
and (b) the corresponding p(Amax(ω)) in log-log plot, respectively.

1773

intense of the dissipation field max(ǫr) satisfies a power law1774

max(ǫr) ∼
(r
ℓ

)−γ
(6.3.10)

The scaling value γ is found 0.61 ± 0.01, only slightly small than 2/3 (Vainshtein,1775

2003). We are here interested in the maxima amplitude Amax at given frequency ω1776

Amax(ω) = max{A|p(A|ω) 6=0} (6.3.11)

Figure 6.11 shows the maxima amplitude Amax(ω) in two views: (a) Amax vs ω in1777

a log-linear, and (b) p(Amax) vs ω in a log-log view, where the vertical dashed line1778

demonstrates the inertial subrange 10 < ω < 1000Hz. We obtain a law1779

Amax(ω) = a log10(ω) + b (6.3.12)
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in which a ≃ −0.91 and b ≃ 4.19 are obtained by using a least square fitting. We 1780

also observe a power law behaviour for p(Amax), which is written as 1781

p(Amax) ∼ ω−χ (6.3.13)

where χ ≃ 1.68. Here the plot is quite scattered, but nevertheless the straight line 1782

trend in each representation is clear. We have no theoretical or dimensional expla- 1783

nation to propose for these relations. However, these findings may be linked to the 1784

nature of turbulence: this will be checked using more databases in the future studies. 1785

Rescaled Conditional pdf 1786
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Figure 6.12: Representation of the rescaled conditional pdf p1(A, ω) in the inertial
range, for fixed values of ω = 10 (�), 101.5 (#), 102 (△), 102.5 (▽) and 103Hz (⊲). For
comparison, we also plot the normal distribution (dash line), log-normal distribution
(solid line) and log-Poisson distribution (dashed-dotted line).

The power law relation for the skeleton indicates a rescaling relation for the pdf 1787

p1(A, ω) = ωβ2p(A/ωβ1 , ω). We plot it in Fig. 6.12 for various fixed values of ω 1788
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in the inertial subrange, where ω = 10 (�), 101.5 (#), 102 (△) and 103 (⊲)Hz,1789

respectively. In case of monoscaling, these pdfs should superpose perfectly; here the1790

plot is scattered, but nevertheless we note that the lack of superposition of these1791

rescaled pdfs is a signature of intermittency. Moments of this pdf are less noisy as1792

will be visible below. For comparison, we plot the normal distribution (dashed line),1793

lognormal distribution (solid line) and log-Poisson distribution (dashed-dotted line)1794

in the same figure. It seems that the log-Poisson distribution provides a better fit to1795

the pdf than the lognormal distribution for the left-hand part, whereas the lognormal1796

fit is better for the right-hand part.1797

6.4 Intermittency1798

Figure 6.13 shows Lq(ω) for various orders of Hilbert marginal spectra (0, 1, 3, 4, 51799

and 6). The moment of order 0 is the marginal pdf of the instantaneous frequency1800

ω, see Eq. (3.3.1) and the discussion in section 3.3. It is interesting to note that this1801

pdf is extremely “wild”, having a behaviour close to L0(ω) ∼ ω−1, corresponding1802

to a “sporadic” process whose probability density is not normalizable (
∫
p(ω) dω1803

diverges). This result is only obtained when all modes are considered together;1804

such pdf is not found for the frequency pdf of an individual mode. This property1805

seems to be rather general: we observed such pdf for moment of order zero using1806

several other time series: for example surf-zone turbulence data, fBm (Huang et al.,1807

2009d,a), river flow discharge data (Huang et al., 2009b). Hence it does not seems1808

to be linked to turbulence itself, but to be a main property of the HSA method,1809

see discussion in section 3.3. Such pdf indicates in fact that high frequencies have1810

a smaller probability than low frequencies, but still the decrease is very slow with a1811
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Figure 6.13: Representation of Lq(ω), Hilbert spectral analysis of velocity intermit-
tency, using different orders of moments (0, 1, 3, 4, 5 and 6). Power laws are observed
on the range 10 < ω < 1000Hz for all spectra. The scaling exponent ξ(q) are esti-
mated on the inertial subrange, which are indicated by the vertical dashed lines.

heavy tail giving large probability to extrema events. We observe the power laws in 1812

range 10 < ω < 1000Hz for all order moments. The values of scaling exponents ξ(q) 1813

are shown in each picture. This provides a way to estimate scaling exponents ξ(q) for 1814

every order of moment q ≥ 02 on a continuous range of scales in the frequency space. 1815

We show the corresponding scaling exponent ξ(q) in Fig. 6.14, where the inset shows 1816

the departure from the K41 law. For comparison, we also display the scaling exponent 1817

provided by the Extended Self-Similarity (ESS) (Benzi et al., 1993a,b, 1995) as dashed 1818

line. It can be seen that ξ(q)− 1 is nonlinear and is close to ζ(q), but departure from 1819

the K41 law shows that the curvature is not the same: ξ(q) seems less concave than 1820

ζ(q). We thus recover the classical structure function scaling exponent ζ(q) in an 1821

amplitude-frequency space here for the first time. 1822

2As we have already indicated in chapter 3, the order of moment q can belong to the on range
q ≥ −1. However, we only consider the case q ≥ 0 here.
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Figure 6.14: Comparison of the scaling exponents ξ(q)− 1 (#) with the classical ζ(q)
obtained from structure functions analysis with the ESS method (dashed line) and
K41 q/3 (solid line). The inset shows the departure from the K41 law.

6.5 Isotropy ratio and isotropy scaling exponent1823

In the database we consider here, for achieving high Reynolds number turbulent1824

flow, an active-grid technique is performed (Kang et al., 2003), which may cause1825

the turbulent flow to violate the local isotropy hypothesis. In this section we check1826

the scale dependent local isotropy ratio I(ω) and the corresponding isotropy scaling1827

exponent Γ(q).1828

Scale Dependent Isotropy Ratio1829

A scale dependent isotropy ratio is defined as1830

I(ω) =
Lu,2(ω)

Lv,2(ω)
(6.5.1)
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Figure 6.15: The scale dependent isotropy ratio I(ω) = Lu,2(ω)/Lv,2(ω) (�), where
the vertical solid line indicates the inertial range 10 < ω < 1000Hz. The horizontal
dashed line indicates theoretical value 3/4 (Kolmogorov, 1941c). The direct estima-
tion of the isotropy ratio is 1.16 (Kang et al., 2003). For comparison, we also show
the scale dependent isotropy ratio provided by Fourier spectrum (#) and structure
function analysis (△), respectively. Except for the large scale part (ω ≤ 10Hz), all
these approaches provide almost the same shape. The Fourier spectrum is taken from
Ref. Kang et al. (2003).

where Lu,2(ω) and Lv,2(ω) are the second order Hilbert marginal spectrum of the 1831

longitudinal and transverse velocity components. This is an isotropy ratio because 1832

it quantifies the scale dependent energy ratio between longitudinal and transverse 1833

velocity components. The Kolmogorov theory predicts that I(ω) equals 3/4 if the 1834

scale ω in the inertial range (Kolmogorov, 1941c; Monin & Yaglom, 1971). Let us 1835

recall here how this isotropy ratio is obtained. The second order structure function 1836

of longitudinal and transverse velocities can be related as (Monin & Yaglom (1971) 1837
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p.352)1838

S2T(r) = S
2
L(r) +

r

2

dS2L(r)

dr
(6.5.2)

It is a consequence of the continuity equation. Taking the Kolmogorov’s second1839

similarity hypothesis, we have in the inertial range1840

S2L(r) ≃ Cr2/3, S2T(r) ≃ C ′r2/3 (6.5.3)

where C and C ′ are the universal constants. From Eq. (6.5.2) and Eq. (6.5.3), it is1841

easy to show that1842

I =
C

C ′
=
3

4
(6.5.4)

A similar argument may apply to the Fourier power spectrum, see Monin & Yaglom1843

(1971) for more details.1844

Figure 6.15 shows the scale dependent local isotropy ratio I(ω) (�), where the1845

vertical solid lines demonstrate the location of the inertial range 10 < ω < 1000Hz,1846

and the horizontal dashed line indicates the Kolmogorov value 3/4. For comparison,1847

we also show the scale dependent isotropy ratio provided by Fourier spectra (#) and1848

structure function analysis (△) in the same figure (the structure function is converted1849

from physical space into spectral space by taking f = 1/τ). Except for the large scale1850

part (ω < 10Hz), all these methods give almost the same shape. The direct estimation1851

of the isotropy ratio at this location is 1.16, which is estimated by the ratio of r.m.s.1852

velocity u1r.m.s./u2r.m.s., see Table 6.1. This value may be influenced by the large scale1853

anisotropy. We note that the plateau range provided by the structure function is1854

slightly different from the others, see also Fig. 6.16 (b). We have shown previously1855

that the structure function is strongly influenced by the large scales. The difference1856

shown here could be an effect of the large scale anisotropy on the structure functions,1857

see chapter 5 for more discussion on the structure function.1858
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The isotropy ratio has a different behaviour depending on the scale: the large 1859

scale forcing, the inertial range, where the local isotropy ratio is close to Kolmogorov 1860

value, and the dissipation range. Due to the grid and boundary effects, the large 1861

scale structure is strongly anisotropic. With the scale decreasing (or the frequency 1862

increasing), the structure becomes more and more isotropic and value asymptotically 1863

the theoretical value 3/4 in the inertial range. It then keeps this value until entering 1864

the dissipation range. In the dissipation range, the isotropy ratio deviates from its 1865

theoretical value and increases very fast, which is maybe also the effect of measure- 1866

ment noise. The mean isotropy ratio Ĩ are ĨH = 0.77 ± 0.05, Ĩs = 0.79 ± 0.03, and 1867

ĨF = 0.81±0.02 for the HSA, structure function and Fourier estimators, respectively. 1868

It seems that the HSA approach provides the most isotropic prediction. 1869

Generalized Isotropy Ratio 1870

In order to quantify the evolution of the isotropy ratio for more and more intense 1871

events, and hence larger and larger moments we introduce the generalized isotropy 1872

ratio for arbitrary order Hilbert marginal spectra 1873

Iq(ω) =
Lu,q(ω)

Lv,q(ω)
∼ ω(ξT (q)−ξL(q)) (6.5.5)

where ξL(q) and ξT (q) are the corresponding scaling exponent functions for longitudi- 1874

nal and transverse directions. We then expect Iq(ω) to be independent from ω on the 1875

inertial range. Figure 6.16 (a) shows the Iq(ω) for various q values in log-linear view 1876

on the range 8 < ω < 2000Hz, where q =0 (#), 2 (�), 4 (△) and 6 (♦). The vertical 1877

solid lines indicate the plateau on the range 20 < ω < 800Hz. The mean generalized 1878

isotropy ratio value ĨH(q) is then estimated on this range, which are shown as thick 1879

horizontal dashed lines. The plateau range decreases with q. We apply the same idea 1880



6.5. Isotropy ratio and isotropy scaling exponent 121

on structure function analysis. Figure 6.16 (b) shows the estimated Iq(f) on the range1881

8 < f(= 1/τ) < 8000Hz for various q. As we have mentioned previously, the struc-1882

ture function is strongly influenced by the large scales. The beginning of the flatness1883

range is shifted of almost one decade. The range of plateau decreases with q. It seems1884

that the structure function approach decreases faster than for the HSA approach. The1885

mean isotropy ratio ĨS(q) is estimated on the range 100 < f(= 1/τ) < 2000Hz.1886
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Figure 6.16: The scale dependent generalized isotropy ratio I: (a) estimated by HSA
approach on the range 8 < ω < 2000Hz, where q = 0 (#), 2 (�), 4 (△) and 6 (♦);
(b) estimated by structure function on the range 8 < f(= 1/τ) < 8000Hz, where
q = 1 (#), 2 (�), 4 (△) and 6 (♦). The vertical solid lines indicate the plateau
range, where the mean isotropy ratio Ĩ(q) is estimated.

Before plotting the result, we estimate the generalized isotropy ratio using the1887

skeleton representation. Figure 6.17 shows the isotropy ratio for the skeleton As(ω)1888

(#) of the joint pdf p(ω,A) and the corresponding conditional pdf pmax(ω) (�),1889

the maxima amplitude Amax(ω) (△) and the corresponding conditional pdf pAmax(ω)1890

(solid line in inset). The ratio appears here noisy. However, except the condi-1891

tional pdf pAmax(ω) for the maxima amplitude, a flatness trend exists for the others1892

on the inertial range. We estimate the mean isotropy ratio on the inertial range1893

10 < ω < 1000Hz. We then plot in Fig. 6.18 the mean generalized isotropy ratio1894
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Figure 6.17: The scale dependent generalized isotropy ratio I(ω) on range 5 < ω <
8000Hz, where As (#), pmax(ω) (�) and Amax (△), respectively. The inset shows the
isotropy ratio for pAmax . The vertical dash lines indicate the inertial range 10 < ω <
1000Hz. The mean isotropy ratio Ĩ is then estimated on this range.

