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Université Paris Diderot (Paris 7)
2, place Jussieu, 75251 Paris Cedex 05

Chapter illustrations: courtesy of Prof. David Relman’s lab, Stanford Univ.
http://asiago.stanford.edu/RelmanLab/Microarray_art

http://asiago.stanford.edu/RelmanLab/Microarray_art


Résumé

Cette thèse traite de questions statistiques soulevées par l’analyse de
données génomiques de grande dimension, dans le cadre de la recherche
contre le cancer. La première partie est consacrée à l’étude des propriétés
asymptotiques de procédures de tests multiples visant à contrôler l’espérance
(FDR) du taux de fausses découvertes (FDP) parmi les hypothèses rejetées.
On introduit un formalisme flexible qui permet de calculer la loi asymp-
totique du FDP et les conditions de régularité associées pour une vaste
famille de procédures de tests multiples, et de comparer la puissance de
ces procédures. On s’intéresse ensuite aux liens en termes de contrôle du
FDR entre les bornes intrinsèques à trois problèmes de tests multiples: la
détection, l’estimation, et la sélection. On relie en particulier la vitesse
de convergence dans le problème d’estimation à la régularité de la loi des
probabilités critiques au voisinage de 1.

La seconde partie est dédiée au développement de méthodes d’analyse
des données de puces à ADN en cancérologie. On propose une méthode de
pré-traitement des données de puces à ADN combinant une régression ro-
buste et un modèle de mélange avec contrainte spatiale, qui permet d’éliminer
les biais spatiaux en préservant le signal biologique. On développe ensuite
une méthode d’inférence de régulations entre gènes à partir de données
d’expression de gènes, qui repose sur des techniques d’apprentissage infor-
matique et de tests multiples. Enfin, on construit un test génomique per-
mettant de déterminer, pour une patiente traitée pour un cancer du sein,
si un second cancer survenant sur le même sein est ou non une récidive du
premier.

Mots-clés: Tests multiples, Méthode du delta fonctionnelle, Taux de
fausses découvertes, Puces à ADN, Nombre de copies d’ADN, Normalisation,
Réseaux de régulation.





Abstract

This thesis deals with statistical questions raised by the analysis of high-
dimensional genomic data for cancer research. In the first part, we study
asymptotic properties of multiple testing procedures that aim at control-
ling the False Discovery Rate (FDR), that is, the expected False Discovery
Proportion (FDP) among rejected hypotheses. We develop a versatile for-
malism to calculate the asymptotic distribution of the FDP an the associated
regularity conditions, for a wide range of multiple testing procedures, and
compare their asymptotic power. We then study in terms of FDR con-
trol connections between intrinsic bounds between three multiple testing
problems: detection, estimation and selection. In particular, we connect
convergence rates in the estimation problem to the regularity of the p-value
distribution near 1.

In the second part, we develop statistical methods to study DNA mi-
croarrays for cancer research. We propose a microarray normalization method
that removes spatial biases while preserving the true biological signal; it
combines robust regression with a mixture model with spatial constraints.
Then we develop a method to infer gene regulations from gene expression
data, which is based on learning and multiple testing theories. Finally, we
build a genomic score to predict, for a patient treated for a breast tumor,
whether or not a second cancer is a true recurrence of the first cancer.

Keywords: Multiple testing, Functional Delta method, False Discov-
ery Rate, DNA microarrays, DNA copy number, Normalization, Regulation
networks.
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compagnons de route statisticiens ou probabilistes de Chevaleret de m’avoir
accueilli dans leur bureau: Mohamed, Karim, François, Julien, Marc, merci
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Résumé en français

Cette thèse aborde des questions statistiques soulevées par l’analyse de
données génomiques de grande dimension, dans le cadre de la recherche
contre le cancer. Les principaux objectifs de la recherche en cancérologie sont
d’ordre biologique, avec la compréhension des mécanismes de développement
et de progression des cancers, et clinique, avec l’amélioration du diagnostic,
du pronostic, et des traitements.

Les cancers résultent d’une accumulation de désordres génétiques, que
les nouvelles techniques de la biologie moléculaire comme les puces à ADN
permettent d’étudier quantitativement et à grande échelle. Une des ques-
tions statistiques soulevées par l’analyse des données de puces à ADN est le
contrôle du risque de première espèce dans les tests d’hypothèses multiples.

Cette question peut être illustrée par la recherche de gènes significa-
tivement associés à un type de cancer: lorsqu’on teste simultanément un
grand nombre de gènes candidats, il est utile de définir une mesure de risque
qui tolère un certain nombre de faux positifs (c’est-à-dire de gènes déclarés
significatifs alors qu’ils ne sont pas réellement associés), pourvu que cette
proportion ne soit pas trop importante. C’est le sens du contrôle du False
Discovery Rate (FDR), qui correspond à l’espérance de la False Discovery
Proportion (FDP), proportion de faux positifs parmi les hypothèses rejetées.

Les développements sur les tests multiples que nous présentons peu-
vent s’appliquer dans un contexte plus général que celui des puces à ADN;
réciproquement, les applications des statistiques aux données de puces à
ADN que nous avons conduites incluent des questions de tests multiples,
mais englobent des problématiques plus vastes. Nous avons donc choisi de
présenter ce travail en deux parties.

1. Tests multiples

1.1. Mesures de risque de première espèce. On s’intéresse à des
situations dans lesquelles m hypothèses sont testés simultanément. Une
procédure de tests multiples (PTM) détermine quelles hypothèses doivent
être rejetées, comme illustré dans le tableau 1 (tiré de [7]). Le nombre
(inconnu) d’hypothèses nulles vraies est noté m0.

Dans ce tableau, R est le nombre (aléatoire) de rejets effectués, et S, T ,
U , et V sont des variables aléatoires inobservables. Si toutes les hypothèses
sont testées au même niveau α, R est une fonction croissante de α. Comme
dans le cas d’un test d’hypothèse unique, le choix de ce niveau réalise un
compromis entre le nombre V de rejets erronés (erreurs de première espèce)
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Non significatif Significatif Total
Hypothèses vraies U V m0

Hypothèses fausses T S m−m0

Total m−R R m

Tableau 1: Résultat d’une procédure de tests multiples.

et le nombre T de non-rejets erronés (erreurs de seconde espèce); nous nous
intéresserons aux mesures de risque qui assurent un contrôle du risque de
première espèce.

Nous étudions les mesures de risque de première espèce les plus popu-
laires: le Family-Wise Error Rate (FWER) ou taux d’erreurs par famille, et
le False Discovery Rate (FDR) ou taux de faux positifs. Le FWER d’une
procédure de tests multiples est défini comme la probabilité qu’au moins
une hypothèse ait été rejetée à tort:

FWER = P(V > 0)

avec les notations du tableau 1. Les procédures de contrôle du FWER ont
initialement été développées pour tester un petit nombre d’hypothèses, voire
quelques dizaines, dans des situations où aucun faux positif ne saurait être
toléré. Le FDR a été introduit par Benjamini et Hochberg [7] pour permettre
un contrôle moins stringent, donc potentiellement plus adapté à des études
exploratoires où un petit nombre de faux positifs peut être toléré. Le FDR

est l’espérance du taux de faux positifs parmi les hypothèses rejetées; il
s’écrit donc

FDR = E [FDP] ,

où

FDP =
V

R ∨ 1
est la proportion de faux positifs parmi les hypothèses rejetées. Dans le
même ordre d’idées, le pFDR (positive False Discovery Rate) est défini
comme l’espérance conditionnelle du FDP sachant qu’au moins une hy-
pothèse est rejetée:

pFDR = E [FDP|R > 0] .

On parle de contrôle faible du risque de première espèce pour une procédure
qui contrôle ce risque dans le cas où toutes les hypothèses nulles sont vraies,
et de contrôle fort lorsque le risque est contrôlé quelle que soit la combinai-
son d’hypothèses nulles considérée. Dans cette thèse on s’intéresse unique-
ment au contrôle fort, qui est une propriété souhaitable dans les applications
génomiques: des milliers d’hypothèses sont testées simultanément, et il est
donc plausible qu’au moins une hypothèse nulle est fausse.

1.2. Modèle de mélange. Pour i ∈ {1 . . .m}, on note Yi = 0 si
l’hypothèse i est tirée selon l’hypothèse nulle H0, et Yi = 1 sinon; Xi

désigne la statistique de test associée. On suppose que les variables aléatoires
(Xi, Yi)1≤i≤m sont indépendantes et identiquement distribuées: Yi suit une
loi de Bernoulli de paramètre εm, où εm est la proportion (inconnue) de
vraies alternatives. La distribution conditionnelle de Xi sachant Yi est notée
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F
(m)
1 si Yi = 1 et F

(m)
0 si Yi = 0. La loi marginale des Xi est donc donnée

par

F (m) = (1 − εm)F
(m)
0 + εmF

(m)
1 .

On suppose que F
(m)
0 et F

(m)
1 sont C1. Ce modèle de mélange peut également

être formulé en termes de probabilités critiques plutôt que de statistiques de

test. Puisque F
(m)
0 est continue, les probabilités critiques (Pi)1≤i≤m, définies

par

Pi = 1 − F
(m)
0 (Xi) ,

sont uniformément distribuées sur [0, 1] sous H0; on note G
(m)
0 (x) = x

pour 0 ≤ x ≤ 1. La loi marginale des probabilités critiques a alors pour

fonction de répartition G(m) = (1 − εm)G
(m)
0 + εmG

(m)
1 et pour densité

g(m) = (1− εm)+ εmg
(m)
1 , où G

(m)
1 et g

(m)
1 désignent respectivement la fonc-

tion de répartition et la densité des probabilités critiques sous l’alternative
H1. Enfin, on note (P(i))1≤i≤m le vecteur des probabilités critiques or-
données associé à (Pi)1≤i≤m.

On considère ce modèle de mélange dans deux cadres distincts. Dans
le cas creux, on fait converger la proportion εm vers 0 et la distance entre
H0 et H1 vers l’infini quand le nombre m d’hypothèses testées tend vers
l’infini. Dans le cas non creux, tous les paramètres du modèle de mélange
sont fixés; on note alors π0 = 1−εm la proportion d’hypothèses nulles vraies.

La procédure de Benjamini et Hochberg. La procédure BH95 [7]
rejette les hypothèses dont les probabilités critiques sont inférieures à τ̂ =

αÎm/m, où

Îm = max
{
i ∈ {1, . . .m}, P(i) ≤ αi/m

}
.

Cette définition peut se réécrire de la façon suivante: si Ĝm est la fonction
de répartition empirique des probabilités critiques, alors

τ̂ = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
.

La figure 1 illustre ces deux formulations équivalentes du seuil de la
procédure BH95. L’application u 7→ u/α est appelée courbe de rejet de la
procédure BH95 (ou droite de Simes [83]). Lorsque les probabilités critiques
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αα Î m

●

●

False positive
False negative

αα=0.2 ; FDP=3/17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical cdf of the p−values

1:
m

/m

●

●

●

●

●

●

●

●

●

y=
x

y=
x

αα

αα Î m
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tirées sous l’hypothèse nulle sont indépendantes ou satisfont certaines condi-
tions de dépendance positive, cette procédure conduit à un taux de fausses
découvertes exactement égal à π0α [8, 28, 79, 93], et ce quelle que soit la
distribution jointe des probabilités critiques sous l’alternative.

Lorsque π0 < 1, la procédure BH95 est donc conservatrice d’un facteur
π0. De nombreuses méthodes permettant d’estimer π0 implicitement ou ex-
plicitement ont été proposées, dans l’espoir de fournir un contrôle du FDR

plus exact que celui de la procédure BH95 lorsque les hypothèses testées
sont indépendances: ces procédures sont dites adaptatives. Les procédures
adaptatives à une étape utilisent des courbes de rejet autres que la droite
de Simes, sans incorporer explicitement un estimateur de π0; les procédures
adaptatives à deux étapes appliquent la procédure BH95 au niveau α/π̂0, où
π̂0 est un estimateur de π0.

Chi [16] a récemment mis en évidence l’existence d’une valeur critique α⋆

qui dépend uniquement de la fonction de répartition G des probabilités cri-
tiques, telle que si α < α⋆, le nombre d’hypothèses rejetées par la procédure
BH95 est borné en probabilité lorsque le nombre d’hypothèses testées aug-
mente, alors que si α > α⋆, la proportion d’hypothèses rejetées converge en
probabilité vers une valeur strictement positive.

1.3. Chapitre 2: propriétés asymptotiques du FDP. La propor-
tion de rejets erronés (FDP) étant une grandeur aléatoire, il est utile d’étudier
ses fluctuations autour de son espérance, le FDR. Le comportement asymp-
totique du processus (FDPm(t))0<t≤1, où t est un seuil déterministe, a déjà
été étudié [35, 89, 93]. Nous nous intéressons aux propriétés du seuil
aléatoire τ̂ d’une procédure de tests multiples donnée, et en particulier à
la loi asymptotique de FDPm(τ̂), c’est-à-dire du FDP effectivement atteint
par cette procédure.

Nous considérons un vaste ensemble de procédures, dont le seuil τ̂ peut
s’écrire comme une fonctionnelle T (que nous appellerons fonction de seuil)

de la fonction de répartition empirique Ĝm des probabilités critiques. C’est
notamment le cas de la procédure BH95 procédure, dont le seuil au niveau
α est donné par

τ̂ = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
.

Plus généralement, un grand nombre de procédures adaptatives à une ou
deux étapes peuvent être décrites grâce à ce formalisme. Le seuil τ̂ de ces
procédures et le FDP associé s’écrivent donc comme des fonctionnelles des
trajectoires d’un processus aléatoire: le processus empirique. Ce formalisme
permet donc de découpler l’étude de la régularité de la fonctionnelle, qui ne
dépend que de la procédure de tests multiples, de la régularité du processus
empirique, qui ne dépend que de la distribution des probabilités critiques.

Nous avons prouvé que lorsque le nombre d’hypothèses testées tend vers
l’infini, le FDP d’une procédure de tests multiples ayant pour fonction de
seuil T converge en loi à vitesse 1/

√
m vers un niveau de FDR explicite et qui

dépend de la procédure, dès que T est différentiable au sens de Hadamard
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au point G, tangentiellement à l’ensemble C[0, 1] des fonctions continues de
D[0, 1]. Une condition suffisante pour que cette hypothèse de différentiabilité
soit vérifiée est l’existence d’un unique point de croisement intérieur entre la
fonction de répartition des probabilités critiques et la courbe de rejet de la
procédure. L’existence s’interprète comme une généralisation naturelle de
la notion de valeur critique introduite par Chi [16].

Ce résultat permet de caractériser le comportement asymptotique ainsi
que les conditions de régularité associées pour différentes procédures, dont la
procédure BH95 et plusieurs procédures adaptatives à une ou deux étapes.
Comme toutes les procédures convergent à la même vitesse (1/

√
m), leur

puissance asymptotique peut être comparée explicitement via le FDR qu’elles
atteignent asymptotiquement.

Nous avons également, grâce au formalisme introduit, mis en évidence
des connexions intéressantes entre les procédures adaptatives: la procédure
BR08 [10] s’interprète comme un point fixe de la procédure BKY06 [9], alors
que la procédure FDR08 [30] s’interprète comme un point fixe de la procédure
Sto02 [93].

1.4. Chapitre 3: bornes intrinsèques et contrôle du FDR. Les
questions statistiques qui se posent lorsqu’on teste un grand nombre d’hypothèses
incluent non seulement la sélection des hypothèses à rejeter, que nous étudions
au chapitre 2, mais également un problème de détection et un problème
d’estimation:

Détection: Y a-t-il des hypothèses nulles fausses ?
Estimation: Combien ?
Sélection: Lesquelles ?

Le problème de détection est le test de l’hypothèse nulle que la propor-
tion d’hypothèses nulles fausses est 0 contre l’alternative qu’elle est stricte-
ment positive, tandis que le problème d’estimation consiste à estimer cette
proportion. Bien qu’il s’agisse du test d’une seule hypothèse et de l’estimation
d’une seule quantité, le contexte de comparaison multiples dans lequel ces
problèmes sont posés motive le recours à des procédures de test et d’estimation
dédiées.

Des travaux récents mentionnent l’existence de bornes intrinsèques pour
ces trois problèmes. Pour le problème de sélection, le phénomène de valeur
critique mentionné ci-dessus [16] illustre l’existence d’une borne inférieure
qui peut être strictement positive, en deçà de laquelle aucune procédure de
tests multiples ne peut contrôler le pFDR. Pour le problème de détection,
Donoho et Jin [24] ont identifié une frontière de détection qui caractérise les
situations dans lesquelles le test du rapport de vraisemblance détecte cor-
rectement avec probabilité 1. De façon similaire, une frontière d’estimation
pour les modèles de mélanges Gaussiens creux caractérise les situations dans
lesquelles la proportion d’hypothèses nulles vraies peut être estimées de façon
consistente.

Le chapitre 3 est motivé par la comparaison, dans le contexte du contrôle
du FDR, de ces bornes intrinsèques dans le cadre creux et non creux, c’est-
à-dire selon que la proportion ε de vraies alternatives tend vers 0 ou non.
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Dans le cadre non creux, nous avons prouvé que le phénomène de valeur cri-
tique n’intervient que lorsque la loi des probabilités critiques a des queues
épaisses (par exemple pour la loi de Laplace (exponentielle bilatère) ou la
loi de Student. Nous avons ensuite prouvé que dans les problèmes de lo-
calisation symétriques, pour lesquels la densité de la statistique de test
sous l’alternative est une translation positive celle sous l’hypothèse nulle,
le phénomène de valeur critique intervient si et seulement si π0 = 1−ε n’est
pas identifiable dans le problème d’estimation.

Nous avons également établi un lien entre les vitesses de convergence
atteignables pour le problème d’estimation dans le cadre non creux et la
régularité au voisinage de 1 de la fonction de répartition des probabilités
critiques G. La faible régularité de G au voisinage de 1 attendue dans les
applications usuelles implique que les vitesses de convergence des procédures
de tests multiples adaptatives à deux étapes sont faibles.

Enfin, nous avons proposé une interprétation de la frontière de décision
de la procédure BH95 dans le cas creux en termes de contrôle du pFDR.

2. Analyse statistique de données de puces à ADN

2.1. Utilisation des puces à ADN en cancérologie. Les cancers
sont un ensemble de maladies au cours desquelles des cellules anormales
prolifèrent sans contrôle, échappent à la mort cellulaire programmée, et de-
viennent capables d’envahir d’autres tissus. La transformation d’une cellule
normale en une cellule tumorale passe par l’altération du fonctionnement
de gènes qui régulent la croissance et la différenciation des cellules. Ces
altérations du génome peuvent avoir lieu à différents niveaux: gains ou pertes
de chromosomes entiers, mutations affectant une seule lettre de la séquence
d’ADN, et peuvent avoir pour conséquence directe ou indirecte des modifica-
tions de l’expression des gènes. La nécessité de comprendre et caractériser
ces altérations a stimulé le développement de nouveaux outils de biologie
moléculaire tels que les puces à ADN, qui permettent notamment de mesurer
simultanément le nombre de fragments d’ARN (niveau d’expression) ou
d’ADN en un grand nombre de loci du génome de l’échantillon.

Les puces à ADN constituent ainsi une technologie de choix, à la fois pour
la recherche biologique en cancérologie, qui a pour objectif la compréhension
des mécanismes de développement et de progression des cancers, et la recherche
clinique, qui a pour objectif l’amélioration du diagnostic, du pronostic, et
des traitements. L’avènement de ces nouvelles technologies a nécessité le
développement de méthodes statistiques adaptées à des données d’aussi
grande dimension, ainsi qu’à chaque question biologique ou clinique par-
ticulière.

2.2. Méthodes statistiques pour l’analyse des données de puces
à ADN. On distingue les analyses dites de bas niveau des analyses dites de
haut niveau. Les premières sont nécessaires à l’étude des données mais ne
permettent pas directement de répondre aux questions biologiques et clin-
iques d’intérêt: elles comprennent la planification expérimentale, l’analyse
d’image pour exploiter les données brutes en sortie du scanner, et la nor-
malisation, qui a pour objectif d’éliminer des données les variations sans
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lien avec le signal biologique d’intérêt, et de rendre comparable entre eux
les résultats quantitatifs de plusieurs expériences.

Les analyses dites de haut niveau doivent permettre de répondre aux
questions biologiques et cliniques, qui mettent en jeu des problématiques
classiques en statistique: analyses exploratoires (analyses factorielles, clas-
sification non supervisée), tests d’hypothèses, classification et régression.

Cependant les cellules sont des systèmes complexes, dont le comporte-
ment ne saurait être expliqué grâce à l’étude d’un seul niveau d’information
biologique, ou en n’utilisant qu’un type de technologie à la fois. Ceci justi-
fie les approches interactives, qui visent à exploiter simultanément plusieurs
sources d’informations, que l’on pense complémentaires. Le développement
de ce type d’approche va de pair avec l’émergence d’une nouvelle discipline,
la biologie des systèmes, qui s’intéresse aux interactions entre les différents
niveaux d’information génétique.

Dans les sections qui suivent nous donnons un aperçu des contribu-
tions de cette thèse aux méthodes d’analyse de données de puces à ADN
en cancérologie: les sections 2.3 et 2.4 présentent deux méthodes génériques
qui sont maintenant largement utilisées, notamment à l’Institut Curie. Les
sections 2.5 et 2.6 présentent deux méthodes respectivement conçues pour
répondre à une question biologique et à une question clinique.

2.3. Chapitre 5: normalisation de données de puces à ADN.
Ce travail a été initié à la suite de l’analyse d’échantillons tumoraux de
deux plates-formes de puces à hybridation génomique comparative (CGH),
mesurant le nombre de copies d’ADN: Université de Californie, San Fran-
cisco (UCSF) [85], et Institut Curie. Nous avons montré que sur ces deux
plates-formes, des biais spatiaux constituaient la principale source de vari-
abilité non attribuable à un signal biologique. Nous avons identifié deux
types de biais spatiaux: des régions entières de la puce présentant un niveau
de signal moyen bien plus élevé que le reste de la puce, et des effets de
gradient de signal d’une extrémité à l’autre de la puce.

Ces deux types d’effets n’étant pas corrigés de façon satisfaisante par les
techniques existantes, nous avons développé une méthode de segmentation
spatiale [66], qui comporte trois étapes:

(i) estimation d’une tendance spatiale sur la puce par une méthode
de régression robuste (LOESS [20, 21]);

(ii) segmentation de la puce en régions dont la tendance spatiale est
similaire à l’aide de la méthode NEM, une méthode de classifica-
tion non supervisée qui inclut une contrainte spatiale [4, 5];

(iii) identification des régions effectivement affectées par un biais spa-
tial localisé.

Cette méthode est très utile pour les applications car elle permet de
distinguer des artefacts expérimentaux les gènes potentiellement impliqués
dans la progression tumorale. Nous avons développé MANOR, un logiciel
(paquet) en langage R destiné à combler l’absence de logiciels dédiés à la
normalisation des puces CGH. MANOR intègre en particulier la méthode
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de normalisation spatiale que nous avons développée. Ce paquet R a été
intégré à l’environnement Bioconductor, un projet libre de développement
de logiciels dédiés à l’analyse et l’interprétation de données génomiques [38].
Une description des fonctionnalités de MANOR et des exemples d’application
sont livrés dans la vignette donnée en Annexe A.

Intégration aux plates-formes d’analyse. Les biologistes de l’unité
INSERM 830 ont développé leur propre plate-forme d’expérience de puces
CGH; une plate-forme d’analyse dédiée, appelée CAP pour “CGH-array
Analysis Pipeline”, a été implémentée par l’équipe Bioinformatique afin de
stocker, analyser, et visualiser les données ainsi produites. J’ai participé à
l’intégration de MANOR dans CAP. MANOR a été utilisé pour analyser plus
de 6000 puces CGH via CAP, par 132 utilisateurs travaillant dans le cadre
de 94 projets de recherche (données: juin 2008).

Nous avons également décidé d’implémenter CAPweb, une version de
CAP qui peut être utilisée directement depuis notre site internet: http:

//bioinfo.curie.fr/CAPweb, ou installée localement pour une utilisation
interne dans un centre de recherche particulier. J’ai participé à l’intégration
de MANOR à CAPweb [59]. CAPweb a été utilisé pour analyser plus de 5000
puces CGH depuis notre site internet, par 21 utilisateurs dans le cadre de 468
projets de recherche. CAPweb a été installé dans 10 laboratoires de recherche
publics, et une entreprise privée. Plusieurs publications rapportent déjà des
résultats ayant été obtenus à l’aide de CAPweb [31, 45, 46, 103, 108].

2.4. Corrélation entre nombre de copies d’ADN et niveaux
d’expression des gènes. Ce travail a été effectué en collaboration avec
Pierre Gestraud.

Des études récentes ont cherché à caractériser l’effet dosage génique,
c’est-à-dire l’influence globale du nombre de copies d’ADN sur le niveau
d’expression du gène correspondant, à l’aide de mesures parallèles — issues
d’expériences de puces à ADN — du nombre de copies d’ADN (“génome”)
et du niveau d’expression (“transcriptome”) sur les mêmes échantillons [19].

Nous avons développé GTCA (pour Genome Transcriptome Correlation
Analysis), un logiciel R qui permet de quantifier cet effet dosage génique
à partir de différents types de données de puces à ADN. L’implémentation
permet d’effectuer les étapes suivantes:

Pré-traitement: appariement non ambigu entre les sondes génome
et les sondes transcriptome, à partir de leur position sur le génome.
Les valeurs manquantes dans les données génome sont interpolées
en utilisant la continuité du nombre de copies d’ADN le long du
génome;

Analyse statistique: pour chaque couple formé, on calcule un coef-
ficient de corrélation entre le nombre de copies d’ADN et le niveau
d’expression, ainsi qu’une probabilité critique associée. Une étape
de correction de tests multiples est ensuite effectuée, qui assure un
contrôle du FWER [43] ou du FDR [7];

Visualisation et interprétation: les coefficients de corrélation et
les significativités associées (après correction de tests multiples)

http://www.bioconductor.org
http://bioinfo.curie.fr/CAPweb
http://bioinfo.curie.fr/CAPweb
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sont représentées le long du génome, et peuvent être exportées
pour une utilisation dans des logiciels permettant l’interprétation
biologique des résultats, tels que GSEA [95].

Un poster décrivant cet outil a été présenté à la conférence ISMB en
2007 (Annexe B). GTCA est intégré à VAMP [54], un logiciel de visualisation
et d’analyse développé par l’équipe de bioinformatique de l’Institut Curie
(Annexe D). GTCA sera bientôt soumis à Bioconductor en tant que paquet R.
Il peut d’ores et déjà être utilisé via VAMP sur des jeux de données publiques
contenus dans ACTuDB [44], une base de données dédiée aux données
publiques de nombre de copies d’ADN: http://bioinfo.curie.fr/actudb.

2.5. Chapitre 6: apprentissage de réseaux de régulation tran-
scriptionnelle. Ce travail a été effectué en collaboration avec Mohamed
Elati et Céline Rouveirol [27].

Les facteurs de transcription sont des protéines qui activent ou répriment
l’expression de leurs gènes cibles en se fixant sur des séquences d’ADN
spécifiques situées en amont de la partie codante de ces gènes. La reconstruc-
tion de réseaux d’interaction transcriptionnels représente un défi important
pour la compréhension du fonctionnement des cellules, et peut aussi être
utile pour découvrir de nouvelles cibles thérapeutiques.

Plusieurs approches locales ont été proposées pour ce problème, qui
infèrent un ensemble de régulateurs candidats pour chaque gène d’intérêt, à
partir d’une mesure de corrélation ou d’information mutuelle entre le gène
régulé et ses régulateurs potentiels; pour une fonction de score donnée, la
recherche exhaustive des meilleurs candidats a une complexité exponentielle
en le nombre de candidats, et ne peut donc être effectuée sur des données
d’expression compte tenu de leur grande dimension.

Nous avons mis en place une méthode appelée LICORN pour LearnIng
Cooperative Regulation Networks, qui est décrite en détail au chapitre 6.
Elle met à profit le fait que plusieurs facteurs de transcription peuvent être
impliqués dans la régulation du même gène pour associer à chaque gène
cible un réseau de régulation génique (GRN pour Gene Regulatory Net-
work), qui est un couple d’ensembles de facteurs de transcription: un en-
semble d’activateurs et un ensemble d’inhibiteurs. Cette méthode fonctionne
comme suit:

(i) utilisation d’une méthode d’extraction de motifs fréquents pour
identifier des ensembles de co-activateurs ou de co-inhibiteurs à
partir de données d’expression discrétisées;

(ii) construction et représentation structurée d’un ensemble de co-
activateurs et co-inhibiteurs candidats pour chaque gène, au sein
duquel une recherche exhaustive peut être faite de manière efficace;

(iii) définition d’un score permettant d’associer un meilleur GRN à
chaque gène parmi tous les couples possibles de co-activateurs et
co-inhibiteurs candidats, et sélection des gènes dont le score est
significatif à l’aide d’une méthode de correction de tests multiples
appropriée;

(iv) estimation des performances de prédiction des GRN sélectionnés
à l’aide d’une méthode de validation croisée.

http://bioinfo-out.curie.fr/actudb
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J’ai participé aux deux dernières étapes. Comme nous travaillions avec
des données d’expression discrétisées, nous avons choisi les moindres écarts
absolus (MAE) comme mesure de distance entre profils d’expression, à la fois
pour le score dans l’étape (iii) et pour l’erreur de prédiction dans l’étape (iv).
La significativité du meilleur GRN à l’étape (iii) a été calculée en comparant
son score au meilleur score obtenu en permutant aléatoirement les données
de la matrice d’expression originale, et nous avons utilisé comme procédure
de tests multiples l’approche conservatrice de Benjamini et Yekutieli [8], afin
de garantir un contrôle fort du FDR bien que les hypothèses testées n’étaient
pas indépendantes. La performance de prédiction (iv) a été estimée à l’aide
d’une validation croisée en 10 paquets.

LICORN est implémenté en CaML et distribué librement: http://www.

lri.fr/~elati/licorn.html. Sur les deux jeux de données d’expression
de levure de référence que nous avons testés [32, 88], LICORN obtient des er-
reurs de prédiction significativement plus faibles que Minreg, la méthode de
référence pour l’inférence non supervisée de réseaux de régulation transcrip-
tionnels [67]. Les résultats obtenus permettent de retrouver des interactions
connues entre facteurs de transcription et gènes cibles, et suggèrent de nou-
veaux groupes de co-régulateurs candidats.

2.6. Chapitre 7: distinction des vraies récidives parmi des sec-
onds cancers du sein homolatéraux. Ce travail a été effectué en collab-
oration avec Marc Bollet et Nicolas Servant [11].

Le traitement des cancers du sein par chirurgie conservatrice (sans ab-
lation du sein) est plus facilement accepté que l’ablation. Bien que ces deux
traitements sont équivalents en termes de survie globale [99], les patientes
traitées par chirurgie conservatrice courent le risque de développer une sec-
onde tumeur sur le même sein. Dans ce cas il est fondamental de déterminer
si cette seconde tumeur est une nouvelle tumeur primaire (NP) ou une vraie
récidive du premier (VR): dans le premier cas, le même traitement peut être
appliqué alors que dans le second, un traitement plus agressif est nécessaire,
puisque la première tumeur n’a pas été guérie.

La principale difficulté est l’absence de définition objective de “nouvelle
tumeur primaire” et “vraie récidive”; la définition clinique standard repose
sur différentes caractéristiques histopathologiques: localisation, type his-
tologique, grade, récepteurs hormonaux. Plusieurs études récentes suggèrent
que l’utilisation de données génomiques peut permettre d’améliorer cette
définition; en particulier, les altérations de nombre de copies d’ADN peuvent
être utilisées comme marqueurs du lien clonal entre les deux tumeurs. Ces
études utilisent la proximité de la tumeur primaire et de la seconde tumeur
sur le dendrogramme issu d’une classification ascendante hiérarchique pour
inférer le statut (NP/VR) de cette dernière [98].

Nous avons cherché à proposer une définition plus pertinente de NP/VR
à l’aide de données de nombres de copies d’ADN, en exploitant les deux
idées suivantes:

idée biologique: il est possible que deux tumeurs sans lien clonal
aient des altérations génomiques en commun, simplement du fait
que ces altérations constituent un point de passage obligé dans
le processus de progression tumorale. En revanche, le fait que

http://www.lri.fr/~elati/licorn.html
http://www.lri.fr/~elati/licorn.html
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les tumeurs aient les mêmes points de cassure, c’est-à-dire que
les régions altérées commencent ou finissent au même endroit sur
le génome devrait être un indicateur plus spécifique de leur lien
clonal;

idée statistique: utiliser les résultats d’une classification ascendante
hiérarchique pour séparer NP et VR parâıt arbitraire et peu ro-
buste puisque la distinction NP/VR pour un couple de tumeurs
donné peut être remis en cause par l’ajout ou la suppression d’un
autre cas dans l’analyse. Le fait de travailler avec un score plutôt
qu’un dendrogramme semble plus adapté, et permet en outre de
fixer une tolérance en termes de faux positifs ou négatifs.

Nous avons donc construit un score d’identité partielle reposant sur le
nombre de points de cassure communs entre les deux tumeurs, en pondérant
chaque point de cassure en fonction de sa fréquence sur un jeu indépendant
de cancers du sein. On estime la distribution du score sous l’hypothèse
nulle d’absence d’identité partielle entre les deux tumeurs à l’aide de paires
artificielles, construites en appariant chaque tumeur primaire à l’une des
autres secondes tumeurs.

La qualité du score dépend beaucoup de la précision de localisation des
points de cassure: nous avons utilisé l’algorithme ITALICS pour localiser les
points de cassure, dont il a été prouvé qu’il fait mieux que ses concurrents
en termes de sensibilité de détection des points de cassure, et de précision
de leur localisation [74].

J’ai contribué à la construction du score et à l’élaboration de la méthode
d’estimation de la distribution du score sous l’hypothèse nulle. Bien qu’il soit
difficile d’évaluer la performance de ce score puisque la vraie classification
TP/VR est inconnue, le score ainsi construit est plus performant que les
définitions reposant sur les caractéristiques cliniques pour le pronostic, c’est-
à-dire la prédiction de la survie sans métastases.

Ce score est utilisé dans une nouvelle étude biologique qui vise à identifier
des gènes dont le nombre de copies d’ADN diffère entre les tumeurs primaires
pour lesquelles la seconde tumeur est une nouvelle tumeur primaire, et celles
pour lesquelles il s’agit d’une vraie récidive.
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General introduction

This thesis is motivated by statistical questions raised by the anal-
ysis of high-dimensional genomic data for cancer research. This re-
search field includes ambitious biological and medical aims as fundamental
as gaining insight into biological mechanisms of cancer development and
progression, and as practical as improving cancer diagnosis, prognosis, and
treatment.

As cancers have been shown to result from an accumulation of ge-
netic disorders, these biological and medical questions triggered the use of
new experimental techniques, including DNA microarrays, that allow high-
throughput molecular characterization at several informational levels, in-
cluding DNA, RNA, and protein. The advent of DNA microarrays raised
a number of statistical questions of interest, including multiple hypothesis
testing.

This thesis has been done in collaboration between the Laboratoire de
Probabilités et Modèles Aléatoires (LPMA, Paris VI and VII Universities
and CNRS) and the Bioinformatics group of Institut Curie (now INSERM
U900/Institut Curie/Mines ParisTech). Due to its situation at the intersec-
tion between the Research Center and the Hospital of Institut Curie, the
Bioinformatics group has a pivotal role in translational research, that is,
in bridging the gap between fundamental research in biology, physics and
chemistry on the one hand, and applied medicine on the other hand.

A typical issue in cancer research is to find genes that are significantly
associated with a cancer type. When a large number of genes are tested si-
multaneously, false positives (genes declared significant whereas they are not
associated) may be tolerated provided that their proportion among signifi-
cant genes is not too large. In such situations, it is thus particularly adapted
to control the False Discovery Rate (FDR), the expected proportion of false
positives among a set of rejected hypotheses.

Although this work was initiated by multiple hypothesis testing ques-
tions that arise from the analysis of DNA microarrays in the context of
cancer research, multiple testing issues studied in this thesis have their own
interest, independently of the application to DNA microarrays. Conversely,
the applications of statistics to DNA microarray analysis we present here in-
clude, but are not restricted to, multiple hypothesis testing problems. This
thesis therefore consists of two parts.

In the first part, we study statistical issues raised by multiple hypothesis
testing problems, with a focus on FDR. After an introduction to multiple
testing (chapter 1), we investigate the asymptotic performance of a family of
FDR controlling procedures (chapter 2), and study intrinsic bounds to three

3



4 GENERAL INTRODUCTION

multiple testing problems (detection, estimation, and selection) through the
performance of FDR controlling procedures in these contexts (chapter 3).

The second part of this thesis is dedicated to applications of statis-
tics, and especially multiple testing procedures, to microarray data analysis.
Chapter 4 motivates the use of high throughput techniques such as DNA
microarrays in the context of cancer research. In chapter 5, we introduce
a method for low-level analysis of a specific type of microarrays, with the
aim of separating the true biological signal of interest from experimental ar-
tifacts, especially spatial biases. In chapter 6, we propose an unsupervised
method to infer regulatory networks from expression data. Finally, in chap-
ter 7 we define a genomic score that permits testing the hypothesis that a
second cancer is a true recurrence from a first cancer, against the alternative
that it may be considered as a new primary tumor.
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This chapter gives an introduction to large-scale multiple testing. A
short historical perspective (section 1.1) motivates the need of dedicated
error rates, which are defined in section 1.2. Section 1.3 introduces FDR

controlling procedures and gives an overview of their properties. In section
1.4 we recall technical tools that will be used in subsequent chapters, and
section 1.5 gives an overview of the contribution of the thesis to FDR control
in large-scale multiple testing.

1.1. Multiple testing situations: historical perspective

Multiple testing refers to the testing of more than one hypothesis at a
time; it is a sub-field of multiple inference, which also covers multiple esti-
mation. Although most recent multiple testing literature is concerned with
large-scale multiple testing, that is, the simultaneous testing of thousands
or more hypotheses, small- and middle-scale multiple testing have been an
active field of statistics since the second half of the twentieth century.

This section gives a short historical perspective of multiple testing prob-
lems, inspired by a comprehensive review of the field [82]. Even though
this thesis focuses on statistical issues raised by large-scale multiple testing
problems, crucial questions such as adaptivity to the number of true null
hypotheses or robustness to dependencies between hypotheses had already
been mentioned and studied for small- or medium-scale multiple testing
problems.

1.1.1. Small- and medium-scale multiple testing. Multiple test-
ing questions have been mentioned as early as 1843 [22]. Taking the example
of testing whether the probability of a male birth is influenced by birth order,
age, profession, wealth or religion of the parents, the French mathematician
Antoine-Augustin Cournot noticed that such repeated “cuts” of a reference
population into two groups increases the risk that one observed difference is
called significant by pure chance1:

The probability that an observed deviation can not be attrib-
uted to the vagaries of chance takes on very different values
depending on whether one has tried a more or less large num-
ber of splits before having hit on the observed deviation.

To illustrate this point, Table 1 displays the probability that at least
one of m independent tests performed at level α is called significant, which
is given by 1 − (1 − α)m:

m 1 2 5 10 20 50 100
α = 0.05 0.05 0.10 0.23 0.40 0.64 0.92 0.99
α = 0.01 0.01 0.02 0.05 0.10 0.18 0.39 0.63

Table 1. Probability 1 − (1 − α)m of (at least) one false
rejection among m hypotheses tested at level α.

1translated by Shaffer [82] from the following: “La probabilité qu’un écart de grandeur
donnée n’est pas imputable aux anomalies du hasard, prendra des valeurs très différentes
selon qu’il aura essayé un plus ou moins grand nombre de coupes avant de tomber sur
l’écart observé.”
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Multiple testing situations with a moderate number of hypotheses arise
in a number of situations, including biology and medicine: toxicity stud-
ies on animals typically have multiple outcomes, for example when testing
carcinogenicity of a potential drug, several cancer sites are simultaneously
monitored; in clinical trials, interim tests are often performed at several
stages of the trial. In both cases, multiplicity should be taken into account.

1.1.2. Large-scale multiple testing. Since a dozen years, several do-
mains of applied statistics have been challenged with the analysis of large
data sets, generally with many more variables than observations. Any field
involving high-dimensional data is concerned with multiple testing questions;
here we give three specific examples in genomics, medical imaging, and as-
tronomy, for which many tests are typically performed simultaneously.

DNA microarrays permit measuring the expression level of dozens of
thousands of genes within a single biological experiment. A typical question
of interest to biologists and clinicians is to find those genes whose expres-
sion differ significantly between two groups of samples (for example, two
cancer subtypes). In neuroimaging, new experimental techniques such as
functional Magnetic Resonance Imaging (fMRI) or Electro- or Magneto-
Encephalography (EEG, MEG) permit inferring four-dimensional pictures
of the brain’s activity: each data point measures the activity of a voxel
(volumetric pixel) integrated over a short time period, and a primary ob-
jective is to delineate areas of significant brain activity [37]. Finally, the
field of source detection in astronomy is concerned by discoveries of stars
and galaxies from observations of the cosmic microwave background (CMB)
[62].

In these motivating examples, thousands to millions of hypotheses may
be tested simultaneously; the need of definition of error rates that take
multiplicity into account is thus even more crucial than for small- or middle-
scale multiple testing.

1.2. From single testing to multiple testing

In this section we recall notions from classical testing theory, and cast
them into a multiple testing framework.

1.2.1. Testing a single hypothesis. Suppose we wish to test whether
a specific gene is overexpressed in breast cancers. We assume that gene
expression levels have been measured in a series of healthy breast samples
(group 1), and in a series of breast tumor samples (group 2). A testing
procedure uses these observations to declare whether the expression level is
significantly larger in group 2 than in group 1. Formally, we are interested in
testing the null hypothesis that expression levels are the same in both groups,
against the alternative hypothesis that they are larger in group 2 than in
group 1. Assuming that gene expression levels are Gaussian distributed
within each group, with the same variance, one will typically reject the
null hypothesis if the observed absolute difference between mean expression
levels in group 1 and 2 is large enough.

As the null hypothesis may be true or false, and the procedure may
accept or reject it, such a procedure has four possible outcomes, that include
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two different types of error. A type I error or false positive is made when
the null hypothesis is rejected whereas it is true, that is, when the gene is
declared overexpressed in breast cancers whereas it is not; conversely, a type
II error or false negative is made when the null hypothesis is not rejected
whereas it is false, that is, when the gene is not declared overexpressed in
breast cancers whereas it is. The level of the test is defined as the type I
error rate, and the power of the test is defined as one minus the type II error
rate.

An ideal test should have small type I and type II errors; however,
both of these risks cannot be minimized at the same time for a given set of
observations: the smaller type I error rate, the larger type II error rate, and
vice versa. One of the goals of testing theory is to motivate the choice of
the threshold above which the null hypothesis will be rejected.

Neyman and Pearson have developed an optimality theory for tests of
a simple null hypothesis against a simple alternative. They proved that for
each target level α, there exists a test with level α exactly that has maxi-
mum power among all tests with level α, and give an explicit formulation
for this test. Such a test fundamentally treats type I and type II error asym-
metrically, because it maximizes power (that is, it minimizes type II error)
for a given level (or type I error). Neymann and Pearson showed that this
test is still optimal for testing a simple null hypothesis against a one-sided
alternative (as in the above example of breast cancers and a single gene’s
expression) if the likelihood ratios are monotone.

1.2.2. Multiple testing: definitions and error rates.
Testing several hypotheses. We are interested in situations in which

m hypotheses are simultaneously tested, and denote by m0 the number of
true nulls. A Multiple Testing Procedure (MTP) decides which of these
hypotheses should be rejected. The outcome of a MTP is described by
Table 2, which is taken from Benjamini and Hochberg [7]. In this table m0

Non significant Significant Total
True hypotheses U V m0

False hypotheses T S m−m0

Total m−R R m

Table 2. Outcome of a multiple testing procedure.

is unknown, R is the observed (random) number of rejections, and S, T , U ,
and V are unobservable random variables. If each hypothesis is tested at
individual level α, then R is a non-decreasing function of α. As for for single
hypothesis testing, the choice of α balances the number V of false rejections
with the number T of false non rejections, and we focus on risk measures
that provide a control of type I error.

Error rates. As we are testing more than one hypothesis, several type
I error rates may be defined. We focus on the most widely used error rates:
Family-Wise Error Rate (FWER), and False Discovery Rate (FDR). The
FWER of a Multiple Testing Procedure is defined as the probability of one
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false rejection, that is,

FWER = P(V > 0)

with notation of Table 2. FWER controlling procedures have been introduced
for small- or medium-scale multiple testing, for situations in which high con-
fidence in the rejected hypotheses is needed. The FDR has been introduced
by Benjamini and Hochberg [7], who argue that FWER control might be too
demanding for large-scale multiple testing, and especially exploratory ap-
proaches for which a small number of false positives may be tolerated. FDR

is defined as the expected False Discovery Proportion (FDP), the fraction of
false rejections among all rejected hypotheses: letting

FDP =
V

R ∨ 1
,

we have

FDR = E [FDP] .

A related quantity is the positive False Discovery Rate (pFDR), which is
defined as the conditional expectation of the FDP given that at least one
hypothesis is rejected:

pFDR = E [FDP|R > 0] .

Weak control of a type I error rate means control under the complete
null hypothesis (all null hypotheses are true), whereas strong control means
control of a Type I error rate under any combination of true and false hy-
potheses. Throughout the thesis, we will focus on strong control, which is
desirable for large-scale multiple testing as it is likely that at least some
alternative hypotheses are true.

1.3. FDR control for multiple testing procedures

1.3.1. Mixture model. For i ∈ {1 . . .m}, where m is the number
of tests performed, we let Yi = 0 if hypothesis i is drawn from the null
hypothesis H0, and Yi = 1 if it is drawn from the alternative H1; Xi de-
notes the corresponding test statistic. We assume that the random variables
(Xi, Yi)1≤i≤m are identically independently distributed: Yi is a Bernoulli
random variable with success probability εm, where εm is the unknown pro-
portion of true alternatives; the conditional distribution of Xi given Yi is

denoted by F
(m)
1 if Yi = 1 and F

(m)
0 if Yi = 0. The marginal distribution of

each Xi is thus

F (m) = (1 − εm)F
(m)
0 + εmF

(m)
1 .

F
(m)
0 and F

(m)
1 are assumed to be C1. This model may be equivalently

formulated in terms of p-values rather than test statistics. Since F
(m)
0 is

continuous, the p-values (Pi)1≤i≤m, which are defined by

Pi = 1 − F
(m)
0 (Xi) ,

are uniformly distributed on [0, 1] under H0; we let G
(m)
0 (x) = x for 0 ≤ x ≤

1. Letting G
(m)
1 and g

(m)
1 denote the distribution function and density func-

tion of the p-values under H1, the marginal distribution function and density

of the p-values under the mixture are given by G(m) = (1−εm)G
(m)
0 +εmG

(m)
1
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and g(m) = (1 − εm) + εmg
(m)
1 . (P(i))1≤i≤m denotes the vector of ordered

p-values associated with (Pi)1≤i≤m.

Settings. This mixture model will be considered in two different set-
tings. In the sparse setting, we let εm converge to 0 and the distance between
H0 and H1 (typically measured by the shift parameter in a location model)
grow to +∞ as the number m of tested hypotheses tends to +∞. In the fixed
setting, all parameters of the mixture model are fixed. In order to alleviate
notation, the superscript m will be omitted in this setting. The fraction of
1 − ε of true null hypotheses will be denoted by π0.

Step-up and step-down multiple testing procedures. We will
consider p-value based multiple testing procedures, that is, functions M :
[0, 1] → [0, 1] such that all hypotheses i satisfying

Pi ≤ M(P1, . . . Pm) .

are rejected. M(P1, . . . Pm) is called the threshold of procedure M. A
more formal definition of multiple testing procedures is given in chapter 2
(Definition 2.2.1). Step-up and step-down procedures are defined as follows:

Definition 1.3.1 (Step-up procedure). Let (αi)1≤i≤m be a non-decreasing
sequence of numbers of [0, 1]. The step-up procedure associated with (αi)1≤i≤m

rejects all p-values less than αK , with

K = sup
{
i ∈ {1 . . .m}, P(i) ≤ αi

}
.

Definition 1.3.2 (Step-down procedure). Let (αi)1≤i≤m be a non-decreasing
sequence of numbers of [0, 1]. The step-down procedure associated with
(αi)1≤i≤m rejects all p-values less than αK , with

K = sup
{
j ∈ {1 . . .m},∀i ∈ {1 . . . j}, P(i) ≤ αi

}
.

The step-up procedure associated with the vector (αi)1≤i≤m therefore
rejects more hypotheses than the step-down procedure associated with the
same vector. In this thesis we will focus on step-up procedures. Since we
have assumed that p-values are independent, “FDR control” means “FDR

control under independence”, unless otherwise specified.

1.3.2. The BH95 procedure.
Definition and graphical interpretation. The BH95 procedure is

the step-up procedure associated with the vector (αi/m)1≤i≤m: it rejects

p-values less than τ̂ = αÎm/m, with

Îm = max
{
i ∈ {1, . . .m}, P(i) ≤ αi/m

}
.

This definition can be rewritten as follows. Let Ĝm be the empirical distri-
bution function of the p-values, then

τ̂ = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
.

These two equivalent formulations of the BH95 threshold are illustrated in
Figure 1. Following Finner et al. [30], u 7→ u/α will be called the rejection
curve of the BH95 procedure (also known as Simes’ line [83]).
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Figure 1. Dual interpretations of the BH95 threshold.

Properties. When the BH95 procedure is applied at level α, it yields
FDR = π0α exactly when true null p-values are independent, or satisfy a
specific positive dependency condition [8, 28, 79, 93]. In particular, this
result holds for any joint distribution of the p-values under the alternative.

Criticality. Chi [16] recently demonstrated the existence of a critical
value α⋆ depending solely on the distribution function G of the p-values,
such that if α < α⋆, the number of discoveries made by the BH95 proce-
dure is stochastically bounded as the number of tested hypotheses increases,
whereas if α > α⋆, the proportion of discoveries converges in probability to
a positive value.

1.3.3. Estimation of π0. When π0 < 1, the BH95 procedure is thus
conservative by a factor π0 since it yields FDR = π0α for a target FDR

level α. A number of methods have been proposed that estimate π0, either
implicitly or explicitly, in order to provide tighter (that is, more power-
ful) FDR control under independence: one-stage adaptive procedures use
rejection curves other than Simes’ line, without explicitly incorporating an
estimate of π0; two-stage adaptive procedures apply the BH95 procedure at
level α/π̂0, where π̂0 is an estimator of π0.

Two-stage adaptive procedures. This class of procedures builds es-
timates of π0 from the p-values or the test statistics; we refer to Broberg
[12] and Langaas et al. [55] for a review.

Procedure Sto02. A number of such methods can be viewed as variants
from an original graphical method by Schweder and Spjotvoll [80], which
estimates π0 from p-values larger than a given threshold because large p-
values are more likely to come from the distribution under the null. This
estimator has been popularized by Storey [89] in the context of FDR control:

π̂0
Sto02(λ) =

1 − Ĝm(λ)

1 − λ
,

for λ ∈ (0, 1). As G(λ) = π0λ+ (1 − π0)G1(λ), we have

E

[
π̂0

Sto02(λ)
]

= π0 + (1 − π0)
1 −G1(λ)

1 − λ
,

and π̂0
Sto02(λ) is asymptotically anti-conservatively (that is, positively) bi-

ased. λ balances a bias-variance trade-off: when λ goes to 1, the bias of
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π̂0
Sto02(λ) decreases but its variance increases because fewer points are used

for the estimation. Several estimators based on π̂0
Sto02(λ) have been pro-

posed [6, 91, 93], including

π̂0
STS04(λ) =

1 + 1
m − Ĝm(λ)

1 − λ
.

The corresponding plug-in procedure, in which the BH95 procedure is ap-

plied at level α/π̂0
STS04(λ), is denoted by procedure STS04(λ); it controls

FDR at level α [93].

Procedure BKY06. Letting β = α
1+α , procedure BKY06 applies pro-

cedure BH95 at level β
1−R(β)/m , where R(β) is the number of hypotheses

rejected by a first application of the BH95 procedure at level β. We consider
a recently proposed generalization of this procedure [10], in which procedure

BH95 is applied at level 1−λ
1−R(λ)/mα = α/π̂0

BKY06(λ), with

π̂0
BKY06(λ) =

1 − Ĝm(uλ)

1 − λ
,

where uλ is the threshold of the BH95 procedure applied at level λ (which

satisfies Ĝm(uλ) = R(λ)/m). The original BKY06 procedure corresponds
to λ = α

1+α , and has been proved to control FDR at level α. A slightly

modified version of procedure BKY06(λ) (with 1/m added in the numerator
of the estimator of π0) has been proved to control FDR at level α, for any
λ ∈ (0, 1) [10].

Other approaches. Other methods directly estimate the density g of
the p-values at 1, for example by modeling g as a Beta-Uniform mixture [72],
or by using histograms [12, 14]. An interesting alternative approach [23] is
motivated by the fact that

E [Q(P )] = π0Eg0 [Q(P )] + (1 − π0)Eg1 [Q(P )] ,

where Eg0 and Eg1 are expectations under the null and alternative distribu-
tions, and Q is a monotone transformation. They propose to use

π̂0(Q) =
1/m

∑m
i=1Q(Pi)

E0 [Q(P )]
,

and exhibit conditions on Q under which π̂0(Q) has smaller bias than the
estimator obtained with Q = Id. In practice they suggest to use Q : x 7→
− ln(1 − x). Unfortunately there is a gap in the proof of the main theorem
in [23], as shown in section 1.6.1. Theorem 1.3.3 below provides a slightly
different result; as it covers the case Q : x 7→ − ln(1 − x), it proves that
the estimator proposed in [23] indeed has smaller bias than the estimator
obtained with Q = Id.

Theorem 1.3.3 (Adapted from Dalmasso et al. [23]). Let g0 and g1 be
two probability density functions on [0, 1] such that g1/g0 is non-increasing,
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and let Q be a real continuous function defined on [0, 1], such that R : x 7→
Q(x)/x is non decreasing. Then

Eg1 [Q(X)]

Eg0 [Q(X)]
≤ Eg1 [X]

Eg0 [X]
.(1.3.4)

One-stage adaptive procedures. Some procedures have been pro-
posed that do not explicitly incorporate an estimate of π0, but are less con-
servative than the original BH95 procedure, because they use a non linear
rejection curve instead of Simes’ line: u 7→ u/α. The FDR08 procedure [30]
is the step-up procedure associated with the rejection curve

fα : u 7→ u

α+ (1 − α)u
,

and the BR08(λ) procedure [10] is the step-up procedure associated with the
rejection curve

bλα : u 7→
{

u
α(1−λ)+u for 0 ≤ u ≤ λ

+∞ else
,

for 0 < λ < 1. Procedure BR08(λ) controls FDR for finitely many hypothe-
ses, for any λ; as fα(1) = 1, procedure FDR08 always rejects all hypotheses
and thus does not control FDR. Truncated versions of this procedure have
been shown to control FDR asymptotically [30], and a step-down version
using the same rejection curve has recently been proved to control FDR for
finitely many hypotheses [33].

1.3.4. Unifying proofs of FDR control. Several arguments have been
used to prove FDR control by adaptive procedures: continuous-time martin-
gales for procedure STS04 [93], direct calculation for procedure BKY06 [9],
and a self-consistency condition for procedure BR08 [10]. For the last two
procedures, the corresponding proofs also both rely on the following count-
ing argument:

Lemma 1.3.5 (Benjamini et al. [9]). If Y ∼ Bin(k− 1, p), then we have
E [1/(Y + 1)] < 1/kp.

The arguments used to prove FDR control by procedures BKY06 and
BR08 can be applied to procedure STS04 as well [9, 10], thus providing
unifying proofs of FDR control. Conversely, the martingale argument per-
mits proving that (slightly modified versions of) procedures BKY06(λ) and
BR08(λ) control FDR, because both of these procedures are always more
conservative than procedure STS04(λ).

To see this for procedure BKY06(λ), note that π̂0
BKY06(λ) ≥ π̂0

Sto02(λ),
since the threshold uλ of procedure BH95 at level λ satisfies uλ ≤ λ. There-

fore, adding 1/m to the numerator of π̂0
BKY06(λ) yields to a more conser-

vative procedure than STS04(λ). For procedure BR08(λ), note that2 the
threshold of this procedure may be written as

τ̂ = sup

{
u ∈ [0, λ], Ĝm(u) ≥ u

α

1 − Ĝm(u)

1 − λ

}
.

2See chapter 2, section 2.5 for a formal proof.
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Since 1−Ĝm(u)
1−λ ≥ π̂0

Sto02(λ) for u ≤ λ, using 1+1/m−Ĝm(u)
1−λ instead of 1−Ĝm(u)

1−λ
in the preceding display also yields to a more conservative procedure than
STS04(λ).

