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Résune en Francais Ces dernieres annéespMX est devenu le format stan-
dard pour I'echange de données. Les documemis Xont généralement pro-
duits a partir de bases de données, durant le traitemesw@enents, ou au sein
d’applications Web. L'échange de données en flux esuségnent utilisé lors
de I'envoi de données conséquentes par le réseau. Ainsarsfert par flux est
adéquat pour de nombreux traitementgLX

Dans cette thése, nous étudions des algorithmes d@&atude requétes sur
des flux XML. Notre objectif est de gérer efficacement la mémoire, afipal-
voir évaluer des requétes sur des données voluminetosgn utilisant peu de
mémoire. Cette tache s’avere complexe, et nécesssteedérictions importantes
sur les langages de requétes. Nous étudions donc lestesqdéfinies par des
automates déterministes ou par des fragments du standa@d¥WVath, plutdt que
par des langages plus puissants comme les standards W3GWX&QUESLT.

Nous définissons tout d’abord Isgeaming tree automa{®@TAS), qui operent
sur les arbres d’arité non bornée dans l'ordre du documéidus prouvons
gu’ils sont équivalents aurested word automatat aux pushdown forest au-
tomata Nous élaborons ensuite un algorithme d’évaluation ag pt, pour les
requétes définies par des STAs déterministes. Bien ge'dtocke que les candi-
dats nécessaires, cet algorithme est en temps polynamtedque événement du
flux, et pour chaque candidat. Par conséquent, nous olsetesnrésultats posi-
tifs pour I'évaluation en flux des requétes définies pas 8&As déterministes.
Nous mesurons une telle adéquation d’'un langage de exja@étine évaluation
en flux via un nouveau modele de machines, appalfrfeaming random access
machineg(SRAMS), et via une mesure du nombre de candidats simuttang
vivants, appel@&oncurrence Nous montrons également qu’il peut étre décidé en
temps polynomial si la concurrence d’'une requéte défiaieip STA déterministe
est bornée. Notre preuve est basée sur une réductioroblépre de la valuation
bornée des relations reconnaissables d’arbres.

Concernant le standard W3C XPath, nous montrons que mémmpetite frag-
ments syntaxigues ne sont pas adaptés a une évaluatilux esauf si P=NP. Les
difficultés proviennent du non-déterminisme de ce laegagnsi que du nom-
bre de conjonctions et de disjonctions. Nous définissossrdgments de For-
ward XPath qui évitent ces problemes, et prouvons, papdation vers les STAs
déterministes en temps polynomial, gu’ils sont adaptése évaluation en flux.

Titre en Frangais Flux XML, Requétes XPath et Automates

Mots clés en Francais Flux XML, requétes, arbres, automates, XPath.



Résune en Anglais During the last years, ML has evolved into the quasi stan-
dard format for data exchange. Most typicallyyX documents are produced
from databases, during document processing, and for Welicappns. Strea-
ming is a natural exchange mode, that is frequently used vgeading large
amounts of data over networks, such as in database drivenapglications.
Streaming is thus relevant for manyiX processing tasks.

In this thesis, we study streaming algorithms faniXquery answering. Our
main objective lies in efficient memory management, in otddye able to query
huge data collections with low memory consumption. Thissusut to be a sur-
prisingly complex task, which requires serious restrizsion the query language.
We therefore consider queries defined by deterministicraata or in fragments
of the W3C standard language XPath, rather than studying powerful lan-
guages such as the W3C standards XQuery or XSLT.

We first proposestreaming tree automatéSTAS) that operate on unranked
trees in streaming order, and prove them equivalent to desbed automata and
to pushdown forest automata. We then contribute an eadiesty answering
algorithm for query defined by deterministic STAs. Even fijlout succeeds to
store only alive answer candidates, it consumes omiyP per event and can-
didate. This yields positive streamability results forssles of queries defined
by deterministic STAs. The precise streamability notiorehrelies on a new ma-
chine model that we caditreaming random access machif8®AMs), and on the
number of concurrently alive candidates of a query. We atgovshat bounded
concurrency is decidable infRME for queries defined by deterministic STAs. Our
proof is by reduction to bounded valuedness of recognizadéerelations.

Concerning the W3C standard query language XPath, we fiost 8tat small
syntactic fragments are not streamable except if P=NP. Toiglgmatic features
are non-determinism in combination with nesting of andfoerators. We define
fragments of Forward XPath with schema assumptions thatl dlese aspects
and prove them streamable byIRE compilation to deterministic STAs.

Titre en Anglais Streaming Tree Automata and XPath

Mots clés en Anglais XML streams, queries, trees, automata, XPath.
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Chapter 1

Introduction

1.1 Background

The XML format, introduced over ten years ago [BPSD8], has become de
factostandard for data exchange. It is now a common language fmugacom-
munities, from web technologies to document processingdatabases. Origi-
nating from $ML, XML defines semi-structured documents, modeled by trees.
The syntax of an XiL document is a well-nested sequence of tags, some of them
containing textual content. This differs from relationatabases, where the data
is stored in tables. With ML appeared schema languages like DTDs (Document
Type Definition), XML Schema or Relax NG. A schema is used to define the cor-
rect structure of XaL documents of some given application.

Consider for instance the . document in Figure 1.1(a). This represents
geospatial data of two cities, and is modeled by the treegnréi1.2. A schema
for this document is presented in Figure 1.1(b).

The first task for processingML is to validatedocuments against schemas.
This is a requirement for applications that manipulate_data, in order to check
their conformance to the desired schema. The second tagkery answering
which consists of selecting nodes in amX document, according to the query.
This is a basic step to retrieve information from amXdocument. In our ex-
ample one might want to retrieve tripléeane, | at ,|1 on). Query answering
is a generalization diltering, which requires to determine whether amiX do-
cument has a match w.r.t. the query. The third task, and vemynton use of
query answering, igata transformation In the context of XiL, this aspect has
many applications. Data exchange, for instance, considtaieslating a docu-
ment satisfying a schema, to a document conforming to ansttteema. In our
example, geospatial data can be represented using differkamas by different
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<geo>
<poi nt >
<nane>Lille</ nane>
<| at >50.6305@&/ | at >
<l on>3.07063/ | on>
</ poi nt >
<poi nt >
<name>Hellemmes/ nane>
<l at >50.6274&/ | at >
<l on>3.1085%/ | on>
</ poi nt >
</ geo>
(&) XML document.

geo —point*

poi nt — (nane,l at ?,1 on?)
name — #PCDATA

| at — #PCDATA

lon — #PCDATA

(b) DTD schema.

Figure 1.1: XvL file containing geospatial data, conforming to a DTD.

geo

point point

//////i;y AN i T

name lat lon name lat lon

Lille 50.63050 3.07063  Hellemmes 50.62746 3.10853

Figure 1.2: The tree representation of theXfile in Figure 1.1(a).

governments or companies, so one might want to export thetseitto another
schema. Data transformation consider all possible tramsfions from an XL
document to another one. Another frequent example is theftvsemation of XuL
documents to FIML web pages using XSLT stylesheets.

All these tasks can be performed in several modes. The firdensthein-
memory evaluationrHere the whole XiL document is loaded into main memory,
and then processed. The output is produced only when allitbs/@nswers are
computed. One drawback of this approach is a significant mgsasumption.
Another is that often some answers can be produced befovetbie set of query
answers is computed. An approach to solve the latter defigiesntheenume-
ration of solutions. It consists in outputting, after a preprooggphase, each
solution one at a time, with a reasonable delay between tweamutive answers.
Finally, thestreamingmode imposes stronger restrictions on space usage. In this
mode, the X1L document is read in only one pass, from the first to the last tag
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of the document. The output is also produced in a streamingera When an

answer is found or a part of the output document is computesljimmediately

output to another device. The objective of a streaming e¥@n is to use less
memory, by only buffering the required information. Buffey is necessary when
the output still depends on the continuation of the streane. goal is to deal with

documents that cannot be loaded into main memory, or to psoXRL Streams

coming from the network on the fly.

Several standards have been elaborated for the aforemedtiasks. We al-
ready illustrated schema languages at DTDs, defined witl@rXtL recommen-
dation [BPSM08]. XML Schema [FWO04] extends DTDs by adding some fea-
tures like more precise characterizations of textual aant&loreover, an XiL
Schema is itself an ML document, unlike DTDs. Relax NG [vdV03] focuses on
the description of the structure of valid trees, and dekeg#tie specification of
valid textual content to XL Schema.

XPath [CD99] is the standard language for selecting nod¥sin documents.
It is based on a description of paths, by series of steps toltmied in order to
reach selected nodes. XPath also allows to add filters alwsgtsteps. A filter is
a Boolean combination of path expressions, and is satigfeedaode matches this
combination. It is also possible to test textual contentaxfes. The navigational
core of XPath 1.0, named CoreXPath 1.0, has been extractgdtbipb, Koch and
Pichler in [GKPO05]. XPath is a core query language, used @aotenselection in
many other languages, like XPointer [DMJO01], a standaréébecting fragments
of XML documents.

XPath is also used by both popular transformation langua¥@sery
[BCFt07] and XSLT [Cla99]. XQuery is an imperative language ugorgoops
in order to select tuples of nodes, that are subsequentlytetsin some XL
context to produce an outputM{ document. XSLT is closer to functional pro-
gramming. An XSLT stylesheet is a set of template rules thatagtivated on
nodes matching XPath expressions.

XProc [WMTOQ9] proposes to combine all these standards uaipgpeline
language. Whereas XPath, XQuery and XSLT were not desigoestieaming
evaluation, XProc permits to define parts of the tree whexs#hection and trans-
formation occur, and thus restricts the inherent diffie@gtdf their streaming eva-
luation to smaller regions. We will see in this dissertatibat other languages,
like STX [BBCO02], have been designed specifically for strempevaluation, but
no standard has been adopted yet.

Finite word automata [HU79] process words in one pass, talddbeir ac-
ceptance. Hence, they naturally perform streaming evaluatf words. These
objects have been extensively studied, and enjoy integestiations with logics



4 Chapter 1 — Introduction

and formal languages, as an automaton basically definesgadge of words.
XML documents are modeled as trees, not words. However, drigma docu-
ments are linearizations of these trees: AmiXdocument is a series of tags (an
XML stream), and thus aword. Here, tags are well-nested, iafigbe tree struc-
ture. Finite word automata are not able to take this nesgtagion into account,
so we need a more powerful notion of automata to process 3treams.

Tree automata [CD®)7] provide a framework to formally define and study
XML tasks. Tree automata also benefit from extensive work, alhdetate di-
rectly with logics and languages over trees. In particulagy provide an al-
gebraic framework to XL databases, like the relational algebra for relational
databases. It has been shown that tree automata could eaftdine standard
schema languages, and the translation of a schema to a taeadan is rela-
tively simple [MLMO1]. Tree automata were also proposed éfirce queries in
trees [NS02, Koc03, BS04, CNTO04]. XPath expressions candmslated into
tree automata, but this time the translation is not trividlidation (here, named
model-checking) and query answering tasks are also stddieiriee automata.
Transformations are defined by tree transducers. Thess ffiffim tree automata
by allowing to produce an output while reading an input tree.

1.2 Motivations

In this manuscript, we study the query answering task, ugisggeaming evalua-
tion, on queries defined by XPath and tree automata. Strgaenaduation is now
a major challenge for XPath processing. Michael Kay, thb@ubf the reference
XQuery processor Saxon, recently declared [Kay09]:

The streaming capabilities [of Saxon] are now one of the m&a-
sons people buy the product.

The evaluation of streamedv{ documents has been considered for a long
time. We illustrate this evaluation mode and related cotscep a query over
words on the alphabdia, b}. Consider the query that selects positions labeled
by a, directly followed byb-b. For instance, on the wor@-b-a-a-b-b-b-a-b-b,
this query selects positions 4 and 8, as illustrated in EduB. All b-positions
can immediately be discarded. Fepositions, the selection or rejection cannot
be decided immediately. Positions followed by aitlike 3) can be discarded
after one step, and those followed by: (like 1) after two steps. This query can
be answered with a sliding window of length 3, and needs téebat most one
candidate at a time. We nardelaythe minimal size for the sliding window, and
concurrency{BYFJO5] the minimal number of simultaneous alive candedatA
candidate isalive at a given time point, when there exists a continuation of the
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input la b a a b b b a b b
buffer |1 1 3 4 4 8 8
output 4 8

Figure 1.3: Streaming evaluation for the selection-giositions followed by-b.

stream after this time point for which the candidate is gelcand another for
which it is rejected. Hence these alive candidates have tmffered. It is often
easy to define small queries with high concurrency, for mstehere by allowing
thatb-b appears after an, but not immediately after. Schema information can
reduce the buffering requirements. For instance supp@gethvalid words are
such that once three succesgiygositions are read, alkpositions are followed by
b-b. Then alla-positions following threé-positions can be output immediately.
For instance here, the position 8 can be safely output atipos8 instead of
position 10.

From the beginning, streaming algorithms outperformeeio¢ivaluators, but
worked on restricted fragments. Many difficulties for stnag evaluation were
identified. For the validation task [SV02], a first problenthg recursive nature
of XML documents. Processing recursive documents requireagiaformation
about ancestor nodes in a stack. Hence the memory can bedzbhpdhe height
of the tree, but cannot be bounded independently for alktr€ery languages
like XPath are inherently non-deterministic [PC05], ueldchema languages. For
instance XPath allows steps through tilescendandixis. Starting from one node,
this matches all its descendants, thus generating a lotrmofidate nodes for the
next step. Here, these candidates need sometimes to becbfées they might
require some information to determine if they satisfy thergufor instance if
there is a condition on their next siblings). These diffi@sdteven occur when fil-
tering XML documents using XPath [AF00]. Moreover, XPath allows binamg,
by allowing filters and conjunctions inside filters. Thisatsften participates in
increasing the complexity of algorithms. Transformationpose additional dif-
ficulties for streaming [FHMO05, Mic07]. This is typically the case for the ope-
rators dealing with positions among selected elementsn&sance when looking
for the last selected node, or for sorting nodes.

Relative to these blocking aspects, lower memory bounddhé&se tasks have
been established. In the context of query answering, the&ggn is the concur-
rency, as introduced previously. It has been proved [BY & the concurrency
is a lower memory bound for processing XPath queries, foagnfient of XPath
without wildcards. This raises a challenging issue: cane@eh this bound? This
guestion can be decomposed into several variants. Firsthearesult be gener-
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alized to larger query classes? It would also be interestrignow whether the
bound is tight, i.e. whether there exist algorithms whichmmoey consumption is
tight from this lower bound. What is the cost in time for reiachsuch bounds,
i.e. do these algorithms require a lot of computation, ineortid decide the se-
lection or rejection of candidates? How does this cost viammnfa query class to
another? In other words, are there query classes for whiatiesit algorithms
exist? Can we characterize such query classes by some fydp€an queries
with unbounded concurrency be tractable for streaming?cWhueries require
low buffering (even though unbounded)? These questiong/ateta notion finer
than concurrency: thstreamabilityof a query, i.e. a measure of appropriateness
to streaming evaluation. The concurrency draws a first iggribetween queries
having bounded concurrency (and thus using bounded memmogvery docu-
ment of bounded-depth) and the remaining one. But the quesséibove call for
a more fine-grained notion of streamability.

Beyond filtering and monadic node-selection queries, waystdary queries,
for n > 0. These are queries selectinguples of nodes in trees. The case- 0
corresponds to Boolean queries that can only distinguesstselecting the empty
tuple, and hence define tree languages. They are used tatrides satisfying
some constraints. For = 1, we obtain monadic queries, that select, for each
tree, a set of nodes in this tree. The selection-tfiples of nodes is a core ope-
ration in transformation languages. For XPath 2.0 and XQuhis operation is
done through nested for-loops called FLOWR expressionsattiXR.0 only de-
fines monadic queries. By introducing variables, we allonalXiP1.0 to define
n-ary queries. Compared to FLOWR expressions, this pernote rilexibility in
terms of evaluation, and might complicate the task of ouostigms. FLOWR
expressions are more low-level instructions, that migly tiee developer to de-
fine queries suitable to streaming, or not. For queries byraata,n-ary queries
are defined by languages of annotated trees.

