E. Chemical, . Of, . Gnrs, . Transport, and . Figure, Conductance profiles of 35-aGNR for six different edge geometries: pristine ribbon (dashed black lines), single defect (red lines), and average conductance for 500 nm long aGNRs containing 30 defects (blue lines) Total DoS for pristine (dashed lines), and D1 and D2 are also shown in lower-left figures in a) and b) In c) and d) it is shown that radical passivation by means of pentagon-and heptagon-type defects di-hydrogenation, re-establish conductance profile in the former case and partialy in the last one. D1H and D2H denote the di-hydrogenated pentagon and heptagon, respectively. Edge defect topologies containing odd-membered rings are also shown in a) for a single pentagon defect, D1, and e) 2 heptagons and 1 pentagon defect, D3. (from (206)) f) panel shows the small-hole defect due to a dimer extraction, D4 Clar's sextet representation for each edge geometry, spatial representation of the transmission eigenchannel is plotted at the energy marked by an arrow in their respective conductance profile figures. In all cases

E. Chemical, . Of, . And, . L. Properties, F. Picard et al., increasing global interest on mixing several scientific knowledge field, since our work unravels fascinating effects stemming from both chemistry and physics complexity at the nanoscale, The Journal of Physical Chemistry C, issue.140, pp.113-17347, 2009.

S. Latil, S. Roche, D. Mayou, and J. Charlier, Mesoscopic Transport in Chemically Doped Carbon Nanotubes, Physical Review Letters, vol.92, issue.25, p.256805, 2004.
DOI : 10.1103/PhysRevLett.92.256805

S. Latil, S. Roche, and J. Charlier, Electronic Transport in Carbon Nanotubes with Random Coverage of Physisorbed Molecules, Nano Letters, vol.5, issue.11, p.2216, 2005.
DOI : 10.1021/nl0514386

Y. Mao, X. Yan, and X. , First-principles study of transition-metal-doped single-walled carbon nanotubes, Nanotechnology, vol.16, issue.12, p.3092, 2005.
DOI : 10.1088/0957-4484/16/12/061

S. Campidelli, B. Ballesteros, A. Filoramo, D. Daz-daz, G. De-la-torre et al., Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via ???Click Chemistry???, Journal of the American Chemical Society, vol.130, issue.34, p.11503, 2008.
DOI : 10.1021/ja8033262

A. T. Collins, H. Kanda, J. Isoya, C. A. Ammerlaan, J. A. Van-wyk et al., Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst, Diamond and Related Materials, vol.7, issue.2-5, p.333, 1998.
DOI : 10.1016/S0925-9635(97)00270-7

S. Koizumi, Ultraviolet Emission from a Diamond pn Junction, Science, vol.292, issue.5523, p.1899, 2001.
DOI : 10.1126/science.1060258

E. Ekimov, Superconductivity in diamond, Nature, vol.428, issue.6982, p.542, 2004.
DOI : 10.1038/nature02449

A. Hirsch, Z. Chen, and H. Jiao, Spherical Aromaticity inIh Symmetrical Fullerenes: The 2(N+1)2 Rule, Angewandte Chemie, vol.125, issue.21, p.3915, 2000.
DOI : 10.1002/1521-3773(20001103)39:21<3915::AID-ANIE3915>3.0.CO;2-O

A. F. Hebard, Buckminsterfullerene, Annual Review of Materials Science, vol.23, issue.1, p.159, 1993.
DOI : 10.1146/annurev.ms.23.080193.001111

A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov et al., A novel hybrid carbon material, Nature Nanotechnology, vol.310, issue.3, pp.156-161, 2007.
DOI : 10.1038/nnano.2007.37

F. A. Kekulé, Sur la constitution des substances aromatiques, Bulletin de la Societe Chimique de Paris 3, p.98110, 1865.

A. A. Krichko, T. A. Titova, B. S. Filippov, and N. E. Dogadkina, Production of tetralin by the hydrogenation of naphthalene-containing fractions, Chemistry and Technology of Fuels and Oils, vol.62, issue.1, pp.18-22, 1969.
DOI : 10.1007/BF00727949