A continuous time martingale argument. In the remainder of this
section, we discuss a continuity issue for using the martingale argument
invoked by Storey et al. [93]. The idea of using martingales to prove FDR is
motivated by the following Lemma for the BH95 procedure. The statements
of this Lemma have been proved by Storey et al. [93]; for completeness we
recall the proof in section 1.6.2.

Lemma 1.3.6 (Motivation for a martingale argument [93]). For t ∈ (0, 1],
let Vt be the number of true null p-values smaller than t, and Rt the total
number of p-values smaller than t. Denote by τ̂ the threshold of the BH95

procedure at level α, and by F = (Ft)0<t≤1 the natural (decreasing) filtra-
tion associated with (Vt), augmented with the p-values under the alternative
distribution. Ft is defined for any t ∈ (0, 1] by Ft = σ

{
(Vs)s≥t, (P(i))i∼H1

}
.

Then

(i) Vt|Vs ∼ Bin (Vs, t/s);
(ii) (Vt/t) is a F-martingale with time running backwards;
(iii) τ̂ is a F-stopping time;

(iv) Vbτ

Rbτ
= α

m
Vbτ

bτ .

As a consequence of Lemma 1.3.6(iv), the FDR attained by procedure
BH95 is given by FDR(τ̂) = E [Vbτ/Rbτ ] = α/mE [Vbτ/τ̂ ]. As E [Vt/t] =
E [V1] = m0 for any t ∈ (0, 1] (Lemma 1.3.6(ii)), one only needs an optional
sampling argument to prove that FDR(τ̂) = π0α.

Existing optional sampling theorems for continuous-time martingales [70]
require right-continuity of the martingale; as we are working with a reversed-
time martingale, the condition we need, is left-continuity. However, the pro-
cess (Vt/t) is cadlag and has left-discontinuities at each p-value coming from
the null hypothesis. Storey’s proof may nevertheless be rescued by noting
that:

(i) the proof of the Optional Sampling Theorem only requires conti-
nuity of the process at the stopping time;

(ii) almost surely, V is continuous at τ̂ , as τ̂ is not one of the p-values
under the null hypothesis.

For (ii), note that V has less than m0 points of left-discontinuity, which
correspond to the distinct p-values drawn from the null distribution, and
each of them has a null probability of being equal to τ̂ . For (i) we give a slight
generalization of the classical Optional Sampling Theorem in section 1.6.2
(Theorem 1.6.2).

Combined with Lemma 1.3.6, Theorem 1.6.2 proves that procedure BH95

controls FDR at level exactly π0α, under any configuration of alternative
hypotheses. Following the same lines, the martingale argument can be used
to prove FDR control at level smaller than α by procedure STS04(λ) [93],
and thus by (slight modifications of) procedures BR08(λ) and BKY06(λ),
which are more conservative.
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1.4. Tools for an asymptotic study

A widely used approach in asymptotic statistics (advocated by Pollard
[71] for example) is to write a statistic as a functional on the sample paths
of a stochastic process in order to break the analysis into two parts: the
study of regularity of the functional; the study of the stochastic process as
a random element of a space of functions.

This idea will be illustrated in Chapter 2, in which we establish Central
Limit Theorems for the FDP achieved by a class of FDR controlling pro-
cedures. The classical tool to establish such theorems in Euclidean spaces
is the Delta method [105]; we recall its formulation for real-valued random
variables.

Theorem 1.4.1 (Delta method [105]). Let (Xm) be a sequence of real-
valued random variables, θ ∈ R, and (rm) a sequence growing to +∞ as
m→ +∞. Assume that:

(i) rm (Xm − θ) X, where X is a real-valued random variable;
(ii) φ : R → R is differentiable at θ, with derivative φ′(θ).

Then we have
rm (φ(Xm) − φ(θ)) φ′(θ)X

We are interested in more general situations in which Xn lives in the
functional space D[0, 1] of cadlag functions on [0, 1], that is, right-continuous
functions on [0, 1] with left limits3, and φ maps D[0, 1] to R. The extension
of the usual definition of convergence in distribution to the non separable
metric space (D[0, 1], ‖ · ‖∞) turns out to raise measurability issues that we
discuss in section 1.6.3.

In the remainder of the present section, we begin by recalling a ver-
sion of Donsker’s Theorem that extends Assumption (i) of Theorem 1.4.1
to stochastic processes of D[0, 1] (section 1.4.1). Then we define Hadamard
differentiability, which provides an extension for Assumption (ii) of Theo-
rem 1.4.1 to normed spaces (section 1.4.2). Finally we show how these tools
may be combined to yield a functional Delta method [105] (section 1.4.3).

1.4.1. Donsker’s theorem. Letting (Xm)m∈N be a sequence of inde-
pendent, uniform, real-valued random variables on [0, 1], the uniform em-
pirical process Um = (Um(t))0≤t≤1 is defined by

Um(t) =
1

m

m∑

i=1

1Xi≤t ,

for any t ∈ [0, 1]. Donsker’s Theorem establishes the convergence in dis-
tribution of Um, as a process of D[0, 1], to the Brownian bridge, that is, a
Gaussian process B on [0, 1], with covariance function (s, t) 7→ s∧t(1−s∨t),
and such that B(0) = 0, B(1) = 1. It is also known as Empirical Central
Limit Theorem. The earliest results about convergence in distribution of
the empirical process go back to Donsker [26]; the version we recall, which
is valid in D[0, 1] equipped with the uniform metric, is taken from Pollard
[71].

3cadlag stands for the French “continues à droite, avec limites à gauche”.
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Theorem 1.4.2 (Empirical Central Limit Theorem [71]). The uniform
empirical process on [0, 1] converges in distribution to the Brownian bridge.

By the Continuous Mapping Theorem, this result may be extended to
the empirical process associated with a sequence of independent random
variables with any distribution function F :

Corollary 1.4.3. Let F ∈ D[0, 1] be any distribution function, denote

by F̂m the associated empirical distribution function. Then, as m→ +∞,
√
m
(
F̂m − F

)
 B ◦ F ,

where B◦F (t) = B(F (t)) is a F -dilated Brownian bridge, that is, a Gaussian
process on [0, 1] such that B ◦F (0) = B ◦F (1) = 0, with covariance function

(s, t) 7→ F (s) ∧ F (t)(1 − F (s) ∨ F (t)) .

1.4.2. Hadamard differentiability. Although several notions of dif-
ferentiability for maps between normed spaces D and E have been defined,
not all of them are appropriate for translating convergence in distribution
in D into convergence in distribution in E: Gâteaux differentiability is too
weak for this purpose, while Fréchet differentiability in unnecessarily strong
(and thus might not hold for a particular application). It turns out that
the appropriate choice is Hadamard differentiability, which is “intermedi-
ate”between Gâteaux and Fréchet differentiability, in the sense that Fréchet
differentiability implies Hadamard differentiability, which in turn implies
Gâteaux differentiability.

Definition 1.4.4 (Hadamard differentiability). Let D and E be two
normed spaces, and φ : D → E be defined on a subset Dφ of D. The function
φ is Hadamard differentiable at θ ∈ D if and only if there is a continuous
linear map φ̇θ : D → E, such that for any family (ht)t>0 of Dφ with limit h
as t→ 0, ∥∥∥∥

φ(θ + tht)φ(θ)

t
− φ̇θ(h)

∥∥∥∥
E

→ 0 .(1.4.5)

The function φ is Hadamard differentiable at θ tangentially to a set D0 ⊂ D

if display (1.4.5) is only required to hold for (ht) with limits h ∈ D0; the
derivative needs then be defined on D0 only.

1.4.3. Functional delta method.

Theorem 1.4.6 (Functional delta method [105]). Let D and E be two
normed spaces, and φ : D → E, and D0 be a separable subset of D. Let (Xm)
be a sequence of D-valued processes, θ ∈ D, and (rm) a sequence growing to
+∞ as m→ +∞. Assume that:

(i) rm (Xm − θ) X, where X takes its values in D0;
(ii) φ is Hadamard differentiable at θ ∈ D tangentially to D0.

Then we have
rm (φ(Xm) − φ(θ)) φ̇θ(X)

In chapter 2 we use Theorem 1.4.6 with D = D[0, 1] and D0 = C[0, 1],
the set of continuous functions on [0, 1], which is a separable subset of D[0, 1]
for the uniform metric.
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1.5. Contributions

1.5.1. Chapter 2: Asymptotic FDP.
Motivation. As the proportion of erroneous rejections (FDP) is a sto-

chastic quantity, its fluctuations around its mean value (FDR) are worth
being investigated. The asymptotic behavior of process (FDPm(t))0<t≤1,
where t is a deterministic threshold, has already been studied [35, 89, 93].
In this chapter we are interested in the properties of the random threshold τ̂
of a given multiple testing procedure, and especially in the asymptotic dis-
tribution of FDPm(τ̂), that is, of the FDP actually reached by the procedure.

We consider procedures whose threshold τ̂ may be written as a functional
T of the empirical distribution function Ĝm of the p-values: T will be called a
threshold function. This is the case for the BH95 procedure, whose threshold
at level α is given by

τ̂ = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
.

More generally, many one-stage adaptive and two-stage adaptive procedures
may be written using the formalism of threshold functions; thus the thresh-
old τ̂ of these procedures and its associated FDP may be written as stochastic
processes of a random threshold. The tools described in section 1.4 help us
studying the asymptotic behavior of these quantities.

Contributions. We prove that FDP of a multiple testing procedure
with threshold function T converges in distribution at rate 1/

√
m to a

conservative, procedure-specific FDR level under the assumption that T is
Hadamard-differentiable at G tangentially to the set C[0, 1] of continuous
functions of D[0, 1]. This general regularity assumption is implied by the
existence and uniqueness of an interior right-crossing point between the dis-
tribution function of the p-values and the rejection curve of the procedure;
the existence condition for a given procedure may be interpreted as a nat-
ural generalization of the notion of criticality discussed in section 1.3.2 for
the BH95 procedure.

We derive the asymptotic behavior and the associated regularity con-
ditions for a number of FDR controlling procedures, including one-stage
adaptive procedures (BR08 and FDR08), and two-stage adaptive (or plug-
in) procedures (Sto02 or STS04, and BKY06). As all procedures converge
at the same rate 1/

√
m, their asymptotic power may be explicitly compared

through their attained asymptotic FDR.
We demonstrate the existence of interesting connections between one-

stage and two-stage adaptive procedures under investigation: with a striking
symmetry, procedure BR08 may be interpreted as a fixed point of the iter-
ation of procedure BKY06, and procedure FDR08 as a fixed point of the
iteration of procedure Sto02.

1.5.2. Chapter 3: Intrinsic bounds and FDR control.
Three multiple testing problems. Statistical questions that arise

when testing a large number of hypotheses include not only the selection of
false null hypotheses, which has been discussed in this chapter, but also a
detection and an estimation problem. We are therefore concerned with the
following questions:
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detection: Are there any false null hypotheses ?
estimation: How many null hypotheses are false ?
selection: Which null hypotheses are false ?

The detection problem is a test of the null hypothesis that the proportion
εm is 0 against the alternative hypothesis that it is positive, whereas the
estimation problem is to estimate εm. Although they are single testing and
estimation problems, the multiple comparison context in which they are cast
motivates the need for appropriate testing and estimation procedures.

Intrinsic bounds on multiple testing problems. Recent work demon-
strates the existence of intrinsic bounds to these problems. For the selection
problem, the criticality phenomenon mentioned in section 1.3.2 illustrates
the existence of a possibly positive lower bound below which no multiple
testing procedure can control the pFDR. For the detection problem, a detec-
tion boundary has been identified, which characterizes situations in which
the Likelihood Ratio Test asymptotically almost surely correctly detects [24].
Likewise, an estimation boundary for sparse Gaussian mixtures characterizes
situations in which εm can be consistently estimated [13].

Contributions. Chapter 3 is motivated by the comparison of these
intrinsic bounds in the sparse and non sparse settings, in the context of
FDR control. In the non sparse setting, we demonstrate that the criticality
phenomenon only occurs for heavy-tailed distributions such as the Laplace
(bilateral exponential) or Student distributions, and we prove that for sym-
metric location problems in which the test statistics under the alternative is
a positive shift of the test statistics under the null, criticality for the selection
problem occurs if and only if π0 = 1− ε is not identifiable in the estimation
problem. We also connect attainable convergence rates for the estimation
problem in the non sparse setting to the regularity of the distribution func-
tion of the p-values in a neighborhood of 1, and argue that this regularity
is typically poor, which results in slow rates of convergence for plug-in pro-
cedures defined in section 1.3.3. Finally, we discuss the performances of the
BH95 procedure in the sparse setting, and propose an interpretation of the
detection boundary of this procedure in terms of pFDR control.

1.6. Proofs

1.6.1. On using bias-reducing transformations to estimate π0.
Recall that the p-value P is distributed as g0 = U [0, 1] under the null hy-
pothesis, and as g1 under the alternative. In the proof of the Theorem of [23]
it is claimed (end of page 667) that

Eg1 [P ] − Eg0 [P ]

Eg0 [Q(P )]
≤ Eg1 [P ] − Eg0 [P ]

Q(Eg0 [P ])
.(1.6.1)

As Q is convex, Jensen’s inequality ensures that Eg0 [Q(P )] ≥ Q(Eg0 [P ]).
By Assumption (iv) of the Theorem, Q(Eg0 [P ]) ≥ Eg0 [P ] = 1/2. Thus,
Eg0 [Q(P )] and Q(Eg0 [P ]) are positive, and inequality (1.6.1) holds if and
only if Eg1 [P ] ≥ Eg0 [P ], which typically does not hold because p-values
under the alternative are smaller in expectation than under the null. In
this section we prove Theorem 1.3.3 (page 14), which provides a slightly
different version of the result from [23].
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Proof of Theorem 1.3.3. Let us note that inequality 1.3.4 is equiv-
alent to

Eg1 [Q(P )]

Eg1 [P ]
≤ Eg0 [Q(P )]

Eg0 [P ]
,

which can be rewritten as

Eh1 [R(P )] ≤ Eh0 [R(P )] ,

where h0 : x 7→ xg0(x)
Eg0 [P ] , h1 : x 7→ xg1(x)

Eg1 [P ] are two probability density functions

on [0, 1]. As R is non decreasing and h1
h0

=
Eg0 [P ]

Eg1 [P ]
g1

g0
is non-increasing, we

have

Eh1 [R(P )] = Eh0

[
h1(P )

h0(P )
R(P )

]

by Chebychev association inequality

≤ Eh0

[
h1(P )

h0(P )

]
Eh0 [R(P )]

= Eh0 [R(P )]

�

1.6.2. A continuous time optional sampling theorem.

Proof of Lemma 1.3.6. As p-values under the null distribution are
independently, uniformly distributed, item (i) results from a simple counting
argument, and (ii) follows from (i). For (iii), recalling that

τ̂ = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
,

we have τ̂ ≥ t if and only if Ĝm(t) < t/α. As Ĝm(t) only depends on
p-values under the alternative, and on p-values under the null which are
smaller than t, we have {τ̂ ≥ t} ∈ Ft, and (iii) is proved. By the definition

of the threshold τ̂ of the BH95 procedure, we have Ĝm(τ̂) = τ̂ /α, which

proves (iv) because Ĝm(τ̂) = Rbτ/m. �

Theorem 1.6.2 (Optional Sampling Theorem (adapted from [70])). Let
{(Xt,Ft) : 0 ≤ t ≤ 1} be a martingale, and let 0 ≤ σ ≤ τ ≤ 1 be stopping
times for the filtration, such that almost surely, Xt is right-continuous at σ
and τ . Then, almost surely,

E [Xτ |Fσ] = Xσ .

Proof of Theorem 1.6.2. The proof follows the lines of [70, Theorem
6, Appendix E], as right-continuity in only needed at σ and τ . For each

n ∈ N, let τn = ⌈2nτ⌉
2n and σn = ⌈2nσ⌉

2n be τ and σ rounded up to the
next integer multiple of 2−n. As we rounded up, each τn and each σn are
stopping times for the filtration {Fi/2n : 0 ≤ i ≤ 2n}. The discrete version
of the Optional Sampling Theorem ensures that

E [Xτn |Fσn ] = Xσn .

As Xt is right-continuous at τ and σ, we have Xσn → Xσ and Xτn → Xτ

along each sample path. To conclude it is sufficient to prove that Xσn and
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Xτn are uniformly integrable; we refer to [70] for the end of the proof, as it
does not rely on right-continuity. �

1.6.3. Convergence in distribution in D[0, 1], ‖ · ‖.
Random elements in D[0, 1]. Let (Ω,A, P ) be a probability space,

and (D, d) be a metric space. Denote by B(D) the Borel σ-field Bd generated
by the closed sets of D under the metric d.

When D is the euclidean space R
n, a random variable is defined as a

measurable map from (Ω,A, P ) to (Rn,B(Rn)). If (D, d) is a more general
metric space such as D[0, 1], it seems natural to define a random element X
of D as a measurable map from (Ω,A, P ) to (D,Bb(D)), that is, a map such
that X−1(D) ∈ A for any D ∈ Bd(D). This property is known as Borel-
measurability. When D = D[0, 1] is equipped with the Borel σ-field B∞
generated by the closed sets under the uniform metric, it turns out that the
empirical processes need not be random elements of D[0, 1] in this sense [71,
Chapter 4]. The reason for this is that the space D[0, 1], equipped with the
uniform metric, is nonseparable; hence the Borel sigma field is so large that
X−1(D) needs not belong to A for any D ∈ B∞, and Borel-measurability
fails to hold.

Three ways to circumvent this problem have been successively proposed.
The first one is to modify the metric so as to make D[0, 1] separable; the
most popular example is Skorokhod’s J1 metric [84]. This solution permits
working with the usual notion of measurability, at the price of a greater
topological complexity. The other two solutions keep working with the uni-
form metric, at the price of modifying the notion of measurability itself,
either by using a smaller σ-field than B∞ [71], or by defining a generalized
expectation even for maps that need not be random elements [106]. In the
remainder of this chapter we give a quick look at these two solutions.

Redefining random elements. Random elements may be defined us-
ing other σ-fields than the Borel σ-field:

Definition 1.6.3 (Random elements in metric spaces). A random ele-
ment of (D, d) is a measurable map from (Ω,A, P ) to (D, d,D), where D is
any σ-field over (D, d).

The choice of the σ-field D in this definition is of importance: on the one
hand, one should guard against too large a σ-field, which would make the
corresponding definition of a random element too restrictive. Conversely, too
small a σ-field would make the associated weak convergence theory trivial.

In chapter 2 we are working on empirical processes associated with a
continuous distribution function. The set C[0, 1] of continuous functions
on [0, 1] is a separable subset of D[0, 1] for the uniform metric; in such
situations where processes concentrate on a separable subset of the original
metric space, Pollard [71] advocates the use of the ball σ-field, that is, the
σ-field P generated by closed balls.

With this choice (D[0, 1], ‖ · ‖,P), Pollard [71] is able to prove a Con-
tinuous mapping theorem which serves as a basis for the proof of Donsker’s
Theorem (Theorem 1.4.2), and the corresponding functional Delta method
(Theorem 1.4.6).
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Outer Expectations. Instead of working with smaller σ-fields, it is
possible to stick to the Borel σ-field, and relax the measurability require-
ment in the definition of random elements. In this case, the definition of
expectation has to be generalized to non-measurable maps. Outer expecta-
tions provide such a generalization [105, Chapter 18], and permit proving
a continuous mapping theorem from which a version of Donsker’s Theorem
and the functional Delta method may be derived.
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2.1. Introduction

The BH95 procedure defined in Chapter 1 controls FDR when the true
null hypotheses are independent, or display certain forms of positive depen-
dence [7, 8]. Since applying the BH95 procedure at level α actually yields
FDR π0α, where π0 is the unknown proportion of true null hypotheses, con-
siderable efforts have been devoted to the design of procedures that increase
the number of rejections while keeping FDR < α. These procedures are
called two-stage adaptive when they explicitly incorporate an estimator of
π0, and one-stage adaptive when π0 is estimated implicitly.

The FDR controlling properties of such procedures have been carefully
studied for a finite number of hypotheses hypotheses [7, 9, 10, 28, 29, 79, 89],
or asymptotically [16, 28, 30, 34, 35, 89, 90, 93]. As the proportion of er-
roneous rejections (FDP) is a stochastic quantity, its fluctuations around its
mean value are worth investigating. Several procedures have been proposed
for controlling the upper quantiles of the FDP [35, 36, 56, 68, 75–77, 104].
The asymptotic behavior of process (FDPm(t))0<t≤1, where t is a determin-
istic threshold, has also been studied [35, 89, 93]. We focus in this chapter
on the properties of the random threshold τ̂ associated with a given multiple
testing procedure, particularly in the asymptotic distribution of FDPm(τ̂),
the FDP actually reached by the procedure.

This chapter is organized as follows. In section 2.2 we propose a general
framework for asymptotic analysis of the FDP of multiple testing proce-
dures. In section 2.3 we derive the asymptotic distribution of the FDP of
a multiple testing procedure with generic threshold function T and char-
acterize the asymptotic equivalence of multiple testing procedures. These
results are explicitly connected to the regularity of the map T , which is then
discussed. In section 2.4 we derive the asymptotic behavior of several exist-
ing procedures. In section 2.5 we point out interesting connections between
one-stage adaptive and two-stage adaptive procedures. The main results are
summarized and discussed in section 2.6, and proofs of the main results are
gathered in section 2.7.

2.2. Background and notation

In this chapter, we consider the “fixed” version of the mixture model
presented in Chapter 1, where the parameters do not depend on the number
of tested hypotheses. The above-defined quantities are now recalled and
described more formally.

2.2.1. Background. We consider a sequence (Pi)i∈N of p-values asso-
ciated with a collection of binary tests of a null hypothesis Hi

0 against an
alternative hypothesis Hi

1.

Definition 2.2.1 (Multiple Testing Procedure (MTP)). A multiple test-
ing procedure M is a sequence of functions Mm : [0, 1]m → [0, 1] such that
for any m-dimensional vector of p-values (P1, . . . Pm), all hypotheses i sat-
isfying

Pi ≤ Mm(P1, . . . Pm) .

are rejected. Slightly abusing notation, we shall write M(P1, . . . Pm) for
Mm(P1, . . . Pm).
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Denoting by Vm and Rm the number of illegitimate rejections and the
total number of rejections among the m tested hypotheses for a multiple
testing procedure M, the associated False Discovery Proportion and False

Discovery Rate are FDPm(M) = Vm

Rm∨1 , and FDRm(M) = E

[
Vm

Rm∨1

]
.

Mixture model. Denoting by π0 the proportion of true null hypothe-
ses, we assume that p-values are uniformly distributed on [0, 1] under H0,
and distributed according to G1 under H1, where G1 is a concave, C1 dis-
tribution function, with density g1. We also assume that all p-values are
independent, so that

(Pi)1≤i≤m
iid∼ G ,

where G(x) = π0x + (1 − π0)G1(x). The corresponding density function is
given by g = π0 + (1 − π0)g1. Using this notation, the BH95 procedure at
level α is defined as

Mα(P1, . . . Pm) = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
,

where Ĝm is the empirical distribution function of the p-values, and
u 7→ u/α is called the rejection curve of the BH95 procedure (also known as
Simes’ line [83]).

Threshold functions. This interpretation of the BH95 procedure in
terms of the empirical distribution function suggests to define threshold func-
tions as follows. Let D[0, 1] denote the set of cadlag functions defined on
[0, 1].

Definition 2.2.2 (Threshold function). A multiple testing procedure M
has threshold function T : D[0, 1] → [0, 1] if and only if

∀m ∈ N,M(P1, . . . Pm) = T (Ĝm) .

Note that T does not depend on m in Definition 2.2.2. From now on
T (G) will be denoted by τ⋆.

2.2.2. FDP as a stochastic process of a random threshold. As
suggested in a previous study [35], the False Discovery Proportion can be

viewed as a stochastic process. Let Ĝ0,m and Ĝ1,m denote the (unobservable)
empirical distribution function of the p-values under the null and alternative
hypotheses, and Ĝm = π0Ĝ0,m + (1 − π0)Ĝ1,m. Then, for any t ∈ [0, 1], we

have Rm(t) = 1
m

∑m
i=1 1Pi≤t = Ĝm(t), and Vm(t) = 1

m

∑
{i/Hi

0 true} 1Pi≤t =

π0Ĝ0,m(t), so that

FDPm(t) =
π0Ĝ0,m(t)

Ĝm(t) ∨ 1
m

is the False Discovery Proportion achieved at the deterministic threshold
t. The asymptotic properties of the stochastic process (FDPm(t))0≤t≤1 were

analyzed by Genovese and Wasserman [35]. They noticed that FDRm(t) =
E [FDPm(t)], so the achieved FDR at t, may be written as

FDRm(t) = p(t) (1 − (1 −G(t))m) ,
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where p(t) = π0t
G(t) is the positive False Discovery Rate (pFDR) at t, as defined

by [89]. They proved that the FDPm process converges to pFDR at a rate
1√
m

, and built confidence envelopes for the FDP process using this result.

We make use of this stochastic process approach here to study the be-
havior of the FDP actually achieved by a given multiple testing procedure T ,
that is, the random variable FDPm(T (Ĝm)). We investigated the asymp-
totic behavior of this variable and, in particular, its fluctuations around the
asymptotic FDR achieved by procedure T , by writing FDPm(T (Ĝm)) as a
function of the empirical distribution functions under the null and alterna-
tive hypotheses. Letting

V : (F0, F1) 7→ π0F0(T (π0F0 + (1 − π0)F1))

and

R : F 7→ F (T (F )),

the FDP achieved by procedure T may be written as

FDPm(T (Ĝm)) =
V(Ĝ0,m, Ĝ1,m)

R(π0Ĝ0,m + (1 − π0)Ĝ1,m) ∨ 1
m

since Ĝm = π0Ĝ0,m+(1−π0)Ĝ1,m. Using the functional Delta method [105],

this formalism makes it possible to break down the analysis of FDPm(T (Ĝm))
into the regularity properties of the map T , which depend solely on the pro-
cedure, and the asymptotic behavior of the empirical distribution functions
of the p-values, which can be derived from Donsker’s invariance principle [26]
because p-values are assumed to be independent.

Remark 2.2.3. Although we focus on FDP, the formalism we propose
here may be used to derive the asymptotic distribution of any risk measure
based on the number of true/false positive/negatives, under the same regu-
larity conditions. In particular, the results obtained here can also be applied
to the False Non-discovery Proportion (FNP) [34]:

FNPm(t) =
(1 −Rm(t)/m) − (π0 − Vm(t)/m)

1 − π0

2.2.3. Multiple testing procedures studied. The threshold func-
tion of the BH95 procedure is defined by

T (F ) = sup{u ∈ [0, 1], F (u) ≥ u/α} .
As the BH95 procedure keeps the false discovery rate at a level of (exactly)
π0α when p-values are independent [8, 28, 79, 93], it is conservative by
a factor π0. Other multiple testing procedures have been proposed that
estimate π0, either implicitly or explicitly, to provide tighter (i.e. more
powerful) FDR control under independence:

One-stage adaptive procedures (BR08 [10], FDR08 [30]): use re-
jection curves other than Simes’ line, without explicitly incorpo-
rating an estimate of π0.

Two-stage adaptive procedures (BKY06 [9], STS04 [93], Sto02 [89]):
apply the BH95 procedure at a level of α/π̂0, where π̂0 is an esti-
mator of π0.
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We therefore consider threshold functions of the form

T (F ) = U (F,A(F )) ,(2.2.4)

with

U(F, α) = sup{u ∈ [0, 1], F (u) ≥ rα(u)},(2.2.5)

where rα : [0, 1] → R+ will be called a rejection curve (after [30]), and
A : D[0, 1] → [0, 1] will be called a level function. rα will be denoted by
r(α, ·) whenever the dependence on α is of importance. A and rα are two
degrees of freedom that can be used to describe generalizations of the BH95

procedure, corresponding to the case in which the level function is constant
(equal to α), and the rejection curve is Simes’ line. We consider increasing
rejection curves satisfying rα(0) = 0, so that U(F, α) ≥ 0 for any F ∈ D[0, 1]
and α ∈ [0, 1].

2.2.4. Overview of main results of this chapter. Theorem 2.3.2
shows that the FDP of a multiple testing procedure with threshold function
T converges in distribution at rate 1/

√
m to a conservative, procedure-

specific FDR level. This theorem holds under a general regularity condition
on the map T , which is implied by the existence and uniqueness of an interior
right-crossing point between the distribution function of the p-values and
the rejection curve of the procedure; the existence condition for a given
procedure may be interpreted as a natural generalization of the notion of
criticality, which has recently been introduced for the BH95 procedure [16].

Although the BH95 procedure is known to control FDR at a level of ex-
actly π0α [8, 28], other procedures have been proved to yield only an FDR not
larger than α, either for a finite number of hypotheses (procedures STS04,
BKY06 and BR08) or asymptotically (Sto02 and FDR08). In section 2.4 we
derive the asymptotic behavior of each procedure of interest, and the asso-
ciated regularity conditions. As all procedures converge at the same rate
1/
√
m, their asymptotic power may be explicitly compared through their

attained asymptotic FDR.
In section 2.5 we demonstrate the existence of interesting connections

between the one-stage and two-stage adaptive procedures under investiga-
tion: with a striking symmetry, procedure BR08 may be interpreted as a
fixed point of the iteration of procedure BKY06, and procedure FDR08 as a
fixed point of the iteration of procedure Sto02.

2.3. Asymptotic properties of threshold procedures

This section provides general results about multiple testing procedures
with threshold functions satisfying the following regularity condition:

Condition C.1 (Hadamard-differentiability). The threshold function T
satisfies T (G) > 0, and is Hadamard-differentiable at G, tangentially to
C[0, 1], where C[0, 1] is the set of continuous functions on [0, 1] The threshold

function derivative is denoted by ṪG.

We begin by deriving the asymptotic distribution of the FDP of any
multiple testing procedure satisfying Condition C.1 (section 2.3.1). We then
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define and characterize asymptotic equivalence between multiple testing pro-
cedures in terms of Condition C.1 (section 2.3.2). Finally we interpret this
Condition in terms of crossing points between the distribution function G
of the p-values and the rejection curve (section 2.3.3).

2.3.1. Asymptotic False Discovery Proportion. Condition C.1 makes
it possible to use the functional Delta method [105] to derive the asymp-

totic distribution of the False Discovery Proportion FDPm(T (Ĝm)) actually
achieved by procedure T from the convergence in distribution of the centered
empirical processes associated with Ĝ0,m and Ĝ1,m, which is a consequence
of Donsker’s theorem [105]:

Theorem 2.3.1 (Donsker). If the p-values are independent, then

(i)
√
m

((
Ĝ0,m

Ĝ1,m

)
−
(
G0

G1

))
 

(
Z0

Z1

)
on [0, 1], where Z0 and Z1

are independent Gaussian processes such that Z0
(d)
= B and Z1

(d)
=

B ◦G1, where B is a standard Brownian bridge on [0, 1].

(ii)
√
m
(
Ĝm −G

)
 Z on [0, 1], where Z = π0Z0 + (1 − π0) Z1 is a

stochastic process with continuous sample paths and independent,
Gaussian increments, with covariance function given by

E [Z(s)Z(t)] = π2
0γ0(s, t) + (1 − π0)

2 γ0(G1(s), G1(t)),

where γ0 is the covariance function of B, that is, γ0 : (s, t) 7→
s ∧ t(1 − s ∨ t).

Theorem 2.3.2 (Asymptotic distribution of FDPm for procedure T ).
Let T be a threshold function, τ⋆ = T (G), and p(t) = π0t

G(t) the positive False

Discovery Rate at threshold t. Under Condition C.1,

(i) √
m
(
T (Ĝm) − τ⋆)

)
 ṪG(Z) ,

(ii)

lim
m→∞

FDRm(T (Ĝm)) = p(τ⋆) ,

(iii) √
m
(
FDPm(T (Ĝm)) − p(τ⋆)

)
 X ,

with

X = p(τ⋆)(1 − p(τ⋆))

(
Z0(τ

⋆)

τ⋆
− Z1(τ

⋆)

G1(τ⋆)

)
+ ṗ(τ⋆)ṪG(Z) ,

where Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent

Gaussian processes such that Z0
(d)
= B and Z1

(d)
= B ◦ G1, where B

is a standard Brownian bridge on [0, 1].

According to (ii), the asymptotic FDR achieved by procedure T is the
pFDR at the asymptotic threshold τ⋆ = T (G). This is true because τ⋆ is
positive (by Condition C.1). In particular, Theorem 2.3.2 provides a neces-
sary and sufficient condition under which a multiple testing procedure with
Hadamard differentiable threshold function asymptotically controls FDR:
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Corollary 2.3.3. A threshold function T satisfying Condition C.1 asymp-
totically controls FDR if and only if its pFDR at τ⋆ = T (G) (i.e. its asymp-
totic FDR) is below α, that is, if and only if

π0τ
⋆

G(τ⋆)
≤ α .

Remark 2.3.4 (Form of ṪG). The expression of ṪG for threshold func-
tions is given by Corollary 2.7.12, which shows that for one-stage adaptive
procedures (where the level function A is constant), ṪG is proportional to
the inverse of the difference between the slopes of rα and G at τ⋆. For two-
stage plug-in procedures, which typically estimate π0 using G(u0) for some

u0 (e.g. u0 = λ for procedure Sto02), ṪG involves an additional term that
depends on G(u0), and the asymptotic distribution of the FDP depends on
Z(u0), where Z is defined in Theorem 2.3.1.

2.3.2. Asymptotically equivalent procedures. Some multiple test-
ing procedures cannot be written in terms of threshold functions, because
they do not depend exclusively on Ĝm, but instead also directly depend on
the number m of observations. When such procedures are only slight per-
turbations of actual threshold procedures, they share the same asymptotic
distribution, as explained below.

Definition 2.3.5 (Asymptotic equivalence of multiple testing proce-
dures). Let T be a threshold function for which Condition C.1 holds for
T . A multiple testing procedure M is asymptotically equivalent to T as
m→ +∞ if and only if

√
m
(
FDPm (M(P1, . . . Pm)) − FDPm

(
T (Ĝm)

))
P→ 0 .

Proposition 2.3.6 (Asymptotic equivalence of thresholding procedures).
Let T be a threshold function, and ε = (εm)m∈N a positive sequence. For
m ∈ N, let Tm : D[0, 1] → [0, 1] such that

∀F ∈ D[0, 1], T (F − εm) ≤ Tm(F ) ≤ T (F ) .(2.3.7)

If Condition C.1 holds for T , and if εm = o
(

1√
m

)
, Tm is asymptotically

equivalent to T as m→ +∞.

Several applications of Proposition 2.3.6 are given in section 2.4. For
example, the asymptotic behavior of procedure Tm = STS04(λ) can be de-
rived from that of procedure T = Sto02(λ), for which Theorem 2.3.2 may
be used because Sto02(λ) is an actual threshold function.

2.3.3. Regularity conditions. For the threshold functions under in-
vestigation, T (G) is defined as the last point for which G ≥ r(A(G), ·).
Therefore, the existence of a unique interior right crossing point between
G and r(A(G), ·) ensures that Theorem 2.3.2 and Proposition 2.3.6 are ap-
plicable, i.e. that T (G) > 0, and that T is Hadamard differentiable at G
(Condition C.1). For two-stage adaptive (plug-in) procedures, for which the
level function A is not constant, additional technical assumptions concern-
ing the regularity of A require checking (see Corollary 2.7.12) to ensure that
Condition C.1 holds.
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Definition 2.3.8 (Right crossing point). Let rα be a rejection curve,
and A a level function. Denote by T : F 7→ U(F,A(F )) the associated
threshold function, where U(F, α) = sup{u ∈ [0, 1], F (u) ≥ rα(u)}. A right
crossing point for the multiple comparison problem defined by T (or, in short,
a right crossing point for T ), is a point t ∈ [0, 1] such that G(t) = rα(t),
and g(t) < ∂r

∂u (A(G), t). If t belongs to the open interval (0, 1) it is called
an interior right crossing point for T .

Condition g(t) < ∂r
∂u (A(G), t) in Definition 2.3.8 ensures that G and

rA(G) = r(A(G), ·) actually cross at t, i.e. that G ≥ rA(G) in a left-
neighborhood of t, and that G ≤ rA(G) in a right-neighborhood of t.

Studies of the asymptotic distribution of the abovementioned FDR con-
trolling procedures require investigation, in each case, of the conditions guar-
anteeing the existence of a unique interior right crossing point. To this end,
we broke this condition down as follows:

Condition C.2 (Existence). T has an interior right crossing point.

Condition C.3 (Uniqueness). T has at most one interior right crossing
point.

Condition C.3 always holds for procedures based on Simes’ line (BH95,
Sto02, and BKY06) because their rejection curve is linear, and G is con-
cave. Condition C.2 typically holds in situations in which the slope of G
at the origin is large enough. In the case of the BH95 procedure, Chi re-
cently showed the existence of a critical value α⋆ depending solely on the
distribution function G of the p-values, such that if α < α⋆, the number of
discoveries made by the BH95 procedure is stochastically bounded as the
number of tested hypotheses increases, whereas if α > α⋆, the proportion of
discoveries converges in probability to a positive value τ⋆ = T (G) [16].

In section 2.4, we provide a detailed analysis of a number of FDR con-
trolling procedures, and present, for each, a critical value for the target FDR

level characterising situations in which condition C.2 is guaranteed for the
procedure.

2.4. Results for procedures of interest

We apply the results of the preceding section to a series of procedures
with proven (asymptotic) FDR control. Starting from the original BH95

procedure and its Oracle version (section 2.4.1), we then turn to adaptive
procedures, which implicitly or explicitly incorporate an estimate of the
proportion π0 of true null hypotheses: one-stage adaptive procedures are
studied in section 2.4.2, and two-stage adaptive procedures (also called plug-
in procedures) are studied in section 2.4.3.

2.4.1. BH95 procedure. We will first recall the definition of the BH95

procedure in our framework.

Definition 2.4.1 (Procedure BH95[7]). The BH95 procedure is the mul-
tiple testing procedure with threshold function

T BH95(F ) = sup{u ∈ [0, 1], F (u) ≥ u/α} .
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As the rejection curve of procedure BH95 is linear, and G is concave,
the uniqueness Condition C.3 always holds, and the existence Condition C.2
can be reduced to α > α⋆, where α⋆ = infu→0 u/G(u) = limu→0 1/g(u)
corresponds to the critical value of the BH95 procedure [16]:

Condition C.4 (Condition C.2 for the BH95 procedure). The target
FDR level α is greater than the critical value α⋆ of the BH95 procedure.

The criticality phenomenon is illustrated in Figure 1 for Laplace (double
exponential) test statistics. The Weak Law of Large Numbers phenomenon
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Figure 1. Critical value of the BH95 procedure for Laplace
test statistics with location parameter θ = 2, and π0 = 0.5.
Solid line: distribution function G; straight lines: Simes’ re-
jection curves for several values of α. There is an interior
right crossing point between the distribution function of the
p values and the Simes’ line if and only if α > α⋆ = 1/g(0).

analyzed by [16], which occurs when α > α⋆, was noted by [34]. We now
derive the corresponding central limit theorem under the same hypothesis,
and the asymptotic distribution of the FDP actually achieved by the BH95

procedure.

Theorem 2.4.2 (Asymptotic properties of the BH95 procedure). Let
τ⋆ = T BH95(G). Under Condition C.4,

(i)

√
m
(
T BH95(Ĝm) − τ⋆

)
 

Z(τ⋆)

1/α− g(τ⋆)

with Z = π0Z0+(1 − π0) Z1 and Z0 and Z1 are independent Gauss-

ian processes such that Z0
(d)
= B and Z1

(d)
= B ◦ G1, where B is a

standard Brownian bridge on [0, 1].
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(ii)

√
m
(
FDPm(T BH95(Ĝm)) − π0α

)
 N

(
0, (π0α)2

1 − τ⋆

τ⋆

)

Applying the BH95 procedure at level α/π0 leads to an Oracle procedure
(as π0 is not known) that is more powerful as it controls FDR at level exactly
α. This procedure has threshold function

T BH95o(F ) = sup{u ∈ [0, 1], F (u) ≥ π0u/α} ,
and its critical value is therefore π0α

⋆, which translates into the following
regularity condition:

Condition C.5 (Condition C.2 for the BH95 Oracle procedure). The
target FDR level α is greater than π0α

⋆, where α⋆ is the critical value of the
BH95 procedure.

The corresponding asymptotic properties can be derived from Theo-
rem 2.4.2:

Corollary 2.4.3 (Asymptotic properties of the BH95 Oracle proce-
dure). Let τ⋆ = T BH95o(G). Under Condition C.5,

(i)
√
m
(
T BH95o(Ĝm) − τ⋆

)
 

Z(τ⋆)

π0/α− g(τ⋆)
,

where Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent

Gaussian processes such that Z0
(d)
= B and Z1

(d)
= B ◦ G1, where B

is a standard Brownian bridge on [0, 1].
(ii)

√
m
(
FDPm(T BH95o(Ĝm)) − α

)
 N

(
0, α2 1 − τ⋆

τ⋆

)
.

2.4.2. One-stage adaptive procedures. The first class of adaptive
procedures studied here are one-stage adaptive procedures, because they
estimate π0 implicitly, rather than through a level function A.

Definition 2.4.4 (Adaptive procedure). Let rα : [0, 1] → [0, 1]. The
adaptive procedure associated with rα is the multiple testing procedure defined
by the threshold function

T (F ) = sup {u ∈ [0, 1], F (u) ≥ rα(u)} .
The rejection curve of adaptive procedures is not linear, so the condi-

tions under which Condition C.1 is fulfilled are more subtle than for the
BH95 procedure (section 2.4.1) or for two-stage adaptive procedures (sec-
tion 2.4.3).

Procedure FDR08(λ). The rejection curve of the FDR08 procedure [30]
is defined for u ∈ [0, 1] by fα(u) = u

α+(1−α)u . As fα(1) = 1, the corre-

sponding threshold function is always equal to 1. This procedure therefore
systematically rejects all hypotheses, and does not control FDR either for fi-
nite sample size or asymptotically. Several ways of overcoming this problem
have been proposed [30], including truncating the rejection curve, yielding
the following procedure:
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Definition 2.4.5 (Procedure FDR08(λ)). Let λ ∈ [0, 1). The rejection
curve of the FDR08(λ) procedure is defined by fλ

α(u) = fα(u) for u ≤ λ,
and +∞ otherwise. The threshold function of the FDR08(λ) procedure is
therefore given by

T FDR08(F ) = sup

{
u ∈ [0, λ], F (u) ≥ u

α+ (1 − α)u

}
.

We introduce the following regularity condition:

Condition C.6. λ ≥ κ, where κ = α(1−π0)
(1−α)π0

.

Note that
(
κ, 1−π0

1−α

)
is the crossing point between the rejection curve

fα and the distribution function DU(π0) in the extremal Dirac-Uniform
configuration where all p-values drawn from H1 are equal to 0. As G ≤
DU(π0), condition C.6 ensures that any interior right crossing point between
G and fα occurs before λ. In practice, κ is unknown because it depends on
π0. However, an upper bound for κ can be deduced from a lower bound for
π0; for example, in microarray data analysis, it can often be assumed that
π0 >

1
2 : in this case, κ is smaller than α

1−α .

By definition 2.4.5, the rejection curve fλ
α of any procedure FDR08(λ)

satisfying Condition C.6 is equal to fα on [0, κ], corresponding to the ad-
missible region for interior right crossing points. The following Proposition
is a straightforward consequence of this observation:

Proposition 2.4.6. All FDR08(λ) procedures satisfying Condition C.6
are asymptotically equivalent in the sense of Definition 2.3.5.

As the corresponding asymptotic distribution does not depend on λ,
we will refer to it simply as the “asymptotic distribution of the FDR08

procedure”. In order to characterize this distribution we introduce a further
technical condition to ensure that κ < 1. Combined with Condition C.4,
it also ensures that existence Condition C.2 holds for procedure FDR08(λ),
because the slope of fλ

α at the origin is 1/α.

Condition C.7. α < π0.

Condition C.7 is a mild assumption in practice, because π0 is typically
expected to be greater than 1/2, in microarray data analysis, for example.
When α ≥ π0, there is no need for sophisticated FDR controlling procedures
because rejecting all hypotheses yields FDP = π0 and thus FDR ≤ α.

Theorem 2.4.7 (Asymptotic behavior of procedure FDR08). Let λ ∈
[0, 1) such that Condition C.6 is fulfilled, and τ⋆ = sup

{
u ∈ [0, κ], G(u) ≥ u

α+(1−α)u

}
.

Under uniqueness Condition C.3, and existence Conditions C.4 and C.7, we
have

√
m

(
FDPm(T FDR08(λ)(Ĝm)) − α

π0

π0 (τ⋆)

)
 XFDR08,

with π0 (τ⋆) = 1−G(τ⋆)
1−τ⋆ , and

XFDR08 = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
,
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where p⋆ = απ0/π0 (τ⋆) is the pFDR achieved by procedure FDR08,

ζ(τ⋆) = −(1 − π0(τ
⋆))π0(τ

⋆)/α

π0(τ⋆)2/α− g(τ⋆)
,

and Z0 and Z1 are independent Gaussian processes such that Z0
(d)
= B and

Z1
(d)
= B ◦G1, where B is a standard Brownian bridge on [0, 1].

As π0 (τ⋆) = 1−τ⋆

1−G(τ⋆) ∈ [π0, 1], we have π0α ≤ p⋆ ≤ α, so that proce-

dure FDR08 is asymptotically more powerful than procedure BH95, and less
powerful than procedure BH95o.

Procedure BR08(λ).

Definition 2.4.8 (Procedure BR08(λ) [10]). Let λ ∈ [0, 1). The re-
jection curve of the BR08(λ) procedure is defined by bλα(u) = u

α(1−λ)+u for

u ≤ λ, and +∞ otherwise. The threshold function of the BR08(λ) procedure
is therefore given by

T BR08(λ)(F ) = sup

{
u ∈ [0, λ], F (u) ≥ u

α(1 − λ) + u

}
.

Procedure BR08(λ) is actually defined by the rejection curve
(
1 + 1

m

)
bλα [10].

However these procedures are asymptotically equivalent according to Propo-
sition 2.3.6; we will therefore use Definition 2.4.8.

As for the FDR08 procedure, the rejection curve of the BR08(λ) proce-
dure is not linear and we therefore need to make two assumptions to ensure
that existence Condition C.2 holds: Condition C.8 ensures that there is no
criticality phenomenon, that is, that the slope of the distribution function G
is great enough at the origin, and Condition C.9 ensures that a right crossing
point occurs before λ, because the BR08(λ) procedure is truncated at λ:

Condition C.8. The target FDR level α satisfies α(1 − λ) > α⋆, where
α⋆ is the critical value of the BH95 procedure.

Condition C.9. The distribution function G satisfies

G(λ) ≤ λ

α

1 −G(λ)

1 − λ
.

Remark 2.4.9. Condition C.9 may be written as G(λ) ≤ bλα, or as
G(λ) ≤ fλ

α , because the rejection curves of procedures BR08(λ) and FDR08

intersect at λ.

Theorem 2.4.10 (Asymptotic distribution of procedure BR08(λ)). Let

λ ∈ [0, 1) and τ⋆ = T BR08(λ)(G). Under uniqueness Conditions C.3 and
existence Conditions C.8 and C.9, we have

√
m

(
FDPm(T BR08(λ)(Ĝm)) − απ0

1 − λ

1 −G(τ⋆)

)
 XBR08(λ),

with

XBR08(λ) = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
,
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where p⋆ = απ0
1−λ

1−G(τ⋆) is the pFDR achieved by procedure BR08(λ),

ζ(τ⋆) = − G(τ⋆)2/τ⋆

G(τ⋆)(1 −G(τ⋆))/τ⋆ − g(τ⋆)
,

and Z0 and Z1 are independent Gaussian processes such that Z0
(d)
= B and

Z1
(d)
= B ◦G1, where B is a standard Brownian bridge on [0, 1].

Theorem 2.4.10 implies that procedure BR08(λ) controls FDR asymp-
totically at level α: as τ⋆ ≤ λ, we have p⋆ ≤ απ0

1−λ
1−G(λ) , which is smaller

than α because π0 (λ) = 1−G(λ)
1−λ is an upper bound for π0.

However, as bλα(u) ≥ u/α if and only if u ≥ λα, procedure BR08(λ)
need not be more powerful than procedure BH95, and we have the following
characterization:

BR08(λ) ≫ BH95 ⇐⇒ τ⋆
BH95 ≥ αλ ,

where ≫ means “is more powerful than”, and τ⋆
BH95 is the asymptotic thresh-

old of procedure BH95. An explicit characterization of situations in which
BR08(λ) ≫ BH95 for Gaussian test statistics is given in [10].

2.4.3. Two-stage adaptive (plug-in) procedures. In this section
we study two-stage adaptive or plug-in procedures, in which a conservative
step-up procedure is applied to a data-dependent level. In particular, we
consider the case of Simes’ line-based plug-in procedures, in which procedure
BH95 is applied at level α/π̂0, where π̂0 is estimated from the data:

Definition 2.4.11 (Simes’ line-based plug-in procedure). Let A : D[0, 1] →
R
∗
+. The Simes’ line-based plug-in procedure associated with A is the multi-

ple testing procedure defined by the threshold function

T (F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

A(F )

}
.

Such procedures will simply be called plug-in procedures hereafter.

As rα is linear, and G is concave, uniqueness Condition C.3 always
holds for plug-in procedures, and existence Condition C.2 is the same as for
procedure BH95, except that α is replaced by the value of the level function
A at G:

Condition C.10 (Condition C.2 for plug-in procedures). The level func-
tion A(G) associated with the target FDR level α is greater than the critical
value of the BH95 procedure.

Care is required when deriving the asymptotic distribution of the FDP for
plug-in procedures, because the Hadamard derivative of T , ṪG(H), typically
involves the value ofH at τ⋆ and at a point u(λ) used for the estimation of π0:
u(λ) = λ for procedure Sto02, and u(λ) = U (G,λ) for procedure BKY06(λ).
The asymptotic variance of the False Discovery Proportion therefore involves
the covariance between Z(τ⋆) and Z(u(λ)).

Theorem 2.4.12 (Asymptotic FDP for procedures based on Simes’ line).
Let T : F 7→ U(F,A(F )) a threshold function based on Simes’ line. If the
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level function A is Hadamard-differentiable at G, tangentially to C[0, 1], and
satisfies existence Condition C.10, then

√
m
(
FDPm(T (Ĝm)) − π0A(G)

)
 π0A(G)

(
Z0(τ

⋆)

τ⋆
+

ȦG(Z)

A(G)

)
,

with Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent Gaussian pro-

cesses such that Z0
(d)
= B and Z1

(d)
= B ◦G1, where B is a standard Brownian

bridge on [0, 1].

We consider the two types of plug-in procedures most widely used and
theoretically justified: Sto02-like procedures (Sto02 [89], STS04 [93]), in

which π0 is estimated by 1−Ĝm(λ)
1−λ or a slight variant, and the BKY06 proce-

dure [9], in which an upper bound for π0 is derived from a first application
of the classical BH95 procedure.

Procedure Sto02.

Definition 2.4.13 (Procedure Sto02 [89]). Procedure Sto02 is the mul-
tiple testing procedure with threshold function

T Sto02(λ)(F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (λ)

1 − λ

}
.

The level function of this procedure is therefore

A(F ) =
α

π0
F (λ)

,

with

π0
F (λ) =

1 − F (λ)

1 − λ
.

π0
G(λ) will simply be denoted by π0 (λ).

Condition C.11 (Condition C.2 for procedure Sto02(λ)). The target
FDR level α is greater than π0 (λ)α⋆, where α⋆ is the critical value of the
BH95 procedure.

This procedure is known to provide asymptotic control of FDR at level
α [89], but does not necessarily control FDR at level α for finite sample size.
This led to the definition of a modification of the Sto02 procedure that does
control FDR even for finite sample size [93]:

Definition 2.4.14 (Procedure STS04(λ) [93]). Procedure STS04(λ) re-
jects p-values smaller than

T STS04(λ)
m (Ĝm) = sup

{
u ∈ [0, λ], Ĝm(u) ≥ u

α

1 + 1
m − Ĝm(λ)

1 − λ

}
.

According to Proposition 2.3.6, procedures STS04(λ) and Sto02(λ) are
asymptotically equivalent provided that Conditions C.9 and C.11 hold (see
Proposition 2.7.16 page 60 for a formal proof).
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Theorem 2.4.15 (Asymptotic properties of the Sto02/STS04 proce-

dure). Let λ ∈ (0, 1), and τ⋆ = T Sto02(λ)(G). Under existence Condi-
tion C.11, we have

√
m

(
FDPm(T Sto02(Ĝm)) − π0

π0 (λ)
α

)
 XSto02,

with

XSto02 =
π0α

π0 (λ)

(
Z0(τ

⋆)

τ⋆
+

Z(λ)

1 −G(λ)

)
,

where Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent Gaussian

processes such that Z0
(d)
= B and Z1

(d)
= B◦G1, where B is a standard Brownian

bridge on [0, 1]. XSto02 is therefore a centered Gaussian random variable,
with variance

(
π0α

π0 (λ)

)2{1 − τ⋆

τ⋆
+

Var Z(λ)

(1 −G(λ))2
+ π0

τ⋆
∧λ (1 − τ⋆ ∨ λ)

τ⋆(1 −G(λ))

}
,

where

Var Z(λ) = π2
0λ(1 − λ) + (1 − π0)

2G1(λ)(1 −G1(λ)) .

Corollary 2.4.16. If τ⋆ ≤ λ,

VarXSto02(λ) =

(
π0α

π0 (λ)

)2{1 − τ⋆

τ⋆
+

Var Z(λ)

(1 −G(λ))2
+

π0

π0 (λ)

}
.

As π0 (λ) = π0 +(1−π0)
1−G1(λ)

1−λ , we have, for any λ ≤ λ′, π0 ≤ π0 (λ′) ≤
π0 (λ) ≤ 1, BH95o ≫ Sto02(λ′) ≫ Sto02(λ) ≫ BH95.

Procedure BKY06. Letting β = α
1+α , procedure BKY06 involves ap-

plying procedure BH95 at level β
1−R(β)/m , where R(β) is the number of

hypotheses rejected by a first application of the BH95 procedure at level β.
We shall consider a recently proposed generalization of this procedure [10],
in which procedure BH95 is applied at level 1−λ

1−R(λ)/mα. The original BKY06

procedure corresponds to λ = α
1+α .

Definition 2.4.17 (Procedure BKY06(λ)[9]). Let λ ∈ [0, 1), and

A(F ) = α
1 − λ

1 − F (U(F, λ))
,

where

U(F, λ) = sup
{
u ∈ [0, 1], F (u) ≥ u

λ

}
.

The threshold function of procedure BKY06(λ)is defined for any F ∈
D[0, 1] by T BKY06(λ)(F ) = U(F,A(F )), that is,

T BKY06(λ)(F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (U(F, λ))

1 − λ

}
.

Remark 2.4.18. As the proportion R(λ)/m of hypotheses rejected by

procedure BH95 at level λ equals Ĝm(U(Ĝm, λ)) (see Proposition 2.7.8 page

54), A(Ĝm) may be written as α 1−λ
1−R(λ)/m .
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Remark 2.4.19. The exact definition of procedure BKY06(λ) adds 1/m
to the denominator of the level function:

A(F ) = α
1 − λ

1 + 1
m − F (U(F, λ))

,

which permits proving that this procedure controls FDR for finite sample
size [10]. According to Proposition 2.3.6, these two procedures are asymp-
totically equivalent, so we will use Definition 2.4.17.

As procedure BKY06(λ) is based on two successive applications of pro-
cedure BH95, at level λ and α(1 − λ), Condition C.2 holds if and only if
Condition C.8 holds and λ > α⋆.

Condition C.12. The parameter λ satisfies λ > α⋆, where α⋆ is the
critical value of the BH95 procedure.

Theorem 2.4.20 (Asymptotic properties of the BKY06(λ) procedure).
Let α ∈ [0, 1], and λ ∈ [0, 1). Let u(λ) = U(G,λ) be the asymptotic threshold

of the BH95 procedure applied at level λ, and τ⋆ = T BKY06(λ)(G). Under
existence Conditions C.8 and C.12,

√
m

(
FDPm(T BKY06(λ)(Ĝm)) − π0α(1 − λ)

1 −G(u(λ))

)
 XBKY06(λ),

with

XBKY06(λ) =
π0α(1 − λ)

1 −G(u(λ))

(
Z0(τ

⋆)

τ⋆
+

1

1 − α(1 − λ)g(u(λ))

Z(u(λ))

1 −G(u(λ))

)
,

where Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent Gaussian

processes such that Z0
(d)
= B and Z1

(d)
= B◦G1, where B is a standard Brownian

bridge on [0, 1].

