K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott et al., Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs, IEEE International Electron Devices Meeting 2003, pp.49-52, 2001.
DOI : 10.1109/IEDM.2003.1269163

]. S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando et al., Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), pp.247-250, 2000.
DOI : 10.1109/IEDM.2000.904303

]. S. Gannavaram, N. Pesovic, and M. C. Ozturk, Low temperature (<= 800 degrees c) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS, International Electron Devices Meeting, pp.437-440, 2000.
DOI : 10.1109/iedm.2000.904350

M. G. Ancona and H. F. Tiersten, Macroscopic physics of the silicon inversion layer, Physical Review B, vol.35, issue.15, pp.7959-7965, 1987.
DOI : 10.1103/PhysRevB.35.7959

C. M. Smith, Piezoresistance Effect in Germanium and Silicon, Physical Review, vol.94, issue.1, pp.42-49, 1954.
DOI : 10.1103/PhysRev.94.42

T. Guillaume, influence des contraintes mécaniques non-intentionnelles sur les performances des transistors MOS à canal ultra-court, Thèse de Doctorat, INPG, Grenoble, 2005. [73] M. S. Lundstrom, Fundamentals of carrier transport, 2001.

M. V. Fischetti and S. E. Laux, Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects, Physical Review B, vol.38, issue.14, pp.9721-9745, 1988.
DOI : 10.1103/PhysRevB.38.9721

C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, Efficient full-band monte carlo simulation of silicon devices, Ieice Transactions on Electronics, vol.82, issue.6, pp.870-879, 1999.

H. Kosina, M. Nedjalkov, and S. Selberherr, Theory of the Monte Carlo method for semiconductor device simulation, IEEE Transactions on Electron Devices, vol.47, issue.10, pp.1898-1908, 2000.
DOI : 10.1109/16.870569

]. P. Palestri, Basics of Monte-Carlo Device Simulation, cours d'université d'été SINANO, 2006.

K. Huet, M. Feraille, D. Rideau, R. Delamare, V. Aubry-fortuna et al., Experimental and theoretical analysis of hole transport in uniaxially strained pMOSFETs, ESSDERC 2008, 38th European Solid-State Device Research Conference, pp.234-237, 2008.
DOI : 10.1109/ESSDERC.2008.4681741

Y. and M. Cardona, Fundamentals of semiconductors: physics and materials properties, 2005.

J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Electronic Structure: Basis Theory and practical Methods, pp.556-582, 1976.
DOI : 10.1103/PhysRevB.14.556

]. R. Parr and W. Yang, Density Theory of Atoms and Molecules, 1989.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

P. Boulenc, Etude théorique d'interfaces pour l'épitaxie de l'aluminate de lanthane sur Silicium Thèse de doctorat: l'université des Sciences et Technologies à Lille Quasiparticle calculations in solids, 2006.

W. G. Aulbur, L. Jonsson, and J. W. Wilkins, Quasiparticle Calculations in Solids, Solid State Physics: Advances in Research and Applications, pp.1-218, 2000.
DOI : 10.1016/S0081-1947(08)60248-9

]. M. Hybertsen and S. G. Louie, First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators, Physical Review Letters, vol.55, issue.13, pp.1418-1421, 1985.
DOI : 10.1103/PhysRevLett.55.1418

M. Rohlfing, P. Kruger, J. Pollmann, C. Si, . Ge et al., SiC using gaussian-orbital basis-setsEfficient scheme for GW quasiparticle band-structure calculations with applications to bulk Si and to the Si(001)-(2x1) surface, Physical Review B Physical Review B, vol.485213, issue.243, pp.17791-17805, 1993.

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Physical Review B, vol.58, issue.7, pp.3641-3662, 1998.
DOI : 10.1103/PhysRevB.58.3641

URL : http://arxiv.org/abs/cond-mat/9803286

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, issue.7, pp.566-569, 1980.
DOI : 10.1103/PhysRevLett.45.566

V. Fiorentini, Semiconductor band structures at zero pressure, Physical Review B, vol.46, issue.4, pp.2086-2091, 1992.
DOI : 10.1103/PhysRevB.46.2086

]. L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Physical Review, vol.139, issue.3A, pp.796-823, 1965.
DOI : 10.1103/PhysRev.139.A796

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, pp.5188-5192, 1976.
DOI : 10.1103/PhysRevB.13.5188

D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier et al., Strained Si, Ge, and Si1-xGex alloys modeled with a first-principles-optimized full-zone k.p method, Physical Review B, vol.74, issue.19, 2006.

Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Model for the on-site matrix elements of the tight-binding hamiltonian of a strained cristal: Application to silicon germanium and alloys, Submitted to Physical Review B, vol.22, 2009.

C. Tserbak and G. Theodorou, Energy band structure and linear optical properties of Si and Ge strained along the [111] and [110] directions, Unified approach to the electronic structure of strained Si/Ge superlattices, pp.12232-122407104, 1993.
DOI : 10.1103/PhysRevB.52.12232

Q. M. Ma, K. L. Wang, and J. N. Schulman, Band-structure and symmetry analysis of coherently grown Si1-xGex alloys on oriented substrates, Physical Review B, vol.4724, issue.4, pp.1936-1953, 1993.