ĨH(q) (�) estimated from the Hilbert spectra and the skeleton. A straight line trend 1895

seems compatible with the data. It suggests that the mean generalized isotropy ratio 1896

decreases linearly with q 1897

Ĩ(q) = α̂q + β̂ (6.5.6)

where α̂ ≃ −0.091 and β̂ ≃ 0.96 obtained from a least square fitting. Let us note that 1898

Antonia et al. (1997) provided a 9/16 isotropy ratio for the fourth order structure 1899

function. If we assume that the generalized isotropy ratio decreases linearly with q, 1900

and consider the two theoretical isotropy ratio values as boundary condition, we then 1901

have the equation 1902

Ĩ(q) = −
3

32
q +
15

16
(6.5.7)

which is displayed as a dashed line in Fig. 6.18. It is rather good agreement with 1903
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Figure 6.18: Representation of generalized isotropy ratio Ĩ(q), estimated from the
arbitrary order Hilbert marginal spectra Lq(ω) (�), the skeleton As (△), maxima
amplitude (#) and the conditional pdf p(As) (♦). The dashed line indicates a linearity
theoretical prediction by Eq. (6.5.7). The dashed-dotted line is an isotropy relation
Ĩ(q) = (2/3)ζL(q) provided by Siefert et al. (2005). The inset shows the generalized
isotropy ratio for the structure function.

experimental isotropy ratio. One interesting finding is that the mean isotropy ratio1904

for the skeleton and the maxima amplitude are also in agreement with this linear1905

prediction.1906

Other predications for the generalized isotropy ratio exist in the literature such1907

as the one of Siefert et al. (2005). They assume of 2/3 rescaled factor between1908

longitudinal and transverse velocity components, giving1909

〈|u(r)|q〉 = 〈|v(
2

3
r)|q〉 = cqLr

ζL(q) = cqT (
2

3
r)ζT (q) (6.5.8)

where ζL(q) and ζT (q) are the scaling exponent function for the longitudinal and1910

transverse velocities respectively, and the cq constants are related to the Kolmogorov1911

constants (Siefert et al., 2005) . Assuming ζL(q) = ζT (q), it then leads to the following1912
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relation 1913

Ĩ(q) =
cqL
cqT
=

(
2

3

)ζL(q)
(6.5.9)

We show this relation as dashed-dotted line in the same figure, where the scaling 1914

exponent ζL(q) correspond to mean values for experimental measurements (Schmitt, 1915

2006). Both linear and convex relations are agreement with the experiment result on 1916

the range 0 < q < 5. As a generalization of this approach, we can introduce 0 < a < 1 1917

for which 1918

Ĩ(q) = aζL(q) (6.5.10)

and try to find the best value of a. The best fitting vale of a is a = 0.65± 0.05, quite 1919

close to 2/3. 1920

Isotropy Scaling Exponent 1921

The existence of the plateau of the generalized isotropy ratio indicates that if we 1922

plot the longitudinal spectra Lv,q(ω) against transverse one Lu,q(ω), a power law 1923

behaviour with scaling exponent equal one should hold at least on the plateau range. 1924

Figure 6.19 and 6.20 show respectively Lv,q(ω) v.s. Lu,q(ω) on the range 5 < ω < 1925

6000Hz, and Sv,q(τ) v.s. Su,q(τ) on the range 5 < f(= 1/τ) < 6000Hz for various q. 1926

Graphically, power law behaviour holds as expected 1927

Lv,q(ω) ∼ (Lu,q(ω))
Γ(q), ξT (q) = ξL(q)Γ(q) (6.5.11)

which provides 1928

ξT (q) = ξL(q)Γ(q) (6.5.12)

If the assumption of local isotropy holds, the scaling exponent Γ(q) is then exactly 1929

equal to 1. Figure 6.21 shows the corresponding scaling exponent Γ(q) estimated from 1930
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Figure 6.19: Representation of Lv,q(ω) v.s. Lu,q(ω) on the range 5 < ω < 6000Hz,
where q = 0, 2, 4 and 6, respectively. Power law behaviour is observed for all
cases. The corresponding scaling exponent Γ(q) is estimated on the inertial range
10 < ω < 1000Hz.

the turbulent database. The isotropy scaling exponent Γ(q) deviates from 1. The1931

isotropy scaling exponent Γ(q) decreases with the order q, which indicates that the1932

anisotropy effect becomes more and more strong in high order statistical quantities.1933

The HSA approach provides the larger scaling exponent, which may be linked to1934

the local ability of the method. It may constrain the large scale anisotropy effect1935

both in physical domain and frequency domain. However, for the high order q, Γ(q)1936

is significant less than 1 within statistical uncertainty. For structure function, it1937

suggests an approximately linear expression1938

ΓS(q) = −γ̂q + Γo (6.5.13)

where γ̂ ≃ 0.018 and Γo ≃ 0.97 are obtained experimentally. However, the influ-1939

ence of the large anisotropy scale on the structure function should be investigated1940
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Figure 6.20: Representation of Sv,q(τ) v.s. Su,q(τ) on the range 5 < f(= 1/τ) <
6000Hz, where q = 0, 2, 4 and 6. Power law behaviour is observed for all cases.
The corresponding scaling exponent Γ(q) is estimated on the inertial range 10 < f(=
1/τ) < 1000Hz.

systematically in the future studies. 1941

Let us note that the two approaches we considered here are complementary, writ- 1942

ting 1943

Γ(q) = 1− β(q) (6.5.14)

We have 1944

ζT (q) = ζL(q)(1− β(q)) (6.5.15)

and hence 1945

I(q)(ω) ∼ ωζT (q)−ζL(q) ∼ ω−β(q)ζL(q) (6.5.16)

This shows that if β(q) is close to zero, Iq(ω) has a flatness range and reciprocally 1946

if Iq(ω) has a flatness range, β(q) should close to zero. We cannot conclude on the 1947

best representation using the present experimental analysis. 1948
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Figure 6.21: Representation of the isotropy scaling exponent Γ(q), which are esti-
mated from the arbitrary order Hilbert spectra Lq(ω) (�) and structure function
(#). For structure function, we have ΓS(q) ≃ −0.018q + 0.97, which is obtained by
the least square fitting.

Spatial Evolution1949

We may also consider the spatial evolution of these anisotropy indicators. Figure 6.221950

shows the scale dependent isotropy ratio I at various downstream locations x/M = 201951

(#), x/M = 30 (�), x/M = 40 (△) and x/M = 48 (♦), where the Kolmogorov1952

isotropy ratio 3/4 is shown as horizontal solid line, and the vertical solid line illus-1953

trates the plateau range. The scale dependence isotropy ratio I are estimated by1954

(a) the HSA approach, (b) the second order structure function and (c) the Fourier1955

power spectrum. As we have shown above, the HSA approach and the Fourier power1956

spectrum provide a similar shape of this ratio. The structure function is strongly1957

influenced by the large scale anisotropy structure. We then show the mean isotropy1958
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Figure 6.22: (a) The isotropy ratio I(ω) estimated by the HSA approach at various
downstream locations x/M = 20 (#), x/M = 30 (�), x/M = 40 (△) and x/M = 48
(♦); (b) the structure function; (c) the Fourier analysis. The vertical solid line
indicates the plateau range, where the mean isotropy ratio Ĩ is estimated. The
horizontal solid line illustrates the Kolmogorov value 3/4. (d) The mean isotropy
ratio Ĩ, provided by the HSA approach (�), the structure function (#) and the
Fourier analysis (♦). The straight dashed line is the least square fit for the last
three points of the HSA method. It predicts that the isotropy ratio may reach the
Kolmogorov value at the downstream x/M = 60.5 (marked as ⊕).

ratio Ĩ in Fig. 6.22 (d), where the Kolmogorov isotropy value 3/4 is displayed as a 1959

horizontal solid line. It is interesting to note that both the Fourier approach and the 1960

structure function provide a similar spatial evolution trend: the isotropy ratio first 1961

decreases along the streamwise direction and reaches its minimum value at location 1962

x/M = 40 and then seems to saturate. The isotropy ratio seems to never reach the 1963

Kolmogorov value. The HSA approach gives a slightly different result. It seems that 1964

the isotropy ratio provided first decreases slowly and then decreases linearly along 1965
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Figure 6.23: (a) The generalized mean isotropy ratio Ĩ(q) at various downstream,
estimated by the HSA approach; (b) the structure function; (c) the isotropy scaling
exponents Γ(q) estimated by the HSA approach; (d) the structure function. The
symbols are the same as Fig. 6.22 (a). The straight solid lines are the least square fit
of each curve.

the downstream direction Ĩ(x) ≃ −0.017x/M + 0.85. According to this linear trend,1966

the isotropy ratio may reach its Kolmogorov value at the location x/M = 60.5, which1967

is marked as ⊕ in Fig. 6.22 (d). Unfortunately, we do not have data on this location1968

to check this prediction.1969

We now consider the downstream evolution for various orders q. Figure 6.23 shows1970

the mean generalized isotropy ratio Ĩ provided by (a) the HSA approach, and (b)1971

the structure function approach, and the isotropy scaling exponent Γ(q) provided1972

by (c) the HSA approach, and (d) the structure function approach for different 41973

downstream values. The symbols are the same as Fig. 6.22 (a). Except for the1974

Hilbert-based isotropy scaling exponent Γ(q), see Fig. 6.23 (c), the others seem to1975

linearly decrease with q with various slopes. We then show in Fig. 6.24 (a) the slope1976
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Figure 6.24: (a) The slope α̂ of the generalization isotropy ratio estimated by the
Hilbert-based approach (#) and the structure function (�); (b) The slope γ̂ of isotropy
scaling exponents estimated by structure function approach. The mean value is γ̂ ≃
0.187.

α̂, and (b) the slope γ̂. It seems that both Hilbert-based approach (#) and structure 1977

functions (�) provide the same evolution trend of α̂: they firstly increases with x/M 1978

and then seem to saturate at large x/M . However, the former one is small than the 1979

latter one. The slope of the isotropy scaling exponents is slight fluctuated around its 1980

mean value 0.187. 1981

6.6 Summary 1982

To summarize the main results of this chapter, we applied the EMD and the arbi- 1983

trary order Hilbert spectral analysis methodology on an experimental homogeneous 1984

and nearly isotropy turbulence database. We found that the EMD acts as a dyadic 1985

filter bank for fully developed turbulence velocity time series. Based on the Fourier 1986

spectrum of each mode, we termed the IMF modes into different terms: measure- 1987

ment noise, dissipation range, inertial range and large forcing scale. We observed 1988

a scaling trend in the joint pdf p(ω,A) with a scaling exponent close to the Kol- 1989

mogorov value. We then recovered the structure function scaling exponents ζ(q) in 1990
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amplitude-frequency space for the first time.1991

We tested the local isotropic hypothesis by considering the scale dependent isotropy1992

ratio and the generalized isotropy ratio. The generalized isotropy ratio decreases lin-1993

early with q. The spatial evolution of the isotropy ratio shows that the isotropy ratio1994

may reach the Kolmogorov value at downstream x/M = 60.5. The isotropy scal-1995

ing exponent Γ(q) suggested by the existence of the plateau of the scale dependent1996

isotropy ratio is also studied. These scaling exponents deviate from 1, the value indi-1997

cated by the local isotropy hypothesis. Furthermore, the scaling exponent provided1998

by the structure function decreases linearly with order q. It implies that the high1999

order structure function is strongly influenced by the large anisotropy scale part.2000
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Chapter 72001

Passive Scalar Turbulence2002

Another important issue in turbulence research is the passive scalar turbulence, which2003

can be linked to many natural phenomena or engineering problems, such as pollutant2004

diffusion, turbulent combustion, etc., see reviews by Sreenivasan (1996); Shraiman2005

& Siggia (2000); Warhaft (2000). It has attracted huge interest during the last two2006

decades (Antonia et al., 1984; Sreenivasan, 1991, 1996; Ruiz-Chavarria et al., 1996;2007

Mydlarski & Warhaft, 1998; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy et al.,2008

2001; Tsinober, 2001; Gylfason & Warhaft, 2004; Celani et al., 2005; Schmitt, 2005).2009

In the spirit of Kolmogorov, the relevant Obukhov-Corrsin law is a 1/3 scaling relation2010

that predicts2011

Sq(ℓ) = 〈|∆θ(ℓ)|q〉 ∼ ℓζθ(q) (7.0.1)

where ∆θ(ℓ) = θ(x + ℓ) − θ(x), and ζθ(q) = q/3 is the corresponding scaling expo-2012

nent. However, experimental evidence has shown that the scaling exponent ζθ(q) is2013

deviating from the simple KOC law, even with stronger deviation than the veloc-2014

ity field (Sreenivasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). For example,2015

it is found that the scaling exponent ζΘ(q) is almost saturating for high order mo-2016

ments (Warhaft, 2000; Celani et al., 2000). It is often believed that the so-called2017

133
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“ramp-cliff” structures play an important role in scalar turbulent flows, see Fig. 7.1. 2018

For high order statistical moments, it seems that the statistical quantities, such as 2019

high order structure functions, are dominated by the ramp-cliff structure. Obviously, 2020

the ramp-cliff structure is a large scale structure with a ramp and a sharp cliff. It is 2021

believed that this structure couples with the small scales by the cliff structure. Thus 2022

it may have strong influence on both the small scales and large scales statistics. 2023

Figure 7.1: Illustration of the “ramp-cliff” structure. Graphically, the ramp-cliff
structure is a large scale structure. Taken from Ref. Warhaft (2000)

We have shown previously that the structure functions are strongly influenced 2024

by large scales. It may then be that the saturation of scalar turbulence structure 2025

function is linked to the ramp-cliff structures. It could then be a shortcoming of the 2026

analysis approach instead of a real saturation of the scaling exponent associated to 2027

the most intense events. In this chapter, we check this hypothesis by considering 2028

scalar turbulence intermittency using arbitrary order Hilbert spectral analysis. The 2029

results presented in this chapter are not yet published. They will be in part included 2030

in a paper prepared for submission Huang et al. (2009e)[Y. Huang, et al. Phy. Rev. 2031

Lett., 2009 (in preparation)]. 2032
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7.1 Temperature data2033

The temperature data analyzed here are obtained from a jet experiment performed2034

at Joseph Fourier University by Y. Gagne and P. Fougairolles, where a hot air jets2035

from a nozzle into a cold ambient cross flow, see the sketch in Fig. 7.2. Along the flow2036

direction, the jet may be separated into four different regions (A) potential core, (B)2037

developing range, (C) developed range and (D) decaying range. The measurement

Figure 7.2: Sketch of the experiment. A hot air jets into the cold cross ambient flow
from the nozzle: (A) potential core (B) developing range (C) developed range (D)
decaying range. The measurement point (•) is close to the nozzle and the mixing
layer. Therefore the flow here demonstrates strong intermittency properties.
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Figure 7.3: A 0.3 s portion of temperature time series. It illustrates the ”ramp-cliff”
structures and intermittent nature of passive scalar turbulence.