As u(λ) is the asymptotic threshold of the BH95 procedure applied at
level λ, we haveG(u(λ)) = u(λ)/λ, u(λ) ≤ λ. Therefore, 1−λ

1−G(u(λ)) ≤ 1−λ
1−G(λ) ,

and the asymptotic level of procedure BKY06(λ) is less than α because
1−G(λ)

1−λ ≥ π0.

However, as for procedure BR08(λ), procedure BKY06(λ) need not be
more powerful than BH95: a comparison of the asymptotic FDR for these
two procedures shows that situations in which BKY06(λ) ≫ BH95 are char-
acterized by G(uλ) ≥ λ, that is, G2(uλ) ≥ uλ because G(uλ) = uλ/λ. Hence,
BH95 ≫ BKY06(λ) corresponds to situations in which G is too close to the
Uniform distribution. For example, if G(x) ≤ √

x for all x ∈ [0, 1], then for
any λ ∈ [0, 1], BH95 ≫ BKY06(λ).

2.5. Connection between one- and two-stage adaptive procedures

We have introduced two types of FDR controlling procedures generaliz-
ing the BH95 procedure: two-stage adaptive (plug-in) procedures explicitly
incorporate an estimate of π0 into the standard BH95 procedure, whereas
one-stage adaptive procedures do not explicitly use such an estimate, but
still yield tighter FDR control than the BH95 procedure.

We will now investigate connections between one-stage and two-stage
adaptive procedures, which naturally appear when using the formalism of
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threshold functions: with a striking symmetry, the threshold of procedure
BR08(λ) may be interpreted as a fixed point of an iterated BKY06(λ) pro-
cedure, whereas the threshold of procedure FDR08 may be interpreted as a
fixed point of an iterated Sto02(λ) procedure. We provide heuristic reasons
for these connections in section 2.5.1; in section 2.5.2 we present general
results for the connection between one-stage and two-stage adaptive pro-
cedures, and derive consequences for the connection between procedures
Sto02(λ) and FDR08 on the one hand, and between procedures BKY06(λ)
and BR08(λ) on the other hand.

2.5.1. Heuristics.
Procedures BKY06(λ) and BR08(λ). The BKY06 procedure was de-

signed to derive an approximate upper bound for π0 from a first application
of procedure BH95, and to use this upper bound in a second application of
the BH95 procedure, leading to less conservative FDR control. For λ ∈ [0, 1),
the threshold function of the BKY06(λ) procedure is defined by

T BKY06(λ)(F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (U(F, λ))

1 − λ

}
,

where U(F, λ) = sup
{
u ∈ [0, 1], F (u) ≥ u

λ

}
. It therefore seems natural to

iterate this process, using the number of rejections at the second application
to find a less conservative upper bound for π0, and to use this new upper
bound in a third application of the BH95 procedure, and so on. Based on
this idea, Benjamini et al. suggested defining a multi-stage procedure for the
particular situation in which λ = α

1+α [9]. In our framework, this iterative
process suggests the introduction of a fixed-point procedure defined for any
F ∈ D[0, 1] by:

T BKY06(λ)
∞ (F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (u)

1 − λ

}
.

The term fixed-point procedure refers to the following property of the corre-

sponding asymptotic threshold τ⋆
∞ = T BKY06(λ)

∞ (G). Let us suppose that τ⋆
∞

is the threshold obtained at a given stage of the abovementioned iteration
process. As G(τ⋆

∞) = τ⋆
∞(1 − G(τ⋆

∞))/α(1 − λ), τ⋆
∞ is also the asymptotic

threshold at the next stage, and is thus a fixed point of the iteration pro-
cess. It turns out that this fixed-point procedure is the BR08(λ) procedure
investigated in section 2.4.2: F (u) ≥ u

α(1−λ)(1 − F (u)) may be written as

F (u) ≥ u
α(1−λ)+u , and the right-hand side is the rejection curve bλα of the

BR08(λ) procedure.

Procedures Sto02(λ) and FDR08(λ). The same idea may be adapted
to procedure Sto02(λ), which is defined for 0 ≤ λ < 1 by the threshold
function

T Sto02(λ)(F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (λ)

1 − λ

}
.

If τ̂λ = T Sto02(λ)(Ĝm) denotes the empirical threshold of procedure
Sto02(λ), one may use τ̂λ to estimate π0, that is, calculate the threshold
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given by procedure Sto02(τ̂λ), and so on. This suggests that an associated
fixed-point procedure could be defined as

T Sto02
∞ (F ) = sup

{
u ∈ [0, 1], F (u) ≥ u

α

1 − F (u)

1 − u

}
.

Again, the term fixed-point procedure refers to the fact that if τ⋆
∞ = T (G)

is used as a new λ to estimate π0 in procedure Sto02(λ), then the asymptotic
threshold of procedure Sto02(λ) is also τ⋆

∞, which is therefore a fixed point
of the iteration process. It turns out that this fixed-point procedure is the

FDR08 procedure investigated in section 2.4.2: F (u) ≥ u
α

1−F (u)
1−u may be

written as F (u) ≥ u
α+(1−α)u , and the right-hand side is the rejection curve

fα of the FDR08 procedure.

2.5.2. Formal connections. We present a general result concerning
connections between one-stage and two-stage adaptive procedures, provid-
ing a formal justification for the connections mentioned in section 2.5.1, and
accounting for their symmetry. This result is based on the following assump-
tion concerning the threshold function of the one-stage adaptive procedure:

Condition C.13. There is a curve cα : D[0, 1] × [0, 1] such that the
threshold function T may be written as

T (F ) = sup {u ∈ [0, λ], F (u) ≥ cα(F, u)} ,
where u 7→ cα(G, u)/u is non increasing on [0, λ].

Remark 2.5.1. In Condition C.13, cα(F, ·) is not the rejection curve of
procedure T , because it depends on F . For example, for procedure FDR08,
we will use

cα(F, u) =
u

α

1 − F (u)

1 − u
.

Theorem 2.5.2 shows that we can associate with a one-stage adaptive
procedure fulfilling Condition C.13 a two-stage adaptive procedure with lin-
ear rejection curve, and level function given by

A(F ) =
t

cα(F, t)
,

for fixed t ∈ (0, 1). The asymptotic threshold of the one-stage procedure
may then be interpreted as the fixed point of iterations of the two-stage
procedure.

Theorem 2.5.2 (Connection between one-stage and two-stage adaptive
procedures). Let λ ∈ (0, 1). Let us consider a multiple testing procedure with
a threshold function T that may be written as

T (F ) = sup {u ∈ [0, λ], F (u) ≥ cα(F, u)}
for any F ∈ D[0, 1]. Let Tt be the threshold function defined by

Tt(F ) = sup

{
u ∈ [0, 1], F (u) ≥ cα(F, t)

t
u

}
,

for any t ∈ (0, 1) and any F ∈ D[0, 1]. Let us assume that existence Condi-
tion C.2 and uniqueness Condition C.3 hold for procedure T , and that, for
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any t ∈ (0, 1), existence Condition C.2 holds for procedure Tt. Let τ⋆ = T (G)
and τ(t) = Tt(G) be the asymptotic thresholds of procedures T and Tt, re-
spectively. If cα satisfies Condition C.13, we have

(i) for any t ∈ (0, λ],
{
t ≤ τ⋆ ⇒ τ(t) ∈ [t, τ⋆]

t ≥ τ⋆ ⇒ τ(t) ∈ [τ⋆, t]
.

(ii) Let t ∈ (0, λ]. Define the sequence (tn) ∈ [0, 1]N by t0 = t, and
ti+1 = τ(ti) for i ∈ N. Then

lim
n→∞

tn = τ⋆ .

Corollary 2.5.3 (Asymptotic power comparison). With the same nota-
tion and under the same conditions, the following assertions are equivalent:

(i) Procedure Tt is asymptotically more powerful than procedure T
(ii) τ(t) > τ⋆

(iii) t > τ⋆

(iv) t > τ(t)

In the remainder of this section, we use Theorem 2.5.2 to characterize
the connection between the abovementioned procedures.

Procedures Sto02(λ) and FDR08(λ). Theorem 2.5.4 gives the con-
vergence of the process consisting of the recursive use of the asymptotic
threshold of procedure Sto02(λ) as a new λ. It holds under the same regu-
larity conditions as those required to obtain the asymptotic distribution of
procedure FDR08.

Theorem 2.5.4 (Connection between procedures Sto02(λ) and FDR08).

Let κ = α(1−π0)
π0(1−α) , and

τ⋆ = sup

{
u ∈ [0, κ], G(u) ≥ u

α

1 −G(u)

1 − u

}

be the asymptotic threshold of the FDR08 procedure. For u ∈ [0, 1], let

τ(u) = sup

{
u ∈ [0, 1], G(u) ≥ u

α

1 −G(λ)

1 − λ

}

be the asymptotic threshold of procedure Sto02(u). For any t ∈ (0, 1), define
the sequence (tn) ∈ [0, 1]N by t0 = t, and ti+1 = τ(ti) for i ∈ N. Let us
assume that uniqueness Condition C.3 holds for procedure FDR08, and that
the target FDR level α satisfies existence Conditions C.4 and C.7. Then,

lim
n→∞

tn = τ⋆ .

Corollary 2.5.5 (Asymptotic power comparison — Sto02(λ) vs FDR08).
With the same notation and under the same conditions, procedure Sto02(λ)
is asymptotically more powerful than procedure FDR08 if and only if λ >
τ(λ).
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When using procedure Sto02(λ) in practice, we would not want any of the
rejected hypotheses to be incorporated into the estimation of π0. Thus, the
empirical rejection threshold T Sto02(λ)(Ĝm) should be less than λ. In such

situations, as T Sto02(λ)(Ĝm) converges at rate 1/
√
m to τ(λ) = T Sto02(λ)(G),

procedure Sto02(λ) is probably more powerful than procedure FDR08 ac-
cording to Corollary 2.5.5.

Procedures BKY06(λ) and BR08(λ). Theorem 2.5.6 characterizes the
connection between procedure BKY06(λ) and procedure BR08(λ). It holds
under the same regularity conditions as those required to obtain the asymp-
totic distribution of procedure BR08(λ).

Let τ⋆ = T BR08(λ)(G) be the asymptotic threshold of the BR08(λ) pro-
cedure. Under uniqueness Condition C.3 and existence Conditions C.8, C.9
and C.12, (tn) is non decreasing, and converges to τ⋆.

Theorem 2.5.6 (Connection between procedures BKY06(λ) and BR08(λ)).
Let λ ∈ (0, 1). For F ∈ D[0, 1] and β ∈ [0, 1], let

U(F, β) = sup

{
u ∈ [0, 1], F (u) ≥ u

β

}
.

For any u ∈ [0, 1), let τ(u) = U
(
G, α(1−λ)

1−G(u)

)
. With this notation, T (G) =

τ(u(λ)) is the asymptotic threshold of the BKY06(λ) procedure, where u(λ) =
U(G,λ). Let

τ⋆ = sup

{
u ∈ [0, λ], G(u) ≥ u

α(1 − λ) + u

}

be the asymptotic threshold of the BR08(λ) procedure. Define the sequence
(tn) ∈ [0, 1]N by t0 = u(λ), and ti+1 = τ(ti) for i ∈ N. Let us assume that
uniqueness Condition C.3 holds for procedure BR08(λ), and that the target
FDR level α satisfies existence Conditions C.8 and C.9. Then

lim
n→∞

tn = τ⋆ .

Corollary 2.5.7 (Asymptotic power comparison — BKY06(λ) vs BR08(λ)).
With the same notation and under the same conditions, procedure BR08(λ)
is asymptotically more powerful than procedure BKY06(λ) if and only if the
asymptotic threshold τ⋆ of procedure BR08(λ) satisfies τ⋆ ≥ λ− α(1 − λ).

For example, setting λ to a value less than α
1+α , corresponding to the

original BKY06 procedure [9], ensures that the associated BR08(λ) procedure
is asymptotically more powerful than the associated BKY06(λ) procedure.

2.6. Concluding remarks

We have demonstrated the power and flexibility of the formalism of
threshold functions, making it possible to derive the asymptotic properties
of well known FDR controlling procedures with their associated regularity
conditions, and to identify and characterize novel connections between one-
stage and two-stage adaptive procedures. These results are summarized in
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Table 1. We should recall that the threshold function associated with the
level function A and rejection curve rα = r(α, ·) is defined by

T (F ) = sup {u ∈ [0, 1], F (u) ≥ r(A(F ), u)} .
By definition, the level function A equals α for one-stage procedures, and
the rejection curve of Simes’ line-based procedures is rα : u 7→ u/α.

Table 1. Comparison of FDR controlling procedures, char-
acterized by their level function A and their rejection curve
rα. Conditions for the existence and uniqueness of an inte-
rior right crossing point are recalled, together with the cor-
responding pFDR relative to that of the BH95 procedure:
π0α.

Name BH95 [7] FDR08 [30] BR08(λ) [10] Sto02(λ) [89] BKY06(λ) [9]

A(F )/α 1 1 1 1−λ

1−F (λ)
1−λ

1−Ĝm(uλ)
(a)

rα(u) u/α u

α+(1−α)u
(b) u

α(1−λ)+u

(c) u/α u/α

Existence C.4 C.4 & C.7 (d) C.8 & C.9 (d) C.11 C.12
Uniqueness — C.3 C.3 — —

pFDR/π0α 1
1−τ

⋆

FDR08

1−G(τ⋆

FDR08)
1−λ

1−G(τ⋆

BR08)
1−λ

1−G(λ)
1−λ

1−G(uλ)
(a)

(a) : uλ is the asymptotic threshold of the BH95 procedure at target level λ; (b) : truncated at
α(1−π0)
π0(1−α)

; (c) : truncated at λ; (d) : Sufficient (not necessary) conditions.

Regularity conditions. For one-stage adaptive procedures FDR08 and
BR08(λ), the uniqueness Condition C.3 has to be assumed (cf. Table 1): as
the rejection curve is not linear, the interior right crossing point is not nec-
essarily unique; in practice the uniqueness condition holds except in patho-
logical situations. For Simes’ line-based procedures BH95, Sto02(λ) and
BKY06(λ), existence Condition C.2 holds provided that the slope of the dis-
tribution function exceeds a certain threshold at the origin (that is, that
there is no criticality phenomenon). For one-stage adaptive procedures,
it is also required that the rejection curve rα ends below the distribution
function G, which corresponds to Condition C.7 for procedure FDR08, and
Condition C.9 for procedure BR08(λ).

The criticality phenomenon studied by Chi [16] is intrinsic to the multi-
ple testing problem, and not specific to a given procedure, as the minimum
attainable pFDR level β⋆ = inft>0 pFDR(t) depends solely on the parame-
ters of the mixture model [16]. When β⋆ = 0, say for the Gaussian location
problem, there is no criticality phenomenon for any procedure: α⋆ = 0, and
all existence Conditions concerning the behavior of the distribution function
G close to 0 are fulfilled for any procedure, and for any target FDR level
α. When β⋆ > 0, say for the Laplace location problem (Figure 1, page 33),
there is a criticality phenomenon for every procedure; however the critical
value, that is, the minimum target FDR level for which existence Condi-
tion C.2 holds, may depend on the procedure, as illustrated by the existence
conditions in Table 1.

Power comparisons. All procedures are asymptotically conservative,
and therefore yield asymptotic FDR below the target level. Procedures
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FDR08 and Sto02 (and thus STS04) are always more powerful than procedure
BH95, but this is not the always the case for procedures BR08(λ)(section 2.4.2)
and BKY06(λ) (section 2.4.3).

For one-stage adaptive procedures, for any λ ∈ (0, 1) such that the
regularity conditions for procedures FDR08 and BR08(λ) hold, FDR08 is
asymptotically more powerful than BR08(λ). Indeed, Condition C.9 ensures
that the asymptotic thresholds of both procedures are less than λ. As the
rejection curve fα of procedure FDR08 is smaller than the rejection curve bλα
of BR08 on [0, λ], the asymptotic threshold of procedure FDR08 is greater
than that of procedure BR08(λ). However, it should be noted that procedure
BR08(λ) does control FDR for a finite number of tested hypotheses, whereas
procedure FDR08 does not.

For two-stage adaptive procedures, for any λ ∈ (0, 1) such that the regu-
larity conditions for procedures Sto02(λ) and BKY06(λ) hold, Sto02(λ) (and
thus STS04) is asymptotically more powerful than BKY06(λ), as demon-
strated by the corresponding asymptotic FDR levels in Table 1: as uλ ≤ λ,
we have 1−λ

1−G(uλ) ≤ 1−λ
1−G(λ) . This suggests that procedure STS04(λ) is prefer-

able to procedure BKY06(λ) in practice. This recommendation should be
balanced against the choice of λ and the desired robustness to dependence
between null hypotheses. Based on a simulation study, procedure Sto02(α)
was recently reported to be much more robust to positive dependence be-
tween null hypotheses than procedure Sto02(1/2) [10], which is still a stan-
dard choice in practical implementations, such as the SAM (Significance
Analysis of Microarrays) software [92].

Towards optimality. This comparison raises the question of whether
the formalism of threshold functions can be used to derive procedures more
powerful than those studied here. One possible approach consists of trying
to improve the estimation of π0 to build a procedure closer to the Oracle
BH95 procedure, as discussed in [35]. However, consistent estimators of π0

have slower convergence rates than 1/
√
m, resulting in slower convergence

rates than 1/
√
m for the associated FDP. This may be illustrated by the

influence of λ on procedure Sto02(λ): the larger λ, the smaller the bias
E [π̂0(λ)]− π0, and the larger the variance of π̂0(λ). The question of how to
choose λ as a function of the number of hypotheses tested and the assumed
regularity of G is addressed in another work [65].

Another possibility would be to consider procedures more general than
those used in this paper: the BH95o procedure has been shown to give the
lowest false non discovery rates (FNR) of the threshold procedures controlling
FDR at level α [34]. The question of optimality in a broader family of
testing procedures has recently been raised [96]: Z score-based threshold
procedures may outperform p value-based threshold procedures, as Z score-
based threshold procedures make it possible to choose different significance
thresholds for positive and negative significance cutoffs. This suggests to
extend our framework to Z score-based procedures.

Confidence intervals. An interesting practical application of this work
concerns the derivation of asymptotic confidence intervals for the FDP of a
given procedure. Our results give explicit asymptotic distributions for the
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attained FDP, but this issue is not straightforward because these distri-
butions depend on unknown quantities, including the proportion π0, the
asymptotically attained FDR τ⋆, or the distribution function G and its as-
sociated density g. These quantities should, in turn, be estimated. Boot-
strapping techniques could be used for this purpose; we leave this question
for further research.

Extension to other dependence settings. We have derived the as-
ymptotic properties of several multiple testing procedures and the associ-
ated regularity conditions in the situation in which p-values are independent.
However, our formalism makes it possible to deal with any dependence sit-
uation for which the vector (Ĝ0,m, Ĝ1,m) of empirical distribution functions
of the p-values under the null and alternative hypotheses satisfies Donsker’s
invariance principle. For example, the form of the asymptotic distributions
of the threshold T (Ĝm) and the associated FDP would remain the same in
the conditional dependence model recently proposed by Wu [109].

2.7. Proof of main results

2.7.1. Asymptotic FDP: general threshold functions. In this sec-
tion, we provide proofs for the results of section 2.3.

Proof of Theorem 2.3.2. The following lemma will be used in several
subsequent proofs.

Lemma 2.7.1. Let H ∈ C[0, 1], and Ht be a family of functions of D[0, 1]
that converges to H on (D[0, 1], ‖.‖∞) as t → 0. For any sequence (ut)t>0

of [0, 1] that converges to u ∈ [0, 1] as t→ 0, we have

lim
t→0

Ht(ut) = H(u)

lim
t→0

Ht(u
−
t ) = H(u),

where f(x−0 ) denotes limx→x0,x≤x0 f(x).

Proof of Lemma 2.7.1. We have

|Ht(ut) −H(u)| ≤ |Ht(ut) −H(ut)| + |H(ut) −H(u)|
≤ ‖Ht −H‖∞ + |H(ut) −H(u)|

and

|Ht(u
−
t ) −H(u)| ≤ |Ht(u

−
t ) −H(u−t )| + |H(u−t ) −H(u)|

≤ ‖Ht −H‖∞ + |H(ut) −H(u)|
as H is continuous. The first term goes to 0 as t→ 0 by the convergence of
Ht to H on D[0, 1], and the second term also tends to 0 by the continuity
of H, because limt→0 ut = u. �

Proposition 2.7.2 (Hadamard differentiability of V and R). Under
Condition C.1,

(i) V is Hadamard-differentiable at G, tangentially to C[0, 1], with
derivative

V̇(G0,G1) : (H0, H1) 7→ π0ṪG (π0H0 + (1 − π0)H1) + π0H0(T (G))
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(ii) R is Hadamard-differentiable at G, tangentially to C[0, 1], with
derivative

ṘG : H 7→ H(τ⋆) + g(τ⋆)ṪG(H)

Proof of Proposition 2.7.2. (i) Let (H0, H1) ∈ C[0, 1]2, and
(H0,t, H1,t)t>0 be a family of functions of D[0, 1]2 that converges
to ((H0, H1), ‖.‖∞) as t → 0. Let H = π0H0 + (1 − π0)H1, and
Ht = π0H0,t + (1 − π0)H1,t. We have

V(G0 + tH0,t, G1 + tH1,t) − V(G0, G1) = π0(τ
⋆
t − τ⋆) + π0tH0,t(τ

⋆
t )

where τ⋆ = T (G) and τ⋆
t denotes T (G+ tHt). By the Hadamard

differentiability of T at G tangentially to C[0, 1], we have, as H =
π0H0 + (1 − π0)H1 is continuous at τ⋆,

τ⋆
t − τ⋆ = t

(
ṪG(H) + o(1)

)

In order to conclude, we notice that

lim
t→0

H0,t(τ
⋆
t ) → H0(τ

⋆)

according to Lemma 2.7.1, which concludes the proof.
(ii) Let H ∈ C[0, 1], and Ht be a family of functions of D[0, 1] that

converges to H on (D[0, 1], ‖.‖∞) as t→ 0. We have

R(G+ tHt) = (G+ tHt)T (G+ tHt)

= G(T (G+ tHt)) + tHt(T (G+ tHt))

By the Hadamard differentiability of T atG tangentially to C[0, 1],
we have

T (G+ tHt) = T (G) + t
(
ṪG(H) + o(1)

)

so that applying Taylor’s formula to G at T (G) yields

G(T (G+ tHt)) = G(T (G)) + t
(
ṪG(H) + o(1)

)
g(T (G)) + o(t) .

For the second term, Lemma 2.7.1 ensures that

lim
t→0

Ht(T (G+ tHt)) = H(T (G))

because T (G+ tHt) converges to T (G) and Ht converges to H on
(D[0, 1], ‖.‖∞). Finally, we have

lim
t→0

R(G+ tHt) −R(G)

t
= H(τ⋆) + g(τ⋆)ṪG(H)

because τ⋆ = T (G), which concludes the proof.
�

Theorem 2.7.3 (Asymptotic distribution of (τ̂ , ν̂, ρ̂)). Under Condi-
tion C.1,

√
m








τ̂
ν̂
ρ̂



−




τ⋆

π0τ
⋆

rα(τ⋆)







 X
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with

X =




1
π0

g(τ⋆)



 ṪG(Z) + π0




0
1
1



Z0(τ
⋆) + (1 − π0)




0
0
1



Z1(τ
⋆) ,

and Z = π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent Gaussian pro-

cesses such that Z0
(d)
= B and Z1

(d)
= B ◦G1, where B is a standard Brownian

bridge on [0, 1].

Proof of Theorem 2.7.3. We note that


τ̂
ν̂
ρ̂



 = Ψ(Ĝ0,m, Ĝ1,m)

where Ψ : D[0, 1]2 → R
3 is the map defined by

Ψ(F0, F1) =




T (π0F0 + (1 − π0)F1)

V(F0, F1)
R(π0F0 + (1 − π0)F1)



 .

We have

Ψ(G0, G1) =




τ⋆

π0τ
⋆

G(τ⋆)



 .

By the Hadamard differentiability of T at G = π0G0 + (1 − π0)G1 and
that of V at (G0, G1), Ψ is Hadamard-differentiable at (G0, G1) tangentially
to C[0, 1]2, with derivative

Ψ̇G0,G1(H0, H1) =




ṪG(H)

V̇G0,G1(H0, H1)

ṘG(H)





where H denotes π0H0 + (1 − π0)H1. Therefore Theorem 2.3.1 yields

√
m(Ψ(Ĝ0,m, Ĝ1,m) − Ψ(G0, G1)) Ψ̇G0,G1(Z0,Z1),

According to Proposition 2.7.2, we have

V̇(G0,G1)(Z0,Z1) = π0ṪG (Z) + π0Z0(τ
⋆)

ṘG(Z) = g(τ⋆)ṪG (Z) + Z(τ⋆)

with Z = π0Z + (1 − π0)Z1, so that

X = Ψ̇G0,G1(Z0,Z1)

=




1
π0

g(τ⋆)



 ṪG(Z) + π0




0
1
1



Z0(τ
⋆) + (1 − π0)




0
0
1



Z1(τ
⋆)

, which concludes the proof. �

Proof of Theorem 2.3.2. (i) is a direct consequence of Theorem 2.7.3:
√
m
(
T (Ĝm) − τ⋆)

)
 ṪG(Z) ,
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For (ii) and (iii), we note that as τ⋆ > 0 (by Condition C.1), τ̂ = T (Ĝm) is
bounded away from 0 if m is sufficiently large, with a probability 1. More
precisely, there exist t0 ∈ (0, 1) and m0 ∈ N such that

P (∀m ≥ m0, τ̂ > t0) = 1 .

Therefore, as Ĝm is non decreasing, and as Ĝm(t0) → G(t0) > 0, the pro-

portion ρ̂ = Ĝm(τ̂) of rejections by procedure T is bounded away from 0

with probability 1. Thus, P (Rm(τ̂) > 0) = 1, where Rm(τ̂) = mĜm(τ̂) is
the number of rejections at threshold τ̂ .

As a first consequence, as FDR(t) = p(t)P (R(t) > 0), we have FDRm(τ̂) =
p(τ̂) for a sufficiently large m, which proves (ii) p(τ̂) converges almost surely
to p(τ⋆).

As a second consequence, letting γ : R+ × R
∗
+ → R be defined by

γ(x, y) = x
y , we have FDPm(T (Ĝm)) = γ (ν̂, ρ̂)1bρ>0 = γ (ν̂, ρ̂) for a suffi-

ciently large m, with probability one. γ is differentiable on R+ × R
∗
+, with

derivative

γ̇x,y =

(
1

y
,− x

y2

)
.

In particular, γ̇π0τ⋆,G(τ⋆)(h, k) = 1
G(τ⋆)

(
h− π0τ⋆

G(τ⋆)k
)
. We can therefore de-

rive the asymptotic distribution of FDPm from Theorem 2.7.3 combined with
the delta method [105]. According to Theorem 2.7.3 we have

√
m

((
ν̂
ρ̂

)
−
(
π0τ

⋆

G(τ⋆)

))
 

(
π0Z0(τ

⋆) + π0ṪG(Z)

Z(τ⋆) + g(τ⋆)ṪG(Z)

)
.

Hence, as FDPm(T (Ĝm)) = γ (ν̂, ρ̂) (almost surely), and γ(π0τ
⋆, τ⋆/α) =

π0α, the delta method [105] yields

√
m

(
FDPm(T (Ĝm)) − π0τ

⋆

G(τ⋆)

)
 X,

where

X =
1

G(τ⋆)

(
π0(Z0(τ

⋆) + ṪG(Z)) − π0τ
⋆

G(τ⋆)
(Z(τ⋆) + g(τ⋆)ṪG(Z))

)

=
π0τ

⋆

G(τ⋆)

(
Z0(τ

⋆)

τ⋆
− Z(τ⋆)

G(τ⋆)

)
+

π0

G(τ⋆)

(
1 − τ⋆g(τ⋆)

G(τ⋆)

)
ṪG(Z)

Since Z = π0Z0 +(1 − π0) Z1 and G = π0G0 +(1−π0)G1, and p⋆ = π0G0(τ⋆)
G(τ⋆) ,

we have
Z(τ⋆)

G(τ⋆)
= p⋆ Z0(τ

⋆)

τ⋆
+ (1 − p⋆)

Z1(τ
⋆)

G1(τ⋆)
,

so that
Z0(τ

⋆)

τ⋆
− Z(τ⋆)

G(τ⋆)
= (1 − p⋆)

(
Z0(τ

⋆)

τ⋆
− Z1(τ

⋆)

G1(τ⋆)

)
,

which concludes the proof because p(t) = π0t
G(t) and ṗ(t) = π0

G(t)

(
1 − tg(t)

G(t)

)
.

�
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Proof of Proposition 2.3.6. Lemma 2.7.4 states the asymptotic equiv-
alence between a multiple testing procedure defined as a threshold function
and a slight modification of this procedure.

Lemma 2.7.4. Let T be a threshold function, ε = (εm)m∈N and T ε,H
m :

D[0, 1] → [0, 1], such that

∀F ∈ D[0, 1], T ε,H
m (F ) = T (F + εmH) .

Let M be the multiple testing procedure naturally associated with the se-
quence of thresholds T H

m (Ĝm). If Condition C.1 holds for T , and if εm =

o
(

1√
m

)
, then M is asymptotically equivalent to T as m→ +∞.

Proof of Lemma 2.7.4. The proof is based on the idea that, as εm =

o
(

1√
m

)
, and Ĝm converges at rate 1√

m
to G, a modification of T of the

order of εm does not change the asymptotic distribution of the associated
FDP, because T is Hadamard-differentiable. For the sake of simplicity in
notation, we prove only that

√
m
(
T ε,H(Ĝm) − T (Ĝm)

)
P→ 0 .

Indeed, as the associated FDP is a Hadamard-differentiable function of
the empirical distribution functions under the null and alternative hypothe-
ses Ĝ0,m and Ĝ1,m, the arguments developed below can be transposed (but
with much more cumbersome notation) to prove that

√
m
(
FDPm(T ε,H(Ĝm)) − FDPm(T (Ĝm))

)
P→ 0 .

Let Zm =
√
m
(
Ĝm −G

)
. According to Donsker’s invariance principle

(Theorem 2.3.1), Zm converges in distribution on [0, 1] to a Gaussian process
with continuous sample paths. For Z ∈ D[0, 1], let

φm(Z) =
√
m

(
T ε,H(G+

1√
m
Z) − T (G+

1√
m
Z)

)
.

We have

φm(Z) =
√
m

(
T ε,H(G+

1√
m
Z) − T (G)

)
−√

m

(
T (G+

1√
m
Z) − T (G)

)
.

According to Condition C.1, T is Hadamard-differentiable at G tan-
gentially to C[0, 1]. Therefore, for any sequence Zm of D[0, 1] that con-

verges to Z ∈ C[0, 1],
√
m
(
T (G+ 1√

m
Zm) − T (G)

)
converges to ṪG(Z). As

εm = o
(

1√
m

)
,
√
m
(
T ε,H(G+ 1√

m
Zm) − T (G)

)
also converges to ṪG(Z).

Thus, φm(Zm) converges to 0 for any sequence Zm of D[0, 1] that con-
verges to Z ∈ C[0, 1]. Therefore, according to the Extended Continuous
Mapping Theorem [105, Theorem 18.11], φm(Zm) converges in distribution
(hence also in probability) to 0. �

Proof of Proposition 2.3.6. For m ∈ N, let T ε
m : D[0, 1] → [0, 1] be

defined by

∀F ∈ D[0, 1], T ε
m(F ) = T (F − εm) .
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Let τ⋆ = T (G), τ̂ = T
(
Ĝm

)
, τ̂m = Tm

(
Ĝm

)
and τ̂ ε

m = T ε
m

(
Ĝm

)
.

Write

FDPm(t) =
π0Ĝ0,m(t)

Ĝm(t)
,

where Ĝ0,m and Ĝm are non decreasing functions, so that

π0Ĝ0,m (τ̂ ε
m)

Ĝm (τ̂)
≤ FDPm(τ̂m) ≤ π0Ĝ0,m (τ̂)

Ĝm (τ̂ ε
m)

because τ̂ ε
m ≤ τ̂m ≤ τ̂ . Therefore,

π0

(
Ĝ0,m (τ̂ ε

m) − Ĝ0,m (τ̂)
)

Ĝm (τ̂)
≤ FDPm(τ̂m) − FDPm(τ̂)

≤
π0

(
Ĝ0,m (τ̂) − Ĝ0,m (τ̂ ε

m)
)

Ĝm (τ̂ ε
m)

− (FDPm(τ̂) − FDPm(τ̂ ε
m))

As T ε
m ≤ Tm ≤ T for any m ∈ N, Lemma 2.7.4 ensures that

√
m (τ̂m − τ̂)

and
√
m (τ̂ ε

m − τ̂) converge to 0 in probability. Therefore, as Ĝm (τ̂) and

Ĝm (τ̂ ε
m) converge in probability to G (T (G)) as m→ +∞, we have

π0
√
m
(
Ĝ0,m (τ̂ ε

m) − Ĝ0,m (τ̂)
)

Ĝm (τ̂)

P→ 0

and

π0
√
m
(
Ĝ0,m (τ̂) − Ĝ0,m (τ̂ ε

m)
)

Ĝm (τ̂ ε
m)

P→ 0,

which concludes the proof because
√
m (FDPm(τ̂) − FDPm(τ̂ ε

m)) also con-
verges in probability to 0 (according to Lemma 2.7.4). �

2.7.2. Asymptotic FDP: specific threshold functions. We now
apply the results of section 2.7.1 to threshold functions of the form

T (F ) = U (F,A(F )) ,

with

U(F, α) = sup{u ∈ [0, 1], F (u) ≥ rα(u)} .
In this section, we will use the notation r : (α, u) 7→ rα(u) whenever

the dependence of rα in α is of importance. We begin by giving sufficient
conditions for the regularity of U and A under which Condition C.1 holds
(section 2.7.2, Proposition 2.7.5). Then we provide sufficient conditions for U
to be regular enough to be consistent with hypotheses (i) to (iii) of Propo-
sition 2.7.5 (section 2.7.2). Finally we derive the form of the asymptotic
distribution of the corresponding False Discovery Proportion (section 2.7.2).
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Hadamard differentiability of T .

Proposition 2.7.5 (Hadamard differentiability of T ). Let C[0, 1] be the
set of continuous functions of D[0, 1]. Suppose that

(i) U is Hadamard-differentiable with respect to its first variable at
(G,α), tangentially to C[0, 1], for any α in a neighborhood of
A(G); its derivative will be denoted by ∇FUG,α;

(ii) ∇FUG,. is continuous at A(G);
(iii) U is differentiable with respect to its second variable; its derivative

will be denoted by ∇αU(G,A(G));
(iv) A is Hadamard-differentiable at G tangentially to C[0, 1]; its de-

rivative will be denoted by ȦG.

Then, T is Hadamard-differentiable at G tangentially to C[0, 1], with

derivative ṪG, defined for any H ∈ D[0, 1] by

ṪG(H) = ∇FU(G,A(G))(H) + ȦG(H)∇αU(G,A(G)) .

Proof of Proposition 2.7.5. Let H ∈ C[0, 1], and Ht be a family of
functions of D[0, 1] that converges to H on (D[0, 1], ‖.‖∞) as t→ 0.

As A is continuous at G (by (iv)), A (G+ tHt) lies in a neighborhood
of A(G) for small t > 0, and U is Hadamard-differentiable with respect to
its first variable at (G,A (G+ tHt)) by (i). We therefore have

T (G+ tHt) = U (G+ tHt,A (G+ tHt))

= U (G,A (G+ tHt)) + t∇FUG,A(G+tHt)(H)(1 + o(1))

= U (G,A (G+ tHt)) + t∇FUG,A(G)(H)(1 + o(1))

by the continuity of ∇FUG,· at A(G) (ii). Then, combining (iii) and (iv)
yields

U (G,A (G+ tHt)) = U
(
G,A (G) + tȦG(H)(1 + o(1))

)

= U (G,A (G)) + tȦG(H)∇αU(G,A(G)) (1 + o(1))

= T (G) + tȦG(H)∇αU(G,A(G)) (1 + o(1))

so that

lim
t→0

T (G+ tHt) − T (G)

t
= ∇FU(G,A(G))(H)ȦG(H)∇αU(G,A(G)),

which concludes the proof. �

Regularity of U . The crucial point for proving the desired regularity of
U is its Hadamard differentiability with respect to its first variable at (G,α),
tangentially to C[0, 1], for α in a neighborhood of A(G). Lemma 2.7.6 is a
straightforward analytical translation of Conditions C.2 and C.3.

Lemma 2.7.6. Under Conditions C.2 and C.3, the unique interior right
crossing point τ⋆ between rα and G is positive. If r is C1 on (0, 1] × [0, 1],
there exists a neighborhood V = A × U of (A(G), τ⋆) such that for any
(α, x) ∈ V , ψG,α : u 7→ rα(u) − G(u) is locally invertible around U(G,α),

with ˙ψG,α(x) > 0.
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We begin by proving the continuity of U at (G,α) for α in a neighborhood
of A(G). We then (Proposition 2.7.11) provide the sufficient conditions for
conditions (i), (ii), and (iii) of Proposition 2.7.5 to hold.

Lemma 2.7.7. For any F ∈ D[0, 1], and α ∈ [0, 1] such that rα is con-
tinuous, one of the following two assertions holds:

(i) F (U(F, α)) = rα(U(F, α))
(ii) F (U(F, α)) ≤ rα(U(F, α)) ≤ F (U(F, α)−)

Proof of Lemma 2.7.7. According to the definition of U(F, α), F (u) ≤
rα(u) for any u > U(F, α). As F is right-continuous and rα is contin-
uous, we have F (U(F, α)) ≤ rα(U(F, α)). Therefore, either (i) holds, or
F (U(F, α)) < rα(U(F, α)). In the second case, according to the definition of
U(F, α), there is a non decreasing sequence (un) that converges to U(F, α)
such that F (un) ≥ rα(un). As rα is continuous and F is left-continuous, we
have F (U(F, α)−) ≥ rα(U(F, α)), which proves (ii). �

Proposition 2.7.8. Let F ∈ D[0, 1] be non decreasing, and α = A(F ).
If rα is continuous, then

F (U(F, α)) = rα(U(F, α)) .

Proof of Proposition 2.7.8. Let us consider the two assertions of
Lemma 2.7.7: as F is non decreasing, (ii) can be reduced to (i). �

Proposition 2.7.9. Let r be continuous on (0, 1]×[0, 1]. Let F ∈ D[0, 1]
be non decreasing, and α ∈ (0, 1]. Let Ft be a sequence of functions of D[0, 1]
such that (Ft)t>0 converges to F on (D[0, 1], ‖.‖∞) as t→ 0, and αt → α as
t→ 0. Denote by ψF,α the function defined on [0, 1] by

∀u ∈ [0, 1], ψF,α(u) = rα(u) − F (u) .

Then,
lim
t→0

ψF,α (U(Ft, αt)) = ψF,α (U(F, α)) .

Proof of Proposition 2.7.9. For each fixed t ∈ [0, 1], one of the fol-
lowing two assertions holds according to Lemma 2.7.7:

(i) Ft(U(Ft, αt)) = rαt(U(Ft, αt))
(ii) Ft(U(Ft, αt)) ≤ rαt(U(Ft, αt)) ≤ Ft(U(Ft, αt)

−).

If (ii) holds, then, as F is non decreasing we have

(F −Ft)(U(Ft, αt)
−) ≤ F (U(Ft, αt))− rαt(U(Ft, αt)) ≤ (F −Ft)(U(Ft, αt)) .

If (i) holds, then F (U(Ft, αt))−rαt(U(Ft, αt)) = F (U(Ft, αt))−Ft(U(Ft, αt)).
In either case, we have |F (U(Ft, αt)) − rαt(U(Ft, αt))| ≤ ‖F − Ft‖, which
tends to 0 as t → 0. As r is continuous on (0, 1] × [0, 1], rαt converges
uniformly to rα on the compact [α/2, 1], and we have

lim
t→0

F (U(Ft, αt)) − rα(U(Ft, αt)) = 0 ,

which concludes the proof as ψF,α (U(F, α)) = 0. �

Corollary 2.7.10 (Continuity of U). Let r be C1 on (0, 1] × [0, 1].
According to Conditions C.2 and C.3, there is a neighborhood A of A(G)
such that U is continuous at (G,α) for any α ∈ A.
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Proposition 2.7.11 (Differentiability of U). Let us assume that r is C1

on (0, 1] × [0, 1]. Under Conditions C.2 and C.3,

(i) U is Hadamard-differentiable with respect to its first variable at
(G,α), tangentially to C[0, 1] for any α in a neighborhood A of
A(G), with derivative ∇FUG,α defined for any H ∈ C[0, 1] by

∇FUG,α(H) =
H(U(G,α))

∂r
∂u(α,U(G,α)) − g(U(G,α))

(ii) ∇FUG,. is continuous at A(G) on A.
(iii) U is differentiable with respect to its second variable, with deriva-

tive

∇αUG,A(G) = −
∂r
∂α(A(G), τ⋆))

∂r
∂u(A(G), τ⋆)) − g(τ⋆))

,

where τ⋆ = U(G,A(G)).

Corollary 2.7.12. If we also assume that A is Hadamard-differentiable
at G, tangentially to C[0, 1], then T is Hadamard-differentiable at G, tan-
gentially to C[0, 1], with derivative defined for any H ∈ C[0, 1] by

ṪG(H) =
H(τ⋆) − ∂r

∂α(A(G), τ⋆))ȦG(H)
∂r
∂u(A(G), t) − g(t)

Proof of Proposition 2.7.11. Let τ⋆ = U(G,A(G)). Throughout
the proof, V = A × U denotes the neighborhood of (A(G), τ⋆) defined in
Lemma 2.7.6.

(i) Let α ∈ A. Let H ∈ C[0, 1], and Ht be a family of functions
of D[0, 1] that converges to H on (D[0, 1], ‖.‖∞) as t → 0. Let
v = U(G,α) and vt = U(Gt, α), with Gt = G + tHt. By the
continuity of U (Corollary 2.7.10), vt → v as t → 0. Therefore,
applying Taylor’s formula to ψG,α : u 7→ rα(u) −G(u) yields

ψG,α(vt) − ψG,α(v) =
t→0

(vt − v) ˙ψG,α(v) (1 + o(1)) .

As α ∈ A, we have ˙ψG,α(v) = ∂r
∂u(α, v) − g(v) > 0. Therefore,

as ψG,α(v) = 0 according to Proposition 2.7.8,

vt − v =
t→0

ψG,α(vt)
∂r
∂u(α, v) − g(v)

(1 + o(1))

so that it is sufficient to prove that limt→0 ψG,α(vt)/t = H(v). The
behavior of ψG,α(vt) = rα(vt) − G(vt) can be derived using the
same argument as in the proof of proposition 2.7.9; Lemma 2.7.7,
we have either Gt(vt) = rα(vt) or Gt(vt) ≤ rα(vt) ≤ Gt(v

−
t ).

In the first case, rα(vt) − G(vt) = (Gt − G)(vt) = tHt(vt), and

limt→0
rα(vt)−G(vt)

t = H(t) according to Lemma 2.7.1. In the sec-
ond case, we have

(Gt −G)(vt) ≤ rα(vt) −G(vt) ≤ (Gt −G)(v−t )

as G is non decreasing, that is, tHt(vt) ≤ ψG,α(vt) ≤ tHt(v
−
t ) .

Therefore, we have
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Ht(vt) −H(vt) ≤
ψG,α(vt)

t
−H(vt) ≤ Ht(v

−
t ) −H(vt) .

As H is continuous, H(vt) = H(v−t ), and the upper and lower
bounds converge to 0 according to Lemma 2.7.1, and (i) is proved.

(ii) is a consequence of the continuity of U (with respect to its second
variable), that of g and that of ∇ur with respect to its first variable.

(iii) Let α = A(G). Let αt be a sequence of points of (0, 1] that con-
verges to α. Let v = U(G,α) and vt = U(G,αt). By the continuity
of U (Proposition 2.7.9), vt → v as t → 0. Therefore, applying
Taylor’s formula to ψG,α : u 7→ rα(u) −G(u) yields

ψG,α(vt) − ψG,α(v) =
t→0

(vt − v) ˙ψG,α(v) (1 + o(1)) .

We have ψG,α(v) = 0 and ψG,α(vt) = r(α, vt) − r(αt, vt) by
Proposition 2.7.8. As r is C1 in a neighborhood of (α, v), we have,
according to Taylor’s formula,

r(αt, vt) − r(α, vt) =
t→0

(αt − α)
∂r

∂α
(α, v) (1 + o(1)) .

As α = A and v = U(G,α), (α, v) ∈ V . Therefore ψ̇G,α (v) =
∂r
∂u(α, v) − g(v) > 0 according to Lemma 2.7.6. Finally, we have

lim
t→0

r(α, vt) − r(αt, vt)

αt − α
= −

∂r
∂α(α, v)

∂r
∂u(α, v) − g(v)

,

which concludes the proof. �

Asymptotic FDP.

Theorem 2.7.13 (Asymptotic distribution of FDPm). Let rα be a rejec-
tion curve such that r is C1 on (0, 1] × [0, 1], and A a level function. Let
us denote by T : F 7→ U(F,A(F )) the associated threshold function, where
U(F, α) = sup{u ∈ [0, 1], F (u) ≥ rα(u)}.

Under Conditions C.2 and C.3, if A is Hadamard-differentiable at G
tangentially to C[0, 1], then

(i)

√
m
(
T (Ĝm) − τ⋆)

)
 

Z(τ⋆) − ∂r
∂α(A(G), τ⋆))ȦG(Z)

∂r
∂u(A(G), t) − g(t)

,

(ii)
√
m
(
FDPm(T (Ĝm)) − p⋆

)
 X,

where p⋆ = π0τ⋆

G(τ⋆) is the pFDR achieved by procedure T , ṗ(t) =

π0
G(t)

(
1 − tg(t)

G(t)

)
, and

X = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
+ p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
+ ṗ(τ⋆)ξ(τ⋆)ȦG(Z) ,
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with ζ(t) = −
G(t)

t
− ∂r

∂u
(A(G),t)

∂r
∂u

(A(G),t)−g(t)
, ξ(t) =

− ∂r
∂α

(A(G),t)
∂r
∂u

(A(G),t)−g(t)
, and Z =

π0Z0 + (1 − π0) Z1 and Z0 and Z1 are independent Gaussian pro-

cesses such that Z0
(d)
= B and Z1

(d)
= B ◦G1, where B is a standard

Brownian bridge on [0, 1].

Proof of Theorem 2.7.13. Under these assumptions, Condition C.1
holds for T according to Corollary 2.7.12, with

ṪG(H) =
H(τ⋆) − ∂r

∂α(A(G), τ⋆))ȦG(H)
∂r
∂u(A(G), t) − g(t)

Therefore, Theorem 2.3.2 yields
√
m
(
T (Ĝm) − τ⋆)

)
 ṪG(Z), and

√
m

(
FDPm(T (Ĝm)) − π0τ

⋆

G(τ⋆)

)
 X ,

with X = p⋆(1 − p⋆)
(

Z0(τ⋆)
τ⋆ − Z1(τ⋆)

G1(τ⋆)

)
+ ṗ(τ⋆)ṪG(Z) and Z = π0Z0 +

(1 − π0) Z1 and Z0 and Z1 are independent Gaussian processes such that

Z0
(d)
= B and Z1

(d)
= B ◦G1, where B is a standard Brownian bridge on [0, 1].

Letting δ(t) = 1
∂r
∂u

(A(G),t)−g(t)
, we have

ṪG(Z) = δ(τ⋆)

(
Z(τ⋆) − ∂r

∂α
(A(G), τ⋆))ȦG(H)

)
.

As ṗ(t) = p(t)
(

1
t −

g(t)
G(t)

)
, we have

ṗ(τ⋆)δ(τ⋆)Z(τ⋆) = p⋆

(
G(τ⋆)

τ⋆
− g(τ⋆)

)
δ(τ⋆)

Z(τ⋆)

G(τ⋆)
,

with Z(τ⋆)
G(τ⋆) = p⋆ Z0(τ⋆)

τ⋆ +(1−p⋆) Z1(τ⋆)
G1(τ⋆) . Hence letting ζ(t) = 1−δ(t)

(
G(t)

t − g(t)
)
,

we have

X = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
+ ṗ(τ⋆)ξ(τ⋆)ȦG(Z) ,

where ξ(t) =
− ∂r

∂α
(A(G),t)

∂r
∂u

(A(G),t)−g(t)
. This concludes the proof since ζ may be written

as ζ(t) = −
G(t)

t
− ∂r

∂u
(A(G),t)

∂r
∂u

(A(G),t)−g(t)
. �

2.7.3. Limit distribution for procedures under consideration.
One-stage procedures. In this section A(G) is fixed. Therefore, only

the dependence of rα u is of importance. In order to lighten the notation
we let

ṙα =
∂r

∂u
(α, ·) .

Theorem 2.7.14 (Asymptotic FDP for one-stage procedures). Let T :
F 7→ U(F, α) a one-stage procedure such that rα is continuous on [0, 1], and
C1 in a neighborhood of τ⋆ = T (G). Under Condition C.2 and C.3,
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(i)

√
m
(
T (Ĝm) − τ⋆)

)
 

Z(τ⋆)

ṙα(τ⋆) − g(τ⋆)

(ii)
√
m
(
FDPm(T (Ĝm)) − p⋆

)
 X ,

with

X = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆))ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
,

where p⋆ = π0τ⋆

rα(τ⋆) , ζ(t) =
∂r
∂u

(A(G),t)−G(t)
t

∂r
∂u

(A(G),t)−g(t)
, Z = π0Z0+(1 − π0) Z1 and Z0 and

Z1 are independent Gaussian processes such that Z0
(d)
= B and Z1

(d)
= B ◦G1,

where B is a standard Brownian bridge on [0, 1].

Proof of Theorem 2.7.14. As T is a one-stage procedure, we have
A = α. Therefore, the assumptions for Theorem 2.7.13 hold, with ξ = 0.
According to Proposition 2.7.8, G(τ⋆) = rα(τ⋆); therefore p⋆ = π0τ⋆

rα(τ⋆) , which

concludes the proof. �

Proof of Theorem 2.4.2 (BH95). Uniqueness Condition C.3 always
holds because rα is linear, and Condition C.2 holds because it corresponds
to Condition C.4. Therefore, Theorem 2.7.14 can be applied, and we have
ζ(τ⋆) = 0 since ṙα(τ⋆) = 1/α = rα(τ⋆)/τ⋆, and p(τ⋆) = π0α. Hence,

√
m
(
T (Ĝm) − τ⋆)

)
 

Z(τ⋆)

1/α− g(τ⋆)

and
√
m
(
FDPm(T (Ĝm)) − π0α

)
 π0α

Z0(τ
⋆)

τ⋆
,

which concludes the proof because Var Z0(τ
⋆) = τ⋆(1 − τ⋆). �

Proof of Theorem 2.4.7 (FDR08). The uniqueness Condition C.3,
and existence Conditions C.4 and C.7 ensure that there is a unique interior
right crossing point τ⋆ between fα and G, which satisfies τ⋆ ≤ κ. Condi-
tion C.6 guarantees that τ⋆ is also the only right crossing point between
fλ

α and G. Thus, [0, κ] is a neighborhood of τ⋆ in which fλ
α coincides with

fα and is C1, with ḟα(u) = α
(α+(1−α)u)2

. Therefore, Theorem 2.7.14 yields
√
m
(
FDPm(T (Ĝm)) − p⋆

)
 X, with

X = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
,

where p⋆ = π0τ⋆

fα(τ⋆) = π0(α+(1−α)τ⋆) and ζ(τ⋆) = −G(τ⋆)/τ⋆− ˙fα(τ⋆)
˙fα(τ⋆)−g(τ⋆)

. Letting

π0(t) =
1 −G(t)

1 − t
,
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we have G(τ⋆)/τ⋆ = π0(τ
⋆)/α, and ḟα(τ⋆) = α(fα(τ⋆)/τ⋆)2 = π0(τ

⋆)2/α, so
that p⋆ = απ0/π0 (τ⋆), and

ζ(τ⋆) = −G(τ⋆)/τ⋆ − ḟα(τ⋆)

ḟα(τ⋆) − g(τ⋆)

= −π0(τ
⋆)/α− π0(τ

⋆)2/α

π0(τ⋆)2/α− g(τ⋆)

= −(1 − π0(τ
⋆))

π0(τ
⋆)/α

π0(τ⋆)2/α− g(τ⋆)
,

which concludes the proof. �

Proof of Theorem 2.4.10 (BR08(λ)). The uniqueness Condition C.3,
and existence Conditions C.8 and C.9 ensure that there is a unique interior
right crossing point τ⋆ between bλα and G, which satisfies τ⋆ ≤ λ. Thus

[0, λ] is a neighborhood of τ⋆ in which bλα is C1, with ḃλα(u) = α(1−λ)

(α(1−λ)+u)2
.

Therefore, Theorem 2.7.14 yields
√
m
(
FDPm(T (Ĝm)) − p⋆

)
 X, with

X = p⋆(1 − p⋆ζ(τ⋆))
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z1(τ
⋆)

G1(τ⋆)
,

where p⋆ = π0τ⋆

bα(τ⋆) = π0(α + (1 − α)τ⋆) and ζ(τ⋆) = −G(τ⋆)/τ⋆− ˙bα(τ⋆)
˙bα(τ⋆)−g(τ⋆)

. We

have ḟα(τ⋆) = α(1 − λ)(bα(τ⋆)/τ⋆)2 = G(τ⋆)(1 −G(τ⋆))/τ⋆, so that

ζ(τ⋆) = −G(τ⋆)/τ⋆ − ḃα(τ⋆)

ḃα(τ⋆) − g(τ⋆)

= − G(τ⋆)/τ⋆(1 − (1 −G(τ⋆)))

G(τ⋆)(1 −G(τ⋆))/τ⋆ − g(τ⋆)

= − G(τ⋆)2/τ⋆

G(τ⋆)(1 −G(τ⋆))/τ⋆ − g(τ⋆)
,

which concludes the proof. �

Two-stage adaptive procedures.

Proof of Theorem 2.4.12. As pointed out in section 2.4.3, Condi-
tion C.3 always holds because rα is linear, and Condition C.2 holds as soon as

A(G) > α⋆. Therefore, Theorem 2.7.13 yields
√
m
(
FDPm(T (Ĝm)) − p⋆

)
 

X, with p⋆ = π0A(G), and

X = p⋆(1 − ζ(τ⋆)p⋆)
Z0(τ

⋆)

τ⋆
− p⋆(1 − p⋆)ζ(τ⋆)

Z(τ⋆)

G(τ⋆)
+ ṗ(τ⋆)ξ(τ⋆)ȦG(Z) ,

where ṗ(τ⋆) = p⋆

G(τ⋆)

(
G(τ⋆)

τ⋆ − g(τ⋆)
)
, ζ(t) = −

∂r
∂u

(A(G),t)−G(t)/t
∂r
∂u

(A(G),t)−g(t)
, and ξ(t) =

− ∂r
∂α

(A(G),t)
∂r
∂u

(A(G),t)−g(t)
. Simes’ line is defined by rα : u 7→ u/α. Therefore, we

have ∂r
∂u(A(G), t) = 1

A(G) and ∂r
∂α(A(G), t) = − t

A(G)2
, and G(τ⋆) = τ⋆

A(G)

according to Proposition 2.7.8. We have ζ(τ⋆) = 0, ξ(τ⋆) = τ⋆/A(G)2

1
A(G)

−g(τ⋆)
, and

ṗ(τ⋆) = p⋆ A(G)
τ⋆

(
1

A(G) − g(τ⋆)
)
, which concludes the proof. �
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Sto02 procedure. The following Proposition establishes the Hadamard
differentiability of the level function of procedure Sto02. The proof is im-
mediate.

Proposition 2.7.15. For F ∈ D[0, 1], let

A(F ) = α
1 − λ

1 − F (λ)
,

where α ∈ [0, 1]. Under Condition C.11, A is Hadamard-differentiable at G,
tangentially to C[0, 1], with derivative

ȦG(H) = A(G)
H(λ)

1 −G(λ)
.

Proposition 2.7.16. Let λ ∈ [0, 1) such that Conditions C.9 and C.11
hold. Then procedures Sto02(λ) and STS04(λ) are asymptotically equivalent.