Reaching the memory lower bound is very time consuming. Bi&het al.
[BJLWOS8] show for instance that for XPath used with DTDser¢ing failed can-
didates at the earliest time point with an algorithm builpotynomial time in the
size of query, with per-event polynomial time in the sizehaf query, is equivalent
to PTIME = PSPACE

Berlea [Ber06, Ber07] studsegular tree queriesdefined by tree grammars.
For this query class, Berlea proposes an algorithm baseteeratitomata, that
uses optimal memory management (in terms of stored cardijathile enjoy-
ing PTIME per-event and per-candidate space and time. However,ubiy glass
assumes an infinite alphabet, even for labels. This diffiemn fthe XviL for-
mat, where only textual contents (i.e., data values) areatncted. The fact that
the alphabet is infinite indeed simplifies earliest selecbo rejection of candi-
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dates tremendously. In particular, this query languageoisciosed by com-
plement. The algorithm can however be used for answeringiymXPath ex-
pressions in PIME, when assuming a bound on the branching width of XPath
expressions. Moreover, this algorithm efficiently proessgueries defined by
non-deterministic automata.

Some algorithms were proposed for the streaming evaluafiotPath. For
downward axes, we can mention the work by Bar-Yossef et al.YHRS5,
BYFJO7], Ramanan [Ram05, Ram09], and Gou and Chirkova [@{0&lgo-
rithms by Barton et al. [BCG03] and Wu and Theodoratos [WTO08] allow both
upward and downward axes. Olteanu et al. [OMFB02, OKB030 T} prove
that Forward XPath, the fragment of XPath 1.0 where all agepecting the do-
cument order are allowed, is as expressive as CoreXPatfiiied.propos&PEX
an efficient algorithm based on transducers networks, tretates all Forward
XPath expressions. Nizar and Kumar [NK08] define an algoritbr Forward
XPath expressions where no negation occurs. Recentlyektend their frame-
work [NKO09] to allow backward axes. Benedikt and Jeffrey QBPstudy logics
equivalent to CoreXPath 1.0, and their appropriatenesstfeaming. They iden-
tify fragments using backward and downward modalities authnegation, such
that the selection of a node can be decided when opening @ksing) it. They
show that for these fragments polynomial per-event spagd¢imae algorithms ex-
ist. Benedikt et al. [BJLWO08] study the filtering of\{. streams against XPath
constraints, and introduce a heuristic for the earliestatetn of violated con-
straints. All these algorithms for the evaluation of XPatleroXmML streams do
not achieve optimal memory management, and store useled&lates (or partial
matches) in some cases. Ley and Benedikt et al. [LB0O9] stuwbtiver there exist
extensions of XPath being as expressive as the first-ordés, land using only
forward axes. They prove that the first-order complete esxters used when all
axes are allowed do not suffice when restricted to forward.axe

Other lower bounds were also established, in addition teweancy. Bar-
Yossef et al. [BYFJO04, BYFJ07] establish three lower boyfatssome fragments
of XPath. The first one is thguery frontier sizei.e. the maximal number of sib-
lings of all ancestors of a node, in the tree representafittimeaquery. The second
one is therecursion depthof the document, which corresponds to the maximal
number of ancestors with the same label. The third one isodparithmic value
of the depthof the tree. Grohe, Koch and Schweikardt [GKS07], while ging
Turing machines modeling stream processing with multipbns, establish that
for CoreXPath 1.0, thdepthof the tree is a lower bound. A more complete state
of the art is provided in Section 1.4.
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1.3 Contributions

We now present our contributions. Throughout this manpsowe consider-

ary queries, i.e. queries that seleetuples of nodes, instead of simple nodes, as
allowed by XPath 2.0. Moreover, we always try to take advgaiaf schemas to
make stream processing more efficient, as schemas are vétdgibde in concrete
applications.

Streamability We start by defining a computational model for streaming yuer
answering: theStreaming Random Access Machiif8®RAMs). We then intro-
duce our notion oktreamability We have seen that such a notion is lacking in
the current state of the art. In particular, the absence df $ormal definitions
leads to a number of errors in the space complexity analyfismamy papers.
Roughly speaking, for a natural numberor m = oo, a query ism-streamable

if it can be computed using polynomial space and time forrakkgs for which
the concurrency of the query is less than This sets up a hierarchy of query
classesm-streamability with a high value of. is desirable, and means that input
trees with concurrency lower than can be efficiently processedo-streamable
queries are calledtreamablequeries, and always use polynomial per-event time
and space, independently of the concurrency. We study thgores between
guery classes that are-streamable, and query classes thatrarstreamable for
all m € Ny. Query classes being-streamable for allh € Ny must have polyno-
mially bounded concurrency in order to be-streamable (for monadic queries).
We study the hardness of deciding whether a query class halbd (resp. poly-
nomially bounded) concurrency. For Forward XPath, thesblpms are coNP-
hard. We show that beingystreamable implies aTPME universality test on the
class of queries, whenever this class verifies some preges universality for
Forward XPath queries is coNP-hard, Forward XPath id reiteamable, and thus
notm-streamable for alln € NU {o0}.

Streaming Tree Automata We defineStreaming Tree Automaf&TAs) as a no-
tion of tree automata that performs pre-order traversatseet. This corresponds
to streaming traversals of ML documents. STAs are a reformulation of nested
word automata [Alu07] that operate directly on trees indtehnested words.
We show the equivalence between STAs and other automatmsdhat traverse
trees (or encodings of trees) in pre-order: pushdown fangstmata [NS98], visi-
bly pushdown automata [AM04] and nested word automata. ¥éeethibit back
and forth translations between STAs and standard (bottoerd top-down) tree
automata. Queries defined by deterministic STAs (dSTAs)astreamable for
all m > 0, when bounding the depth of trees. We proved it by elabayadim
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earliest query answeringlgorithm.

Earliest Query Answering for Streaming Tree Automata Earliest query an-
swering (EQA) algorithms have the property of writing anssvat the earliest
point onto the output stream. In other words, each answartfgubonce there is
enough information to ensure that this answer will be settcin any continua-
tion of the stream. Symmetrically, all rejected candidaresdiscarded when they
fail in all continuations (a property naméaist-fail in [BJLWO08]). These notions
originate from the work of Bar-Yossef et al. [BYFJ05] and Bar[Ber06]. While
Bar-Yossef derived lower memory bounds for streaming, we/g@itime lower
bounds, by studying decision problems inherent to EQA &lgms.

The property of being earliest is a requirement for algonghbuffering only
alive candidates: not being earliest means that at some, patandidate is stored
while it does not have to. However, being earliest is oftemgotationally com-
plex. For XPath queries, we show that it is coNP-hard to dewtiether a pre-
fix of the stream ensures selection of a given candidate. &eres defined by
dSTAs, this task becomes tractable, and our earliest quewexing algorithm
runs in PriME (for fixed arityn). This proves that dSTAs are a robust formalism
for defining streamable queries. Our working hypothesih# every class of
streamable queries can be translatediviz to dSTAs. This is for instance the
case for the streamable fragment of XPath defined below, foclwwe provide
such a translation, hence proving its streamability.

XPath We then study the streamability of XPath in more details. Wmntify

a hierarchy of fragments, naméeDownward XPath (withk € N), that arem-
streamable for all, > 0. Here, the key property is that inRDownward XPath, the
number of correct matches of a branch of the expression thettree is at most
one at any time point. In order to ensure this property, welsomsyntactic re-
strictions (on the query) with semantic restrictions (om $bhema)k-Downward
XPath is a rich fragment, in that it allows negation, branghfand thus disjunc-
tion), and downward axes (child and descendant). We prandsffective RIME
translation ofk-Downward XPath expressions to dSTAs. Hence we can reuse
all our algorithms for dSTAs ok-Downward XPath, and in particular the EQA
algorithm.

Bounding Concurrency and Delay Finally we prove that for queries defined
by dSTAs, it can be decided inTRME whether a query has bounded delay and/or
bounded concurrency. Thielayis the maximal number of events between read-
ing a selected node (or tuple of nodes in thary case) and the earliest point
where its selection can be decided. Delay and concurremclesr streamability
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measures: delay is related to the quality of service, wholecarrency is a mea-
sure of buffering requirements. To obtain these decidgljioperties, we use
and extend results on recognizable relations over treaswiére already studied
in the ranked case [Tis90, CD®7] and also the unranked case [BL02, BLNQ7].
These are relations over trees that can be recognized byt@amaion, modulo an
encoding of tree relations into tree languages. We provetiesbounded anél-
bounded valuedness of binary recognizable relations caetided in RIME, by
reduction to bounded valuedness of tree transducers [S&i@k-bounded am-
biguity of tree automata. This also allows us to decideTn2 whether a query
has ak-bounded delay and/oriabounded concurrency, for fixddand fixed arity
n.

1.4 State of the Art

This section surveys the recent work on stream processinigeicontext of XiL
databases. For a survey on streaming more generally, we thefereader to
[Mut05]. We start by enumerating several models for streaotgssing. We
present known lower bounds forM{ stream processing, and then exhibit upper
bounds by listing known algorithms for processingX streams.

Models for Stream Processing

Turing machines with multiple tapes, and restrictions oa direction of head
moves or on the number of head reversals are studied for atilmeg[HUG9].
These restrictions define new classes of computable laegu&gurevitch, Lein-
ders and Van den Bussche [GLdBO7] consider stream querigarasular func-
tions from stream to stream. They study which functions nregpan input stream
to an output stream are computable, and in particular whidinem are com-
putable with bounded memory. Babcock et al. [BBE2] previously surveyed
some common problems for stream processing, and how théyaarded in exis-
ting data stream management systems (DSMS).

Grohe, Koch and Schweikardt [GKS07, Sch07a] investigatengunachines
with one external tape where the input is read (and writiradl@aved under some
conditions), an output write-only tape, and internal tapéthout restrictions.
They define a hierarchy of machines: machines allowing 1 head reversals
on the input tape are strictly more expressive than machaliewing & rever-
sals. Schweikardt [Sch07a] surveys generalizations e&sirprocessing models,
where data can be stored in external (and thus slower) deyethis precise
topic, see also the survey by Vitter [Vit01]).

The expressiveness of query languages over trees is oftablissed w.r.t.
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two yardstick logics: the first-order logic (FO) and the mdicasecond-order
logic (MSO), with predicates describing tree structurearishows in [MdRO5]
that CoreXPath 1.0 is strictly less expressive than FO. @siatefined by tree
automata are exactly MSO-definable queries, by the stardaiidalence between
tree automata and MSO logic established by Doner [Don70]Tdratcher and
Wright [TW68]. Ley and Benedikt [LB09] study whether thepasts a first-order
complete logic using only forward axes, i.e. axes that reisgecument order.
For this purpose, they adapt and combine two modal logic® fifst one is the
Linear Temporal Logic (LTL) and the second one the Compoitaiti Tree Logic
(CTL*), which is a temporal logic with branching. They show thaings.TL
for vertical path expressions together with CTior horizontal and downward
moves leads to a first-order complete logic. However thiscloges backward
moves. Unfortunately, the first-order completeness isid&n restricting to only
forward moves, or when restricting the nesting depthrafl operators in LTL.
We also note that streaming query answering is a particalse of the view
maintenance problem (i.e. maintaining the answer set aftdates of the docu-
ment), where only insertions of nodes are allowed [SI84, O’ BGMMAO09].

Lower Bounds

In [GKSO07], Grohe, Koch and Schweikardt apply techniquesiftommunication
complexity to prove lower bounds. They show that, as a caresscg, fofiltering
CoreXPath 1.0 queries tltepthof the input tree is a lower memory bound, i.e.
there is no streaming algorithm using less thédeptHt)) buffering space for
input treeg.

Communication complexity [Yao79, KN97] is a powerful toarfproving
lower bounds. It characterizes the minimal amount of infation needed to com-
pute a function by two agents, each of them knowing a partefriput.

In [BYFJO4, BYFJO7], Bar-Yossef et al. use this techniquexbibit other
lower bounds on a fragment of XPath named Redundancy-fra¢hXPhe bounds
apply even for filtering. A key property of Redundancy-freBath is that a node
of the tree cannot match several distinct query nodes. Tbegeds are formu-
lated w.r.t. the@nstance data&complexity, i.e. in terms of properties of each query
and document to be evaluated, as opposed to the worst-cagsesaty. A first
memory lower bound on Redundancy-free XPath isqghery frontier sizeWhen
a query( is represented as a tree, the frontier size at a node of tgesigrthe
number of siblings of this nodes, and its ancestors’ silslinghe query frontier
size of@ is the largest frontier over all nodes @ The second lower bound is
the documentecursion depth The recursion depth of a tréev.r.t. a queryQ is
the maximal number of nested nodes matching a same nagdeTie last lower
bound islog(d), whered is the depth of the documentThis latter lower bound is
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smaller than the recent bound proved by Grohe et al. forifige€oreXPath 1.0
[GKSO07] mentioned above.

In a subsequent work [BYFJO5], Bar-Yossef et al. prove thatoncurrency
of a query is a memory lower bound, on Star Free XPath, therfeaq of Core-
XPath 1.0 with only downward axesdlf, ch and ch®) and without wildcards.
More precisely, the concurrency is proved to be a lower mgrbound for the
worst-case complexity. For instance data complexity, pr/ed that there exists
a document, almost similar to the original one, that reguir® concurrency in
terms of space.

Benedikt et al. [BJLWOS8] study the feasability fafst-fail filtering for XPath
with DTDs. Fast-fail means that it must be decided at thelesdrtime point
whether the stream is rejected by a given XPath filter. Theyethat RIME =
PSPACE is equivalent to having aTME algorithm compiling XPath filters to
fast-fail algorithms using polynomial per-event time cdexty (in the size of the
XPath filter and DTD). Moreover, Benedikt and Jeffrey [BJPi@jve that there is
no subexponential functioli such that all positive CoreXPath 1.0 filteizcan
be computed by algorithms usirfg|Q|, |>|) total space, on bounded-depth trees,
even when fast-fail is not required.

Lower bounds were also established in more general frankswéirasu et al.
prove some lower bounds for the streaming evaluation of.suntive queries, with
multiple input tapes [ABB04], and more general streamed data. The aforemen-
tioned work by Grohe et al. [GKS07] contains additional Hsswhen reversals
on the input tape are allowed. Recently, Schweikardt exténid framework by
allowing multiple input tapes [Sch09]. Communication cdexity was already
used to prove lower bounds for some streaming problems atiareél databases,
for instance by Henzinger et al. [HRR99].

Validation

We now survey upper bounds fomMX streams processing, by mentioning known
algorithms. The easiest task when processimg. Xlocuments is the validation,
i.e. determine whether a document conforms to a given schdig problem
was first addressed by Segoufin and Vianu [SV02]. In this paperauthors are
looking for DTDs for which the validation can be done with boed memory.
This is not the case for all DTDs. They prove that it is suffitior the DTD to
be non-recursive, or to be fully recursive. A DTDs is fullycuesive if all labels
leading to recursive labels are mutually recursive. Thapprty can be checked
in EXPTIME for DTDs, and in RIME for deterministic DTDs. However, this con-
dition is not proved to be necessary, and the problem isogtéh. Some progress
was obtained by Segoufin and Sirangelo in [SS07], where theaph is based
on finite state automata checking only local propertiesadgr For non-recursive
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DTDs, Chitic and Rosu [CR04] prove an exponential lower appen bound for
computing the equivalent minimal deterministic automg(this automaton also
checks that the document is well-nested). We note that asgrebaracterization
of schemas that can be validated with constant space is kfmvamother stream
encoding, where the labels are not given in closing tags (B.S

Chitic and Rosu [CR04] also relax the constant-memory requent by al-
lowing the size to be logarithmic in the size of the input atre They present
syntactic restrictions on recursive DTDs, so that they candlidated with loga-
rithmic space in the input stream size.

