M. Pop and S. Salzberg, Bioinformatics challenges of new sequencing technology, Trends in Genetics, vol.24, issue.3, pp.142-149, 2008.
DOI : 10.1016/j.tig.2007.12.006

T. Smith and M. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

T. Rognes and E. Seeberg, Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors, Bioinformatics, vol.16, issue.8, pp.699-706, 2000.
DOI : 10.1093/bioinformatics/16.8.699

M. Farrar, Striped Smith-Waterman speeds database searches six times over other SIMD implementations, Bioinformatics, vol.23, issue.2, pp.156-161, 2007.
DOI : 10.1093/bioinformatics/btl582

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/23/2/156

W. Pearson, Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms, Genomics, vol.11, issue.3, pp.635-650, 1991.
DOI : 10.1016/0888-7543(91)90071-L

W. Liu, B. Schmidt, G. Voss, A. Schroeder, and W. Muller-wittig, Bio-sequence database scanning on a GPU, Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, 2006.

V. Sachdeva, M. Kistler, E. Speight, and T. Tzeng, Exploring the viability of the Cell Broadband Engine for bioinformatics applications, Proceedings of IEEE International Parallel and Distributed Processing Symposium, pp.1-8, 2007.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain, FPGA-accelerated seed generation in Mercury BLASTP, 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2007), pp.95-106, 2007.
DOI : 10.1109/FCCM.2007.11

D. Lavenier, G. Georges, and X. Liu, A reconfigurable index FLASH memory tailored to seed-based genomic sequence somparison algorithms. VLSI Signal Processing, pp.255-269, 2007.

X. Fei, D. Yong, and X. Jinbo, FPGA-based accelerators for BLAST families with multi-seeds detection and parallel extension, Proceedings of the 2nd International Conference, pp.58-62, 2008.

H. Zhang, B. Schmidt, and W. Mueller-wittig, Accelerating BLASTP on the Cell Broadband Engine, Proceedings of Pattern Recognition in Bioinformatics, Third IAPR International Conference, pp.460-470, 2008.
DOI : 10.1007/978-3-540-88436-1_39

M. Roytberg, A. Gambin, L. Noe, S. Lasota, E. Furletova et al., On Subset Seeds for Protein Alignment, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.6, issue.3, pp.483-494, 2009.
DOI : 10.1109/TCBB.2009.4

URL : https://hal.archives-ouvertes.fr/inria-00354773

S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.253389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

K. Chao, W. Pearson, and W. Miller, Aligning two sequences within a specified diagonal band, Bioinformatics, vol.8, issue.5, pp.481-487, 1992.
DOI : 10.1093/bioinformatics/8.5.481

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/8/5/481

S. Altschul and W. Gish, [27] Local alignment statistics, Methods Enzymol, vol.266, pp.460-480, 1996.
DOI : 10.1016/S0076-6879(96)66029-7

S. Karlin and S. Altschul, Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes., Proceedings of the National Academy of Sciences, vol.87, issue.6, pp.2264-2268, 1990.
DOI : 10.1073/pnas.87.6.2264

Y. Yu and S. Altschul, The construction of amino acid substitution matrices for the comparison of proteins with non-standard compositions, Bioinformatics, vol.21, issue.7, pp.902-911, 2005.
DOI : 10.1093/bioinformatics/bti070

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

Z. Chean, Assessing sequence comparison methods with the average precision criterion, Bioinformatics, vol.19, issue.18, pp.2456-2460, 2003.
DOI : 10.1093/bioinformatics/btg349

X. Fei, D. Yong, and X. Jinbo, Fpga-based accelerators for blast families with multi-seeds detection and parallel extension, The 2nd International Conference, pp.58-62, 2008.

M. Gertz, Y. K. Yu, R. Agarwala, A. Schaffer, and S. , Composition-based statistics and translated nucleotide searches: Improving the tblastn module of blast, BMC Biology, 2006.