Proof of Proposition 2.7.16. Let λ ∈ [0, 1). According to Condi-

tion C.9, we have T Sto02(λ)(G) < λ. Therefore, procedure Sto02 is asymptot-
ically equivalent to the same procedure truncated at λ, that is, the procedure
with threshold function defined for F ∈ D[0, 1] by

sup

{
u ∈ [0, λ], F (u) ≥ u

α

1 − λ

1 − F (λ)

}
,

so that we will work with this truncated version for the remainder of the
proof. By definition, the rejection curve of procedure STS04 is larger than

that of procedure Sto02. Therefore, we have T STS04(λ)
m (F ) ≤ T Sto02(λ)(F ) for

any F ∈ D[0, 1]. With the same argument we also have T Sto02(λ)
(
F − 1

m

)
≤

T STS04(λ)
m (F ) for any F ∈ D[0, 1]. As we have assumed that Condition C.11

holds, Condition C.1 holds for T according to Proposition 2.7.15, and the
result follows from Proposition 2.3.6. �

Proof of Theorem 2.4.15. According to Proposition 2.7.15, and be-
cause A(G) > α⋆, Theorem 2.4.12 ensures that

√
m
(
FDPm(T Sto02(Ĝm)) − π0A(G)

)
 π0A(G)

(
Z0(τ

⋆)

τ⋆
+

ȦG(Z)

A(G)

)
,

where

ȦG(Z) = A(G)
Z(λ)

1 −G(λ)

Denoting π0 (λ) = π0
G(λ), this may be written as

√
m

(
FDPm(T (Ĝm)) − π0

π0 (λ)
α

)
 

π0

π0 (λ)
α

(
Z0(τ

⋆)

τ⋆
+

Z(λ)

1 −G(λ)

)

For the calculation of variance, it should be noted that Var Z0(τ
⋆) = τ⋆(1−

τ⋆) and

E [Z0(τ
⋆)Z(λ)] = E [Z0(τ

⋆)Z0(λ)]

= τ⋆
∧λ (1 − τ⋆ ∨ λ) ,

which concludes the proof. �
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Procedure BKY06(λ)[9]. According to Proposition 2.7.8, we have F (U(F, β)) =
U(F, β)/β for any F ∈ D[0, 1], so that the level function of procedure BKY06

may be written as

A(F ) =
α(1 − λ)

1 − U(F, λ)/λ
.

We now prove the Hadamard differentiability of the level function of
procedure BKY06(λ) under Condition C.12.

Proposition 2.7.17. For λ ∈ [0, 1) and F ∈ D[0, 1], let A(F ) =
α(1−λ)

1−U(F,λ)/λ . Under Condition C.12, A is Hadamard-differentiable at G, tan-

gentially to C[0, 1], with derivative

ȦG(H) =
A(G)2

α(1 − λ)

H(U(G,λ))

1/(α(1 − λ)) − g(U(G,λ))
.

Proof of Proposition 2.7.17. As Condition C.12 holds, Condition C.4
holds for the BH95 procedure at level λ: U is Hadamard-differentiable with
respect to its first variable at (G,λ), tangentially to C[0, 1], with derivative
∇FUG,λ defined for any H ∈ C[0, 1] by

∇FUG,λ(H) =
H(U(G,λ))

∂r
∂u(λ,U(G,λ)) − g(U(G,λ))

.

As the rejection curve of U is Simes’ line, we have ∂r
∂u(λ,U(G,λ)) = 1

λ . As
A(F ) = αφ(U(F, λ)), where φ : x 7→ (1−λ)/(1−x/λ) is derivable for x 6= λ,

with φ′(x) = λ(1−λ)
1−x/λ , the result follows from the chain rule. �

Proof of Theorem 2.4.20. As Condition C.12 holds, this is a direct
consequence of Proposition 2.7.17 and Theorem 2.4.12.

�

2.7.4. One- and two-stage adaptive procedures.

Proof of Theorem 2.5.2. As we have assumed that existence Condi-
tion C.2 and uniqueness Condition C.3 hold for procedure T , τ⋆ = T (G) is
the only point in (0, 1) such that G(τ⋆) = cα(G, τ⋆). Similarly, as existence
Condition C.2 holds for procedure Tt for any t ∈ (0, 1), τ(t) = Tt(G) is the
only point in (0, 1) such that G(τ(t))/τ(t) = cα(G, t)/t. Therefore, we have

t ≤ τ⋆ ⇐⇒ G(t) ≥ cα(G, t)

⇐⇒ G(t)

t
≥ cα(G, t)

t

⇐⇒ G(t)

t
≥ G(τ(t))

τ(t)

⇐⇒ t ≤ τ(t)
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as u 7→ G(u)/u, is non increasing (due to the concavity of G). As u 7→
cα(G, u)/u is non increasing (Condition C.13), we have

t ≤ τ⋆ ⇐⇒ cα(G, τ⋆)

τ⋆
≤ cα(G, t)

t

⇐⇒ G(τ⋆)

τ⋆
≤ G(τ(t))

τ(t)

⇐⇒ τ(t) ≤ τ⋆ ,

and (i) is proved. Let λ ∈ (0, 1). If λ ≤ τ⋆, then by (i), the sequence (tn)
is non decreasing, and smaller than τ⋆. It therefore converges to a limit
ℓ ∈ [λ, τ⋆], such that τ(ℓ) = ℓ, that is, G(ℓ) = cα(G, ℓ). The uniqueness
Condition C.3 ensures that ℓ = τ⋆. Conversely, if λ ≥ τ⋆, then, by (i),
the sequence (tn) is non increasing, greater than τ⋆, and thus converges to
ℓ ∈ [τ⋆, λ] such that τ(ℓ) = ℓ, and we also have ℓ = τ⋆. �

Sto02 and FDR08.

Proof of Theorem 2.5.4. As existence Condition C.4 holds, existence
Condition C.11 also holds for procedure Sto02(t), for any t ∈ (0, 1). There-
fore, Theorem 2.4.15 ensures that the asymptotic threshold τ(t) of procedure

Sto02(t) is positive, and satisfies G(τ(t)) = τ(t)
α π0 (t), where π0 (u) = 1−G(u)

1−u .
As uniqueness Condition C.3 and existence Conditions C.4 and C.7 hold,

Theorem 2.4.7 ensures that the asymptotic threshold τ⋆ of procedure FDR08

satisfies τ⋆ ∈ (0, κ), and satisfies G(τ⋆) = fα(τ⋆), where fα : u 7→ u/(α +
(1 − α)u) is the rejection curve of the FDR08 procedure. For any fixed
λ ∈ (t ∧ κ, 1), the FDR08(λ) procedure defined by the capped threshold
function

Tλ(F ) = sup {u ∈ [0, λ], F (u) ≥ fαu}
also has asymptotic threshold τ⋆ according to Proposition 2.4.6, as λ ≥ κ.
For F ∈ D[0, 1] and u ∈ [0, λ], let

cα(F, u) =
u

α

1 − F (u)

1 − u
.

As G is concave, u 7→ 1−G(u)
1−u is non increasing, so that cα fulfills the re-

quirements of Condition C.13. Therefore, as F (u) ≥ fα(u) may be written
as F (u) ≥ cα(F, u), the result follows from the application of Theorem 2.5.2
to procedures FDR08(λ) and Sto02(t). �

BKY06(λ) and BR08(λ).

Proof of Theorem 2.5.6. As uniqueness Condition C.3 and existence
Conditions C.8 and C.9 hold, Theorem 2.4.10 ensures that the asymptotic
threshold τ⋆ of procedure BR08(λ) is the unique point in (0, λ) such that
G(τ⋆) = τ⋆

α(1−λ)+τ⋆ , because the rejection curve bλα of the BR08 procedure

equals u
α(1−λ)+u for u ≤ λ.

Existence Condition C.8 also ensures that τ(t) exists for any t ≤ λ. For
F ∈ D[0, 1] and u ∈ [0, λ], let

cα(F, u) =
u

α

1 − F (u)

1 − λ
.
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As 1 − G is non increasing, cα fulfills the requirements of Condition C.13.
Therefore, as F (u) ≥ bα(u) may be written as F (u) ≥ cα(F, u), the result
follows from the application of Theorem 2.5.2 to procedures BR08(λ) and
BKY06(λ). �

Proof of Corollary 2.5.7. According to the definition of uλ as the
asymptotic threshold of the BH95 procedure at level λ, the asymptotic
threshold τ⋆ of procedure BR08(λ) satisfies τ⋆ ≥ uλ if and only ifG(τ⋆) ≤ τ⋆.
According to the definition of the rejection curve bλα of the BR08(λ) proce-
dure, this is equivalent to τ⋆/(α(1 − λ) + τ⋆) ≤ τ⋆/λ, that is, to τ⋆ ≥
λ− α(1 − λ). �
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66 3. INTRINSIC BOUNDS TO MULTIPLE TESTING PROCEDURES

3.1. Introduction

Given a possibly large set of observations corresponding either to a null
hypothesis H0, or an alternative hypothesis H1, several questions are of
interest:

(i) a binary testing problem: are there any true alternatives?
(ii) an estimation problem: how many hypotheses are true alterna-

tives?
(iii) a selection problem: which hypotheses are true alternatives?

These three problems have been studied in the framework of mixture
models: a p-value of the test of the null hypothesis H0 against the alternative
H1 is associated with each observation, and the distribution of these p-values
is modeled as a mixture of a null and an alternative distribution. Sparse
and non sparse settings have been investigated. In sparse mixture models,
the fraction of true alternatives tends to 0, and the dissimilarity between
the distributions under H0 and H1 increases as the number m of tested
hypotheses tend to +∞ [2, 13, 24, 25, 51]. In non-sparse mixture models,
all parameters of the model remain fixed as m→ +∞ [7, 34, 35, 89].

The concept of False Discovery Rate (FDR) described in Chapter 1 has
been introduced by Benjamini and Hochberg [7] for the selection problem in
the fixed mixture model. FDR control and the BH95 procedure have been
successfully applied to sparse settings, by Donoho and Jin [24] for the detec-
tion problem, and by Abramovich and Benjamini [1], Abramovich et al. [2]
and Donoho and Jin [25] for the selection problem, in which it was demon-
strated to enjoy remarkable minimax properties.

A natural question is whether there exist constraints on the performance
of a given procedure for the detection, estimation or selection problem, or
intrinsic limits to these three problems.

Detection. For the detection problem, such limitations have been de-
termined by Ingster [47, 48], Ingster and Suslina [49], Jin [50] in the case of
sparse Gaussian mixtures: they have identified a sharp detection boundary
that separates situations in which the Likelihood Ratio Test (LRT) asymp-
totically almost surely correctly detects, from situations in which it asymp-
totically almost surely fails to detect. Donoho and Jin [24] have character-
ized the detection boundary of several detection procedures in this setting,
including the BH95 procedure.

Estimation. Cai et al. [13] demonstrated the existence of an estimation
boundary for sparse Gaussian mixtures, which characterizes situations in
which the fraction of true alternatives can be consistently estimated.

Selection. For the selection problem, the criticality phenomenon de-
scribed in Chapter 1 illustrates the existence of a possibly positive lower
bound below which no multiple testing procedure can control pFDR. In
such “critical” situations the power of the BH95 procedures converges to 0
in probability [16].

In this chapter, we compare these bounds in the sparse and non sparse
settings, in the context of FDR control. We focus on the following questions:
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How do the shape and regularity of the distribution functions under H0 and
H1 drive the performance of FDR controlling procedures in the fixed mixture
model ? How can the performances of the BH95 procedure in terms of
criticality and detection be characterized for general sparse mixture models
?

This chapter is organized as follows. Section 3.2 introduces generic no-
tation for the definition of the detection, estimation, and selection problems
in sparse and non sparse settings. In section 3.3 we illustrate the influence of
distribution tails on the criticality phenomenon for the fixed mixture model,
and unveil a connection between criticality and identifiability of the fraction
of true alternatives, resulting in a upper bound for the power of FDR con-
trolling procedures. Section 3.4 is devoted to the estimation problem for the
fixed mixture model, that is, the estimation of the fraction π0 of true null
hypotheses: we demonstrate that non-parametric estimators of π0 typically
have slow convergence rates, due to the poor regularity of the distribution
function in a neighborhood of 1; this results in slow rates of convergence for
procedures that incorporate an estimator of π0 in order to yield exact FDR

control. In section 3.5 the performances of the BH95 procedure in the sparse
setting are studied: we discuss a generalization of the definition of criticality
to this setting, and propose and interpretation of the detection boundary of
the BH95 procedure in terms of pFDR control. Proofs of the main results
are gathered in section 3.6.

3.2. Background and notation

3.2.1. Mixture model. The mixture model we consider is more generic
than that of Chapter 2, as we allow the distribution of the test statistics and
the corresponding p-values to depend on the number m of hypotheses tested.
More specifically, for i ∈ {1 . . .m}, we let Yi = 0 if hypothesis i is drawn
from the null hypothesis H0, and Yi = 1 if it is drawn from the alternative
H1; Xi denotes the corresponding test statistic. We assume that the ran-
dom variables (Xi, Yi)1≤i≤m are identically independently distributed: Yi is
a Bernoulli random variable with success probability εm, where εm is the
unknown proportion of true alternatives; the conditional distribution of Xi

given Yi is denoted by F
(m)
1 if Yi = 1 and F

(m)
0 if Yi = 0. The marginal

distribution of each Xi is thus

F (m) = (1 − εm)F
(m)
0 + εmF

(m)
1 .

The corresponding densities are denoted by f
(m)
0 , f

(m)
1 and f (m) = (1 −

εm)f
(m)
0 + εmf

(m)
1 .

This model may be equivalently formulated in terms of p-values rather
than test statistics. In our setting, the p-values are uniform on [0, 1] under

H0: we let G
(m)
0 (x) = x for 0 ≤ x ≤ 1. Letting G

(m)
1 and g

(m)
1 denote

the distribution function and density function of the p-values under H1, the
marginal distribution function and density of the p-values under the mixture

are given by G(m) = (1− εm)G
(m)
0 + εmG

(m)
1 and g(m) = (1− εm) + εmg

(m)
1 .

We essentially focus on location problems, that is problems in which the
distribution of the test statistic under H1 is a shift from that of the test
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statistic under H0: F
(m)
1 = F

(m)
0 (· − µm) for some amplitude parameter

µm > 0.
The mixture model will be considered in two different settings. In the

sparse setting, we let εm converge to 0 and the distance between H0 and
H1 (typically measured by µm in the above location model) grow to +∞ as
the number m of tested hypotheses tends to +∞. In the fixed setting, all
parameters of the mixture model are fixed. In order to alleviate notation,
the superscript m will be omitted in this setting. The fraction of 1 − ε of
true null hypotheses will be denoted by π0.

3.2.2. Three multiple testing problems. We now give a more pre-
cise definition of the detection, estimation, and selection problems. The first
problem is the test of the null hypothesis HD

0 that the proportion εm is 0,
against the alternative HD

1 that it is positive. It is a binary testing problem:

HD
0 : (Xi)i

iid∼ F
(m)
0

HD
1 : (Xi)i

iid∼ (1 − εm)F
(m)
0 + εmF

(m)
1

The second problem is to estimate the proportion εm. The third problem
is to select a subset of the m tested hypotheses to be rejected. In this
paper the selection procedures (or multiple testing procedures) we consider
determine a threshold on the observed p-values or test statistics, and reject
all hypotheses which are less significant than this threshold.

The concept of False Discovery Rate (FDR) has been introduced by Ben-
jamini and Hochberg [7] in the context of the selection problem. A related
quantity is the positive false discovery rate (pFDR), that is the conditional
expectation of the False Discovery Proportion (FDP) given that at least one
discovery is made:

pFDR(t) =
(1 − εm)t

G(t)
.

FDR and pFDR are tightly connected as

FDRm(t) = pFDR(t)P(R(t) > 0) ,

where R(t) denotes the number of rejections at threshold t. In particular
FDR and pFDR asymptotically equivalent for procedures with fixed rejection
regions because P(R(t) > 0) → 1, as shown by Storey et al. [93].

3.2.3. Bounds on multiple comparison problems.
Detection in a sparse setting. The Gaussian detection problem in

which the test statistics are distributed as N (0, 1) under H0 and N (µm, 1)
under H1 has been studied by [47, 48, 50]. In this setting, the Likelihood
Ratio Test (LRT) is the most powerful procedure for testing HD

0 against

HD
1 . When εm = m−β for some β ∈ (1/2, 1), and µm =

√
2r log(m), there

is a threshold effect for the LRT: there exists a detection boundary (β, ρ⋆(β))
such that the sum of Type I and Type II errors tends to 0 or 1 depending
on whether r > ρ⋆(β) or r < ρ⋆(β).

[24] discuss the performance of several testing procedures in this Gauss-
ian setting, and for other specific location problems. In particular, the BH95

procedure can be indirectly used to solve the detection problem, by rejecting
HD

0 if the BH95 procedure makes any discovery. [7] showed that this testing
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procedure has level ≤ α for rejecting the joint null hypothesis HD
0 . [24]

show that it is asymptotically optimal in the sparse region 3/4 < β < 1/2,
and that in the not-too-sparse region 1/2 < β < 3/4, it is outperformed by
a procedure named higher criticism that was originally proposed by [102],
and achieves quasi-optimal detection boundary.

Estimation in a sparse setting. [13] focus on sparse Gaussian mix-
tures, and prove that the region where the detection problem can be solved
coincides with the region where the fraction of true alternatives can be con-
sistently estimated. They derive minimax convergence rates in this region,
and propose an estimation procedure that achieve the optimal rate. [61]
focus on a family of estimators and derive the corresponding estimation
boundary; their result is valid for any sparse mixture.

Criticality of the selection problem in a fixed setting. [16] no-
ticed that depending on the distribution functionG of the p-values, pFDR(t)t>0

may be bounded away from 0, giving rise to a phenomenon that he called
criticality : no selection procedure can achieve pFDR smaller than β⋆ =
inft>0 pFDR(t). By definition of β⋆, this phenomenon is intrinsic to the
selection problem, not to the procedure.

Criticality reveals an interesting range of situations in which FDR and
pFDR are not asymptotically equivalent anymore [18]: given a multiple com-
parison problem such that β∗ > 0, any procedure that controls FDR at level
α < β∗ necessarily makes no rejection with positive probability:

P(R = 0) = 1 − FDRm

pFDR
≥ 1 − α

β∗
> 0 .

The criticality of the BH95 procedure is investigated in [16]. It is char-
acterized by a threshold value α⋆ of the target FDR level, which separates
the subcritical case α > α⋆ from the supercritical case, α < α⋆. In the sub-
critical case, pFDR and FDR are asymptotically equivalent, and the BH95

procedure has asymptotically positive power.

∃ρ⋆ > 0,
Rm

m

(P )−−−−−→
m→+∞

ρ⋆ .

In the supercritical case, pFDR and FDR are not asymptotically equivalent
anymore, and the power of the BH95 procedure converges to 0 in probability.

3.3. Criticality, distribution tails and identifiability

In this section we consider the fixed mixture model described in sec-
tion 3.2. π0 denotes the unknown proportion of true null hypotheses. We
assume that the likelihood ratio between H0 and H1 is non-decreasing: this
assumption means that the alternative hypothesis dominates the null, or,
equivalently, that the distribution function G1 of the p-values under the
alternative is concave.

We begin by giving a characterization of criticality for the BH95 pro-
cedure, in terms of the behavior of the density g1 under the alternative at
0, and discuss its application to location models and to the case of Stu-
dent test statistics (section 3.3.1). Then, noting that the identifiability of
π0 is related to the behavior of g1 in a neighborhood of 1, we point out a
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connection between criticality and identifiability of π0 for location models
(section 3.3.2).

3.3.1. Criticality and tails of test statistics. The definition of the
critical value of the BH95 procedure proposed by [16] in this setting, that is,
the minimum pFDR that may be attained by this procedure, can be written
as follows.

Definition 3.3.1 (Critical value of the BH95 procedure). Let G be the
distribution function of the p-values under the mixture of H0 and H1 with
proportion π0 of true nulls. The critical value of the BH95 procedure for the
multiple comparison of H0 against H1 is

α⋆ = inf
u∈[0,1]

u

G(u)

As G is positive and G(1) = 1, α⋆ ∈ [0, 1]. The cumulative distribution
function of the one-sided p-value under the alternative distribution are given
by:

G1(u) = 1 − F1(−F−1
0 (u))

g1(u) = f1

f0

(
−F−1

0 (u)
)

As a consequence G1 (or, equivalently, G) is concave if and only if the

likelihood ratio f1

f0
of the test statistics is non-decreasing. In this case, u 7→

u
G(u) is non-decreasing on [0, 1]. Thus the critical value α⋆ is simply given

by

α⋆ = lim
u→0

u

G(u)

Criticality therefore only depends on the behavior of G(u)
u at 0. As

limu→0 F
−1
0 (u) = −∞, and as the likelihood ratio f1

f0
is non-decreasing,

criticality only depends on the boundedness of f1

f0
as t→ +∞, as shown by

the following characterization.

Proposition 3.3.2 (Criticality when f1

f0
is non-decreasing). (i) If

f1

f0
is bounded as t→ +∞, then g1 has a finite limit at 0 (which we

denote g1(0)). A criticality phenomenon occurs, and the critical
value is explicitly given by

α⋆ =
1

g(0)
=

1

π0 + (1 − π0)g1(0)

(ii) If limt→+∞
f1

f0
(t) = +∞, then limu→0

G(u)
u = +∞, and α⋆ = 0.

There is no criticality phenomenon, and all target FDR levels are
attainable.

We demonstrate that the criticality phenomenon only occurs for heavy-
tailed distribution such as the Laplace (double-exponential) distribution,
whereas it does not occur for distributions with lighter tails, such as the
Gaussian distribution.
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Example 3.3.3 (Gaussian test statistics). Assume that the test statistics
are ∼ N (0, 1) under the null hypothesis, and ∼ N (µ, 1) under the alternative
(with µ > 0). The likelihood ratio is thus simply given by

f1

f0
(t) = exp

(
−1

2
(t− µ)2 +

1

2
t2
)

= exp

(
−µ

2

2
+ µt

)

As this likelihood ratio is non decreasing and not bounded as t→ +∞,
the Gaussian location problem is not critical: α⋆ = 0.

We now investigate the case of Laplace (bilateral exponential) test sta-
tistics, which has heavier tails than the Gaussian distribution; this results
in a criticality phenomenon.

Example 3.3.4 (Laplace test statistics). Assume that the density of the

test statistics is f0 : t 7→ 1
2e

−|t| under the null hypothesis, and f1 : t 7→
1
2e

−|t−µ| under the alternative. The likelihood ratio of the model is given

by f1

f0
(t) = e|t|−|t−µ|, that is, f1

f0
(t) = e2t−µ if t ≤ µ, and eµ if t > µ. The

likelihood ratio of this model is therefore bounded, which results in a positive
critical value given by

α⋆ =
1

π0 + (1 − π0)eµ

To illustrate this phenomenon, we note (see proof in section 3.6.1) that
the distribution function of the p-values under H1 is given by

ueµ if 0 ≤ u ≤ e−µ

2

1 − 1

4u
e−µ if e−µ

2 ≤ u ≤ 1
2

1 − (1 − u)e−µ if u ≥ 1
2

The distribution function of the p-values under a Laplace mixture with

proportion π0 of true nulls is linear between 0 and e−µ

2 , with slope π0 +(1−
π0)e

µ = 1/α⋆. Figure 1 illustrates the criticality phenomenon for µ = 1
(left) and µ = 2 (right), for different values of ε = 1 − π0.

The critical value α⋆ depends both on the non-centrality parameter µ
and the proportion π0 of true nulls. As α⋆ is a decreasing function of µ and
π0, the knowledge of a lower bound on µ and 1 − π0 can be translated into
a lower bound on α⋆. For example, suppose that we know that µ ≤ 2, and
π0 ≥ 0.75. Then α⋆ ≥ 1

0.75+0.25e2 = 0.385, which means that even though
π0 and µ are not exactly known, we know that the BH95 procedure applied
in this setting with any target FDR level α < 0.385 has power tending to 0
as the number of tested hypotheses tends to +∞.

In the case when π0 is totally unknown, for a given lower bound of µ,
there is still a positive minimal α⋆, namely α⋆ = e−µ, which corresponds to
the limit case when all hypotheses come from the alternative (that is, π0 = 0
and G = G1). This limit case is represented in figure 1. For example, with
µ ≤ 2, then α⋆ = 0.135, whatever π0.
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Figure 1. Criticality of the Laplace multiple comparison
problem: distribution function of the p-values under a
Laplace mixture. Left, µ = 1; right, µ = 2. ε = 1 − π0.

Gaussian and Laplace distributions can be viewed as special cases of a
more general class of distribution, introduced by Subbotin [94]:

Example 3.3.5 (Subbotin test statistics). Assume that the test statistics
under the alternative are given by

f1(t) =
1

Cγ
exp

(
−|t− µ|γ

γ

)

We focus on γ ≥ 1 because it corresponds to situations in which f1

f0
is

non-decreasing. The Gaussian corresponds to γ = 2 and the Laplace to
γ = 1. The likelihood ratio of this distribution is given by

f1

f0
(t) = exp

( |t|γ
γ

− |t− µ|γ
γ

)

= exp

( |t|γ
γ

(
1 − |1 − µ

t
|γ
))

As t → +∞, |1 − µ
t |γ ∼ 1 − γµ

t , so that |t|γ
γ

(
1 − |1 − µ

t |γ
)
∼ µtγ−1, and

the behavior of f1

f0
(t) is driven by the value of γ:

Theorem 3.3.6 (Subbotin location problem). Consider the Subbotin lo-
cation problem with parameter γ ≥ 1, and non-centrality µ under the alter-
native. Then:

(i) f1

f0
is non-decreasing;

(ii) If γ > 1, limt→+∞
f1

f0
(t) = +∞ and there is no criticality phenom-

enon;
(iii) If γ = 1 (Laplace), limt→+∞

f1

f0
(t) = eµ and there is a positive

critical value given by

α⋆ =
1

π0 + (1 − π0)eµ
.
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Viewing this result, Laplace distributed test statistics appear as bor-
derline cases between criticality-free and criticality-prone situations: the
multiple comparison problem is not critical if and only if the tails of the test
statistics are lighter than exponential.

Student test statistics. The study of the Student case is motivated
by the fact that test statistics are often assumed to have been generated
from longitudinal Gaussian observations with unknown variance. We first
recall the form of the probability distribution function of the non-central t
distribution with k degrees of freedom.

Proposition 3.3.7 (non-central t). The probability distribution function
of non-central t with k degrees of freedom and non centrality parameter δ
may be written as

f1(t) =
Γ(k + 1)

2
k−1
2 Γ(k

2 )
√
kπ

1
(
1 + t2

k

) k+1
2

exp

[
−δ

2

2

1

1 + t2

k

]
Hhk

(
− δt√

k + t2

)

where

Hhk(z) =

∫ +∞

0

xk

k!
e−

1
2
(x+z)2dx .

With this notation the probability distribution function of central t with
k degrees of freedom is given by

f0(t) =
Γ(k + 1)

2
k−1
2 Γ(k

2 )
√
kπ

1
(
1 + t2

k

) k+1
2

Hhk (0) ,

and the likelihood ratio of the model is given by

f1

f0
(t) = exp

[
−δ

2

2

1

1 + t2

k

]
Hhk

(
− δt√

k+t2

)

Hhk(0)
.

We now demonstrate the criticality of the Student multiple comparison
problem.

Proposition 3.3.8 (Student multiple comparison problem). Consider
the multiple comparison problem with test statistics distributed as central
Student with k degrees of freedom under H0, and non central Student with
k degrees of freedom and non-centrality parameter δ under H1. Then:

(i) f1

f0
is non-decreasing

(ii) for fixed δ and k, the critical value associated with the multiple
comparison of H0 against H1 with proportion π0 or true nulls is

α⋆ =
1

π0 + (1 − π0)
Hhk(−δ)
Hhk(0)

The fact that α⋆ > 0 is consistent with the fact that the Student distri-
bution has heavier tails than the Laplace distribution, for which a criticality
phenomenon already occurred. Proposition 3.3.8 illustrates how α⋆ depends
on π0, δ and k.
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Because Student tails become lighter as the number of degrees of free-
dom increases, an interesting question is whether the criticality phenomenon
vanishes if we let the number of degrees of freedom grow to +∞ as the num-
ber of tested hypotheses grow to +∞. [17] recently showed that this is the

case. Writing the supremum of the likelihood ratio Hhk(−δ)
Hhk(0) as a function

L(k, r) of the number k of degrees of freedom, and of the signal to noise

ratio r = δ/
√
k, [17] proved that L(k, r) grows to +∞ whenever r → 0 and

k → +∞, provided that kr → +∞.

3.3.2. Criticality and identifiability.
Identifiability and achievable FDR control. The question of iden-

tifiability of π0 when g = π0 + (1 − π0)g1 is discussed by [35, 55], who
demonstrate its importance in the context of FDR control. Recall that the
BH95 procedure at level α actually yields FDRm = π0α: plug-in procedures
have therefore been proposed, that apply the BH95 procedure at level α/π̂0,
where π̂0 is an estimator of π0, yielding a larger number of significant hy-
potheses for the same target FDR level.

When π0 is not identifiable, such plug-in procedures cannot control FDR

at level α exactly: they are bound to remain conservative. In terms of power,
all plug-in procedures in the unidentifiable case have power smaller than the
Oracle BH95 procedure. Identifiability may thus be interpreted as another
intrinsic bound on FDR controlling procedures.

Identifiability and purity. First note that in this setting, the multiple
comparison problem is totally determined by (π0, g1). [35] make a distinction
between the notions of identifiability of (π0, g1) and purity of g1: purity
means that inft>0 g1(t) = 0, whereas identifiability means that within a
given class F of admissible densities under H1 for the mixture model, the
only way to write g1 = (1 − b) + bh, with 0 ≤ b ≤ 1 and h ∈ F is to choose
b = 1 and h = G1.

Under a given parametric assumption, for example, in a Gaussian lo-
cation model in which test statistics are distributed as standard Gaussian
under the null, and are distributed as N (µ, 1) for some µ 6= 0, then identifi-
ability does not imply purity [35, 51]. However identifiability and purity are
equivalent in our non-parametric estimation setting, as mentioned by [61]:
(π0, g1) is identifiable if and only if g1(1) = 0.

Criticality is related to the behavior of g1 at 0, and identifiability is
related to the behavior of g1 at 1. We now point out an important connection
between identifiability and criticality for one-sided p-values in symmetric
location models.

Lemma 3.3.9 (Density of one-sided location p-values under H1). Con-
sider the multiple location problem in which test statistics are distributed
as F0 under H0, and as F1 = F0(· − µ) under H1, where µ > 0. Denote
by π0 the proportion of true null hypotheses. Let G1 be the concave distri-
bution function of one-sided p-values under the alternative and g1 be the
corresponding density function. Let xµ = F0(F

−1
0 (x)+µ) for any x ∈ (0, 1).

(i)
∀x ∈ (0, 1), xµ > x

If F0 is symmetric, that is, if F0(1 − x) = F0(x) for any x ∈ R, then
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(ii)

∀x ∈ (0, 1), g1(1 − xµ) =
1

g1(x)

(iii)

∀x ∈ (0, 1), g1(1 − x)g1(x) ≤ 1

Theorem 3.3.10 (Criticality and identifiability for one-sided p-values).
Consider the multiple location problem in which test statistics are distributed
as F0 under H0, and as F1 = F0(· − µ) under H1, where µ > 0 and F0 is
symmetric. Assume that one-sided p-values are computed. Denote by π0

the proportion of true null hypotheses, and α⋆ be the critical value of this
multiple comparison problem. Then α⋆ = 0 if and only if π0 is identifiable.

3.4. Estimation of π0

In the preceding section we studied the connections between criticality,
non identifiability of π0, and the distribution of the test statistics under
the null and the alternative hypotheses, summarized by the behavior of
the p-value density under the alternative hypothesis. Criticality and non
identifiability of π0 were shown to induce limitations to the intrinsic power
of the BH95 procedure, and of plug-in procedures, that consist in applying
the BH95 procedure at level α/π̂0, where π̂0 is an estimator of π0.

In this section we focus on the problem of estimation of π0 in the non
parametric model g = π0 + (1 − π0)g1. We assume that π0 is identifiable
and thus may be estimated consistently; that is, we assume that g1(1) = 0
by the preceding section. If this is not the case the results stated here apply
to the identifiable part of π0, which is defined by

π0 = π0 + (1 − π0)g1(1) .

We begin by proving that the convergence rates of consistent non para-
metric estimators of π0 are also related to g1, the p-value density under the
alternative hypothesis, through the regularity of g1 at 1 (section 3.4.1). Then
we investigate the consequences of this property in terms of FDR control,
by showing that the convergence rate of FDR controlling procedures that
incorporate such an estimator π̂0 is in turn determined by the convergence
rate of π̂0 (section 3.4.2). Finally we illustrate the practical consequences of
this result by demonstrating that g1 is typically not regular at 1, even for
the Gaussian location model (section 3.4.3).

3.4.1. Convergence rate of π̂0 and regularity of g. We begin by
illustrating the connection between convergence rate of π̂0 regularity of g at
1 on a few examples.

Known estimators with convergence rates. To the best of our
knowledge, the only non-parametric estimators of π0 for which convergence
rates have been established are those proposed by [89], [97] and [42]. The
use of this estimators in the context of multiple testing problems is discussed
by [35].

Example 3.4.1 (Storey’s estimator). Adapting a method originally pro-

posed by [80], [89] defined π̂0(λ) = 1−Ĝm(λ)
1−λ for 0 ≤ λ < 1. As a smooth
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functional of the empirical distribution of the p-values, this estimator has
the following asymptotic distribution:

√
m

(
π̂0(λ) − 1 −G(λ)

1 − λ

)
 N

(
0,
G(λ)(1 −G(λ))

(1 − λ)2

)

It converges at the parametric rate 1/
√
m, and it is asymptotically biased

because 1−G(λ)
1−λ > π0 for λ < 1.

Example 3.4.2 (Confidence envelopes for the density). [42] derived a
finite sample confidence envelope for a monotone density. Assuming that
G is concave and that g is Lipschitz in a neighborhood of 1, the resulting

estimator converges to π0 at rate
(

log m
m

)−1/3
.

Example 3.4.3 (Spacings-based estimator). [97] proposes an estimator
of the minimum of an unknown density based on the distribution of the spac-
ings between observations: he first estimates the location of the minimum,
and then the density at this point. Assuming that at the value at which the
density g achieves its minimum, g and ġ are null, and g̈ is bounded away
from 0 and +∞ and Lipschitz, this estimator converges at a rate slightly
slower than m−2/5 to the true minimum. In our framework the minimum
is necessarily achieved at 1 because g is non-increasing. Thus the first step
may be omitted, and the Lipschitz condition becomes unnecessary.

Lower bounds on non-parametric convergence rates. The con-
sistent estimators proposed by [42] and [97] illustrate the fact that the more
regular g is assumed to be at 1, the faster convergence rates can be obtained.
As π0 = g(1), it seems natural to try to estimate π0 using kernel estimators
of a density at a point. We give an explicit connection between the conver-
gence rate of these estimators and the regularity of the density at the point
of interest.

A kernel of order ℓ ∈ N is a function K : R → R such that the functions
u 7→ ujK(u) are integrable for any j = 0 . . . l, and verify

∫
R
K = 1, and∫

R
ujK(u) = 0 for j = 1 . . . ℓ.

Definition 3.4.4 (Kernel estimator of a density). The kernel estimator
of a density g at the point p0 based on m independent, identically distributed
observations P1, . . . Pm from g is defined by

ĝ(p0) =
1

mh

m∑

i=1

K

(
Pi − p0

h

)
,

where h > 0 is called the bandwidth of the estimator and K is a kernel.

[101] lower bounds on the convergence rate of kernel estimators of g(1),
depending on the regularity of g at 1. If g is k times differentiable at 1,
with g(k)(1) 6= 0, considering a kernel estimator ĝ(1) associated with a kth

order kernel and fixed bandwidth h, the asymptotic variance of ĝ(1) is of
the order of 1

mh , and the asymptotic bias of ĝ(1) is of the order of hk.
Therefore, ĝ(1) is asymptotically biased due to the positive bandwidth

h. It is possible to obtain a consistent estimator of g(1) by letting h go to
0 as m → +∞. The exact risk of the corresponding estimator minimizes
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the Mean Squared Error of the estimator; it is thus obtained by balancing
asymptotic bias and variance, as shown by the following Proposition.

Proposition 3.4.5 (Optimal bandwidth — kth order kernel estimator

[101]). Assume that g is k times differentiable at 1, with g(k)(1) 6= 0. Let
ĝ(1) be a kernel estimator associated with a kth order kernel. The opti-
mal bandwidth for ĝ(1) in terms of Mean Squared Error is of the order of

m−(2k+1). The corresponding estimator converges to g(1) at rate m− k
2k+1 .

As a consequence, the convergence rate of the optimal kernel estimator
of g(1) directly depends on the regularity k of g at 1.

Storey’s estimator. The estimator proposed by [89] is a kernel esti-
mator with asymmetric rectangular kernel of order 1, and bandwidth 1−λ.
It converges at the parametric rate 1/

√
m, and it is asymptotically biased

for λ < 1. In order to make this estimator consistent we let h = 1 − λ go
to 0 as m goes to +∞. The asymptotic distribution of the corresponding
estimator is given by the following Proposition.

Proposition 3.4.6 (Asymptotic distribution of π̂0(1 − hm)). Let

π̂0(λ) =
1 − Ĝm(λ)

1 − λ

for 0 < λ < 1. Let hm be a positive sequence such that hm → 0 and
mhm → +∞ as m→ +∞. Then

√
mhm (π̂0(1 − hm) − π0) N (0, π0) .

Proposition 3.4.6 shows that consistency can be achieved at the price of
a reduction of the convergence rate. We calibrate hm such that the Mean
squared error is minimum, in order to balance bias and variance: the larger
hm, the smaller asymptotic variance but the larger asymptotic bias. As
π̂0(1 − hm) is a kernel of order 1 only, the optimal bandwidth cannot be
derived from Proposition 3.4.5. However if we further assume that the k−1
first derivatives of g at 1 are null, we obtain the same optimal bandwidth.

Proposition 3.4.7 (Optimal bandwidth — Storey’s estimator). As-

sume that g is k times differentiable at 1, with g(l)(1) = 0 for 0 ≤ l < k,

and g(k)(1) 6= 0. The optimal bandwidth in terms of MSE is given by

hm(k) = Ckm
− k

2k+1 , where Ck is an explicit constant that depends on k,

π0, and g(k)(1). Moreover we have

(i)

MSE(π̂0(1 − hm(k)) =
2/Ck

m
k

2k+1

(ii)

m
k

2k+1 (π̂0(1 − hm(k)) − π0) N (0, π0Ck) .

3.4.2. Convergence rate of consistent plug-in procedures. The
goal of this section is to connect the convergence rate of a given estimator
π̂0 of π0 to the asymptotic FDR controlling capabilities of a procedure that
takes π̂0 into account. We are thus interested in the asymptotic properties
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of plug-in procedures, that consist in applying the BH95 procedure at level
α/π̂0, where π̂0 is an estimator of π0.

The False Discovery Proportion (FDP) achieved by a broad class of FDR

controlling procedures including the plug-in procedure proposed by [89] with
fixed λ has been shown by [64] to converge at the parametric rate 1/

√
m to

their asymptotic FDR in the subcritical case. Storey’s procedure is shown
to have asymptotic FDR smaller than α because π̂0(λ) is not consistent for
fixed λ.

In this section we consider any estimator π̂0 that converges to π0 at a
rate

√
mhm, with hm → 0. The results of this section therefore cover in

particular in the case for the estimator π̂0(1 − hm) for any hm → 0. We
prove that the convergence rate of the FDP of a plug-in procedure based on
π̂0 is also of the order of

√
mhm.

Theorem 3.4.8 (Asymptotic FDP for consistent plug-in procedures).
Let π̂0 be any estimator of π0 with asymptotic distribution given by

√
mhm (π̂0 − π0) N (0, v(π0))

for some function v. Consider the plug-in procedure based on π̂0, which
applies the BH95 procedure at level α/π̂0, for any α > π0α

⋆. The asymptotic
distribution of the FDP achieved by this procedure is given by

√
mhm (FDP − α) N

(
0,
α2

π2
0

v(π0)

)
.

This result can be combined with the optimal bandwidth choices pro-
posed in Propositions 3.4.5 and 3.4.7.

Corollary 3.4.9 (Asymptotic FDP for optimal bandwidth — kth order

kernel). Assume that g is k times differentiable at 1, with g(k)(1) 6= 0. Let
ĝ(1) be the kernel estimator associated with a kth order kernel with optimal
bandwidth given by Proposition 3.4.5. Then the FDP of the plug-in proce-
dure that applies the BH95 procedure at level α/ĝ(1) converges to α at rate

m− k
2k+1 .

Corollary 3.4.10 (Asymptotic FDP for optimal bandwidth — Storey’s

estimator). Assume that g is k times differentiable at 1, with g(l)(1) = 0 for

0 ≤ l < k, and g(k)(1) 6= 0, and let π̂0
⋆ = π̂0(1 − hm(k)), where π̂0(λ) is

Storey’s estimator for fixed λ ∈ [0, 1), and hm(k) = Ckm
− k

2k+1 the optimal
bandwidth defined by Proposition 3.4.7. Then the asymptotic FDP of the
plug-in procedure that applies the BH95 procedure at level α/π̂0

⋆ is given by

m
k

2k+1 (FDP − α) N
(

0,
α2Ck

π0

)
.

3.4.3. Regularity of g1 at 1. These results motivate the study of the
regularity of g at 1. As g = π0 +(1−π0)g1, this is equivalent to the study of
the regularity of g1 at 1. It turns out that even for Gaussian test statistics,
this regularity is quite poor.

Proposition 3.4.11 (One-sided Gaussian location problem). Consider
the case when the test statistics follow N (0, 1) under the null hypothesis, and
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N (µ, 1), under the alternative, where µ > 0. Let g1 be the density function
of the corresponding one-sided p-values. Then, as h → 0, there exists a
constant C such that

g1(1 − h) ≤ C exp

(
−µ

2

2
−
√

2 log(1/h)

)

Corollary 3.4.12. g1 is not differentiable at 1.

Proof. Recall that g1(x) = f1

f0

(
−F−1

0 (x)
)
, with f0(x) = 1√

2π
e−

x2

2 ,

f1(x) = f0(x− µ), and F−1
0 (x) = Φ−1(x) = −Φ−1(1 − x). Thus,

g1(x) = exp

(
−µ

2

2
− µΦ−1(x)

)
.

Write x = 1 − h, with h → 0. We have g1(1 − h) = exp
(
−µ2

2 + µΦ−1(h)
)
,

with Φ−1(h) = −
√

2 log(1/h) + r(h), where r is bounded as h→ 0. �

In fact Proposition 3.4.11 implies that for any γ > 0, g1(1 −m−γ) goes
to 0 more slowly than any positive power of 1

m . For two-sided p-values, the

density function g1 is given by g1(x) = f1

f0

(
F−1

0 (1 − x/2)
)

+ f1

f0

(
F−1

0 (x/2)
)
,

so that

g1(x) = e−
µ2

2
(
exp

(
−µΦ−1(x/2)

)
+ exp

(
µΦ−1(x/2)

))

= 2e−
µ2

2 cosh
(
µΦ−1(x/2)

)
.

Hence g1 is more regular at 1 than for the one-sided case: we have ġ1(1) = 0
and g̈1(1) 6= 0. We can therefore choose k = 2 in Proposition 3.4.7, and the

optimal bandwidth Storey’s estimator is hm = m−1/5. The corresponding
convergence rate for π̂0(1−hm) and the associated FDP is also m−2/5. This
is rather slow, but still much faster than for the one-sided case. However

in the two-sided case g1(1) = 2e−
µ2

2 is positive: thus π0 is not identifiable,

and only the upper bound π0 +2(1−π0)e
−µ2

2 can be consistently estimated.
These results are illustrated by Figure 2 for the simplest location model:
N (0, 1) against N (1, 1).

3.5. FDR control in a sparse setting

We consider the sparse mixture model in which test statistics are dis-

tributed as F
(m)
0 under the null hypothesis H0, and as F

(m)
1 under the alter-

native H1. We recall that the proportion εm of true alternatives is assumed
to go to 0 as m→ +∞, hence the term sparse mixture model. The marginal

distribution of the test statistics is therefore F (m) = (1−εm)F
(m)
0 +εmF

(m)
1 ;

the corresponding density functions are denoted by f
(m)
0 , f

(m)
1 , and f (m) =

(1 − εm)f
(m)
0 + εmf

(m)
1 .

This mixture model may equivalently be represented in terms of p-values:

the marginal distribution of the p-values is denoted byG(m) = (1−εm)G
(m)
0 +

εmG
(m)
1 , where G

(m)
0 and G

(m)
1 denote the distribution function of the p-

values under H0 and H1, respectively. By definition, G
(m)
0 = Id. Likewise,
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Figure 2. Density of one- and two-sided p-values under the
alternative hypothesis for the location model N (0, 1) versus
N (1, 1). Left: one- and two-sided p-values. Top right: zoom
on the region [0.9, 1] for two-sided p-values. Bottom right:
zoom on the region [0.9, 1] for one-sided p-values.

the density functions of the p-values under H1 and under the mixture are

denoted by g
(m)
1 , and g(m) = (1 − εm) + εmg

(m)
1 , respectively.

We begin by studying an extension to this sparse setting of the definition
of criticality: we show that the corresponding subcritical and supercritical
cases still have different behaviors, even though the interpretation of the sub-
critical case in terms of power of the BH95 procedure is lost (section 3.5.1).
Then we give a sufficient condition for the BH95 procedure to detect in terms
of pFDR, and we use this condition to retrieve known detection boundaries
for sparse location mixtures (section 3.5.2).

3.5.1. Criticality in a sparse setting. [18] discuss control of the
positive False Discovery Excessive Probability pFDEPα at level α ∈ (0, 1):

pFDEPα = P (V/R > α|R > 0)

in a sparse mixture model with unspecified distribution of the test statistics
under H0 and H1. They propose a definition of criticality for the BH95

procedure in this setting that naturally generalizes Definition 3.3.1.

Definition 3.5.1. For m ∈ N, let α⋆(m) be the critical value of the
BH95 procedure for the multiple comparison problem parametrized by εm
and G

(m)
1 . The critical value of the BH95 procedure in this model is defined

by
α⋆ = lim

m→+∞
α⋆(m) .

With this definition, if α⋆(m) = 0 for any m, then there is no criticality.
This is the case for the Gaussian location model, and more generally for all
Subbotin location problems with γ > 1 studied in section 3.3.
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In the fixed setting of sections 3.3 and 3.4, the distinction between the
subcritical case (α > α⋆) and the supercritical case (α < α⋆) had a nice
interpretation in terms of asymptotic power of the BH95 procedure [16]: the
proportion Rm/m of rejections of the BH95 procedure at level α converged
in distribution to a positive value ρ⋆ in the subcritical case, whereas it
converged in probability to 0 in the supercritical case. Proposition 3.5.2
summarizes the corresponding results in the current sparse setting.

Proposition 3.5.2 (Asymptotic threshold and proportion of rejections
of the BH95 procedure). Consider any multiple testing situation in which
the fraction εm of true alternatives hypotheses tends to 0 as m→ +∞. For
α ∈ [0, 1), consider the mixture model with constant sparsity εm′. Let τ⋆(m′)
and ρ⋆(m′) denote the asymptotic threshold and asymptotic proportion of
rejections of the BH95 procedure at level α in this model. Then

(i) τ̂ and Rm/m converge almost surely to 0 as m→ +∞.

(ii) If α > α⋆, then bτ/m
τ⋆(m)

(P )→ 1, and Rm/m
ρ⋆(m)

(P )→ 1.

Although Proposition 3.5.2(ii) provides a nice generalization of the be-
havior of Rm/m in the subcritical case to the current sparse setting, (i)
demonstrates that the interpretation in terms of asymptotic power of the
BH95 procedure is lost: because εm → 0 as m → +∞, there is asymptoti-
cally no true alternative, so that Rm/m converges almost surely to 0 even
in the subcritical case.

3.5.2. Detection and pFDR control. [7] showed that procedure BHD
m

has level ≤ α for rejecting the joint null hypothesis HD
0 . We now study

the power of the BHD
m procedure for testing HD

0 against HD
1 for generic

sparse mixtures. This question has been investigated in [24] in the case
of specific location models, namely Gaussian, Chi-squared, and Subbotin
location models.

We begin by giving a simple characterization of the detection boundary
of sparse mixtures using the Max procedure, which rejects HD

0 if and only
if some p-values are smaller than α/m. This characterization relies on the

form of the distribution function G(m) of the p-values under HD
1 . This

condition will then provide a sufficient condition for detectability using the
BHD

m procedure, which is then interpreted in terms of pFDR control.

Proposition 3.5.3 (Detection boundary of the Max procedure). Let

G(m) denote the probability distribution function of the p-values under HD
1 .

Then the condition

lim
m→+∞

mG(m)
( α
m

)
= +∞

is necessary and sufficient for the Max procedure with level α to have asymp-
totically full power for separating HD

1 from HD
0 , that is, to have

lim
m→+∞

PHD
1

(
Max rejects HD

0

)
= 1

This result provides a connection between the shape of the detection
boundary and the characteristics of the mixture model, summarized by the
behavior of the marginal distribution function G(m) of the p-values at α

m .
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Because the BHD
m procedure does at least as well as the Max procedure,

proposition 3.5.3 provides a sufficient condition for detectability using the
BHD

m procedure. This makes it possible to connect the detection boundary
of the BHD

m procedure, pFDR control, and criticality: in the present setting,
the pFDR at threshold t may be written as

pFDRm(t) =
(1 − εm)t

G(m)(t)

Theorem 3.5.4 (Detection boundary of the BHD
m procedure). Let G(m)

denote the probability distribution function of the p-values under HD
1 . If

lim
m→+∞

pFDRm

( α
m

)
= 0,(3.5.5)

then the BHD
m procedure with level α has asymptotically full power for sepa-

rating HD
1 from HD

0 :

lim
m→+∞

PHD
1

(
BHD

m rejects HD
0

)
= 1 .

Theorem 3.5.4 is interesting because condition (3.5.5) is valid for any
mixture model. We now return to the Gaussian, Laplace and Subbotin
location problems to demonstrate how naturally and easily the detection
boundaries identified in [24] can be derived from condition (3.5.5). We recall
that

g
(m)
1 (u) =

f1

f0

(
−F−1

0 (u)
)
.

The superscript m in the likelihood ratio f1

f0
is omitted to alleviate notation.

Following [24], we choose

εm = m−β,

for 1
2 < β < 1. The following Proposition gives a sufficient condition for

detection using the BHD
m procedure when G(m) is concave:

Proposition 3.5.6. Assume that G(m) is concave. If

lim
m→+∞

εm
f1

f0

(
−F−1

0

(
1

m

))
= +∞ ,(3.5.7)

then the BHD
m procedure with level α has asymptotically full power for sepa-

rating HD
1 from HD

0 :

lim
m→+∞

PHD
1

(
BHD

m rejects HD
0

)
= 1 .

Example 3.5.8 (Gaussian test statistics). In this setting, −F−1
0

(
1
m

)

is of the order of
√

2 log (m). Following [24], we calibrate µm so that the
nonzero means are smaller than the largest test statistic under H0, that is
−F−1

0

(
1
m

)
:

µm =
√

2r log (m),

with 0 < r < 1. Recall that for Gaussian test statistics,

f1

f0
(t) = exp

(
−µ

2
m

2
+ µmt

)
.
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Therefore,

εm
f1

f0

(
−F−1

0

(
1

m

))
= m−β exp

(
µ2

m

2
+ µm

√
2 log (m)

)

= m−r+2
√

r−β

Hence, by condition (3.5.7), the BHD
m procedure has full power as soon

as

r > (1 −
√

1 − β)2

Example 3.5.9 (Laplace test statistics). In this setting, we have −F−1
0

(
1
m

)
=

log (m), so we choose

µm = r log (m),

with 0 < r < 1. By definition we have −F−1
0

(
1
m

)
> µm, so the likelihood

ratio of the model at −F−1
0

(
1
m

)
is eµm = r. Therefore

εm
f1

f0

(
−F−1

0

(
1

m

))
= m−r+β

Hence, by condition (3.5.7), the BHD
m procedure has full power as soon

as

r > β

Example 3.5.10 (Subbotin test statistics). Following [61], we choose

µm = (γr log (m))
1
γ ,

with 0 < r < 1 for this setting. Recall that

f1

f0
(t) = exp

( |t|γ
γ

(
1 −

∣∣∣1 − µ

t

∣∣∣
γ))

With t = −F−1
0

(
1
m

)
> 0, we have tγ

γ = log (m) and µm

t = r
1
γ , so that

εm
f1

f0

(
−F−1

0

(
1

m

))
= m−β exp

(
log (m)

(
1 −

(
1 − r

1
γ

)γ))

= m
−β+1−

„
1−r

1
γ

«γ

Hence, by condition (3.5.7), the BHD
m procedure detects correctly as soon

as

r >
(
1 − (1 − β)

1
γ

)γ

γ = 1 and γ = 2 correspond to the Laplace and Gaussian cases.

3.6. Proofs of main results

3.6.1. Proofs of section 3.3.
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Laplace distribution.

Lemma 3.6.1. Assume that the pdf of the test statistics is f0 : x 7→ 1
2e

−|x|

under the null hypothesis, and f1 : x 7→ 1
2e

−|x−µ| under the alternative, with
µ > 0 (one-sided test). Then

(i) The p-value is

1 − F0(x) =
1

2
e(−|x|) if x ≥ 0

1 − 1

2
e(−|x|) if x < 0

(ii) The inverse p-value is

(1 − F0)
−1 (u) = log

(
1

2u

)
if 0 ≤ u ≤ 1

2

log (2(1 − u)) if 1
2 < u < 1

(iii) The cdf of the p-values under H1 is

G1(u) = ueµ if 0 ≤ u ≤ e−µ

2

1 − 1

4u
e−µ if e−µ

2 ≤ u ≤ 1
2

1 − (1 − u)e−µ if u ≥ 1
2

(iv) The pdf of the p-values under H1 is

g1(u) = eµ if 0 ≤ u ≤ e−µ

2

1

4u2
e−µ if e−µ

2 ≤ u ≤ 1
2

e−µ if u ≥ 1
2

Proof of Lemma 3.6.1. The inverse p-value function directly follows
from the p-value function and the pdf of the p-values follows from the cdf,
so we only prove (i) (p-value function), and (iii) (cdf of the p-values).

Proof of (i). 1 − F0(x) = P (X > x) =
∫ x
−∞

1
2e

−|t|It. Hence for x < 0,

1 − F0(x) =
∫ x
−∞

1
2e

tMT = 1
2e

−|x|. For x > 0, 1 − F0(x) =
∫ 0
−∞

1
2e

tat +∫ x
0

1
2e

−tdt = 1 − 1
2e

−|x|.
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Proof of (iii). Let u ∈ [0, 1]. The distribution function of the p-values is
given by

G1(u) = Pµ (1 − F0(x) ≤ u)

= Pµ

(
X ≥ (1 − F0)

−1 (u)
)

=

∫ µ

1−F0(u)
f1(x)dx+

∫ +∞

µ
f1(x)dx

=

∫ µ

1−F0(u)

1

2
e−|x−µ|dx+

1

2

For u < 1
2 , (1 − F0)

−1 (u) = log 1
2u and (1 − F0)

−1 (u) ≥ µ ⇐⇒ u ≤
e−µ

2 .

Hence if u ≤ e−µ

2 ,

G1(u) =
1

2
− 1

2

∫ log 1
2u

µ
e−(x−µ)dx

=
1

2
− 1

2

(
−e−(log 1

2u
−µ) − (−1)

)

= ueµ

If e−µ

2 < u < 1
2 ,

G1(u) =
1

2
+

∫ µ

log 1
2u

1

2
e(x−µ)dx

=
1

2
+

1

2

(
1 − elog

1
2u

−µ
)

= 1 − 1

4u
e−µ

Finally, for u ≥ 1
2 , (1 − F0)

−1 (u) = log 2(1 − u). Thus (1 − F0)
−1 (u) ≤

µ ⇐⇒ u ≥ 1 − eµ

2 , which always holds for u ≥ 1
2 because µ > 0.

Hence for u ≥ 1
2 ,

G1(u) =
1

2
+

∫ µ

log 2(1−u)

1

2
e(x−µ)dx

=
1

2
+

1

2

(
1 − elog 2(1−u)−µ

)

= 1 − (1 − u)e−µ

�

Student distribution. We recall the definition of central and non cen-
tral t distribution with k degrees of freedom.
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Definition 3.6.2 (Student random variable). Let X be normally dis-
tributed with mean δ and variance 1, and Y independently distributed as
central χ2 with k degrees of freedom.

Then the random variable Tk,δ = X√
Y/k

is said to have t distribution

(Student distribution) with k degrees of freedom and non-centrality parame-
ter δ.

If δ = 0, Tk,0 = Tk is simply said to have (central) t distribution with k
degrees of freedom.