A weaker requirement for validatingWL streams is to bound the space by
the depth of the input tree. In [SV02], Segoufin and Vianuageshow that
every EDTD can be translated into a deterministic pushdawaraaton, whose
stack usage is bounded by the depth of the input tree. Morgthey show that
any DTD can be compiled into an equivalent EDTD of quadratie,dor which
the validation is done with bounded memory. In [GKPS05],tGbtet al. show
that the validation problem for ML streams varies from&@GSPACE to LOGCFL,
depending on the schema language and representation.

For the more specific problem of typing, Martens et al. [MNS@®ve that
typing each node of anML document at its opening event w.r.t. a restrained com-
petition EDTD can be done in streaming mode. Such a congiryetsing visibly
pushdown automata, is for instance provided by Kumar etnglkKMV07]*. An
alternative algorithm, avoiding the static constructidrttee whole automaton,
is proposed by Schewe et al. in [STWO08]. Martens et al. alswgthat non-
restrained competition EDTDs cannot be typed in a streammagner. Martens
et al. [MNSBO06a] study the precise expressivenesswf X6chema, and propose
to replace a constraint of ML Schema (Element Declarations Consistent) by the
one-pass pre-order typing requirement. Typing is also somes used as a pre-
processing phase for further querying, as proposed foamaest by Russell et al.
in [RNCO3].

Filtering

Filtering XML documents is similar to validation in that it defines valigkts, but
differs by the specification language. Whereas validatei®s on schema lan-
guages, filtering trees w.r.t. a given XPath expressionistss selecting trees
in which this XPath expression selects at least one noddaneAland Franklin,

in a seminal work [AF00], introduce the frameworks#lective dissemination of
information where many XiL documents have to be filtered w.r.t. many XPath

We show in Chapter 4 how to translate a DTD into a Streaming Fgomaton, which is a
similar construction.
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expressions, for publish/subscribe systems. They proposalgorithm called
XFilter for this purpose, based on a translation of non-branchingtiXExpres-
sions to automata, that are then combined and indexed foregififiltering. A
number of alternative algorithms were proposed, like ¥F[DFFT02, DRF04],
which improve XFilter by another method for combining autdey and XTrie
[CFGRO02], that proposes a better data structure.

In [GMOSO03, GGM 04], Green et al. proposend TK, a system based on the
translation of XPath queries to a finite word automaton. leghe events can be
processed with constant time. However the automaton hatoflse determinized,
causing a blow-up in the filter size. This can be sometimegladoby building
the automaton on demand, but the worst case remains the $amautomaton is
just an intermediate representation of the query, and tieiéhm uses it together
with a stack (bounded by the depth of the tree) during thewiat In [GS03b],
Gupta and Suciu define XPush machines, that directly usendigiistic pushdown
automata.

All these systems have either strong restrictions on XPagnessions (no
predicates, or predicates that do not require look-aheadglad to exponential
algorithms. Bar-Yossef et al. [BYFJO4, BYFJO7] prove thghthess of their
lower bounds by an algorithm usir(|Q| - 7 - log(d)) in space, wheré removes
logarithmic factors, and (resp.r) is the depth (resp. recursive depth).of

Benedikt and Jeffrey [BJO7] investigate filtering algomith with space (and
per-event time) independent of the input stream, and potyalan the filter. They
show that this holds for two classes of queries. The first saefiagment of posi-
tive CoreXPath 1.0 (using backward, i.e. up and left, axa%), the second one a
fragment of Conditional XPath, also using backward axise backward restric-
tion does not weaken the expressiveness: in both fragmamgsnon-backward
query can be rewritten to a backward one. The techniquesraiaisto the ones
used by Olteanu for SPEX [OIt07b] (as explained later for atha queries): a
translation of queries into transducers networks, and afphat the restriction on
axis does not change the expressiveness.

Benedikt et al. [BJLWO08] study the problem of firewallingaX streams under
XPath constraints. This is similar to filtering, except tthe goal here is to detect
XML messages violating XPath constraints, and reject themasa®opossible.
We already discussed about the hardness ofaisisfail feature. The authors pro-
pose however a tractable solution, by using binary decidiagrams (BDDs) for
implementing automata (here the trees are of bounded déptiking a heuristic
for fast-fail, and by restricting XPath queries (no wilddsyrno rightward moves,
and no data joins). When compared to transducers netwok®Bsbffer better
static analysis opportunities.
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Query Answering

XPath with Downward Axes TwigM [CDZ06] consider monadic XPath
queries using only downwarclf and ch*) axes. TwigM focuses on an effi-
cient data structure for storing pattern matches, and a@atigositive downward
XPath expressions, i.e. tree patter&reamTXHJHLO8] aims at adapting the
TwigStack algorithm to stream processing of tree pattemde allowing selec-
tion of tuples of nodes, instead of nodXSQ[PCO05] does neither allow negation,
but includes aggregators and data values comparisons. oreetXSQ is a hi-
erarchy of pushdown transducers, with additional buff€isen et al. [CLT 08]
consider a streaming evaluation géneralized tree patternshat consist in tree
patterns augmented with ther-let-return (FLOWR) expressions of XQuery.

Ramanan [Ram05, Ram09] proposes an algorithm that allogatio@ and
downward axes. Its complexity 3((depth{t) + concui,(t)) - |@|) in space and
O(|t| - |Q| - depth(t)) in time, in the worst case. An extension with backward
axesprecand(ns!)* is also presented in [Ram09]. Gou and Chirkova [GC07a]
provide another algorithm for downward XPath, with lineanbined complex-
ity O(|Q| - |t]). This paper however seems too optimistic by asserting @btim
buffering. We will see later on that this requires non-palymal time (unless
PTIME = NP) on downward XPath. Bar-Yossef et al. [BYFJO5] prove that
concurrency lower bound is tight, by an algorithm that usesjon-recursive do-
cuments, O(concug,(t) + |Q| - (log(|Q|) +log(|t]))) space and(|Q| - |t]) time,
whereO removes logarithmic factors.

XPath with Downward and Upward Axes Beyond downward axis, some al-
gorithms were proposed for dealing with parecii (‘) and ancestor(¢h™')™)
axis, together with downward axis. This increases the ditfjcas the algorithm
has to process the query in a bottom-up way, by guessing wehdtscendant
nodes will further match. This implies high buffering co3aos[BCG'03] al-
lows both downward and upward axes in XPath, and starts byecting upward
axes to downward axes. One drawback of Xaos is that answesugput only
when the input stream ends. Wu and Theodoratos [WT08] peopnsalternate
algorithm, calledPSX for the same set of queries, representegasial tree-
pattern queries By using a stack-based technique to encode matches, tiey ou
perform Xaos.TurboXPatl{JFBO05] is an XL stream processor evaluating XPath
expressions with downward and upward axis, together withs#ricted form of
for-let-where(FLOWR in XQuery) expressions. Hence, TurboXPath retuuas t
ples of nodes instead of nodes, i.e. processas/ queries.

Forward XPath and Variants Forward XPath is the fragment of XPath using
only forward axes, i.e. downward axes, plus next-siblitg transitive closure,
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and the axidoll that moves to all nodes following the next sibling of the cur-
rent node in document order. As shown by Olteanu et al., ForW&ath is very
expressive, as adding backward axes to Forward XPath ddeshange its ex-
pressiveness [OMFBO02, Olt07a]. However translating antiXRapression with
backward axes to a Forward XPath expression can imply annexpial blow-
up in the size of the expression. Ley and Benedikt [LB09] prthat Conditional
XPath does not enjoy this property, i.e., Conditional XReith only forward axes

IS not as expressive as Conditional XPath.

SPEX[OMFB02, OKBO03, OIt07b] uses a transducers network as gereaju-
ator. Each element of the XPath expression (label test, etayis translated into
a simple transducers, equipped with a stack. Transducetgied according to
the query structure. For instance a stlpa is translated into two transducers, one
for ch and one fora. The output of theeh-transducers conveys anvX stream,
that is the input of the-transducer. This way, a DAG of transducers is built.

Nizar and Kumar [NKO08] propose an algorithm for an extengsdmonadic
tree patterns, where axésl andns® are allowed. Hence this algorithm defines
monadic queries where the negation is not allowed. The cexitplof this al-
gorithm is not given, and only experimentally studied. Relyethe authors also
investigate the streaming evaluation of monadic tree petteith additional back-
ward axegprecandns ! [NKO09].

Desai [Des01] defines Sequential XPath, a fragment wheseforward axes
are allowed in path expressions (outside filters), and oabkard axes are al-
lowed in filters. In this fragment, selection of a node can keided at opening
time, and thus no buffering of candidates is required. Thenorg consumption
only depends on the depths of the input tree and the SeqlLER&#h expression.

CoreXPath 1.0 Clark [Cla08] proposes a translation of CoreXPath 1.0 ex-
pressions (interpreted as binary queries) to visibly poshd automata, in-
spired from the standard translation of MSO formulas to eant automata
[Don70, TW68, CDG07]. All axes are allowed. The resulting visibly push-
down automata are non-deterministic, and recognize treastated with two
variables (corresponding to the canonical language of tlegies in our frame-
work). The complexity is non-elementary in the size of theression, i.e., it
cannot be bounded by a tower of exponentials of fixed heighiedomes poly-
nomial when negations are forbidden and the branching width the number
of leaves in the tree representation of the expression)usded. Such transla-
tions permit to reuse algorithms designed for queries bgraata, with XPath
expressions.
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Queries by Automata One of the first models for evaluating queries in strea-
ming mode on semi-structured documents was proposed by &lsuand Seidl
[NS98, Neu0O0]. They define monadic queries on forests, equeances of trees
(calledhedgesn this manuscript). Queries are defined by mean®@st gram-
mars rephrased as a patterns language of contexts. The salectimde through
a special tree variable, and the query selects nodes of thstfawhere this tree
variable can be used. In terms of expressiveness, thisspamels to forest regular
languages [Tak75], and regular tree languages when testtic trees. Neumann
and Seidl introduc@ushdown forest automata order to evaluate these queries
while parsing the XiL document, and thus in a streaming way. The links between
pushdown forest automatand the model of STAs we use in this manuscript are
studied in Chapter 4, and show that the models are similgvatticular we pro-
vide translations between these models, that allow to ah#regautomaton model
behind streaming algorithms.

In the general setting, the evaluation of queries definedobgst grammars
using pushdown forest automata is done in two traversalseofree (left-to-right
and then right-to-left). By adding constraints to the graannthey defingight-
ignoring grammars. These grammars have the property that whengnagehe
document in streaming order, it can be decided whether aisa#tected at clos-
ing time. Berlea and Seidl present an extension of this mfuatel-ary queries
[BS04]. They keep the same framework: Queries are defineddiypmars, and
evaluated using pushdown forest automata.

Berlea [Ber06, BerQ7] extends these results to an algoritfahevaluates, in
one pre-order traversal of the tree, queries defined by tfgeenmars (named
regular tree grammarsn the paper). His algorithm is also based on pushdown
forest automata, and achieves close to optimal memory ugagene alphabet of
labels is infinite, it is easier to decide whether a state eftitomaton will accept
all possible continuations. However, thevX format restricts labels to a finite
set, and the algorithm is less efficient on finite alphabets.ifstance, consider
the XPath expressiofya[not(not(a) and notb))], that selects alk-nodes whose
children are all labeled by or b. If the alphabet is known to be = {a, b} then
all a-nodes can be selected immediately. This cannot be doneebgiglorithm
proposed in [Ber06], and this algorithm will take a decisfonthe selection of
ana-node when closing it. For infinite alphabets, the differeiscthat a wildcard
test is always satisfied, and not a finite union of label tests.

Some results similar to the aforementioned work by Neumamh Seidl
[NS98] were established by Kumar et al. in [KMV07], who wégibly pushdown
automatainstead of pushdown forest automata. In particular, theastexhibit
the logic Pre-MSO, corresponding to MSO-definable quenesvhich the selec-
tion of a node only depends on its prefix tree. They show thatigs defined by
Pre-MSO formulas can be efficiently processed by visiblyhgiasvn automata,
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using constant per-event time, and memoryifdepth)), wheret is the input
tree. However, the translation of a Pre-MSO formula to sutta@tomaton is
non-elementary [AM04, AMO06]. In a follow-up work [MV08], M#husudan and
Viswanathan show that queries defined by visibly pushdoworaata can be effi-
ciently processed. However, the authors hide a crucialtpasnthey suppose that
the states of the automaton already have enough informadidecide whether
they are universal, i.e. whether the residual language adleegpt is any correct
continuation of the stream. We propose in Chapter 5 a cartgirufor obtaining
such a property for all states, and prove that an exponeirtialis required for
this.

Transformations

Beyond node-selection queries, the streaming evaluatiotiens also used for
transforming XL documents. Several XQuery processors were proposed for
XML streams. Ludascher et al. [LMP02] translate XQuery e)gioes into a
network of XML Stream Machines{SM) that take XL streams as inputs, and
output other XL streams. Finally, the network is compiled inta@aprogram.
Koch et al. propos€&luXQuery[KSSS04a], an XQuery processor based on the
intermediate language FluX. FluX addgeocess-streannstruction to XQuery,
that makes the use of buffers more explicit. In [KSSS04lg,atithors show how
schema information can be used to improve the translatidilu® programs.
GCX [SSKO7] reduces the amount of data to be buffered by purdiegitus-
ing a garbage collector. This one is based on static and dgremalysis of the
query. Fernandez et al. [FMSSO07] analyze which parts ofigsi€an be evalu-
ated in a streaming manner. They build query execution glaatcombine some
parts of the query in streaming mode, and other parts usimgr@n in-memory
techniques. Wei et al. [WRMLO08] try to reduce space consionpihen XvL
documents are recursiveukwila[[HWO02] is an XQuery processor that evaluates
numerous XQuery expressions on amiXstream. The core of Tukwila is based
on a stack and a meta-automaton that enables and disabé&mutestic finite
automata that represent linear path expressions of queries

XSLT is another transformation language based on templad¢are activated
by XPath expressions defining their execution context. deahcs language is
suited to be modeled by transducers. Dvorakova and RAWROT] propose to
adapt this idea to a streaming evaluation.

Other transformation languages foMX have been specifically conceived for
streaming purposeSTX[BBCO02] is an event-driven programming language. It
is based on templates that specify which operations shauldoibpe on the data
matching the template pattern. In [KS07], Koch and Scheerpropose to
add attribution functions to the rules of DTDs. These fumtsi are executed
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while the document is parsed, and can produce an output.wiyisthese DTDs
(named XuL Stream Attribute Grammars) define transformations. By iregya
strong notion of one-unambiguity for the regular expressjthe document can be
parsed with a look-ahead @f Hence the memory consumption can be bounded
(when assuming a bound on the depth of trees). A previousoveos this frame-
work namedrlransformXcan be found in [SK05]. Frisch defin¥Strean{FNO7],

a functional programming language that efficiently perferkmL transforma-
tions. The execution plan &Streams elaborated dynamically, to take advantage
of the execution context. Frisch [FriO4] also proposes &nieht implementation

of pattern-matching i€Duce[BCF03], using tree automata. These operate in do-
cument order, and thus the pattern-matching algorithmsde#h XML streams.
XTiSP[Nak04] is another transformation language faniXstreams. XTiSP uses
as underlying model macro tree transducers, i.e. treeduvmess augmented with
an accumulator.

1.5 Outline

Chapter 2 introduces the basic objects that we study in thisuscript: unranked
trees, schema languages, and queries. It also providdes aftiae art about query
evaluation.

Chapter 3 defines our model of streaming, and the state ofrtlierastreaming
query answering. We introduce the notiomefstreamability, and show that large
query classes are not streamable.

Chapter 4 is devoted to Streaming Tree Automata, a modeleef automata
adapted to streaming. Beyond the definition, we explicititlewith other exis-
ting models of tree automata.

Chapter 5 studies the streamability of deterministic $tieg Tree Automata
(dSTAs). For this purpose, we propose an earliest query enirsgvalgorithm
for queries defined by dSTAs.