J. C. Phillips and L. Kleinman, New Method for Calculating Wave Functions in Crystals and Molecules, Physical Review, vol.116, issue.2, pp.287-294, 1959.
DOI : 10.1103/PhysRev.116.287

G. Martinez, M. Schluter, and M. L. Cohen, Electronic structure of PbSe and PbTe. I. Band structures, densities of states, and effective masses, Physical Review B, vol.11, issue.2, pp.651-659, 1975.
DOI : 10.1103/PhysRevB.11.651

W. Potz and P. Vogl, Theory of optical-phonon deformation potentials in tetrahedral semiconductors, Physical Review B, vol.24, issue.4, pp.2025-2037, 1981.
DOI : 10.1103/PhysRevB.24.2025

M. A. Gell and M. Gell, Effect of buffer-layer composition on new optical-transitions in Si/Ge short-period superlatticesEffective masses and sum-rules in strained Si/Ge structures, Physical Review B Physical Review B, vol.3841, issue.1111, pp.7535-7553, 1988.

M. V. Fischetti and S. E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, Journal of Applied Physics, vol.80, issue.4, pp.2234-2252, 1996.
DOI : 10.1063/1.363052

G. Dresselhaus, A. F. Kip, and C. Kittel, Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals, Physical Review, vol.98, issue.2, pp.368-384, 1955.
DOI : 10.1103/PhysRev.98.368

C. R. Pidgeon and R. N. Brown, Interband Magneto-Absorption and Faraday Rotation in InSb, Physical Review, vol.146, issue.2, pp.575-583, 1966.
DOI : 10.1103/PhysRev.146.575

M. El-kurdi, G. Fishman, S. Sauvage, and P. Boucaud, formalisms in SiGe/Si heterostructures, Physical Review B, vol.68, issue.16, pp.165333-165349, 2003.
DOI : 10.1103/PhysRevB.68.165333

M. Cardona and F. Pollak, Energy-Band Structure of Germanium and Silicon: The k??p Method, Physical Review, vol.142, issue.2, pp.530-543, 1966.
DOI : 10.1103/PhysRev.142.530

]. F. Pollak, M. Cardona, C. W. Higginbotham, F. Herman, and J. Van-dyke, Energy-Band Structure and Optical Spectrum of Grey Tin, Physical Review B, vol.2, issue.2, pp.352-363, 1970.
DOI : 10.1103/PhysRevB.2.352

]. S. Richard, F. Aniel, G. Fishman, S. Richard, F. Aniel et al., Energy-band structure of Ge, Si, and GaAs: A thirty-band k.p method Erratum: Energy-band structure of Ge, Si, and GaAs: A thirty-band k.p method, Physical Review B Physical Review B, vol.7071, issue.2316, pp.235204-235210, 2004.

R. G. Humphreys, Valence band averages in silicon: Anisotropy and non-parabolicity, Journal of Physics C: Solid State Physics, vol.14, issue.21, pp.2935-2942, 1981.
DOI : 10.1088/0022-3719/14/21/011

L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals, Physical Review, vol.50, issue.1, pp.58-67, 1936.
DOI : 10.1103/PhysRev.50.58

]. N. Cavassilas, F. Aniel, K. Boujdaria, and G. Fishman, method, Physical Review B, vol.64, issue.11, pp.115207-115212, 2001.
DOI : 10.1103/PhysRevB.64.115207

X. J. Zhu, S. Fahy, and S. G. Louie, calculation of pressure coefficients of band gaps of silicon: Comparison of the local-density approximation and quasiparticle results, Physical Review B, vol.39, issue.11, pp.7840-7847, 1989.
DOI : 10.1103/PhysRevB.39.7840

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Temperature dependence of the dielectric function and interband critical points in silicon, Physical Review B, vol.36, issue.9, pp.4821-4830, 1987.
DOI : 10.1103/PhysRevB.36.4821

L. Vina, S. Logothetidis, and M. Cardona, Temperature dependence of the dielectric function of germanium, Physical Review B, vol.30, issue.4, 1979.

]. U. Schmid, N. E. Christensen, and M. Cardona, Relativistic band structure of Si, Ge, and GeSi: Inversion-asymmetry effects, Physical Review B, vol.41, issue.9, pp.5919-5930, 1990.
DOI : 10.1103/PhysRevB.41.5919

F. Schaffler, High-mobility Si and Ge structures, Semiconductor Science and Technology, vol.12, issue.12, pp.1515-1549, 1997.
DOI : 10.1088/0268-1242/12/12/001

J. M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Physical Review, vol.97, issue.4, pp.869-883, 1955.
DOI : 10.1103/PhysRev.97.869

J. M. Luttinger, Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory, Physical Review, vol.102, issue.4, pp.1030-1041, 1956.
DOI : 10.1103/PhysRev.102.1030

C. Y. Chao and S. L. Chuang, Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells, Physical Review B, vol.46, issue.7, pp.4110-4122, 1992.
DOI : 10.1103/PhysRevB.46.4110

M. Feraille, D. Rideau, A. Ghetti, A. Poncet, C. Tavernier et al., Low-Field Mobility in Strained Silicon with 'Full' Band' Monte Carlo Simulation using k.p and EPM Band structure, SISPAD 2006: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices 3D Monte Carlo Device Simulation of NanoWire MOSFETs including Quantum Mechanical and Strain Effects SISPAD 2006: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, pp.264-266, 2006.