J. C. Fetzer, The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons, 2000.

P. Vazquez-de, Periodically Rippled Graphene: Growth and Spatially Resolved Electronic Structure, Physical Review Letters, vol.100, issue.5, p.56807, 2008.
DOI : 10.1103/PhysRevLett.100.056807

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez et al., Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene, Physical Review Letters, vol.101, issue.26, p.267601, 2008.
DOI : 10.1103/PhysRevLett.101.267601

URL : https://hal.archives-ouvertes.fr/hal-00413943

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol.312, issue.5777, p.1191, 2006.
DOI : 10.1126/science.1125925

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. De-heer, Magnetospectroscopy of epitaxial few-layer graphene, Solid State Communications, vol.143, issue.1-2, p.123, 2007.
DOI : 10.1016/j.ssc.2007.03.050

W. A. De-heer, Epitaxial graphene, Solid State Communications, vol.143, issue.1-2, p.92, 2007.
DOI : 10.1016/j.ssc.2007.04.023

URL : https://hal.archives-ouvertes.fr/hal-00911809

K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol.54, issue.24, pp.17954-17961, 1996.
DOI : 10.1103/PhysRevB.54.17954

A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon et al., Charge transport in disordered graphene-based low dimensional materials, Nano Research, vol.67, issue.5, pp.361-394, 2008.
DOI : 10.1007/s12274-008-8043-2

L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature, vol.78, issue.7240, pp.877-880, 2009.
DOI : 10.1038/nature07919

R. Gomer, Field Emission and Field Ionization, 1961.

S. Datta, Electron Transport in Mesoscopic Systems

G. Pennington and N. Goldsman, Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Physical Review B, vol.68, issue.4, p.45426, 2003.
DOI : 10.1103/PhysRevB.68.045426

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, p.453, 2001.
DOI : 10.1021/nl015606f

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5929

I. Heller, J. Kong, K. A. Williams, C. Dekker, and S. G. Lemay, Electrochemistry at Single-Walled Carbon Nanotubes:?? The Role of Band Structure and Quantum Capacitance, Journal of the American Chemical Society, vol.128, issue.22, pp.7353-7359, 2006.
DOI : 10.1021/ja061212k

B. L. Allen, P. D. Kichambare, and A. Star, Carbon Nanotube Field-Effect-Transistor-Based Biosensors, Advanced Materials, vol.106, issue.11, pp.1439-1451, 2007.
DOI : 10.1002/adma.200602043

A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson et al., Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Physical Review Letters, vol.84, issue.26, pp.6082-6085, 2000.
DOI : 10.1103/PhysRevLett.84.6082

S. Goedecker, Linear scaling electronic structure methods, Reviews of Modern Physics, vol.71, issue.4, p.1085, 1999.
DOI : 10.1103/RevModPhys.71.1085

P. Ordejón, Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA, physica status solidi (b), vol.217, issue.1, p.335, 2000.
DOI : 10.1002/(SICI)1521-3951(200001)217:1<335::AID-PSSB335>3.0.CO;2-Z

O. F. Sankey and D. J. Niklewski, multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Physical Review B, vol.40, issue.6, p.3979, 1989.
DOI : 10.1103/PhysRevB.40.3979

E. Artacho, The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, vol.20, issue.6, p.64208, 2008.
DOI : 10.1088/0953-8984/20/6/064208

D. Sánchez-portal, P. Ordejón, E. Artacho, and J. M. Soler, Density-functional method for very large systems with LCAO basis sets, International Journal of Quantum Chemistry, vol.116, issue.5, p.453, 1997.
DOI : 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V

E. Artacho, D. Sánchez-portal, P. Ordejón, A. García, and J. M. Soler, Linear-Scaling ab-initio Calculations for Large and Complex Systems, physica status solidi (b), vol.215, issue.1, p.809, 1999.
DOI : 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0