Chapter 6 exhibits streamable fragments of XPath. This imlgpn@roved by a
PTIME translation of XPath queries of these fragments to dSTAs.

Chapter 7 proves that deciding whether a query defined by d$%8&4 a bounded
(resp. k-bounded) delay and concurrency can be done in polynonnig, tior a
fixed k and a fixed arityn.

1.6 Author’s Publications

Streaming Tree Automata Our model of Streaming Tree Automata was estab-
lished with the collaboration of Anne-Cécile Caron and ¥®oos, and presented
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in [GNRO8]. Chapter 4 contains the results of this papelhextra back and forth
translations between STAs and standard tree automata.

Earliest Query Answering The definition of earliest query answering and rel-
ative hardness results described in Chapter 5 were presenf&NTO09b], and

a preliminary version in [GCNTO08]. This is also a joint worktivAnne-Cécile
Caron and Yves Roos.

Bounded Concurrency and Delay The Prime decision procedures for decid-
ing bounded delay and concurrency of queries defined by d3/Bks presented
in [GNT09a]. Chapter 7 contains the results of this papethadditional im-
provements. The main improvement is the procedure for degitie .-bounded
delay and concurrency inTivE for a fixedk (it is in NP in the paper). We also
prove that whert is variable, the problem becomesg®&TiIME-complete. Finally,
we give a more efficient algorithm for computing the valuehef tlelay in the case
of words.

Unpublished Content Our notion of streamability, and the corresponding com-
putational model, as presented in Chapter 3 have not bedisipedbyet. It is also
the case for our streamable fragments of XPath, and thespmmneling translation

to dSTAs, presented in Chapter 6.
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In this chapter, we introduce the basic notions used througlthis
manuscript. The structures we study are unranked trees amta dilphabet.
We present this model, together with some standard logidsaatomata mod-
els. Schemas are another standard formalism for definiedarguages. Finally,
queries over unranked trees are introduced using diffexejeicts: automata or
XPath expressions. We survey known query answering algosfor these query

classes.

2.1 Unranked Trees and Logics

We start with the definition of unranked trees, and the stahftamework that
relates tree logics to tree automata [TW68, Don70, Tho97GOIY], now com-
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monly used in the context of ML [Nev02b, Nev02a, Lib06, Sch07b].

2.1.1 Trees and Binary Encodings

We define unranked trees as trees over an unranked alphadéteWpresent two
encodings into binary trees, used to lift results for rantkeds to unranked trees.

Alphabet

An unranked alphabekl is a finite set of symbols. Aanked alphabets a pair
(3, ar) whereX is a finite set of symbols, amar a function associating to each
symbol its arity: ar: ¥ — N,. Here we writeN, for the set of non-negative
integers, andN for natural numbers. For convenience the arity will be somes
left implicit in the notations.

Unranked Trees

Let 3 be an unranked alphabet. The setiafanked treesver:, denoted/y;, is
the least set such thatt,, ..., #;) € Ts if a € &, k € Ny and for alll <i <k,
t; € Tx. In particular we always exclude the empty tree from the teees.

An unranked tre&anguageovery: is a subset ofs.. Unranked trees will be the
default class of structures we will consider in this manipgcso in the following
atree (resp. a tree language) will denote an unranked &sp.(an unranked tree
language). With this definition, trees are finite, ordered labeled.

The set oihodesof a treet € Ty is the following prefix-closed language over
natural numbersi:

noda(ty,...,t;)) = {ey U{i-m | = € nodt,)}

wherew-w’ is the concatenation of the wordsandw’. The node: always corre-
sponds to theoot of the tree. We inductively define the functiab’: nod(t) — 2
that maps each node to its label. tif= a(ty,...,a;) thenlab’(¢) = a, and
lab’(i-7) = lab" (7).
Thedepthof a tree is the length of its longest branch:
1 if t=awitha e
depﬂ-(t) - { 1+ maxi<;<k deptl‘(tz) if t = (l(tl, - ,tk) with &k > 1

Hedges

A hedgeoverX is a sequence of treés,, . . ., t) with ¢; € T, for somek € Ny
andl < i < k. The set of hedges overis thus defined as:

Hs ={(t1,...,tx) | k€ Ny and t; € Ty, forall1 <i <k}
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The set of nodes of a hedge is defined from the set of nodestodéts.

nod((ts,.... %)) = | J {i-m | = € nod(t;)}

1<i<k

Note that the hedgé,) is different from the tree¢,, and has a different set of
nodes. We will sometimes consider the empty hedge

Ranked Trees

In the following we always deal with unranked trees, but simes use automata
on ranked trees together with a binary encoding, to definanked tree lan-
guages.

Given a ranked alphabéX, ar), we define the set of ranked trees oyErar)
as the least sefy. containing f(¢y,...,t;) for each symbolf of arity £ and
t1,...,tx € Ts. Binary trees are a special case of ranked trees, wherenalicly
have arity0 or 2. We write 7.°" for the set of binary trees over a ranked alphabet
(3, ar).

Binary Encodings

Binary encodings are used to encode unranked trees>veto binary trees.
Two of them are commonly used: thiest-child next-siblingencoding, and the
Curryfication For other encodings, see for instance [MSV03, FGKO3].

Rabin’s first-child next-sibling encoding [Rab69, Koc03 defined by
fcns 7w — 72" whereX, = Y w {1}, all symbols from¥ having arity2,
and_L being the sole constant symbol. This is defined by the foligwules, and
illustrated in Figure 2.1(b). For convenience we first ercbddges into binary
trees usindcns,:

fons, () = L
fens, ((a(ty, ..., t,), ta, ..., tx)) = a(fens, (¢, ..., t.,) , fens, ((t2, ..., tk)) )

Then we simply usé&ns, on unary hedgedcngt) = fcns, ((1)).

The second encoding of unranked trees corresponds to thgfiCation
of terms, illustrated in Figure 2.1(c). This is defined thgbuthe function
curry: s, — T, whereXq = ¥ w {@} is the ranked alphabet in which all
symbols from® are constant symbols, aris the only binary symbol.

curry(a(t t) =1 o othen
Valb )= @(curry(a(ty, . .. te1)) , curry(ty) )  otherwise
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Figure 2.1: Binary encodings.

2.1.2 FO and MSO Logics

First-Order (FO) and Monadic Second-Order (MSO) logicsyanelstick logics
for expressing properties of structures. We start with thndion of relational
structures, exhibit relational structures correspondmgnranked trees, and fi-
nally define the syntax and semantics of both logics.

Logics over unranked trees were recently surveyed by Lilpkin06] and
Bojanczyk [Boj08]. In this manuscript we only address #riiiees. More general
results about finite models are available in the frameworknite model theory
[EF99, Lib04].

Relational Structures

A relational signatureA consists of a finite set of relation symbelss A, each
relation having a fixed aritgir(r) € Ny. A relationalstructure soverA consists of
a non-empty finite seton(s) called the domain of and relations® C dom(s)® (")
interpreting all symbols € A. We writeSx for the set of structures ové. The
size|s of a relational structursis defined by:|s| = |dom(s)| + |79].

Words as Relational Structures

We illustrate the definitions in the case of word structufidee signature, that we
consider for words over a finite alphabetis A = {lab, | a € £} U {<}.

A non-empty wordw = a;-...-ax € X* is the relational structure with domain
domw) = {1,..., k} and the following relations:

e laby ={i | a;=a,1<i<k}

e <= {(ij) | 1<i<j<h)
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Trees as Relational Structures

An unranked tree¢ € 75, can be also considered as a relational structure over the
relational signaturé\ = {lab, | a € ¥} U{fc, ns}, wherelab, are monadic (i.e.,
unary) relations, whiléc andnsare binary. The domain dfis exactly its set of
nodes:dom(t) = nod(t). The relations of the structuteare the following, where

a € X

e lab = {r | lab’(r) = a}
o fc' = {(m,7-1) | 7-1 € nod(t)}
e nS = {(mi,7-(i+1)) | 1 <4, m(i+1) € nod(t)}

A treet also defines the following relations, that we will sometimies as base
relations of some logicsch is the standarahild relation. ch* (resp. ns) is the
reflexive transitive closure ah (resp.ns).

o chf = {(m,7i) | =i € nod(t)}
o (ch) ={(m,m-7') | m-7" € nod(t)}
o (ns) ={(n-i,m-j) | 1<i<j, 7-jenodt)}U{(ce)}

Throughout the manuscript we use monadic predicates, tsejeespectively the
root node, the leaves, and the last children:

e root' = {¢}
e leaf = {r e nodt) | 3. (7, 7') € ch'}

e Ic' = {m enodt) | . (7, 7') € ng}

First-Order Logic

From a relational signatur& and a countable s&t of variables, the set HQ\| of
first-order formulag) over A is defined by the following grammar:

¢ = r(ry,...,78) | ONG | m@ | Fw.p | x=2a

wherer € A is a relation of arityk, andx, 2’, x;, ..., x;, € V. Free variables of
a formula¢ are variables oV that appear i outside the scope of quantifiefs
Non-free variables are called bound variables in the falgwA formula without
free variables is calledosed

A formula¢ € FO[A] is interpreted over a relational structwen the signa-
ture A using an assignmeptof the free variables af into dom(s). The semantics
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of FO[A]-formulas is defined through the satisfiability relat®mn = ¢, as de-
fined inductively below:

ssubEr(ry,..., ) i (u(x),...,w(zg)) €73

SuEQNY iff s ulg¢ands k¢

S, = ¢ iff s piEo

S, puEdr. ¢ iff there existst € dom(s) such thas, [z < 7] = ¢
spEr=1 iff () = u(a’)

wherey [z < 7] is obtained fromu by assigningr to .

Several signatures can be considered for the FO logic ovankad trees. The
most commonly used is HEh", ns*]. For convenience we always omit to mention
the relationglab, ).cs, as they will always be part of the signature. This signature
allows to define the relatiorhandns

chiz,y) = ch'(zx,y) ANx#yA—-Fz.z#xANzF#yAch(z,z) Ach'(z,y)
ns(z,y) = ns(x,y) ANx#yA-3z.z#xANz#yAns(z,z) Ans(z,y)

On the contrary, the relatiortd* andns® are not definable in F©h, ng [Lib04].
In the general case, FO does not allow to express the tnamslbsure of binary
relations [Fag75, EF99].

The first-order logic is one of the key topics in logics and meatatics. For
tree structures, numerous results have been establishadileough some prob-
lems remain open. We outline the most relevant results ifall@ving.

Thesatisfiabilityproblem of a logic is the problem of deciding whether, given
a formula¢ in the logic, there exists a model fgr, i.e. a structures and an
assignmeny such thats, i = ¢. While the satisfiability of FO formulas was
proved undecidable for arbitrary [Chu36, Tur37] and finttectures [Tra50], it is
decidable for trees (both ranked and unranked). This alisHor the Monadic
Second-Order logic, an extension of FO that we present below

The model-checkingproblem is the decision problem that takes as input a
structures, an assignment. and a formulag, and outputs the truth value of
S, it = ¢. For FO on finite structures, the model-checking &Rcecomplete,
even on trees [Sto74, Var82].

Algebraic characterizations of FO-definable tree langsdf@ instance by
means of automata) are more complex than for the MSO logimeSeork on this
topic can be found in the manuscript of Bojahczyk [BojO4].[BS05], Benedikt
and Segoufin study the FO-definability problem, i.e. the [@wbof deciding
whether a tree language can be defined using an FO formulg. present such
a procedure for F@h, ng over ranked trees and unordered unranked trees. The
guestion is still open for ordered unranked trees, the @éssructures that we
consider in this manuscript.
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Monadic Second-Order Logic

The Monadic Second-Order logic (MSO) extends the FirsteDlagic with quan-
tification over second-order variables, i.e. unary pradgathat are usually in-
terpreted as sets. We extebdwith second-order variables, ranged over.Xy
MSO[A] is the set of MSO formulas over the signatixeas defined by the gram-
mar:

¢ =r(x,...,x) | NG| mo | Fr. o | IX. 9 | z€ X

wherer € A has arityk, andz, zq, ..., z,, X € V.

The semantics of FO formulas can be easily extended to MS®ntiw de-
fined on a structurs under an assignmenpt that maps each free first-order vari-
able to an element afon(s) and each free second-order variable to a subset of
dom(s). Then the satisfiability relation is extended in the follogiway:

s,u=3X. ¢ iff there existsD C dom(s) such thas, u[X < D] = ¢
spulFzeX iff uz) e p(X)

For unranked tree structures, the usual signature usedfoessing MSO
formulas isA = {fc,ns (lab,).c.x}, and we denote the corresponding logic by
MSOQJfc, ng. Unlike FO logic, MSO can express the transitive closureinéty
relations. For instance the following formudais the transitive closure of the
relation defined byp:

O(y1,y2) = VX. (h€X AV(z1,x2). (T1€X A p(1,72) = 12€X)) = yr€X

Hence we can defines* from ns thench by composindgc andns®, and finallych®
from ch. A tree languagéd. is saidMSO-definabléf there exists an MS(@c, ng-
formula¢ without free variable such that

L={teTs |tk ¢}

On binary trees, MSO is sometimes called theak second order logic with
two successorfWWS2S): the two successor relations are first-child andrsgco
child, andweak means that the second-order variables are interpretdithites
sets. WSKS is the generalizationit@uccessors.

MSO enjoys clean algebraic characterizations, as oppodatbivn FO char-
acterizations [Boj04]. The first link with automata was mageBichi on strings
[Buc60]. In the following, we introduce tree automata aadaill the equivalence
between tree automata and MSO on trees, as established gy [Mon70], and
Thatcher and Wright [TW68]. This translation comes at aaiertost, having the
following consequences on satisfiability and model-chagkiroblems.
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Satisfiability of MSOfc, ng formulas is known to be non-elementary [SM73,
Mey73, Sto74]: for every algorithm solving this probleng domplexity cannot
be bounded by a tower of exponential of fixed height [Grz530FG A way to
test the satisfiability is by translation of formulas intedrautomata, which is a
non-elementary process. Then it suffices to test the engstiobtree automata,
which can be done inBME, as shown in Section 2.1.3.

The model-checking of MSfi, ng formulas on finite trees is aSPACE
complete problem, as for FO formulas [Sto74, Var82]. Whenftiimula is fixed,
the problem becomes linear, as we can translate the formwdan automaton in
constant time (disregarding thus the non-elementary ppyand then check that
the tree is accepted by the automaton in linear time.

2.1.3 Tree Automata

Unranked trees can be converted into ranked ones using iegsp@s shown in
Section 2.1.1. We introduce tree automata for binary traed,present the lan-
guage of unranked trees they define, when associated wittagytencoding.
Tree automata were introduced by Doner [Don65, Don70] aratcher and
Wright [TW65, TW68], to prove the decidability of the wealcsad order theory
of multiple successors (WSkKS). They regained interestarctintext of XuL, as
shown in the surveys by Neven [Nev02b, Nev02a] and Schwe[&ich07b].

Bottom-Up Tree Automata

LetY, = XqwX, be aranked alphabet, where arity of symbolSjr(resp.X,) is
0 (resp.2). A (bottom-up)tree automatorfTA) for binary trees inTij” is a tuple
A = (stat fin, rul) consisting of finite setBn C statand a setul C statx ¥, U
staf x X, that we denote as

fla1,92) — ¢ and c—q

whereqy, g2, q € stat f € X5 andc € Xo. Arunof Aont € 7" is a function
r: nod(t) — statsuch thatf(r(z-1),r(7w-2)) — r(x) belongs taul for all nodes
7 of t with lab’(7) = f € ¥y, andc — r(x) in rul for all nodesr of ¢ with
lab’(7) = ¢ € . A run issuccessfulf r(e) € fin. The languagd.’"(A)
is the set of all binary trees ovét, that permit a successful run by. Doner
[Don70] and Thatcher and Wright [TW68] proved that a rankee tanguage is
recognizable by a TA iff it can be defined in the WS2S logic. \®®rresponds
to MSO with a monadic predicate for label tests and two biragdicates, one
for the left child, and one for the right one.
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A (bottom-up) deterministic TA (dTA) is a TA that does not lawo rules
with the same left-hand side. TA are determinizable, i.eereMA A has an
equivalent dTAA'. The determinization procedure has axPEIME lower bound.