2038
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Figure 7.4: Comparison of the second order Hilbert marginal spectrum and Fourier
spectrum. The inset shows the compensated spectrum E(f)f5/3, which indicates a
more than 1.4 decades of inertial range 80 < f < 2000Hz in both spectra. Since both
EMD and HSA have very local abilities, they can constrain the ramp-cliff effects as
much as they can, thus predict a steeper spectrum.

location is situated at the edge of the mixing layer and close to the nozzle. The initial 2039

temperature of the two flows are respectively TJ=27.8
◦C and T=14.8 ◦C. The bulk 2040

Reynolds numbers are about ReJ = 60000 (based on the hydraulic diameter of the 2041

jet nozzle) and ReM = 1100 (based on the mesh size of the turbulence grid of the 2042

cross flow channel). The Taylor-microscale based Reynolds number is estimated as 2043

Reλ = 250. The sampling frequency is 50 kHz with a total 5×10
5 data points. A 0.3 s 2044

portion temperature time series is reproduced in Fig. 7.3. It illustrates a strong ramp- 2045

cliff structure and the intermittent nature of this passive scalar turbulence. Figure 7.4 2046

shows the Fourier spectrum (dashed line) and Hilbert marginal spectrum (solid line), 2047

where the inset shows the corresponding compensated spectra. Power law behaviour 2048

is observed in both spectra on the range 80 < f( or ω) < 2000Hz, about 1.4 decades, 2049
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with scaling exponent 1.56 and 1.70 respectively for the Fourier power spectrum and2050

the Hilbert spectrum. For the former one, it agrees with the value reported in other2051

literatures, for example, see Refs. Sreenivasan (1996); Warhaft (2000). The latter is2052

quite close to the scaling value of the longitude velocity in fully developed turbulent2053

flows (Anselmet et al., 1984; Benzi et al., 1995; Frisch, 1995; Sreenivasan & Antonia,2054

1997).2055

7.2 EMD results2056

We divided the whole data into 122 segments (without overlapping), with 212 data2057

points each. After decomposition each segment is decomposed into several IMF2058

modes, from 9 to 12 with one residual. We first check the mean frequency of each2059

mode. The mean frequency ω is defined by Eq. (6.2.1). Figure 7.5 shows the mean
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Figure 7.5: The mean frequency of IMF modes ω vs modes n. Local slope ρ(n) is
shown as inset.

2060
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frequency ω , where the inset shows the local slope ρ(n). One can find that, com- 2061

pared with the result for velocity, see Fig. 6.6, the mean frequency of each realization 2062

is rather scattered. However, the averaged mean value for all segments 〈ω〉 (�) ex- 2063

ponential decrease with mode index n as 2064

ω(n) ∼ ρ−n (7.2.1)

where ρ ≃ 1.71. This means that each mode is associated to a time scale almost 1.71 2065

times larger than the previous one; this property is similar to a filter bank in the 2066

frequency domain (Flandrin & Gonçalvès, 2004; Wu & Huang, 2004; Huang et al., 2067

2008). We note that the deviation from a dyadic filter bank could be an effect of the 2068

ramp-cliff structure. 2069

7.3 HSA results 2070

Figure 7.6 shows the joint pdf p(ω,A), where the vertical dashed line illustrates the 2071

inertial range 80 < ω < 2000Hz. We observe a scaling trend. However, the length 2072

of data we have here is about 500,000 points. It is not long enough to get a smooth 2073

skeleton of this joint pdf. But nevertheless, as we show later, the arbitrary order 2074

Hilbert marginal spectrum is stable and convergent. 2075

We provide here more comments on the marginal Hilbert spectrum and Fourier 2076

spectrum, see in Fig. 7.4. As mentioned previously, the Fourier transform is a linear 2077

asymptotic approach: it requires high order harmonic components to mimic nonlin- 2078

ear and nonstationary process. In this case, the high order harmonic component may 2079

lead an artificial energy transfer flux from a large scale (low frequency) to a small 2080



7.3. HSA results 139

log10(ω) (Hz)

lo
g
1
0
(A
)

 

 

lo
g 1
0
(p
(ω
,A
))

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-5

-4

-3

-2

-1

0

1

-10

-9

-8

-7

-6

-5

-4

-3

Figure 7.6: Representation of the joint pdf p(ω,A) for temperature fluctuations. The
vertical dashed line indicates the inertial subrange. A scaling trend is observed in
such presentation. However, due to the sample size, the skeleton of the joint pdf (not
shown here) is rather scattered.

scale (high frequency). The artificial energy transfer may give a less steep power spec-2081

trum. We know that both EMD and HSA methodology have very local abilities both2082

in physical and spectral domains: the Hilbert-based methodology can constrain the2083

nonlinear and nonstationary effects (Huang et al., 1998, 1999; Huang, 2005; Huang2084

et al., 2009d). In other words, it does not require any higher order harmonic compo-2085

nents to simulate the nonlinear and nonstationary events. Thus, the Hilbert spectrum2086

may reveal a less pertubated relation between the energy and the frequency.2087

Figure 7.7 shows the arbitrary order Hilbert marginal spectrum Lq(ω), where2088

q = 0, 1, 3, 4, 5 and 6. The vertical dashed line indicates the inertial subrange2089

80 < ω < 2000Hz. Power law behaviour is observed in each plot on the inertial2090

range, and the corresponding scaling exponents ξθ(q) are estimated on this range by2091
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Figure 7.7: Arbitrary order Hilbert marginal spectrum Lq(ω), where q = 0, 1, 3, 4, 5
and 6. Power law behaviour is observed on the range 80 < ω < 2000Hz in all cases.
The corresponding scaling exponents ξθ(q) is shown in each figure.

a least square fitting algorithm. We compare the scaling exponents ξθ(q) − 1 (#), 2092

ζθ(q) from structure function (♦), the value ζθ(q) complied by Schmitt (2005) (� with 2093

error bar) with the theoretical value q/3 (solid line) in Fig. 7.8. The inset shows the 2094

scaling exponents departure from the theoretical KOC value. The classical structure 2095

function analysis method, as we will show in next section, it is strongly influenced 2096

by the ramp-cliff structure. The scaling exponent is then estimated by a least square 2097

fitting algorithm and by choosing the range case by case. The scaling exponent begins 2098

to be saturated when q > 3. It is usually interpreted as an evidence that the passive 2099

scalar field is more intermittent than the velocity field (Sreenivasan, 1991; Shraiman 2100

& Siggia, 2000; Warhaft, 2000). Using the HSA approach, a more clear inertial range 2101

holds for each plot, up to order 8. To compare with the velocity field, we plot the 2102

ESS result ζ(q) (dashed line) for longitude velocity (Benzi et al., 1995) in the same 2103

figure. We find that the scaling exponent ξ(q) is quite close to the ESS result for the 2104
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(� with error bar) and the theoretical value q/3 (solid line). We also show the ESS
result (dashed line) for longitudinal velocity (Benzi et al., 1995). The inset shows the
departure from the KOC theoretical value.

velocity, which may indicate that the scalar field is not so intermittent as what we2105

have believed before. This is obtained here for one database, and should be confirmed2106

using other database before a firm conclusion can be proposed.2107

7.4 Structure function analysis2108

As already noticed by several authors, for example, Antonia (Antonia et al., 1984),2109

Ruiz-Chavarria (Ruiz-Chavarria et al., 1996) and Warhaft (Warhaft, 2000), for scalar2110

turbulence, the scaling exponents of Fourier spectrum βθ is not consistent with the2111

second order structure function ζθ(2): the relation ζθ(2) = βθ − 1 is not verified.2112

This may be an effect of the ramp-cliff structure. Furthermore, it has been reported2113
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Figure 7.9: The structure function of temperature Sq(ℓ), q = 1, 2, 3, 4. The inset
shows the corresponding compensated spectrum Sq(ℓ)ℓζ(q). Power law range decreases
with the order q, which may be interpreted as the effects of the ramp-cliff structure.

that the scalar spectrum has a larger scaling range than the velocity field at the 2114

same Reλ (Jayesh & Warhaft, 1994; Gylfason & Warhaft, 2004). We have discussed 2115

previously that, in case of possessing large energetic nonlinear structures, the Fourier 2116

analysis needs high order harmonic components. Thus, both the inertial range and 2117

the scaling exponents may be contaminated by the ramp-cliff structure. 2118

Figure 7.9 shows the first fourth order structure functions, where the insect shows 2119

the corresponding compensated spectrum by taking the estimated scaling exponent 2120

ζθ(q). Due to the effect of the ramp-cliff structure, the inertial range decreases with 2121

the order q. When q > 4, there is no clear power law any more. It is believed that the 2122

structure function itself is then dominated by the ramp-cliff structure for high order 2123

structure function (Gylfason & Warhaft, 2004). 2124
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7.5 Summary2125

In this chapter, we applied the EMD and arbitrary order Hilbert spectral analysis to a2126

temperature from a jet experiment. The data have very strong ramp-cliff structures,2127

which have been considered as an important signature of passive turbulence. We find2128

that the EMD algorithm acts a filter bank. Due to the effect of ramp-cliff structure,2129

it deviates from a dyadic filter bank, which have been obtained previously using2130

stochastic simulations of Gaussian noise, fractional Gaussian noise (fGn) and the2131

fully developed turbulence velocity (Wu & Huang, 2004; Flandrin & Gonçalvès, 2004;2132

Huang et al., 2008).2133

We then considered the intermittency property of these data. It is found that the2134

scaling exponent ξθ(q) provided by the Hilbert-based methodology is quite close to2135

the ESS-based scaling exponent ζ(q) of the longitudinal velocity. Due to the very2136

local ability of the Hilbert-based approach and the intrawave frequency modulation2137

mechanism of the nonlinear process, the present method does not require high order2138

harmonic components to mimic the ramp-cliff structure. Thus, the scalar turbulence2139

may be not so intermittent as what we believed before. We should reconsider the2140

role of the ramp-cliff structure in this framework. These results need to be confirmed2141

using other passive scalar databases. This will be done in future work.2142
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Chapter 82143

Extended Self-Similarity and2144

Hierarchy Model2145

During the last 2 or 3 decades, to extract the scaling exponents ζ(q) from various2146

turbulent flows became a quite general approach in turbulent research (Anselmet2147

et al., 1984; Antonia et al., 1984; Benzi et al., 1993a; Frisch, 1995; Arneodo et al.,2148

1996; Sreenivasan & Antonia, 1997). One interesting improvement methodology is the2149

so-called Extended-Self Similarity (ESS), which was proposed by Benzi et al. (1993a,b,2150

1995). It is believed that the ESS approach provides a more accuracy estimation of2151

the scaling exponents ζ(q) and extends the power law range (Benzi et al., 1993a). In2152

this chapter, we will adapt the ESS idea into the Hilbert frame.2153

We recall Benzi’s ESS theory here. According to Kolmogorov’s refined similarity2154

hypothesis (Kolmogorov, 1962; Frisch, 1995), the statistical properties of small scales2155

are uniquely determined by the local energy dissipation rate ǫr and the scale r, where2156

ǫr(x, t) =
6

πr3

∫

|r′|<r/2

ǫ(x+ r′, t) dr′ (8.0.1)

where r/2 is radius of the sphere. The qth order structure function is written2157

Sq(r) = 〈|u(x+ r)− u(x)|q〉 ∼ 〈ǫq/3r 〉r
q/3 (8.0.2)

145
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where 〈 〉 is ensemble average. If the local energy dissipation rate ǫr itself has scaling 2158

law 2159

〈ǫqr〉 ∼ rK(q) (8.0.3)

where K(0) = 0. It then follows 2160

ζ(q) = q/3−K(q/3) (8.0.4)

The above equation connects the scaling exponents ζ(q) with the scaling intermittency 2161

of the dissipation since the mean dissipation is assumed to be conserved, 〈ǫℓ〉 = ǫ. So 2162

that K(1) = 0 and ζ(3) = 1. This can be also obtained from the Kolmogorov (1941c) 2163

equation, for r ≫ η (η ≡ ν3/4ǫ−1/4 is Kolmogorov scale), one has 2164

S3(r) = −
4

5
ǫr (8.0.5)

This is the famous Kolmogorov Four-Fifths law (Kolmogorov, 1941c; Monin & Ya- 2165

glom, 1971; Frisch, 1995), which is the only one exactly statistical solution of Navier- 2166

Stokes equation for turbulence. It confirms the relation K(1) = 0 and ζ(3) = 1, which 2167

means that the third order structure function S3(r) is free from the intermittency cor- 2168

rection. Benzi et al. (1993a) suggested to plot Sq(r) vs S3(r) instead of Sq(r) vs r in 2169

structure function analysis, which reads 2170

Sq(r) ∼ S3(r)ζ
⋆(q) (8.0.6)

Since S3(r) is proportional to r, the scaling exponent ζ⋆(q) is supposed to be the 2171

same as ζ(q). It has been found that ESS is valid not only for high Reynolds number 2172

turbulent flows but also for moderate Reynolds numbers, even when there is no clear 2173

inertial range (Benzi et al., 1993a,b, 1995). The method was therefore extensively used 2174

in turbulence research and even in other fields such as natural science or finance. In 2175

the next section we consider this approach in the Hilbert spectral analysis framework. 2176
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8.1 Extended-Self similarity2177

Considering the Kolmogorov refined similarity hypothesis, we have the following re-2178

lation for the arbitrary order Hilbert spectra in the Hilbert frame2179

Lq(ω) ∼ 〈ǫ
q/3
r 〉ω

−(1+q/3) (8.1.1)

where q ≥ 0. We have here two special cases q = 01 and q = 3, which are free from2180

intermittency effect. Following the ESS idea of Benzi et al. (1993a,b), we link the2181

arbitrary order Hilbert spectrum Lq(ω) with these two special cases2182

Lq(ω) ∼ (Lp(ω))
ξp(q)/ξ(p) (8.1.2)

where p = 0 or p = 3. We denote ξ0(q) and ξ3(q) the corresponding scaling exponents.2183

2184

Figure 8.1 shows a test of the ESS of the case p = 0 for various q on the range 10 <2185

ω < 6000Hz. The vertical dashed line illustrates the inertial range 10 < ω < 1000Hz.2186

A power law behaviour is observed in each plot on the inertial range , and the scaling2187

exponents ξ0(q) is estimated on this range by using a least square fitting algorithm2188

on the inertial range. Figure 8.2 shows the case p = 3, where the vertical dashed line2189

demonstrates the inertial range 10 < ω < 1000Hz, and the thick solid line indicates2190

the location ω = 3000Hz. It seems that, except the zeroth order Hilbert marginal2191

spectrum, the power law range extends as expected. We take the L7(ω) as example:2192

the scaling range extends to ω = 3000Hz. This is similar with the observations2193

done for the traditional ESS (Benzi et al., 1993b, 1995). The corresponding scaling2194

exponent ξ3(q) is then estimated on the range 10 < ω < 3000Hz.2195

1As mentioned in chapter 3, the zeroth order Hilbert marginal spectrum is the marginal pdf of
the instantaneous frequency. We have found the general property that such marginal pdf itself has
a power law behaviour, and the corresponding scaling exponent ξ(0) is close to 1, which is rather
natural since it corresponds to ζ(0) = 0.
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Figure 8.1: A test of Extended Self-Similarity of arbitrary order Hilbert spectra Lq(ω)
V.S. L0(ω) for the longitudinal velocity, q = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < ω < 6000Hz. The dashed line indicates the inertial range 10 < ω < 1000Hz.
The scaling exponent ξ(q) is then estimated on this range.