J. E. Ortega and F. J. Himpsel, Inverse-photoemission study of Ge(100), Si(100), and GaAs(100): Bulk bands and surface states, Physical Review B, vol.47, issue.4, pp.2130-2137, 1993.
DOI : 10.1103/PhysRevB.47.2130

J. R. Chelikowsky and M. L. Cohen, Electronic structure of silicon, Physical Review B, vol.10, issue.12, pp.5095-5107, 1974.
DOI : 10.1103/PhysRevB.10.5095

D. E. Aspnes and M. Cardona, Strain dependence of effective masses in tetrahedral semiconductors, Physical Review B, vol.17, issue.2, pp.726-740, 1978.
DOI : 10.1103/PhysRevB.17.726

]. P. Lawaetz, Valence-Band Parameters in Cubic Semiconductors, Physical Review B, vol.4, issue.10, pp.3460-3467, 1971.
DOI : 10.1103/PhysRevB.4.3460

O. A. Makarov, N. N. Ovsyuk, and M. P. Sinyukov, Oscillating electroreflectance of germanium with allowance for electron-hole Coulomb interaction, Soviet Physics JETP, vol.57, issue.6, pp.1318-1323, 1983.

B. W. Levinger and D. R. , Cyclotron resonance measurements of the energy band parameters of germanium, Journal of Physics and Chemistry of Solids, vol.20, issue.3-4, pp.281-288, 1961.
DOI : 10.1016/0022-3697(61)90015-4

J. Halpern and B. Lax, Magnetoabsorption of the indirect transition in germanium, Journal of Physics and Chemistry of Solids, vol.26, issue.5, pp.911-919, 1965.
DOI : 10.1016/0022-3697(65)90267-2

G. Gilat and L. J. Raubenheimer, Accurate Numerical Method for Calculating Frequency-Distribution Functions in Solids, Physical Review, vol.144, issue.2, pp.390-395, 1966.
DOI : 10.1103/PhysRev.144.390

P. Fantini, A. Ghetti, G. P. Carnevale, E. Bonera, and D. Rideau, A full self-consistent methodology for strain-induced effects characterization in silicon devices, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., pp.1013-1016, 2005.
DOI : 10.1109/IEDM.2005.1609529

L. Kleinman and L. Kleinman, Deformation Potentials in Silicon. I. Uniaxial Strain Deformation Potentials in Silicon. II. Hydrostatic Strain and the Electron-Phonon Interaction Deformation Potentials in Silicon. III. Effects of a general Strain Conduction and Valence Levels, Physical Review Physical Review, vol.128130132, issue.663, pp.2614-2621, 1962.

C. S. Cousins, L. Gerward, J. S. Olsen, B. Selsmark, and B. J. Sheldon, Surface effects in uniaxially stressed crystals: the internal-strain parameters of silicon and germanium revised, Journal of Physics C: Solid State Physics, vol.20, issue.1, pp.29-37, 1987.
DOI : 10.1088/0022-3719/20/1/007

H. J. Mcskimin, Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves???Data for Silicon and Germanium Single Crystals, and for Fused Silica, Journal of Applied Physics, vol.24, issue.8, pp.988-997, 1953.
DOI : 10.1063/1.1721449

Z. H. Levine, J. H. Burnett, and E. L. Shirley, Photoelastic and elastic properties of the fluorite structure materials, LiF, and Si, Physical Review B, vol.68, issue.15, pp.155120-155132, 2003.
DOI : 10.1103/PhysRevB.68.155120

C. G. Van-de-walle and R. M. Martin, Theoretical calculations of heterojunction discontinuities in the Si/Ge system, Physical Review B, vol.34, issue.8, pp.5621-5634, 1986.
DOI : 10.1103/PhysRevB.34.5621

J. Sanchez-dehesa, C. Tejedor, and J. A. Verges, Self-consistent calculation of the internal strain parameter of silicon, Physical Review B, vol.26, issue.10, pp.5960-5962, 1982.
DOI : 10.1103/PhysRevB.26.5960

O. H. Nielsen, R. M. Martin, O. H. Nielsen, and R. M. Martin, Quantum-mechanical theory of stress and force, Stresses in semiconductors -abinitio calculations on Si, Ge, and GaAs, pp.3780-3791, 1985.
DOI : 10.1103/PhysRevB.32.3780

Y. Umeno and T. Kitamura, Ab initio simulation on ideal shear strength of silicon, Materials Science and Engineering: B, vol.88, issue.1, pp.79-84, 2002.
DOI : 10.1016/S0921-5107(01)00907-2

E. Pikus and G. L. Bir, Effect of deformation on the hole energy spectrum of germanium and silicon, Soviet Physics -Solid State, vol.1, pp.1502-15171642, 1959.

M. Chandrasekhar and F. H. Pollak, Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs, Physical Review B, vol.15, issue.4, pp.2127-2144, 1977.
DOI : 10.1103/PhysRevB.15.2127

M. Feraille, D. Rideau, A. Ghetti, A. Poncet, C. Tavernier et al., Low-Field Mobility in Strained Silicon with 'Full' Band' Monte Carlo Simulation using k.p and EPM Band structureEfficient monte carlo device modeling, SISPAD 2006: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, pp.264-266, 2000.