J. C. Charlier, X. Blase, and S. , Electronic and transport properties of nanotubes, Reviews of Modern Physics, vol.79, issue.2, p.677, 2007.
DOI : 10.1103/RevModPhys.79.677

G. Grosso and G. P. Parravicini, Solid State Physics, Elsevier Science & Technology, 2000.

G. Grosso, S. Moroni, and G. P. Parravicini, Electronic structure of the InAs-GaSb superlattice studied by the renormalization method, Physical Review B, vol.40, issue.18, p.12328, 1989.
DOI : 10.1103/PhysRevB.40.12328

A. R. Williams, P. J. Feibelman, and N. D. Lang, Green's-function methods for electronic-structure calculations, Physical Review B, vol.26, issue.10, p.5433, 1982.
DOI : 10.1103/PhysRevB.26.5433

R. D. Graft, D. J. Lohrmann, G. Pastori-parravicini, and L. Resca, Renormalization formalism in the theory of the electronic structure of superlattices: Application to silicon superlattices, Physical Review B, vol.36, issue.9, p.4782, 1987.
DOI : 10.1103/PhysRevB.36.4782

F. Yndurain, Solid State Physics Lectures Notes at, 2006.

X. Guo, Directing and Sensing Changes in Molecular Conformation on Individual Carbon Nanotube Field Effect Transistors, Journal of the American Chemical Society, vol.127, issue.43, p.15045, 2005.
DOI : 10.1021/ja054335y

J. M. Simmons, Optically Modulated Conduction in Chromophore-Functionalized Single-Wall Carbon Nanotubes, Physical Review Letters, vol.98, issue.8, p.86802, 2007.
DOI : 10.1103/PhysRevLett.98.086802

J. Borghetti, Optoelectronic Switch and Memory Devices Based on Polymer-Functionalized Carbon Nanotube Transistors, Advanced Materials, vol.292, issue.19, p.2535, 2006.
DOI : 10.1002/adma.200601138

URL : https://hal.archives-ouvertes.fr/hal-00127137

J. Mannik, B. R. Goldsmith, A. Kane, P. G. Collins, and B. R. Goldsmith, Chemically Induced Conductance Switching in Carbon Nanotube Circuits, Physical Review Letters, vol.97, issue.1, pp.16601-056401, 2006.
DOI : 10.1103/PhysRevLett.97.016601

J. Cabana, R. Martel, and K. Balasubramanian, Probing the Reversibility of Sidewall Functionalization Using Carbon Nanotube Transistors, Journal of the American Chemical Society, vol.129, issue.8, pp.2244-633, 2007.
DOI : 10.1021/ja068320r

Y. Lee, M. Buongiorno-nardelli, and N. Marzari, Band Structure and Quantum Conductance of Nanostructures from Maximally Localized Wannier Functions: The Case of Functionalized Carbon Nanotubes, Physical Review Letters, vol.95, issue.7, p.76804, 2005.
DOI : 10.1103/PhysRevLett.95.076804

Y. Chen, Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material, Journal of Materials Research, vol.391, issue.09, p.2423, 1998.
DOI : 10.1021/jo00380a052

Z. Chen, Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study, Angewandte Chemie International Edition, vol.43, issue.12, p.1552, 2004.
DOI : 10.1002/anie.200353087

T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Structure and Electronic Properties of Carbon Nanotubes, The Journal of Physical Chemistry B, vol.104, issue.13, p.2794, 2000.
DOI : 10.1021/jp993592k

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Letters, vol.4, issue.1, p.35, 2004.
DOI : 10.1021/nl034841q

Y. B. Zhang, Functionalized Carbon Nanotubes for Detecting Viral Proteins, Nano Letters, vol.7, issue.10, p.3086, 2007.
DOI : 10.1021/nl071572l

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, p.1294, 2005.
DOI : 10.1021/ac049479u

B. Goldsmith, Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes, Science, vol.315, issue.5808, p.77, 2007.
DOI : 10.1126/science.1135303