We then compare the scaling exponents ξ(q) in Fig. 8.3 for different estimators2, 2196

HSA result ξ(q) − 1 (×), Hilbert-based ESS ξ0(q) − 1 (�) and ξ3(q) − 1 (⊳), ζ(q) 2197

(dashed line) provided by the traditional ESS (Benzi et al., 1995), and the K41 2198

prediction (solid line), see also Tab. 8.1. The inset shows the departure from the K41 2199

q/3 law. The scaling exponents ξ0(q) and ξ3(q) are in good agreement with ζ(q) when 2200

q ≤ 4. When q < 4, the Hilbert-based estimators display a larger scaling exponents 2201

than the structure function based ESS ζ(q). 2202

For comparison, we consider the log-Lévy model and the log-normal model here (Frisch,2203

1995; Schertzer et al., 1997). The log-Lévy model (Schertzer & Lovejoy, 1987; Kida, 2204

1991; Schmitt et al., 1992; Schertzer et al., 1997) predicts a scaling exponent 2205

ζ(q) = q/3−
C1
α− 1

[(q/3)α − q/3] (8.1.3)

where C1 is the codimension of the mean events (0 ≤ C1 ≤ d, where d is the dimension 2206

2We do not apply here the structure function analysis on these database.
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Figure 8.2: A test of Extended Self-Similarity of arbitrary order Hilbert spectra Lq(ω)
V.S. L3(ω) for the longitudinal velocity, q = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < ω < 6000Hz, where the dash line indicates the inertial range 10 < ω < 1000Hz.
The vertical thick solid line indicates the location of 3000Hz. The scaling exponent
ξ(q) is then estimated on this range.

of the observation space), and α is the Lévy index, bounded between 0 and 2. We2207

fix α = 1.5 (Schertzer et al., 1997) and consider C1 as a free parameter. We fit2208

experimental data by a least square fitting algorithm. C1 is found to be 0.095 for2209

Hilbert-based ESS scaling exponent. The log-normal model predicts2210

ζ(q) =
q

3
−

μ

18

(
q2 − 3q

)
(8.1.4)

where μ is the so-called intermittency parameter (Frisch, 1995; Schertzer et al., 1997).2211

We take here μ as a free parameter. The μ is found to be 0.15, which is comparable2212

with 0.2, an estimation value provided by Anselmet et al. (1984). Graphically, both2213

of these two models with the present chosen parameter predict the same scaling2214

exponents.2215

As we have mentioned previously, the data we used here are generated by the2216

active-grid technique. The results presented here may be influenced by a lack of2217
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line) with μ = 0.15. The inset shows the departure from the K41 law.

isotropy, see chapter 6, we thus should check this ESS idea on more databases. 2218

8.2 Hierarchy model 2219

We have shown in chapter 6 that the skeleton As(ω) and its corresponding conditional 2220

pdf pmax(ω) of the joint pdf p(ω,A) have a power law behaviour on the inertial range 2221

10 < ω < 1000Hz, where ω is the instantaneous frequency and A is the amplitude. 2222

This power law is written as 2223

As(ω) ∼ ω−β1 , pmax(ω) ∼ ω−β2 (8.2.1)
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where β1 = 0.38±0.05 and β2 = 0.63±0.05, see Fig. 6.10. We also found dimensionally2224

that without intermittency we have2225

β1 =
1

3
, β2 =

2

3
(8.2.2)

see chapter 6. Following She and Lévêque’s hierarchy model (She & Lévêque, 1994),2226

we present a hierarchy model in the following.2227

A Weighted Function For Hilbert Marginal Spectra2228

We have shown previously that the joint pdf p(ω,A) is strongly peaked around As(ω),2229

see Fig. 6.12. The arbitrary order Hilbert marginal spectrum Lq(ω) can be rewritten2230

as2231

Lq(ω) = G(ω, q)pmax(ω)As(ω)
1+q (8.2.3)

where G(ω, q) is a weighted function. It may be determined by different distribution2232

functions for p(ω,A). For high Reynolds number turbulent flows, where the local2233

homogeneous and isotropy hypotheses hold, we assume that Eq. (8.2.1) is valid at2234

least on the inertial subrange. It indicates that2235

Lq(ω) ∼ G(ω, q)ω
−((1+q)β1+β2) (8.2.4)

For discussion convenience, we assume that the intermittency does not affect the2236

skeleton As(ω) and the corresponding conditional pdf pmax(ω).
3 We then have2237

Lq(ω) ∼ G(ω, q)ω
−(1+q/3) (8.2.5)

For different distribution models of the joint pdf p(ω,A), the weight function G(ω, q)2238

may have different forms. It may be universal for high Reynolds turbulent flow. For2239

3Based on the observation of the joint pdf p(ω,A), the intermittency does influence on As(ω)
and pmax(ω), see Fig. 6.10.
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example, if G(ω, q) is independent from ω and q, Eq. (8.2.5) then one recovers the 2240

K41 prediction. 2241

The weighted function G(ω, q) may be determined by considering the compensated 2242

arbitrary order Hilbert marginal spectrum 2243

G(ω, q) ∼ Lq(ω)ω
1+q/3 ∼ ω−Λ(q) (8.2.6)

Thus Λ(q) measures the departure from the K41 theory. This finally give 2244

Λ(q) = ξ(q)− (1 +
q

3
) (8.2.7)

According to Kolmogorov’s 1962 refined similarity hypothesis (Kolmogorov, 1962), 2245

we have Λ(0) = Λ(3) = 0, which means they are free with the intermittency effect. 2246

A Hierarchical Model 2247

Following the hierarchical model idea of She & Lévêque (1994), we define a hierarchical 2248

spectral function L(q)(ω) by the ratio of two successive arbitrary order Hilbert spectra 2249

L(q)(ω) =

∫
p(ω,A)Aq+1 dA∫
p(ω,A)Aq dA

=

∫
Qq(ω,A)A dA (8.2.8)

where q ≥ 0, and Qq(ω,A) = p(ω,A)A
q+1/

∫
p(ω,A)Aq dA is weighted pdf for which 2250

L(q)(ω) is a mathematical expectation. Similar with ǫ
(q)
r = < ǫq+1r >/< ǫqr >, when 2251

q → ∞, L(∞)(ω) measures the most intermittent structures (She & Lévêque, 1994). 2252

We then expect that the power law behaviour holds at least in the inertial range 2253

L(q)(ω) ∼ ω−Π(q) (8.2.9)

where 2254

Π(q) = ξ(q + 1)− ξ(q) (8.2.10)
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observed in the inertial range 10 < ω < 1000Hz, which is indicated by the vertical
dashed line. The solid line demonstrates the Kolmogorov value 1/3.

The dimensional consideration indicates for the non-intermittency case2255

[L(q)] = [A], Π(q) =
1

3
(8.2.11)

Figure 8.4 shows the hierarchical spectral function L(q)(ω) for various q = 0 (▽),2256

1 (+), 2 (�), 3 (×), 4 (♦), 5 (△), 6 (#) and 7 (⊳). The solid line indicates the2257

Kolmogorov value 1/3 for the nonintermittent case, and the vertical dashed line il-2258

lustrates the inertial range 10 < ω < 1000Hz. A power law behaviour is observed on2259

this inertial range for all curves. The slope shows departure from the nonintermittent2260

value when q is increasing. We estimate the scaling exponent Π(q) on the inertial2261

range. The corresponding scaling value Π(q) (#) is shown in Fig. 8.5, where the hor-2262

izontal thick solid line indicates the Kolmogorov value 1/3. For comparison, we also2263

show the corresponding Π(q) estimated from the Hilbert-based ESS ξ3(q) (�), the2264
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Figure 8.5: Representation of the scaling exponents Π(q) (#) for the hierarchical
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The corresponding scaling exponent Π(q) is estimated on the inertial subrange 10 <
ω < 1000Hz. For comparison, we also show the corresponding scaling exponents
from ξ3(q) (�), σ(q) (♦), the log-Lévy model with C1 = 0.07, α = 1.5 (dashed-dotted
line), log-normal model with μ = 0.11 (dashed line) and SL model (solid line). The
inset shows the relative error from Π(q).

Hilbert-based generalized ESS σ(q) (♦) (see below), log-Lévy model with C1 = 0.07 2265

and α = 1.5 (dashed-dotted line), log-normal model with μ = 0.11 (dashed line)4 and 2266

SL model (thin solid line). The relative error from the direct estimated Π(q) is shown 2267

as inset. The estimated Π(q) decreases linearly with q with the same 0.015 obtained 2268

graphically. In this case, only log-normal model provides a linear prediction of Π(q). 2269

Based on this observation, the log-normal model with such chosen parameter seems 2270

to give the best fitting among these three models. 2271

4The parameters we choose here is based on the Hilbert-based ESS ξ3(q). This means that we
fit ξ3(q)-based Π(q) to determine the parameters C1 and µ.
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8.3 Generalized Extended-Self similarity2272

Following the idea of generalized extended self-similarity of Benzi et al. (1996), let us2273

introduce a dimensionless arbitrary order Hilbert marginal spectrum2274

Zq(ω) =
Lq(ω)

L3(ω)q/3
∼ ω−σ(q) (8.3.1)

in which2275

σ(q) = ξ(q)−
ξ(3)q

3
(8.3.2)

where ξ(q) is the scaling exponent. We expect that the dimensionless arbitrary order2276

Hilbert marginal spectrum Zq(ω) itself has power law behaviour. We postulate a2277

Generalized Extended-Self Similarity (GESS) (Benzi et al., 1996), which is written as2278

Zq(ω) ∼ (Zp(ω))
ρ(q,p) (8.3.3)

By the definition we have2279

ρ(q, p) =
σ(q)

σ(p)
, p 6= 3 (8.3.4)

Figure 8.6 shows the dimensionless arbitrary order Hilbert marginal spectrum2280

Zq(ω) for various q, 0 (#), 2 (�), 4 (△), 6 (♦), 8 (⊳), 10 (⊲). The vertical dashed2281

line demonstrates the inertial subrange 10 < ω < 1000Hz. A power law behaviour is2282

observed in each representation. We estimate the corresponding σ(q) on the inertial2283

range by using a least square fitting algorithm. The scaling exponent σ(q) (#) is2284

shown in Fig. 8.7. For comparison, we also show the corresponding scaling value in2285

the same figure, provided by the Hilbert-based ESS ξ3(q) (⊳), the log-Lévy model2286

with C1 = 0.07 and α = 1.5 (dashed line), the log-normal model with μ = 0.112287

(dashed-dotted line) and the SL model (solid line). The inset shows the relative2288

error from σ(q). The Hilbert-based ESS predicts almost the same value σ(q) as the2289
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Figure 8.6: Representation of the dimensionless arbitrary order Hilbert marginal
spectra function Zq(ω), where q = 0 (#), 2 (�), 4 (△), 6 (♦), 8 (⊳) and 10 (⊲).
The vertical dashed line demonstrates the inertial subrange 10 < ω < 1000Hz. The
dashed line is the least square fitting on the inertial range.

dimensionless arbitrary order Hilbert marginal spectrum Zq(ω). We also note that 2290

the log-normal model with the parameter μ = 0.11 gives the best fit of σ(q). 2291

We represent the dimensionless arbitrary order Hilbert marginal spectrum Zq(ω) 2292

vs Zp(ω) on the range 10 < ω < 7000Hz in Fig. 8.8 for various p (a) p = 0, (b) 2293

p = 1, (c) p = 2 and (d) p = 4, where q = 0 (#), 2 (�), 4 (△), 6 (♦), 8 (⊲) and 2294

10 (▽). The vertical dashed line indicates the inertial subrange 10 < ω < 1000Hz. 2295

A power law behaviour is observed as expected in all cases. The power law range is 2296

also extended as expected, which may depend on each case. However, we estimate 2297

the scaling exponent ρ(q, p) on the inertial subrange by using a least square fitting. 2298

Figure 8.9 shows the corresponding ρ(q, p) for various p, 0 (△), 1 (#), 2 (�), 4 (♦) and 2299

5 (⊳). We compare the experimental result with (a) the SL model, (b) the log-Lévy 2300

model with C1 = 0.07 and α = 1.5, and (c) the log-normal model with μ = 0.11. We 2301
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Figure 8.7: Representation of the scaling exponent σ(q) (#), where q goes from 0
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from the Hilbert-based ESS ξ3(q) (⊳), the log-Lévy model with C1 = 0.07, α = 1.5
(dashed line), the log-normal model with μ = 0.11 (dashed-dotted line) and the SL
model (solid line). The inset shows the relative error from σ(q).

show the relative error in the right part of these figures. For each model, the relative2302

error have a similar shape and is parallel with each other. We also note that the2303

log-normal model with present choice of μ has smaller relative error.2304

Figure 8.10 shows Zq v.s. Zq−1 for various q (1, 5, 8 and 10) on the range 10 <2305

ω < 7000Hz. A power law behaviour holds on this range for each plot, which is2306

significant larger than the inertial range 10 < ω < 1000Hz. We still estimate the2307

scaling exponent ρ(q, q − 1) on the inertial range. The estimated ρ(q, q − 1) (�) are2308

shown in Fig. 8.11. For comparison, the log-Lévy model with C1 = 0.07 and α = 1.52309

(dashed-dotted line), log-normal model with μ = 0.11 (dashed line) and the SL model2310

(solid line) are also shown. The inset shows the relative error from experimental value2311

ρ(q, q − 1). There is no significant different among these three models. However, it2312
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Figure 8.8: Representation of GESS Zq(ω) vs Zp(ω) for various p (a) p = 0, (b) p = 1,
(c) p = 2 and (d) p = 4, where q = 0 (#), 2 (�), 4 (△), 6 (♦), 8 (⊲) and 10 (▽).
The vertical dashed line demonstrates the inertial subrange 10 < ω < 1000Hz. The
dashed line is the least square fitting on inertial range.