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Reviews of Modern Physics, vol.55, issue.3, pp.645-705, 1983.
DOI : 10.1103/RevModPhys.55.645

M. M. Rieger and P. Vogl, Electronic-band parameters in strained Si(1-x)Ge(x) alloys on Si(1-y)Ge(y) substrates, Physical Review B, vol.486, issue.19, pp.14276-14287, 1993.

D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier et al., Strained Si, Ge, and Si1-xGex alloys modeled with a first-principles-optimized full-zone k.p method, Physical Review B, vol.74, issue.19, 2007.

M. V. Fischetti, S. E. Laux-fischetti, and S. E. Laux, Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys Monte Carlo study of electron transport in silicon inversion layers, Journal of Applied Physics Physical Review B, vol.8048, issue.44, pp.2234-2252, 1993.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-quaranta, Electron drift velocity in silicon, Physical Review B, vol.12, issue.6, pp.2265-2284, 1975.
DOI : 10.1103/PhysRevB.12.2265

G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigiquaranta, Hole drift velocity in silicon, Physical Review B, vol.12, issue.8, pp.3318-3329, 1975.
DOI : 10.1103/PhysRevB.12.3318

]. S. Takagi, A. Toriumi, M. Iwase, H. Tango, S. Takagi et al., On the universality of inversion layer mobility in Si MOSFETs .1. Effects of substrate impurity concentrationOn the universality of inversion layer mobility in Si MOSFETs .2. Effects of surface orientation, IEEE Transactions on Electron Devices IEEE Transactions on Electron Devices, vol.4141, issue.1212, pp.2357-2362, 1994.

F. M. Bufler, Y. Asahi, H. Yoshimura, C. Zechner, A. Schenk et al., Monte Carlo simulation and measurement of nanoscale n-MOSFETs, IEEE Transactions on Electron Devices, vol.50, issue.2, pp.418-424, 2003.
DOI : 10.1109/TED.2002.808420

C. Jungemann, N. Subba, J. S. Goo, C. Riecobene, Q. Xiang et al., Investigation of strained Si/SiGe devices by MC simulation, Solid-State Electronics, vol.48, issue.8, pp.1417-1422, 2004.
DOI : 10.1016/j.sse.2004.02.016

E. Fuchs, Etude Théorique et Expérimentale du Transport Electronique dans les dispositifs nanométriques sur Silicium, Thèse de doctorat: Ecole Doctorale Physique, Spécialité Electronique, General Electrothermal Semiconductor Device Simulation, Series in Microelectronics, vol.37, 1994.

P. Meinerzhagen, S. Palestri, E. Galdin-retailleau, A. Sangiorgi, L. Schenk et al., Comparison of monte carlo transport models for nanometer-size mosfets, SISPAD 2007: Simulation of Semiconductor Processes and Devices, pp.57-60, 2007.

H. C. Laux, C. Lim, H. Maziar, H. J. Mizuno, S. Peifer et al., A comparison of numerical-solutions of the Boltzmann transport-equation for high-energy electron-transport silicon, IEEE Transactions on Electron Devices, vol.41, issue.9, pp.1646-1654, 1994.

K. Chen, C. Hu, P. Fang, M. R. Lin, and D. L. Wollesen, Predicting CMOS speed with gate oxide and voltage scaling and interconnect loading effects, IEEE Transactions on Electron Devices, vol.44, issue.11, pp.1951-1957, 1997.
DOI : 10.1109/16.641365

C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.7, issue.11, pp.1164-1171, 1988.
DOI : 10.1109/43.9186

C. Ortolland, S. Saito, D. Hisamoto, Y. Kimura, R. Sugii et al., Etudes des effets des contraintes mécaniques induites par les procédés de fabrication sur le comportement électrique des transistors CMOS des noeuds technologiques 65 nm et en deçà Origin of Drivability Enhancement in Scaled pMOSFETs with 45° Rotated <100> channels, Thèse de doctorat: Institut national des Sciences Appliquées de Lyon VLSI 2006: Symposium of the 19 th international Conference on Very Large Scale Integration Technology, pp.150-151, 2006.

F. Gilibert, Modélisation des contraintes dans les dispositifs Si/SiGe basée sur l'analyse des structures de bandes, Thèse de doctorat: Université de Provence, Ecole Doctorale Physique Modélisation et Sciences pour l'Ingénieur, 2005.