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks., Proc. Natl. Acad. Sci. USA, pp.10915-10919, 1992.
DOI : 10.1073/pnas.89.22.10915

D. Lavenier, G. Georges, and X. Liu, A Reconfigurable Index FLASH Memory tailored to Seed-Based Genomic Sequence Comparison Algorithms, The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol.85, issue.11, pp.255-269, 2007.
DOI : 10.1007/s11265-007-0073-6

URL : https://hal.archives-ouvertes.fr/inria-00178314

E. Mardis, The impact of next-generation sequencing technology on genetics, Trends in Genetics, vol.24, issue.3, pp.133-141, 2008.
DOI : 10.1016/j.tig.2007.12.007

P. Peterlongo, L. Noe, D. Lavenier, G. Georges, J. Jacques et al., Protein Similarity Search with Subset Seeds on a Dedicated Reconfigurable Hardware, Parallel Bio-Computing (PBC-07)
DOI : 10.1007/978-3-540-68111-3_131

URL : https://hal.archives-ouvertes.fr/inria-00178325

M. Pop, S. L. Salzberg, D. Benson, I. Karsch-mizrachi, D. Lipman et al., Bioinformatics challenges of new sequencing technology [1] The Universal Protein Resource (UniProt) The UniProt Consortium Next-generation DNA sequencing Improved tools for biological sequence comparison, Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays Proc. National Academy of Science, pp.142-149, 1988.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

K. Muriki, K. Underwood, R. Sass, and . Rc-blast, RC-BLAST: Towards a Portable, Cost-Effective Open Source Hardware Implementation, 19th IEEE International Parallel and Distributed Processing Symposium, 2005.
DOI : 10.1109/IPDPS.2005.373

J. Lancaster, A. Jacob, J. Buhler, B. Harris, R. Chamberlain et al., accelerating protein sequence alignment A recofigurable index flash memory tailored to seed-based genomic sequence comparison algorithms, ACM Transactions on Reconfigurable Technology and System VLSI Signal Processing, vol.111, issue.483, pp.255-269, 2007.

F. Xia, Y. Dou, J. Xu-kasap, S. Ying, L. Benkrid et al., High performance FPGA-based core for BLAST sequence alignment with the two-hit method Single pass, BLAST-Like, approximate string matching on FPGAs Protein similarity search with subset seeds on a dedicated reconfigurable hardware: Parallel Local Alignment search Tool for Database comparison Fine-grained parallelization of similarity search between protein sequences, Reconfigurable Computing: Architectures, Tools and Applications 8th IEEE International Conference on BioInformatics and BioEngineering Field-Programmable Custom Computing Machines Parallel Bio-Computing, pp.39-50, 2006.

P. Ce-chapitre-présente-la-mise-en-÷uvre-de, version multi-c÷ur SSE) sur un cluster de machines en utilisant la librairie MPI. Cette implémentation utilise l'approche de mpiBLAST [15] qui partitionne et répartit une banque de séquences sur les n÷uds d'un cluster. La première section introduit le contexte de l'implémentation de BLAST sur des architectures à mémoire partagée et distribuée. L'algorithme de mpiBLAST est décrit dans la section suivante. La troisième section présente l'implémentation de mpiPLAST et évalue ses performances Conclusion et perspectives

A. Table, 4 Analyse de sensibilité de BLASTP et PLASTP pour le quatrième jeu de données, p.106

. Annexe, Le logiciel PLAST recherche d'alignements locaux entre deux banques de séquences génomiques (séquences protéiques et séquences d'ADN) Le logiciel PLAST se décline en plusieurs versions suivant les cibles technologiques visées : multi-coeur SSE, cartes graphiques

S. Multi-c÷ur, . Linux, and . Mac, GNU) Changer dans le répertoire contenant PLAST Compiler : make Windows (MinGW -Minimalist GNU for Windows) Changer dans le répertoire contenant PLAST Compiler : mingw-make