K. Balasubramanian, E. J. Lee, R. T. Weitz, M. Burghard, and K. Kern, Carbon nanotube transistors - chemical functionalization and device characterization, physica status solidi (a), vol.91, issue.20, p.633, 2008.
DOI : 10.1002/pssa.200723410

J. Zhao, H. Park, J. Han, and J. Lu, Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization, The Journal of Physical Chemistry B, vol.108, issue.14, p.4227, 2004.
DOI : 10.1021/jp036814u

H. Park, Z. Zhao, and J. P. Lu, Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions, Nanotechnology, vol.16, issue.6, p.635, 2005.
DOI : 10.1088/0957-4484/16/6/003

B. Biel, F. J. García-vidal, A. Rubio, and F. Flores, ) approach, Journal of Physics: Condensed Matter, vol.20, issue.29, p.294214, 2008.
DOI : 10.1088/0953-8984/20/29/294214

A. R. Rocha, M. Rossi, A. Fazzio, and A. J. Da-silva, Designing Real Nanotube-Based Gas Sensors, Physical Review Letters, vol.100, issue.17, p.176803, 2008.
DOI : 10.1103/PhysRevLett.100.176803

T. Markussen, R. Rurali, M. Brandbyge, and A. P. Jauho, Electronic transport through Si nanowires: Role of bulk and surface disorder, Physical Review B, vol.74, issue.24, p.245313, 2006.
DOI : 10.1103/PhysRevB.74.245313

D. S. Fisher and P. A. Lee, Relation between conductivity and transmission matrix, Physical Review B, vol.23, issue.12, p.6851, 1981.
DOI : 10.1103/PhysRevB.23.6851

M. B. Nardelli, Electronic transport in extended systems: Application to carbon nanotubes, Physical Review B, vol.60, issue.11, p.7828, 1999.
DOI : 10.1103/PhysRevB.60.7828

H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes, Physical Review Letters, vol.84, issue.13, p.2917, 2000.
DOI : 10.1103/PhysRevLett.84.2917

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, p.5048, 1981.
DOI : 10.1103/PhysRevB.23.5048

E. Artacho, D. Sánchez-portal, P. Ordejón, A. García, and J. M. Soler, Linear-Scaling ab-initio Calculations for Large and Complex Systems, physica status solidi (b), vol.215, issue.1, p.809, 1999.
DOI : 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0

URL : http://arxiv.org/abs/cond-mat/9904159

. Schmidt, 146) have recently performed a kinetic study of the covalent coupling of diazoniums onto single-walled nanotubes in water, providing fine details on the reaction pathway of phenyl molecules to CNT. As a result, it can be concluded that the creation of a paired configuration of phenyls on the nanotube surface is done by means of a free radical chain reaction mechanism

R. Avriller, S. Latil, F. Triozon, X. Blase, and S. Roche, Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes, Physical Review B, vol.74, issue.12, p.121406, 2006.
DOI : 10.1103/PhysRevB.74.121406

H. Park, J. Zhao, and J. P. Lu, Effects of Sidewall Functionalization on Conducting Properties of Single Wall Carbon Nanotubes, Nano Letters, vol.6, issue.5, p.916, 2006.
DOI : 10.1021/nl052488d

Y. Lee and N. Marzari, Cycloadditions to Control Bond Breaking in Naphthalenes, Fullerenes, and Carbon Nanotubes:??? A First-Principles Study, The Journal of Physical Chemistry C, vol.112, issue.12, p.4480, 2008.
DOI : 10.1021/jp073067i

R. Avriller, LOW-DIMENSIONAL QUANTUM TRANSPORT PROPERTIES OF CHEMICALLY-DISORDERED CARBON NANOTUBES: FROM WEAK TO STRONG LOCALIZATION REGIMES, Modern Physics Letters B, vol.21, issue.29, p.1955, 2007.
DOI : 10.1142/S0217984907014322

J. M. Garcia-lastra, K. S. Thygesen, M. Strange, and A. Rubio, Conductance of Sidewall-Functionalized Carbon Nanotubes: Universal Dependence on Adsorption Sites, Physical Review Letters, vol.101, issue.23, p.236806, 2008.
DOI : 10.1103/PhysRevLett.101.236806