Proof of Proposition 3.3.7. Let Tk,δ = Zδ√
U/k

, where Zδ ∼ N (δ, 1)

and U ∼ χ2(k), with Zδ and U independent. We have f1(t) = d
dt (P (Tk,δ ≤ t)) =

d
dt

(
P

(
Zδ ≤ t

√
U/k

))
. As Zδ and U are independent, we have

P

(
Zδ ≤ t

√
U/k

)
=

∫

R

P

(
Zδ ≤ t

√
u/k

)
fU (u)du

=

∫

R

Φ
(
t
√
u/k − δ

)
fU (u)du

Thus, inverting
∫

R
and d

dt ,

f1(t) =

∫

R

d

dt

(
Φ
(
t
√
u/k − δ

))
fU (u)du

=

∫

R

√
u/kφ

(
t
√
u/k − δ

)
fU (u)du

=

∫

R

1√
2π

exp

[
−1

2

(
t
√
u/k − δ

)2
]

1

2k/2Γ(k/2)
uk/2−1e−

u
2 1u>0du

=
1√
2kπ

1

2
k
2 Γ(k/2)

∫

R+

exp

[
−1

2

((
1 +

t2

k

)
u+ δ2 − 2δt

√
u/k

)]
u

k−1
2 du
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Then, using the transformation v =
√

(1 + t2

k )u, we note that
∫

R+

exp

[
−1

2

((
1 +

t2

k

)
u+ δ2 − 2δt

√
u/k

)]
u

k−1
2 du

=

∫

R+

exp

[
−1

2

(
v2 + δ2 − 2δtv

1/
√
k√

1 + t2/k

)]
vk−1

(
1 + t2

k

) k−1
2

2v

1 + t2

k

dv

=

∫

R+

exp



−1

2




(
v − δt

1/
√
k√

1 + t2/k

)2

+ δ2
(

1 − t2/k

1 + t2/k

)





× 2vk

(
1 + t2

k

) k+1
2

dv

= exp

[
−δ

2

2

1

1 + t2

k

]
2

(
1 + t2

k

) k+1
2

∫

R+

exp

[
−1

2

(
v − δt√

k + t2

)2
]
vkdv

= exp

[
−δ

2

2

1

1 + t2

k

]
2

(
1 + t2

k

) k+1
2

k!Hhk

( −δt√
k + t2

)

Thus

f1(t) =
1√
2kπ

1

2
k
2 Γ(k/2)

exp

[
−δ

2

2

1

1 + t2

k

]

× 2
(
1 + t2

k

) k+1
2

k!Hhk

( −δt√
k + t2

)

which completes the proof because Γ(k + 1) = k! �

The following property ofHhk is useful to prove that f1

f0
is non-decreasing

Lemma 3.6.3.

Hh′k+1(z) = −Hhk(z)

Proof. Let k ∈ N. As Hhk+1(z) =
∫ +∞
0

xk+1

(k+1)!e
− 1

2
(x+z)2dx, we have

Hh′k+1(z) =

∫ +∞

0

xk+1

(k + 1)!
(−(x+ z)) e−

1
2
(x+z)2dx

=

[
xk+1

(k + 1)!
e−

1
2
(x+z)2

]+∞

0

−
∫ +∞

0

(k + 1)xk

(k + 1)!
e−

1
2
(x+z)2dx

= 0 −Hhk(z)

�

Proof of Theorem 3.3.8. (i) As t 7→ exp

[
− δ2

2
1

1+ t2

k

]
is non-

decreasing and t 7→ − δt√
k+t2

is non-increasing, it is sufficient to

prove that Hhk is non-increasing, which follows from lemma 3.6.3
because Hhk−1 is positive.
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(ii) by proposition 3.3.2 it suffices to note that

lim
t→+∞

f1

f0
(t) =

Hhk(−δ)
Hhk(0)

�

Criticality and identifiability.

Proof of Lemma 3.3.9. (i) is obvious because F0 is increasing. For
(ii), recall that

g1(x) =
f1

f0

(
−F−1

0 (x)
)
,

with f1(y) = f0(y−µ). As F0 is symmetric, we have F−1
0 (1−x) = −F−1

0 (x),
so that

g1(1 − x) =
f1

f0

(
F−1

0 (x)
)
.

As F−1
0 (xµ) = F−1

0 (x) + µ, we therefore have

g1(1 − xµ) =
f1

f0

(
F−1

0 (x) + µ
)

=
f0(F

−1
0 (x))

f0(F
−1
0 (x) + µ)

=
f0(−F−1

0 (x))

f0(−F−1
0 (x) − µ)

=
f1

f0

(
−F−1

0 (x)
)
,

which proves (ii). Finally, (iii) is a direct consequence of (i) and (ii) because
g1 is non increasing. �

Proof of Theorem 3.3.10. First note that π0 is identifiable if and
only if limx→0 g1(1 − x) = 0, and that α⋆ = 0 if and only if limx→0 g1(x) =
+∞. Therefore, if α⋆ = 0, then by Lemma 3.3.9(iii) we have limx→0 g1(1−
x) = 0; hence identifiability holds. Conversely, assume that limx→0 g1(1 −
x) = 0. Note that x → 0 is equivalent to F−1

0 (x) → −∞, which in

turn is equivalent to xµ → 0 since xµ = F0(F
−1
0 (x) + µ). Thus, we also

have limx→0 g1(1 − xµ) = 0, which proves that limx→0 g1(x) = +∞ by
Lemma 3.3.9(ii). �

3.6.2. Proofs of section 3.4.
Storey’s estimator with λ→ 1.

Proof of Proposition 3.4.6. We demonstrate that π̂0(λm) may be
written as a sum ofm independent random variables that satisfy the Lindeberg-
Feller conditions for the Central Limit Theorem [71]. Let Zm

i = 1Pi≥1−hm ,
where the Pi are the p-values. Zm

i follows a Bernoulli distribution with
parameter pm = 1 −G(1 − hm). Denoting

Y m
i =

Zm
i − E [Zm

i ]√
mhm
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we have
m∑

i=1

Yi =
√
mhm (π̂0(1 − hm) − E [π̂0(1 − hm)])

=
√
mhm (π̂0(1 − hm) − π0)

(Y m
i )1≤i≤m are centered, independent random variables, with VarY m

i =
Var Zm

i

mhm
= G(1−hm)(1−G(1−hm))

mhm
, which is equivalent to π0

m as m→ +∞. There-
fore,

lim
m→+∞

m∑

i=1

E
[
(Yi)

2
]

= π0 .

Finally we prove that for any ε > 0,

lim
m→+∞

m∑

i=1

E

[
(Yi)

21|Y m
i |>ε

]
= 0 .

As Zm
i ∈ {0, 1} and E [Zm

i ] ∈ [0, 1], we have (Y m
i )2 ≤ 1

hm
, and

m∑

i=1

E

[
(Yi)

21|Y m
i |>ε

]
≤ 1

hm
E

[
1|Y m

i |>ε

]

=
1

hm
P

(
1|Y m

i |>ε

)

≤ 1

hm

VarY m
i

ε2

by Chebycheff’s inequality. As mhm → +∞ and VarY m
i ∼ π0

m as m→ +∞,
the above sum therefore goes to 0 as mhm → +∞. The Lindeberg-Feller
conditions for the Central Limit Theorem are thus fulfilled, and we have

m∑

i=1

Yi  N (0, π0) ,

which concludes the proof because
∑m

i=1 Yi =
√
mhm (π̂0(1 − hm) − π0). �

Proof of Proposition 3.4.7. By Proposition 3.4.6, the asymptotic
variance of π̂0(1− hm) is equivalent to π0

mhm
. As we assumed that the k − 1

first derivatives of g1 at 1 are null, and that g
(k)
1 (1) 6= 0, a Taylor expansion

of π̂0(1 − hm) − π0 ensures that the bias is of the order of hk
m. The optimal

bandwidth is obtained for hm proportional to m− 1
2k+1 , because this choice

balances variance and squared bias. The proportionality constant, which we

denote by Ck, is an explicit function of k, π0, and g
(k)
1 (1).

By definition, the MSE that corresponds to this optimal choice is twice
the variance, and the asymptotic distribution of the corresponding π̂0 is
derived from Proposition 3.4.6. �

Asymptotic FDP for plug-in procedures. We study the BH95procedure
at level α/π̂0, where π̂0 is an estimator of π0 that converges to π0 at rate√
mhm, where hm → 0. This procedure rejects all hypotheses with p-values

smaller than

τ̂ = sup
{
t ∈ [0, 1], Ĝm(t) ≥ π̂0t/α

}
.
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The associated proportion of rejections and proportion of incorrect rejec-
tions are given by ρ̂ = Ĝm(τ̂) = τ̂ π̂0/α, and ν̂ = π0Ĝ0,m(τ̂), respectively,

where Ĝ0,m denotes the empirical distribution function of p-values that cor-
respond to true null hypotheses. The asymptotic threshold of the Oracle
BH95procedure is defined by

τ⋆ = sup {t ∈ [0, 1], G(t) ≥ π0t/α} .
Note that by the definition of τ̂ and τ⋆, we have Ĝm(τ̂) = π̂0τ̂ /α and

G(τ⋆) = π0τ
⋆/α. The following Proposition shows that the convergence rate

of (τ̂ , ν̂, ρ̂) is driven by the convergence rate of π̂0.

Proposition 3.6.4. Let α > π0α
⋆, and π̂0 be any estimator of π0 with

asymptotic distribution given by
√
mhm (π̂0 − π0)  N (0, v(π0)) for some

function v. Then, as m→ +∞,



τ̂
ν̂
ρ̂



−




τ⋆

π0τ
⋆

π0τ
⋆/α



 =
τ⋆/α

g(τ⋆) − π0/α




1
π0

g(τ⋆)



 (π̂0 − π0)(1 + o (1))

Proof of Proposition 3.6.4. We begin by noting that τ̂ converges
almost surely to τ⋆. Let ψF,γ : u 7→ F (u)−u/γ for any distribution function

F and any γ ∈ (0, 1]. As Ĝm(τ̂) = π̂0τ̂ /α and G(τ⋆) = π0τ
⋆/α, we have

ψG,α/π0
(τ⋆) = 0 and ψ

Ĝm,α/cπ0
(τ̂) = 0. The idea of the proof is to note that

– ψG,α/π0(bτ) converges almost surely to 0 = ψG,α/π0
(τ⋆)

– ψG,α/π0
is locally invertible in a neighborhood of τ⋆.

The second point holds because we are in a subcritical situation: α > π0α
⋆,

with α⋆ = limu→0 u/G(u). For the first point, note that

ψG,α/π0
(τ̂) = G(τ̂) − π0τ̂ /α

= (G− Ĝm)(τ̂) + (Ĝm(τ̂) − π̂0τ̂ /α) + (π̂0 − π0)τ̂ /α .

The first terms converges to 0 almost surely, the second is identically null,
and the third converges almost surely to 0 because π̂0 is consistent. Hence
τ̂ converges almost surely to τ⋆.

We only prove the result for τ̂ , as the proofs for ν̂ and ρ̂ are quite similar.
The idea is that because hm → 0, the fluctuations of Ĝm −G are negligible
with respect to the fluctuations of π̂0 − π0. We have

G(τ̂) −G(τ⋆) = (G(τ̂) − Ĝm(τ̂)) + (Ĝm(τ̂) −G(τ⋆))

= Ḡm(τ̂) + (π̂0τ̂ /α− π0τ
⋆/α)

because Ĝm(τ̂) = π̂0τ̂ /α and G(τ⋆) = π0τ
⋆/α, where Ḡm = Ĝm − G is the

centered empirical process associated with G. Therefore,

G(τ̂) −G(τ⋆) = Ḡm(τ̂) +
π̂0

α
(τ̂ − τ⋆) +

π̂0 − π0

α
τ⋆ .

Noting that Ḡm is of the order of 1/
√
m, Ḡm(τ̂) = o (π̂0 − π0). Finally, since

τ̂
a.s.→ τ⋆ as m → +∞, we also have G(τ̂) − G(τ⋆) = (τ̂ − τ⋆)(g(τ⋆) + o (1))

by Taylor’s formula, which concludes the proof. �
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Proof of Theorem 3.4.8. By Proposition 3.6.4 and the Delta method,
we have √

mhm

((
ν̂
ρ̂

)
−
(

π0τ
⋆

π0τ
⋆/α

))
 N (0, V ) ,

with

V = h(π0)

(
τ⋆/α

g(τ⋆) − π0/α

)2(
π0

g(τ⋆)

)(
π0 g(τ⋆)

)
.

We write FDP = γ(ν̂, ρ̂), where γ : (x, y) 7→ x/y for any x ≥ 0 and y > 0. γ
is differentiable at (π0τ

⋆, π0/ατ
⋆), with derivative

γ̇π0τ⋆,π0/ατ⋆ = (1/π0/ατ
⋆,−π0τ

⋆/(π0/ατ
⋆)2)

=
α

π0τ⋆
(1,−α) .

As γ(π0τ
⋆, π0/ατ

⋆) = α the Delta method yields
√
mhm (FDPm − α) N (0, w) ,

with

w = h(π0)

(
τ⋆/α

g(τ⋆) − π0/α

)2

γ̇π0τ⋆,π0/ατ⋆

(
π0

g(τ⋆)

)(
π0 g(τ⋆)

)
γ̇′π0τ⋆,π0/ατ⋆

= h(π0)

(
τ⋆/α

g(τ⋆) − π0/α

)2( α

π0τ⋆

(
1 −α

)( π0

g(τ⋆)

))2

= h(π0)/π
2
0

(
π0 − αgτ⋆

g(τ⋆) − π0/α

)2

= h(π0)α
2/π2

0 .

�

3.6.3. Proofs of section 3.5.

Proof of Proposition 3.5.2. (i) By the definition of τ̂ , we have

Ĝm(τ̂) = τ̂ /α. Thus, we have

τ̂ /α = (1 − εm)τ̂ + εmĜ1,m(τ̂) .

As Ĝ1,m(τ̂) ≤ 1, we thus have τ̂ /α ≤ τ̂ + εm, which proves that τ̂
converges almost surely to 0, as α < 1. The same holds for Rm/m

because Rm/m = Ĝm(τ̂) = τ̂ /α.
(ii) Consequence of [18, Lemma S2.1 and S2.3].

�

Proof of Proposition 3.5.3. We have

PHD
1

(
P(1) ≥

α

m

)
=

(
1 −G(m)

( α
m

))m

= exp
(
m log

(
1 −G(m)

( α
m

)))

We have G(m)
(

α
m

)
= (1 − εm) α

m + εmG
(m)
1

(
α
m

)
≤ α

m + εm → 0. Therefore,

limm→+∞ PHD
1

(
P(1) ≤ α

m

)
= 1 if and only if

lim
m→+∞

mG(m)
( α
m

)
= +∞ .
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�

Proof of Proposition 3.5.6. AsG(m) is concave, we have G(m)(α/m)
α/m ≥

g(m)(α/m) ≥ g(m)(1/m). As g(m)(u) = (1 − εm) + εmg
(m)
1 (u), condition

(3.5.5) in theorem 3.5.4 can thus be replaced by condition (3.5.7). �
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Cancer is a class of diseases in which abnormal cells proliferate without
control, avoid programmed cellular death, and are able to invade other tis-
sues, and eventually spread to other parts of the body through the blood
and lymph systems. The main goals of cancer research are biological and
clinical: to better understand the biological mechanisms underlying disease
pathogenesis, and to improve cancer diagnosis, prognosis and treatment.

Cancer is fundamentally a disease of regulation of tissue growth. In
order for a normal cell to be transformed into a cancer cell, genes which
regulate cell growth and differentiation must be altered. Genetic changes
can occur at many levels, from gain or loss of entire chromosomes to a
mutation affecting a single DNA nucleotide, and directly or indirectly result
in modifications of genes expressions. This motivates the use of advanced
molecular biology techniques such as DNA microarrays for cancer research.
Such high-throughput technologies require the development of dedicated
statistical methods that are adapted to the dimensionality of these data,
as well as to each specific biological or clinical problem of interest.

We begin by a brief description of cancer cell physiology, and of genomic
changes that occur in cancers (section 4.1). Then we describe DNA mi-
croarray techniques (section 4.2), and give an overview of statistical issues
of interest for their analysis (section 4.3). Finally we list the contributions of
this thesis in terms of statistical analysis of DNA microarray data (section
4.4).

4.1. Cancer and genes

4.1.1. A few words of molecular biology. Genes may be defined
as heritable units of information that drive the physical development and
phenotype of an organism by interacting with each other and with the envi-
ronment. A gene is encoded in a sequence of four chemical compounds called
deoxyribonucleotides: adenine (A), thymine (T), cytosine (C), and guanine
(G). These nucleotides make up a long strand of DNA (deoxyribonucleic
acid), which is thus considered as the carrier of genetic information across
generations of cells and organisms.

In a classical, textbook view of how genes are associated with the behav-
ior of the cell, the DNA sequence of a gene is transcribed intro mRNA (mes-
senger ribonucleic acid), and this mRNA sequence may be in turn translated
into a protein, which consists of a sequence of amino acids. Translation is
performed according to a quasi-universal genetic code that maps each triplet
of nucleotides to an amino acid. Genome, transcriptome and proteome are
three levels of information that refer to the set of genes, messenger RNAs,
and proteins, respectively.

Proteins are essential structural components of organisms; they partic-
ipate in every cell process: for example, chemical reactions are catalyzed
by enzymes; cellular transport and communication involve extracellular or
membrane proteins; structural proteins maintain cell shape. However, the
activity of a cell may not be understood based only on the above simplistic
picture of a linear flow of genetic information from DNA to protein for each
gene, independently from other genes and the environment. This informa-
tion flow and the resulting protein activities, which constitute the molecular



4.1. CANCER AND GENES 97

phenotype of the cell, are strictly controlled, both by environmental stimuli
(which may be external or internal to the cell) and by tissue-specific regu-
lation mechanisms that reflect complex interactions between DNA, mRNA,
proteins, and small sequences of non protein-coding RNA (ncRNA), includ-
ing micro RNA (miRNA), and small interfering RNA (siRNA).

These regulation mechanisms may be classified into three types, depend-
ing on the information level at which the target gene is influenced: tran-
scriptional regulation occurs before transcription and regroups activation or
repression of the expression of specific genes by proteins called transcrip-
tion factors, and conformational or chemical modifications of DNA called
epigenetic modifications. Post-transcriptional regulation covers mechanisms
through which a given primary gene transcript may be alternatively spliced
into several mature transcripts, and mechanisms of repression of gene ex-
pression by miRNA. Post-translational regulation involves chemical modi-
fications of proteins which turn a protein’s activity on or off; for example
phosphorylations are catalyzed by kinases, and dephosphorylations are cat-
alyzed by phosphatases.

4.1.2. Genomic changes in cancer cells. Even though there are
dozens of cancer types, and many more subtypes, it is now well admitted
that cancer cells are characterized by few essential alterations in cell phys-
iology, that guide malignant growth [40]. These alterations are illustrated
by Figure 1.

Figure 1. Acquired capabilities of cancer cells: (a) self-
sufficiency in growth signals; (b) insensitivity to growth-
inhibitory (antigrowth) signals; (c) evasion of programmed
cell death (apoptosis); (d) sustained angiogenesis (growth of
blood vessels); (e) limitless replicative potential; (f) tissue
invasion and metastasis. Images taken from [39].

Biological evidence suggests that these capabilities are acquired through
genomic alterations in cancer cells: either aneuploidies, that is, the presence
of an abnormal number of chromosomes, or mutations, that is, changes in
the nucleotide sequence of genomic DNA. However, these genomic changes
are quite rare events in normal cells, due to efficient regulatory mechanisms
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that aim at maintaining genomic integrity [60]. This suggests that genome
instability should be added to the list of acquired capabilities of cancer cells,
and considered as an enabling characteristic for the other capabilities to be
acquired.

Genomic changes that occur during tumorigenesis involve small or large-
scale alterations. Small-scale alterations include point mutations, deletions,
and insertions, which may occur in the promoter of a gene and affect its ex-
pression, or in the gene’s coding sequence and alter the function or stability
of its protein product. Large-scale alterations include the deletion or gain of
(a portion of) a chromosome, but also genomic amplification, which occurs
when a cell gains many copies (often 20 or more) of a small chromosomal
locus, often containing one or more oncogenes, and translocations, that is
the abnormal fusion of two separate chromosomal regions.

Two broad categories of genes are affected by these genomic changes:
oncogenes and tumor suppressor genes. Oncogenes may be normal genes
which are expressed at inappropriately high levels, such as MYCN, which is
amplified1 in many neuroblastoma (the most frequent pediatric tumor) or
altered forms of proto-oncogenes, such as mutated Fibroblast growth factor
receptor (FGFR3) in bladder cancers. In either case, overexpression of these
genes promotes the malignant phenotype of cancer cells because they directly
or indirectly control cell proliferation and/or apoptosis. Tumor suppressor
genes inhibit cell division or promote apoptosis; for instance TP53 codes for
p53, a transcription factor involved in cell cycle regulation.

4.2. Microarray data in cancer research

4.2.1. Overview. DNA microarrays are a molecular biology technique
that performs simultaneous measurement of a given level of genomic infor-
mation (DNA copy number, expression level, or protein activity) for each
locus or gene within the genome of a biological sample. It takes advan-
tage of the specific base pairing between DNA nucleotides: adenine with
thymine, and cytosine with guanine. This fundamental property of DNA al-
lows sequences which have been extracted from a biological sample (targets)
and labeled with fluorescent molecules to hybridize to their complementary
sequences (probes), which have been fixed at known locations to a solid sur-
face, the microarray. As a result, it is possible to quantify the amount of
DNA bound to each location of the microarray using a scanner that measures
the amount of fluorescence.

Figure 2 illustrates the result of a typical microarray experiment. Thou-
sands to millions of different probe sequences are fixed to a microarray, each
sequence corresponding to a given location on the genome; each sequence
is represented by thousands of probes, in order to increase hybridization
probability.

There exist two main types of microarrays, depending on whether probes
are spotted on the microarray or synthesized (either in situ or at the surface
of beads). Each of these two families of microarrays have technical specifici-
ties (sketched in Figure 3 for expression microarrays) which must be taken
into account for proper statistical analysis of the resulting data.

1see Appendix E.
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Figure 2. Small portion of a scanned (spotted) microarray
(1 out of 48 blocks). Each colored dot corresponds to a spot
where thousands of identical sequences have been fixed. Color
scale ranges from green (underexpressed genes) to red (over-
expressed genes) by yellow (normally expressed genes).

spotted-probe microarrays: a test and a reference sample are la-
beled with different molecules that emit energy at two different
wavelengths, and hybridized on the same microarray; because it is
not possible to know accurately how many DNA fragments have
been spotted for each probe, only the ratio between the test and
the reference intensity levels can be compared across probes;

synthesized-probe microarrays: as the number of sequences syn-
thesized is exactly the same for each probe, absolute intensity levels
can be compared across probes; in most cases synthesized-probe
microarrays are thus single-colored.

Figure 3. Comparison between spotted (left) and synthe-
sized (right) microarrays, in the case of expression microar-
rays. Image Courtesy of The Science Creative Quarterly; artist:

Jiang Long.
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Microarrays in cancer research are most frequently used to quantify gene
expression levels or DNA copy numbers:

expression microarrays: Expression microarrays, are used to es-
timate an absolute or relative quantity of messenger RNA for each
probe sequence on the microarray. The most widely used expres-
sion microarrays are single-color, oligonucleotide microarrays, in
particular those commercialized by Affymetrix2; many two-color
expression array platforms have also been developed;

copy number microarrays: Comparative genomic hybridization (CGH)
is a molecular cytogenetic technique based on the competitive hy-
bridization of fluorescently labeled tumor DNA and normal DNA
to normal metaphase chromosomes [52]. It permits detecting DNA
copy number changes (gains or losses) with a resolution of 10 to
20 megabases (Mb). In the late nineties a microarray-based ver-
sion of this technique (array-CGH) has been developed [69], which
permits detecting copy number changes at a resolution of tens to
hundreds of kilobases, depending on the probe density of the array.

More recently, another DNA-level microarray has been developed, that
provides high-resolution genome-wide identification of Single Nucleotide Poly-
morphisms (SNP), that is DNA sequence variations at a single genome locus.
SNP arrays are single-color microarrays that may be used to estimate an ab-
solute copy number.

4.2.2. Applications to cancer research. Microarrays turn out to
be a technology of choice for both biological cancer research, which aims
at understanding tumorigenesis and tumor progression, and clinical cancer
research, which aims at improving cancer diagnosis, prognosis and treat-
ment. The use of microarray technologies illustrates tight connections be-
tween these two aspects of cancer research (statistical issues are discussed
in more detail in section 4.3.2):

– Exploratory and comparative analyses help identifying genes that
are specific from a cancer type or subtype: these are either can-
didate oncogenes or tumor suppressor genes found using CGH-
arrays [3] in regions gained and lost, respectively, or over- or un-
derexpressed genes in specific conditions, revealed by expression
arrays. This type of analyses also pinpoint groups of co-expressed
genes or of samples that share similar expression or copy number
profiles [86]. Such genes are potential key players in specific cancer
types or subtypes, and as such may enhance global understand-
ing of cancer mechanisms, but also refine cancer diagnosis, and
suggest new therapeutic targets;

– Classification analyses aim at building gene signatures or biomark-
ers whose expression or copy number may be used to predict a bi-
ological or clinical variable of interest, such as the clinical outcome
for a patient if no anticancer drug has been administered (prognos-
tic biomarkers), or the outcome of a specific therapy for a patient

2http://www.affymetrix.com
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(predictive biomarkers). Functional analysis of these biomarkers
may also provide insights into fundamental mechanisms of cancer.

As a practical illustration of the use of microarray technologies for cancer
research, we give an example of development of prognostic biomarker for
predicting breast cancer relapse, which illustrates one of the directions that
are being explored towards personalized medicine.

Today, most women with early stage breast cancer undergo adjuvant
chemotherapy (that is, chemotherapy after surgery), whereas most of them
could be healed by surgery and localized radiotherapy: the problem is that
classical clinical parameters fail to identify those patients who really need
chemotherapy (that is, who otherwise would relapse). Improving prediction
accuracy of disease outcome is thus of major importance in terms of public
health, as it could help avoiding unnecessary chemotherapies and their side
effects.

Several studies underlined the potential of gene expression data to pre-
dict disease outcome at time of diagnosis. For example, a 70−gene signature
(that is, a classifier based on these genes’ expressions) has been identified,
which predicts whether a given patient is likely to develop metastases within
5 years [107]. This signature is one of the three expression-based prognostic
signatures already commercially available for breast cancer.

4.3. Statistical issues in microarray data analysis

4.3.1. Low-level analyses. Statistical expertise is first required be-
fore data analysis, for the design of experiments, image analysis, and data
normalization. The advent of a new type of microarray generally necessi-
tates the development of dedicated methods that take its specificities into
account [87].

Design of experiments. This question is often still overlooked both
by statisticians and by biologists or clinicians: it is not uncommon that the
statistician is asked to compare two cancer subgroups using microarray ex-
periments that have all been performed on day 1 for group 1, and on day 2
for group 2. In such a situation it is impossible to determine whether the ob-
served differences come from the cancer subgroup, or from other parameters
related to experimental conditions. More generally, one should make sure
beforehand that the design of experiments permits questions of interest to
be answered. This involves deciding how many replicated experiments are
performed, which depends on the availability of biological material, the cost
of the experiment, and the (estimated) power of the technology to detect
an effect of a given amplitude. Another important aspect is the design of
the microarray itself: which probe sequences should be chosen ? How many
replicates per probe ? Where should they be located on the array?

Image analysis. The output of a microarray experiment is an image
that comes from a scanner (see Figure 2), from which a signal value has to be
evaluated for each probe. Image analysis usually involves spot location using
a technology-specific grid, segmentation between regions corresponding to
signal and noise, and quantifiation of the signal corresponding to each spot.

Normalization. Microarray data have been reported to be poorly re-
producible, and are affected by various sources of systematic variation [110,
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111]. Hence the need for within and between array normalization, which
aims at removing such artefactual variation while preserving the true bio-
logical signal, and making signals coming from different experiments com-
parable. Microarray normalization has been quite an active research field
over the last few years, and there is still no consensus on which method
should be preferred; one of the reason is that normalization methods rely
on assumptions on the data that are not easily checked; it is thus difficult
to balance “too little normalization” with “too much normalization”. As an
illustration, a recent study suggests that GCRMA, one of the most popular
normalization method for Affymetrix Genechip R© arrays, induces artefactual
correlations between genes with low expression levels [58], which may bias
downstream analyses. This is closely related to the open question of filtering
out genes that are unexpressed in a whole microarray expression data set.

4.3.2. High-level analyses. Biological and clinical questions in mi-
croarray data analysis involve classical domains of statistics: exploratory
analyses, hypothesis testing, classification and regression. However, sta-
tistical methods have to be adapted to the “small n, large p” context of
microarray data: the number p of variables (genes) generally exceeds the
number n of available of observations (biological samples) by two or three
orders of magnitude.

Exploratory analyses. These analyses aim at identifying groups of
genes that share similar patterns across samples, or vice versa; they are
needed even when the biological question only involves supervised analyses,
as they help understanding the data as a whole, and often help identifying
artefactual variations that remained after normalization. Classical methods
include distance or model-based clusterings, factorial analyses such as Prin-
cipal Component or Independent Component Analyses (PCA and ICA),
and, more recently, biclustering methods, which aim at finding groups of
genes that share similar patterns among a group of samples [15].

Hypothesis testing. Comparative analyses aim at identifying those
genes whose measurement (expression level, or DNA copy number) signifi-
cantly differs between two groups of samples. Performing a statistical test
for each gene requires an adapted risk measurement, which triggered the
development of the multiple testing techniques studied in the first part of
this thesis.

Classification and regression. Constructing biomarkers that predict
clinical outcome, metastasis-free survival, or response to treatment involves
building classifiers and regression models, which should ideally make few
errors and be easily interpretable and robust.

The large number of variables requires adapted feature selection meth-
ods. Feature selection can be performed before building the classifier, either
based on their univariate discriminative power or using forward or backward
selection heuristics. Alternatively, penalization or regularization-based ap-
proaches add a constraint on the norm of the vector of predictors, so that
the regression or classification model may be estimated without prior vari-
able selection. When regularization incorporates a ℓ1 term such as in the
LASSO [100] or in the Elastic Net [112], the estimated model is naturally
sparse: many estimated coefficients are strictly null.
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The small number of observations requires appropriate validation tech-
niques to prevent overfitting, which is usually addressed by cross-validation:
k-fold cross-validation involves partitioning the original sample in to k sub-
sets, and successively training the model on k − 1 subsets and evaluating
generalization error on the remaining subset. Feature selection steps and es-
timation of regularization parameters should be performed within the train-
ing step in order to ensure a fair evaluation of generalization error.

4.3.3. Integrative approaches. Cells are complex systems whose be-
havior cannot be understood using only one level of biological information or
one technology at a time. A number of integrative approaches have emerged
over the last few years, with various motivations:

statistical power and robustness: multicentric studies are car-
ried out in order to detect subtle effects, that had previously been
missed because of insufficient sample size. Combining data from
different platforms raises statistical questions that necessitate ded-
icated normalization methods [81];

data complementarity: combining different levels of genomic in-
formation such as copy number and expression data can help dis-
covering new therapeutic targets [78];

biological knowledge: integrating biological knowledge at the in-
ference step may lead to more biologically interpretable results
that separating statistical analysis from biological interpretation [57,
73];

These new approaches are related to the advent of systems biology, advo-
cating a system level approach to biology that focuses on interactions within
and between different information levels including genome, transcriptome,
proteome, regulation networks and epigenetics.

4.4. Contributions

The first two contributions (sections 4.4.1 and 4.4.2) are generic methods
that are now widely used, in particular at Institut Curie. The last two con-
tributions (sections 4.4.3 and 4.4.4) have been designed to address specific
biological and clinical questions, respectively.

4.4.1. Normalization of array-CGH data. This work has been done
in collaboration with Philippe Hupé.

This project is motivated by the analysis of tumor samples coming from
two different platforms: University of California San Francisco (UCSF) [85],
and Institut Curie. We demonstrated that the major source of non bio-
logically relevant variation in both platforms was spatial artifacts: either
clusters of spots on the microarray, with a discrete signal shift, or a smooth
gradient in signal from one side of the microarray to the other. These two
effects were not properly corrected by existing techniques.

Spatial segmentation method (Chapter 5). We therefore devel-
oped a spatial segmentation method, that involves three steps:

(i) estimation of a spatial trend on the array using two-dimensional
LOESS regression [20, 21];
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(ii) segmentation of the array into spatial areas with similar trend val-
ues using NEM, an unsupervised classification algorithm including
spatial constraints [4, 5];

(iii) identification of the areas affected by spatial bias.

This method is of practical use in for genomic studies as it helps pre-
venting the misinterpretation of experimental artifacts as biologically rele-
vant outliers in DNA copy number profiles. The outliers that remain after
application of the algorithm can thus be called candidate oncogenes or tu-
mor suppressor genes with increased specificity, without loss of sensitivity.
This normalization method has been published in BMC Bioinformatics in
2006 [66].

MANOR software. Due to the lack of software dedicated to array-CGH
data normalization, we developed MANOR, an R package for Micro-Array
NORmalization that includes importation, normalization, visualization, and
quality control functions to correct identified sources of variability. The spa-
tial segmentation method we developed is implemented as part of MANOR.
This R package is freely available from Bioconductor, an open source and
open development software project dedicated to the analysis and compre-
hension of genomic data [38]. A description of functionalities of MANOR

and application examples are given in the vignette provided in Appendix A.
Integration to analysis pipelines. Biologists from INSERM Unit

U830 developed their own local array-CGH platform; a dedicated analy-
sis pipeline, called CAP for CGH-array Analysis Pipeline, has been imple-
mented by the Bioinformatics team in order to store, analyze, and visualize
produced data. I have been involved in the integration of MANOR to CAP.
As of June 2008, MANOR has been used for the analysis of over 6000 CGH
arrays using CAP, shared by 132 users on 94 research projects.

We decided to implement CAPweb, a web-based version of CAP, which
may either be used from our website at http://bioinfo.curie.fr/CAPweb,
or installed locally for internal use within a specific research center [59]. I
participated to the integration of MANOR into CAPweb (Appendix D). As
of June 2008, CAPweb has been used for the analysis of over 5000 CGH
arrays from our website, shared by 214 users on 468 research projects from
27 countries around the world. CAPweb has been installed locally in 10
academic laboratories, and one private company. Several publications report
results that have been obtained using CAPweb [31, 45, 46, 103, 108].

Other uses. The wide range of applicability of the method and soft-
ware we developed has also been reported by a recent review [53], which
indicates that MANOR is “the most suitable algorithm for the correction of
spatial biases in microarray experiments[. . . ], relevant also to non-CGH ex-
periments”. MANOR has recently been integrated by a research group from
University College London (United Kingdom) into PerlMAT, a Perl-based
microarray analysis pipeline dedicated to two-color microarrays [63].

4.4.2. Correlating DNA copy number and expression microar-
rays. This work has been done in collaboration with Pierre Gestraud.

Background. A few recent studies have characterized the overall influ-
ence of DNA copy number changes on gene expression (gene dosage effect),
using parallel, high-throughput microarray measurements of these two pieces

http://www.bioconductor.org
http://bioinfo.curie.fr/CAPweb
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of information (see [19] and references therein). In this context, there is still
a need for an easy-to-use and flexible tool that accommodates various kinds
of input data (especially array-CGH, cDNA or SNP arrays for copy number
data) in order to quantify this dosage effect.

Algorithm. We have developed GTCA, an R package that implements
a statistically sound methodology for Genome Transcriptome Correlation
Analysis, including data pre-processing, statistical analysis, visualisation
and biological interpretation:

– Data pre-processing: an unambiguous mapping between genome
and transcriptome probes according to their position on the genome.
Missing DNA copy numbers are inferred by taking advantage of
the consistency of the copy number signal along the genome.

– Statistical data analysis: for each probe, a correlation coefficient
between DNA copy number and expression data is calculated, as
well as an associated p-value. These p-values are then adjusted for
multiple comparisons [7, 43] for each chromosome or chromosome
arm.

– Data visualisation and interpretation: correlation coefficients and
associated (multiple-testing-adjusted) significances can be plotted
along the genome together with cytobands, and can also be ex-
ported as ranked lists of genes (.rnk), which eases biological inter-
pretation of the results using software like GSEA [95].

A poster describing this algorithm has been presented at the ISMB 2007
conference (Appendix B).

Implementation. This algorithm has been implemented in R, and in-
tegrated to VAMP [54], a software developed by the bioinformatics team of
Institut Curie which is used by local biologists, clinicians and bioinformati-
cians. VAMP is devoted to Visualization and Analysis of Molecular Profiles,
including DNA copy number and expression profiles (Appendix C). GTCA

will soon be submitted to Bioconductor as an R package. It may be used
via VAMP on public tumor data sets contained in AcTuDB [44], a public
repository for array-CGH tumor data available at:

http://bioinfo.curie.fr/actudb.

4.4.3. Learning cooperative regulation networks. This work has
been done in collaboration with Mohamed Elati and Céline Rouveirol [27]
(Chapter 6).

Background. Transcription factors are proteins which activate or in-
hibit the expression of their target genes by binding to specific DNA se-
quences located in the upstream region of these genes. Reconstructing tran-
scriptional regulation networks is a major challenge towards the understand-
ing of cell behavior, and may also be useful to discover therapeutic targets.
Several local approaches have been proposed, that infer a set of regulators
for each gene of interest based on a measure of correlation or mutual infor-
mation between the regulated gene and its potential regulators. However
exhaustive search for a given score function is a problem with exponential
complexity, which cannot be performed because of the dimensionality of
expression data.

http://bioinfo-out.curie.fr/actudb
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Method. We designed a method named LICORN3, which is described in
Chapter 6 and takes advantage of the fact that several transcription factors
may be involved in the regulation on one single gene [41]. It associates to
each gene a Gene Regulatory Network (GRN), which is a pair of sets of
transcription factors: an activator set and an inhibitor set. The method
works as follows:

(i) use constrained itemset mining techniques to extract co-activator
sets and co-inhibitor sets, based on discretized expression data;

(ii) build a structured set of candidate co-activator sets and co-inhibitor
sets for each gene, within which an exhaustive search can be per-
formed efficiently;

(iii) define a score that associates to each gene a best GRN among all
possible pairs of co-activators and co-inhibitors, and select genes
whose score is statistically significant using an appropriate multi-
ple testing procedure;

(iv) estimate the prediction performance of the selected GRN using
cross-validation techniques.

I have been involved in the last two steps. As we worked with discretized
expression data, we chose Mean Absolute Error as a measure of distance be-
tween profiles, both for the score in (iii) and for the prediction error in (iv).
The statistical significance of the best GRN (iii) was assessed by comparing
its score to the best score obtained by random permutations of samples in
the original gene expression matrix, and we used the conservative approach
of Benjamini and Yekutieli [8] in order to ensure that FDR was controlled
even though tested hypotheses were not independent. The prediction per-
formance (iv) was assessed using ten-fold cross-validation.

Results. On two standard yeast expression data sets [32, 88], LICORN

significantly outperformed Minreg, the state of the art method for unsuper-
vised inference [67]. Focusing only on those genes selected at a given FDR

threshold resulted in a further significant decrease in MAE. Biological inter-
pretation of the results showed significant overlap with external biological
knowledge in terms of overall network structure, transcription factor-target
interactions, and candidate co-regulators.

Implementation. LICORN has been implemented in CaML and is freely
distributed at http://www.lri.fr/~elati/licorn.html.

4.4.4. Defining true recurrences among ipsilateral breast can-
cers. This work has been done in collaboration with Marc Bollet and Nico-
las Servant [11] (Chapter 7).

Background. Treating early-stage breast cancers with breast-conserving
therapy has been demonstrated to yield better quality of life and be more
easily accepted than mastectomy4, while providing equal overall survival [99].
However, patients treated this way run the risk of developing an ipsilateral
breast tumor recurrence (IBTR), that is, another tumor on the same breast.
In this case, it is of major importance to determine whether the IBTR is a
new primary cancer (NP) or a true recurrence (TR) of the first one: when

3for LearnIng Cooperative Regulation Networks.
4surgical removal of one breast.

http://www.lri.fr/~elati/licorn.html
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it is a new primary, the same treatment as for the primary tumor may
be applied, whereas a true recurrence will need more aggressive treatment,
because it was not healed by the first treatment.

One of the main challenges is the absence of gold standard definition of
NP and TR. The classical clinical definition of NP and TR relies on several
histopathological characteristics: an IBTR was clinically defined as new
primary when the IBTR had occurred in a different location, had a distinct
histologic type, or had less aggressiveness features (lower grade, appearance
of hormonal receptors) than the initial tumor.

Recently, several studies have suggested to use genomic information to
improve this definition: in particular, DNA copy number alterations may be
used as markers for clonal relatedness between the primary tumor (PT) and
the IBTR. These studies typically perform a hierarchical clustering of PT
and IBTR based on DNA copy number alterations, and base the distinction
between TR and NP on whether the primary tumor and its local recurrence
are neighbors or not on the dendrogram [98].

Motivations. Our study aimed at improving on the current definitions
of True Recurrences and New Primaries using SNP arrays, and based on
two main ideas:

biological idea: it is not unlikely that two unrelated tumors share
genomic alterations, simply because this alteration is a mandatory
checkpoint. However, their sharing of breakpoint locations, that is,
starting and ending points of altered regions, should be a strong
indicator of their clonal relatedness;

statistical idea: using the output of a hierarchical clustering to sep-
arate NP from TR seems arbitrary and lacks robustness as the cor-
responding NP/TR classification for a given pair can be changed
by the addition or removal of another sample. Instead, basing
the definition on a score rather than a clustering allows it to be
adapted to a desired tolerance in terms of false positives or nega-
tives.

Methods and results. We therefore decided to build a partial identity
score based on the number of common breakpoints between the IBTR and
the PT, each breakpoint being weighted by an estimate of its frequency
among and independent set of breast tumors. Its significance was assessed
by building artificial pairs matching each PT to one of the other IBTR,
which allowed us to estimate the distribution for the score under the null
hypothesis of no partial identity between the paired tumors.

The quality of the score relied strongly on the precision of breakpoint
locations; copy number changes in our SNP data were detected using ITAL-

ICS, which outperformed other methods in terms of sensitivity of breakpoint
detection, and precision of their location [74].

I contributed to the design of the score, and to the resampling-based
approach to evaluate its distribution under the null hypothesis. Even though
the performance of the score is difficult to assess in absence of gold standard,
the score outperformed clinical-based definition in terms of prognosis, that
is, in terms of metastasis-free survival.
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Further works. This score has been built with the clinical motivation
to improve the current definition of new primaries and true recurrences. The
new definition is currently used in a biological study that aims at finding
genes whose copy number differ between primary tumors whose IBTR is a
true recurrence from those whose IBTR is a new primary.
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Abstract

Background: Array-based comparative genomic hybridization (array-CGH) is a recently

developed technique for analyzing changes in DNA copy number. As in all microarray analyses,

normalization is required to correct for experimental artifacts while preserving the true biological

signal. We investigated various sources of systematic variation in array-CGH data and identified

two distinct types of spatial effect of no biological relevance as the predominant experimental

artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large

proportion of arrays, and has not previously been considered in array-CGH experiments.

Results: We show that existing normalization techniques do not correct these spatial effects

properly. We therefore developed an automatic method for the spatial normalization of array-

CGH data. This method makes it possible to delineate and to eliminate and/or correct areas

affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called

NEM (Neighborhood Expectation Maximization) and spatial trend estimation. We defined quality

criteria for array-CGH data, demonstrating significant improvements in data quality with our

method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays).

Conclusion: We have designed an automatic algorithm for the spatial normalization of BAC CGH-

array data, preventing the misinterpretation of experimental artifacts as biologically relevant

outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-

Array NORmalization), which is described at http://bioinfo.curie.fr/projects/manor and available

from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb

bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

Background
Array-based comparative genomic hybridization (array-
CGH) provides a quantitative measure of differences in
copy number between two DNA samples [1]. The tech-

nique is typically applied to cancer studies because chro-
mosome aberrations frequently occur during tumor
progression [2]. Array-CGH facilitates the localization and
identification of oncogenes and tumor suppressor genes,
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which are likely to be present in chromosomal regions
gained and lost, respectively, in cancer cells.

Recent developments in the statistical analysis of array-
CGH data have focused on high-level analysis, typically
the identification of breakpoints from the genomic profile
[3-7], rather than normalization. Most of the normaliza-
tion techniques used to date for array-CGH data analysis
have therefore involved the simple transposition of meth-
ods originally designed for expression data [8,9], correct-
ing for differences in the labeling efficiency of the two
dyes, spotting effects (block, row, column, or print-tip
effects), and local or global intensity dependence of the
ratios [10]. As far as we are aware, Khojasteh et al. [11]
have reported the only method specific to CGH arrays.

Investigation of the systematic sources of variation in the
array-CGH data studied showed that the effects affecting
expression arrays were negligible with respect to spatial
effects of two types. We describe here an algorithm for
spatial normalization, which can also be combined with
existing normalization methods for handling non-spatial
artifacts. We will define and illustrate these two types of
spatial effect, and show that such effects are not properly
taken into account by traditional normalization tech-
niques.

Two distinct types of spatial artifact

The methods proposed here were originally developed for
the analysis of bladder cancer data from tumors collected

at Henri Mondor Hospital (Créteil, France) [12], analyzed
by hybridization on CGH arrays (F. Radvanyi, D. Pinkel et
al., unpublished results), including 2464 clones spotted at
the University of California San Francisco (UCSF) [13].
They were then adapted to several data sets for CGH arrays
produced and hybridized at the Institut Curie, including
the breast cancer data (O. Delattre, A. Aurias et al., unpub-
lished results) and the neuroblastoma data [14] (which is
publicly available [15]) used to illustrate the technique.

We identified two types of spatial effect with fundamen-
tally different natures: local spatial bias (Fig. 1(a)) and con-
tinuous spatial gradients (Fig. 2-1(a)):

Local spatial bias

The array image shows clusters of spots with a discrete sig-
nal shift, with the other spots of the array remaining
unchanged. These clustered shifted spots on the array
image (Fig. 1(a)) have no biological explanation, and cor-
respond to outliers on genomic profiles (Fig. 3(e) and
6(e)). In the data sets studied here, this artifact was found
to affect about half of all arrays. We describe it as local
because it affects only limited areas of the array.

Continuous spatial gradient

The array image shows a smooth gradient in signal from
one side of the slide to the other (Fig. 2-1(a)). This artifact
leads to genomic profiles with high variability, even
between regions with the same DNA copy number. When

The need for an image segmentation methodFigure 1
The need for an image segmentation method. An array with areas of local spatial bias (bladder cancer data): a straight-
forward trend correction method does not address the spatial effect appropriately. (a) Median-centered log-ratios; (b) spatial 
trend; (c) log-ratios after trend subtraction; (d) remaining spatial trend after subtraction (the color scale is not the same as in 
(b)). Colors are proportional to signal log-ratios; white dots correspond to missing values.
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Results of the gradient subtraction step (2dLoess) on a breast cancer arrayFigure 2
Results of the gradient subtraction step (2dLoess) on a breast cancer array. Correction of the spatial gradient of a 
breast cancer array: continuous spatial gradients are correctly taken into account by the proposed normalization method. 1(a) 
Median-centered log-ratios; 1(b) spatial trend; 1(c) genomic profile without spatial normalization; 2(a) corrected log-ratios; 
2(b) spatial trend after correction (the color scale is not the same as in 1(b)); 2(c) genomic profile after spatial normalization. 
The vertical gray dashed lines indicate the separation between chromosomes.
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Results of the proposed spatial segmentation method (seg) on a bladder cancer arrayFigure 3
Results of the proposed spatial segmentation method (seg) on a bladder cancer array. Bladder cancer array with 
local spatial bias accurately detected by the proposed normalization method. (a) Median-centered log-ratios; (b) spatial trend; 
(c) spatial segmentation; (d) local spatial bias. The border of areas affected by local spatial bias that have been detected in panel 
(d) are reported on panels (a), (b) and (c) as a black step-function for easy interpretation; (e) genomic profile without spatial 
normalization (spots detected as local spatial artifacts are marked in red, and the vertical gray dashed lines indicate the separa-
tion between chromosomes).
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – bladder cancer data setFigure 4
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – bladder cancer 
data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each color 
corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference (red 
point 1 at (0, 0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data set 
for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma (dyn, 
respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed black 
line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for dyn 
and sigma, except seg, which performs slightly better for sigma. Methods 2, 3, and 4, which contain a gradient subtraction step 
using 2dLoess, perform the best against seg+2dLoess, as they cluster near the top-right corner of the image. However, 
seg+2dLoess still significantly outperformed these methods for both sigma and dyn.

−12 −10 −8 −6 −4 −2 0

−
40

−
30

−
20

−
10

0

Performance comparison of seg+2dLoess vs 10 alternative methods
 Bladder cancer data set

Relative performances (%) with 95% quantile (dyn)

R
el

at
iv

e 
pe

rf
or

m
an

ce
s 

(%
) 

w
ith

 9
5%

 q
ua

nt
ile

 (
si

gm
a)

2

3

4

5

6

7

8

9

10

11

1

1 seg+2dLoess
2 2dLoess
3 adjSeg+2dLoess
4 block+2dLoess
5 ptl+movMed
6 nnNorm
7 ptl
8 seg
9 adjSeg
10 block
11 none



BMC Bioinformatics 2006, 7:264 http://www.biomedcentral.com/1471-2105/7/264

Page 6 of 20

(page number not for citation purposes)

this effect is observed, it affects all spots to various
degrees.

These two types of effect are experimental artifacts of non-
biological origin:

- They occur on arrays designed such that neighboring
spots on the array correspond to non-neighboring clones
in the genome, so there is no obvious biological reason
for the clustering of high (or low) signals on the array;

- They are frequently observed on control (normal tissue
vs normal tissue) hybridizations, and even on background

signals (see Figure 5 for illustration with the breast cancer
data set).

The methods proposed are designed to remove or reduce
these two types of spatial effect, while preserving the true
biological signal.

The need for a spatial segmentation method

The spatial effects described above cannot be attributed to
spotting, for two reasons: firstly, they are not limited to
array rows, columns or blocks; secondly, they are not
reproducible from one array to another, even for arrays
taken from batches of slides printed at the same time.

Evidence of local spatial bias on foreground and background raw signals on a breast cancer arrayFigure 5
Evidence of local spatial bias on foreground and background raw signals on a breast cancer array. Log-ratios of 
the four raw signals of a breast cancer array: local spatial biases are easier to detect on a Cy3 background. (a) Test foreground; 
(b) test background; (c) reference foreground; (d) reference background. Gray-scale level is proportional to signal value.

(a) Test Foreground (Cy 5 )

7

8.
2

9.
4 11 12 13 14

(b) Test Background (Cy 5)

7.
2

7.
9

8.
5

9.
1

9.
8 10 11

(c) Ref Foreground (Cy 3 )

7.
9 9 10 11 12 13 14

(d) Ref Background (Cy 3 )

8.
5

9.
1

9.
8 10 11 12 12



BMC Bioinformatics 2006, 7:264 http://www.biomedcentral.com/1471-2105/7/264

Page 7 of 20

(page number not for citation purposes)

Results of the local spatial normalization step (seg) on a breast cancer arrayFigure 6
Results of the local spatial normalization step (seg) on a breast cancer array. Breast cancer array with local spatial 
bias accurately detected by the proposed normalization method. (a) Background signal log-ratios (Cy 3); (b) spatial trend; (c) 
spatial segmentation; (d) local spatial bias. The border of areas affected by local spatial bias that have been detected in panel (d) 
are reported on panels (a), (b) and (c) as a black step function for easy interpretation; (e) genomic profile without spatial nor-
malization (spots detected as local spatial artifacts are marked in red, and the vertical gray dashed lines indicate the separation 
between chromosomes).
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Therefore, it is not possible to correct for them properly
with the normalization methods generally used for
expression arrays, in which "spatial" effects are captured
only by row, column, or print-tip group effects. For a
method to be appropriate, it must take into account the
spatial structure of the array as a whole, and the arbitrary
shape of these biased areas.

Several different studies have taken into account spatial
effects in expression microarray data and have provided
signal correction methods. For example, Workman et al.
[16] defined a spatial gradient normalization method
using a two-dimensional Gaussian function to estimate
local background bias in a probe neighborhood. Baird et
al. [17] proposed a mixed model for cDNA array data,
using splines with spatial autocorrelation, assuming the
existence of a one-step correlation between adjacent spots
in a row or column. Colantuoni et al. [18] proposed a
method for normalizing the element signal intensities to
a mean intensity calculated locally across the surface of a
DNA microarray. Others studies have combined intensity-
dependent and spatially-dependent effects. Wilson et al.
[19] have proposed fitting a single LOESS curve on the MA
plot and then spatially smoothing the residuals using a
median filter to estimate the spatial trend. Tarca et al. [20]
proposed correcting intensity-dependent and spatially-
dependent effects using a feed-forward neural network.
Khojasteh et al. [11] have compared different CGH array
data normalization methods and suggested that a three-
step normalization that combines print-tip LOESS with
spatial correction using moving median and microplate
effect correction gave the best results.

These methods may be suitable for correcting continuous
spatial gradients, but they were not designed to detect
abrupt changes in signal value across the array, and there-
fore may not adequately handle local spatial bias: Figure
1 illustrates the need for a spatial segmentation method to
handle such local spatial effects. From the median-cen-
tered log-ratios (a) we estimate a spatial trend (b) by two-
dimensional LOESS regression [21,22]; subtracting this
spatial trend from the raw values partially corrects the spa-
tial effect (c), but the array trend after correction (d) dem-
onstrates that the spatial effect is undercorrected at the
inner border of the biased area, and overcorrected at the
outer border, consistent with the observation that signal
disturbances vary steeply at the border of the biased area.
This systematic overcorrection or undercorrection may
lead to misinterpretation in the corresponding genomic
profile.

A similar type of spatial effect was reported for expression
microarrays by Reimers et al [23]. For CGH arrays, this
type of effect should be easier to detect and correct, as they
have a much smaller range of signal ratio variation than

expression microarrays. However, this smaller range
necessitates a much greater measurement precision for
array-CGH data.

We describe here a spatial segmentation algorithm for the
automatic delineation and elimination of unreliable areas,
facilitating the exclusion of local spatial bias from array-
CGH data. This algorithm consists of three steps, which
are explained in detail in the Methods section:

[step 1]: Estimation of a spatial trend on the array using
two-dimensional LOESS regression [21,22]

[step 2]: Segmentation of the array into spatial areas with
similar trend values using NEM, an unsupervised classifi-
cation algorithm including spatial constraints [24,25]

[step 3]: Identification of the areas affected by spatial bias.

A wide variety of microarray techniques based on BACs,
cDNAs or oligonucleotides (see [26] for a review) may be
used to quantify changes in DNA copy number. From a
technical aspect, our method could be applied to any of
these microarray types, although we detected local spatial
bias only on BAC arrays.

Therefore, we focused on this technology, which has also
been the most widely used so far. We provide examples of
the implementation of this method and illustrate its per-
formance with three data sets collected on two CGH-array
platforms:

- The first data set (bladder cancer data) was produced at
the UCSF. In this data set, local spatial effects were
observed on 57% of 198 arrays, with a median of 229
affected spots, and no visual evidence of spatial gradients;

- The two other data sets were produced at the Institut
Curie, INSERM U509. They consist of a breast cancer data
set, in which local spatial effects were observed on 45% of
175 arrays, with a median of 592 affected spots, and a
neuroblastoma data set [14,15], with local spatial effects
on 23% of 26 arrays, and a median of 551 affected spots.

MANOR: an algorithm combining segmentation and signal 

correction

In addition to local spatial bias, we also frequently identi-
fied continuous spatial gradients, especially in breast can-
cer data set (Fig. 2-1(a)) and neuroblastoma data set. A
straightforward way to correct for spatial gradients (Fig. 2-
1(b)) is to subtract from the log-ratios an estimate of the
spatial trend on the array (Fig. 2-2(a, b)). The first step of
the spatial segmentation algorithm for detecting local spa-
tial bias (step 1) provides such an estimate. This estimate
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is calculated using two-dimensional LOESS regression as
explained in detail in the Methods section.

In many cases, the CGH arrays were affected by both types
of spatial effect: local spatial effects and continuous spa-
tial gradients. In practice, we do not know in advance
what type of spatial effect affects a given array. Thus, we
propose the following two-step approach:

1. run the spatial segmentation algorithm (seg) to identify
potential areas of local spatial bias

2. correct spots not excluded during the first step for con-
tinuous spatial gradients (2dLoess).

This algorithm, implemented in the MANOR package,
will be referred to as seg+2dLoess in the remainder of this
article. The rationale underlying this two-step approach is
that arrays affected by continuous spatial gradients only
will not be detected as containing local spatial bias by the
step seg, and will therefore be properly corrected by the
step 2dLoess. This two-step approach is suitable for the
spatial normalization of data sets containing both types of
spatial effect.