C. Installer, C. Toolkit, C. Sdk-)-changer-dans-le-répertoire-contenant-cudaplast-modier-makele, and C. , lib CUDA_COMMONDIR=/path/to/cuda/common Compiler : make 3. RCC-PLAST Installer SGI-RASC Charger le bitstrem de PLAST Changer dans le répertoire contenant RCC-PLAST Modier Makele RASC_INCLUDE=/path/to/rasc/include Complier : make 4. mpiPLAST Installer MPICH ou LAM/MPI Changer dans le répertoire contenant mpiPLAST Complier : make Exécution $ plastall -p <prog> -d </path

. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, issue.3, p.403410, 1990.

F. Stephen, T. L. Altschul, A. A. Madden, J. Schäer, Z. Zhang et al., Gapped BLAST and PSI- BLAST : a new generation of protein database search programs, Nucleic Acids Research, issue.17, p.2533893402, 1997.

B. Ma, J. Tromp, and M. Li, PatternHunter: faster and more sensitive homology search, Bioinformatics, vol.18, issue.3, p.440445, 2002.
DOI : 10.1093/bioinformatics/18.3.440

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.8001

M. Li, B. Ma, D. Kisman, and J. Tromp, PATTERNHUNTER II: HIGHLY SENSITIVE AND FAST HOMOLOGY SEARCH, Journal of Bioinformatics and Computational Biology, vol.02, issue.03, p.417439, 2004.
DOI : 10.1142/S0219720004000661

M. Roytberg, A. Gambin, L. Noe, S. Lasota, E. Furletova et al., Ecient seeding techniques for protein similarity search, Bioinformatics Research and Development, Second International Conference, p.466478, 2008.

M. Roytberg, A. Gambin, L. Noe, S. Lasota, E. Furletova et al., On Subset Seeds for Protein Alignment, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.6, issue.3
DOI : 10.1109/TCBB.2009.4

URL : https://hal.archives-ouvertes.fr/inria-00354773

W. and J. Kent, BLAT---The BLAST-Like Alignment Tool, Genome Research, vol.12, issue.4, pp.656-664, 2002.
DOI : 10.1101/gr.229202

D. Lavenier, G. Georges, and X. Liu, A recongurable index ash memory tailored to seed-based genomic sequence comparison algorithms, VLSI Signal Processing, vol.48, issue.3, p.255269, 2007.

T. Rognes and E. Seeberg, Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors, Bioinformatics, vol.16, issue.8, p.699706, 2000.
DOI : 10.1093/bioinformatics/16.8.699

M. Farrar, Striped Smith-Waterman speeds database searches six times over other SIMD implementations, Bioinformatics, vol.23, issue.2, p.156161, 2007.
DOI : 10.1093/bioinformatics/btl582

A. Svetlin, G. Manavski, and . Valle, CUDA compatible GPU cards as ecient hardware accelerators for smith-waterman sequence alignment, BMC Bioinformatics, issue.9 2, 2008.

M. Joseph, C. Lancaster-arpith, J. Jacob, B. Buhler, R. D. Harris et al., Mercury BLASTP : accelerating protein sequence alignment, ACM Transactions on Recongurable Technology and System, vol.1, issue.2, 2008.

M. Cameron, A. Hugh, and E. Williams, Improved gapped alignment in BLAST, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.1, issue.3, pp.116-129, 2004.
DOI : 10.1109/TCBB.2004.32

A. E. Darling, L. Carey, and W. Feng, The design, implementation, and evaluation of mpiblast, Proceedings of Conference on Linux Cluster : The HPC Revolution, 2003.

C. E. Metz, Basic principles of ROC analysis, Seminars in nuclear medicine, p.283298, 1978.
DOI : 10.1016/S0001-2998(78)80014-2

H. Sugawara, T. Abe, T. Gojobori, and Y. Tateno, DDBJ working on evaluation and classication of bacterial genes in INSDC, Nucleic Acids Research, vol.35, p.1315, 2007.