T. J. Echtermeyer, M. C. Lemme, M. Braus, B. N. Szafranek, A. K. Geim et al., Nonvolatile Switching in Graphene Field-Effect Devices, IEEE Electron Device Letters, vol.29, issue.8, p.952, 2008.
DOI : 10.1109/LED.2008.2001179

URL : http://arxiv.org/abs/0805.4095

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, p.183, 2007.
DOI : 10.1038/nmat1849

A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon et al., Charge transport in disordered graphene-based low dimensional materials, Nano Research, vol.67, issue.5, p.361, 2008.
DOI : 10.1007/s12274-008-8043-2

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, p.16602, 2008.
DOI : 10.1103/PhysRevLett.100.016602

K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Physical Review B, vol.59, issue.12, p.8271, 1999.
DOI : 10.1103/PhysRevB.59.8271

M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A Graphene Field-Effect Device, IEEE Electron Device Letters, vol.28, issue.4, p.282, 2007.
DOI : 10.1109/LED.2007.891668

D. W. Boukhvalov and M. I. Katsnelson, Modeling of Graphite Oxide, Journal of the American Chemical Society, vol.130, issue.32, p.10697, 2008.
DOI : 10.1021/ja8021686

E. Bekyarova, M. E. Itkis, P. Ramesh, C. Berger, M. Sprinkle et al., Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups, Journal of the American Chemical Society, vol.131, issue.4, p.1336, 2009.
DOI : 10.1021/ja8057327

O. V. Yazyev and L. Helm, Defect-induced magnetism in graphene, Physical Review B, vol.75, issue.12, p.125408, 2007.
DOI : 10.1103/PhysRevB.75.125408

J. O. Sofo, A. Chaudhari, and G. D. Barber, Graphane: A two-dimensional hydrocarbon, Physical Review B, vol.75, issue.15, p.153401, 2007.
DOI : 10.1103/PhysRevB.75.153401

URL : http://arxiv.org/abs/cond-mat/0606704

D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, Journal of Physics: Condensed Matter, vol.21, issue.34, p.344205, 2009.
DOI : 10.1088/0953-8984/21/34/344205

D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations, Physical Review B, vol.78, issue.8, p.85413, 2008.
DOI : 10.1103/PhysRevB.78.085413

V. Derycke, R. Martel, and J. Appenzeller, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, p.453, 2001.
DOI : 10.1021/nl015606f

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5929

D. B. Farmer, R. Golizadeh-mojarad, V. Perebeinos, Y. Lin, G. S. Tulevski et al., Chemical Doping and Electron???Hole Conduction Asymmetry in Graphene Devices, Nano Letters, vol.9, issue.1, p.388, 2009.
DOI : 10.1021/nl803214a

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, and P. Blake, Detection of individual gas molecules adsorbed on graphene, Nature Materials, vol.88, issue.9, p.652, 2007.
DOI : 10.1038/nmat1967

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson et al., Molecular Doping of Graphene, Nano Letters, vol.8, issue.1, p.173, 2008.
DOI : 10.1021/nl072364w

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature, vol.77, issue.7202, p.319, 2008.
DOI : 10.1038/nature07094

D. E. Jiang, B. G. Sumpter, and S. Dai, How Do Aryl Groups Attach to a Graphene Sheet?, The Journal of Physical Chemistry B, vol.110, issue.47, p.23628, 2006.
DOI : 10.1021/jp065980+

F. Cervantes-sodi, G. Csanyi, S. Piscanec, and A. C. Ferrari, Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties, Physical Review B, vol.77, issue.16, p.165427, 2008.
DOI : 10.1103/PhysRevB.77.165427

E. R. Mucciolo, A. H. Castro-neto, and C. H. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Physical Review B, vol.79, issue.7, pp.75407-153403, 2007.
DOI : 10.1103/PhysRevB.79.075407