Results and discussion
We have used our method for the spatial normalization of
array-CGH data from two different platforms. In this sec-
tion, we provide information about the practical imple-
mentation of the method on these two platforms, and
quantitative results comparing our method to ten other
normalization techniques. These compare the values of
three quality criteria calculated after normalization of
each array: the first, sigma, estimates the experimental var-
iability between replicates, whereas the others, smt and
dyn, evaluate quality in the context of the estimation of
differences in DNA copy number between test and refer-
ence samples: smt quantifies the smoothness of the signal
over the genome, and dyn assesses the dynamics of the sig-
nal, defined by the signal-to-noise ratio between gained
and normal regions; these criteria are defined more for-
mally and explained in detail in the Methods section.

To our knowledge, the ten normalization procedures used
for the comparisons cover all the different types of
approaches proposed so far and include the methods pro-
posed by Tarca et al. [20], Yang et al. [10] and Khojasteh et
al. [11]. These methods are detailed in the Methods sec-
tion. For each normalization method, we calculated the
three quality criteria for each array. When comparing two
methods, we calculated a relative performance for each
quality criterion, and assessed the significance of this per-
formance using a Student's t-test, as explained in the
Methods section. We show that our proposed method

outperforms all previously published approaches for the
three data sets.

Application to data produced at UCSF

The bladder cancer data set to which our algorithm was
applied concerns 198 arrays that were spotted and hybrid-
ized at UCSF. These arrays consist of 7392 spots, corre-
sponding to 2464 clones – all of which are BACs (Bacterial
Artificial Chromosomes) – with the following design:

- Neighboring clones in the genome are dispersed on the
array – a necessary condition for distinguishing between
spatial artifacts and real biological information;

- Each clone is replicated three times on the array, and the
three replicated spots are adjacent, so a high level of con-
sistency for the three corresponding ratios does not prove
that there are no spatial effects.

For this data set, spatial normalization is the last step in
the following comprehensive normalization process.
After image analysis of the arrays with SPOT 2.0 software
[27], we screened for low-quality spots: spots with a fore-
ground reference signal (and foreground DAPI signal) less
than 125% of the background reference signal (reference
DAPI signal) were discarded, as were clones with a log-
ratio standard deviation exceeding 0.1. Clones for which
only one of the three replicates was retained after these
steps were then also discarded.

Finally, we applied the proposed spatial normalization
method seg+2dLoess as follows: the spatial segmentation
seg was applied to the log-ratios of this filtered array, with
K = 5 and β = 1 (see Methods for a definition of these
parameters and a discussion of how to choose them), fol-
lowed by the correction for continuous spatial gradients
2dLoess.

Spatial normalization step

Our segmentation algorithm detected local spatial effects
on 113 of 198 bladder cancer arrays (57%); the median
proportion of biased areas on these arrays was 3.1%. Fig-
ure 3 (top) illustrates the successive steps of the algorithm,
from centered log-ratios to array trend, spatial segmenta-
tion of the array, and finally the delineation of biased
areas. Red dots on the corresponding genomic profile
(Figure 3, bottom) correspond to the spots discarded dur-
ing spatial normalization (on this figure, signal log-ratios
have not yet been averaged by clone: spot-level information
is displayed).

Figure 3 (bottom) illustrates the improvement in data
quality achieved with our spatial normalization method:
among the apparent outliers (i.e. clones with log-ratio val-
ues significantly different from the mean log-ratio value
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for the genomic region), it distinguished between experi-
mental artifacts (red dots) and potentially biologically rel-
evant outliers accounting for localized genomic
amplifications.

Evaluation of the performance of the seg+2dLoess method

For each normalization method (11 methods including
ours), we calculated the three quality criteria for each array
and performed pairwise comparison of methods using the
estimate and significance of their relative performance for
each criterion, as explained in detail in the Methods sec-
tion.

Figure 4 shows the results of comparison of the ten meth-
ods with seg+2dLoess. For the dyn criterion, seg+2dLoess sig-
nificantly outperformed all methods (with all p-values ≤
0.039), and most significantly methods 5 to 11, that do
not include the 2dLoess step (with all p-values below 8.5 ×
10-18). The dyn criterion is particularly important as it
assesses the quality of copy number change detection.
seg+2dLoess also gives significantly better results for the
sigma criterion than all other methods (with all p-values
below 1.1 × 10-8) except one: seg performs significantly
better (p = 7.9 × 10-4) but the relative improvement has a
limited amplitude (only 0.36%).

For the smt criterion, seg+2dLoess also significantly outper-
forms all methods (with all p-values below 8.1 × 10-6,
except block+2dLoess for which p = 0.048).

Section 1 of the Additional file 1 shows similar plots to
Figure 4, but for the smt and dyn criteria, and for the smt
and sigma criteria. Tables 1 to 3 of the Additional files 2
and 3 summarize the results of all the pairwise compari-
sons of methods for the three quality criteria.

Taken together, these results show that the seg+2dLoess
method outperforms its competitors for the bladder can-
cer data set.

Application to data produced at Institut Curie, INSERM U 

509

The Institut Curie, INSERM U509 has developed its own
high-density CGH array; all steps in the production of
these chips are performed in Institut Curie laboratories,
including array spotting, DNA preparation, hybridization,
scanning and image processing. The current version of the
array contains 3342 clones, each of which is spotted at
least three times on the array, giving a total of 10800 to
11520 spots (including controls).

This array was designed to facilitate distinction between
relevant biological effects and experimental artifacts:
"empty" spots and spots of water were included as con-
trols, clone replicates were scattered over the array, and

the positions of clones on the array are not correlated with
their actual positions in the genome. A reliable ratio value
can therefore be calculated even if one of the three repli-
cates is flagged. The arrays were scanned using an Axon
Genepix 4000b scanner, and images were processed with
Genepix Pro 5.1.

We analyzed a breast cancer data set and a neuroblastoma
data set from this platform.

For this platform, we applied the proposed spatial nor-
malization method seg+2dLoess as follows: the spatial seg-
mentation seg was applied to the Background signal as
explained in the paragraph below, and the spatial gradi-
ents were corrected by 2dLoess calculated over the log-
ratios. A post-processing step that includes spot and clone
screening was then applied (allowing us, for example, to
discard spots having too low a signal-to-noise ratio, or
with poor replicate consistency).

Detail of the spatial segmentation step

Although we can correct the foreground signal for back-
ground intensity, a significant proportion of arrays still
show localized spatial patterns that cannot be attributed
to biological causes. Visual examination of spatial repre-
sentations of the four signals (foreground and back-
ground intensities for test and reference signals) revealed
that the bias was much clearer for the background signal
of Cy3-labeled samples (Figure 5), which was not the case
for bladder cancer data. We therefore applied the spatial
segmentation method described above to the background
signal of the Cy3 channel, with K = 7 and β = 1 (see Meth-
ods for a definition of these parameters and a discussion
of how to choose them).

Biased areas of the CGH array are flagged and excluded
from subsequent analysis. As clone replicates are not adja-
cent on the array, at least two of the three replicates gener-
ally remain after spatial bias correction, and a reliable
ratio value can still be calculated. Figure 6 shows the
results of this spatial segmentation step in the case of an
array with local spatial bias but no spatial gradients.

Evaluation of the performance of the method seg+2dLoess 

As for bladder cancer data, we calculated the three quality
criteria for each normalization method and for each array
for the breast cancer data set and the neuroblastoma data
set. We then compared the methods paiwise using the
estimate and significance of their relative performance for
each criterion, as explained in detail in the Methods sec-
tion.

Figures 7 and 8 show the results of comparing the ten
methods with seg+2dLoess for the dyn and sigma criteria.
seg+2dLoess significantly outperforms all other methods
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – breast cancer data setFigure 7
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – breast cancer 
data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each color 
corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference (red 
point 1 at (0, 0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data set 
for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma (dyn, 
respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed black 
line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for dyn 
and sigma.
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – neuroblastoma data setFigure 8
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – neuroblast-
oma data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each 
color corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference 
(red point 1 at (0,0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data 
set for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma 
(dyn, respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed 
black line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for 
dyn and sigma, except those containing a gradient subtraction step with 2dLoess.
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for the three criteria on the breast cancer data set (with all
p-values below 2.3 × 10-4).

The neuroblastoma data set gives similar results:
seg+2dLoess quality criteria are always better than those of
the other methods, except for dyn, in which adjSeg+2dLoess
is slightly better (0.22%) but not significantly so (p = 0.1).
For smt, seg+2dLoess is only slightly better than ptl+movMed
and the methods including the 2dLoess step, but not sig-
nificantly so for adjSeg+2dLoess and ptl+movMed. In these
cases, the small size of the data set (26 arrays, 6 with local
spatial bias) affects the statistical power.

Section 2 and 3 of the Additional file 1 and Tables 4 to 9
of the Additional files 2 and 3 detail and complement
these results.

These results show that the seg+2dLoess method outper-
forms the other methods on the two data sets produced
on the Institut Curie, INSERM U509 platform. The results
also allow the methods to be ranked in terms of perform-
ance. Those methods that include a two-dimensional
LOESS step are the highest ranked, with the methods pro-
posed by [11,10] and [20], which all include some spatial
processing, being next, and the other methods being the
lowest ranked (see Figure 7 for example).

Conclusion
We have designed an efficient and automated algorithm
for the spatial normalization of BAC array-CGH data, and
defined a set of parameters for CGH array data quality
assessment. We have shown that our method significantly
improves the quality of data from two different BAC-array
platforms and outperforms other normalization tech-
niques on three data sets.

The proposed algorithm is particularly suitable for cor-
recting spatial effects not related to array design (row, col-
umn, or print-tip group effects): indeed, the arrays studied
show two distinct types of such spatial effect (local spatial
bias and continuous spatial gradients), which can simul-
taneously affect any given array. In such cases, using spa-
tial trend correction after spatial segmentation helps to
remove or reduce these two types of spatial effect, while
preserving the true biological signal.

This method is original in the application of a segmenta-
tion algorithm for detecting and removing local spatial
bias, preventing the misinterpretation of experimental
artifacts as biologically relevant outliers in the genomic
profile.

This method was developed for array-CGH experiments,
and gave very good results. However, it can be applied to

any microarray experiment having the same types of spa-
tial effect.

Availability and requirements
Our method is implemented in the R package MANOR
(Micro-Array NORmalization) [28], which is available
from the Bioconductor site [29]. It can also be tested on
the CAPweb bioinformatics platform [30,31].

Methods
In this section, we provide details of the segmentation
method and the other normalization techniques used for
comparison, and of the quality criteria proposed. We also
discuss the choice of the two parameters of the segmenta-
tion algorithm: K and β.

Description of the segmentation algorithm (seg)

The segmentation method consists of three steps:

[step 1]: Estimation of a spatial trend on the array using
two-dimensional LOESS regression [21,22]

[step 2]: Segmentation of the array into spatial areas with
similar trend values, using NEM, an unsupervised classifi-
cation algorithm including spatial constraints [24,25]

[step 3]: Identification of the areas affected by spatial bias.

[step 1]: spatial trend estimation

We decided to carry out spatial segmentation based on an
estimate of the spatial trend on the array, to optimize the
robustness of segmentation. Furthermore, estimation of
this trend makes it possible to replace missing values by
interpolating the spatial trend.

The trend is estimated by means of a two-dimensional
LOESS procedure with three iterative reweighting steps
[21,22]. The local estimation is linear and the neighbor-
hood taken into account to fit the local model corre-
sponds to 3% of the total number of points. We use an
iterative reweighting procedure to avoid outlier effects.
Indeed, in the context of cancer studies, we are investigat-
ing changes in DNA copy number, and some clones dis-
playing an amplification or a homozygous deletion may
generate extreme but biologically meaningful values,
which should not be interpreted as a local spatial bias.

When the spatial trend is estimated from the log-ratios, we
first apply a basic correction to these log-ratios to prevent
confusion between spatial artifacts and biologically rele-
vant effects. For each chromosome arm, centered log-ratios
are calculated as follows: the median of the corresponding
log-ratio values is calculated and then subtracted from the
initial values. The spatial trend is estimated from these
centered log-ratios. This method helps to decrease the
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impact of true genomic aberrations on the detection of
spatial trends in the data, particularly for samples with
many, or large genomic alterations, as most of these alter-
ations correspond to the gain or loss of whole chromo-
some arms.

[step 2]: spatial segmentation

This step aims to identify K clusters corresponding to
spots with similar signal levels located close together geo-
graphically. This is achieved by Neighborhood Expecta-
tion Maximization (NEM) [24,25]. We assume that the
data are drawn from a mixed Gaussian density function

 where pk are the propor-

tions of the mixture model, fk (xi|θk) denotes the density

function of a Gaussian distribution with parameter θk =

(μk, Σk) and Φ = {p1,..., pk , θ1,..., θK} is the set of parame-

ters to be estimated. The classical EM algorithm considers
the following decomposition of the likelihood:

where

In the mixture model context, [32] pointed out that the
EM algorithm is formally equivalent to the alternative
maximization of L (c, Φ) with respect to c ("E" step) and
with respect to Φ ("M" step). The NEM algorithm is origi-
nal in that it regularizes the likelihood by means of a term
that takes into account the spatial dimension of the prob-
lem through the following adjacency matrix:

Here, the neighbors of a point located at coordinates (l, m
) are the four points with the following coordinates: (l +1,
m), (l - 1, m), (l, m - 1). We define the following quantity:

Thus, instead of maximizing L (c, Φ ) in the E step, we
maximize L (c, Φ) + βG (c). The value of β controls the
weighting of the geographical context in the maximiza-
tion. The M step remains unchanged.

[step 3]: elimination of local spatial bias

The basic idea is to remove from the array those spatial
clusters with signal values significantly higher (or lower)
than the unbiased areas of the array. We describe here the
situation for positive spatial bias, but the idea can be
adapted to negative bias. As local spatial biases cover a
limited proportion of the array, we introduced a tuning
parameter pmax, which corresponds to the maximum pro-
portion of the array image corresponding to local spatial
bias. In our experiment, local spatial bias typically applies
to less than one quarter of the array, so we used pmax =
0.25.

After sorting the clusters identified by NEM by decreasing
mean signal, we consider only those clusters with cumu-
lative frequencies lower than pmax to be potentially biased,
making it possible to define a set of candidate clusters.
The mean signal value of the remaining clusters is used as
a reference value for the unbiased signal. Each candidate
cluster with a mean signal differing from this reference
value by more than a given threshold value is considered
biased. The other candidates are considered unbiased,
unless their mean signal is closer to that of the biased clus-
ter than to that of the reference: such clusters are also con-
sidered biased. This threshold was chosen based on the
cross-validation of arrays analyzed by experts.

Comparison to other normalization methods

We compared the described methodology with other clas-
sical normalization methods. All these methods are listed
below:

- A print-tip group method:

block (block normalization): we subtract off the row and
column block median log-ratio values for each spot, and
adds back the overall block median log-ratio value.

- A print-tip group with intensity dependent effect method:

ptl (print-tip loess): we apply the print-tip LOESS nor-
malization [10] method using the marray R package
(1.8.0 release, with default parameters) available from
Bioconductor.

- A spatial smoothing method:

2dLoess (correction of continuous spatial gradients): a
spatial trend is estimated by two-dimensional LOESS
[21,22], which is then substrated from the log-ratio val-
ues.

- Two spatial segmentation methods:
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seg (segmentation of local spatial bias): we apply the
spatial segmentation algorithm described above to auto-
matically eliminate the biased area.

adjSeg (correction of local spatial bias): we apply the
spatial segmentation algorithm to automatically delineate
the biased area. The median log-ratio value of such an area
is then adjusted to the median log-ratio value of the unbi-
ased area.

- A method combining print-tip group and spatial smoothing:

block+2dLoess (block normalization and global correc-
tion): we apply the 2dLoess method on the normalized
log-ratio values obtained with block.

- Two methods combining intensity dependent effect and spatial
smoothing:

nnNorm (neural network normalization): we apply the
normalization method described by Tarca et al. [20] using
the nnNorm R package (1.5.1 release, with default param-
eters) available from Bioconductor. Briefly, this technique
uses a neural network approach to correct the intensity-
dependent and spatially-dependent effects.

ptl+movMed (print-tip loess and moving median fil-
ter): Khojasteh et al. [11] compared different normaliza-
tion methods and suggested that combining the print-tip
LOESS method with spatial correction (using a moving
median calculated over a neighborhood of 11 rows by 11
columns) and microplate correction gave the best results.
As the microplate information was not available in our
data, we discarded the third step and only considered the
print-tip LOESS and spatial correction.

- Two methods combining spatial segmentation and spatial
smoothing:

adjSeg+2dLoess (correction of local spatial bias and
continuous spatial gradients): we apply the 2dLoess
method on the normalized log-ratio values obtained with
the adjSeg method.

seg+2dLoess (local segmentation and correction of con-
tinuous spatial gradients): we apply the 2dLoess method
on the log-ratio obtained with the seg method.

- Raw log-ratio values with no normalization (none).

Array-CGH data quality assessment

Definition of quality criteria

Evaluation of the quality of the signal ratios of an array
facilitates the comparison of different image analyses or
normalization algorithms, and makes it possible to quan-

tify the improvement achieved by each step of a given nor-
malization algorithm. We define three criteria for
assessing the quality of the analyzed array: the first
addresses the issue of overall quality whereas the other
two provide quality evaluations for the estimation of dif-
ferences in DNA copy number between test and reference
samples.

sigma The first item provides an estimate of experimental
noise. We isolate each clone and calculate the standard
deviation of the log-ratio of the corresponding replicates.
sigma is defined as the median of these standard devia-
tions: the smaller the value of sigma, the higher the quality
of the array.

The other two criteria are calculated after detection of the
altered (gained or lost) regions in the test sample. We used
the GLAD algorithm, developed by Hupé et al. [4] for this
purpose:

smt Within a given DNA copy number region, the ratios of
contiguous clones should not differ considerably. The sec-
ond quality criterion concerns the smoothness of the signal
log-ratios within such a chromosomal region: signal
smoothness is defined as the median absolute difference
between log-ratios for contiguous normal clones. If N
denotes the set of clones considered normal after DNA
copy number estimation, we can calculate

smt = mediann∈N|x(n) - x(n -1)|,

where x(n) is the value of the log-ratio at the nth clone in
genome order.

dyn The last criterion estimates the dynamics of DNA copy
number variation between test and reference samples. We
calculate the discrepancy between the median ratios of the
regions considered "gained"(G) and "normal"(N) after
DNA copy number estimation, and compare it with signal
smoothness, as measured by smt:

If no gained region is detected, we compare "normal"
regions with "lost"(L) regions.

smt and dyn are not independent parameters and are anti-
correlated. However, they quantify related but different
ideas, as smt estimates the noise level after data normali-
zation whereas dyn measures the ability to detect genome
alterations after data normalization.

dyn
x x

smt

g G g n N n
=

−∈ ∈median median
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Paiwise comparison of quality criteria

These three criteria help us to decide which of two nor-
malization methods gives the best results for a given array.
In this pairwise comparison context, smt and dyn must be
calculated with the same definition of G, N, and L regions
for the two normalized arrays. We therefore define con-
sensus G, N, and L regions associated with an array proc-
essed with two different normalization methods as the
intersection of the two corresponding G, N, and L regions
obtained using the two different normalization methods.

In order to test whether method j is better than method i,
we defined a relative performance for each quality crite-
rion as follows:

We calculated this relative performance for each array,
and assessed its significance by testing the hypotheses

: {RPqc(i,j) < 0} for each quality criterion qc, using a

Student's unilateral t-test.

In figures 4, 7, and 8, we calculated relative performances
RP(seg+2dLoess, test) where test corresponds to one of the
ten other methods. Hence a negative value for RP
(seg+2dLoess, test) indicates that our proposed method
outperforms the test method.

Parameter choice for the segmentation algorithm

The segmentation algorithm includes two parameters: the
number K of clusters, and the regularization parameter β,
which controls the weighting of geographic context in sig-
nal segmentation. Our experience suggests that the opti-
mal choice of K and β may depend on the array-CGH
technology used. We therefore provide guidelines for the
choice of suitable parameters of the algorithm. We have
investigated two different approaches to the choice of (K,β): incorporating a model selection criterion into the algo-
rithm so that an optimal (K, β) can be chosen for each
array, or developing a calibration method to help the user
to find relevant sets of parameters for analyzing a whole
data set. In this section, we discuss these two approaches
and justify our choice of the second solution.

The difficulty finding optimal parameters on a per array basis

Choice of the number K of components in a mixture
model can be addressed using model selection criteria.

The basic idea is as follows: as the maximum likelihood
estimator of the model increases mechanically with K (as
model complexity increases with K), this method sub-
tracts an increasing function of K from the likelihood of
the model with K components, to prevent model overfit-
ting. Many applications use the Akaike Information Crite-
rion (AIC) or the Bayesian Information Criterion (BIC)
for this purpose. However, in our framework, K and β
must be chosen simultaneously, because β also affects the
maximum likelihood estimator. As we have no informa-
tion concerning the quantitative behavior of the maxi-
mum likelihood estimator with respect to K and β (this
complex question is beyond the scope of this paper), the
choice of an appropriate penalization remains arbitrary.

We also considered an approach involving the fitting of K
using model selection criteria and cross-validating the
choice of β, but this approach has major drawbacks: first,
it strongly increases the complexity of the estimation
process, making this method too time-consuming for use
as a routine normalization method; second, it makes the
normalization method difficult to interpret, because two
arrays from the same platform will not be treated with the
same parameters.

Guidelines for choosing relevant parameters for analyzing a new 

data set

Rather than searching for optimal (K, β) values for each
array, we provide a calibration method making it possible
to choose appropriate (K, β) values for each data set. The
basic principle of the calibration method is comparison of
the output of our algorithm run on different (K, β) pairs,
taken from a pre-defined grid (e. g. K ∈ {2,... 10} and β ∈
{0.1,0.2,...2.0}).

We considered two different approaches to compare the
results of the segmentations and to choose appropriate (K,β) values. The first approach involved choosing a (K, β)
combination that optimizes quality criteria. The second
involves expert assessment. An expert examines each array
from a representative set and determines whether there is
local spatial bias: he or she checks both the array image
and the genomic profile to guarantee that the spatial effect
is due to an experimental artifact rather than a biological
effect. We then select the (K, β) combination that gives the
best agreement between the expert decision and the algo-
rithm decision. We call this second approach expert assess-
ment. We found this second method simpler and more
efficient than the first, for a number of reasons, outlined
below.

In the first approach, quality criteria are calculated after
normalization and DNA copy number assessment, so
these three steps have to be carried out for each (K, β)
combination. Therefore, although this method has the
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obvious advantage of not relying on expert assessment, it
is time-consuming, and provides only indirect evalua-
tions of the differences between pairs of parameters,
which may make the results hard to interpret. Moreover, a
much lower level of variation was observed in the values
of quality criteria for different (K, β) combinations for a
given array than between arrays, so we were unable to
identify optimal (K, β) values with this method (data not
shown).

In the second approach, we considered two different ways
of performing the expert assessment: either identifying
arrays displaying local spatial bias (qualitative assess-
ment), or estimating the number of spots that should be
discarded (quantitative assessment). We found quantita-
tive assessment to be very poorly reproducible, with large
differences between experts, and much more time-con-
suming than the qualitative method. Therefore, we
adopted the qualitative method, which made possible the

rapid expert assessment of a larger number of arrays, thus
increasing the accuracy of parameter choice.

Based on the qualitative expert assessment of an entire
data set or a subset of data, we compare, for each array, the
decision of our algorithm (has the algorithm detected a
local spatial bias?) with that of the expert. We then calcu-
late the proportion of false positives and false negatives
for each combination of the parameters K ∈ {2,...10} andβ ∈ {0.1, 0.2,... 2.0}. Qualitative expert assessment
remains highly variable (significant differences between
experts), as a substantial proportion of arrays are difficult
to classify. Nevertheless, all assessments show the same
form of dependence in the error rate in (K, β), and lead to
selection of the same parameters (data not shown).

For illustration, we use a subset of arrays on which two
different expert assessments agree. The analysis is shown
in Figure 9 for breast cancer data (134/179 arrays), and

Comparison between qualitative assessment and segmentation results with various (K, β) –breast cancer data setFigure 9
Comparison between qualitative assessment and segmentation results with various (K, β) –breast cancer data 
set. Thesegmentation algorithm is run with K ∈ {2,...10} (x axis) and β ∈ {0.1, 0.2,...2.0} (y axis) and compared with the expert 
assessment of the breast cancer data set. (a) False positive rate; (b) False negative rate; (c) Total error rate.
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Figure 10 for bladder cancer data (169/198 arrays). False
positives are arrays that experts identified as having no
local spatial bias, but which were identified by the algo-
rithm as having local spatial bias. False negatives are
arrays that the expert considered to contain local spatial
bias, and for which no such areas were reported by the
algorithm. Roughly speaking, K controls cluster size, andβ influences both the size and spatial coherence of the
clusters. As K increases (with fixed β), clusters tend to
shrink, leading to an increase in the mean signal value of
the highest cluster, making it more likely that this cluster
will be identified as a local spatial bias. For fixed K, the
highest cluster is slightly more likely to be detected as
local spatial bias for intermediate β, corresponding to an
extreme cluster with high, homogenous values: for low β
this cluster is often quite large and incorporates too small
signal values, whereas for very high β, the geographic con-

text is too strong, leading to a highest cluster with hetero-
geneous signal values.

Drawing figures such as Figure 9 or 10 for any new data set
can facilitate the identification of relevant sets of parame-
ters for the segmentation algorithm. In our case, they sug-
gest values of K = 5 and β between 0.9 and 1.3 for bladder
cancer data set, and K = 7 or 8 and β between 0.9 and 1.3
for breast cancer data set. We used K = 5, β = 1 for the blad-
der cancer data set, and K = 7, β = 1 for the breast cancer
data set.
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coded and validated the spatial normalization algorithm.
IB designed and coded the quality criteria. SL performed
data integration. PH, PN, IB and EB drafted the manu-

Comparison between qualitative assessment and segmentation results with various (K, β) – bladder cancer data setFigure 10
Comparison between qualitative assessment and segmentation results with various (K, β) – bladder cancer 
data set. The segmentation algorithm is run with K ∈ {2,...10} (x axis) and β ∈ {0.1, 0.2,...2.0} (y axis) and compared with the 
expert assessment of the breast cancer data set. (a) False positive rate; (b) False negative rate; (c) Total error rate.
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1LRI, CNRS UMR 8623, bât 490, Université Paris Sud, 91405 F-Orsay, 2Institut Curie, CNRS UMR 144, 26 rue d’Ulm,

75248 F-Paris, 3Institut Curie, Service de Bioinformatique, 26 rue d’Ulm, 75248 F-Paris and 4IGM, CNRS UMR 8621,
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ABSTRACT

Motivation: One of the most challenging tasks in the post-genomic

era is the reconstruction of transcriptional regulation networks.

The goal is to identify, for each gene expressed in a particular

cellular context, the regulators affecting its transcription, and the

co-ordination of several regulators in specific types of regulation.

DNA microarrays can be used to investigate relationships between

regulators and their target genes, through simultaneous

observations of their RNA levels.

Results: We propose a data mining system for inferring transcrip-

tional regulation relationships from RNA expression values.

This system is particularly suitable for the detection of cooperative

transcriptional regulation. We model regulatory relationships

as labelled two-layer gene regulatory networks, and describe a

method for the efficient learning of these bipartite networks from

discretized expression data sets. We also evaluate the statistical

significance of such inferred networks and validate our methods

on two public yeast expression data sets.

Availability: http://www.lri.fr/~elati/licorn.html

Contact: mohamed.elati@curie.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Gene regulation in eukaryotes involves many complex mecha-

nisms, most of which are not well understood. With the advent

of high-throughput microarray technologies (DeRisi et al.,

1997), the expression levels of thousands of genes can be

measured simultaneously during various biological processes

and for collections of related samples. Considerable effort

has been devoted to the analysis of these data sets for the

reconstruction of regulatory networks. A family of approaches

based on mathematical models of the regulation process has

been developed [e.g. Boolean (Liang et al., 1998), Bayesian

(Friedman et al., 2000), piecewise-linear (de Jong et al., 2004)

and probabilistic Boolean (Bulashevska and Eils, 2005)].

Attempts to learn such models from expression data

are hindered by the large number of potential solutions

(Chu et al., 2003), and the unrealistically large amount

of data required to identify the best solution. In cases of

complex formalism for the modelling of regulation, in

particular, it has only been possible to reconstruct subnetworks

with a few variables. Considerable effort is currently being

dedicated to the charting of large-scale gene regulatory

networks, relating the expression of a target gene to that

of the genes encoding its regulators.

Recent integrative studies have aimed to derive complete

yeast gene networks given additional information [e.g. protein–

DNA binding from ChIP-chip experiments (Luscombe et al.,

2004) or computational analysis of transcription factor binding

sites (Middendorf et al., 2004)], with the computational

advantage of restricting the number of possible regulators

for a given target gene. However, these approaches are difficult

to adapt to other organisms, for which the computational

detection of cis-elements is more difficult, and the experimental

detection of binding events is currently limited (e.g. Homo

sapiens). In contrast, expression data sets are being collected

rapidly, and methods based solely on the use of gene expression

for network reconstruction are required.

Pe’er et al. (2002) have designed the Minreg system,

a constrained Bayesian network for the reconstruction of

large-scale regulatory networks from expression data.

The maximal in-degree (i.e. the number of regulators) of

target genes and the total number of regulators in the model are

limited, so the model focuses on only a small set of global active

regulators (AR). The authors made use of these constraints

to devise an approximation algorithm for searching for high

scoring networks among expression data. The system

successfully and robustly identifies the key active regulators,

but cannot learn the full detailed network, and may miss

interesting regulation relationships: given a current set of active

regulators AR, the greedy search of Minreg will ignore

combinations of co-regulators AR [{r1, r2} if the marginal

score values of AR [ {r1} and AR [ {r2} are both low, although

AR [ {r1, r2} may be significant. In such a case, r1 and r2
are said to cooperate (Nagamine et al., 2005)—i.e. they act
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Paris-Nord F-93430 Villetaneuse, France.
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collectively to influence their target genes. Previous computa-

tional approaches, due to complexity reasons, have therefore

only partly investigated the role of regulator cooperativity.

However, such mechanisms have been identified in many

organisms (e.g. Saccharomyces cerevisiae, H.sapiens).

We propose here an original, scalable technique called

LICORN (Learning co-operative regulation networks) for deriv-

ing cooperative regulations, in which many co-regulators act

together to activate or repress a target gene. Many forms

of combinatorial logical control may theoretically occur in

Boolean or Bayesian models, but we focus here on cooperative

regulation patterns that (i) follow the biologically justified

activator-repressor model (Woolf and Wang, 2000) (ii) operate

on ternary expression level representation (iii) allow

for efficient large-scale network computation. LICORN uses an

original heuristic approach to accelerate the search for an

appropriate structure for the regulation network. It first

extracts a global, condensed representation of frequent

co-regulator sets using constrained itemset mining techniques

(Agrawal et al., 1993). From this representation, a limited

subset of candidate co-regulator sets is then efficiently

associated with each gene. As this candidate subset is modest

in size, exhaustive search for the best gene regulatory network

can be performed.

In section 2, we will introduce our model of regulation.

Section 3 describes a three-step algorithm for inferring

complex combinatorial regulation relationships and a proce-

dure for selecting statistically significant relationships.

Finally, in Section 4, we evaluate our system on two yeast

data sets.

2 REGULATION MODEL

We represent the regulatory network architecture as a

bipartite graph: the top part contains a small number of

regulators R (an estimated 10% of genes in many organisms);

the bottom part contains target genes G (genes, without

regulation activity); edges code for a regulatory interaction

between regulators and target genes, each edge being labelled

with a regulatory mode (i.e. activator or inhibitor). Like Pe’er

et al. (2002) and Segal et al. (2003), we use a set of candidate

regulatory proteins involved in various aspects of gene

regulation, including transcription factors, but also signal

transduction molecules, to obtain additional information

about regulation by considering the levels of expression

of signalling molecules with potential indirect effects on

transcription.

As in most previous approaches, we chose to convert

transcript levels into ternary expression values: �1 (under-

expressed), 0 (no change) or 1 (over-expressed). This ternary

discretization (see Supplementary Material, Section 1, for more

details) is more accurate than a Boolean discretization: it allows

for representing both over- and under-expression levels,

without making the data representation too complex. Below,

the matrix MR stores the expression of regulators inR and MG

the expression of targets in G for samples from S. For the sake

of clarity, we assume that G, R and S are arbitrarily ordered

and that each target, regulator or sample can be denoted, when

it is clear from the context, by its index in G, R or S.

2.1 Local regulatory program

We model a gene regulatory network (GRN) associated with a

target gene g as a pair (A, I ), where A � R is a co-activator set,

and I � R is a co-inhibitor set. The cooperative regulators in A

(or I), referred to below as the co-regulator set, operate

collectively as activators or inhibitors of their target gene:

for a given sample, they are aggregated in the model through

the operator E_AND, which can be interpreted as a logical

AND extended to a three-valued logic: E_AND(X) ¼ �1 if for

all xi 2 X, xi ¼ 1, E_AND(X) ¼ �1 if for all xi 2 X, xi ¼ �1 and

E_AND(X) ¼ 0 otherwise.

In a simple activator-inhibitor model (Woolf and Wang,

2000), when the level of the activator is high and the level of

inhibitor is low, the concentration of the target gene mRNA

should be high. Conversely, when the inhibitor concentration is

high, and the activator concentration is low, the concentration

of the target gene mRNA is low. This qualitative heuristics

models expert knowledge concerning regulation control,

and was used as the basis for the development of a discrete

function called regulatory program RP, which, given the

combined states of activators A and inhibitors I of g in a

sample s computes ĝs (A, I) the estimated state of g in s

as described in Figure 1. The vector of ðĝsðA; IÞÞs2S is denoted

ĝ (A, I).

The main features of our regulation model are therefore the

explicit representation of activation and repression relation-

ships for a given target gene, and the representation of

cooperative transcriptional regulation.

2.2 Formal problem definition

We can now formally define our inference problem. Given a set

of target genes G, a set of regulators R, their discretized

expression matrices (MG, MR) over the sample set and

an evaluation score h, associating a real number with

a candidate GRN, our goal is to find, for each target gene g,

the set of regulators that best explains the level of expression

Fig. 1. Definition of the regulatory program RP, which can be

interpreted as follows: (i) If GRN contains co-activators only, ĝ (A, I)

corresponds to the aggregated status of these co-activators. (ii) If GRN

contains co-inhibitors only, ĝ (A, I) is the inverse of the aggregated

status of these co-inhibitors. (iii) Otherwise, ĝ (A, I) depends on a

combination of the statuses of co-activators and co-inhibitors,

as described by the matrix on the right. For example, ĝ (A, I) ¼ 1

when the co-activators are over-expressed and the co-inhibitors are not.
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of g. Finding an optimal GRN—a network minimizing

the discrepancy between predicted and observed states for

a given gene g—is NP-hard (Pe’er et al., 2002). We will

therefore address the problem by adopting a three-step heuristic

approach for the detection of cooperative transcriptional

regulation.

3 LEARNING ALGORITHM

The first step generates a set of candidate co-regulator sets

for all genes of G, such that a candidate co-regulator set is a set

of regulators frequently co-expressed in the data. During

the second step, for each target gene of G, LICORN efficiently

computes a limited set of candidate GRNs and then exhaus-

tively searches for the best one in this set—the activator and

inhibitor sets best explaining the target gene status in

the sample set. The last step of LICORN is a permutation-

based method for the selection of statistically significant

GRNs from the inferred GRNs for all target genes.

3.1 Mining global candidate co-regulator sets

3.1.1 Frequent itemset mining The main purpose of data

mining (Agrawal et al., 1993) is to reveal the relationships

between the attributes or items of a sparse binary matrix.

Sparseness implies very few co-occurrences of items, therefore,

most of the counts in the pairwise marginal would be expected

to be 0. It is therefore natural to assume that the frequently

co-occurring itemsets contain most of the essential information

about the data as a whole. A frequent itemset is a set of items

that appear together in a set of samples (denoted support) with

a size higher than a user-defined minimum support threshold.

A classical algorithm for mining frequent itemsets is

the Apriori algorithm (Agrawal et al., 1993). The algorithm

relies upon a simple yet fundamental property of the minimum

support constraint, namely anti-monotonicity.

DEFINITION 1. (Anti-monotonic property). A constraint

Const is anti-monotonic (with respect to itemset inclusion)

if and only if whenever Const is satisfied by an itemset X, Const is

also satisfied by all subsets of X.

Apriori proceeds iteratively, first identifying itemsets of

length 1 (1-itemsets). Then, candidate frequent k-itemsets are

generated by extending the frequent (k� 1)-itemsets obtained in

the previous iteration. This process is repeated until no more

candidate itemsets are found. Considering only candidates

obtained by extending existing frequent itemsets allows for an

optimized search space exploration. Anti-monotonicity of

minimum support guarantees that Apriori does not miss any

frequent itemset when using this optimized candidate

generation.

3.1.2 Candidate co-regulator sets Global candidate co-

regulator sets are mined to compute a condensed representation

of the discretized expression matrix MR, by looking for all

combinations of co-regulators co-occurring frequently in MR.

As our input data is three-valued rather than Boolean, each co-

regulator set does not have a single support (implicitly a

support for value 1 in binary data), but has a support for each

value of interest: 1 (denoting over-expression) and �1 (under-

expression).

DEFINITION 2. (Frequent co-regulator set). Given the three-

valued expression matrix MR, a co-regulator set C � R and its

1- and �1-supports, denoted S1ðCÞ, S�1ðCÞ � S C is frequent if

and only if max ðjS1ðCÞj; jS�1ðCÞjÞ � Ts, a user-defined minimum

support threshold.

We have implemented an extension of the Apriori algorithm

that handles in parallel 1 and �1-supports for building the

lattice of frequent itemsets, as shown in Figure 2. At this stage,

we opt for a relatively small Ts (20% or less), as the aim is to

select candidate co-regulator sets with a low level of stringency,

as relevant observed regulations may have medium to low

frequency in the data set. This step, the most complex in

LICORN, is performed only once in the algorithm.

3.2 Searching for gene regulatory networks

The sub-lattice CL of global frequent co-regulator sets obtained

is now used to generate all possible co-regulator sets for each

target gene. The criterion for the involvement of a frequent

co-regulator set in the regulatory program of a given target

gene is hereafter referred to as the overlap constraint. Like the

co-regulator sets, each gene g has a 1-support S1ðgÞ and

a �1-support S�1ðgÞ. The overlap constraint (cov) checks the

size of the intersection between supports of the target gene and

a given candidate co-regulator set.

DEFINITION 3. (Overlap constraint). Given a co-regulator set

C, a gene g, and their respective supports SxðCÞ and SyðCÞ for the

states x, y 2 {�1, 1}. C in state x co-varies with g in state y,

denoted covðSxðCÞ;SyðgÞÞ if and only if jSyðgÞ\SxðC Þj
jSyðgÞj

� To, a user-

defined minimum overlap threshold.

To is the lower limit of the proportion of samples in which the

target g is over- or under-expressed while the co-regulator set

C is over- or under-expressed. In other words, it is the

conditional probability P (E_AND (C ) ¼ x | g ¼ y), with x,

y 2 {�1, 1}. Note that To should exceed 50%, as a small

overlap size makes the definition of the regulatory program

meaningless. We distinguish co-regulator sets satisfying cov

for a given target gene according to their roles: a candidate

Fig. 2. Given the three-valued expression matrix MR on the left, the

right-hand part of the figure shows the sub-lattice of frequent co-regulator

sets, with a minimum support of 2 (20% of jSj). Each node of the

sub-lattice consists of a co-regulator and its 1- and �1-supports.
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co-activator set A for g, is a co-regulator set that positively

co-varies with g, and a candidate co-inhibitor set I negatively

co-varies with g. AðgÞ and IðgÞ denote, respectively, all

candidate co-activator and co-inhibitor sets for g.

AðgÞ ¼ A 2 CLjcovðSxðAÞ;SxðgÞÞ;x 2 f�1; 1g
� �

IðgÞ ¼ I 2 CLjcovðSxðIÞ;S�xðgÞÞ;x 2 f�1; 1g
� �

CL may be too large and it may therefore be too expensive to

generate candidate co-regulator sets of each target gene blindly.

As CL is a sublattice partially ordered by � and given that cov

is anti-monotonic (see Definition 1) with respect to �, efficient

pruning during search is possible: when a coregulator set

C does not satisfy cov, no superset of C can ever satisfy cov.

Therefore, large parts of the sublattice need not to be explored.

We can thus compute the set of all candidate GRNs for each

target gene g as follows:

CðgÞ ¼ fðA; I ÞjA 2 AðgÞ; I 2 IðgÞ and A \ I ¼ ;g

A candidate GRN for g, or a GRN for short, is an element

of CðgÞ.

3.3 Scoring gene regulatory networks

In the preceding steps, we have built, for each gene g, a

relatively small number of candidate regulatory networks,

based on the recurrent positive and negative co-variation of

candidate co-regulator sets with g. We now define a scoring

function to compare the different GRNs inferred for a given

gene, and to choose the best one. We propose a resampling

approach for estimating the statistical significance of each best

candidate GRN for each target, and a method for determining

which candidates are significant enough to be retained.

3.3.1 Best GRN for each gene We propose a heuristic

measurement for comparing discretized expression profiles, in

which each candidate GRN associated with a given gene is

scored. As discretized expression values are ordinal variables,

mean absolute error (MAE) is used to measure distance

between gene expression profiles: ideally, over-expressed genes

should be closer to genes with no change in expression than to

under-expressed genes.

hgðA; I Þ ¼ MAEðg; ĝðA; I ÞÞ ¼
X

s2S

jgs � ĝsðA; I Þj

where gs ¼ MGsg. Note that 0 � MAE � 2. The best candidate

GRN for gene g is then defined as

GRN�ð gÞ ¼ Argmin
ðA;I Þ2CðgÞ

hgðA; I Þ

3.3.2 Significance estimation Our scoring function h allows

us to define a best GRN for each gene, but the scores of the best

GRN associated with two different genes may not be directly

comparable, as different genes have different probabilities of

being under- or over-expressed in the study. Moreover, a GRN

is selected because the expression of activator and inhibitor sets

co-varies in a recurrent fashion with expression of the gene of

interest. Most distances are therefore necessarily small, and a

small distance for a given gene does not guarantee that the best

GRN is statistically significant. We use statistical hypothesis

testing to evaluate how unusually low the score of the best

GRN is with respect to the scores that would have been

observed if there was no biological relationship between

regulators and target gene expression.

The absence of a biological relationship between the target

and candidate regulators in the GRN is checked, using random

permutations of the samples in the gene expression matrix

MG. B¼ 1000 randomized matrices MG(b) are generated,

each corresponding to a particular permutation of the samples.

For each permutation b, we infer for each gene g a set CbðgÞ of

candidate GRNs, and select the best candidate GRN�
b from this

set, as described above. The statistical significance (P-value)

of gene g is estimated as the proportion of permutations

for which the best score is lower than that obtained with

real data:

Pð gÞ ¼
1

B

X

B

b¼1

1 hgðGRN�
bÞ�hgðGRN�Þf g

3.3.3 Correction for multiple hypothesis testing Selecting the

genes for which the best candidate GRN is significant based on

these P-values consists of a multiple hypothesis testing

problem, which can be addressed using the false discovery

rate paradigm (FDR) introduced by Benjamini and Hochberg

(1995). The idea is to control the expected fraction of false

positives (i.e. the FDR) among those GRNs selected. We used

the FDR control procedure proposed by Benjamini and

Yekutieli (2001), which provides strong FDR control for any

kind of dependence between test statistics.

4 RESULTS AND DISCUSSION

As a proof of concept, we used LICORN for the mining of

gene regulatory networks separately on two different gene

expression data sets for S.cerevisiae. The Gasch data set (Gasch

et al., 2000) measures the response of yeast to 173 stress

conditions for 6152 genes. The Spellman data set (Spellman

et al., 1998) consists of a series of 73 microarray experiments

measuring gene expression during the cell cycle for 6178 genes.

These two expression matrices were discretized into three states

�1, 0 and 1: for the Gasch data set, discretized values reflect

the expression levels of each gene in each experimental

condition; for the Spellman data set, discretized values reflect

expression changes between consecutive time points.

Discretization thresholds, as described in the Supplementary

Material (Section 1), were chosen so as to yield balanced

frequencies of 1, �1 and 0 in the data set. No gene selection

was performed at this step: the discretized matrices still contain

6152 and 6178 genes, respectively.

We used a set of 475 regulators compiled by Middendorf

et al. (2004), consisting of 237 known and putative transcription

factors and 250 known and putative signalling molecules,

with an overlap of 12 genes of unknown function. A large

amount of biological knowledge on yeast is available:

function information, contained in the Saccharomyces

Genome Database (SGD) (Cherry et al., 1998), documented

regulations in the YEASTRACT database (Teixeira et al.,

2006), protein–protein interactions in the BioGRID database
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(Stark et al., 2006) and data about DNA-binding to transcrip-

tional regulators in ChIP-chip experiments (Harbison et al.,

2004; Lee et al., 2002). Thus, the transcriptional networks

identified for these two data sets can be checked by comparison

with various sources of information.

4.1 Performance evaluation

4.1.1 Objective measurement of prediction performance Above,

we used MAE as a measure of the discrepancy between actual

gene expression and the gene expression inferred from the

activity of regulators through the GRN. The prediction error of

a particular gene on a given sample set T is defined as the MAE

within T :

e ð gÞ ¼
1

jT j

X

t2T

jgt � ĝtj

Averaging individual prediction errors across all selected

genes leads to the following global measure of prediction error of

the model:

e ¼
1

jGj

X

g2G

eðgÞ

For a prediction measure to be objective, it must

be evaluated on a validation set that has not been used to

build the predictor. Cross-validation involves partitioning

the observed population S into K subgroups S1; . . . ;SK. For

k¼ 1, . . . , K, the predictor is built on the training population

S n Sk, and its performance is evaluated on the test population

Sk. In practice, 10-fold cross-validation (K¼ 10) is often

considered, as this method provides a fair estimate of

the prediction error at a reasonable computational cost

(10 training runs with jSj
10

observations each).

4.1.2 Results Using 10-fold cross-validation, we compared

four methods: (i) a majority vote in which the predicted gene

expression value in the test set is simply the most frequent

expression value for this gene in the training set; (ii) a

re-implementation of the Minreg system, as previously

described (Pe’er et al., 2002). We limited running time by

filtering out the least informative genes—those remaining

almost unchanged in more than 65% of samples—and

we have set the maximal in-degree of target genes in the

networks to 2 (iii) LICORN algorithm without selection of

significant GRNs and (iv) LICORN algorithm with selection of

significant GRNs at the 0.05 FDR level.

We used the same 10 cross-validation subgroups to evaluate

each of the methods, to facilitate comparisons of performance.

The significance of the difference between the prediction rates

of two methods on these subgroups was assessed using a paired

t-test. Cross-validation results are given in Figure 3 for the

Gasch data set. Similar results were obtained for the Spellman

data set (Supplementary Material, Section 2). It should

be noted that the ranking of the methods was the same for all

folds, for both data sets. LICORN significantly outperformed

Minreg, with a P-value in paired t-tests of 1.6 �10�8 for the

Spellman data set, and 6.7 �10�9 for the Gasch data set.

Focusing only on those GRNs selected at a given

FDR threshold resulted in significant further decrease in

MAE: LICORN with FDR5 5% outperformed LICORN, with

P ¼ 1.3� 10�10 for the Spellman data set, and 5.2� 10�13 for

the Gasch data set.

4.2 Biological analysis

We applied LICORN as described in the Section 3, and retained

only those GRNs (gene regulatory networks) identified

as significant with a 5% FDR level by the Benjamini and

Yekutieli (2001) procedure. We chose the 5% level empirically:

it is stringent enough to guarantee that the overwhelming

majority of selected GRNs are true discoveries, but relaxed

enough for almost half the genes to be retained: for the Gasch

data set, 2795 GRNs (of 5703 GRNs) were identified as

significant, whereas for the Spellman data set, 2792 GRNs

(of 5677 GRNs) were identified as significant. We show some

examples of learned GRNs in the Gasch and Spellman data sets

in the Supplementary Material, Section 3. We discuss below the

structural organization of the learned GRNs. We then provide

two kinds of biological evidence to support the inferred GRNs:

(i) documented regulation and high-throughput ChIP-chip data

sets for confirming transcription factor-target interactions;

(ii) protein–protein interactions and functional evaluation

for confirming co-regulator cooperativity.

4.2.1 Overall network structure Analysis of the structure

and organisation of the inferred networks revealed several

notable features. In both stress response GRNs (Gasch data

set) and cell cycle GRNs (Spellman data set), we found about

10 000 interactions between regulators and target genes.

On average, each target is regulated by three regulators in

both data sets. Regulators in stress response conditions have a

greater influence than cell cycle regulators, as they target more

genes simultaneously (on average 30 targets versus 23 targets).

We have shown that the distribution of the outgoing

connectivity is best approximated by a power-law equation

(Supplementary Material, Section 4.2). This allowed us

to detect regulator hubs (Lee et al., 2002) with high out-going

connectivity (e.g. the heat shock and osmolarity stress regulator

PPT1 regulates 300 target genes). For most regulators in both

data sets, a linear dependence was observed between

Fig. 3. Results of the 10-fold cross-validation on the Gasch data set:

comparison of the MAE for all GRNs for the test set for each fold. We

recall that 0 �MAE � 2. Folds were sorted in increasing order of MAE

for the method ‘LICORN (FDR50.05)’.
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the number of target genes regulated by a given regulator and

the number of co-regulators of that regulator (Supplementary

Material, Section 4.3). However, regulators from the

Spellman data set have a higher number of co-regulators than

do regulators from the Gasch data set (on average 16

co-regulators versus 12 co-regulators), indicating that there

are more cooperative associations between regulators in cell

cycle GRNs.

All these results, fully detailed in the Supplementary Material

(Section 4), are consistent with recent advances (Balaji et al.,

2006; Guelzim et al., 2002; Luscombe et al., 2004) concerning

the characterization of topological transcriptional network

features in yeast and provide the first evidence of the relevance

of inferred GRNs.

4.2.2 Evaluating transcription factor-target interactions Firstly,

as expected, we found that the transcription factors frequently

occurring in GRNs inferred from the Gasch data set (e.g.

MSN4, XBP1, YAP1, CAD1) played a major role in the

response to stress and that many frequent transcription factors

in the Spellman data set (e.g. MBP1, FKH1, XBP1, SWI4,

ACE2) were involved in the cell cycle. In addition, the SGD

annotations, concerning the role (activator/inhibitor) of tran-

scription factors, when available, corresponded to the role most

frequently assigned within the GRNs inferred, for both data

sets (Supplementary Material, Section 5.1). We also showed

that LICORN-inferred TF-target interactions have a significant

overlap with condition-specific TF-target interactions obtained

by Luscombe et al. (2004) with their recent integrative method

when applied on the same data sets (Supplementary Material,

Section 5.2).

The chromatin immunoprecipitation (ChIP) method profiles

the binding sites for each transcription factor throughout the

entire genome. We compared our results for the Gasch and

the Spell-man data sets respectively with those for a stress-

response (Harbison et al., 2004) and a cell cycle (Lee et al.,

2002) ChIP-chip data sets. For each condition, we then checked

the overlap of both sets of prediction with more than 12 000

demonstrated TF-target relationships described in diverse

studies, organized in the YEASTRACT knowledge base

(Teixeira et al., 2006).

In Figure 4, we show the relative overlap between the three

sets of identified interactions. For the Gasch data set, 47%

of the relationships predicted by LICORN were confirmed by

YEASTRACT, and 29% of these relationships were also

confirmed by the ChIP-chip predictions. Overall, 25%

of LICORN predictions were confirmed by ChIP-chip predic-

tions, and 17% of ChIP-chip predictions were confirmed by

LICORN. Similar proportions were obtained for predictions

based on the Spellman data set: 50% of the relationships

predicted by LICORN were confirmed by YEASTRACT, and

32% of these relationships were also confirmed by the

ChIP-chip predictions. Overall, 26% of the LICORN predictions

were confirmed by ChIP-chip predictions and 20% of the

ChIP-chip predictions were confirmed by LICORN. The agree-

ment between LICORN results and regulation documented

in YEASTRACT is consistent with the agreement between

ChIP-chip predictions and this database. For both data sets,

�40% of the regulations learned by LICORN were not supported

by YEASTRACT or by ChIP-chip experiments. There are

several possible explanations for this: (i) the usual noise in

expression data and the 5% FDR yield a number of false

discoveries (ii) large portions of the underlying true network

remain unknown and some of these interactions, currently

unsupported experimentally, may enable researchers to propose

new hypotheses potentially corresponding to new regulation

relations.

Evaluation of the non-documented candidate genes under

control of a specific TF in GRNs learned from the Gasch data

set revealed some biological connections. These connections

were obvious for the GAT1 TF which is know to be a

transcriptional activator of genes involved in nitrogen catabo-

lite repression (Coffman et al., 1995) and associated in our

results to several non-documented genes among which DAL3

and YLR164W. Both genes are associated directly or indirectly

with nitrogen utilization (Scherens et al., 2006; Yoo and

Cooper, 1991). More interestingly, YAP1, a transcription

factor required for oxidative stress tolerance (Schnell et al.,

1992) was found to be associated with the EAF3 and TPP1

genes. Both these genes have functions classified as DNA repair

biological process. EAF3, a chromatin acetylase component

(Eisen et al., 2000), is probably involved in transcription-

coupled repair, a DNA repair mechanism associated with

chromatin modifications (Teng et al., 2005). TPP1 repairs

endogenous damage to double-stranded DNA (Vance and

Wilson, 2001). As oxidative stress is known to induce damages

in proteins, lipids and DNA, it seems logical that YAP1,

in addition to controlling genes necessary to cope with oxygen

reactive species, also induces the transcription of genes involved

in DNA repair. Finally, this method can be used to identify less

direct connections that are nonetheless biologically sound.

An example is provided by the BAS1 TF, which is involved in

regulating the basal and induced expression of genes of the

purine and histidine biosynthesis pathways (Daignan-Fornier

and Fink, 1992). Among the non-documented genes predicted

to be controlled by BAS1 we found, DPH5, encoding a

Fig. 4. LICORN interaction predictions and ChIP-chip interaction results

(with P-values50.001), compared with experimental evidence concern-

ing regulation collected from YEASTRACT: (A) The number of TF-

target interactions, for the 82 TFs shared by LICORN-inferred GRNs

from the Gasch data set, the stress-response ChIP data set (Harbison et

al., 2004) and YEASTRACT. (B) Number of TF-target interactions for

the 69 transcription factors shared by LICORN-inferred GRNs from the

Spellman data set, normal growth ChIP data set (Lee et al., 2002) and

YEASTRACT.
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methyltransferase required for the synthesis of a modified

histidine residue (Mattheakis et al., 1992) and TRM1, encoding

an N2,N2-dimethylguanosine-specific tRNA methyltransferase

(Ellis et al., 1986). Although not directly involved in the purine

or histidine biosynthetic pathways, their functions depend on

these pathways. It is therefore reasonable to assume that they

may be co-regulated with the well-identified BAS1 target genes,

consistent with the coupling of main pathways with secondary

ones. These interesting new possibilities require experimental

testing.

4.2.3 Evaluating candidate co-regulators We evaluated

cooperativity between the co-regulators inferred by LICORN,

based on two assumptions: (i) the existence of protein–protein

interactions between co-regulators implies participation in the

same regulatory mechanism, and (ii) targets contributing to

similar biological process are regulated by the same control

mechanism. In Table 1, we have listed the 20 most frequent

regulator pairs in co-activator or co-inhibitor sets in GRNs

learned from the Gasch data set. For each co-regulator pair,

we have checked whether the two co-regulators are known to

interact (protein or genetic interaction), based on information

in the BioGRID database. In total, 60% of the co-regulator

pairs in the list were reported to interact in BioGRID.

This proportion is high and confirms the validity of LICORN

predictions, with P-value close to 0 (510�15). For all

co-regulator pairs, we found GO-Slim terms (high-level GO

terms that represent the major biological processes in

S.cerevisiae) significantly shared by at least 40% of the target

genes, using the GO-Slim mapping tool of the SGD (Cherry

et al., 1998), demonstrating the functional robustness of the

co-regulators inferred by LICORN.

The pairs of co-regulators in Table 1 include the known heat

shock and osmolarity stress regulators TPK1, PPT1 and USV1,

which occur at high frequency. This observation correlates well

with the results obtained by Segal et al. (2003) and Middendorf

et al. (2004) for the Gasch data set. Segal et al. (2003) identified

these proteins as the master regulators for this data set, as they

occurred in more than 5 of the 50 inferred modules of co-

regulated genes and their regulators. Four of the eight co-

regulator pairs not found in BioGRID were identified by Segal

et al. (2003). Moreover, Segal et al. (2003) did not identify some

of our confirmed co-regulators (e.g. TPK1-TPK2, GCN20-

GCN1 and CLB6-CLB5), as in cases in which several

regulators are involved in the same regulatory event, this

method typically identifies only one representative of the group.