seems that the log-normal model with present parameter provides the smallest relative 2313

error. 2314

Considering Eq. (8.2.7) and Eq. (8.3.2), we may link σ(q) and ρ(q, p) to the scaling 2315

exponent ξ(q), which is written as 2316

ξ(q) =
2q

3
+ σ(q) (8.3.5a)

and 2317

ξ(q) =
2q

3
+ ρ(q, p)σ(p), p 6= 3 (8.3.5b)

A potential application of ρ(q, q−1) is to estimate ξ(q) for high order q, if the quantity 2318
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Figure 8.9: Representation of the scaling ratio ρ(q, p) of GESS, where q goes from 0
to 10, p = 0 (△), 1 (#), 2 (�), 4 (♦) and 5 (⊳). For comparison, we present three
different model, (a) SL model, (b) log-Lévy model, and (c) log-normal model. The
right part shows the relative error.

of the data is available. One may estimate σ(q) and ξ(q) by the following formula2319

σ(q) =

q∏

i=5

ρ(i, i− 1)σ(4), q ≥ 5 (8.3.6)

and2320

ξ(q) =
2q

3
+

q∏

i=5

ρ(i, i− 1)σ(4), q ≥ 5 (8.3.7)

We show the estimated ζ(q) (corresponding to ξ(q) − 1) in Fig. 8.12, based on2321

σ(q) (dashed-dotted line), ρ(q, p) (♦)5 and Hilbert-based ESS (⊳). For comparison,2322

we show the log-normal model with two different intermittency parameter μ = 0.112323

(dashed-dotted line) fitting for σ(q) and μ = 0.15 (dashed line) fitting for ξ(q) − 12324

5Here different p gives almost the same ξ(q). Therefore, we only present the mean value of them,
which is denoted as ρ(q, p).
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Figure 8.10: Representation of the GESS Z(q) vs Z(q−1) on the range 10 < ω <
7000Hz, where q = 1, 5, 8 and 10. Power law is observed in all cases.

from Hilbert-based ESS ξ0(q) and ξ3(q). The SL model is shown in the same picture 2325

as thin solid line. The GESS scaling exponent is quite close to the Hilbert-based ESS 2326

one, and significantly larger than SL model when q is greater than 5. We reproduce 2327

these scaling exponents from different approaches in Tab. 8.1. 2328

Taking Benzi’s ESS result (Benzi et al., 1993a,b; Arneodo et al., 1996) as a ref- 2329

erence line, we show in Fig. 8.13 the absolute error and relative error from ζ(q) for 2330

different estimators ξ(q) (⊲), ξ0(q) (�), ξ3(q) (♦), Π(q) (#), σ(q) (⊳) and ρ(q, p) 2331

(△). One can find that the relative error is decreasing with q when q ≤ 4. When 2332

q ≥ 4, the relative error is then increasing with q. However, the relative error is less 2333

than 10% when 2 ≤ q ≤ 8. 2334
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Figure 8.11: Representation of the scaling exponent ratio ρ(q, q− 1) from GESS (�),
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α = 1.5 (dashed-dotted line), log-normal model with μ = 0.11 (dashed line) and SL
model (solid line) are also presented. The inset shows the relative error.

8.4 Summary2335

In this chapter, we extended Benzi’s idea of Extended Self-Similarity into the Hilbert2336

frame. According to Kolmogorov’s refined similarity hypothesis (Kolmogorov, 1962;2337

Monin & Yaglom, 1971; Frisch, 1995), we have two special cases, L0(ω) and L3(ω),2338

which are free from the intermittency effect. We therefore use L0(ω) and L3(ω) to2339

define the so-called ESS. They provide almost the same scaling exponents ξ(q), which2340

are slightly larger than SL model for high order q. We then proposed a hierarchy2341

model by defining a hierarchical spectral function. The scaling exponent Π(q) of2342

the hierarchical spectral function decreases linearly with q. We finally presented a2343

generalized ESS by considering a dimensionless arbitrary order Hilbert spectrum. The2344

scaling exponents provided by the dimensionless spectrum and the GESS are in good2345

agreement with each other.2346
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Table 8.1: Scaling exponents ζ(q) from different approaches: the ESS ζ(q) (Benzi
et al., 1996), the Hilbert-based ξ(q)− 1 (Eq. (3.1.3)), the Hilbert-based ESS ξ0(q)− 1
(Eq. (8.1.2)), the Hilbert-based ESS ξ3(q)− 1 (Eq. (8.1.2)), the dimensionless Hilbert
spectrum σ(q) (Eq. (8.3.5a)) and the GESS ρ(q, p) (Eq. (8.3.5b)).

q ζ(q) ξ(q)− 1 ξ0(q)− 1 ξ3(q)− 1 σ(q) ρ(q, p)
0 0.00 -0.03 0.00 0.00 -0.03 -0.03
1 0.37 0.32 0.34 0.35 0.33 0.33
2 0.70 0.65 0.67 0.68 0.67 0.67
3 1.00 0.97 0.98 1.00 1.00 1.00
4 1.28 1.27 1.28 1.30 1.32 1.32
5 1.54 1.56 1.56 1.59 1.62 1.62
6 1.78 1.83 1.83 1.86 1.91 1.91
7 2.00 2.09 2.11 2.18 2.18
8 2.23 2.32 2.35 2.44 2.43
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Chapter 92350

Analysis of River Flow2351

Fluctuations2352

A better understanding of river flow fluctuations is of sharp practical importance,2353

e.g. for ecosystem studies (transport properties), and for flood understanding and2354

forecasting. River flows fluctuate on many different scales: at small scales, river2355

turbulence induces stochastic fluctuations and at larger scales (from days to years) the2356

river flow fluctuations are the result of complex nonlinear interactions between rainfall2357

processes, topography and geography (Schumm, 2005). They are also impacted by2358

solar forcing and other large scale variations of the climate system (Mauas et al., 2008).2359

Daily river flow time series thus show fluctuations possessing stochastic properties,2360

as well as deterministic forcing resulting from seasonal or annual meteorological and2361

climatic cycles.2362

In this chapter, we apply the empirical mode decomposition (EMD) and the arbi-2363

trary order Hilbert spectral analysis (HSA) on river flow discharge fluctuations data.2364

to characterize the scale invariant properties of small scale in amplitude-frequency2365

space. The results presented in this chapter are published in Huang et al. (2009b)[Y.2366

Huang, et al.J. Hydrol., 373, 103-111, 2009.].2367

167
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9.1 Introduction 2368

Since Hurst (1951) revealed the long-range dependent properties in river flow, asso- 2369

ciated to scaling properties, researchers have tried different methods to characterize 2370

the (multi)scaling properties in river flows (Hurst et al., 1965; Tessier et al., 1996; 2371

Pandey et al., 1998; Jánosi & Gallas, 1999; Kantelhardt et al., 2003, 2006; Livina 2372

et al., 2003b,a; Koscielny-Bunde et al., 2006; Mauas et al., 2008). Below we quickly 2373

review the approaches undertaken in these studies. 2374

Tessier et al. (1996) analyzed the relation between rainfall and river flow of 30 2375

rivers and basins in France. They used the double trace moment technique to charac- 2376

terize the multifractal properties. They found that a scaling break occurs at a scale 2377

about 16 days. They argued that the rain field itself is the source of the river flow, 2378

therefore typical scales in the rain field will also be present in the river flow. 2379

Dahlstedt & Jensen (2005) investigated the Danube and the Mississippi river flows 2380

and levels by using finite-size-scaling hypothesis (Aji & Goldenfeld, 2001). They 2381

considered the river flow basin size L from different locations. They characterized the 2382

multiscaling properties of river flow and level records by considering the relative and 2383

general relative scaling (or Extended-Self-Similarity and Generalized Extended-Self- 2384

Similarity in the turbulent community). They found that the Fourier spectrum may 2385

be different from location to location due to the size effect of the basin area. 2386

More recently, several authors applied the so-called detrended fluctuation analysis 2387

(DFA) and its multifractal version to describe the scaling and multiscaling properties 2388

of river flows (Kantelhardt et al., 2003; Livina et al., 2003b,b; Kantelhardt et al., 2006; 2389

Koscielny-Bunde et al., 2006; Livina et al., 2007; Zhang et al., 2008, 2009). Livina 2390

et al. (2003a,b) argued that the climate is strongly forced by the periodic variations 2391
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of the Earth with respect to the state of the solar system. The seasonal variations in2392

the solar radiation cause periodic changes in temperature and precipitations, which2393

eventually lead to a seasonal periodicity of river flows. The Fourier and structure2394

function analyses are impacted by this strong periodicity (Livina et al., 2003a,b;2395

Kantelhardt et al., 2003; Koscielny-Bunde et al., 2006). According to these authors,2396

the DFA approach is an efficient method to eliminate the trend effects.2397

Koscielny-Bunde et al. (2006) found that the Hurst number H varies from river2398

to river between 0.55 ∼ 0.95 in a non-universal manner independent of the size of the2399

basin. They found that at large time scales, Fq(s) scales as s
h(q), and they further2400

proposed a simple function form with two parameters a and b, h(q) = 1/q − [ln aq +2401

bq]/[q ln(2)] to describe the scaling exponent h(q) of all moments (Kantelhardt et al.,2402

2003). Kantelhardt et al. (2006) also found that the Hurst number H estimated2403

from 99 precipitation and 42 river runoff records data are not consistent with the2404

hypothesis that the scaling is universal with an exponent close to 0.75 (Hurst et al.,2405

1965; Peters et al., 2002).2406

9.2 Seine River and Wimereux River2407

The Seine river is the third largest river in France. Its length is 776 km, and its basin2408

is 78650 km2. It is economically important for France, with 25% of its population as2409

well as 40% of its industry and agriculture concentrated in and around it (Dauvin,2410

2007). The flow data is provided by the Service de Navigation de la Seine (SNS). This2411

corresponds to daily flow data Q (m3s−1), recorded from 1 January 1976 to 28 April2412

2008. There are 11828 data values, with some missing values due to interruptions for2413

maintenance or because of the failure of measuring devices. Due to the local ability2414
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Figure 9.1: The river flow discharge time series of (a) Seine River, recorded from 1
January 1976 to 28 April 2008, (b) Wimereux river, recorded from 1 January 1981 to
27 May 2006. The data illustrate clear strong annual cycles with huge fluctuations.
The total lengths are 11828 and 9278 data points for the Seine river and the Wimereux
river, respectively.

of HSA approach, which is performed through spline interpolation, the missing values 2415

in the time series do not change the results, since the method can be applied even 2416

for irregular sampling. The data are shown in Fig. 9.1 (a), demonstrating some large 2417

fluctuations at all scales. The mean and standard deviation of the discharge are 2418

488m3s−1 and 349m3s−1, respectively. This figure shows a complex and stochastic 2419

behavior, with a visible strong annual cycle. 2420

The Wimereux river is a small river in the North of France1. Its length is 22 km, 2421

and its basin is 78 km2. It can have strong fluctuations due to fast increase of the 2422

flow in case of heavy rain. The daily flow discharge is recorded from 1 January 1981 2423

1The Wimereux river is the local river in Wimereux city, the coastal host city of the laboratory
of Oceanology and Geosciences.
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Figure 9.2: A map showing the location of the Seine river and the Wimereux river,
in the eastern English Channel. The distance between them is about 300 km.

to 27 May 2006, with a total length of 9278 points values with some missing, see2424

Fig. 9.1 (b). The mean and standard deviation of the discharge data are 1.02m3s−12425

and 1.73m3s−1.2426

Figure 9.2 shows the location of these two rivers, where the Seine river is repre-2427

sented as a solid line. The Wimereux river is too small to be displayed in the same2428

figure. The difference between these two rivers is clear: the Seine river is a real big2429

one, and the Wimereux river is much smaller and strongly influenced by the local2430

rainfall conditions. The distance between them is about 300 km, see Fig. 9.2. Both of2431

them are affected by the same large scale climatic factors and belong to the marine2432

west coast climate of Northern France. This climate is found on the west coast of2433

middle latitude regions and can be quite humid. Indeed it is subject to western wind2434
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bringing important variability and intermittent clouds, important precipitation and 2435

temperate temperatures. The direct estimation of the cross correlation between these 2436

two recorded data is about 0.256, a value that may be contaminated by the small 2437

scale fluctuations. We will apply to these two data sets by the EMD method in the 2438

following section. 2439

9.3 EMD Results 2440

After the application of the EMD method, the original data are separated into several 2441

IMF modes. We then represent the IMF modes in Fig. 9.3 and Fig. 9.4 for the Seine 2442

river and the Wimereux river, respectively. For display convenience, we exclude the 2443

residual for the Seine river. Graphically, one can see that the characteristic scale 2444

is increasing with the mode index n. Let us note that the number of IMF modes 2445

is produced by the algorithm and depends on the length and the complexity of the 2446

data. In practice, based on the dyadic filter bank property of the EMD method, this 2447

number is usually less than log2(N), where N is the length of the data (Flandrin & 2448

Gonçalvès, 2004; Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008). First, 2449

we estimate the mean frequency ω of each IMF mode. We use the following three 2450

definitions of mean frequency ω. The first one was proposed by Huang et al. (1998), 2451

which is written as 2452

ωi =

∫∞
0
fSi(f) df∫∞

0
Si(f) df

(9.3.1)

where Si(f) is Fourier spectrum of Ci. It is an energy weighted average in Fourier 2453

space. The second one was given by Flandrin (Flandrin et al., 2004; Flandrin & 2454
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Figure 9.3: IMF modes (excluding the residual) from EMD for the Seine river. Here
the data are taken from 1 January 1976 to 28 April 2008. The characteristic scale is
increasing with the mode index number n.

Gonçalvès, 2004), and is written as2455

ωi =
N
0 − 1

L0
(9.3.2)

where N0 is the zero-crossing number, and L0 is the distance between the first and2456

last zero-crossing. The third one is introduced here for the first time, and is defined2457

Table 9.1: The mean period (in days) of each IMF mode (excluding the residual)
of the Seine river and the Wimereux river, respectively. Here the mean period is
estimated as T = 1/ω, where ω is calculated by Eq. (9.3.1). The 8th and 9th IMF
modes of the Seine river and Wimereux river, respectively, are close to the annual
cycle.