C. Canali, G. Majni, R. Minder, and G. Ottaviani, Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Transactions on Electron Devices, vol.22, issue.11, pp.1045-1047, 1975.
DOI : 10.1109/T-ED.1975.18267

C. Canali, G. Ottaviani, and A. A. Quaranta, Drift velocity of electrons and holes and associated anisotropic effects in silicon, Journal of Physics and Chemistry of Solids, vol.32, issue.8, pp.1707-172031, 1971.
DOI : 10.1016/S0022-3697(71)80137-3

H. Irie, K. Kita, K. Kyuno, and A. Toriumi, In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on [100], [110], and [111] Si, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., pp.225-228, 2004.
DOI : 10.1109/IEDM.2004.1419115

X. F. Fan, L. F. Register, B. Winstead, M. C. Foisy, W. Q. Chen et al., Hole Mobility and Thermal Velocity Enhancement for Uniaxial Stress in Si up to 4 GPa, IEEE Transactions on Electron Devices, vol.54, issue.2, pp.291-296, 2007.
DOI : 10.1109/TED.2006.888667

J. Saint-martin34, ]. X. Li, W. Wu, G. Gildenblat, G. D. Smit et al., Arizona State University and NXP Semiconductors researchAn analytical deep-submicron mos device model considering velocity overshoot behavior using energy-balance equationPhysical compact modeling and analysis of velocity overshoot in extremely scaled CMOS devices and circuitsScattering matrix based compact MOSFET model, International Electron Devices 2002 Meeting, pp.864-869, 1995.

M. S. Shur, Low ballistic mobility in submicron HEMTs, IEEE Electron Device Letters, vol.23, issue.9, pp.511-513, 2002.
DOI : 10.1109/LED.2002.802679

S. E. Thompson, G. Y. Sun, Y. S. Choi, and T. Nishida, Uniaxial-process-induced strained-Si: extending the CMOS roadmap, IEEE Transactions on Electron Devices, vol.53, issue.5, pp.1010-1020, 2006.
DOI : 10.1109/TED.2006.872088

F. M. Bufler and W. Fichtner, Scaling of strained-si n-MOSFETs into the ballistic regime and associated anisotropic effects, IEEE Transactions on Electron Devices, vol.50, issue.2, pp.278-284, 2003.
DOI : 10.1109/TED.2002.808552

K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney et al., Strained siNMOSFETs for high performance CMOS technology, Symposium on VLSI Technology Digest of Technical Papers, pp.59-60, 2001.
DOI : 10.1109/vlsit.2001.934946

]. K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., pp.135-138, 2005.
DOI : 10.1109/IEDM.2005.1609286

E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina et al., The Effect of General Strain on the Band Structure and Electron Mobility of Silicon, IEEE Transactions on Electron Devices, vol.54, issue.9, pp.2183-2190, 2007.
DOI : 10.1109/TED.2007.902880

A. Lochtefeld and D. A. Antoniadis, Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress, 46] F. Payet, Modélisation et Intégration de Transistors a Canal de Silicium contraint pour les noeuds Technologiques CMOS 45nm et en deçà Thèse de doctorat: Ecole Doctorale Physique, Physique et Modélisation des Systèmes Complexes: Micro et Nanoélectronique, pp.591-593, 2001.
DOI : 10.1109/55.974587

F. Lime, F. Andrieu, J. Derix, G. Ghibaudo, F. Boeuf et al., Low temperature characterization of effective mobility in uniaxially and biaxially strained nMOSFETs, Solid-State Electronics, vol.50, issue.4, pp.644-649, 2006.
DOI : 10.1016/j.sse.2006.03.036

URL : https://hal.archives-ouvertes.fr/hal-00145505

A. Adem, G. Lochtefeld, M. T. Braithwaite, R. Currie, M. T. Hammond et al., Scalability of strained-si nMOSFETs down to 25 nm gate length, IEEE Electron Device Letters, vol.24, issue.5, pp.351-353, 2003.

]. D. Fleury, G. Bidal, A. Cros, F. Boeuf, T. Skotnicki et al., New Experimental Insight into Ballisticity of Transport in Strained Bulk MOSFETs, Symposium on VLSI Technology Digest of Technical Papers, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00604249

G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.
DOI : 10.1109/T-ED.1983.21207

H. , M. D. Rideau, M. Feraille, M. Michaillat, Y. M. Niquet et al., Physique des semi-conducteurs et des composants électroniques Simulateurs utilisés [52] UTOX: On the Validity of the effective mass approximation and the Luttinger k.p model in fully depleted SOI MOSFETs, Dunod, 5ème édition, pp.452-498, 2001.

. Sparta, T. Sentaurus-device-monte-carlo, . Sentaurus, and . Synopsys, 3D Monte Carlo Device Simulation of NanoWire MOSFETs including Quantum Mechanical and Strain Effects sept, 54] Sdevice, Sentaurus Device, release 2007.03, TCAD Sentaurus, SYNOPSYS SISPAD 2006: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices Silicon-On-Nothing Nanodevices, pp.67-70, 2006.

D. Rideau, M. Feraille, M. Michaillat, Y. M. Niquet, C. Tavernier et al., On the Validity of the effective mass approximation and the Luttinger k.p model in fully depleted SOI MOSFETsValence-band mixing in first-principles envelope-function theoryEffective-mass hamiltonian and boundary-conditions for the valence bands of semiconductor microstructuresBoundary conditions in multiband k.p models: A tight-binding test, Solid-State Electronics Physical Review B Physical Review B Physical Review B, vol.537648596, issue.44715, pp.452-498, 1993.

J. M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Physical Review, vol.97, issue.4, pp.869-883, 1955.
DOI : 10.1103/PhysRev.97.869

D. Esseni, P. Palestri, L. W. Wang, and A. Zunger, Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devicesPseudopotential-based multiband k.p method for similar to 250000-atom nanostructure systems, Physical Review B Physical Review B, vol.72549, issue.1616, pp.165342-165356, 1996.