T. Kulikova, EMBL nucleotide seequence database in 2006, Nucleic Acids Research, vol.35, p.1620, 2007.

E. Gordon and . Moore, Cramming more components onto integrated circuits, Electronics, vol.38, issue.8, 1965.

S. Heniko and J. G. Heniko, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. USA, p.1091510919, 1992.

F. Stephent, Amino acid substitution matrices from an information theoretic perspective, J Mol Biol, vol.219, issue.3, p.555565, 1991.

S. Karlin and S. F. , Methods for assessing the statistical signicance of molecular sequence features by using general scoring schemes, Proc Natl Acad Sci U S A, vol.87, issue.6, p.22642268, 1990.

S. and W. Gish, Local alignment statistics, Methods Enzymol, vol.266, pp.460-480, 1996.

B. Saul, C. D. Needleman, and . Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, Journal of Molecular Biology, vol.48, issue.3, p.443453, 1970.

F. Thomas, M. S. Smith, and . Waterman, Identication of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, p.195197, 1981.

J. David, W. R. Lipman, and . Pearson, Rapid and sensitive protein similarity searches, Science, vol.227, issue.4693, p.14351441, 1985.

R. William, D. J. Pearson, and . Lipman, Improved tools for biological sequence comparison, Proc Natl Acad Sci U S A, vol.85, issue.8, p.24442448, 1988.

J. Buhler and M. Tompa, Finding motifs using random projections, Proceedings of the Fifth Annual International Conference on Computational Biology, p.6976, 2001.
DOI : 10.1089/10665270252935430

URL : http://b.web.umkc.edu/bic/projection02.pdf

J. Buhler, Provably sensitive indexing strategies for biosequence similarity search, RECOMB, p.9099, 2002.

S. Burkhardt and J. Kärkkäinen, Better ltering with gapped q-grams, Proceedings of the 12th Symposium on Combinatorial Pattern Matching (CPM), p.7385, 2001.
DOI : 10.1007/3-540-48194-x_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.5942

L. Noé and G. Kucherov, Improved hit criteria for DNA local alignment, BMC Bioinformatics, 2004.

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Research, vol.33, issue.Web Server, p.540543, 2005.
DOI : 10.1093/nar/gki478

Y. Sun and J. Buhler, Designing multiple simultaneous seeds for DNA similarity search, Proceedings of the 8th Annual International Conference on Computational Molecular Biology (RECOMB), pp.76-84, 2004.
DOI : 10.1145/974614.974625

URL : http://ai.stanford.edu/~serafim/CS374_2006/papers/SunBuhler_Indexing.pdf

J. Xu, D. G. Brown, M. Li, and B. Ma, Optimizing multiple spaced seeds for homology search, Proceedings of the 15th Symposium on Combinatorial Pattern Matching (CPM), p.4758, 2004.
DOI : 10.1007/978-3-540-27801-6_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2079

I. Yang, S. Wang, Y. Chen, P. Huang, L. Ye et al., Ecient methods for generating optimal single and multiple spaced seeds, Proceedings of the IEEE 4th Symposium on Bioinformatics and Bioengineering (BIBE), p.411416, 2004.

B. Brejová, D. Brown, and T. Vinar, Vector Seeds: An Extension to Spaced Seeds Allows Substantial Improvements in Sensitivity and Specificity, WABI, p.3954, 2003.
DOI : 10.1007/978-3-540-39763-2_4

G. Daniel and . Brown, Multiple vector seeds for protein alignment, Proceedings of the 4th International Workshop in Algorithms in Bioinformatics (WABI), p.170181, 2004.