1 2 3 4 5 6 7 8 9 10 11 12 13
Seine 3 8 19 33 55 86 185 358 452 869 1823 5551
Wimereux 5 9 16 25 36 58 103 182 376 574 2149 2785 3125
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Figure 9.4: IMF modes from EMD for Wimereux river. Here the data are taken from
1 January 1981 to 27 May 2006.

as 2458

ωi =

∫∞
0
ωhi(ω) dω∫∞

0
hi(ω) dω

(9.3.3)

where hi(ω) is the Hilbert marginal spectrum for the i
th mode. This definition is 2459

similar to the first one: it is an energy weighted measurement of the mean frequency 2460

in Hilbert space. We then represent the mean frequency ω estimated by these three 2461

definitions Eq. (9.3.1) (#), (9.3.2) (�) and (9.3.3) (×) for each mode in Fig. 9.5 for 2462

(a) the Seine river, and (b) the Wimereux river. One can see that the two energy 2463

weighted estimators give almost the same mean frequency. However, they are slightly 2464

smaller than the zero-crossing based estimator. Graphically, all these three estimators 2465

suggest the following exponential law 2466

ω(n) ∼ γ−n (9.3.4)
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Figure 9.5: Representation of the mean frequency ω vs the mode index n in log-linear
view: (a) Seine river, (b) Wimereux river, where the mean frequency ω are estimated
by using Eqs. (9.3.1) (#), (9.3.2) (�) and (9.3.3) (×), respectively. An exponential
law is observed for each representation. The straight line is the least square fit of the
data.

where γs ≃ 1.88, γw ≃ 1.62 are estimated by using the least square fitting for the2467

Seine river and the Wimereux river, respectively. This result implies that the mean2468

frequency of a given mode is γ times larger than the mean frequency of next one. We2469

notice that these values are significantly different from 2, which would correspond to a2470

dyadic filter bank, which are reported for white noise (Wu & Huang, 2004), fractional2471

Gaussian noise (Flandrin et al., 2004; Flandrin & Gonçalvès, 2004) and turbulence2472

time series (Huang et al., 2008). However, it still indicates that the EMD algorithm2473

acts a filter bank here.2474

We list the mean period T (in days) in Table 9.1, where T = 1/ω. Since the2475

three above mentioned mean frequency estimators give almost the same value, we2476

thus only present the value estimated by Eq. (9.3.1). One can find that the EMD2477

approach captures the annual cycle, which is the 8th and 9th mode for the Seine river2478

and Wimereux river, respectively. Both rivers belong to the same climate and it is2479

expected that large scale modes are correlated. However, the data at daily scale are2480

not (the cross-correlation at this scale is 0.256); this is due to the influence of small2481
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Figure 9.6: Representation of the cross-correlation ρws between IMF modes from the
Seine and Wimereux rivers. The data span is taken from 1 January 1981 to 27 May
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As expected, the annual cycle shows a strong correlation with a coefficient ρws(9, 8) =
0.426. The coefficient of the most correlated modes is ρws(11, 11) = 0.579. These two
strong correlations are then marked by �.

scales. The cross-correlation between two IMF modes is defined as 2482

ρws(i, j) =
〈Cw,iCs,j〉

〈C2w,i〉
1/2〈C2w,i〉

1/2
(9.3.5)

where 〈∙〉 means ensemble average. The corresponding cross-correlation ρws(i, j) is 2483

then plotted in Fig. 9.6, where the most correlated modes are marked by �. The 2484

large scale modes are correlated as expected. More precisely, we observe a larger 2485

cross-correlation between the annual cycle modes, ρws(9, 8) = 0.426, and the most 2486

correlation coefficient is ρws(11, 11) = 0.579, with mean periods of about 6 and 8 2487

years for the Seine river and the Wimereux river, respectively. 2488

We then replot the annual cycle for the Seine river (thin solid line) and Wimereux 2489

river (thick solid line) in Fig. 9.7 (a). One can find that their shapes are almost the 2490
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Figure 9.7: Most correlated IMF modes: (a) the annual cycle mode for the Seine
river (thin solid line) and the Wimereux river (thick solid line), (b) the reconstruction
of the large scale part for the Seine river (thin solid line) and the Wimereux river
(thick solid line). We took the IMF modes 11 ∼ 12 from the Seine river and 11 ∼ 13
from the Wimereux river, which means periods larger than 3 years, to reconstruct the
large scale part. Graphically, they have the same evolution trend on range 1 January
1981 to 28 May 2006.

same on the range from 1 January 1981 to 28 May 2006. We also reconstruct the2491

large scale signal from those modes, with mean period larger than 3 years, 11th and2492

12th from the Seine river (thin solid line), and 11th to 13th from the Wimereux river2493

(thick solid line). The result is shown in Fig. 9.7 (b): they have almost the same2494

shape and evolution trend.2495

9.4 HSA Results2496

In order to characterize the intermittent properties of river flow fluctuations, we2497

consider here HSA and arbitrary order HSA analysis. We first compare the Hilbert2498



178 Chapter 9. Analysis of River Flow Fluctuation

1   10  100 
10

6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

year−1

2.54

 

 

E
n
er
gy
sp
ec
tr
u
m
(a
rb
it
ra
ry
u
n
it
)

(a)

2.45

 

 

HSA
Fourier

1  10 100
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

year−1

E
n
er
gy
sp
ec
tr
u
m
(a
rb
it
ra
ry
u
n
it
)

 

 
(b) HSA

Fourier

Figure 9.8: Comparison of the Hilbert marginal spectrum (dashed line) and Fourier
spectrum (solid line) for (a) the Seine river, (b) the Wimereux river. For the Seine
river, a power law behaviour is observed on the range 6 < ω < 80 year−1 , or 4.5 ∼ 60
days: this range is marked by the vertical dashed lines. The scaling values are 2.54
and 2.45 for Hilbert spectrum and Fourier spectrum, respectively. The vertical solid
line indicates the annual cycle.

marginal spectrum (dashed line) and Fourier spectrum (solid line) in Fig. 9.8 for (a) 2499

the Seine river, and (b) the Wimereux river to identify the power law range, where 2500

the scale invariance holds. For the Seine river, both methods capture the annual cycle 2501

(vertical solid line) and show power law behaviour on the range 6 < ω < 80 year−1 or 2502

from 4.5 to 60 days, with scaling exponent 2.54 and 2.45, respectively. The power law 2503

range is between synoptic and intraseasonal scales (Zhang, 2005). The latter may be 2504

linked to the Madden-Julian Oscillation (MJO), since some connection between and 2505

the North Atlantic Oscillation (NAO) and MJO have been found (Cassou, 2008). For 2506

the Wimereux river, the power law range is less clear. We therefore only apply below 2507

the arbitrary order HSA analysis on the Seine river. 2508

Since we are concerned with the scaling property in the above range, we thus 2509

divide the entire time series into 16 segments, each one has 2 × 365 points, 2 years 2510

each. The arbitrary order Hilbert marginal spectra are shown in Fig. 9.9, for q = 0, 2511
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Figure 9.9: Representation of arbitrary order Hilbert marginal amplitude spectra
Lq(ω) for the Seine river, where q = 0, 1, 3, 4, 5 and 6. A power law behaviour
is observed in all cases on the range 6 < ω < 80 year−1. The vertical dashed lines
indicate the power law range. The corresponding scaling values are shown in each
figure.

1, 3, 4, 5 and 6. Power law behaviour is then observed in all cases on the range2512

6 < ω < 80 year−1. The corresponding scaling exponents ξ(q) are estimated on this2513

range by using least square fitting with 95% confidence limit, Fig. 9.10 shows the2514

scaling exponents ξ(q) (#). This curve is concave, which indicates the multifractal2515

properties of the river flow discharge (Pandey et al., 1998; Kantelhardt et al., 2003,2516

2006). For comparison, we also show a reference line qH + 1 (solid line), where2517

H = ξ(1) − 1 = 0.84 ± 0.08, which corresponds to the mono-scaling case. The2518

departure from this reference mono-scaling line is then shown in inset.2519



180 Chapter 9. Analysis of River Flow Fluctuation

0 1 2 3 4 5 6
1

2

3

4

5

6

q

ξ(
q)

 

 

H = ξ(1)− 1

0 2 4 6

-1.5

-1

-0.5

0

0.5

q

ξ(
q)
−
qH
−
1

Figure 9.10: Scaling exponents ξ(q) (#) for the Seine river. The inset shows the
departure from the reference line qH + 1, where H = ξ(1) − 1. The shape of these
scaling exponents is concave, which indicates the small scale intermittency nature of
river flow.

9.5 Discussion 2520

We compare the above observation with the conventional structure function analysis, 2521

the traditional way to extract the scaling exponents. We plot the result in Fig. 9.11, 2522

where q = 1 (�), 2 (#) and 3 (♦), respectively. Some scaling portion are visible on 2523

these figures, of a relatively limited amplitude. To reveal the scale invariance more 2524

clearly, we consider the Extended Self-Similarity (ESS) properties, a relative scaling 2525

expressed as (Benzi et al., 1993b) 2526

〈∆xq〉 ∼ 〈∆x〉ψ(q) (9.5.1)

where in case of scaling, we have ζ(q) = Hψ(q). Eq. (9.5.1) can be used to estimate 2527

more accurately the exponents ψ(q). The ESS is verified for the Seine river on range 2528

2 < τ < 60 days, see Fig. 9.12. Figure 9.13 shows the ESS result for the Wimereux 2529
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Figure 9.11: Structure function for (a) the Seine river, and (b) the Wimereux river,
where q = 1 (�), 2 (#) and 3 (♦). The vertical dashed lines indicate the range
4.5 ∼ 60 days. The annual cycle influence is also indicated by the solid line.

river. It is scaling and is rather scattered. We then show the relative scaling exponents2530

ψ(q) and the normalized scaling exponents (ξ(q)− 1)/(ξ(1)− 1) in Fig. 9.14. In the2531

mono-scaling case and when there is no large scale forcing, they should collapse on a2532

solid line ψ(q) = q. The same approach is applied to the Wimereux river. In this case2533

the HSA approach is not displaying any clear scaling range. We thus use the ESS2534

approach and compare the resulting curve ψ(q) to the one obtained from the Seine2535

river. The Wimereux river scaling exponents are saturating at ψ(q = 1), and the curve2536

is quite different from the Seine river. This shows that the Wimereux river is more2537

intermittent than the Seine river: which may come from the fact that its catchment2538

basin is much smaller, hence its discharge variation can be more rapid. This may also2539

be an effect of strong oscillations that reduce the multifractal degree (see Telesca &2540

Macchiato (2004); Bolzan et al. (2009)). It is also interesting to see in the same graph2541

the difference between the HSA based exponents and structure function’s exponents2542

for the Seine river. The discrepancy can be interpreted as coming from the influence2543

of the periodic component in the time series. Indeed we have shown in Huang et al.2544
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Figure 9.12: Extended self-similarity test of the Seine river on range 2 < τ < 300
day. The relative scaling is very well captured for all moments.

(2009d,a), see also chapter 5, that the influence of periodic components is stronger 2545

on structure function than on HSA exponents, which can be linked to the fact that 2546

EMD acts a filter bank (Flandrin & Gonçalvès, 2004; Flandrin et al., 2004; Huang 2547

et al., 2008; Wu & Huang, 2004). Periodic components tend to increase the value of 2548

ζ(q) relative to the real theoretical curve. 2549
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Figure 9.13: Extended self-similarity test of the Wimereux river on range 2 < τ < 300
day.
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9.6 Summary2550

In this chapter we applied for the first time the EMD methodology to river flow time2551

series. Using daily river flow discharge data, 32 years recorded in the Seine river2552

(France), and 25 years recorded in the Wimereux river (France), we have shown that2553

the time series can be successfully separated into several IMF modes. Exponential2554

laws for the mean frequency of each mode have been found, with exponents γs = 1.882555

and γw = 1.62 for the Seine river and the Wimereux river, respectively. These values2556

are smaller than 2, the value for dyadic filter bank. Even though, it still confirmed2557

that the EMD algorithm acts as a filter bank for river flow data. Furthermore, strong2558

cross-correlation have been observed between annual cycles and the large scale modes2559

having a mean period larger than 3 years. Based on the correlation analysis results,2560

we have found that the annual cycle mode and the reconstructed large scale part have2561
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almost the same evolution trends. 2562

We have also characterized the intermittency of the time series over the ranges 2563

showing scaling properties. For the Seine river, we observed power laws for the first 2564

six order Hilbert marginal spectra on the range 6 < ω < 80 year−1 or 4.5∼60 days, 2565

between synoptic and intraseasonal scales. The corresponding scaling exponents ξ(q) 2566

indicate the small scale multifractal nature of the river flow data analyzed here. 2567

The differences obtained using the structure functions approach and the frequency 2568

based HSA approach have been emphasized, which is especially clear for large order 2569

moments associated to the more active fluctuations. We have interpreted this differ- 2570

ence as coming from the strong annual cycle which has more influence on structure 2571

functions scaling exponents than on the Hilbert-based approach. We have also com- 2572

pared the scaling exponents estimated from the ESS method, for the Seine river and 2573

Wimereux river; the much smaller exponents obtained for the Wimereux river express 2574

a higher degree of multifractality, which was interpreted as coming from the inertia 2575

associated to the large scale basin for the Seine river, whereas small rivers such as 2576

the Wimereux river may be more sensitive to local precipitation events. 2577

Several previous studies have considered scaling properties of river flows using 2578

other methods such as rescaled range analysis, trace moments, double trace mo- 2579

ments, wavelet analysis, multifractal detrended fluctuation analysis (MFDA). We ap- 2580

plied here a new method which gives results similar to the classical methods (structure 2581

functions, wavelet analysis, MFDA) for fractional Brownian motion or pure multifrac- 2582

tal processes (Huang et al., 2009a), see also chapter 3. However, we have shown in the 2583

same chapter that strong deterministic forcing had important influence on classical 2584

methods, whereas the Hilbert-based approach was much more stable and presented 2585
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less influence (Huang et al., 2009d,a), see also chapter 3. This method seems hence2586

more appropriate for environmental time series that possess often strong periodic2587

components superposed to scaling regimes. The origin of this stability property is2588

the adaptative and local approach which is at the heart of the Hilbert-based method.2589

We have compared here two rivers of very different size and catchment basin in2590

order to compare their scaling properties. One of the objectives of scaling analy-2591

ses of river flow time series is indeed to detect some differences among rivers, but2592

also to evaluate some universality, i.e. some general similarity in statistical proper-2593

ties. This was done for normalized pdfs (Dahlstedt & Jensen, 2005), for river flow2594

volatilities (Livina et al., 2003b,a), and for scaling regimes (Tessier et al., 1996) or2595

multifractal parameters (Pandey et al., 1998). We hope that the method presented2596

in this paper, which we claim to be well adapted to environmental time series, will2597

help this quest for universal properties of river flow scaling statistics.2598
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Chapter 102599