B. A. Foreman, Exact effective-mass theory for heterostructures, Physical Review B, vol.52, issue.16, pp.12241-12259, 1995.
DOI : 10.1103/PhysRevB.52.12241

M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, Six-band k???p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness, Journal of Applied Physics, vol.94, issue.2, pp.1079-1095, 2003.
DOI : 10.1063/1.1585120

R. G. Veprek, S. Steiger, and B. Witzigmann, envelope equations, Physical Review B, vol.76, issue.16, pp.165320-165329, 2007.
DOI : 10.1103/PhysRevB.76.165320

M. V. Fischetti and S. E. Laux, Monte Carlo study of electron transport in silicon inversion layers, Physical Review B, vol.48, issue.4, pp.2244-2274, 1993.
DOI : 10.1103/PhysRevB.48.2244

]. S. Richard, F. Aniel, and G. Fishman, method, Physical Review B, vol.72, issue.24, pp.245316-245323, 2005.
DOI : 10.1103/PhysRevB.72.245316

URL : https://hal.archives-ouvertes.fr/in2p3-00147976

]. S. Richard, Modélisation physique de la structure électronique, du transport et de l'ionisation par choc dans les matériaux IV-IV massifs, contraints et dans les puits quantiques, Thèse de doctorat: Discipline Physique, 2004.

M. Feraille, D. Rideau, C. Tavernier, and H. Jaouen, Electronic bandstructure of two dimensional strained semiconductor, GDR Nano, Journée -Simulation et Caractérisation, p.11, 2006.

D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier et al., Strained Si, Ge, and Si1-xGex alloys modeled with a first-principles-optimized full-zone k.p method, Physical Review B, vol.74, issue.19, 2006.

K. Huet, M. Feraille, D. Rideau, R. Delamare, V. Aubry-fortuna et al., Experimental and theoretical analysis of hole transport in uniaxially strained pMOSFETs, ESSDERC 2008, 38th European Solid-State Device Research Conference, pp.234-237, 2008.
DOI : 10.1109/ESSDERC.2008.4681741

]. G. Dresselhaus, A. F. Kip, and C. Kittel, Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals, Physical Review, vol.98, issue.2, pp.368-384, 1955.
DOI : 10.1103/PhysRev.98.368

E. Pikus and G. L. Bir, Effect of deformation on the hole energy spectrum of germanium and silicon, Soviet Physics -Solid State, vol.1, pp.1502-15171642, 1959.

D. Niquet, C. Rideau, H. Tavernier, X. Jaouen, . X. Blase-]-e et al., Model for the on-site matrix elements of the tight-binding hamiltonian of a strained cristal: Application to silicon germanium and alloysPhysics of hole transport in strained silicon MOSFET inversion layers, IEEE Transactions on Electron Devices, vol.53, issue.8, pp.1840-1851, 2006.

K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky et al., Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303), pp.98-99, 2002.
DOI : 10.1109/VLSIT.2002.1015406

M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, Journal of Applied Physics, vol.97, issue.1, pp.11101-011128, 2005.
DOI : 10.1063/1.1819976

C. K. Maiti, L. K. Bera, and S. Chattopadhyay, Strained-Si heterostructure field effect transistors, Semiconductor Science and Technology, vol.13, issue.11, pp.1225-1246, 1998.
DOI : 10.1088/0268-1242/13/11/002

H. Irie, K. Kita, K. Kyuno, and A. Toriumi, In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on [100], [110], and [111] Si, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., pp.225-228, 2004.
DOI : 10.1109/IEDM.2004.1419115

S. E. Thompson, G. Y. Sun, Y. S. Choi, and T. Nishida, Uniaxial-process-induced strained-Si: extending the CMOS roadmap, IEEE Transactions on Electron Devices, vol.53, issue.5, pp.1010-1020, 2006.
DOI : 10.1109/TED.2006.872088

E. Batail, S. Monfray, D. Rideau, M. Szczap, N. Loubet et al., Germanium-On-Nothing (GeON): an innovative technology for ultrathin Ge film integration, ESSDERC 2007, 37th European Solid State Device Research Conference, pp.450-453, 2007.
DOI : 10.1109/ESSDERC.2007.4430975

D. Rideau, E. Batail, S. Monfray, C. Tavernier, and H. Jaouen, Modeling Study of Ultra-Thin Ge Layers Using Tight-Binding, LCBB and kp Methods, SISPAD 2007: Simulation of Semiconductor Processes and Devices, pp.145-148, 2007.
DOI : 10.1007/978-3-211-72861-1_35

Y. T. Hou and M. F. Li, A simple and efficient model for quantization effects of hole inversion layers in MOS devices, IEEE Transactions on Electron Devices, vol.48, issue.12, pp.2893-2898, 2001.

F. Gilibert, Modélisation des contraintes dans les dispositifs Si/SiGe basée sur l'analyse des structures de bandes, Thèse de doctorat: Université de Provence, Ecole Doctorale Physique Modélisation et Sciences pour l'Ingénieur, 2005.