D. G. Brejová, T. Brown, and . Vinar, Vector seeds: An extension to spaced seeds, Journal of Computer and System Sciences, vol.70, issue.3, p.364380, 2005.
DOI : 10.1016/j.jcss.2004.12.008

G. Daniel and . Brown, Optimizing multiple seed for protein homology search

G. Kucherov, L. Noé, and M. A. Roytberg, A UNIFYING FRAMEWORK FOR SEED SENSITIVITY AND ITS APPLICATION TO SUBSET SEEDS, Journal of Bioinformatics and Computational Biology, vol.04, issue.02, p.553569, 2006.
DOI : 10.1142/S0219720006001977

URL : https://hal.archives-ouvertes.fr/inria-00001164

P. Peterlongo, L. Noé, D. Lavenier, G. Georges, J. Jacques et al., Protein similarity search with subset seeds on a dedicated recongurable hardware, Parallel Bio-Computing, 2007.

J. Dumas and J. Ninio, Ecient algorithms for folding and comparing nucleic acid sequences, p.197206, 1982.
DOI : 10.1093/nar/10.1.197

URL : http://doi.org/10.1093/nar/10.1.197

C. Fondrat and P. Dessen, A rapid access motif database (RAMdb) with a search algorithm for the retrieval patterns in nucleic acids or protein databanks, Bioinformatics, vol.11, issue.3, p.273279, 1995.
DOI : 10.1093/bioinformatics/11.3.273

A. Califano and I. Rigoutsos, FLASH: a fast look-up algorithm for string homology, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, p.5664, 1993.
DOI : 10.1109/CVPR.1993.341106

Z. Ning, A. J. Cox, and J. C. Mullikin, SSAHA: A Fast Search Method for Large DNA Databases, Genome Research, vol.11, issue.10, p.17251729, 2001.
DOI : 10.1101/gr.194201

E. Michael-gertz, Y. Yu, R. Agarwala, A. A. Schäer, and S. F. , Composition-based statistics and translated nucleotide searches : Improving the TBLASTN module of BLAST, BMC Biology, 2006.

J. You, A. Kim, B. D. Boyd, J. M. Athey, and . Patel, miBLAST : scalable evaluation of a batch of nucleotide sequence queries with BLAST, Nucleic Acids Research, vol.33, issue.13, p.433544, 2005.

P. Weiner, Linear pattern matching algorithms, 14th Annual Symposium on Switching and Automata Theory (swat 1973), p.111, 1973.
DOI : 10.1109/SWAT.1973.13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.474.9582

S. Kurtz, Reducing the space requirement of sux trees, Softw. Pract. Exper, vol.29, issue.13, p.11491171, 1999.

S. Kurtz and C. Schleiermacher, REPuter: fast computation of maximal repeats in complete genomes, Bioinformatics, vol.15, issue.5, p.426427, 1999.
DOI : 10.1093/bioinformatics/15.5.426

S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye et al., REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acids Research, vol.29, issue.22, p.2946334642, 2001.
DOI : 10.1093/nar/29.22.4633

L. Arthur, S. Delcher, R. D. Kasif, J. Fleischmann, O. Peterson et al., Alignment of whole genomes, Nucleic Acids Res, vol.30, issue.11, p.236976, 1999.

L. Arthur, A. Delcher, J. Phillippy, S. L. Carlton, and . Salzberg, Fast algorithms for large-scale genome alignment and comparison, Nucleic Acids Res, vol.27, issue.11, p.247883, 2002.

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, Replacing sux trees with enhanced sux arrays, Journal of Discrete Algorithms, vol.2, issue.1, p.5386, 2004.

H. E. Williams, Compressed indexing for genomic retrieval, Journal of Mathematical . Modelling and Scientic Computing, vol.9, issue.2, p.144154, 1998.

H. E. Williams, Cafe, Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '98, p.389, 1998.
DOI : 10.1145/290941.291078

E. Hugh, J. Williams, and . Zobel, Indexing and retrieval for genomic databases

A. Moat and J. Zobel, Self-indexing inverted les for fast text retrieval

J. Zobel and P. W. Dart, Finding approximate matches in large lexicons, Software: Practice and Experience, vol.15, issue.3, p.331345, 1995.
DOI : 10.1002/spe.4380250307

L. Bowen-alpern, K. Carter, and . Gatlin, Microparallelism and highperformance protein matching, Proceeding of the Supercomputing Conference, p.38, 1995.