Marine Turbulence in the Surf2600

Zone2601

One of the main properties of fully developed turbulence is its inertial range intermit-2602

tent properties, between a large-scale injection of energy and a small-scale dissipa-2603

tion (Frisch, 1995; Pope, 2000). In the surf zone, when waves break, the wave energy2604

is transferred into turbulent motions through a violent, highly energetic process asso-2605

ciated with breaking wave times scales, typically a few seconds, and then turbulence2606

is dissipated at smaller scales (Svendsen, 1987; Battjes, 1988; Svendsen, 2005). The2607

surf zone environment is a complex system: there are water turbulent motion at2608

different scales, breaking waves feeding turbulence at the surface, and residual tur-2609

bulence persisting from one wave to the next (Svendsen, 1987; Jaffe & Rubin, 1996).2610

This highly energetic system has a strong effect on sediment transport dynamics,2611

morphological changes associated with it, and shoreline evolution processes (Jaffe &2612

Rubin, 1996; Cox et al., 1996; Trowbridge & Elgar, 2001; Masselink & Russell, 2006;2613

Torres-Freyermuth et al., 2007), and also on ecological processes through influences2614

187
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on feeding, settlement, fertilization, bloom dynamics, etc. (Denny & Shibata, 1989; 2615

Du Preez et al., 1990; Mead & Denny, 1995). 2616

In the intertidal zone, transport models for either sediments or living organisms 2617

need the description of surf zone velocity fluctuations. It is then important in this 2618

context to be able to characterize these velocity fluctuations for a wide range of scales, 2619

including highly energetic breaking waves scales and smaller turbulent scales. This 2620

is not an easy task because of the unsteadiness of breaking waves: phase-average 2621

methods are not straightforward since the wave forcing is not monochromatic; ocean 2622

breaking waves are nonlinear and present random components. 2623

We use here for this the Empirical Mode Decomposition method and the Hilbert 2624

spectral analysis. It has already been applied to nonstationary ocean wave data (Hwang 2625

et al., 2003; Veltcheva & Soares, 2004), but these studies focus on deep water ocean 2626

waves, which are different from surf zone breaking waves. Here we consider experi- 2627

mental turbulent velocity time series recorded in the surf zone. The results presented 2628

in this chapter are published in Schmitt et al. (2009)[Schmitt, et al. J. Mar. Sys., 77, 2629

473-481, 2009.] 2630

10.1 Characterization of intermittency using cu- 2631

mulants 2632

Structure Functions and Cumulants 2633

One of the characteristic features of fully developed turbulence is the intermittent 2634

nature of velocity fluctuations (Frisch, 1995). Intermittency provides corrections to 2635

Kolmogorov’s scaling law (Kolmogorov, 1941a), which are now well established and 2636



10.1. Characterization of intermittency using cumulants 189

received considerable attention in the last twenty years. Let us recall how to quan-2637

tify intermittency effects on scaling laws for Eulerian isotropic turbulence. Denoting2638

∆Vℓ = V (x + ℓ) − V (x) the longitudinal increments of the Eulerian velocity field at2639

a spatial scale ℓ, their fluctuations are characterized, in the inertial range, using the2640

scale invariant moment function ζ(q)2641

〈|∆Vℓ|
q〉 = Aqℓ

ζ(q) (10.1.1)

where q > 0 is the order of moment and Aq is a constant that may depend on q.2642

Kolmogorov’s initial proposal, for a non-intermittent constant dissipation, leads to2643

ζ(q) = q/3 (Kolmogorov, 1941a). For intermittent turbulence, ζ(q) is proportional to2644

a cumulant generating function, and is nonlinear and concave; only the third order2645

moment has no intermittency correction: ζ(3) = 1. The accuracy of the scaling of2646

Eq. (10.1.1) is usually tested for each order of moment, for various values of ℓ in log-log2647

plot, using a least-square regression (Anselmet et al., 1984). The values of ζ(q) which2648

are then obtained may be compared and fitted to different multifractal models (among2649

many studies, see She & Lévêque (1994); Chen & Cao (1995); Arneodo et al. (1996);2650

Boratav (1997); Schertzer et al. (1997); van de Water & Herwijer (1999); Anselmet2651

et al. (2001)). This way of estimating ζ(q) depends on the choice of the scaling range:2652

one usually estimates ζ(q) for the range of scales where the exact relation ζ(3) = 1 is2653

verified, assuming that the scaling range is the same for each order of moment.2654

Here there is no large scaling range: we therefore consider another approach:2655

instead of studying the scale dependence for each moment, we focus on the moment2656

dependence using cumulants at a given scale. The cumulant approach has already2657

been undertaken in the scaling turbulence framework in a few studies (see e.g. Delour2658

et al. (2001); Eggers et al. (2001); Chevillard et al. (2005)), where the cumulants of2659
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the cascade process (Eggers et al., 2001) or a polynomial development of the cumulant 2660

generating function (Delour et al., 2001; Chevillard et al., 2005) have been considered; 2661

see also Ref. Venugopal et al. (2006) for an application to multifractal properties of 2662

rainfall. 2663

Non Analytical Cumulant Generating Functions 2664

We consider here a random variable X. The cumulant generating function of its 2665

generator g = log |X| is defined as (Gardiner, 2004) 2666

Ψ(q) = log〈|X|q〉 (10.1.2)

The function Ψ(q) is also the second Laplace characteristic function of the generator: 2667

Ψ(q) = log〈eqg〉. As a second characteristic function, it is convex (Feller, 1971), and 2668

can be developed using the cumulants 2669

Ψ(q) =
∞∑

p=1

cp
qp

p!
(10.1.3)

where cp is the p
th cumulant. Let us recall the expression for the first cumulant 2670

c1 = 〈g〉 = 〈log |X|〉 (10.1.4)

We also know that c2 = 〈g
2〉 − c21, and cn depends on all moments 〈g

p〉 (1 ≤ p ≤ n). 2671

The theorem of Marcienkiewicz states that, if it exists, the development in Eq. (10.1.3) 2672

is either infinite, or if finite, of degree not higher than 2 (Gardiner, 2004). In fact, 2673

the development in Eq. (10.1.3) may not exist in case of non-analycity of Ψ(q). This 2674

is the case when g is a stable process whose second order moment (and hence second 2675

order cumulant) diverges (Feller, 1971; Taqqu & Samorodnisky, 1994). Stable random 2676
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variables (sometimes also called “Lévy” in the physics literature) correspond to vari-2677

ables that have a domain of attraction and being stable under addition (Feller, 1971;2678

Taqqu & Samorodnisky, 1994; Janicki & Weron, 1994). They have been introduced2679

in the 1930s by Paul Lévy and correspond to a generalisation of the Gaussian law.2680

The main parameter is the index α bounded between 0 and 2. The case α = 2 corre-2681

sponds to the Gaussian law. Log-stable models for turbulent intermittency (Schertzer2682

& Lovejoy, 1987; Kida, 1991) correspond to a nonanalytic scaling moment function2683

(see also Schertzer et al. (1997)). In this case, we have instead of Eq. (10.1.3)2684

Ψ(q) = c1q + cαq
α (10.1.5)

where 0 ≤ α ≤ 2 is the index of the stable process and cα is the cumulant of order α.2685

When α = 2 the generator is a Gaussian process and there are only two cumulants2686

in the development of Eq. (10.1.3). To check this model, we consider in the following2687

the function2688

Φ(q) = Ψ(q)− c1q (10.1.6)

For a stable law, Φ(q) should be proportional to qα; we check this below in log-log2689

plot using experimental data, for a given time or frequency scale.2690

Concerning the choice of the random variable w, we will compare the structure2691

function approach (X = |∆Vℓ|, where ℓ is the time scale) and the EMD-Hilbert2692

spectral analysis approach (X = A, the moments being estimated from the pdf2693

p(A|ω) for a given frequency value ω).2694
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10.2 Presentation of the experimental database 2695

The data analyzed here have been recorded using an Acoustic Doppler Velocimeter 2696

(ADV) from Sontek/YSI, operating under autonomous operation conditions, at a 2697

25Hz sampling rate, and providing the 3D velocity vector averaged over a small 2698

volume of about 250mm3 at a 5 cm distance from the ADV probe, with an accuracy 2699

of 1% of the measured value. Measurements have been performed in the beach in 2700

front of the research laboratory for Littoral and Coastal Ecosystems (ELICO): Eastern 2701

English Channel at Wimereux city (North of France, near Boulogne-sur-mer): this 2702

is a flat sand beach with a megatidal regime that varies between 8 to 11m (see 2703

Fig. 10.1). A heavy metallic structure has been built in the laboratory ELICO as a 2704

support for the ADV, its electronics canister, and its battery canister (see Fig. 10.2). 2705

The measurement location is the intertidal zone in the beach, corresponding to the 2706

surf zone. The Eastern English Channel is a megatidal sea with strong currents. The 2707

metallic structure has been fixed to the ground using hooks; it was built in thin tubes 2708

to avoid a too strong stress on the structure from the tide and currents. 2709

Figure 10.1: A map showing the location of the measurements, in the French coast
of the Eastern English Channel (marked ”X” in the map).
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Figure 10.2: A photography of the ADV measuring device and its support, in the
intertidal zone, before being submerged by the tide.

The measurements have been done on 9 and 10 June, 2004, during 2 tidal cycles,2710

at a height of 50 cm from the bottom. Measurements have been considered when2711

there was approximately at least 1m of water above the experimental device. Due to2712

the tidal activity, this distance was between 1 to 3m. We considered 27m sections2713

of the U component of the velocity vector, corresponding to the direction perpendic-2714

ular to the shore, each of length 32, 000 data points (each of 21 min duration). We2715

cannot consider longer sections, since the internal programming of the ADV inter-2716

rupts the continuous recording of data, to synchronise the different clocks. The 272717

sections have been chosen among the whole data set, in order to have a large enough2718

internal correlation of bursts, corresponding to a precise enough estimation of the2719

velocity. We have thus a total of 864, 000 data points, separated into 27 sections.2720

A one minute portion is shown in Fig. 10.3: strong fluctuations at small scales are2721

visible, but the whole time series seems stationary. In the following we analyze the2722
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Figure 10.3: A two minutes portion of the experimental velocity data, showing their
high variability at small scales.

data using the EMD method, the Hilbert-based amplitude-frequency method, and 2723

cumulant generating functions. 2724

10.3 EMD and HSA results 2725

EMD Results 2726

The analyses below are performed over the entire dataset, and the results displayed 2727

after performing an ensemble average over 27 realizations, where each segment of 2728

length 32, 000 data points is one realization. After decomposition, the original ve- 2729

locity series is decomposed into several IMFs (see Fig. 10.4), from 13 to 16 modes 2730

(depending on the segment) with one residual. As visible in this figure, the time 2731

scale is increasing with the mode; each mode has a different mean frequency, which 2732

is estimated by considering the energy weighted mean frequency in the Fourier power 2733

spectrum of each mode time series; the relation between mode number m and mean 2734

time scale is displayed in Fig. 10.5. The straight line which is obtained in log-linear 2735

plot suggests the following relation between the mean time scale T and m, for modes 2736
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Figure 10.4: IMFs estimated from one 32, 000 data points segment of the velocity
time series: mode number increasing from top to below. The time scale is increasing
with the mode. The residual time series is also plotted.

between 4 and 132737

T = T0e
λm (10.3.1)

where T0 = 0.038 is a constant and the coefficient λ = 0.667 is graphically estimated.2738

We remark that eλ = 1.94 is close to 2, showing that each mode is associated with a2739

time scale almost twice as large as the time scale of the preceding mode; this property2740

corresponds to a dyadic filter bank in the time domain. This property was shown2741

previously using stochastic simulations of Gaussian noise and fractional Gaussian2742

noise (fGn) (Flandrin & Gonçalvès, 2004; Wu & Huang, 2004), and also for fully2743

developed turbulence data (Huang et al., 2008). It is interesting to note here that2744

this is still verified for surf zone turbulence data possessing a strong forcing in the2745

middle of the studied range.2746
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Figure 10.5: Mean time scales associated with each mode. There is an exponential
increase for mode numbers between 4 and 13.

HSA Results 2747

Figure 10.6 represents the averaged Fourier power spectrum of the data, superposed 2748

with the Hilbert-Huang power spectrum. It is visible that the wind wave breaking 2749

scales (between 2 and 16 s) correspond to a strong forcing of the data. This power 2750

spectrum is similar to power spectra presented by Trowbridge & Elgar (2001) for surf 2751

zone turbulent data recorded in a sandy Atlantic beach near Duck, North Carolina. 2752

A −5/3 power spectrum can be found for large scales (minutes or larger) and scales 2753

smaller than 1 s could also be characterized by such spectrum: the range is too small 2754

to be affirmative on this last point. The Hilbert-Huang spectrum which is superposed 2755

presents a similar shape, despite its different mathematical definition for the frequency 2756

as well as for the spectrum. For the smaller scales, the shape is different, since the 2757

Hilbert-Huang power spectrum falls down very quickly. 2758

The EMD and Hilbert spectral analysis methodological frameworks provide a way 2759
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Figure 10.6: Fourier spectrum of the data (E(f)), superposed to the Hilbert marginal
spectrum (H(f)). The latter has been vertically shifted for clarity. A strong wind
wave breaking at scales between 2 and 16 s is clearly visible on both power spectra.
It is interesting to notice that except for the smaller scales, they have the same shape,
despite a different mathematical definition. The dotted straight line has a slope of
−5/3.

to represent the fluctuations in an amplitude-frequency space: the joint pdf p(ω,A)2760

is shown in Fig. 10.7. It can be seen graphically that the amplitudes decrease with2761

increasing frequencies. This pdf can be used to estimate many statistical information2762

such as the Hilbert spectrum, and the cumulants as shown below. It can also be2763

used to estimate the skeleton As(ω) which corresponds to the amplitude for which2764

the conditional pdf p(A|ω) is maximum:2765

As(ω) = A0 ; p(A0, ω) = max
A
{p(A|ω)} (10.3.2)

and the skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)}, which is shown in2766
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Figure 10.7: Representation of the joint pdf p(ω,A) (in log scale) of velocity fluctu-
ations in an amplitude-frequency space.