M. Friesen, S. Chutia, C. Tahan, and S. N. Coppersmith, quantum wells, Physical Review B, vol.75, issue.11, pp.115318-115330, 2007.
DOI : 10.1103/PhysRevB.75.115318

J. Van-der-steen, D. Esseni, P. Palestri, L. Selmi, and R. J. Hueting, Validity of the Parabolic Effective Mass Approximation in Silicon and Germanium n-MOSFETs With Different Crystal Orientations, IEEE Transactions on Electron Devices, vol.54, issue.8, pp.1843-1851, 2007.
DOI : 10.1109/TED.2007.900417

C. Y. Chao and S. L. Chuang, Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells, Physical Review B, vol.46, issue.7, pp.4110-4122, 1992.
DOI : 10.1103/PhysRevB.46.4110

]. S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando et al., Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), pp.247-250, 2000.
DOI : 10.1109/IEDM.2000.904303

]. A. Shimizu, K. Hachamine, N. Ohki, H. Ohta, M. Koguchi et al., Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), pp.433-436, 2001.
DOI : 10.1109/IEDM.2001.979529

C. Ortolland, Etudes des effets des contraintes mécaniques induites par les procédés de fabrication sur le comportement électrique des transistors CMOS des noeuds technologiques 65 nm et en deçà, Thèse de doctorat: Institut national des Sciences Appliquées de Lyon Mécanique Quantique Tome 1 et 2, 1973.

]. K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., pp.135-138, 2005.
DOI : 10.1109/IEDM.2005.1609286

B. A. Foreman, Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures, Physical Review B, vol.76, issue.4, pp.45326-045350, 2007.
DOI : 10.1103/PhysRevB.76.045326

B. A. Foreman, First-principles envelope-function theory for lattice-matched semiconductor heterostructures, Physical Review B, vol.72, issue.16, pp.165345-165368, 2005.
DOI : 10.1103/PhysRevB.72.165345

J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, tight-binding calculation for cubic semiconductors: General method and material parameters, Physical Review B, vol.57, issue.11, pp.6493-6507, 1998.
DOI : 10.1103/PhysRevB.57.6493

M. Luisier, A. Schenk, W. Fichtner, and G. Klimeck, tight-binding formalism: From boundary conditions to strain calculations, Physical Review B, vol.74, issue.20, pp.205323-205335, 2006.
DOI : 10.1103/PhysRevB.74.205323

D. Rideau, M. Feraille, M. Michaillat, C. Tavernier, and H. Jaouen, Transport masses in strained silicon MOSFETs with different channel orientations, 2008 International Conference on Simulation of Semiconductor Processes and Devices, pp.105-108, 2008.
DOI : 10.1109/SISPAD.2008.4648248

D. Rideau, Y. M. Niquet, S. Monfray, C. Tavernier, and H. Jaouen, Band Edge Alignment and Confined States in SiGe Based Quantum Wells, Proceedings of the 12 th International Workshop on Computational Electronics, p.201, 2007.

K. Huet, M. Feraille, D. Rideau, R. Delamare, V. Aubry-fortuna et al., Experimental and theoretical analysis of hole transport in uniaxially strained pMOSFETs, ESSDERC 2008, 38th European Solid-State Device Research Conference, pp.234-237, 2008.
DOI : 10.1109/ESSDERC.2008.4681741

C. T. Pham, B. Jungemann, and . Meinerzhagen, Thèse de doctorat: Université Paris-Sud 11 Spécialité: Physique [48] 47 APhysics-based modeling of hole inversion-layer mobility in strained-SiGe-on-insulatorIteration scheme for the solution of the two-dimensional schrodinger-Poisson equations in quantum structures, Modélisation du transport sous contrainte mécanique dans les transtors sub-65nm pour la microélectronique CMOS Ecole Doctorale Sciences et Technologies de l'Information des Télécommunications et des Systèmes, pp.2174-2182, 1997.

M. V. Fischetti, F. Gámiz, and W. Hänsch, On the enhanced electron mobility in strained-silicon inversion layers, Journal of Applied Physics, vol.92, issue.12, pp.7320-7324, 2002.
DOI : 10.1063/1.1521796

G. Comparone, P. Palestri, D. Esseni, L. Lucci, and L. Selmi, A Better Understanding of the Requirements for Predictive Modeling of Strain Engineering in <I>n</I>MOS Transistors, Journal of Computational and Theoretical Nanoscience, vol.5, issue.6, pp.1106-1114, 2008.
DOI : 10.1166/jctn.2008.2544

D. Ponton, L. Lucci, P. Palestri, D. Esseni, and L. Selmi, Assessment of the Impact of Biaxial Strain on the Drain Current of Decanometric n-MOSFET, 2006 European Solid-State Device Research Conference, pp.166-169, 2006.
DOI : 10.1109/ESSDER.2006.307664

T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Reviews of Modern Physics, vol.54, issue.2, pp.437-672, 1982.
DOI : 10.1103/RevModPhys.54.437

]. D. Esseni, On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and Its Correlation to the Transistor Effective Field, IEEE Transactions on Electron Devices, vol.51, issue.3, pp.394-401, 2004.
DOI : 10.1109/TED.2003.822344

M. H. Evans, M. Caussanel, R. D. Schrimpf, and S. T. Pantelides, First-Principles Modeling of Double-Gate UTSOI MOSFETs Simulateurs utilisés, IEEE International Electron Devices Meeting 2005, Technical Digest On the Validity of the effective mass approximation and the Luttinger k.p model in fully depleted SOI MOSFETs, pp.600-603452, 2005.