A. Wozniak, Using video-oriented instructions to speed up sequence comparison, Bioinformatics, vol.13, issue.2, p.145150, 1997.
DOI : 10.1093/bioinformatics/13.2.145

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/13/2/145

R. William and . Pearson, Searching protein sequence libraries : Comparison of the sensitivity and selectivity of the smith-waterman and fasta algorithms, Genomics, vol.11, p.635650, 1991.

T. Rognes, ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches, Nucleic Acids Research, vol.29, issue.7, p.16471652, 2001.
DOI : 10.1093/nar/29.7.1647

. Per-eystein-saebø, J. Sten-morten-andersen, J. K. Myrseth1, T. Laerdahl, and . Rognes, ParAlign : rapid and sensitive sequence similarity searches powered by parallel computing technology, Nucleic Acids Res, vol.33, p.5359, 2005.

Y. Liu, W. Huang, J. Johnson, and S. Vaidya, GPU Accelerated Smith-Waterman, International Conference on Computational Science, p.188195, 2006.
DOI : 10.1007/11758549_29

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer et al., Introduction to the Cell multiprocessor, IBM Journal of Research and Development, vol.49, issue.4.5, 2005.
DOI : 10.1147/rd.494.0589

M. Kistler, M. Perrone, and F. Petrini, Cell Multiprocessor Communication Network: Built for Speed, IEEE Micro, vol.26, issue.3, p.1023, 2006.
DOI : 10.1109/MM.2006.49

V. Sachdeva, M. Kistler, W. E. Speight, K. Tzy-hwa, and . Tzeng, Exploring the viability of the cell broadband engine for bioinformatics applications

S. Michael and . Farrar, Optimizing smith-waterman for the cell broadband engine, 200818.

H. Zhang, W. Schmidt, and . Mueller-wittig, Accelerating BLASTP on the Cell Broadband Engine, In Pattern Recognition in Bioinformatics, p.460470, 2008.
DOI : 10.1007/978-3-540-88436-1_39

M. Cameron, H. E. Williams, and A. Cannane, A deterministic nite automaton for faster protein hit detection in BLAST, Journal of Computational Biology, vol.13, issue.4, p.965978, 2006.

K. T. Pedretti, T. L. Casavant, R. C. Braun, T. E. Scheetz, C. L. Birkett et al., Three Complementary Approaches to Parallelization of Local BLAST Service on Workstation Clusters, PaCT '999 : Proceedings of the 5th International Conference on Parallel Computing Technologies, p.271282, 1999.
DOI : 10.1007/3-540-48387-X_29

S. Margerm and I. Cray, Recongurable computing in real-world applications. FPGA and Programmable Logic, 2006.

J. Chiang, M. Studniberg, J. Shaw, K. T. , and S. Seto, Hardware Accelerator for Genomic Sequence Alignment, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, p.57875789, 2006.
DOI : 10.1109/IEMBS.2006.260286

T. Isaac, W. Li, K. Shum, and . Truong, 160-fold acceleration of the smithwaterman algorithm using a eld programmable gate array (fpga), BMC Bioinformatics, vol.8, 2007.

Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya, High speed homology search using run-time reconguration, 12th International Conference on Field-Programmable Logic and Applications, Recongurable Computing Is Going Mainstream, p.281291, 2002.
DOI : 10.1007/3-540-46117-5_30

H. T. Kung and C. Leiserson, Algorithms for VLSI processors arrays, 1980.

R. J. Lipton and D. P. Lopresti, A systolic array for rapid string comparison, Chapel Hill Conf. on VLSI, H. Fuchs, p.363376, 1985.