The size of a TAA is its number of states plus its number of ruléd]| =
|stats| + |rul 4|. We sometimes provide complexity results in terms of nunaber
states|stat, |, number of rulegrul 4|, or size of the alphabédkl|, whenever this
precision is relevant.

When associated with a binary encoding, these automateedafiguages of
unranked trees:

LendA) = {t € Tx | f(t) € L"™(A)}

with enc e {fcns curry}. Stepwise tree automata [CNTO04] are exactly TAs used
with thecurry encoding.

A languagel of binary trees (resp. unranked treesyagular if there is an
automatonA for binary trees such that®"(A) = L (resp. Lins(A) = L). Here
we choosdcnsas binary encoding, but we will see in Chapter 4 that choosing
curry defines the same class.

Top-Down Tree Automata

Numerous other automata notions were defined. In the rardsel gve mention
top-down tree automatg TA) [CDG107], as we will use them later on to capture
some schema languageJAs are similar to TAs, but evaluates the tree by starting
at the root and ending in leaves.

A top-down tree automaton|TA) for binary trees inTg’T‘” is syntactically
equivalent to a bottom-up TA. However, the correspondingonoof runs differ,
and for clarity we choose to represent the rules as

¢ — (q1,q) and ¢g—c

for binary symbolsf € ¥, and symbols: € ;. A run of a/TA A on a tree

t € TP is also a functiom: nod(¢) — stat, but evaluated from root to leaves:
For all nodesr of ¢, r(r), f — (r(z-1),r(r-2)) € rul if lab(7) = f € %o,
andr(m) — ¢ € rul if lab’(7) = ¢ € . A run is accepting iff(¢) € init.
HenceLP"(A) is the set of trees for which a run af exists. As usual|TA can
be used together with a binary encoding to define a languagarahked trees.
Deterministic| TAs (d| TAs) are| TAs having at most one right hand side per left
hand side in its rules, and a unique initial statg¢.TAls are known to be strictly
less expressive thafTAs, while | TAs are as expressive as TAs [CDG/].
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Alternatives

Tree Walking Automata (TWAs) [AU71] are automata for rankegks, that do
not operate in parallel, nor use a stack. They run througlrésefrom one node
to another, according to the direction indicated by the.rul&VAs are strictly
less expressive than TAs [BCO5]. They are even less expeefisan FO ex-
tended with a transitive closure operator [EHO7]. Howewsirtnested variant
was used to prove that this extension of FO is strictly leggessive than MSO
[BSSS06, tCS08]. TWASs cannot be determinized [BCO4]. Sortensions of
TWAs with pebbles define a hierarchy of automata classeh,diffierent expres-
siveness [EH99, EHB99, BSSSO06].

For unranked trees, many models were proposed too, as sarviey
[CDG"07, SchO7b] for instance. One of the first model designed focgss-
ing XML documents are hedge automata [BKWMO01]. Hedge automataieper
bottom-up, and use a regular language as acceptor for tedge of children of
a node.

Chapter 4 of this manuscript introduces Streaming Tree rata, a model
where trees are evaluated using a pre-order traversal mfgtnecture. In that
chapter we exhibit the links with other models that use thigliation order,
on structures that include unranked trees: Visibly PusimdAwtomata [AMO04],
Nested Word Automata [Alu07] and Pushdown Forest AutonTd&0p].

Expressiveness and Closure Properties

Doner [Don70] and Thatcher and Wright [TW68] proved thatdleess of regular
ranked tree languages is exactly the class of MSO-definablesd tree languages.
It is folklore that this equivalence also holds in the uneshkase [CDGO7].

Proposition 1. A languagel. C T, is MSO-definable iff it is regular.
Hence closure properties of MSO-definable languages algly &p regular
languages [CDGO7].

Proposition 2. Regular languages are closed under complement, union,rand i
tersection. The corresponding operations on TAs can be doReIME, except
the complementation of non-deterministic automata. Thigy@serve determin-
ism except the projection.

We recall the complexity of some decision problems for tnef®@@mata. These
results hold for both ranked and unranked tree automata.

problem | input | output | complexity for TAs | complexity for dTAs
emptiness | A L(A) =07 O(|A|) O(]A])

universality| A L(A) ="Tg? ExXPTIME-complete| PTIME

inclusion | A, A" | L(A) C L(A")? | EXPTIME-complete| O(|A| - |A'])
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Note that for the inclusion problem, onl/ needs to be deterministic. The usual
technique is to test whethér(A N A’) = (), where A’ is the complement oft’.
This complementation might imply higher complexity, aseitjuires completion.
However this completion can be avoided [CGLNOQ9].

2.2 Schemas

Schema languages are used to define setslaf trees. In the context of ML,
schemas are used to specify the possible structures oth&agpresent some set
of documents. Schema languages are often based on tree grapfih M01], but
here we consider them from the perspective of tree autonrathis manuscript
we study some schema languages, that will be useful in theexbaf a strea-
ming evaluation on XiL documents. We restrict ourselves to Document Type
Definitions (DTDs) and their extended version. Other stathdahema languages
are, for instance, XML Schema [FW04, MLMO1, Chi00], Relax INGV01] and
Schematron [Jel06]. Note that bothvK Schemas and Relax NG can be mode-
led by Extended DTDs. For a more complete description andysbéi schema
languages, we refer the reader to [MLMO1, MNSB06b, SchOTGEC07].

2.2.1 Document Type Definition

The Document Type Definition (DTDs) is a W3C recommendat®R$M+08],
and the most commonly used formalism for defining schemas ¥wve docu-
ments. A DTD is an extended context-free grammar, i.e. aestifitee grammar
where right-hand sides are regular expressions. Figureaatains an example of
DTD for documents describing discotheques. TheLXdocument in Figure 2.3
is valid w.r.t. to this DTD. Real DTDs permit the use of the #PATA symbol,
indicating that some textual data is expected. Here we ceptdy e as we never
take data values into account in this manuscript.

Formally, a DTDD over the alphabet is a pairD = (init, rul), whereinit €
Y. is a start symbol, andul a function mapping a regular expressios-= rul(a)
for every symbols € >. For convenience we often writal as a set of mappings
a — e. Regular expressions respect the following grammar:

ex=a | ee|etel| e |e€

wherea € ¥ ande is the empty word. We writd.(e¢) C 3* for the word lan-
guage defined by the regular expressiohen for each lettes € >3, the DTD
inductively defines the following set of unranked trees:

Lo(D) = {a(ti,....ty) | ar...as € L(rul(a)), t; € Lo, (D) for 1 <i < k}
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albums — (cd+ onling)*

cd — title-authortracklist
online — title-authortracklist url
tracklist — track-track

title — #PCDATA

author — #PCDATA

track — #PCDATA

url — #PCDATA

Figure 2.2: A DTD describing discotheques.

albums
//cd\ /online
titte author tracklist title- author tracklist url

| | / N\ | | | |

The Black Bert track track Midnight Davy  track http://...
Swan Jansch ‘ \ Man Graham ‘

The BlackHigh No Preacher
Swan Days Blues

Figure 2.3: A valid tree describing a discotheque.
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The language of valid trees defined by the DTD= (init, rul) is the language
associated with its start symbol, i.By (D).

Expressiveness

DTDs are strictly less expressive than regular languagesy €xactly correspond
to local tree languagefMLMO1]: for every pair of valid treeg andt/, if ¢ (resp.
') has a noder (resp. ') labeled bya € ¥, then replacing int the subtree
rooted atr by the subtree of’ rooted atr’ leads to a new valid tree. In other
terms, DTDs do not take the context into account, but onlydbal label [PV0O].
Hence, DTDs can be translated imRE to | TAs recognizing thécnsencoding
of valid trees. A lot of algorithms were proposed for protegefficiently DTDs
with regards to the usual problems related to tree languagembership (here,
named validation) and typing [BKW98, SV02], inclusion, eglence [MNSO04].

Beside this formalization, the W3C recommendation [BP®] indicates
that the regular expressions have todme-unambiguousThis means that when
parsing the word from left to right, there must be at any timepat most one
possible matching in the regular expression. In other tethes Glushkov au-
tomaton [Glu61] obtained from the regular expression masddterministic. We
call a DTD deterministic if all its corresponding regular expressions are one-
unambiguous.

2.2.2 Extended Document Type Definition

Extended DTDYEDTDs for short, and sometimes callgpkcializedTDs in the

literature) were proposed by Papakonstantinou and ViaMOQR, by allowing

each label to have several types. Each type is associatbdon label. The
regular expressions of an EDTD are not based on labels, biypeas. This way,
EDTDs capture all regular languages.

For instance, consider the discotheque example previanstyduced. Sup-
pose that we want to use a url for authors instead of some #HBDBut only
for online albums. This would be impossible using a DTD, as itha non-local
property. With EDTDs, we can introduce two types of authars] thus solve the
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problem:
albums— (cd | onling)* typgalbumg = albums
cd — title-cdAuthortracklist type(cd) = cd
online — title-onlineAuthortracklist url typgonline) = online
tracklist— track-track typgtracklist) = tracklist
titte — #PCDATA typetitle) = title
cdAuthor— #PCDATA typecdAuthorn = author
onlineAuthor— url typgonlineAutho) = author
track— #PCDATA typgtrack) = track
url — #PCDATA typgurl) = url

More formally, an EDTDD overX is a tuple(init, rul, ¥, type) where¥ is the set
of types,init € T, rul maps each type d¢f to a regular expression of types, and
typemaps each type to a symbolBf With each type) € T we can associate the
language:

a = typgv)),
Ly(D) = {a“h---’tk) 9, O L(rul(9)), €Ly (D) for 1 <i <k }

The language recognized Wy is Lint (D). In terms of expressiveness, EDTDs
exactly capture the set of regular unranked tree langudégq].

Introducing types leads to the problem of typing each lalbel document.
Two types are saidompetingf both are mapped to the same label (for instance,
cdAuthorandonlineAuthorin our example). Computing types increases the cost
of parsing and processing, when compared to DTDs. This iss@he restrictions
on EDTDs have been proposed.

Single-type EDTDs

The first restriction on EDTDs is to require that no regulgrression can contain
two competing types. This correspondsstongle-typeEDTDs, and also to XL
Schema according to [MLMO01] (see also [MNSBO06b]). Singlpe EDTDs is
also the class of languages for which the ancestor strirgy dtimcatenation of
labels of the current branch) determines the type: if twaiMaées have the same
ancestor strings until nodesand~’, then swapping the corresponding subtrees
leads also to valid trees [MNSO05].

In our discography example, the EDTD extension is singpefas the only
competing types aredAuthorand onlineAuthor and they never appear in the
same rule.
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Restrained Competition EDTDs

We introduce the second restriction, namely rbstrained competitionThis one

is similar to the determinism of DTDs, but at the level of tgpeAn EDTD is
restrained competitionf there does not exist two different competing typgs
andd, and wordsu, vy, ve € T* such that{u-9;-vy, u-J5-v9} € L(e) for some
regular expressioain rul. Martens et al. [MNSO5] prove that deciding whether
an EDTD is restrained-competition is in (a subclass of)M&. An EDTD is
deterministicif all its regular expressions are one-unambiguous. Gleaxlery
single type EDTD is also restrained competition, and evesyrained competition
EDTD is deterministic.

Restrained competition EDTDs are strictly more expreg$iga deterministic
DTDs, but strictly less than regular languages [MLMOL1]. detf we get the same
characterization as for single-type EDTDs, except that @gace the string of
ancestors by the string of ancestors of the leftmost sildfrige node, plus its left
siblings. Hence deterministic restrained competition ETcan be translated
in linear time to ¢ TAs on the first-child next-sibling encoding of trees (see fo
instance Lemma 33 of [CGLNQ9]). Deterministic restrainedhpetition EDTDs
can be efficiently used to type documents in streaming orshe€Chapter 4, we
present a translation of restrained-competition EDTDsutoaata that evaluate
documents in a streaming fashion.

2.3 Queries

In the context of databases, queries are used to selecodaggtocessed later on.
In this manuscript, we focus on queries that only take thectire of the database
into account, not the data values.

We definen-ary queries over relational structures, as functionsctelg n-
tuples of elements of the domain. The special cases of quever words and
trees are introduced. Logics and automata, as present@dysky, are then used
for definingn-ary queries. Finally, the W3C standards XPath 1.0 and XP#th
are introduced, and their navigational cores are formdlixée also mention other
formalisms for querying in trees, and expose the state oathéor queries eva-
luation.

2.3.1 Queries over Relational Structures

We first introduce queries over relational structures. Ia tontext of XvL,
schemas are used to define the set of valid trees. In this m@psve study
the evaluation of queries that only select tuples of nodesiid trees of some
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given schema. To generalize this idea, queries are alwags gvith an associ-
ated schema, that we name tt@mainof the query. This has to be distinguished
with the set of trees on which the query selects some noddghas the schema
given by a separate object.

Definition

Let A be arelational signature amde N,. A schema oveA is a subset C Sa.

An n-ary query with schem4 is a function@ with domaindom @) = .S, which
maps all structures € S to a set of tuples of elements, and only selects on valid
structures:

Q(s) Cdoms)” and Q(s) # 0 = se domQ)

A Boolean queryy) is a query of arity0, where the empty tuplé is selected for
some trees. Anonadic queryis a query of arityl. We sometimes use queries
without schemameaning that we consider queries with the universal schifema
Sa.

A query languagdalso calledquery classn this manuscript)Q of arity n
over A consists of a se@, whose expressions € Q have a sizge| € N and
a query(Q, of arity n, so thatQ.(s) € dom(s)” for all s € Sx. Note that the
expressiore defines both the schentlmm().) C Sa and the object for selecting
nodes@.(s) € dom(s)". Hence expressions are usually a pair of objects. In
this manuscript we will study query classes for which exgi@ss will be either
XPath expressions or tree automata for selecting nodeb, avtomata for the
schema languages.

The query evaluation problem takes as inputs an expressaod a structure
s, and output).(s). It is parameterized by a query class. The complexity of
this problem when the query and structure are both variablealledcombined
complexity When the size of the expression is fixed, we nantkait complexity

Below, we will define queries in words, where the schema isaascbf rela-
tional structures of words idom @) C >*, and queries in unranked trees where
the schema is a class of relational structures of unrankeddom @) C 7. The
domains can be defined by automata eaLXschemas.

FO and MSO-definable Queries

Queries can be easily defined from FO and MSO formulas, bygusieir free
variables. This can be done modulo an ordering on these &eables, and by
requiring that MSO formulas only have first-order free viles.

Let ¢,¢' € FO[A] (resp. ¢,¢' € MSOQ[A|) where¢' is closed, and let
x1,...,x, be the free variables af, all of them being first-order. Then we define
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then-ary queryQy, ,....z,.). DY:
Q¢(:E1 ..... mn)vdﬂ(s) = {(7T17 e ,7Tn) | S, [xl S My e oy Ty S 7Tn] ): gb}

for all s € Sa such that = ¢/, anddom Qg (z,,...0n)¢) = {S | S ¢'}. Sim-
ilarly, we defineQy., ...,y for the case without schema, by lifting the condition
st ¢ anddomQy(ay.,...en).¢') = Sa-

We say that am-ary query@ is FO-definable(resp. MSO-definableover
A-structures if there exist HQ] formulas (resp. MS@\] formulas)¢ with free
variablesry, . . ., z, and¢’ (a closed formula) such th@t = Q4 ,...2,.),- HENCE
FO[A] and MSQA] are two query classes, whose expressions are formulas with
ordered free variables for the selecting part, with closethtilas for the schema
part.

Canonical Language

We can equivalently define a query as a set of annotated wtesctThis will be
used to define queries by structures acceptors, like autorBaiblean querie®

with dom()) = Sa can be identified with structurés, = {s| () € Q(s)}. But

how can we define languages of structures#@ry queries?