K. Kubo-greewood, M. Huet, D. Feraille, R. Rideau, V. Delamare et al., Experimental and theoretical analysis of transport in uniaxially strained pMOSFETs, Proceedings of the 38th European Solid-State Device Research Conference, pp.234-237, 2008.

]. S. Références1, G. Y. Thompson, Y. S. Sun, T. Choi, . E. Nishida-]-s et al., Uniaxial-process-induced strained-Si: Extending the CMOS roadmapFuture of strained Si/serniconductors in nanoscale MOSFETs, International Electron Devices Meeting, Vols 1 and 2Piezoresistance Coefficients of (100) Silicon nMOSFETs Measured at Low and High (~1.5 GPa) Channel Stress, pp.1010-1020, 2006.

H. Irie, K. Kita, K. Kyuno, A. Toriumi, C. Gallon et al., Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) siliconPhysics of hole transport in strained silicon MOSFET inversion layersEvaluation of piezoresistive coefficient variation in silicon stress sensors using a 4-point bending test fixtureTemperature dependence of the piezoresistance effects of p-type silicon diffused layers, 2007. [9] F. Cacho, CONFCALL-2.ppt, conférence téléphonique inter-sites ST-Crolles ST-Rousset et ST-Agratte, pp.225-228, 1992.

]. D. Rideau, Introduction to MOSFETs Compact Models v1.2, Formation continue ingénieur INPG piezoresistance Effect in Germanium and Silicon, Physical Review, vol.94, issue.1, pp.42-49, 1954.

K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda, Nonlinear piezoresistance effects in silicon, Journal of Applied Physics, vol.73, issue.4, pp.1838-1847, 1993.
DOI : 10.1063/1.353169

T. Guillaume-de-doctorat, I. Grenoble14, ]. Y. Tsang, A. G. O-'neill, B. J. Gallacher et al., Using piezoresistance model with c-r conversion for modeling of strain-induced mobility, Thèse Ieee Electron Device Letters, pp.1062-1064, 2005.

. El-mansy, A logic nanotechnology featuring strained-silicon, Ieee Electron Device Letters, vol.25, issue.4, pp.191-193, 2004.

D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier et al., Strained Si, Ge, and Si1-xGex alloys modeled with a first-principles-optimized full-zone k.p methodPhysical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime, IEEE International Electron Devices Meeting 2005, pp.135-138, 2005.

E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina et al., The Effect of General Strain on the Band Structure and Electron Mobility of Silicon, IEEE Transactions on Electron Devices, vol.54, issue.9, pp.2183-2190, 2007.
DOI : 10.1109/TED.2007.902880

Y. Kanda and K. Suzuki, -type silicon, Physical Review B, vol.43, issue.8, pp.6754-6756, 1991.
DOI : 10.1103/PhysRevB.43.6754

URL : https://hal.archives-ouvertes.fr/in2p3-01333933

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Reviews of Modern Physics, vol.55, issue.3, pp.645-705, 1983.
DOI : 10.1103/RevModPhys.55.645

X. F. Fan, L. F. Register, B. Winstead, M. C. Foisy, W. Q. Chen et al., Hole Mobility and Thermal Velocity Enhancement for Uniaxial Stress in Si up to 4 GPa, IEEE Transactions on Electron Devices, vol.54, issue.2, pp.291-296, 2007.
DOI : 10.1109/TED.2006.888667

L. Smith, G. Moroz, P. Eneman, F. Verheyen, L. Nouri et al., Exploring the limits of stress-enhanced hole mobility, IEEE Electron Device Letters, vol.26, issue.9, pp.652-654, 2005.
DOI : 10.1109/LED.2005.853668

L. Shifren, X. Wang, P. Matagne, B. Obradovic, C. Auth et al., Drive current enhancement in p-type metal???oxide???semiconductor field-effect transistors under shear uniaxial stress, Applied Physics Letters, vol.85, issue.25, pp.6188-6190, 2004.
DOI : 10.1063/1.1841452

K. Matsuda, Y. Kanda, and K. Suzuki, 2nd-order piezoresistance coefficients of n-type silicon, Japanese Journal of Applied Physics Part 2-Letters, pp.1676-1677, 1989.

Y. Ohmura and W. Morinaga, Fourth-Order Piezoresistance Coefficients in Cubic Semiconductors, Japanese Journal of Applied Physics, vol.39, issue.Part 1, No. 6A, pp.3483-3487, 2000.
DOI : 10.1143/JJAP.39.3483

K. Kubo-greewood-3dk-et-2dk, M. Huet, D. Feraille, R. Rideau, V. Delamare et al., Experimental and theoretical analysis of transport in uniaxially strained pMOSFETs, Proceedings of the 38th European Solid-State Device Research Conference, pp.234-237, 2008.

D. Rideau, M. Feraille, M. Michaillat, Y. M. Niquet, C. Tavernier et al., On the validity of the effective mass approximation and the Luttinger k.p model in fully depleted SOI MOSFETs, Solid-State Electronics, vol.53, issue.4, pp.452-498, 2008.
DOI : 10.1016/j.sse.2008.08.006