Z. Liu, K. Suenaga, P. J. Harris, and S. Iijima, Open and Closed Edges of Graphene Layers, Physical Review Letters, vol.102, issue.1, p.15501, 2009.
DOI : 10.1103/PhysRevLett.102.015501

P. Koskinen, S. Malola, H. Hakkinen, T. Wassmann, A. P. Seitsonen et al., Self-Passivating Edge Reconstructions of Graphene, Physical Review Letters, vol.101, issue.11, pp.115502-096402, 2008.
DOI : 10.1103/PhysRevLett.101.115502

A. Bostwick, J. L. Mcchesney, K. V. Emtsev, . Th, K. Seyller et al., Quasiparticle Transformation during a Metal-Insulator Transition in Graphene, Physical Review Letters, vol.103, issue.5, p.56404, 2009.
DOI : 10.1103/PhysRevLett.103.056404

K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol.54, issue.24, p.17954, 1996.
DOI : 10.1103/PhysRevB.54.17954

K. Wakabayashi, P. Rev, K. Sasaki, S. Murakami, R. Saito et al., Electronic transport properties of nanographite ribbon junctions, Physical Review B, vol.64, issue.12, pp.125428-113110, 2001.
DOI : 10.1103/PhysRevB.64.125428

B. Han, Y. Ozyilmaz, P. Zhang, and . Kim, Energy Band-Gap Engineering of Graphene Nanoribbons, Physical Review Letters, vol.98, issue.20, p.206805, 2007.
DOI : 10.1103/PhysRevLett.98.206805

Y. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters, vol.97, issue.21, p.216803, 2006.
DOI : 10.1103/PhysRevLett.97.216803

M. Evaldsson, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Physical Review B, vol.78, issue.16, pp.161407-075407, 2008.
DOI : 10.1103/PhysRevB.78.161407

T. Wassmann, Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons, Physical Review Letters, vol.101, issue.9, pp.96402-115502, 2008.
DOI : 10.1103/PhysRevLett.101.096402

URL : https://hal.archives-ouvertes.fr/hal-00329638

X. Li, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, vol.319, issue.5867, p.1229, 2008.
DOI : 10.1126/science.1150878

C. O. Girit, Graphene at the Edge: Stability and Dynamics, Science, vol.323, issue.5922, p.1705, 2009.
DOI : 10.1126/science.1166999

Y. Kobayashi, K. I. Fukui, T. Enoki, and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy, Physical Review B, vol.73, issue.12, p.125415, 2006.
DOI : 10.1103/PhysRevB.73.125415

URL : http://arxiv.org/abs/cond-mat/0602378

C. Casiraghi, Raman Spectroscopy of Graphene Edges, Nano Letters, vol.9, issue.4, pp.1433-015501, 2009.
DOI : 10.1021/nl8032697

URL : https://hal.archives-ouvertes.fr/hal-00353030

A. R. Rocha, V. M. García-suárez, S. Bailey, C. Lambert, J. Ferrer et al., Spin and molecular electronics in atomically generated orbital landscapes, Physical Review B, vol.73, issue.8, p.85414, 2006.
DOI : 10.1103/PhysRevB.73.085414

J. Charlier and T. W. Ebbesen, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes, Physical Review B, vol.53, issue.16, p.11108, 1996.
DOI : 10.1103/PhysRevB.53.11108

R. Tamura and M. Tsukada, Disclinations of monolayer graphite and their electronic states, Physical Review B, vol.49, issue.11, p.7697, 1994.
DOI : 10.1103/PhysRevB.49.7697

H. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes, Physical Review Letters, vol.84, issue.13, p.2917, 2000.
DOI : 10.1103/PhysRevLett.84.2917

E. Clar, The Aromatic Sextet, 1972.
DOI : 10.1007/978-94-009-7197-4_4

M. Baldoni, A. Sgamellotti, and F. Mercuri, Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory, Chemical Physics Letters, vol.464, issue.4-6, p.202, 2008.
DOI : 10.1016/j.cplett.2008.09.018