E. Chow, T. Hunkapiller, J. Peterson, and M. S. Waterman, Biological information signal processor, Proceedings of the International Conference on Application Specific Array Processors, p.144160, 1991.
DOI : 10.1109/ASAP.1991.238887

T. Dzung and . Hoang, Searching genetic databases on Splash 2, Proceedings. IEEE Workshop on FPGAs for Custom Computing Machines, p.185191, 1993.

L. Hasan, Y. M. Khawaja, and A. Bais, A systolic array architecture for the Smith-Waterman algorithm with high performance cell design, Proceedings of IADIS European Conference on Data Mining, p.3542, 2008.

J. D. Buhler, J. M. Lancaster, A. C. Jacob, and R. D. Chamberlain, Mercury BLASTN : faster DNA sequence comparison using a streaming hardware architecture, Recongurable Systems Summer Institute, 2007.

. Mitrionics and . Ins, Mitron-accelerated BLAST, 2007.

K. Muriki, K. D. Underwood, and R. Sass, RC-BLAST: Towards a Portable, Cost-Effective Open Source Hardware Implementation, 19th IEEE International Parallel and Distributed Processing Symposium, 2005.
DOI : 10.1109/IPDPS.2005.373

C. Chang, BLAST implementation on BEE2. Electrical Engineering and Computer ScienceUniversity of California at Berkeley

B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamberlain, A Banded Smith-Waterman FPGA Accelerator for Mercury BLASTP, 2007 International Conference on Field Programmable Logic and Applications, p.765769, 2007.
DOI : 10.1109/FPL.2007.4380764

F. Xia, Y. Dou, and J. Xu, Hardware BLAST Algorithms with Multi-seeds Detection and Parallel Extension, Recongurable Computing : Architectures, Tools and Applications, 4th International Workshop, p.3950, 2008.
DOI : 10.1007/978-3-540-78610-8_7

S. Kasap, . Andying-liu-khaled, and . Benkrid, High performance FPGA-based core for BLAST sequence alignment with the two-hit method, 2008 8th IEEE International Conference on BioInformatics and BioEngineering, p.17, 2008.
DOI : 10.1109/BIBE.2008.4696722

S. Kasap, K. Benkrid, and Y. Liu, Design and implementation of an FPGA-based core for gapped BLAST sequence alignment with the two-hit method. International Association Of Engineers, 2008.

C. Martin, J. Herbordt, Y. Model, B. Gu, T. Sukhwani et al., Single pass, BLAST-Like, approximate string matching on FPGAs, 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, p.217226, 2006.

H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova, Ecient data access for parallel BLAST, Proceedings of 19th IEEE International on Parallel and Distributed Processing Symposium, 2005.

O. Thorsen, B. Smith, C. P. Sosa, K. Jiang, H. Lin et al., Parallel genomic sequence-search on a massively parallel system, Proceedings of the 4th international conference on Computing frontiers , CF '07, p.5968, 2007.
DOI : 10.1145/1242531.1242542

A. Munshi, OpenCL specication v1.0, 2008.

V. Volodymyr, R. J. Kindratenko, A. D. Brunner, and . Myers, Mitrion- C application development on SGI Altix 350/RC100, IEEE Symposium on Field-Programmable Custom Computing Machines, p.239250, 2007.

D. Elléouet, Y. Savary, and N. Julien, An FPGA power aware design ow, Power and Timing Modeling, Optimization and Simulation, 16th International Workshop, p.415424, 2006.

. Kuo-bin and . Li, ClustalW-MPI : ClustalW analysis using distributed and parallel computing, Bioinformatics, vol.19, issue.12, p.15851586, 2003.

R. Dolbeau, S. Bihan, and F. Bodin, HMPP : A hybrid multicore parallel programming environment. http://www.caps-entreprise.com/ caps-hmpp-gpgpu-Boston-Workshop, 2007.

P. .. Et-de, Exemples de l'extension sans gap de BLAST