We fix an ordered set of distinct variabl®y = {zi,...,x,} and define
extended relation signaturés, = A U V), such that every variable becomes a
unary relation symbol. For every structise Sh and tupler = (my,...,m,) €

dom(s)” we define arannotated structure s € S, as follows:

dom(s* 7) = dom(s)
r&T =S forallr € A
3 = {m} foralll1 <i<n

We call a structuré € Sa, canonicalif 2° is a singleton for alk: € V,,. Clearly,

all annotated structurest 7 are canonical. Conversely, every canonical structure
5 is equal to some annotated structsre 7. We therefore define the canonical
languagd. of ann-ary queryQ as the following set of annotated structures:

Lo ={sx7[7€Q(s)}

The canonical language of a Boolean query indeed coincidiéstiie schema
Lo = {s| () € Q(s)}. Note however, that the domain of a query is only partially
specified by the canonical language. In particular there exast valid structures

s € dom(@) on which nothing is selected, i.&€)(s) = ), so we cannot identify
dom(@) with the structures on which something is selected. In otoédix this
problem, we identify & with the pair(Ly, domQ)) of its canonical language
and its domain.
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Logical Operations on Queries

We define logical operations for-ary queries, Q" with the same schem&:
conjunction@ A @', disjunction@ Vv ', negation—(), existential quantification
dJx;. @ and cylindrification;;Q for all 1 < i < n. All these queries have the same
domainsS and satisfy for all structurese S:

conjunction QA Q'(s) = Q(s)NQ'(s) |
~Q(s) = { SOMS) ~Q(s) ifses

negation otherwise

quantification Jz;. Q(s) =
{<7T1, sy T 15 Ty e e oy ﬂ-n) ‘ Elﬂ-i- (7T17 e 77Tn) S Q(S)}
cylindrification ¢;Q(S) = {(m1, ..., i, T, Tis1y - -, M) | (71, ..., 7)) € Q(S)}

Note thatdz;. @ is a query of arityn—1 andc;Q arity n+1, while all others have
arity n.

We next relate logical operations on queries to set operstan canonical
languages. This correspondence is the reason why thisaioromethod is said
canonical We define for allr € A, a projection operatoll,: S — Sa,—{}
which removes symbat from the relational structures. We get the following
equalities:

intersection Lorg' = Lo NLy

complement L.g={sx7 | sedom), 7 € doms)"} — Lg
projection Laz o = {IL(s*x7) | s*x7 € Lg}
cylindrification L. = Use, II;,(9)

Queries over Words

An n-ary queryQ in words has some scherdam@)) C ¥* and selects-tuples
of positions in words idom(()). Suppose that we fidom()) = >*. We can then
define a monadic query by the following FO-formula with a $nfgee variable
x1-
Qb(]?l) = El.TQ. (SCl < x9 A |aba(x2))

For every wordw in the schema, the quety,(,,) defined by this formula selects
all positions before some-labeled positions.

Givenawordw = a;-...-a,, € X* and a tupler = (7, ..., m,) € domw)",
we can identify the annotated structurex 7 with the following annotated word
overy, x 2Vn:

(ar,{z; | m; =1})-. . (am, {z;i | 7 = m})
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albums (albums0)

online (onling {x,})

SN N

title author  tracklist (title,))  (author {z,}) (tracklist®)

(a) Atreet € Ts. (b) The annotated trefex (1, 1-2).

Figure 2.4: Example of tree annotation.

For instance, we identify the annotated structure c x (2) with the word(b, 0)-
(a,{z1}), (¢, D). Hence the canonical language ofraary queryq in words over
A thus can be identified with a languafig of annotated words with alphabet
¥ ox 2Vn,

Queries over Unranked Trees

Queries) in unranked trees dfy;, are queries with some domagiom@) C Ts.
They select tuples of nodéxt) C nod(t)" for all treest € dom@). For instance,
considering the schema in Figure 2.2 describing discot®qwe can define a
query that selects all pairs of nodes 7’) wherer’ is a descendant of labeled
by authorusing the following FO-formula with free variables and,:

(21, x2) = (Ch* (21, 22) A labaythor(22))

By analogy with the case of words, the canonical languagerof-ary queryQ
in unranked trees over can be identified with a language of unranked trees over
the alphabet x 2V» whereV,, = {1, ..., z,}. We illustrate this in Figure 2.4.

2.3.2 Queries by Automata

Letn € Ny be some arity. If a notion of automaton exists for a class ef an
notated relational structures,, , then we can use automata for defining queries
over structures af, by means of the canonical languages.

If Ais atree automaton over the alphabet 2V~ recognizing only canonical
structures and a word (resp. tree) automaton oveythen we define the query
Qa,p by:

Lous = L(A)  and  domQuz) = L(B)
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Note that in the definition of queries, we required that cgeednly select on valid
trees. This means that we only consider autoraat& such thatlly(L(A)) C
L(B), wherelly, is the projection along thE component.

We call a query over unranked treaggular if there exist two tree automata
A and B such that) = Q)4 . From these definitions, we can extend the corre-
spondence between regular and MSO-definable tree langobBesposition 1 to
queries. It suffices to use Proposition 1 on the canonicgluage ofQ).

Proposition 3. A query over unranked trees is regular iff it is MSO-definable

More complete results about the links between logics andnaaita for trees
are presented in [CD®7, Nev02b, Nev02a] and for more general structures in
[Tho97].

Related Work on Queries by Automata

Different approaches were proposed to use automata to dpferees on trees.
An alternative way of using automata for defining querie®igge the anno-
tations of trees by runs of the automaton, where some tuplsgates permit to
define tuples of selected nodes. This can also be seen asgahiti variabled’,
in the states instead of the alphabet. BeflectC stat* be the set ofi-tuples
of selecting states of a TA. We can define a query selectinguples of nodes
mapped byA to n-tuples of selecting states on some run:
Qs(t) = 4y ) | there is a successful rurof A ont
. Lo Bl b where(r (), ..., r(m,)) € Select

These queries, namexdistential run-based querigare studied by Niehren et al.
in [NPTTO5], and proved to capture MSO-definable queries tReplacing the
existential quantification on runs by a universal one do¢€hange their expres-
siveness. This is no longer the case when considering tks ofadeterministic
automata. The authors also consider unambiguous autareatapytomata having
at most one accepting run per tree. A property of these autoimghat am-ary
guery can be defined using an unambiguous automaton iff ibeanritten as a
Boolean combination of monadic MSO formulas. As a consecgiemonadic
gueries defined by unambiguous automata are exactly moM@@-definable
gueries. But fom > 1, queries defined by unambiguous automata are strictly less
expressive than MSO-definable queries.

In a prior work [FGKO3], Frick et al. proposed a monadic vatiaf this
approach, usingelecting tree automatand operating on DAGs that are a com-
pact representation of trees. Without compact represeniahe query evalua-
tion problem for a selecting tree automatdron a treet is in time O(|A|® - [¢]).
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When trees are compressed, the query evaluation problentirae 204D - |¢.|,
wheret,. is a compact representation ©f Hosoya and Pierce [HP03] also de-
fined run-based-ary queries througpattern automataon ranked trees. Neven
and Schwentick introduceguery automatan [NS02]. They start from two-way
automata [Mor94] and add selecting states. In terms of ssprenessguery
automatacapture MSO-definable queries. In the unranked case, tltieisase
only when adding stay transitions. Emptiness, inclusiaheguivalence of query
automata are all EPTIME-complete problems.

Other automata models were proposed for processmg documents in the
context of streaming. This led to the introduction of tretoawata that run through
trees in pre-order traversal of their nodes. We survey sutdnzata in Chapter 4
of this manuscript.

2.3.3 XPath

With the introduction of XL as a standard for semi-structured data [BP 98],
the W3C defined the XPath query language [CD99]. XPath is tesgelect sets of
nodes in XML documents, based on some properties of paths. XPath issafbasi
numerous other standards: XML Schema [FWO04] for definings@s, XPointer
[DMJO01] for identifying fragments of XiL documents, and XQuery [BCB7]
and XSLT [Cla99] for document transformations.

Two versions of XPath have been released so far. XPath 1@edefueries by
path expressions, with other features like data value,tagthmetic operations,
aggregators, etc. XPath 2.0 extends XPath 1.0 with the txgeaf having a first-
order complete navigational core, that is missing in XPath We present both
versions in the following. Known results about expressass, evaluation and
static analysis of XPath 1.0 are surveyed by Benedikt anchKo{BKO08].

XPath 1.0

XPath 1.0 is a navigational language based on a set of astedeto tree struc-
tures. XPath 1.0 expressions define monadic queries usingpéessyntax, with-

out variables. Consider for instance the expressjord[author]/title. It con-
siders allcd nodes (/ is the descendant, i.&h" axis), tests whether they have an
authorchild node {. . .| delimits test expressions), and if this is the case, outputs
theirtitle children nodes/is the composition of steps, and the default axish)s

CoreXPath 1.0 As mentioned earlier, XPath 1.0 comes with features that are
not navigational. In particular, data value manipulatieash as arithmetic ope-
rations make XPath 1.0 undecidable. For this reason, Gotoch and Pichler
define CoreXPath 1.0 [GKPO05], a formal characterizatiomefriavigational core
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axis d == self | foll | prec
| ch | ch* | ch™ | ch™' | (ch7!)* | (chh)*
| ns| ns | ns” | ns! | (nsh)* | (nsh)T

label tests 0 = a | x (wherea € ¥))
steps S == dul | SF

paths P == S| S/P

filters F = [P] | [not(F)] | [F1andF]
rooted path R := /P

Figure 2.5: Syntax of CoreXPath 1.0.

of XPath 1.0. We recall the syntax of CoreXPath 1.0 in Figuf 2A Core-
XPath 1.0 expression is either a path expresBiam a rooted path expressidn
CoreXPath 1.0 allowssandns ! axis, as opposed to the XPath standard.

We progressively define the semantics of each element, witerpreted on a
treet € Tx. Label tests and filters are interpreted as unary relatitias,select
the nodes of the tree satisfying these tefi;,,  nod(t). Axis, steps and paths
are interpreted as binary relations, relating pairs of sade: [.[;,s € nod(t) x
nod(t).

The axisself relates each node with itself:

[selfpan = {(, ™) | =€ nod(t)}

Axis ch andnskeep their usual semantics from the definitiort @fs a relational
structure:
[[Ch]]f)ath =chf [[nq]f)ath =ns

We define the transitive and inverse variants of axis usiagtitresponding ope-
rations on binary relations:

[ Toen = ([dpar)” [ Tpatn= ([pa) ™ [ Tpatn = ([llawr) ™"

The following (resp. preceding axis relates each nodes with all nodes greater
(resp. smaller) than itself in post-order (resp. pre-orttewersal:

[[fon]]éath: [ch f)atho [[nsk]]fnatho [[(Ch_l)* f)ath
[[preq]éath = [[Ch*]]éatho [[(ns_1)+ f)atho [[(Chil)* E)ath

Label tests have a monadic interpretation, like filtefé}},, < nod(t). The
symbol “*” is a wildcard:

[a]fier = lab), [Jfiker = nod(t)
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A step is a move in the tree along a path, where the target nexifeeg the label
test and the filter test. This is the basic element of a paithjsamterpreted as a
binary relation:

[[dz:g]]éath = [[d]]f)ath N (nOd(t) X [[E]]léilter)
[SHpar = [Slpan N (n0d(t) X [Flfier)

Finally, path expressions are defined by a series of steps:

[[S/ P]]f)ath = [[P]]f)atho [[S]]f)ath
Path filters are interpreted existentially. Boolean openatare then interpreted

as usual:
[Plliger = {m | 37" (7, 7") € [Plhant
[HnOt(Fﬂ]]gilter = nOd(t) - [[F]]Iftilter
[[F1 and Follfwer = [Filfiter N [Folfier

Rooted paths are interpreted as the set of nodes accessible starting at the
root node, and following the path. Thus it is a monadic refat].]!, ., € nod():

rpath =
[[/P]]gpath: {7T | (67 7T) S [[P]]E)ath}

If a CoreXPath 1.0 expression is a path expresBiathen it naturally defines the
binary queryQp(t) = [P If it is a rooted path expressiaR, it corresponds
to the monadic querg)r(t) = [R]f,.n The set of binary queries defined by path
expressions of CoreXPath 1.0 exactly captures the twohlasdragment of FO
over unranked trees [MdRO5]. This fragment is strictly lespressive than FO.
In [MarO5b, MarO5a], Marx shows that any extension of CoratXiP1.0 closed
under path complementation is FO-expressive.

Static Analysis CoreXPath 1.0 is now a well-studied logic. Static problemnes a
analyzed in [NS03, Woo03, MS04, GLS07]. Main results ars@néed in surveys
[GKPO03, BK08]. Satisfiability of CoreXPath 1.0 is known to tecidable, even
in the presence of DTDs [BFG08]. Containment (also calletlsion) of queries
is the problem that takes as input two expressioaade’, and outputs the truth
value of Q. (t) C Q. (t) forall t € Ts. We write@. C Q. if this property holds.
For binary queries of CoreXPath 1.0, containmentx®EME-complete. In this
manuscript we will sometimes use reductions to the uniligysaf queries, i.e.
given an expressioa defining a query, decide whethét € 7y, Vr € nod(t)",

T € Q.(t).

Proposition 4. Deciding the universality of Boolean CoreXPath 1.0 filtersla
monadic CoreXPath 1.0 expressions restricted to axes clclnid coNP-hard.
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Proof. As negation and disjunctions are allowed in CoreXPath 1t€Y$) contain-
ment and universality are equivalent, becalise- Lg,,. .. .., iff Lo., € La.,-
Moreover, containment of CoreXPath 1.0 filters was provédR:tard by Miklau
and Suciu [MS04], even for positive filters restricted tosgl andch®. In the
presence of negation, universality of monadic queries liddrahan universality
of Boolean queries of the same class. O

For the dynamic approach, we present known query evaluatgorithms in
Section 2.3.5.

Forward XPath Forward XPath [OItO7b] is the restriction of CoreXPath 1.0
where allowed axes are only forward axes, i.e. akesch that if(r, 7') € [d]}
thenz’ follows = in document order. Such axis are:

d:=self | foll | ch | ch* | ch® | ns| ns" | ns*

This set of axis is often used for streamingniX matches of Forward XPath
expressions can be built progressively along the strearmowi guessing un-
read information. This restriction on axes does not aff@pressiveness: every
CoreXPath 1.0 expression can be rewritten into an equivil@nvard XPath ex-

pression [OMFBO02]. However this translation can produgeogentially bigger

expressions.

CoreXPath 1.0 Extensions Some extensions of CoreXPath 1.0, inspired by
temporal logics, were proposed. For example, Marx def@@sditional XPath
[MarO4a, Mar05a] from CoreXPath 1.0 by adding path expoessof the form
(SH* whereS = d::¢ is a step andF a filter expression. This expression is in-
terpreted as the transitive closuf§S F)* [\, = ([S Hpan) * i-€., we can move
according tdS, and at each step we must check thas true. This is inspired by
the Until operator of temporal logics: we can do jumps al@wntil some posi-
tion, and on the way is true at each step. Conditional XPath is FO-complete,
and thus strictly more expressive than CoreXPath 1.0. As iWse&e later on, this
does not increase the evaluation time.

Beyond Conditional XPathRRegular XPath [Mar0O4b] allows transitive clo-
sure of any path expression, not only steps. In [tC06], tete Qafines Regular
XPath® as the extension of Regular XPath by the equality operatdgiven two
path expressionB; andP,, P, ~ P, is true at noder of ¢ if there is a noder’
that can be reached fromby bothP; andPs. It is still unknown whether this
operator is needed. In terms of expressiveness, Reguldh’XRahen considered
as a binary query language) is a strict extension of ConwitiXPath, as it cap-
tures FO, the FO logic over trees allowing a transitive closure ofmeran formu-
las having exactly two free variables. However, RegulartkRes not capture
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MSO-definable queries. Indeed, ten Cate and Segoufin rgqaotled that FO
is strictly included in MSO for trees [tCS08] (they proved anmageneral result,
as their transitive closure operator allows for more tham free variables). The
evaluation of a Regular XPath expressitoan a treel can be performed in time
O(|t| - le|) [Mar04b].