Fig. 10.8. A power law behaviour is found : 2767

pmax(ω) ∼ ω−β2 (10.3.3)

where β2 ≃ 1.7, close to the Kolmogorov value 5/3. This new result corresponds to 2768

an experimental fact that needs further investigation in future studies. 2769

10.4 Non analytic cumulant generating function 2770

We consider here the cumulant analysis applied to the velocity fluctuations, using the 2771

EMD and Hilbert spectral analysis described above, and compare this to the same 2772

analysis using structure functions. 2773

We first show the estimation of the first cumulant c1 in Fig. 10.9. In this figure, 2774

the first cumulant is estimated as given by Eq. (10.1.4), using on the one hand, the 2775
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Figure 10.8: The skeleton of the joint pdf pmax(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 1.70.

amplitude-frequency pdf for a given value of ω, and taking the time scale ℓ = 1/ω2776

(denoted “HSA” on the figure). On the other hand, it is superposed to the estimate of2777

the first cumulants estimated for all modes separately, as function of scale, through2778

the correspondence given by Fig. 10.5 (denoted “EMD” in the figure). It is also2779

superposed to the first cumulants estimated using the structure function approach,2780

where the scale is the time increment: this value of c1 has been vertically shifted2781

by 0.6 to be compared to the other curves. Figure 10.9 shows that c1 increases2782

strongly for energetic scales associated with wave breaking, between 2 and 20 s. It2783

also shows that the EMD-based first cumulant is very close to the Hilbert spectral2784

analysis one (HSA). However the HSA approach is able to provide the first cumulant2785

on a continuous range, since it is based on a frequency estimation, whereas the EMD2786

curve is discrete in scale, being associated with the characteristic scale of each mode.2787
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Figure 10.9: Estimation of the first cumulant c1, using three different methods: (i)
estimation in frequency space using the joint amplitude-frequency pdf (dotted line
denoted HSA); (ii) estimation using the empirical mode decomposition, done for each
mode, where the time scale is estimated using the mode-scale correspondence (open
dots, denoted EMD); and (iii) estimation using the structure functions.

We also see from this figure that the first cumulant estimated using the structure 2788

function is quite far from the other estimates: the plateau obtained at large scales 2789

comes from the fact that the difference V (t + ℓ) − V (t) is not removing the forcing 2790

when the scale ℓ is larger than the forcing scale. This shows that for such data, the 2791

EMD and HSA methods provide a more reliable estimation of the first cumulant. 2792

The functions Φ(q) are then estimated, for moments from 0 to 8, for scales between 2793

1/25 s to 10 minutes. For comparison purposes, the analysis is done using the HSA 2794

approach in Eq. (3.1.3) and using the structure functions. An example is shown in 2795

Figures 10a-d, for fluctuations at the scale of 2 s. Figures 10a-b show the analyses 2796

using the HSA approach, in lin-lin and log-log plots, and Fig. 10.10 c-d show the same 2797
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Figure 10.10: Φ(q) vs. q estimated for q between 0 and 8 for a scale ℓ = 2 s, chosen here
for illustration purpose. Experimental values are given by continuous lines whereas
dotted lines correspond to power-law fits. The proportionalities of Φℓ(q) to q

α confirm
the nonanalytic framework applied here. (a): lin-lin plot using HSA mehod; (b): log-
log plot using HSA method; (c) lin-lin plot using the structure functions; (d) log-log
plot using the structure functions.

for the structure functions. Figures 10.10a and 10.10c show convex and increasing2798

functions. The non-analytical behaviour of these curves are emphasized in log-log2799

plots (Fig. 10.10 b and d). The straight lines which are obtained confirm the non-2800

analycity. Using a best fit, the slopes of these straight lines are estimated for all2801

scales, giving directly the exponent α in Eq. (10.1.6). Figure 10.11 shows the values2802

of α estimated for different scales ℓ, for both the HSA and the structure function2803

methods. Except at both ends, the values are relatively independent of scale, and2804

we can estimate a mean value: we find α = 1.52 ± 0.07 for the HSA estimates2805
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Figure 10.11: Values of α estimated for different scales ℓ: comparison between the
HSA and structure functions methods.

and α = 1.60 ± 0.07 for the structure functions estimates, where error bars are 2806

coming from different scales. These values are below 2 and approximately compatible 2807

between the two methods. Figure 10.12 shows the non-analytical cumulant (it cannot 2808

be denoted second cumulant) cα(ℓ) given by Eq. (10.1.5). The curves are different 2809

for both methods, but their mean values are close. These results show that the log- 2810

normal framework is not adequate, to be replaced by a log-Lévy stochastic modelling. 2811

Simulations of such random variables can be performed using available stochastic 2812

simulation algorithms (Janicki & Weron, 1994). 2813

10.5 Summary 2814

We have considered here surf zone velocity measurements recorded in the Eastern 2815

English Channel using a 25Hz sampling sonic anemometer. Such data is character- 2816

ized by the transformation of wave motion into small-scale turbulent motion (Battjes, 2817
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1988). An important issue in this complex framework is to be able to characterize2818

the contribution of each scale to velocity fluctuations, since the modelling of sediment2819

and living organisms transport and suspension is associated with such velocity fluc-2820

tuations (Cox et al., 1996; Svendsen, 2005; Torres-Freyermuth et al., 2007). We have2821

analysed this series here using the EMD methodology, associated with Hilbert spec-2822

tral analysis. We have provided the mode versus time scale relationship, showing that2823

for such data base, the dyadic mode decomposition which has been found in Gaussian2824

noise is still valid. We have also provided the Fourier and Hilbert Huang marginal2825

spectrum, showing the high energy associated with wave breaking scales, between 22826

and 20 s. In another section, we have analyzed the fluctuations at each scale using2827

cumulants. The cumulants could be estimated on a continuous range of scales using2828

the joint amplitude-frequency pdf of velocity fluctuations that was estimated using2829

the EMD-HSA framework. The non-analytical properties of cumulants was shown for2830



204 Chapter 10. Marine Turbulence in the Surf Zone

each scale, for both methods. We showed, using the first cumulant, that the structure 2831

function approach saturates at large scales, whereas the HSA based method is more 2832

precise in its scale approach; this therefore shows the strength and usefulness of this 2833

new EMD-HSA method combined to cumulant analysis. It was shown here to be 2834

efficient for surf zone velocity analysis, but could be also applied to other time series. 2835

Let us note that our approach has considered the time series globally, while the 2836

depth of the water varied between 1 and 3 meters. It may be that some statistical 2837

properties depend on the depth of the water, requesting a more precise analysis, 2838

considering separately different sections of the time series. We have checked that 2839

this is indeed the case (not shown here), considering the power spectra; however, 2840

the shape of the latter did not vary much. We then keep for future studies a more 2841

precise analysis of the depth relation, noting here that the results we obtained must 2842

be considered as a mean value for different depths between 1 and 3 meters. 2843

We have shown that the log-stable model applies very well, with a characteristic 2844

exponent of α = 1.60 ± 0.07 valid for all scales. This property may be used for 2845

stochastic simulations. Such modelling in the surf zone may be useful for several 2846

applications, such as plankton-turbulence coupling, energetics studies associated with 2847

bloom formation, to fertilization processes, or feeding rate of small fishes, or also 2848

sediment transport characterization and modelling. 2849
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Conclusion and Discussion2851
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Discussion and Conclusion2852

In this chapter, we summarize the main results and conclusions of this thesis. We2853

provide also some comments on these results.2854

Main Results2855

The Hilbert-Huang transform is a scale dependent decomposition method with very2856

local ability in both physical and spectral domains. The method, we proposed here,2857

arbitrary order Hilbert spectral analysis, is an extended version of the HHT devoted2858

to take into account intermittency in a scaling framework. It inherits all the advan-2859

tages and shortcomings of the HHT. The main advantages of the present methodology2860

are the very local abilities both in physical and spectral domains, and the fully adap-2861

tiveness. The main drawback is its lack of rigorous mathematical foundation.2862

Arbitrary Order Hilbert Spectral Analysis2863

We validated the idea of the arbitrary order Hilbert spectral analysis by using a2864

simulated fractional Brownian motion time series and synthesized multifractal time2865

series. We found that the Hilbert-based approach provides a more precise estimator2866

of the scaling exponents than the classical structure function. We also found a general2867

property of the zeroth order Hilbert marginal spectrum L0(ω), the marginal probabil-2868

ity density function (pdf) of the instantaneous frequency ω, with a scaling exponent2869

207
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ξ(0) ≃ 1. This implies that not only the amplitude has a distribution law, but also 2870

the scale (instantaneous frequency) itself has a distribution law. However, we still 2871

need more theoretical work to fully understand the empirical mode decomposition, 2872

the first step of the present methodology, and the arbitrary order Hilbert spectral 2873

analysis. 2874

Structure Function and Autocorrelation Function of Velocity Increments 2875

We investigated the structure function and the autocorrelation function of the veloc- 2876

ity increments time series ∆uℓ(t). Based on statistical stationarity assumption, we 2877

proposed an analytical model for them. By a definition of a cumulative function, we 2878

found that the structure function is strongly influenced by the large scales. We also 2879

shown experimentally that it is also strongly influenced by a single scale (or large 2880

scale deterministic forcing). We proved analytically that the autocorrelation function 2881

of the velocity increments has its minima value at the separation scale ℓ. A power 2882

law relation is also suggested by our analytical model. The power law is then verified 2883

by fractional Brownian motion and confirmed by the turbulent database. 2884

Experimental Homogeneous and isotropy Turbulent Database 2885

We applied the empirical mode decomposition and arbitrary order Hilbert spectral 2886

analysis to an experimental homogeneous and isotropy turbulent database. We found 2887

that the EMD algorithm acts a dyadic filter bank. We observed a scaling trend on 2888

the joint pdf of the velocity fluctuations with the scaling exponent quite close to 2889

the Kolmogorov value. We recovered the structure function scaling exponent in an 2890

amplitude-frequency space for the first time. We then tested the isotropy ratio in 2891

Hilbert frame. It is found that the generalized isotropy ratio decreases linearly with 2892
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q.2893

Passive Scalar2894

We applied the empirical mode decomposition and arbitrary order Hilbert spectral2895

analysis to a passive scalar (temperature). Due to the strong ramp-cliff structures,2896

the classical structure function fails. The Hilbert-based approach provides a scaling2897

exponent ξΘ(q) − 1 quite close to the scaling exponent ζ(q) of the fully developed2898

turbulent velocity field. It indicates that the scalar field may be not so intermittent2899

as what we believed before. However, more passive database should be investigated2900

under the present Hilbert framework to confirm the role of the ramp-cliff structures.2901

Extended Self-Similarity and Hierarchical Model2902

We generalized the traditional extended self-similarity into Hilbert frame. In the2903

present framework, according to the Kolmogorov 1962 theory, we have two special2904

case q = 0 and q = 3, which are not influenced by the intermittent effect. We2905

therefore proposed two ESS formula by plotting the arbitrary order Hilbert spectra2906

Lq(ω) against Lp(ω), where p = 0 or p = 3. It is found experimentally that both2907

of them provide the same scaling exponents. We then define a hierarchical spectral2908

function Lq(ω) by considering the ratio of two successive arbitrary order Hilbert2909

spectra Lp(ω). The scaling exponents Π(q) of the hierarchical functions decrease2910

linearly with q.2911

River Flow Discharge2912

We applied the Hilbert-based methodology to the daily river flow discharges of the2913

Seine river and Wimereux river. Both rivers are controlled by the marine west coast2914

climate of Northern France. After EMD decomposition, the original time series are2915
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separated into several IMF modes. We observed large correlation among the large 2916

scale IMF modes. We found the same evolution trend for the annual cycles and 2917

the reconstructed large scale between the Seine river and Wimereux river. We then 2918

characterized the small scale intermittent property in the Hilbert frame. Due to the 2919

effect of the strong annual cycle, the structure functions fail. 2920

Surf Zone Marine Turbulence 2921

We analyzed a surf zone marine turbulence time series. We characterized the scale 2922

invariant properties by considering the nonanalytical cumulant analysis. The log- 2923

stable model provides a characteristic exponent of α = 1.6±0.07 for all scales. These 2924

results may provide a new approach to separate waves from small scale turbulent 2925

motions. 2926

Future studies 2927

The results we shown in this thesis may be useful for modelling, which we do not 2928

consider here. However, it should be done in future studies. We list here some topics 2929

we may consider in future studies. 2930

1. Skeleton of the joint pdf p(ω,A) 2931

We found experimentally a skeleton of the joint pdf with a scaling behaviour. 2932

However, the exactly physical/mathematical meaning of this skeleton is not 2933

understood. We need more experimental and theoretical work on this topic to 2934

provide more understanding of the scaling property of the skeleton. 2935

2. Zeroth order Hilbert marginal spectrum L0(ω) 2936

The corresponding scaling exponent ξ(0) of the zeroth order Hilbert marginal 2937
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spectrum is found to be approximately equal to 1. The mathematical mean-2938

ing of the zeroth order Hilbert marginal spectrum is the marginal pdf of the2939

instantaneous frequency. It seems that it is a general property of the present2940

methodology. It implies that not only the amplitude, but also the scale (in-2941

stantaneous frequency) has a distribution law. But what is the exactly physical2942

meaning of this ξ(0) = 1 scaling exponent?2943

3. Kolmogorov 4/5 law2944

The famous Kolmogorov 4/5 law for the third order structure function is an2945

exact statistical solution of the Navier-Stokes equations. Does it hold for the2946

third order Hilbert marginal spectrum? The turbulent database we considered2947

in this thesis has no resolution on Kolmogorov scale. Thus we did not check2948

this topic in this thesis. It should be checked using other databases.2949

4. Turbulence modelling2950

We believe that the results presented in this thesis provide useful information2951

for turbulence modelling. We will link our results with turbulence modelling in2952

future studies. We need for this to be able to extend the present 1D to tensorial2953

quantities.2954

5. Passive scalar: ramp-cliff structure2955

The ramp-cliff structure is an important signature of passive scalar turbulence.2956

The structure functions, especially for high order moments, are strongly influ-2957

enced by this large scale structure. Thus, we should check more passive scalar2958

turbulence databases under the present framework in future studies.2959
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transformation par ondelettes. C. R. Acad. Sci. Paris Sé r. I Math, 321, 351358.3375
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