Finally, we obtained similar results for the list of the 20 most

frequent co-regulator pairs involved in the GRNs learned from

the Spellman data set (see Supplementary Material,

Section 6.1). We also found significant agreement between the

extent of cooperative associations between regulators

and physical interactions between regulatory proteins during

the yeast cell cycle, as reported by de Lichtenberg et al. (2005).

More details are given in the Supplementary Material

(Section 6.2). These results confirm those of recent studies

(Balaji et al., 2006; Nagamine et al., 2005) connecting regulator

cooperativity and protein–protein interactions.

5 CONCLUSION

We provide here a model for cooperative regulation and an

algorithm, LICORN, for the inference of cooperative regulation

from gene expression data. We used a permutation-based

procedure selecting the most statistically significant regulation

networks and have shown that this selection step improves

prediction performance in a 10-fold cross-validation frame-

work. Moreover, validation on two yeast data sets showed that

LICORN was a powerful data mining tool for the analysis of gene

expression. The results obtained with this algorithm were

consistent with published experimental results. The labelled

relationships (activation/inhibition) found with our method do

not require post-treatment analysis for interpretation, unlike

the combinatorial interactions learned with Bayesian network

algorithms (Friedman et al., 2000; Pe’er et al., 2002).

Cooperative regulation patterns cannot be identified

by clustering or pairwise methods (Woolf and Wang, 2000),

and are only partly revealed by constrained Bayesian or

decision tree-based techniques, such as those used in previous

studies (Middendorf et al., 2004; Pe’er et al., 2002; Segal et al.,

2003). Rather than selecting regulators independently, LICORN

efficiently reduces the search space for the candidate regulators

of the targets to the sub lattice of frequent co-regulators.

This decreases the number of regulator combinations to be

evaluated, and LICORN does not require strong a priori selection

criteria based on uncertain or incomplete information, such as

Table 1. List of the 20 most frequent co-regulator pairs involved in the

GRNs learned from the Gasch data set

Co-regulators NT BG Shared GO-Slim terms

LSG1 PPT1 93 N* Ribosome biogenesis and assembly

protein biosynthesis

TPK1 TPK2 74 Y Response to stress, RNA metabolism

RAP1 PPT1 72 N RNA metabolism

PDE1 GLC8 49 N Protein biosynthesis

organelle organization and biogenesis

LSG1 YVH1 44 Y Organelle organization and biogenesis

ribosome biogenesis and assembly

MSN4 TPK1 42 Y Response to stress

XBP1 TOS8 39 N* Translation

GIS1 TPK1 35 Y* Response to stress

PHO2 BAS1 32 Y RNA metabolism

MSN4 USV1 30 N* Cell wall organization and biogenesis

BCY1 TPK1 29 Y Morphogenesis, response to stress

PPT1 YVH1 29 N Ribosome biogenesis and assembly

BMH2 TPK1 27 Y Protein catabolism, response to stress

CLB6 CLB5 23 Y Cell cycle, DNA metabolism

MSN4 TPK2 23 Y RNA metabolism

GCN20 GCN1 22 Y Sporulation

XBP1 USV1 20 N* Organelle organization and biogenesis

FAR1 CLN2 19 Y Cell wall organization and biogenesis

protein modification

PPT1 RAS1 19 N Response to stress

BMH2 BMH1 19 Y Carbohydrate metabolism

For each co-regulator pair, the number of targets (NT) and the existence or

otherwise of known protein–protein interactions in the BioGRID database (BG)

are indicated, together with the list of GO-Slim terms significantly shared by more

than 40% of their target genes. (*) indicates that the co-regulators found were

identified in the results of Segal et al. (2003).

LICORN: learning cooperative regulation networks
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DNA-binding data (Middendorf et al., 2004). LICORN thus

speeds up the inference of gene regulatory networks including

co-activator and co-inhibitor sets. LICORN also avoids the use of

‘gene modules’ (Segal et al., 2003) for factorizing the search for

the best regulation network. Modularity may be an organizing

principle of regulatory networks, but it may be too coarse for

the learning of specific regulatory programs (LICORN learns a

regulation network for each gene). Instead, partial overlap of

the regulator sets for a set of target genes, once inferred,

can be used as an alternative measurement of the distance

between genes.

Future work should focus on extending the LICORN model, to

increase accuracy and generalization. For instance, LICORN can

be extended to the learning of other classes of combinatorial

regulation, in which several co-activator or co-inhibitor sets

may function independently, or in which regulatory relation-

ships may link the regulators themselves. This requires care,

to avoid problems of over-fitting, given the small size of the

training sets available. Finally, the gene regulatory networks

learned by LICORN from expression data can be enriched by

integrating various gene networks from diverse data sources

(motif networks, ChIP-chip data, protein–protein interactions,

functional category, etc.). This suggests the use of a logical

representation for gene networks, and the use of adapted

integrative algorithms, such as those developed in Inductive

Logic Programming (Fröhler and Kramer, 2006).
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                   Breast-conserving therapy is the preferred treatment for patients 

with early-stage breast cancer ( 1 ). It offers equal local control 

and overall survival ( 2 ) and superior psychosocial outcomes ( 3 , 4 ) 

compared with modified radical mastectomy. However, an ipsilat-

eral breast cancer recurrence can be traumatizing and can lead to 

death ( 2 ). 

 When an ipsilateral breast cancer develops, the new tumor can 

either be a true recurrence — that is, a regrowth of clonogenic cells 

that were not removed by surgery or killed by radiotherapy — or a 

new primary tumor that arises from the remaining breast tissue ( 5 ). 

Several defi nitions have been used to distinguish true recurrences 

from new primary tumors. Initially, these distinctions were based 
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  ARTICLE  

     High-Resolution Mapping of DNA Breakpoints to 

Define True Recurrences Among Ipsilateral 

Breast Cancers  

    Marc A.      Bollet   ,      Nicolas     Servant   ,      Pierre     Neuvial   ,      Charles     Decraene   ,      Ingrid     Lebigot   ,      Jean-Philippe     Meyniel   , 

     Yann     De Rycke   ,      Alexia     Savignoni   ,      Guillem     Rigaill   ,      Philippe     Hupé   ,      Alain     Fourquet   ,      Brigitte     Sigal-Zafrani   , 

     Emmanuel     Barillot   ,      Jean-Paul     Thiery                  

   Background   To distinguish new primary breast cancers from true recurrences, pangenomic analyses of DNA copy 

number alterations (CNAs) using single-nucleotide polymorphism arrays have proven useful.  

   Methods   The pangenomic profiles of 22 pairs of primary breast carcinoma (ductal or lobular) and ipsilateral breast 

cancers from the same patients were analyzed. Hierarchical clustering was performed using CNAs and 

DNA breakpoint information. A partial identity score developed using DNA breakpoint information was 

used to quantify partial identities between two tumors. The nature of ipsilateral breast cancers (true recur-

rence vs new primary tumor) as defined using the clustering methods and the partial identity score was 

compared with that based on clinical characteristics. Metastasis-free survival was compared among 

patients with primary tumors and true recurrences as defined using the partial identity score and by clini-

cal characteristics. All statistical tests were two-sided.  

   Results   All methods agreed on the nature of ipsilateral breast cancers for 14 pairs of samples. For five pairs, the 

clinical definition disagreed with both clustering methods. For three pairs, the two clustering methods 

were discordant and the one using DNA breakpoints agreed with the clinical definition. The partial identity 

score confirmed the nature of ipsilateral breast cancers as defined by clustering of DNA breakpoints in 21 

of 22 pairs. The difference in metastasis-free survival of patients with new primary tumors and those with 

true recurrences was not statistically significant when tumors were defined based on clinical and histo-

logic characteristics (5-year metastasis-free survival: 76%, 95% confidence interval [CI] = 52% to 100% for 

new primary tumors and 38%, 95% CI = 17% to 83% for true recurrences;  P  = .18; new primary tumor vs 

true recurrence, hazard ratio = 2.8, 95% CI = 0.6 to 13.7), but the difference was statistically significant 

when tumors were defined using the partial identity score (5-year metastasis-free survival: 100% for new 

primary tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).  

   Conclusions   DNA breakpoint information more often agreed with the clinical determination than CNAs in this popula-

tion. The partial identity score, which was calculated based on DNA breakpoints, allows statistical discrim-

ination between new primary tumors and true recurrences that could outperform the clinical determination 

in terms of prognosis.  

   J Natl Cancer Inst 2008;100: 48  –  58   
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on the location of the ipsilateral breast cancer (ie, the farther from 

the initial primary tumor, the more likely it is to be a new primary 

tumor) and on shared common histopathologic criteria (eg, type, 

grade, and hormone receptor status) ( 6  –  10 ). In the quest for addi-

tional ways to distinguish new primary breast tumors from true 

breast cancer recurrences, biologic studies of clonal relationships 

between the new and original tumor have also been performed. 

These studies have relied on ploidy ( 5 , 11 ), loss of heterozygosity 

( 12  –  14 ), p53 analysis ( 15 ), or X chromosome inactivation ( 16 ) or 

have been based on DNA copy number alterations (CNAs) ( 17  –

  19 ). CNA data can be obtained by high-resolution techniques, 

such as array-based comparative genomic hybridization or single- 

nucleotide polymorphism (SNP) arrays ( 20 ). One of the most 

commonly used ways to look at clonal relatedness using pange-

nomic data is to perform an unsupervised hierarchical clustering 

that organizes primary breast tumors and ipsilateral breast cancers 

on the basis of their overall genomic similarity ( 18 , 19 ). These 

measures of similarity are summarized in a dendrogram, in which 

the pattern and length of the branches refl ect the relatedness of the 

samples in terms of DNA CNAs. 

 Changes in DNA copy numbers occur at chromosomal loca-

tions called breakpoints. We hypothesized that the precise loca-

tions of these breakpoints could serve as markers for clonal 

relatedness and that we could distinguish true recurrences from 

new primary tumors by the number of common breakpoints in the 

ipsilateral breast cancer and the primary tumor. In this study, we 

fi rst aimed to test the added value of examining the clustering of 

breakpoints (over CNAs) when determining the nature of the 

ipsilateral breast cancer. Second, we aimed to develop a score to 

quantify the partial identity between two tumors according to their 

clonal relatedness (determination of the partial identity score). 

Third, we examined prognosis in terms of metastasis-free survival. 

In each case, these methods were compared with the clinical deter-

mination of the nature of the ipsilateral breast cancer. 

  Subjects and Methods 

  Selection of Patients 

 Specimens from patients with primary breast cancers and ipsilateral 

breast cancers were selected from freshly frozen samples of the 

Institut Curie tissue bank according to the following criteria: the 

primary tumor was either ductal or lobular invasive breast carci-

noma; the patient was 49 years or younger at diagnosis of the initial 

tumor; all patients were premenopausal; and there was no previous 

history of cancer, except for one nonmelanoma skin cancer. All 

patients had been treated at the Institut Curie by breast-conserving 

surgery, including dissection of the axillary lymph nodes in most 

patients, followed by radiotherapy to the breast with or without a 

boost to the tumor bed (external beam radiotherapy or brachyther-

apy) and/or to the regional lymph node – bearing areas if indicated 

and, when required, systemic treatment as part of their initial man-

agement. For all tumors, histopathologic characteristics were 

reviewed by one pathologist (B. Sigal-Zafrani). 

 To ensure that the data would be informative, we restricted 

genomic analyses to tumors (primary and recurrences) in which at 

least 50% of cancer cells had been assessed by hematoxylin, eosin, 

and saffron staining of sections from snap-frozen samples. This 

study reports a series of 22 patients with assessable pairs of primary 

breast tumors and ipsilateral breast cancers. 

 To evaluate the genomic features of a population with similar 

breast cancers, 44 control patients from the pool of patients with 

primary tumors who met the above selection criteria were matched 

to the case patients in accordance with their age at diagnosis 

and adjuvant treatment. The control patients had not experienced 

an ipsilateral breast recurrence within the time span of the local 

recurrence of the index patient. 

 This research was approved by the institutional review boards 

of the Institut Curie. No patient refused the use of her tumor 

specimens for research purposes.  

  Clinical and Histologic Studies 

 The histologic/biologic properties of the breast cancers were 

determined by subjecting tissue sections to immunohistochemical 

analysis for the estrogen receptor (clone 6F11, 1   :   200 dilution; 

Novocastra, Newcastle Upon Tyne, England) and progesterone 

receptor (clone 1A6, 1   :   200 dilution; Novocastra) antibodies. 

Tumors were considered to be positive for these receptors if at 

least 10% of the invasive tumor cells in a section showed nuclear 

staining ( 21 ). 

 In accordance with theories of the clonal evolution of tumor 

cell populations, ipsilateral breast cancers were clinically defi ned as 

true recurrences if they had the same histologic subtype (ductal or 

  CONTEXT AND CAVEATS 

  Prior knowledge 

 Detecting changes in DNA copy number using single nucleotide 

polymorphism arrays has been a useful tool in distinguishing new 

primary breast tumors from recurrences.  

  Study design 

 Comparison of hierarchical clustering of DNA copy number and 

DNA breakpoints, an identity score based on the DNA breakpoint 

information, and clinical characteristics to accurately designate 

ipsilateral breast tumors as new primary tumors or true recur-

rences in breast tumor pairs from 22 patients.  

  Contributions 

 For 14 of the pairs, all methods agreed on the designation of the 

ipsilateral breast cancer as a new primary tumor or a true recur-

rence; however, for five pairs and three pairs, both clustering meth-

ods and clustering by DNA breakpoints, respectively, agreed with 

the clinical definition. For 21 pairs, the partial identity score con-

firmed the designation of the tumor as defined by both clustering 

methods. Patients with recurrences had poorer metastasis-free 

survival than patients with new primary tumors, according to the 

partial identity score, but this difference was not statistically signifi-

cant using the clinical definition.  

  Implications 

 The partial identity score may outperform clinical determination 

for the prognosis of ipsilateral breast cancers.  

  Limitations 

 Freshly frozen tissue samples that contain a large number of cells 

from both the initial primary tumor and the ipsilateral tumor are 

needed to perform the DNA breakpoint analyses.   
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lobular) and a similar or increased growth rate, similar or loss of 

dependence on either estradiol or progesterone, and similar or 

decreased differentiation as the initial tumor ( 22 ).True recurrences 

also had to share with their primary tumors the same breast quad-

rant. Thus, new primary tumors were clinically defi ned as such 

when the ipsilateral breast cancer had occurred in a different loca-

tion, had a distinct histologic type, or had less aggressiveness fea-

tures (lower grade, appearance of hormonal receptors) than the 

initial tumor.  

  Genomic Studies 

 Total genomic DNA was extracted from tissue samples using a 

variation of the standard phenol   :   chloroform protocol ( 23 ). Genomic 

DNA was quantified by spectrophotometry using a ND-1000 

Spectrophotometer (NanoDrop, Wilmington, DE), and quality 

was assessed by 0.8% agarose gel electrophoresis. 

 Genomic DNA from each sample was prepared for microarray 

hybridization using the GeneChips Mapping 50K Xba Assay Kit 

(Affymetrix Inc., Santa Clara, CA). Briefl y, 250 ng of total genomic 

DNA was digested with the restriction enzyme XbaI and ligated to 

an adaptor sequence (XbaI adaptator: 5 ′ -ATTATGAGCACGAC

AGACGCCTGATCT-3 ′  and 5 ′ -CTAGAGATCAGGCGTCTG

TCGTGCTCATAA-3 ′ ) that recognizes the cohesive four base 

pair (bp) region (3 ′ -GATC-5 ′ ). A generic primer (5 ′ -ATT ATG 

AGC ACG ACA GAC GCC TGA TCT-3 ′ ) that recognizes the 

adaptor sequence was used to preferentially amplify adaptor-

ligated DNA fragments 250 – 2000 bp in size by the optimized 

polymerase chain reaction (PCR) conditions, according to the 

manufacturer’s instructions. The amplifi ed DNA was then frag-

mented by DNase treatment and hybridized to the Affymetrix 

GeneChips Human Mapping 50K array Xba 240 (Affymetrix), 

according to the manufacturer’s instructions. Washing, staining, 

and scanning of chips were performed using materials and methods 

provided by the manufacturer. The pangenomic profi les of the 22 

pairs of primary tumors/ipsilateral breast cancers are available on 

ACTuDB ( 24 ) ( http://bioinfo.curie.fr/actudb/ ). Human mapping 

50K array Xba 240 annotations and sequence fi les are available on 

the Affymetrix website ( http://www.affymetrix.com/support/

technical/byproduct.affx?product=100k ).  

  Metastasis-Free Survival 

 Metastasis-free survival was estimated by the Kaplan – Meier method 

( 25 ) and compared between the groups of patients defined as having 

been diagnosed with either a true recurrence or a new primary 

tumor using the log-rank test. The confidence interval (CI) of the 

hazard ratio was obtained using a semiparametric Cox model ( 26 ).  

  Statistical Methods 

  Copy Number Alteration Determination.       SNP data were gath-

ered from the pangenomic profile and analyzed using the iterative 

and alternative normalization of copy number SNP array 

(ITALICS) algorithm with default parameters, which simultane-

ously normalizes the genomic profile and detects the biologic sig-

nal. Briefly, ITALICS alternatively estimates the biologic signal 

(ie, the DNA copy number at each SNP locus) with the gain and 

loss analysis of DNA algorithm ( 27 ) and normalizes the data to 

 correct the nonrelevant effects (CG content and fragment length of 

PCR products, oligonucleotide CG content, and SNP effect). 

These two steps are repeated iteratively to improve the biologic 

signal estimation until no more improvement is seen. ITALICS 

outperforms other methods of normalization. The result of this 

process is a segmented genomic profile that consists of regions of 

homogeneous DNA and information on their corresponding copy 

numbers. Each region is given a smoothing value (ie, the median of 

the SNP copy numbers within the region) and a status (ie, gain, 

normal, or loss). 

 We defi ned a breakpoint as 1) a SNP locus located at a change 

of status (eg, normal/gain or gain/loss) or as 2) a SNP locus located 

at a change of smoothing value that occurred within a region 

of gain or loss, thus defi ning different levels of gain or loss among 

these regions. Additional breakpoints were also added at the 

extremities of the chromosome to take into account their gain or 

loss whenever applicable. Because some breakpoints could be due 

to copy number variations that occur in healthy individuals, break-

points arising in the copy number variable regions in the HapMap 

collection ( 28 ) were excluded. The visualization and further analy-

sis of the data was performed through a graphic user interface, 

Visualization and analysis of array CGH, transcriptome and other 

molecular profi les ( 29 ).  

  Hierarchical Clustering.    Similarity between genomic profiles.     We 

considered two measures of similarity among the genomic profiles 

of a primary tumor and ipsilateral breast cancer. First, we used 

the Pearson correlation between their CNA profiles. Second, we 

used a measure  M  that is derived from the percent concordance 

proposed by Waldman et al. ( 18 ) and adapted from Dice’s formula 

( 30 ) and corresponds to the number of common breakpoints divided 

by the mean number of breakpoints in either a primary tumor or an 

ipsilateral breast cancer.  M  is computed as follows, for a ( i , j ) pair.
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in which  Si  and  S    j    are the subsets of breakpoints present in the SNP 

arrays of the primary tumor,  i , and ispilateral breast cancer,  j . An 

example of  M  is given in Supplementary Fig. 1 (available online). 

 Two tumors had common breakpoints if the following condi-

tions were fulfi lled: 1) the changes in copy number occurred at 

the exact same locus and 2) the changes in copy number were of the 

same nature (ie, either an increase or a decrease in numbers) 

in the two tumors.  

  Assessing clonal relatedness from a dendrogram.       We assumed 

that clonal unrelatedness was revealed by the clustering apart of 

the two tumors (primary tumor and ipsilateral breast tumor) from 

the same patient, reflecting that they were more similar to carcino-

mas of other patients than to each other. In contrast, the clustering 

together of two tumors from the same patient indicated clonal 

relatedness among them. For both measures of similarity (Pearson 

coefficient and  M  measure), we used Ward’s criteria ( 31 ) as an 

agglomerative method in the hierarchical clustering.   

  Partial Identity Score.    Score definition.     To distinguish true recur-

rences from new primary tumors, we developed a partial identity score 
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that is based on the  M  measure of similarity described above. The 

score reflects the number of common breakpoints among the ipsilateral 

breast cancer and the primary tumor. In addition, because very frequent 

breakpoints may be less informative than frequent ones in estimating 

the clonal relatedness between two tumors, the added value of each 

breakpoint was weighted according to its frequency among the samples 

of 44 control patients. The partial identity score (PS) was thus

 

PS
/ [ ]

i

k
k S S

k
S

k
S

i j

i j

,

∈

∈ ∈

=
× + −

,j

k k

F

F F

( )

( ) ( )

1

1 2 1 1

−∑

−∑ ∑

∩

2

( )

 

in which  Fk  represents the frequency of appearance of the break-

point  k  calculated in the series of the 44 control breast cancers. An 

example of a partial identity score is given in Supplementary Fig. 1 

(available online).  

  Statistical testing for partial identity.       The partial identity score 

was calculated for all 462 possible “artificial pairs” (462 = 22 × 21, 

because each of the 22 primary tumors could be artificially paired 

with the ipsilateral breast cancer of the 21 other patients,  see   Table 3  

notes). The distribution under the null hypothesis, H0, of no par-

tial identity between the two tumors was estimated using all 462 

possible artificial pairs. We rejected H0 with a type I error fixed at 

5%, that is, we considered that a local recurrence shared partial 

identity with a primary tumor when the score was higher than the 

upper 5th percentile in the distribution of artificial pairs. The score 

was then calculated for the “natural pairs,” that is, a primary tumor 

and its ipsilateral breast cancer occurring in the same patients ( see  

 Table 3  notes). Ipsilateral breast cancers from pairs with scores 

higher than this cutoff, that is, with shared partial identity, were 

considered to be true recurrences.  

  Robustness of the score.       The robustness of the partial identity 

score was assessed by randomly selecting two subgroups of 15 and 7 

patients from the population of 22 breast cancer patients. The first 

subgroup of 15 patients was used to compute the scores of the artifi-

cial pairs and to record the cutoff score corresponding to the 95th 

percentile. This score was then used to determine the status of each 

of the natural pairs in the seven patients of the other subgroup. To 

make the comparison statistically sound, each process was repeated 

1000 times. The variation of the cutoff scores was assessed by box plot 

representation. The consistency of the ipsilateral breast cancer status 

was calculated as the percentage of extractions when the status of this 

pair was respectively a true recurrence or a new primary tumor. 

 All statistical tests were two-sided.  P  values less than .05 were 

considered to be statistically signifi cant.     

  Results 

  Clinical and Histologic Features 

 The clinical and tumor characteristics of 22 patients whose tumors 

had exploitable SNP arrays were analyzed ( Tables 1  and  2 ). 

According to clinical and histologic criteria ( Table 2 ), nine of the 

22 ipsilateral breast cancers were new primary tumors and the other 

 Table 1.      Patient and tumor characteristics of the 22 patients whose tumors (both PT and IBC) had exploitable SNP arrays *   

  Pair Age, y Family Prob BRCA1 BRCA2 pT pN

Surgical 

margin, 

mm

Radiotherapy dose, Gy
No. of 

cycles of 

chemotherapy  †   

 Whole 

breast

Tumorectomy 

bed  

  P1 23.1 0 20 0 2 1 0  ≥ 4 54 54 4 

 P2 42.1 1 NA NA NA 1 0  ≥ 4 50 50 0 

 P3 42.6 0 NA NA NA 1 0  ≥ 4 54 54 0 

 P4 48.2 1 44 0 0 1 0  ≥ 4 50 50 0 

 P5 45.5 0 NA NA NA 1 1  ≥ 4 50 60 4 

 P6 35.7 0 8 0 0 2 0  ≥ 4 51 66 4 

 P10 46.2 0 NA NA NA 2 0 0 – 3 50 70 0 

 P11 49.0 1 95 0 1 2 0  ≥ 4 50 64 0 

 P12 48.9 1 NA NA NA 1 0  ≥ 4 52 52 0 

 P13 45.0 0 NA NA NA 2 0  ≥ 4 51 67 6 

 P14 43.6 0 NA NA NA 1 0 0 – 3 50 50 0 

 P15 46.1 0 NA NA NA 1 0  ≥ 4 50 65 0 

 P16 48.4 0 NA NA NA 1 0  ≥ 4 50 66 0 

 P18 27.9 1 82 0 0 2 0 0 – 3 50 70 4 

 P19 49.1 0 NA NA NA 2 0 0 – 3 51 65 4 

 P20 47.1 0 NA NA NA 2 1 0 – 3 45 65 4 

 P21 46.3 0 NA NA NA 1 0 DCIS 50 70 0  ‡   

 P22 35.0 0 NA NA NA 2 2  ≥ 4 50 75 6  ‡   

 P23 30.8 0 NA NA NA 2 0  ≥ 4 50 66 4 

 P24 47.7 0 NA NA NA 1 1  ≥ 4 50 60 6 

 P25 43.0 0 NA NA NA 1 0 0 – 3 45 60 0  ‡   

 P26 30.5 0 NA NA NA NA 1  ≥ 4 52 70 4  ‡    

  *   PT = primary tumor; IBC = ipsilateral breast cancer; SNP = single nucleotide polymorphism; Family = family history of breast cancer in the first two degrees 

(0 = no, 1 = yes); Prob = age-specific risk estimates of breast cancer according to the Claus Model  (32) ; BRCA1 and BRCA2 = mutation found in BRCA1 and 

BRCA2 (0 = not found, 1 = deleterious, 2 = possibly deleterious, NA = not available); pT = histologic tumor classification according to Union Internationale 

Contre le Cancer (UICC) ( 33 ); pN = histologic lymph node classification according to UICC; DCIS = ductal carcinoma in situ.  

   †    Chemotherapy consisted of 5-fluorouracil, anthracyclines, and cyclophosphamide.  

   ‡    Patients were treated with tamoxifen for 5 years.   
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13 were true recurrences. Ipsilateral breast cancers occurred at a 

median time of 3.1 years after the initial breast cancer diagnosis 

(range = 0.8 – 6.5 years). In three of 22 (14%) patients, ipsilateral 

breast cancers occurred in a different quadrant than the initial 

tumor; all of these were defined clinically as new primary tumors.          

  Genomic Studies 

 The pangenomic profiles of a primary tumor and its ipsilateral 

breast cancer revealed common breakpoints, with a precision 

within a SNP that can be used as markers of their clonal related-

ness. Pair 5 is given as an illustration ( Fig. 1 ).     

 The median number of breakpoints per array was statistically 

signifi cantly higher for ipsilateral breast cancers (median = 71, 

range = 21 – 433) than for primary tumors (median = 52, range = 

4 – 646) ( P  = .001) ( Table 3 ). The mean number of common break-

points per pair was also statistically signifi cantly higher for natural 

pairs (mean = 18.8, SD = 18.8) than for artifi cial pairs (mean = 4.1, 

SD = 3.1) ( P  = 0.5 × 10  � 6 ).      

  Clustering by Copy Number Alterations or Breakpoints 

 According to hierarchical clustering by DNA CNAs ( Fig. 2 ) and by 

breakpoints ( Fig. 3 ), five and six ipsilateral breast cancers, respec-

tively, were new primary tumors. The two clustering methods and 

the clinical definition agreed for 14 pairs ( Table 2 ). However, for five 

pairs (P6, P12, P16, P20, P22), the clinical definition disagreed with 

both clustering methods and, for three others (P1, P2, P15), the 

clustering by breakpoints disagreed with that by CNAs but agreed 

with the clinical definition. The recurrences in pairs 1 and 2 were 

identified as true recurrences by the CNA clustering but as new pri-

mary tumors by the clinical definitions because of the reappearance 

of estrogen receptors in the pair 1 ipsilateral breast cancer and differ-

ent histologic type (ductal instead of lobular carcinoma) in pair 2. In 

pair 15, CNA clustering did not find a true recurrence, whereas the 

clinical definition did. No statistically significant differences in clini-

cal and histologic characteristics between the patients diagnosed with 

new primary tumors or true recurrences were observed by break-

point information, apart from a suggestion for patients with new pri-

mary tumors to be younger and to have a more frequent family 

history of breast cancer (Supplementary Table 1, available online).          

  Partial Identity Score 

 According to the partial identity score reported for each pair in 

 Table 2 , 15 ipsilateral breast cancers were true recurrences and 

seven were new primary tumors ( Fig. 4 ). With a type I error set at 

5%, the partial identity score disagreed with clustering by break-

points in pair 12 only; the clinical definition was new primary tumor 

because of a change in tumor location. When the score was deter-

mined according to Waldman’s percent of concordance without 

either weighing the influence of the coexistence of breakpoints 

according to their frequency in a similar population or excluding 

 Table 2 .     Histologic characteristics of the primary tumors and their ipsilateral breast cancers: distinctions between new primary tumors 
and true recurrences according to clinical criteria or clustering methods *   

  Pair

Primary tumors

Time, y

Ipsilateral breast cancers

New primary tumors or 

true recurrences

Score  Type Grade ER PR Location Type Grade ER PR CNA BKP Clinical Divergence  

  P1 D 3 0 40 6.5 1 D 2 90 15 TR NP  ‡  NP CNA 0.020 

 P2 D 2 90 40 5.3 1 L 1 90 70 TR NP  ‡  NP CNA 0.000 

 P3 D 3 30 80 3.1 1 D 3 60 90 TR TR  ‡  TR No 0.465 

 P4 L 1 90 80 3.5 1 L 2 90 80 TR TR  ‡  TR No 0.278 

 P5 D 2 90 40 2.0 1 D 2 80 90 TR TR  ‡  TR No 0.555 

 P6 L 1 90 100 3.1 1 L 2 70 70 NP NP  ‡  TR Clinical 0.104 

 P10 L 3 80 95 5.0 0 D 2 70 40 NP NP  ‡  NP No 0.059 

 P11 L 3 0 0 6.3 1 D 3 0 0 NP NP  ‡  NP No 0.029 

 P12 L 2 90 50 2.9 0 L 2 90 0 TR TR † NP Clinical 0.116 

 P13 D 2 20 85 4.6 1 D 2 95 20 TR TR  ‡  TR No 0.240 

 P14 L 2 90 60 2.5 1 L 2 0 100 TR TR  ‡  TR No 0.310 

 P15 D 2 100 80 3.3 1 D 2 70 100 NP TR  ‡  TR CNA 0.127 

 P16 D 2 80 30 3.8 1 D 1 20 70 TR TR  ‡  NP Clinical 0.317 

 P18 D 3 0 0 2.2 1 D 2 80 50 NP NP  ‡  NP No 0.004 

 P19 § D 3 0 0 3.0 1 D 3 0 0 TR TR  ‡  TR No 0.325 

 P20 D 3 0 0 1.4 0 D 3 0 0 TR TR  ‡  NP Clinical 0.139 

 P21 D 2 80 0 4.2 1 D 2 70 TR TR  ‡  TR No 0.360 

 P22 § D 2 20 50 3.5 1 M 3 15 0 TR TR  ‡  NP Clinical 0.394 

 P23 D 3 0 0 0.8 1 D 3 0 0 TR TR  ‡  TR No 0.341 

 P24 § D 3 0 0 1.0 1 D 3 0 0 TR TR  ‡  TR No 0.311 

 P25 § D 3 75 70 2.2 1 D 3 70 15 TR TR  ‡  TR No 0.375 

 P26 D 3 0 0 1.8 1 D 3 0 0 TR TR  ‡  TR No 0.519  

  *   Type = histologic type (D = ductal, L = lobular, M = micropapillary); Grade = histologic grade; ER = estrogen receptor; PR = progesterone receptor; Location 

(1 = IBC at the index quadrant, 0 = IBC at a different quadrant); CNA = cluster according to copy number alterations; BKP = cluster according to breakpoints; 

Clinical = definition according to clinical criteria; NP = new primary tumor; TR = true recurrence.  

   †    NP according to the partial identity score.  

   ‡    Agreement with the definition by the partial identity score.  

  §   The ipsilateral breast cancers of these pairs received chemotherapy before surgery.   
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the breakpoints that occur in the copy number variable regions in 

the HapMap collection, the attribution of the status of three pairs 

(20 changed from a true recurrence to a new primary, whereas 

6 and 12 became true recurrences) and two pairs (10 and 12 changed 

from new primaries to true recurrences) changed, respectively.     

 The status of all pairs was confi rmed by the 1000 random 

extractions (Supplementary Table 2, available online). The mean 

cutoff value was 0.1203 (SD = 0.0102) (Supplementary Fig. 2, 

available online). The cutoff used to determine the status of the 22 

ipsilateral breast cancers, which was defi ned using all 462 artifi cial 

pairs, was 0.1212.  

  Prognostic Value of the Determination of the Nature of 

the Ipsilateral Breast Cancer 

 Patients who were diagnosed with true recurrences had lower 

 metastasis-free survival than those diagnosed with new primary 

tumors (Supplementary Fig. 3, available online). The difference in 

metastasis-free survival in the two groups was not statistically signifi-

cant when they were defined based on clinical and histologic charac-

teristics (5-year metastasis-free survival: 76%, 95% CI = 52% to 

100% for new primary tumors and 38%, 95% CI = 17% to 83% for 

true recurrences;  P  = .18; primary tumors vs true recurrences, hazard 

ratio = 2.8, 95% CI = 0.6 to 13.7). However, metastasis-free survival 

was different when the groups were defined according to the partial 

identity score (5-year metastasis-free survival: 100% for new primary 

tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).   

  Discussion 

 DNA breakpoint information was more often in agreement with the 

clinical definition than that from CNAs to define true recurrences 

among ipsilateral breast cancers in this population. We developed a 

partial identity score that is based on DNA breakpoints, which 

allowed statistical discrimination between new primary tumors and 

true recurrences. This score outperformed the clinical prognosis 

determination in terms of metastasis-free survival. 

 We chose to base our study on a series of young (<50 years old) 

premenopausal women not only because young age is recognized as 

one of the most important independent prognostic factors for ipsi-

lateral breast recurrence ( 34  –  40 ) but also to ensure a very high level 

of homogeneity. In addition, all patients had undergone breast-

conserving surgery followed by whole-breast radiotherapy for their 

initial breast cancers, which were selected as either ductal or lobular 

invasive carcinomas, and were treated at the same cancer center. 

 Our results show that some ipsilateral breast cancers share with 

their primary tumors many DNA CNA breakpoints at the same 

locations (precision to within a SNP, as illustrated in  Fig. 1 ). From 

these observations, we produced a method of determining true 

recurrences that relies on a number of assumptions. The fi rst and 

most obvious is that the vast majority of breast cancers are of clonal 

origin. The second is that a tumor retains a substantial number of 

genomic alterations throughout its evolution. The third assump-

tion, which is key to the method that we have developed, is that the 

exact locations of the breakpoints that are on the edge of a given 

change in DNA copy numbers are better hallmarks of a given 

tumor than the magnitude or width of the genomic alteration 

itself. For example, because the deletion that causes the loss of 

Phosphatase and TENsin homolog (PTEN) alters regulatory 

pathways that lead to precocious development and neoplasia in the 

mammary gland ( 41 ), it can be found in many breast cancers ( 42  –

  44 ); however, the exact location of the breakpoints bordering this 

deletion can be specifi c to a given tumor. We provide as an 

 Fig. 1.      Genomic profi les of tumors of pair 5 to illustrate the fi nding of 
common breakpoints within a single nucleotide polymorphism (SNP). 
A genomic profi le represents the ordered values of the DNA copy num-
bers obtained as described in “Subjects and Methods”. Each  dot  repre-
sents the number of DNA copies at each SNP position. Regions with 

gains are in  red , with losses in  green , with no DNA copy number altera-
tions in  yellow .  A ) Pangenomic profi les.  B ) Profi les of chromosomes 20, 
21, and 22. Top primary tumor of pair 5; bottom, ipsilateral breast can-
cer of pair 5. The  blue horizontal line  represents the smoothing line and 
the  dotted vertical line  the breakpoint position.    
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 example (Supplementary Fig. 4, available online) the prototype case 

of PTEN deletion in which the breakpoints are identical between 

the primary tumor and ipsilateral breast cancer of pair 5 and yet 

differ in all the other tumors that also harbor a loss of PTEN. 

 Because clustering is commonly used to determine whether two 

tumors are clonally related and because it performs better than 

previously developed similarity scores ( 18 , 19 ), we addressed the 

issue of whether there was added value in looking at breakpoints 

rather than at CNAs by comparing clustering by CNAs and by 

breakpoints to determine the nature of the ipsilateral breast can-

cer. We concluded from the comparison of clusterings of CNAs 

and of breakpoints that breakpoint information is more valid than 

CNA information because when they were discordant, the defi ni-

tion by breakpoints always agreed with the clinical defi nition, 

which is routinely used in clinical practice. 

 A second issue was whether a method could be found to quantify 

the partial identity between two tumors. We chose to use a partial 

identity score rather than the results of clustering for a number of 

reasons. 1) Clustering methods have been designed for exploratory 

data analysis, so that using a score is more appropriate for a dis-

crimination purpose. 2) A score induces a natural ordering of the 

pairs from the most dissimilar to the most similar, which is not the 

case for clustering. 3) The assessment of clonal relatedness by a 

score can be statistically motivated through the choice of a thresh-

old, as we have demonstrated in the present work. For clustering, 

clonal relatedness of two tumors depends only on their being clus-

tered apart on the dendrogram, which leads to inconsistent deci-

sions over time. As illustrated by Fig. 3, if pair 2 had not been 

included in the study, the ipsilateral breast cancer from pair 6 would 

have been considered as a true recurrence rather than a new primary 

tumor. Conversely, the assessment of the partial identity score 

robustness was satisfactory with a narrow range of the cutoff 

(Supplementary Fig. 2, available online) and with the consistency of 

the ipsilateral breast cancer status (Supplementary Table 2, avail-

able online). Moreover, a score allows one to choose the cutoff that 

best distinguishes new primary tumors from true recurrences. In 

this study, we chose a type I error rate at 5% to favor sensitivity for 

diagnosing true recurrences over the specifi city. Further studies will 

be needed to verify the biologic validity of this choice (Supplementary 

Fig. 3, available online). 

 In addition, we chose to weigh the infl uence of a common 

breakpoint between the ipsilateral breast cancer and its primary 

tumor by a factor that takes into account the frequency of this 

given breakpoint in a population of similar tumors. This weighting 

changed the determination of three of 22 pairs. 

 The clinical defi nition considered an ipsilateral breast cancer as 

a new primary tumor when the partial identity score did not in 

three instances. In the fi rst because of a change in location for pairs 

12 and 20, in the second because of a lesser degree of differentia-

tion for pair 16, and in the third because of a change in histology 

for pair 22. The fi rst example illustrates the possibility that a true 

recurrence can occur at a distance from the fi rst cancer. The sec-

ond exemplifi es the possibility for a true recurrence to have many 

but not all of the striking alterations present in the primary tumor. 

 Table 3 .     Number of common breakpoints in natural (same patient) and artificial (two different patients) pairs of primary tumors 
(vertically) and ipsilateral breast cancers (horizontally)  

  No. of 

BKPs 

in 

IBC *  Pair

No. of BKPs in PT * 

77 11 46 16 94 8 22 4 31 55 12 11 58 646 89 69 127 49 60 57 41 72 

P1 P2 P3 P4 P5 P6 P10 P11 P12 P13 P14 P15 P16 P18 P19 P20 P21 P22 P23 P24 P25 P26  

  433 P1 6  †  3 12  ‡  3 8 5 § 5 1 4 5 6 1 1 7 § 8 6 7 3 8 8 5 12  ‡   

 25 P2 0 0  †  1 0 1 0 0 0 3  ‡  0 1 0 0 0 1 0 2 1 0 1 0 0 

 43 P3 3 2 23  †    ‡   § 5 5 2 10 § 2 § 4 6 5 4 3 4 11 5 7 6 4 8 4 9 

 26 P4 5 3 7 9  †    ‡   § 5 2 7 0 6 § 4 4 3 2 0 9  ‡  3 4 5 3 6 3 5 

 128 P5 3 3 11 4 64  †    ‡   § 1 7 0 4 4 5 2 2 2 8 4 3 8 3 2 3 10 

 21 P6 3 3 4  ‡  3 3 3  †  4  ‡  0 4  ‡  1 4  ‡  2 0 0 3 1 2 1 1 2 4  ‡  2 

 23 P10 3 2 4 3 3 1 3  †  1 2 2 1 1 1 3 5  ‡  1 1 2 1 1 5  ‡  3 

 97 P11 5 2 19  ‡  6 9 1 9 2  †   § 6 § 9 7 6 § 5 7 § 14 7 10 9 4 12 4 13 

 35 P12 6  ‡  3 4 5 4 2 3 0 6  †    ‡   § 2 2 3 2 0 4 3 3 3 1 4 4 4 

 74 P13 3 2 7 3 6 1 5 1 3 18  †    ‡   § 4 3 2 2 7 3 3 4 2 2 5 2 

 35 P14 1 2 7 3 7 3 5 0 3 5 10  †    ‡   § 2 1 3 6 3 4 3 2 3 5 4 

 49 P15 5 2 5 3 4 2 3 0 6  ‡   § 4 1 5  †  4 2 3 2 4 3 1 1 2 2 

 84 P16 2 2 3 2 3 0 2 0 4 2 0 3 23  †    ‡   § 1 1 1 3 2 0 3 3 4 

 53 P18 2 2 9  ‡  3 3 1 5 1 3 2 3 2 0 2  †  7 5 3 2 3 2 3 5 

 150 P19 9 § 4 § 18 5 8 2 10 § 2 § 3 10 5 5 5 7 § 42  †    ‡   § 13  †  11 6 11 10 6 10 

 93 P20 4 1 6 1 5 0 3 1 2 4 1 2 1 5 7 12  †    ‡  3 4 6 3 3 6 

 219 P21 2 1 12 3 6 1 5 2 § 2 5 3 4 4 6 8 7 63  †    ‡   § 6 7 8 3 5 

 100 P22 5 2 17 5 8 1 10 § 1 5 5 5 4 5 3 13 9 10 31  †    ‡   § 6 10 5 9 

 73 P23 7 1 10 3 6 1 7 2 § 3 5 5 2 1 5 12 10 6 6 25  †    ‡   § 6 3 10 

 69 P24 6 2 11 5 3 2 6 1 4 5 3 2 3 5 9 5 5 3 7 23  †    ‡   § 1 11 

 42 P25 4 3 9 5 5 2 7 2 § 4 5 5 2 2 2 5 4 4 6 1 2 18  †    ‡   § 3 

 88 P26 5 3 11 7 7 1 9 1 6 § 5 3 2 4 3 17 5 2 8 5 9 3 43  †    ‡   §   

  *   Number of BKPs per tumor. BKP = breakpoint; PT = primary tumor; IBC = ipsilateral breast cancer.  

   †    Numbers correspond to the 22 natural pairs of PTs and their IBCs arising in the same patient; numbers in the other cells correspond to the 462 (22 × 21) artificial 

pairs of each PT with all other possible IBCs arising in other patients.  

   ‡    Pairs with the most common BKPs per PT.  

  §   Pairs with the most common BKPs per IBC.   
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A criticism that can be made of the clinical defi nition is that it 

assumes that a true recurrence is derived from its primary tumor 

instead of only being related to it. A true recurrence, according to 

some clinical defi nitions ( 5 , 6 , 11 ), cannot be more differentiated 

than its primary tumor. Usual classifi cations defi ne differentiation 

according to histologic grading, DNA ploidy, or the presence of 

ductal carcinoma in situ. They are based on the assumption that 

tumors accumulate genetic alterations with time ( 22 , 45 , 46 ) and 

that the chronologic order of these alterations refl ects the develop-

ment of a tumor clone. This assumption is, however, challenged by 

the fact that the ipsilateral breast cancers are neither more aggres-

sive nor more undifferentiated than their primary tumors ( 47 ). 

 The situation with pair 22 illustrates another possible limitation 

of histologic determination. Here, the clinical status of the ipsilat-

eral breast cancer was of a new primary tumor because its histo-

logic type was a micropapillary carcinoma, whereas the initial 

tumor was a ductal carcinoma. However, after further histologic 

analysis, a minor component of micropapillary carcinoma was 

revealed in the initial carcinoma that otherwise would have been 

overlooked (Supplementary Fig. 5, available online). This fi nding 

implies that, in some instances, the current histologic taxonomy, 

which is based more on architectural features than on biologic 

ones, could become obsolete and that some ipsilateral breast can-

cers could qualify as true recurrences without sharing the same 

histologic type as their primary tumors. 

 We observed that patients with true recurrences had lower 

metastasis-free survival than patients with new primary tumors 

and that this difference became statistically signifi cant when the 

partial identity score, instead of clinical defi nition, was used to 

defi ne ipsilateral breast cancer types. This observation has been 

shared by many authors ( 5 , 6 , 10 , 12 ). Possible explanations are, 

 Fig. 3  .    Dendogram of hierarchical clustering by breakpoints (Ward – Dice) 
of 22 available pairs of primary tumors (TP) and their ipsilateral breast 
cancer (RL).  Boxes  represent natural pairs with a true recurrence, that 
is, a pair of tumors from one patient clustered together.    

 Fig. 4  .    Partial identity score. Histogram performed on 462 artifi cial pairs 
(two different patients) of tumors and representation of the 22 natural 
(same patient) pairs of primary tumors (PT)/ipsilateral breast cancer 
(IBC). x-axis: partial identity score (the higher the score, the more likely 
the IBC is a true recurrence), y-axis: number of artifi cial pairs in  boxes . 
The  vertical dashed bar  represents the upper 5th percentile of the artifi -
cial pairs distribution and the threshold above which true recurrences 
were defi ned (rejection of the null hypothesis). Each  dot  represents one 
of the 22 natural pairs (its identifi er is written above it).    

 Fig. 2  .    Dendogram of hierarchical clustering by DNA copy number altera-
tions (Ward – Pearson) of 22 available pairs of primary tumors (TP) and 
their ipsilateral breast cancer (RL).  Boxes  represent natural pairs with a 
true recurrence, that is, a pair of tumors from one patient clustered 
together.    
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fi rst, that a true recurrence is the expression of clones that are 

resistant to adjuvant treatment and therefore could be more diffi -

cult to eradicate and, second, that it could be the tip of the iceberg, 

that is, distant metastases. Conversely, new primary tumors have a 

prognosis similar to de novo primary cancers but can also refl ect a 

genetic predisposition to develop breast cancer, in the contralat-

eral breast in particular. The clinical implication should therefore 

be to advocate the use of a systemic treatment in the case of true 

recurrences and the use of either chemoprevention, such as hor-

mone therapies ( 48  –  50 ) or screening with magnetic resonance 

imaging ( 51  –  53 ), for patients who are diagnosed with new primary 

tumors. Here, using breakpoint information led to a better dis-

crimination between new primary tumors and true recurrences in 

terms of metastasis-free prognosis than the clinical defi nition. 

 We also hope that a better distinction among ipsilateral breast 

cancers of tumors that are genetically related to their primary 

tumors, that is, true recurrences, will help reveal genetic differ-

ences that would provide new information on radioresistance and 

tumor aggressiveness. To date, little is known about the differen-

tial or similarity of the pangenomic expression or the nature of 

both new primary tumors and ipsilateral breast cancers. Kreike 

et al. ( 54 ) performed a gene expression analysis of 18   000 cDNAs in 

nine pairs of primary breast cancer with their ipsilateral breast 

recurrences among women who were younger than 51 years at the 

time of their initial breast-conserving therapy. Paired data analysis 

showed no set of genes that had consistently different levels of 

expression in primary tumors and local recurrences. Another route 

that has still scarcely been explored is the search for a biologic sig-

nature to predict the risk of local recurrence, especially after 

breast-conserving treatment ( 54  –  56 ). A better distinction between 

new primary tumors and true recurrences is needed to perform a 

supervised study based on the occurrence of true recurrences only 

and not of all ipsilateral breast cancers. 

 However, our scoring method, which is based on the DNA 

breakpoint partial identity, has two shortcomings. First, it suf-

fers from the need to conserve unaltered, freshly frozen tissue 

samples of both the primary tumor and the ipsilateral breast 

recurrence. This problem should, however, be resolved in time 

with the possibility of performing the same genomic studies on 

formalin-fi xed paraffi n-embedded tissue samples ( 57 – 61 ) or 

when cryoconservation of either biopsies or fi ne-needle aspira-

tions (because only 250 ng of DNA is needed, ie, less than 

50   000 cells) become standard practice and will make it possible 

to perform SNP arrays on many more patients. Second, it 

requires selecting tumors with a cancer cellularity of more than 

50%, discarding in the process a number of potentially analyz-

able tumors. This loss should be diminished in time with both 

a better selection of frozen tissue material due to the increased 

experience of the pathologist and the possibility of performing 

laser capture microdissection.    
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1 Overview

This document gives an overview of the MANOR package, which is devoted to the normalization
of Array Comparative Genomic Hybridization (array-CGH) data(9; 7; 8; 4; 3). Normalization is
a crucial step of microarray analysis which aims at separating biologically relevant signal from
experimental artifacts. Typical input data is a file generated by an image analysis software such
as Genepix or SPOT (5), containing several measurements for each biological variable of interest,
i.e. several replicated spots for each clone; this spot-level data is filtered with various statistical
criteria (including a spatial bias detection step which is described in (6)), and aggregated into
clean clone-level data.

Using the arrayCGH framework developped in the package GLAD, which is available under
Bioconductor. We propose the formalism of flags to handle clone and spot filtering: the core
of the normalization process consists in applying to an arrayCGH object a list of flags that
successively exclude from the data all irrelevant spots or clones.

We also define quality scores (qscores) that quantify the quality of an array after normal-
ization: these scores can be used directly to compare the quality of different arrays after the
same normalization process, or to compare the efficiency of different normalization processes on
a given array or on a given batch of arrays.

This document is organized as follows: after a short description of optional items we add to
arrayCGH objects (section 2, we introduce the classes flag (section 3) and qscore (section 4)
with their attributes and dedicated methods; then we describe two useful graphical representa-
tion functions (section 6), namely genome.plot and report.plot; Afterwards we give a short
description of the array-CGH datasets we provide (section 5); finally we illustrate the usage of
MANOR by a sample R script (section 7).

2 arrayCGH class

For the purpose of normalization we have added several optional items to the arrayCGH objects
defined in the R package GLAD , including:
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cloneValues a data frame with aggregated (clone-level) information, quite similar to pro-
fileCGH objects of GLAD

id.rep the name of a variable common to cloneValues and arrayValues, that can be used as
an identifier for the replicates.

3 flag class

We view the process of filtering microarray data, and especially array-CGH data, as a succession
of steps consisting in excluding from the data unreliable spots or clones (according to criteria
such as signal to noise ratio or replicate consistency), and correcting signal values from various
non-biologically relevant sources of variations (such as spotting effects, spatial effects, or intensity
effects).

We introduce the formalism of flags to deal with this filtering issue: in the two following
subsections, we describe the attributes and methods devoted to flag objects.

3.1 Attributes

A flag object f is a list whose most important items are a function (f$FUN) which has to be
applied to an object of class arrayCGH , and a character value (f$char) which identifies flagged
spots. Optionally further arguments can be passed to f$FUN via f$args, and a label can be added
via f$label. The examples of this subsection use the function to.flag, which is explained in
subsection 3.2.

3.1.1 Exclusion and correction flags

As stated above, we make the distinction between flags that exclude spots from further analysis
and flags that correct signal values:

exclusion flags If f is an exclusion flag, f$FUN returns a list of spots to exclude and f$char is
a non NULL value that quickly identifies the flag. In the following example, we define SNR.flag,
a flag objects that excludes spots whose signal to noise ratio lower than the threshold snr.thr.

> SNR.FUN <- function(arrayCGH, var.FG, var.BG, snr.thr) {

+ which(arrayCGH$arrayValues[[var.FG]] < arrayCGH$arrayValues[[var.BG]] *

+ snr.thr)

+ }

> SNR.char <- "B"

> SNR.label <- "Low signal to noise ratio"

> SNR.flag <- to.flag(SNR.FUN, SNR.char, args = alist(var.FG = "REF_F_MEAN",

+ var.BG = "REF_B_MEAN", snr.thr = 3))

correction flags If f is a correction flag, f$FUN returns an object of type arrayCGH and
f$char is NULL. In the following example, global.spatial.flag computes a spatial trend on
the array, and corrects the signal log-ratios from this spatial trend:
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> global.spatial.FUN <- function(arrayCGH, var) {

+ if (!is.null(arrayCGH$arrayValues$Flag))

+ arrayCGH$arrayValues$LogRatio[which(arrayCGH$arrayValues$Flag !=

+ "")] <- NA

+ Trend <- arrayTrend(arrayCGH, var, span = 0.03, degree = 1,

+ iterations = 3)

+ arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]] -

+ Trend$arrayValues$Trend

+ arrayCGH

+ }

> global.spatial.flag <- to.flag(global.spatial.FUN, args = alist(var = "LogRatio"))

3.1.2 Permanent and temporary flags

We introduce an additional distinction between permanent and temporary flags in order to deal
with the case of spots or clone that are known to be biologically relevant, but that have not to
be taken into account for the computation of a scaling normalization coefficient. For example in
breast cancer, when the reference DNA comes from a male, we expect a gain of the X chromosome
and a loss of the Y chromosome in the tumoral sample, and we do not want log-ratio values for
X and Y chromosome to bias the estimation of a scaling normalization coefficient.

Any flag object therefore contains an argument called type, which defaults to "perm" (per-
manent) but can be set to "temp" in the case of a temporary flag. In the following example,
chromosome.flag is a temporary flag that identifies clones correcponding to X and Y chromo-
some:

> chromosome.FUN <- function(arrayCGH, var) {

+ var.rep <- arrayCGH$id.rep

+ w <- which(!is.na(match(as.character(arrayCGH$cloneValues[[var]]),

+ c("X", "Y"))))

+ l <- arrayCGH$cloneValues[w, var.rep]

+ which(!is.na(match(arrayCGH$arrayValues[[var.rep]], as.character(l))))

+ }

> chromosome.char <- "X"

> chromosome.label <- "Sexual chromosome"

> chromosome.flag <- to.flag(chromosome.FUN, chromosome.char, type = "temp.flag",

+ args = alist(var = "Chromosome"), label = chromosome.label)

3.2 Methods

3.2.1 to.flag

The function to.flag is used of the creation of flag objects, with the specificities described in
subsection 3.1.

> args(to.flag)

function (FUN, char = NULL, args = NULL, type = "perm.flag",

label = NULL)

NULL
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3.2.2 flag.arrayCGH

Function flag.arrayCGH simply applies function flag$FUN to a flag object for filtering, and
returns:

• a filtered array with field arrayCGH$arrayValues$Flag filled with the value of flag$char
for each spot to be excluded from further analysis in the case of an exclusion flag;

• an array with corrected signal value in the case of a correction flag.

> args(flag.arrayCGH)

function (flag, arrayCGH)

NULL

3.2.3 flag.summary

Function flag.summary computes spot-level information about normalization (including the
number of flagged spots and numeric normalization parameters), and displays it in a convenient
way. This function can either be applied to an object of type arrayCGH :

> args(flag.summary.arrayCGH)

function (arrayCGH, flag.list, flag.var = "Flag", nflab = "not flagged",

...)

NULL

or to plain spot-level information, by using the default method:

> args(flag.summary.default)

function (spot.flags, flag.list, nflab = "not flagged", ...)

NULL

4 qscore class

As we point out in the introduction of this document, evaluating the quality of an array-CGH
after normalization is of major importance, since it helps answering the following questions:

- which is the best normalization process ?

- which array is of best quality ?

- what is the quality of a given array ?

To this purpose we define quality scores (qscores), which attributes and methods are expli-
aned in the two following subsections.
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4.1 Attributes

A qscore object qs is a list which contains a function (qs$FUN), a name (qs$name), and option-
nally a label (qs$label) and arguments to be passed to qs$FUN (qs$args). In the following
example, the quality score pct.spot.qscore evaluates the percentage of spots that have passed
the filtering steps of normalization; it provides an evaluation of the array quality for a given
normalization process. The function to.qscore is explained in subsection 4.2.

> pct.spot.FUN <- function(arrayCGH, var) {

+ 100 * sum(!is.na(arrayCGH$arrayValues[[var]]))/dim(arrayCGH$arrayValues)[1]

+ }

> pct.spot.name <- "SPOT_PCT"

> pct.spot.label <- "Proportion of spots after normalization"

> pct.spot.qscore <- to.qscore(pct.spot.FUN, name = pct.spot.name,

+ args = alist(var = "LogRatioNorm"), label = pct.spot.label)

4.2 Methods

4.2.1 to.qscore

The function to.qscore is used of the creation of qscore objects, with the specificities described
in subsection 4.1.