CoreXPath 1.0 with (attribute) data value comparisons h&slzeen studied.
Its satisfiability is undecidable in the general case [GFB6{ becomes decidable
with restriction on allowed axes [BDMD6, BFGO08, Fig09]. In particular, hori-
zontal axes introduce additional difficulties [GF05, BFGO& [Par09], Parys
proves that CoreXPath 1.0 expressiength data value comparisons can be eval-
uated in timeO(J¢| - |e]®). Adding aggregators leads to an exponential blow-up in
the query size.

Tree Patterns

Tree patterns are similar to CoreXPath 1.0 queries using descending axis
ch andch®, and no negation and disjunction. They definary queries using
variablesy,, = {x,...,z,}. Tree patterns are expressions of the fgifrwhere
F is defined by the following grammar:

F:=andF,,Fy) | ch(F) | ch*(F) | ¢(F) | = | true

wherel € ¥, x € V,, d € {ch,ch'}, and the operatof appears in root position
only. The semanti¢F],,, C nod(t) is defined modulo an assignment V,, —
nod(¢) and the following equations:

[and(Fi, Fo)]i = [Filew N [Falis
[ch(F)l:, = {r | 37" € [Flip- Cht(ﬁ,ﬂ')}
[ch*(F)]e, = {7 | 37" € [Flip (ch)(m, ")}
[((F)]ey = {m | £=lab'(r)}
[2]e = {u(x)}
[true];, = {nodt)}
[/Flen = {e} N[Flepn

The query defined by a tree pattefffis given by:

Q(t) = {(u(x1), -, u(wn)) | € € [/Fleu}

Sometimes [BKS02], the query is composed by the matchingdi abdes of the
expression, i.e., for each step a new variable is presekialvland Suciu [MS04]
show that inclusion of tree patterns is coNP-complete. IRKB5], Benedikt
et al. study the sublanguages of XPath obtained by remowiegsfi downward
recursion, and/or upward axis, while never allowing hamizab axis. They relate
these fragments to tree patterns, in terms of expressigenes
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axis d == self | foll | prec
| ch | ch* | ch™ | ch™' | (ch')* | (chh)*
| ns | ns | nst | ns! | (ns)* | (nsh)T

label tests 0 = a | x (wherea € ¥)
steps S == d:t | SF
node test N = .|z (wherez € V)
paths P = S| S/P
| Py union R, | P;intersectB | P; except B
| N | forzin P, return P,
filters F == [P] | [not(F)] | [F1andFy] | [Ny is Ny
rooted path R == /P
Figure 2.6: Syntax of CoreXPath 2.0.
XPath 2.0

XPath 2.0 [KRS 07] has been defined from XPath 1.0 by adding some features,
in order to get a more expressive query language. XPath 2rfifgethe use of
variablesz (from an infinite sety of variables). These are interpreted as path
expressions that move from any node to the node assignedddest is added to
compare nodes assigned to variabless .| tests whether the current node is the
one assigned to, whereasz is y] is true if x andy are both assigned to the current
node. An iterator is also added, through for-loops of thenffmr « in P; return .

This is interpreted as a path expression. Two path expressiperators are also
added: the relative complemeRt except B, the unionP; union R, and the
intersectiorP; intersect B.

CoreXPath 2.0 is a formalization of the navigational corexBfth 2.0 pro-
posed by ten Cate and Marx [tCMOQ7]. Its syntax is detailedigufe 2.6.

We define only the semantics of the new elements of CoreXPatha2 el-
ements coming from CoreXPath 1.0 keep the same semanticse pecisely,
the semantics of a CoreXPath 2.0 expressiam a treef is done modulo an as-
signmenty, of the free variables of to nodes oft. CoreXPath 1.0 expressions
only propagate this assignment, whereas CoreXPath 2.@&sipns use it in the
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following way:

[-Doan = [selflpaen
[] i = nOA(t) x {pa(x)}
[P union R] 4, = [P1]okn U [P2l5kn
[P, intersect B] ;% = [P1] N [P2] ok
[P: except B]]f)’;h = [[Pl]]g;h - [[P2]]g§h
[for = in Py return Ry 5 = {(m1,m) | s € nod(t).
(m1,73) € [Pilpanand(m, m) € [[P2]]3§tf<_ﬂ3]}
[[- is ] Dfiter = {ne(z)}
[[. is .|]fiter = nod(t)
[l is y]Tfiter = [ is 2lfiter N [ 18 yliiter

This time, CoreXPath 2.0 path expressidhgand similarly for rooted path ex-
pressionsk) definen-ary queries by the assignments that satisfy the expression

Qe(t) = {(m,....m) | [Plgan ™™™ # 0}

The problem of query inclusion for various fragments of Cd?ath 2.0 is
studied in [tCLO7]. It ranges fromXTIME (for the extension of CoreXPath 1.0
with path equality) and 2-EPTIME (for the extension with path intersection), to
non-elementary (for the extension with path complemewmrtatr for-loops). The
equivalence problem is shown decidable in [tCMO07]. Satwdftg of XPath 2.0
was studied in [Hid03] before the axomatization of XPatht&/@oreXPath 2.0.
In terms of expressiveness, CoreXPath 2.0 is FO-completiee3-O-expressive
fragments of CoreXPath 2.0 enjoying efficient evaluatiggopathms are presented
in [FNTTO7]. We present them in Section 2.3.5.

2.3.4 Other Approaches for Querying in Trees

In this section we briefly survey some other formalisms psagbfor querying
finite ordered trees.

Conjunctive Queries

A conjunctive query)(zy, ..., x,) over a signaturéd\ = {ry,... .} is a FOA]
formula only using conjunctions, and existential quantsfiat the outermost lev-
els, as for instance:

d(x1) = Fyr. Fya. mi(z1,71) A ray2)

Conjunctive queries enjoy a clean relation with the Préject algebra, and thus
are also studied in the context of relational databases [25]V
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Conjunctive queries over trees are studied by Gottlob endlGKS06]. The
authors investigate the tractability of the query evatraproblem, depending on
which XPath axis are used in the signatuye A frontier is established for arbi-
trary finite structures, and then applied to XPath axis. Ddpey on the chosen set
of XPath axis, the query evaluation is either mi?e or NP-hard. In [BFLSO06],
Bry et al. investigate algorithms for conjunctiveary queries over graphs, that
are also efficient on trees.

Other restrictions over conjunctive queries are studiethencontext of re-
lational databases. For instanaeyclic conjunctive querieare introduced by
Yannakakis [Yan81]. These are conjunctive queries whiaghesponding hyper-
graph representation is acyclic. Yannakakis proposedgoritim that evaluates
these querie§) in time O(|D| - |¢| - |¢(D)|) for a databas®. Some algorithms
for evaluating acyclic conjunctive queries incrementally proposed by Bagan et
al. [BDGO7]. Tree patterngas presented in Section 2.3.3) are a special case of
acyclic conjunctive queries on tree structures.

Monadic Datalog

Datalog Datalogis a generalization of conjunctive queries, introducincure
sion. A Datalog program is a set of Datalog rules, each of themg composed
by a head (an atom) and a body (a conjunction of atoms, i.enjamctive query).
For instance the conjunctive query mentioned in the precedaragraph corre-
sponds to the rule:

(1) = ri(x1, 1), ra(ye)-

Datalog comes with the least fixed point semantics, as engdidhelow for ground
Datalog. For precise definitions and results, see for inst§HV95, CGT90].

Monadic Datalog In [GKO04], Gottlob and Koch propos®onadic Datalogas
a monadic query language over unranked trees. A Monadicl@afaogram
is a Datalog program where all head predicates are unarypaadf these is
considered as the selecting predicate, thus defining a nogaedry. Gottlob and
Koch consider the signature = {fc, ns root, leaf Ic} U {lab, | a € X}, where
root, leaf andlc are monadic predicates respectively selecting the roog¢ nibe
leaves and the last children (i.e., children nodes witheut-sibling). Over this
signature, Monadic Datalog programs exactly capture morgaeries that are
MSOQJfc, ng-definable. The query evaluation of a Monadic Datalog pnogFaon
atreet is in linear combined complexityO(|¢| - | P|).

Ground Datalog In this manuscript we sometimes ugeund Datalogas a
simple way to define new relations. A ground Datalog progrsaia Datalog pro-
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gram without variables. We recall here the definition, aredkiiy result about the
linear resolution of such programs.

Let A be a ranked signature containing constantdsA and predicateg € A,
where all predicates have an ariy(p) € No. We call a termp(cy, .. ., car(p))
a literal, and denote the set of literals ov&rby lit(A). A clauseis a pair in
lit(A) x lit(A)* (with k& € Ny) that we writeL :- Ly, ..., L. as usual. Aground
Datalog programP is a finite set of clauses ovar Its size| P| is the total number
of symbols appearing in all its clauses.

Theleast fixed point IfpP) of P is the least set of literals ovérthat satisfies
that for all claused. :- Ly, ..., Ly. of P,if Ly,..., Ly € Ifp(P) thenL € Ifp(P).
As no negation is allowed, every ground Datalog progtarnas a unique least
fixed point, and this one is finite. For ground Datalog, thaéstdixed point can be
efficiently computed [CGT89, DEGVO01, GGV02].

Proposition 5. For every signature\ and every ground Datalog prograi over
A, the least fixed point aP can be computed in time(| P|).

Modal Logics

Modal logics are logics using modality operators. Amongsthiegics, temporal
logics are a popular way to describe properties of dynamstesys, and check
them by verification techniques. They can be used to expnesstproperty will
be satisfied in some system continuation, in all continmatior to check that a
property is true until some time point where another properttrue. In trees,
properties are expressed on paths of the tree. We brieflyiomestme works on
temporal logics over ordered trees (see [Lib06] for a moraplete overview).

Linear Temporal LogicLTL) is known to capture FO on words, by Kamp’s
Theorem [Kam68]. In [Mar05a], Marx adapts the definition @iLLto trees by
using two variants for each modality operator: one for hamrtal paths (alongs),
one for vertical paths (alongh). The resulting logic is equivalent to F", ns,
in terms of expressiveness, for Boolean and unary queriesedikt and Jeffrey
[BJO7] consider thédennessy-Milner Logi¢HML) [HM85], obtained from the
previous logic by lifting thauntil modality. This way, they capture CoreXPath 1.0.

Computation Tree Logi(CTL) and CTL" add branching to the LTL approach,
by distinguishing node formulas and path formulas (in theesavay as XPath uses
filters and path expressions). CTwas proved equivalent to FO for binary trees
for a long time [HT87], and recently Barcelo and Libkin peavthat CTL,, is
equivalent to FO over unranked trees [BLO5past means here thath™' and
ns ! are also used in modality operators.

Propositional Dynamic Logiq(PDL) has also been adapted to trees by
Afanasiev et al. [ABD05]. PDLe, the resulting logic, is based on Boolean
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combinations (and existential quantification) of path fatas where branching
and transitive closures are allowed. Its expressivenessigtly the same as Reg-
ular XPath [Mar04b].

The modal p-calculusadds least and greatest fixed points to modal logics.
Barcel6 and Libkin studied this logic in the context of umked trees [BLO5]. For
Boolean and monadic queries, thealculus based on axis andnsis equivalent
to MSO. Some logics inspired from thecalculus were later defined [GLS07] to
improve the satisfiability checking.

Other Models of Queries

We briefly mention other formalisms for querying in trees.

Neumann and Seidl define monadic queriegdrgst grammargNS98], that
were extended ta-ary queries by Berlea and Seidl [BS04]. In order to evaluate
these queries, Neumann and Seidl introdueghdown forest automata@hese au-
tomata traverse the input tree in pre-order, and thus paratieaming evaluation.
For this reason, we present this work in more details in Ghreht

Regular path querieare queries on graphs, defined by regular expressions on
basic steps (like XPath steps) [ABSO00]. In trees, this gmoads tacaterpillar
expressionsas defined by Briggemann-Klein and Wood [BKWO0O0]. These are
strictly less expressive than MSO, and incomparable with G@ris and Marx
definelooping caterpillarsfGMO05] by adding a loop predicate, that only keeps
loops of an expression. Looping caterpillar are able towadbinary FO queries
on unranked trees.

Regular expressions can also be used at a higher level, teededular ex-
pression patterndn [BCF03], Benzaken et al. propo§®uce a typed program-
ming language for XiL. This language uses such regular expression patterns to
select hedge elements. These patterns are based on trglesrhedge algebra
operators, and regular expressions operators. Here, actigntestriction avoids
subtree equality tests. These are allowed in the more gehe@ Query Logic
[CGO04, FTTO7], a spatial logic for ordered trees.

Some work has also be done for combining existing query fosma. In
particular, Boolean and monadic queries can be used to defarg queries, as
explained for instance in [Sch00, NS00, FNTTO06, ABLO7].

2.3.5 Evaluation Algorithms

In this section we survey the complexity of outputting ak #mswers of a query,
for the different classes related to our framework. We surgsults for algorithms
without streaming constraints (see also the survey by Kok (6]). The related
work on streaming is in Chapter 1.
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Query Evaluation and Enumeration
We present two frameworks for computing answers of a query.

1. Queryevaluationis the more general framework, that measures the overall
time required to output the set of all answers.

2. Queryenumeratior[lJPY88, GS03a, Bag06, Cou09] distinguishes the pre-
computation and the delay between consecutive answersceHhg first
answer can usually be output more quickly than by computiegwhole
answer set.

These frameworks do not take space complexity into accathe tree is
entirely stored in main memory. More precisely, in the entatien framework,
space and time are bounded by the same function during thenmental com-
putation of answers, but no restriction is made during theppocessing phase
[Bag09]. We provide the definitions in the sequel. k&be a query class, each
expressior: € Q being equipped with a siZe| € N, and defining a querg)..

We say thatQ can beevaluatedin time f, if there exists an algorithm that
takes as input any expressior Q and any tree € Ty, and outputs the s€.(t)
in time less tharO(f(|¢], |e|, |Q.(t)|)), where|Q.(t)| is the number of elements
in Q.(t). Note that query evaluation is harder than satisfiability.

The classQ can beenumeratedvith preprocessing’ and delayd if there
exists an algorithm that takes as input any expressier@ and treet € Ty, has
a preprocessing phase of time less thHif (|, |e|)), and then enumerates all the
answers).(t) with a delay at most(|¢|, |e|) between two consecutive answers.
There is no restriction on the output order of answers. Qtitjgan answer twice
is forbidden.

Query enumeration is an intermediate model between thdatdrevaluation
and the streaming evaluation. It is a special case of querlpation algorithms,
while streaming query answering algorithms can be consttas special cases of
enumeration algorithms, with the additional constraintlumtraversal order, and
with a focus on space consumption.

A recent work by Bagan et al. introduces two other framew@B{3GO08].
The first one is the computation of a random solution, whetleasecond one is
the computation of thg-th solution. Another problem is to maintain the set of
answers while the XL document is updated. This is usually referred as/ibe
maintenance problefsI84, GMS93, BGMMO09].

Automata, FO and MSO defined Queries

The evaluation of FO formulas over relational structure®s®AcEcomplete.
Once the query is fixed, it becomes aRe problem [Var95].
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In [DOO06], Durand and Olive study the enumeration complefor queries
defined by first-order formulas on quasi-unary structurasasunary structures
are structures over a signaturé\ containing unary relations symbols, plus one
function f: dom(s) — dom(s). In particular labeled unordered unranked trees can
be encoded into quasi-unary structures. They prove thaheration over these
structures can be done with a precomputation linear in #eeddithe structure and
the query, and a delay linear in the size of the query (indégeiof the structure
size).