> args(to.qscore)

function (FUN, name = NULL, args = NULL, label = NULL, dec = 3)

NULL

4.2.2 qscore.arrayCGH

Function qscore.arrayCGH simply computes and returns the value of qscore for arrayCGH :

> args(qscore.arrayCGH)

function (qscore, arrayCGH)

NULL

4.2.3 qscore.summary.arrayCGH

Function qscore.summary.arrayCGH computes all quality scores of a list (using function qs-

core.arrayCGH), and displays the results in a convenient way.

> args(qscore.summary.arrayCGH)

function (arrayCGH, qscore.list)

NULL
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5 Data

We provide examples of array-CGH data coming from two different platforms. These data
illustrate the need for appropriate within-array normalization methods, and especially the need
for methods that handle spatial effects.

> data(spatial)

For each array we provide raw data (generated by Genepix or SPOT (5)), as well as the
corresponding arrayCGH object before and after normalization.

These arrays illustrate the main source of non biological variability of these data sets, namely
spatial effects. We classify these effects into two non exclusive types: local bias and global
gradients. In the case of local bias, entire areas of the array show lower or higher signal values
than the rest of the array, with no biological explanation (array edge); to our experience, this
particular type of artifact roughly affects an array out of two. In the case of global gradients, the
array shows an obvious signal gradient from one side of the slide to the other (array gradient).

5.1 edge

Bladder cancer tumors were collected at Henri Mondor Hospital (CrÃl’teil, France) (1) and
hybridized on arrays CGH composed of 2464 Bacterian Artificial Chromosomes (F. Radvanyi,
D. Pinkel et al., unpublished results); each of these BAC is spotted three times on the array,
and the three replicates are neighbors on the array. We give the example of an arrayCGH with
local spatial effects (figure 1): high log-ratios cluster in the upper-right corner of the array.

5.2 gradient

We give the example of two arrays from a breast cancer data set from Institut Curie (O. Delattre,
A. Aurias et al., unpublished results). These arrays consist of 3342 clones, organized as a 4 × 4
superblock that is replicated three times. This data set is affected by the two types of spatial
effects: local bias areas (as for the previous data set), and spatial gradients from one side of the
array to the other. The array gradient illustrates this second type of spatial effect.

6 Graphical representations

As for any type of data analysis, appropriate graphical representations are of major importance
for data understanding. Array-CGH data are typically ratios or log-ratios, that correspond to
locations on the array (spots) and to locations on the genome (clones). Therefore in the case of
array-CGH data normalization, two complementary types of representations are necessary:

- a dotplot of the array, that takes into account the array design. This is a crucial tool in
the case of array-CGH data normalization for two reasons: first it provides an easy way
to identify spatial artifacts such as row, column, print-tip group effects, as well as spatial
bias and spatial gradients on the array; then it performs a post-normalization control, to
ensure that the normalization procedure reached its goals, i.e. significantly reduced the
observed effects.
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> data(spatial)

> arrayPlot(edge, "LogRatio", main = "Local spatial effects", zlim = c(-1,

+ 1), mediancenter = TRUE, bar = "h")

Local spatial effects

−
1

−
0.

67

−
0.

33 0

0.
33

0.
67 1

Figure 1: array with local spatial effects.
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> data(spatial)

> arrayPlot(gradient, "LogRatio", main = "Spatial gradient", zlim = c(-2,

+ 2), mediancenter = TRUE, bar = "h")

Spatial gradient

−
2

−
1.

3

−
0.

67 0

0.
67 1.

3 2

Figure 2: Example of array with spatial gradient.
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- a plot of the signal values along the genome, which gives a visual impression of the array
quality on the edge of biological relevance; comparing the signal shape before and after
normalization provides a qualitative idea of the imrpovement in data quality provided by
the normalization method.

The arrayPlot method provided by the GLAD package and based on maImage (2) addresses
the first point; we add two methods to this toolbox:

- the genome.plot method displays a plot of any signal value (e.g. log-ratios) along the
genome;

- the report.plot method successively calls arrayPlot and genome.plot in order to pro-
vide a simultaneous vision of the data using the two relevant metrics (array and genome),
with approproate color scales.

6.1 genome.plot

This method provides a convenient way to plot a given signal along the genome; the signal values
can be colored according to their level (which is the default comportment of the function) or to
the level of any other variable, in the following way:

- if the variable is numeric (e.g. signal to noise ratio), the function assumes that it is a
quantitative variable and adapts a color palette to its values (figure 3)

> data(spatial)

> genome.plot(edge.norm, chrLim = "LimitChr", cex = 1)

●
●
●●

●

●

●
●
●

●

●
●●
●
●●●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●●

●

●●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●●●

●
●●

●

●

●
●

●●

●
●
●●

●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●●
●
●●
●

●

●●

●

●
●●●
●

●

●●
●
●●

●●

●
●

●

●●
●●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●

●
●

●

●
●●●
●

●

●
●

●●

●●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●
●●
●

●

●

●●●

●
●

●
●
●
●

●●
●●

●

●●●●●
●●

●
●

●
●●●
●

●

●

●

●

●
●
●●

●

●●●●●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●

●
●
●

●

●

●●

●
●

●
●
●
●

●
●●

●
●

●
●
●
●
●
●●●●
●
●●
●

●
●

●
●
●●
●

●

●
●

●

●●
●
●
●
●
●

●

●

●
●

●
●●●
●
●
●●
●
●
●●
●●

●

●

●
●●
●

●
●

●

●

●

●

●●●●
●●
●
●
●●●
●
●

●

●

●
●●

●

●●●
●●

●●●

●

●

●
●
●

●

●

●

●

●●
●
●●

●

●●●
●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●
●●●●●●
●

●

●●
●
●

●
●
●●
●
●●

●
●
●
●
●
●
●
●

●●
●
●●

●
●
●

●

●

●

●
●
●

●

●
●●●

●
●
●
●

●

●
●
●

●●
●●

●

●●

●

●
●

●
●

●

●
●●

●
●
●
●

●●●
●●

●

●
●
●
●

●

●

●

●

●
●

●●
●

●
●●

●
●
●
●
●

●

●

●

●

●
●

●

●●
●
●●
●
●●
●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●●
●

●●
●

●●

●●

●
●

●

●●
●

●

●

●

●
●●
●

●
●●
●

●

●●
●●
●●

●

●

●

●

●

●
●
●

●

●
●●

●

●
●●

●●●

●

●

●
●

●●
●
●
●
●●●

●●●●
●

●

●
●
●●●
●
●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●
●●●●●
●

●

●
●

●
●

●

●●
●

●
●
●
●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●
●
●
●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●
●●
●●●
●
●

●

●
●●●

●

●
●●●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●
●

●
●
●

●
●●
●

●
●

●

●

●●
●●

●

●
●

●
●
●

●

●
●

●●
●
●●●

●

●

●
●
●

●

●●

●

●
●
●
●
●
●
●

●

●

●

●
●

●

●

●●
●●
●●
●

●

●●
●●
●●●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●●
●●●●

●

●
●

●

●●

●
●●

●
●

●

●

●
●●●

●

●

●
●

●
●
●●
●

●
●

●●
●

●

●●

●

●

●●●

●

●●●●
●

●

●

●

●

●
●
●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●
●●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●
●
●

●

●●●
●●●

●●

●

●
●
●

●

●●

●
●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●●●

●
●
●
●

●

●●

●●

●

●

●

●●
●

●

●●

●
●

●

●
●
●
●

●●●
●

●

●●●
●

●

●
●

●
●●

●

●
●●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●●●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●
●
●

●●●

●

●

●
●
●

●

●

●

●
●

●
●●

●

●

●

●●

●
●
●
●●●
●●●
●
●

●
●

●●

●
●

●

●
●●
●●

●
●

●

●●

●●
●

●

●●

●

●

●

●
●

●

●

●
●
●

●●

●

●
●●

●

●

●

●●

●●

●
●

●

●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●●

●●
●

●

●

●
●●

●

●●
●

●
●
●
●●

●

●

●

●

●

●

●
●●
●
●●

●

●●
●●●
●
●

●
●
●
●
●●
●

●
●
●

●

●

●●
●
●

●●●●●
●

●

●

●●
●●

●

●●●●

●●

●●●
●

●

●

●
●●
●

●

●

●

●●
●●
●●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●
●
●
●
●

●

●

●
●

●

●

●●●●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●●

●

●

●
●
●
●

●●●
●●
●●

●
●

●●
●

●●

●

●

●

●

●●

●

●

●●
●●

●

●●
●
●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●●●

●●

●

●

●
●
●

●

●

●
●

●

●
●
●

●●

●

●
●●●
●
●

●
●

●

●

●

●
●

●

●
●
●

●●
●●
●

●●●
●
●

●
●
●
●

●●
●
●
●
●●
●

●

●

●
●

●

●

●●
●●●●

●

●

●

●

●

●●●●

●●

●
●

●

●

●●●

●

●●●●●●
●●

●
●
●
●
●
●
●

●

●●
●

●

●●●
●●●

●

●

●●●●
●●
●●
●●

●

●

●
●

●
●
●
●
●
●●
●

●
●

●
●●

●

●●

●●●

●
●●
●●●

●

●
●●●
●●
●
●

●
●
●
●

●
●

●
●●●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●
●

●

●
●

●

●

●●
●

●

●●
●
●

●

●

●

●●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●●
●

●
●●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●●●●

●

●●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●●

●●●
●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●●
●

●

●●
●

●

●

●
●
●●
●

●

●
●

●

●●
●
●

●●
●

●

●

●

●
●
●●

●●●
●
●

●

●
●

●●
●
●●●

●

●
●

●

●●
●
●
●

●

●●
●
●●
●

●

●●●
●
●

●

●●●
●
●●
●

●
●
●
●

●●

●
●

●●

●

●●●

●

●

●●
●

●

●●

●

●

●

●●●
●●
●●
●●
●
●●●

●
●

●
●
●

●

●
●

●●

●
●

●
●

●

●

●
●
●●

●

●

●

●●

●

●

●●●
●

●

●●●

●

●
●

●

●●
●

●

●
●
●
●●

●

●

●

●
●

●
●

●
●

●●●
●●

●
●

●●
●●

●●

●

●
●

●

●

●
●●
●
●

●

●
●
●

●

●●
●●

●

●

●
●●

●●
●

●

●

●

●
●
●

●●

●

●

●●●●
●
●
●
●

●

●

●●●●●
●
●●
●

●
●
●●

●
●

●

●●●

●

●

●●●
●
●

●

●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●

●
●
●

●●

●

●●
●
●●

●
●
●●●
●
●
●

●

●

●
●
●

●

●●

●

●
●
●
●
●●
●●●

●

●
●

●
●

●

●
●●
●

●
●

●

●

●

●

●●

●

●
●
●●
●
●

●
●●

●

●
●

●

●●

●
●●
●

●

●
●
●

●

●

●

●

●
●

●●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●●●●
●

●●●

●●
●

●

●

●●●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●
●●
●
●●
●

●
●

●
●●

●●

●
●
●
●

●

●

●

●
●●●

●

●●●
●

●

●
●

●
●
●

●
●

●
●

●

●

●

●●

●

●
●●●●
●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●●●
●●

●
●●●
●●

●

●
●
●●

●
●

●
●●●●

●

●●
●●●

●●
●

●

●

0 500 1000 1500 2000 2500

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Genome position

D
N

A
 C

op
y 

N
um

be
r 

V
ar

ia
tio

n

Figure 3: Pan-genomic profile of the array. Colors are proportional to log-ratio values.

- if the variable is not numeric (e.g. the copy number variation as estimated by GLAD , or
a character variable making the disitnction between flagged and un-flagged clones), the
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> data(spatial)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

> genome.plot(edge.norm, col.var = "ZoneGNL", chrLim = "LimitChr",

+ cex = 1)
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Figure 4: Pan-genomic profile of the array. Colors correspond to the values of the variable
“ZoneGNL”.
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function counts the number of modalities of the variable and defines an appropriate color
scale using the rainbow function (figure 4).

6.2 report.plot

This method successively calls arrayPlot and genome.plot; it checks for color scale consistency
between plots, and can automatically set the plot layout (figure 5).

> data(spatial)

> report.plot(edge.norm, chrLim = "LimitChr", zlim = c(-1, 1),

+ cex = 1)
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Figure 5: report.plot: array image and pan-genomic profile after normalization.

7 Sample MANOR sessions

In this section we illustrate the use of MANOR on two CGH arrays. Our examples contain
several steps, including data preparation, flag definition, array normalization, quality criteria
definition, and quality assessment of the array, and highlights of the normalization process.

7.1 array edge

7.1.1 Data preparation: import

> dir.in <- system.file("data", package = "MANOR")

> spot.names <- c("LogRatio", "RefFore", "RefBack", "DapiFore",

+ "DapiBack", "SpotFlag", "ScaledLogRatio")

> clone.names <- c("PosOrder", "Chromosome")

> edge <- import(paste(dir.in, "/edge.txt", sep = ""), type = "spot",

+ spot.names = spot.names, clone.names = clone.names, add.lines = TRUE)

[1] "number of lines does not match array design: adding empty lines..."
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7.1.2 Normalization: norm.arrayCGH

Figure 6 shows the results of the normalization process.

> data(flags)

> data(spatial)

> local.spatial.flag$args <- alist(var = "ScaledLogRatio", by.var = NULL,

+ nk = 5, prop = 0.25, thr = 0.15, beta = 1, family = "gaussian")

> flag.list <- list(spatial = local.spatial.flag, spot = spot.corr.flag,

+ ref.snr = ref.snr.flag, dapi.snr = dapi.snr.flag, rep = rep.flag,

+ unique = unique.flag)

> edge.norm <- norm.arrayCGH(edge, flag.list = flag.list, FUN = median,

+ na.rm = TRUE)

[1] "spatial"

[1] "mean of unbiased zone : -0.0231566395663957"

[1] "Spatial bias has been detected"

zone.number mu effectif effectif.cumul frequency.cumul biased.zone

4 5 0.467833333 66 66 0.00918964 1

3 4 0.045546490 1581 1647 0.22932331 0

5 3 0.004946157 2693 4340 0.60428850 0

1 2 -0.034216274 1868 6208 0.86438318 0

2 1 -0.079646817 974 7182 1.00000000 0

[1] "spot"

[1] "ref.snr"

[1] "dapi.snr"

[1] "rep"

[1] "unique"

> edge.norm <- sort.arrayCGH(edge.norm, position.var = "PosOrder")

7.1.3 Quality assessment: qscore.summary.arrayCGH

> profileCGH <- as.profileCGH(edge.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc = "lawsglad", lkern = "Exponential",

+ model = "Gaussian", qlambda = 0.999, bandwidth = 10, base = FALSE,

+ round = 2, lambdabreak = 6, lambdaclusterGen = 20, param = c(d = 6),

+ alpha = 0.001, msize = 5, method = "centroid", nmin = 1,

+ nmax = 8, amplicon = 1, deletion = -5, deltaN = 0.1, forceGL = c(-0.15,

+ 0.15), nbsigma = 3, MinBkpWeight = 0.35, verbose = FALSE)

[1] "Smoothing for each Chromosome"

[1] "Optimization of the Breakpoints"

[1] "Check Breakpoints Position"

> edge.norm$cloneValues <- as.data.frame(profileCGH)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

13



> report.plot(edge.norm, chrLim = "LimitChr", zlim = c(-1, 1),

+ cex = 1)

Array image
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Figure 6: array ’edge’ after normalization.

> data(qscores)

> qscore.list <- list(smoothness = smoothness.qscore, var.replicate = var.replicate.qscore,

+ dynamics = dynamics.qscore)

> edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list)

> edge.norm$quality

name label score

1 LOCAL_SMOOTHNESS Local signal variability along the genome 0.021

2 VAR_REPLICATE Average variability among replicates 0.011

3 SIGNAL_DYNAMICS Dynamics of the DNA copy number variation 0.399

7.1.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the normalization process:
array image and genomic profile before and after normalization, spot-level flag report, and value
of the quality criteria.

> html.report(edge.norm, dir.out = ".", array.name = "an array with local bias",

+ chrLim = "LimitChr", light = FALSE, pch = 20, zlim = c(-2,

+ 2), file.name = "edge")

The results of the previous command can be viewed in the file edge.html.

7.2 array gradient

Here we give the example of the normalization of an array with spatial gradient.

7.2.1 Data preparation: import

> spot.names <- c("Clone", "FLAG", "TEST_B_MEAN", "REF_B_MEAN",

+ "TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm")
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> clone.names <- c("Clone", "Chromosome", "Position", "Validation")

> ac <- import(paste(dir.in, "/gradient.gpr", sep = ""), type = "gpr",

+ spot.names = spot.names, clone.names = clone.names, sep = "\t",

+ comment.char = "@", add.lines = TRUE)

[1] "number of lines does not match array design: adding empty lines..."

[1] "calculating array design..."

> ac$arrayValues$F1 <- log(ac$arrayValues[["TEST_F_MEAN"]], 2)

> ac$arrayValues$F2 <- log(ac$arrayValues[["REF_F_MEAN"]], 2)

> ac$arrayValues$B1 <- log(ac$arrayValues[["TEST_B_MEAN"]], 2)

> ac$arrayValues$B2 <- log(ac$arrayValues[["REF_B_MEAN"]], 2)

> Ratio <- (ac$arrayValues[["TEST_F_MEAN"]] - ac$arrayValues[["TEST_B_MEAN"]])/(ac$arrayValues[

+ ac$arrayValues[["REF_B_MEAN"]])

> Ratio[(Ratio <= 0) | (abs(Ratio) == Inf)] <- NA

> ac$arrayValues$LogRatio <- log(Ratio, 2)

> gradient <- ac

7.2.2 Normalization: norm.arrayCGH

Figure 7 shows the results of the normalization process.

> data(spatial)

> data(flags)

> flag.list <- list(local.spatial = local.spatial.flag, spot = spot.flag,

+ SNR = SNR.flag, global.spatial = global.spatial.flag, val.mark = val.mark.flag,

+ position = position.flag, unique = unique.flag, amplicon = amplicon.flag,

+ chromosome = chromosome.flag, replicate = replicate.flag)

> gradient.norm <- norm.arrayCGH(gradient, flag.list = flag.list,

+ FUN = median, na.rm = TRUE)

[1] "local.spatial"

[1] "mean of unbiased zone : 8.4048170773639"

[1] "There is no spatial bias"

zone.number mu effectif effectif.cumul frequency.cumul biased.zone

1 7 8.688599 566 566 0.05641946 0

2 6 8.588816 741 1307 0.13028309 0

3 5 8.485022 1473 2780 0.27711324 0

4 4 8.458262 2436 5216 0.51993620 0

5 3 8.403100 2185 7401 0.73773923 0

6 2 8.347311 2075 9476 0.94457735 0

7 1 8.179531 556 10032 1.00000000 0

[1] "spot"

[1] "SNR"

[1] "global.spatial"

[1] "val.mark"

[1] "position"
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[1] "unique"

[1] "amplicon"

[1] "chromosome"

[1] "replicate"

> gradient.norm <- sort.arrayCGH(gradient.norm)

> genome.plot(gradient.norm, chrLim = "LimitChr", cex = 1)
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Figure 7: array gradient after normalization.

7.2.3 Quality assessment: qscore.summary.arrayCGH

> profileCGH <- as.profileCGH(gradient.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc = "lawsglad", lkern = "Exponential",

+ model = "Gaussian", qlambda = 0.999, bandwidth = 10, base = FALSE,

+ round = 2, lambdabreak = 6, lambdaclusterGen = 20, param = c(d = 6),

+ alpha = 0.001, msize = 5, method = "centroid", nmin = 1,

+ nmax = 8, amplicon = 1, deletion = -5, deltaN = 0.1, forceGL = c(-0.15,

+ 0.15), nbsigma = 3, MinBkpWeight = 0.35, verbose = FALSE)

[1] "Smoothing for each Chromosome"

[1] "Optimization of the Breakpoints"

[1] "Check Breakpoints Position"

> gradient.norm$cloneValues <- as.data.frame(profileCGH)

> gradient.norm$cloneValues$ZoneGNL <- as.factor(gradient.norm$cloneValues$ZoneGNL)

> data(qscores)

> qscore.list <- list(smoothness = smoothness.qscore, var.replicate = var.replicate.qscore,
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+ dynamics = dynamics.qscore)

> gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm,

+ qscore.list)

> gradient.norm$quality

name label score

1 LOCAL_SMOOTHNESS Local signal variability along the genome 0.032

2 VAR_REPLICATE Average variability among replicates 0.050

3 SIGNAL_DYNAMICS Dynamics of the DNA copy number variation 0.294

7.2.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the normalization process:
array image and genomic profile before and after normalization, spot-level flag report, and value
of the quality criteria.

> html.report(gradient.norm, dir.out = ".", array.name = "an array with spatial gradient",

+ chrLim = "LimitChr", light = FALSE, pch = 20, zlim = c(-2,

+ 2), file.name = "gradient")

The results of the previous command can be viewed in the file gradient.html.

8 Session information

The version number of R and packages loaded for generating this document are:

> sessionInfo()

R version 2.7.1 (2008-06-23)

i386-apple-darwin8.10.1

locale:

fr_FR.UTF-8/fr_FR.UTF-8/C/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] MANOR_1.13.1 GLAD_1.16.0

loaded via a namespace (and not attached):

[1] tools_2.7.1

9 Supplementary data

The package MANOR provides sample gpr and spot files, as examples to the import funciton.
However, due to space limitations, only the first 100 lines these file are provided in the current
distribution of MANOR. The full files can be downloaded from here:

17



• ’gpr’ file: gradient.gpr

• ’spot’ file: edge.txt
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Cancer cells are characterised by modifications in the expression of their genes, and DNA copy number changes are one of the key genetic mechanisms responsible for such modifications. A few
recent studies have characterised the overall influence of DNA copy number changes on gene expression (gene dosage effect), using parallel, high-throughput microarray measurements. We developed
GTCA, an R package that implements a statistically sound methodology for Genome Transcriptome Correlation Analysis, including data pre-processing, statistical analysis, visualisation and biological
interpretation. We illustrate the use of GTCA on two recent data sets (breast cancer [2], and bladder cancer [9]).

1 Extraction of biological information

The input of GTCA consists of normalised expression and copy number data, as well as the cor-
responding probe annotations (including start and end positions), and optionally sample anno-
tations. We assume that smoothed DNA copy numbers (smt) and loss/gain/amplification calls
are available (bladder and breast cancer array-CGH profiles were analysed using GLAD [6]).

Inferring missing copy numbers

We take advantage of the consistency of the copy number signal along the genome to infer miss-
ing copy number values for each genome array. Based on smoothed copy numbers and calls of
the two nearest genome probes, we define the inferred smt as:

- a weighted mean of the two smoothed copy numbers if calls are equal

- the smoothed copy number of the most altered call if calls are different

This step ensures that all correlations are based on the same number of observations. Therefore
there is an unique bijective transformation from correlation coefficients to p-values, which may
be used in graphical representations (see vertical axes of figure 2).

Probe matching

For most array technologies genome probes and transcriptome probes have different genome lo-
cations, so that an objective probe matching algorithm is needed. Each transcriptome probe is
classified into one of the 3 following situations (only based on annotation data); all genome probe
matches of the class are then reported in order not to lose biological information.

Fig. 1. Probe matching algorithm. Gray boxes denote genome

probes, orange boxes denote transcriptome probes.

[a] transcriptome probe IN one or more
genome probes

[b \ a] transcriptome probe INTERSECTS one
or more genome probes

[c \ (a ∪ b)] transcriptome probe BETWEEN
genome probes

Reducing complexity

Our probe matching algorithm allows multiple genome probe matches for each transcriptome
probe to avoid loss of biological information, at the price of a certain redundancy. We therefore
aggregate genome probe matches corresponding to the same transcriptome probe if they have
the same smoothed copy number profiles across samples. This results in a smaller number of corre-
lations to be calculated, and a less severe multiple testing problem. The following table illustrates the
result of these first three steps.

data set sample

size

transcriptome

probes

genome

probes

missing

smt
IN INTERSECTS BETWEEN probe

matches

distinct

matches

complexity

reduction

breast [2] 89 21881 1836 7% 7% 5% 88% 40667 26330 35%

bladder [9] 57 8111 2215 6% 8% 7% 85% 14884 9194 38%

2 Correlation analysis

Two standard and complementary measures of correlation

r : the Pearson correlation coefficient measures the extent to which the association between copy
number and expression is linear; its sensitivity to outliers makes it suitable to detect associa-
tions within regions that are amplified in only few samples;

ρ : the Spearman correlation coefficient is the Pearson coefficient between measurements ranks; it
is therefore robust to outliers and able to detect non-linear associations.

Correlation coefficients are calculated using smoothed copy number data (smt).

Two multiple hypothesis testing adjustment procedures

FDR:we use the Benjamini-Hochberg procedure [1] to control the False Discovery Rate, that is,
the expected proportion of false positives among those loci selected.

FWER:we use the Holm procedure [4] to control the Family-Wise Error Rate, that is, the prob-
ability that one or more loci among those selected is a false positive. This procedure is more
powerful that the traditional Bonferroni procedure.

Both adjustment procedures can be applied genome-wide or chromosome by chromosome,
which is useful when only few chromosomes are expected to show a significant gene dosage
effect.

3 Results visualisation

Chromosome plots: correlations along chromosomes

Figure 2 illustrates the strong correlation between copy number and expression of E2F3, which
is a known oncogene in bladder tumours [7]. FWER or FDR-adjusted significance levels can be
added on the right-side axis, for easy interpretation of correlation coefficients.

Fig. 2. Pearson correlation coefficients along chromosome 6 (bladder cancer data). The right-side axis displays

FWER-adjusted significance levels. Gene E2F3 is marked in orange.

Chromosome plots: adjusted p-values along chromosomes

Displayed adjusted significances are negative-log-scaled for ease of visualisation and interpreta-
tion; corresponding adjusted significance levels are displayed on the right-side axis, as illustrated
figure 3 for FDR adjustment. The same type of visualisation is also available for FWER adjust-
ment.

Fig. 3. FDR-adjusted p-values of Pearson correlation coefficients along chromosome 8 (breast cancer data). Orange

triangles indicate three highly significant genes (p < 2.2 10−16). The right-side axis displays adjusted significance levels in

linear scale.

Gene plots: DNA copy numbers versus expression levels
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Fig. 4. Gene plot of LSm1 (breast cancer data).

Correlations between copy number and expression
level for a particular gene of interest can be further
investigated at the sample level, using a simple
scatter plot of DNA copy numbers versus expres-
sion levels. Samples can be coloured according to
available annotation.

On the left, the gene plot of LSm1 (a known onco-
gene in breast cancers [10] identified in figure 3) sug-
gests that gene dosage effect differs between SRB
grades, which is confirmed by analysis of variance
(p = 0.01).

4 Implementation and availability

GTCA is implemented as an R package, which is freely available for academics, and will shortly
be submitted to Bioconductor [3]. It has been interfaced as a plug-in for VAMP [8]. This plug-in
will be available in the next release of the web platform ACTuDB [5].
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Pierre Neuvial1, Isabel Brito1, Séverine Lair1, Nicolas Servant1, Nicolas Robine1,4,
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ABSTRACT

Motivation: Microarray-based CGH (Comparative Genomic

Hybridization), transcriptome arrays and other large-scale genomic

technologies are now routinely used to generate a vast amount of

genomic profiles. Exploratory analysis of this data is crucial in helping

to understand the data and to help form biological hypotheses. This

step requires visualization of the data in a meaningful way to visual-

ize the results and to perform first level analyses.

Results: We have developed a graphical user interface for visualiza-

tion and first level analysis of molecular profiles. It is currently in use

at the Institut Curie for cancer research projects involving CGH

arrays, transcriptome arrays, SNP (single nucleotide polymorphism)

arrays, loss of heterozygosity results (LOH), and Chromatin

ImmunoPrecipitation arrays (ChIP chips). The interface offers the

possibility of studying these different types of information in a con-

sistent way. Several views are proposed, such as the classical CGH

karyotype view or genome-wide multi-tumor comparison. Many fun-

ctionalities for analyzingCGHdataareprovidedby the interface, includ-

ing looking for recurrent regions of alterations, confrontation to

transcriptome data or clinical information, and clustering. Our tool

consists of PHP scripts and of an applet written in Java. It can be run

on public datasets at http://bioinfo.curie.fr/vamp

Availability: The VAMP software (Visualization and Analysis of array-

CGH,transcriptome and other Molecular Profiles) is available upon

request. It can be tested on public datasets at http://bioinfo.curie.fr/

vamp. The documentation is available at http://bioinfo.curie.fr/

vamp/doc

Contact: vamp@curie.fr

1 INTRODUCTION

Array Comparative Genome Hybridization (array-CGH) is a

recently developed technology based on DNA microarrays

(Pinkel et al., 1998; Snijders et al., 2001; Solinas-Toldo et al.,

1997; Ishkanian et al., 2004) that can be used to investigate

DNA copy number differences between two samples. A CGH array-

generally consists of spotted clones of genomic sequences (e.g.

bacterial artificial chromosomes) that cover part or all of the gen-

ome. Both DNA samples are labeled with distinct fluorescent dyes

and undergo competitive hybridization onto the CGH array. The

array is then scanned with a scanner or a CCD camera, and the

acquired image is analyzed (gridding, spot addressing, spot seg-

mentation, spot quantification, outlier detection), normalized (to

remove as much as possible any systematic spatial or intensity

biases, e.g. Neuvial et al., (2005), duplicate statistical analysis is

then carried out (each clone is generally spotted in several copies),

and adequate statistical algorithms detect any loss or gain regions

(Hupé et al., 2004; Olshen et al., 2004; Fridlyand et al., 2004; Jong

et al., 2003; Picard et al., 2005; Eilers and de Menezes, 2005; Bilke

et al., 2005). CGH arrays are often used in cancer research because

chromosome aberrations are thought to be causal in tumor progres-

sion (Albertson et al., 2003; Pinkel and Albertson, 2005). Here,

normal DNA is used as reference and the test sample would be

tumoral biopsy DNA. The normal sample has two copies of each

genomic region, whereas tumor DNA may show losses or gains in

certain DNA regions. Measurement of the signal intensities of the

reference and tumor samples for each clone makes it possible to

determine the lost or gained regions in the tumor sample. Further

analyses can include the determination of recurrent loss or gain of

DNA regions, clustering of samples and determination of candidate

oncogenes and candidate tumor suppressor genes within the altered

regions (based on their annotations or on their transcription level). It

is also possible to link array-CGH results to the clinical phenotype

or to biological parameters through, for example, supervised clas-

sification or correlation analysis. The visualization of the data is a

crucial step in the analysis procedure and is essential for hypothesis

formulation and model-free reasoning. We have developed, in the

framework of large-scale array-CGH projects, a graphical user

interface that allows several visualization modes of the CGH

profiles and offers several data analysis tools. The software also

displays a large variety of genomic profiles, such as transcriptome,
�To whom correspondence should be addressed.
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Loss Of Heterozygosity (LOH), Vogelstein et al. (1989), Single

nucleotide polymorphism (SNP) arrays (Bignell et al., 2004;

Huang et al., 2004) and ChIP chip [Chromatin ImmunoPrecipitation

coupled with microarrays, Buck and Lieb (2004)] profiles and

allows addition of new tools for data treatment or analysis. We

have called the software VAMP for ‘Visualization and Analysis of

Molecular Profiles’. In this articlewefirst detail howdata are visually

presented in VAMP, and then we explain how the user interacts with

the software and which functionalities are offered for data analysis.

Finally, we describe the software architecture of VAMP.

2 RESULTS

2.1 Data representation

VAMP was designed to graphically represent any genomic profile

along the genome axis. We started the development of VAMP for

array-CGH data, but we have extended it to accept, on the same

window, any kind of profile. We currently use the software for

expression arrays, SNP arrays, LOH results and ChIP chip profiling,

in addition to array-CGH. VAMP is currently used for three species

(human, mouse and yeast) but the addition of a new species is

straightforward. It is possible to visualize simultaneously, on the

same window, different types of profiles for a given species, e.g.

array-CGH and mRNA expression profiles of a tumor (Fig. 1). All

profiles in a window are drawn on the x-axis with the same scale (the

genome sequence), which allows an easy comparison of profiles.

A typical VAMP window is divided into three areas (Fig. 2): the

main frame consists of the graphical display of the profiles; the top

left frame controls zoom, search and drawing options; the bottom

left frame offers the choice between textual information (Fig. 3) on

the object under the mouse pointer, or context information, called

MiniMap (Fig. 2).

2.1.1 Main frame VAMP currently offers several types of visu-

alization that can be displayed in the main frame: (1) List View, (2)

Profile View (Fig. 2) (3) Karyotype View (Fig. 3), (4) Dot Plot View

(Fig. 4). These views all allow simultaneous visualization of several

profiles (the only limitation is the memory size of the computer

running VAMP, or more precisely, the memory allocated to the Java

virtual machine: for example with an 800 Mb Java virtual machine

memory, 700 microarrays (each with 3500 probes) can be loaded

simultaneously).

� ListView: theListView lists the names of all the arrays currently

loaded and can be used for selecting or keeping track of the data

under study.

Fig. 1. Array-CGH (top profile) versus transcriptome ratio (second profile in descending order), computed for Affymetrix U95 array of a bladder tumor sample

and of a reference sample. This confrontation pinpoints the probable implication of the oncogene cyclin D1 in this tumor. The third and fourth profiles in

descending order correspond to a reference profile (average normal bladder tissue profile) and the profile of the tumor under study, respectively. The second

profile is the ratio of the fourth to the reference profile.
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� ProfileView: the ProfileView (Fig. 2) can display the profiles as

points, barplots or curves. It can be split into two frames, as in

Figure 1. The upper frame can, for example, contain a profile

for reference when browsing a collection of profiles in the

lower frame. The two frames have separate control of Y-scale

and Y-scrolling, but have the same X-scale and X-scrolling.

The Profile View can also display symbols for chromosome

telomeres and centromeres, and can show the results of CGH

ratio statistical analysis (e.g. breakpoints, or smoothed signal

values, see Fig. 2).

� Karyotype View: the Karyotype View (Fig. 3) displays profiles

having the well-known classical CGH rendering: vertical repre-

sentations of chromosomes with cytogenetic banding and con-

tiguous representation of sample profiles.

� Dot Plot View: the Dot Plot View does not consider the micro-

array probe positions on the genome, but only their ranks. It

displays a collection of samples as a heat map based on the

level of signal for each probe (Fig. 4).

By default, points or barplots are colored according to the signal

intensity (generally using ratios of the two channels or log-ratios)

using a continuous scale from red to yellow to green. All the pre-

viously mentioned views for the CGH data can be colored as a

function of the array-CGH data analysis. Typically, gained DNA

regions are displayed in red, lost regions in green, amplicons in blue

and normal in yellow.

Whatever view is chosen, the profiles can be represented in

Genomic mode or Chromosome mode. The Genomic mode simply

depicts the profiles along all the concatenated chromosomes. It is

the most usual representation, and allows comparison of profiles

from different samples or comparison of different types of profiles

from a given sample. The Chromosome mode is similar to the

Genomic mode except that it only displays one particular chromo-

some. It is also possible to merge several chromosomes and to

represent those chromosomes useful for the study.

� New Views: our object-oriented architecture easily allows us to

add new types of views that can be associated with particular

actions or data processing. For example, the Minimal Region

functionality is associated with a particular type of view. There-

fore, when profiles are pasted in the window, the Minimal

Region View automatically displays the array-CGH profiles

with the DNA regions recurrently lost or gained in the samples

(Fig. 2).

2.1.2 Top left frame This frame controls zoom, search and draw-

ing options. Zooming is independent on X and Y axes, and all

profiles in the same window have the same zoom control, except

Fig. 2. Genomic View, main frame: profiles along all the concatenated chromosomes; top left: zoom control, search and drawing options; bottom left: textual

information on the object under the mouse pointer or (in this figure) chromosome context information (MiniMap). The regions spanning the three tumors

highlighted in green are those that are lost in all tumors (short arm of chromosome 10, and Y chromosome); these are called minimal regions.
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for Y zooming of the reference profile. The search can be carried out

on any property attached to the arrays or the clones/probes held in an

XML (eXtended Markup Language) data file or in the database (see

Fig. 6 and the Software architecture presentation below). For XML

data files, the list of properties is not limited,but is established at run

time, leading to a very flexible search option. Drawing options

include color-coding for signal values, and the threshold values

to be applied; they can be either global to the application or restric-

ted to one profile (local). User preferences can be saved on your

computer in a XML configuration file.

2.1.3 Bottom left frame (Object information and context

frame) The bottom left frame can either display textual informa-

tion on the object under the mouse pointer (Fig. 3) or context

information, called MiniMap (Fig. 2). The textual information

consists of mandatory fields (object genomic position, signal

value, project name, organism and data type) and any other type

of complementary information stored in the XML data file. For

example, in array-CGH profiles we currently display general

information about the clone under the mouse pointer (name, chro-

mosome, number of valid replicates, rank and position on the

sequence, signal ratio and standard deviation, size of the clone,

CGH status—gain/lost/normal) as well as information about the

array (name, number of spots, number of clones, number of rep-

licates, chromosomes covered, ratios or log-ratios) and information

about the sample (sample id, project name, date). MiniMap is a

special view type that gives some context on what the user is

examining in the main frame: (1) a cytogenetic representation of

the chromosome under the mouse pointing, with (2) a rule delim-

iting the region of the chromosome displayed on the main frame

and (3) the name and position of the object (array-CGH clone,

transcriptome microarray probe, etc.) under the mouse pointer. In

this view, the display can be automatically updated when the user

moves the mouse.

2.2 User interaction

All user actions are accessible either through a Menu on the menu-

bar, or through pointing to or clicking objects. When using VAMP,

the session can be saved in local XML files. Reloading the file later

on allows the continuation of the analysis within the context of the

previous work, or allows the exchange of results and data with

colleagues. All user preferences can also be stored in local XML

files. Drag and drop capability is offered for any profile, from one

window to any other window, the rendering being automatically

adapted (e.g. from a dot plot view to a karyotype view). An

advanced printing function is offered, either in visible mode

(only the profiles that are visible on the screen are printed), or in

global mode (all profiles in the view are printed). A template is

offered for defining the output of the printing (this can, for example,

include several frames in an arbitrary composition, to which text or

images can be added). It can be used for defining and printing

standardized outputs. The user can also interactively monitor the

print preferences.

2.3 Data analyses

VAMP allows addition of any new piece of software for data ana-

lysis and visualization of the results. Several functionalities have

already been implemented either as plug-ins or within the VAMP

Java source code. VAMP was initially developed for the analysis of

CGH-arrays of tumoral samples. As VAMP is actually an interface,

it is assumed that the microarray data have already been normalized,

and also, for CGH data, that breakpoints have been established and

Fig. 3. Karyotype View, classic rendering of CGH data, loss regions in green, gain in red.

Visualization and analysis of molecular profiles

2069



regions of DNA loss or gain inferred. VAMP can then display in the

profile frame (Fig. 2) the breakpoint positions, the status of each

region (by default, green for loss, yellow for normal, red for gain,

blue for amplicons), and the estimation of the signal value in each

region, which is computed, for example, using smoothing tech-

niques (Hupé et al., 2004). VAMP also allows the defining of

the gain and loss regions by simply applying a threshold to the

signal ratios. Examples of data analyses available within VAMP

are given below and are described in more detail in the software

documentation (http://bioinfo.curie.fr/vamp/doc).

Finding common alterations among a collection of CGH- array

profiles. CGH array analysis principally consists in finding com-

mon regions of alterations, i.e. regions that are lost in many tumors.

It is essential in these studies to distinguish between recurrent and

random alterations. Recurrent alterations pinpoint regions involved

in tumoral progression, whereas random alterations are simply the

consequence of the general instability that affects the genome of a

tumor. Among the recurrent alterations we distinguish the minimal

regions and the recurrent regions. Minimal regions are extracted by

intersecting the profiles of many tumors and looking for a sufficient

number of alterations in the tumors (this parameter is set by the user)

over the smallest possible region of the profile (Fig. 2). Tumoral

progression obeys a selection principle, and it would be expected

that the genes that need to be altered for a cell to become tumoral

must be located in the smallest possible intersection of all

alterations of a region. Recurrent regions are defined differently:

in a given tumor, an alteration is bounded by two extremities, which

can be a breakpoint or a chromosome end; when a sufficient number

of tumors have the same extremities, these extremities define a

recurrent region. We have implemented a linear algorithm that

detects such minimal and recurrent regions, which is described

in (Rouveirol et al., 2006). Gained regions appear in red in the

main frame, and lost regions appear in green (Fig. 2). Amplicons

(defined as gained regions with signal-ratio above a threshold typi-

cally equal to two) are colored in blue. The tumors that support a

region of alteration may be optionally shadowed in the region, and

for each region the user can sort these tumors.

Clustering profiles. Clustering is a general technique for

unsupervised data classification widely used in microarray data

analysis. A VAMP function offers the possibility to perform a

hierarchical clustering (Kaufman and Rousseuw, 1990) on the pro-

files in the dot plot view. This can cluster genes and tumors from

transcriptome arrays, or tumors from a CGH profile. In a CGH

profile, the clustering uses the smoothed values of the CGH profile

as variables and the Euclidean distance and Ward method for group

distance computation. VAMP displays the results as a cluster view

including a heat map and the trees resulting from the clustering

algorithm (Fig. 4).

Comparing profiles. The Menu proposes several different data

manipulation procedures for the profiles such as loading any type of

Fig. 4. VAMP interface, dotplot view of array-CGH profiles (middle panel), and dendrogram resulting from a hierarchical clustering (right panel). In between,

color-coded clinical information about the samples, with a legend (bottom left). Data from Nakao et al. (2004).
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profile (CGH, expression, LOH, ChIP chip—an icon at the left of

each profile shows the type of loaded profile) for a given sample

(e.g. a typical application of VAMP is the simultaneous visualiza-

tion of the DNA alterations and gene under- and over-expression in

a region, Fig. 1); defining a profile as a reference and calculating

the ratio of a profile to the reference (useful for one-color micro-

arrays such as Affymetrix); averaging profiles; drawing marks

(vertical bars) or regions (such as the green regions in Fig. 2)

across all profiles (and simultaneously on the MiniMap); and

many others.

Confrontation with sample annotation. Clinical data, or any

other sample annotations, present in the XML files can be

used for filtering tumors or for sorting them. This data can be

visualized as color-coded bars in an annotation frame on the left

of the profiles, and can be easily compared with a clustering

result (Fig. 4).

Synteny analysis. VAMP can display the syntenic projection of

a profile onto the genome of another species, in which that genome

serves as a reference; a typical application is the projection of a

mouse array-CGH profile onto the human genome (Fig. 5). In our

case if an unambiguous syntenic locus was found, the mapping was

done from each clone of the mouse profile onto the location of the

most similar sequence of the human genome. The synteny relation-

ships can be shown, for a selection of regions of the genome, as links

from each clone of the profile to the location of the most similar

sequence of the reference genome.

Other functions. The right mouse button brings up a menu

with several actions associated to the clone/probe currently under

the mouse pointer. These include: centering the profile around

the current position; drawing of a vertical bar through all the pro-

files (to define a locus or a region); and linking to external web

pages from NCBI clone or MapViewer (http://www.ncbi.nlm.nih.

gov/mapview and Wheeler et al., 2005), UCSC Genome Browser

(http://genome.ucsc.edu and Kent et al., 2002), Ensembl Contig

View or CytoView (http://www.ensembl.org and Hubbard et al.,

2005), Saccharomyces Genome Database (http://www.

yeastgenome.org). New links are defined in a XML configuration

file and adding them is straightforward. Most data and results

(profiles, minimal regions, etc.) can be exported and saved in

full text, csv (comma separated values) or HTML format. We

refer the reader to the user manual for a description of the other

functions.

2.4 Software architecture and requirements

The software architecture is shown in Figure 6. The core of the

interface consists of a Java applet, and was developed using the

Swing library. It runs on any operating system supporting Java 1.4.2

Fig. 5. Array-CGH profile for a mouse tumor (top) and its syntenic projection, i.e. a humanized array-CGH profile after mapping each mouse clone onto the

human genome (bottom) and projection for two regions (middle profile) with resulting synteny relationships. Mapping is done from each clone of the mouse

profile onto the location of the most similar sequence of the human genome. Mouse clones with ambiguous syntenic locations have not been mapped onto the

human genome.
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(we recommend computers with a minimum of 1 Gb memory,

although 256 Mb is enough for small projects). The data used by

the program are of several types:

� The genome profile information, which are retrieved either

from a relational database management server (currently

Oracle�) or from XML data files. These include the signal

value for each clone/probe and its genomic location.

� The system files (also in XML), which includes the cytogenetic

description of the genome under study and the configuration

parameters (environment variables for file and URL manage-

ment). Cytogenetic banding files for human ISCN 400, 550

and 850 descriptions, as well as mouse and yeast genome

descriptions are also available. The user files, which consist

of the user visualization preferences and saved sessions.

VAMP can be used either as a local application, with all data and

configuration files directly accessible to the client, or as an applet,

with all data and configuration files installed on a server. In this

mode, only the user configuration file is stored locally on the client

machine.

VAMP can be easily installed on any platform running Java 1.4.2.

All that is needed is to convert the microarray data into XML files,

with a specific syntax described in a DTD (XML Document Type

Definition). The use of a database management server is not

mandatory, although it is recommended for large-scale projects.

Arbitrary complementary profile information can be added to the

XML files, and this information can be displayed by the interface.

3 DISCUSSION

We have developed a graphical user interface for the visualization

and analysis of any type of genomic profile, with an emphasis on

array-CGH. VAMP is currently used in cancer genomic projects on

human and mouse samples and in studying the proteins involved

in the reparation, recombination and replication of DNA in yeast. It

is used in Institut Curie and many labs in Europe and the United

States. Several publications describing data analysis with VAMP

are coming soon. Janoueix-Lerosey et al., (2005) describe the use of

VAMP for replication timing data analysis (http://microarrays.

curie.fr/publications/U509/reptiming). In Institut Curie, �3600

microarray profiles have been interfaced with VAMP to date.

Fig. 6. Software architecture of a microarray environment based on VAMP. VAMP can also be used as a local application.
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VAMP aids greatly in finding genes of clinical and biological

importance from CGH, transcriptome, LOH, ChIP chip profiles

and SNP arrays. VAMP improves upon existing solutions such

as SeeGH (Chi et al., 2004), CGHPRO (Chen et al., 2005), CGH-

Analyzer (Margolin et al., 2005) or general purpose spreadsheet

software, because it offers many different modes of visualization,

allows the display of several samples and of several types of profiles

simultaneously, and offers many data analysis functions. VAMP

can be compared with other general-purpose genomic browsers

such MapView (NCBI), Genome Browser of UCSC or Ensembl.

VAMP is well suited to handle sample profiles and to analyse this

type of data, which the other genomic browsers are not designed to

do. Therefore, in cancer research it addresses a real need and is a

useful tool for biologists and clinicians. Our software is fully port-

able and only requires a computer running Java 1.4.2 and data in

XML format.

VAMP can be run on public datasets at http://bioinfo.curie.fr/

vamp. The array-CGH data from Snijiders et al. (2001, 2005),

Pollack et al. (2002), Veltman et al. (2003), Nakao et al. (2004),

Douglas et al. (2004), de Leeuw et al. (2004), Gysin et al. (2005),

Patil et al. (2005) and Bredel et al. (2005) are currently browsable.

Expression profiles are also available for the samples from Pollack

et al. (2002).
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ABSTRACT

Assessing variations in DNA copy number is
crucial for understanding constitutional or somatic
diseases, particularly cancers. The recently devel-
opedarray-CGH(comparativegenomichybridization)
technology allows this to be investigated at the
genomic level. We report the availability of a web
tool for analysing array-CGH data. CAPweb (CGH
array Analysis Platform on the Web) is intended as a
user-friendly tool enabling biologists to completely
analyseCGHarrays from the rawdata to the visualiza-
tion and biological interpretation. The user typically
performs the following bioinformatics steps of a CGH
array projectwithinCAPweb: the secure uploadof the
results of CGH array image analysis and of the array
annotation (genomic position of the probes); first
level analysis of each array, including automatic nor-
malization of the data (for correcting experimental
biases), breakpoint detection and status assignment
(gain, loss or normal); validation or deletion of the
analysis based on a summary report and quality cri-
teria; visualization and biological analysis of the
genomic profiles and results through a user-friendly
interface. CAPweb is accessible at http://bioinfo.
curie.fr/CAPweb.

INTRODUCTION

In recent years, array-CGH (comparative genomic hybridiza-
tion) has become the technology of choice for large scale
investigations of DNA copy number changes between two
genomes. Today, CGH arrays allow the ratio of DNA copy
number between a test and a reference sample to be simulta-
neously assessed in 2000 to 30 000 positions in the genome,
giving a resolution of between 1.5 Mb to 100 kb (1,2). Its main

applications are the study of diseases in which the DNA copy
number varies in certain locations of the genomes, due to
either constitutional mutations (hereditary or de novo), such
as human genetic diseases (3) or somatic changes, such as in
cancers (4). The identification of regions of altered DNA gives
valuable information about the genes involved in the disease,
and many projects have been launched worldwide to deter-
mine the genome structure of tumour cells (4). Array-CGH is
also an important source of information for studying genome
evolution, for example in bacteria (5) or mammals (6). We
have developed a Web tool, called CAPweb (CAP: CGH array
Analysis Platform), for bioinformatics analysis of CGH arrays.
This tool combines the following tasks: (i) data management,
(ii) array normalization, (iii) automatic breakpoint detection
and assessment of gain and loss regions, (iv) quality control
and (v) a graphical user interface for browsing and analysing
the genomic profiles.

Several tools have recently been developed for analysing
CGH array data, such as CGH-Explorer (7), ArrayCyGHt (8),
CGHPRO (9), WebArray (10) or ArrayCGHbase (11),
although the only web-accessible servers are ArrayCyGHt,
WebArray and CAPweb. Among these three, only CAPweb
allows project management and the upload of raw data files
without pre-processing. It also offers unique features for the
analysis and visualization of array-CGH data. CAPweb
accepts raw data from the main microarray image analysis
software. As far as we are aware, CAPweb is the only platform
dedicated to biologists that allows the complete analysis of raw
CGH arrays from the raw data to visualization and biological
interpretation.

DESCRIPTION

The CAPweb server allows the user to store, analyse and
manage his or her data. We will now describe its operation
(Figure 1). A tutorial is accessible at http://bioinfo.curie.fr/
tutorial/CAPweb/capweb_tutorial.html.

*To whom correspondence should be addressed. Tel: +33 0 1 4234 65 31; Fax: +33 0 1 42 34 65 28; Email: capweb@curie.fr
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Figure 1. Different views of CAPweb Interface showing how the CGH array analysis proceeds, see text for details.
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User registration, data upload and management

The first step of the analysis is user registration
[Figure1(1)],whichensures theconfidentiality of the submitted
data. The user is sent a login/password by email and can then
create one or more projects to upload data files [Figure 1(2)].
Several input formats from microarray image analysis
software are currently supported: Genepix (http://www.
moleculardevices.com/pages/instruments/gn_genepix4000.
html), Imagene (http://www.biodiscovery.com/index/
imagene), Spot (12) and MAIA (13). CAPweb requires only
two types offile: (i) a raw intensityfile (onefile forGenepix and
MAIA, two files for Imagene and Spot) and (ii) a genomic
position file mapping each spot to a name and its position on
the genome under CSV (semi colon separator) format.

For each project, the ‘Array Management’ page
[Figure 1(3)] lists all the arrays, their analysis status and
the summary report file, and allows new analyses to be
launched.

The array files are permanently stored on the server: the user
can only browse the arrays of his or her projects, and only the
user is allowed to delete them.

CGH array analysis

From the ‘Array management’ page, the user can launch the
array analyses. The analyses are run in the background, allow-
ing the user to use CAPweb for other analyses.

Data Normalization (MANOR). As in all microarray analyses,
CGH array data must be normalized to correct for experi-
mental artefacts while preserving the true biological signal.
For this goal, CAPweb uses the Bioconductor package
MANOR, which includes spot and clone filtering steps that
discards spots having too low a signal-to-noise ratio or clones
with a poor replicate consistency, and, most importantly, it
includes a spatial normalization step. This step aims to correct
for spatial effects on the arrays. We identified these as the
predominant experimental artefact in the array-CGH data we
have studied. The corresponding algorithm is based on a spa-
tial trend estimation and a signal segmentation method with a
spatial constraint, as described in P. Neuvial et al. (manuscript
submitted).

Breakpoint detection and assessment of gain and loss region
(GLAD). This step aims to identify chromosomal regions hav-
ing an identical DNA copy number, which are delimited by
breakpoints. CAPweb uses the Bioconductor package GLAD,
which implements an algorithm described in (14). This method
first uses the spatial structure of array-CGH data to adaptively
calculate a smoothed signal value for each clone. These
smoothed signal values are then used to detect breakpoints
and outliers, and then genomic regions having the same under-
lying copy number are clustered together.

Quality control. Various statistical criteria can help the user
assess the quality of the array. These include intra-replicate
variability, genomic neighbour variability, the percentage of
spots filtered out after image analysis and the amplitude of
signal gap between regions having a different DNA copy
number. These quality criteria are reported in an HTML
summary report file, which also displays key features of
the normalization process: array image and genomic profile

before and after normalization, and a summary of the normal-
ization. This file [Figure 1(7)] allows the user to compare the
quality of the data before and after analysis. Based on this
information, the user may choose to keep or discard the
analysis.

This data analysis step can be run without an extensive
knowledge of the underlying statistical algorithms by using
default parameters. Default parameters have been calibrated
by comparing quality criteria for various parameter value in
two datasets: one from UCSF (218 arrays, Spot format, as a
collaboration with Dan Pinkel), and one from Institut Curie/
INSERM U509 (181 arrays, Genepix format). This part is
described in detail elsewhere (P. Neuvial et al. manuscript
submitted). However, CAPweb allows the user to choose
the value of several parameters for filtering, spatial normal-
ization and breakpoint detection. The summary report also
helps in comparing the results of analyses carried out with
different parameter values [Figure 1 (4–6)].

Visualization (VAMP) and biological analysis

Once the first level of array analysis has finished, the user can
visualize and further analyse the data through a graphical user
interface: VAMP—visualization and analysis of array-CGH,
transcriptome and other molecular profiles (P. La Rosa et al.
manuscript submitted) [Figure 1 (8)]. Several visualization
types are proposed, such as the classical CGH karyotype
view or the genome-wide multi-tumour comparison view.
These allow the user to easily compare different arrays. Addi-
tional information concerning each clone or DNA region can
be interactively retrieved from different public databases
through external links. Other functions for analysing CGH
data are provided within the interface, such as looking for
minimal or recurrent regions of alterations (15), clustering, etc.

VAMP allows the user to display genomic profiles at vari-
ous resolutions [from the whole genome to small regions
(clone level)]. All the analyses results (breakpoint detection,
assignment of gain/lost region, quality criteria, etc.) can also
be displayed within VAMP. VAMP has many other functions
for navigation, querying and analysis that we have not
explained here; we refer the reader to the documentation
and demo for further details (http://bioinfo.curie.fr/vamp/doc).

Note that the user can analyse at least 200 arrays with 1GB
of memory.

IMPLEMENTATION

The CAPweb server is based on freely available components
(Figure 2). The database for user management and array man-
agement was built on mySQL. PHP scripts ensure registration
and project management. Perl scripts control the launching of
statistical analyses written in R. A Java applet and XML files
are used for the visualization. CAPweb integrates the MANOR
and GLAD R packages and the VAMP software, all of which
were developed at the Institut Curie.

The security in CAPweb is based on mysql authentication
and cookie session. Uploaded data are considered strictly con-
fidential. The CAPweb server is also available upon request for
local installation on Unix/Linux/MacOS X operating systems.
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CONCLUSION

Array-CGH is a popular technology that is now used in many
projects ranging from the characterization of tumours to the
study of genome evolution. As with any large scale technol-
ogy, its exploitation relies heavily on the availability of bioin-
formatics tools for managing and analysing the data. Many
bioinformatics algorithms and interfaces have been developed
but biologists have lacked a web-based platform for integrat-
ing these tools in a user-friendly manner. CAPweb offers this
service and combines array normalization, quality control,
breakpoint detection and the biological interpretation of the
results. It also helps with data management. Currently, the
public CAPweb server at the Institut Curie contains 800 arrays.

In this paper we have presented CAPweb 1.0 version. A new
version is currently being developed, which will allow the user
to analyse high density oligonucleotide arrays, such as Affy-
metrix GeneChip� Arrays or Nimblegen�Arrays, to integrate
any clinical information, and to add gene expression profiles
so that copy number profiles can be compared and correlated
to them.
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APPENDIX E

A particular CGH-array experiment

Figure 1 is the output of a CGH-array experiment that I have performed
under the supervision of Gaëlle Pierron and Élodie Manié, on a neurob-
lastoma cell line that exhibits a characteristic amplification of the MYCN
oncogene.

Figure 1. Results of a CGH-array experiment on a neu-
roblastoma cell line. Top: Cy3 and Cy5 images; bottom: ge-
nomic profile (copy number ratios). The peak on chromosome
2 corresponds to the amplification of MYCN.
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