Satisfiability, and thus evaluation, of MSO formulas is redementary. Once
more, this is not the case when the formula is fixed. In [BagBépan provides
an enumeration algorithm that progressively outputs arsafeany query defined
by an MSO formula over trees (in fact, over the more geneescbf graphs of
bounded tree-width). This algorithm avoids duplicate arsywhas a precom-
putation phase linear itt| and a delay linear in the arity, when the formula
(1, ..., x,) s fixed.

For queries defined by automata, Bagan also proposes in @ag@lgorithm
with a precomputation time i® (| AJ® - |¢|) whereA is an automaton recognizing
the canonical language of the query (with universal scherta)delay between
answers is irO(n), wheren is the arity.

XPath

The first XPath query engines were known to use exponentia,tieven for
CoreXPath 1.0 queries. In [GKP03, GKPO05], Gottlob et al. pose an algo-
rithm that evaluates the full XPath 1.0 language nNRE combined complexity
(i.e., polynomial in both expressigal and XML document sizét|). Moreover,
this algorithm runs in linear combined complex@(|t| - |e|) for CoreXPath 1.0
queries. The algorithm is simply based on a bottom-up semahiXPath. By
other means, Ramanan proves the same result on the posdiyadnt of Core-
XPath 1.0 [Ram03]. Marx showed that the evaluation of Cooddl XPath and
Regular XPath also enjoysTRME combined complexity [Mar04b]. In terms of
data complexity Gottlob et al. show in [GKPSO05] that the gusraluation prob-
lem (and validation) is not RME-hard, but belongs to lower (parallelizable) com-
plexity classes. Marian and Siméon [MS03] propose a ptiogjetechnique, such
that useless parts of theX document (w.r.t. to a given query) are not loaded in
main memory.

CoreXPath 2.0 is known to capture FO-definabtary queries modulo lin-
ear time transformations. As a consequence, the evaluiatiBsPACEcomplete
for CoreXPath 2.0, and noTRME algorithm exists unlessTvME=PSPACE. In
[FNTTO7], Filiot et al. exhibit a fragment of CoreXPath 2tBat enjoys a PIME
evaluation, while still being FO-complete. This fragmempises the following
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restrictions: no quantifiers, no variable sharing in patimposition, and no vari-
ables below complementation. To the best of our knowledggetare no results
for the enumeration of XPath queries.

Tree Patterns

Many algorithms were proposed for evaluating tree pattersaibclass of Core-
XPath 1.0. The first algorithms evaluating tree patterrso(ahlledtwig patterns)
computed all pairs of nodes satisfying each step of the quag then joined
them to output the answers. This approach computes a lotebésssintermedi-
ate results. A first improvement, namé&aigStack was proposed by Bruno et
al. [BKS02]. It is based on a technique nanfaalistic twig join that checks for
matchings along a root-to-leaf path, instead of steps. Kew¢he algorithm still
computes too much intermediate results (more than the ittee@nswer set) in
presence of child axis.

Some improvements were subsequently proposed. Jiang ¢\AlLYO03]
eliminate more intermediate matchings, while Chen [Ch@B@foves their merg-
ing. Chen et al. proposBnig2Stac§CLT *06]. Their algorithm deals witksen-
eralized Tree Patterns.e., tree patterns that alldier-loopsa la XPath 2.0. Their
algorithm runs in time)(|¢| - |e|) for usual tree patterns Some further improve-
ments were presented in [ZXMO07, JitA7]. We refer the reader to [GCO7b] for
a more complete survey on tree patterns.

Validation

In [Seg03], Segoufin proves that the validation problem earfigom LOGSPACE-
complete to loGCFL-complete, depending on the schema language and represen-
tation (this includes DTDs and EDTDs). Martens et al. [MN$BDstudy the
more specific case of ML Schema, but mostly in terms of expressiveness.
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3.1 Introduction

Query answering in streaming mode is a challenging issuea®ing evaluation
aims for low memory consumption. However, most of query leaggs, like the
W3C language XPath, are not designed for streaming evaluafi measure for
the difficult of a query for streaming processing isatscurrency The concur-

rency of a query is the maximal number of simultaneous catdigolutions, that
can be selected or not, depending on the end of stream. Gencwyrwas intro-

duced by Bar-Yossef et al., and proved to be a lower memorgdbéar fragments
of XPath [BYFJO05]. Unfortunately, XPath expressions mayehanbounded con-
currency, such as for instangeh®::x.



58 Chapter 3 — Streamability

In this chapter, we present our definition of query answeongr XML
streams. We start with the correspondence between Hocuments and their
serialization, i.e. the linearization of trees. We propassomputational model
namedStreaming Random Access Machi(®8RAMS) in order to formally define
the intended inputs and outputs of streaming query ansgeligorithms, and
the corresponding complexity measure. We define the contplekSRAMs in
terms of space and time, in order to study the relationshipdsn efficient buffer-
ing and computational cost. In particular, we prove in Caaptsome hardness
results for time complexity, when only alive candidateslartered.

We propose a measure stteamabilityfor query classes. Roughly speaking,
for m € Ny U {cc}, m-streamable queries can be processed in polynomial space
and time when evaluated on trees inducing concurrency hessit. This defi-
nition generates a hierarchy of query classes. We invdstiy@ characteristics
of this hierarchy, and show which properties must be verifig@ query class in
order to beco-streamable, the queries that are most suitable to strgamiour
hierarchy.

Finally, we prove hardness results for testing bounded woency for a
query class. We also show the consequence of being streamatd apply
these results on XPath. For Forward XPath, we get negatsudtse deciding
bounded concurrency is coNP-hard, and Forward XPath ismsireamable, for
allm € NU {oo}.? This motivates further investigations on streamable fraigis
of Forward XPath.

Other computational models were already proposed forrstggacessing of
XML documents. In [SV02], Segoufin and Vianu study the valicatidb XML
documents in a streaming mode, with bounded memory. In #sg,crequir-
ing bounded memory is equivalent to the existence of a firndag sautomaton
(without stack) recognizing the language of valid trees. réMelaborated ma-
chines for stream processing were proposed by Grohe, KodhSahweikardt
[GKSO07, Sch07a]. Their machine model uses external menoaneasure buffer-
ing requirements of algorithms, and allows to read the iisfraam several times.
They infer tight bounds for the complexity of evaluating €E¥Path 1.0 queries
over XML streams, in the Boolean and monadic cases. When restricgesingle
scan of the input stream, they prove that the depth of theespanding tree is
a lower memory bound, for monadic CoreXPath 1.0 expressiBesiedikt and
Jeffrey [BJO7] proposed a simpler model based on Turing mash They define
tractable query classes for this model. We show in this @rapat two of these
areoco-streamable according to our model.

We proved stronger hardness results in follow-up work.
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3.2 Streaming

We start this section with a description ofiX streams and the definition of our
computational model for evaluating queries imX streams. We formally intro-
duce the notion of concurrency, that we will use later on fon@eour streamability
measure.

3.2.1 Linearizations of Trees

A streaming algorithm that answers a quéryor some class of structurésreads
a linearization of a structurge S from the input stream, and computes a collec-
tion of answers)(s) incrementally. For words, linearization is straightforaizas
words are already linear data structures.

Unranked trees need linearization in order to be put

a
onto a stream. For every sgt let AN
~ b C
S ={opcl} xS

S is the set of tagged opening and closing parenthesis. Animgpg@arenthesis
(op, a) corresponds to the ML tag <a> and a closing parenthegisl, a) to the
XML tag</ a>. For every tree¢ € 75, we define thevisible wordvw(t) € 3 by
linearization as follows:

wW(a(ty, ..., t,)) = (op,a)-VW(ty)-...-vw(t,)-(cCl, a)

This word is well-nested in that every opening parenthessoperly closed. The
letters of the visible word v{¢) can be identified with elements of the following
set: -

evdt) = {start} U nod(t)
We illustrate the definitions at the tree= a(b,c). The XML stream fort, its
corresponding visible words \(#) and its set of events are as follows:

XML stream <a> <b> </b> <c> </c></a>
vw(t) = (op, a)-(op, b)-(cl, b)- (op, ¢)- (cl, ¢)- (cl, a)
evet) ={start (op,¢€),(op, 1),(cl, 1),(op,2),(cl, 2),(cl,¢) }

Let < be the total order orevet) corresponding to the total order of
pogvw(t)) and pr(e) € evdt) be the immediate predecessor of an event

—

n € nod(t). For instancepr((op,2)) = (cl, 1) in our example. We write

dom,(t) = {m € nod() | (op,7) <7}
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for the set of all nodes visited until event
We extend the definitions to hedges, in a straightforwardmearm hedge: €

Hsx, has the following set of eventeve ) = startu rﬁd(\h). Forh = (t1,...,tx),
the order< is a total order oeve h), wherestartis the least event, the eventsipf
(1 < i < k) are ordered according to the previous definition for traesl, events
of ¢; are all inferior to those of;, if i < j.

3.2.2 Example of Stream Processing

Before defining our computational model, we provide an eXarfgr streaming
guery evaluation.

Consider the monadic query, that selects all nodes la- a
beled bya and having & child. This corresponds to the XPath |
expression:/ch*::a[ch::b]. We suppose here that the domain /a\
of Qo is Tx. Letty = a(a(a, b)) as illustrated on the right. In b
the following table, we present the run of a streaming atboricomputing?(¢,)
incrementally.

input | <a> <a> <a> </a> <b> </b> </a> </a>
€ € € €
buffer 1 1 1
1-1
output {¢,1}

When ana-node is read, it is buffered as we have to wait férehild in order to
decide for its selection, or to wait until closing time in eas rejection. Here, only
nodesc and1 are selected, and we can observe that they are output exdutly
ab child is opened, and thus at the earliest time point. Sityilre candidaté -1
is rejected exactly when closing this node, and it could ratdpected before.

For n-ary queries, the output is a set of tuples of nodes. Heneehulffered
candidates are also tuples, that can be partial, as someocemis might not
be known yet. We use the symbelto mark these components. Consider for
instance the binary query; without schema defined by the XPath 2.0 expression
/ch::a[xq][ns:blxs]]. Q1 selects all pairgr,, ), wherer, is labeled bya,
is labeled byb, andm, is the next sibling ofr,, i.e. ng(w,, ). The run of an
algorithm computing); on the tre€, is for instance:

input | <a> <a> <a> </a> <b> </ b> </ a> </ a>
(e,0) (e,0) (e,0) (e, o) (€,0) (€,0) (¢,0) (€,0)
buffer (1,e) (1,0) (1,9) (1,0) (1,0) (1,) (1,0)
(1-1,e) (1-1,e) (1-1,1-2) (1-1,1-2)

output {(1-1,1-2)}
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Here the algorithm chooses to output the answeysr,) at the parent node of
7. This provides a time-efficient algorithm, as we are surdigttime point to
have enough information to decide for selection. Howevirithplies to buffer
candidates longer than required. For instance here theeansair (1-1,1-2)
may be output when opening node2. We study the time cost for achieving
such earliest selection (and rejection) in Chapter 5. Niste that adding schema
information can improve buffering. For instancelJf had a schema where only
a-nodes having twa-ancestors can havessibling, then the two first candidates
could have been rejected immediately.

3.2.3 Concurrency

We define the notion ofoncurrencythat intuitively captures the number of can-
didates to be buffered simultaneously, as proposed by Basef et al. [BYFJO05].
This is a key notion for lower bounds in memory consumptiore WM| use it in
the definition of our computational model, and our streafitgltheasure.

Prefix Tree For every event) € r@, let the prefix tree¢=" be the fragment
of t which contains all nodes dfopened before (and including) nod(t=7) =
dom,(t), and satisfyingab™ (r) = labf(x) for all 7 € nod(t="). Note that
=) contains all proper descendantsroin ¢, while =P does not. For two
treest,t’ € T andn € evet) we define the predicatequal (¢, '), that holds ift
andt’ have the same prefix unijt

equal (t,t') iff 1 e evet)nevdt)andt=" =t'="

Partial Candidates As already mentioned in the previous example, partial can-
didatesr are elements adonf (¢)" where:

dont (t) = dom,(t) W {e}

The symbole denotes components where no selection occurred so far. l€emp
tionscompl, t,n) are complete candidates obtained by replasttpmponents
of 7 by nodes ot opened aften:

forall1 <i<n,
compl(my,...,m),t,n) =< (7},...,m,) € nodt)" | m; # m =
T =e A1 =< (0p)

We call a candidateompletéf it does not contaim-components.
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Alive Candidates and Concurrency Let () be ann-ary query. We call a can-
didater alive at event; of a treet, if the information int=" is not sufficient for

selection or rejection aof, i.e., if there exists a continuation béfterr that selects
(a completion of) this candidate, and another one that does n

(1,m) € alivey(t) <
3t' € dom@). equal,(t,t') A 37" € complr,t',n). 7 € Q')
{ A Tt € domQ).equal (t,t")A 37" € complr, ", n).7" ¢ Q(t")

Definition 1 (Concurrency) The maximal number of alive candidates at an event
is calledconcurrency

concug(t) = max [{7 | (r,n) € aliveg(t)}|
neevet)

We say that the concurrency of a quepyis k-bounded (withk € Ny) if
concury(s) < k for all structuress € dom(@). It is bounded if it isk-bounded for
somek € Nj. Note that queries with unbounded concurrency cannot beepsed
in streaming manner with bounded memory.

Compared with the original definition by Bar-Yossef et al.e{iDition 3 in
[BYFJO5]), our notion of concurrency is generalizedit@ry queries, and arbi-
trary query languages. A consequence is that we deal witiapaurples. We
choose to include the empty tup{e@}” among possible alive candidates. The
reason is that this simplifies the definitions and compleaitglysis, as our algo-
rithms treats the empty tuple as other candidates. By thethigyonly introduces
a difference ofl between both definitions, and keeps the bounds unchanged. We
note that in this original definition [BYFJO05] resides somrmebaguity: It seems
that nodes cannot be alive before being closed. From thefusenourrency in
the same paper, it appears that the definition of Bar-Yogsaf éas to be inter-
preted as formally presented above.

For XPath expressions, the concurrency differs from thelbamof matches.
For each alive candidate, there can be numerous matchessmbéeddings of
the expression into the tree, verifying the axis and labstistef the query. In
particular, the concurrency is always lower than the nunafenatches, as for
each match corresponds a unique alive candidate.

3.2.4 Evaluation Model

To formalize our notion of streaming computation of quergesd to have a clean
notion of complexity, we define Streaming Random Access Mash(SRAMS),
as illustrated in Figure 3.1. These are inspired by RAM maehidescribed by
Grandjean et al. [Gra96, GO04].
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The purpose of SRAMSs is to characterize a class of algoritlemstreaming
query answering, that we consider as realistic. The lowerptexity bounds we
will present, apply only to such realistic algorithms. Inrf@aular, our model
avoids compaction tricks for the storage of nodes, by piagishode identifiers
only at opening time, and by disabling the access to noddifan by the finite
state control. We detail these features after the follovdefinition. Note that
compaction techniques are not used by existing streamguayittims for general
purpose query languages. We assume that the size of evesyiiod) (1), inde-
pendently of the length of its address. This is realisticcsiwe assume trees of
bounded depth anyway.

An SRAM is a deterministic machine composed by:

e aninput tape | on which the head cannot write nor move to the left,

an infinite set ofregisters{i};cn,. Each register can contain a node. We
write R(¢) for the content of the register

aworking memory Wwith read/write and constant-time random access

anoutput tape Qon which the head cannot move to the left nor read

a finite state control, made of a finite set of instructionse BHowed in-
structions are:

all usual instructions of random access machines for reading and writing
on the working memoryV.

read the event below the head of the input tdpis read. Such an event
contains three items: an actiane {op, cl}, alettera € 3, and, ifa =
op, a node identifierr. Note that node identifiers may not correspond
to our encoding orN*, and thus the program cannot compute such
identifiers.

— if a = op, then the node identifier is stored in a free registey
i.e. R(i) < 7. The data fory, « andi are written or.

— if a = cl, then the data forx anda are written onw.

output if the head ofW points to(iy,...,i,), then(R(i1),...,R(i,)) is
written onto the output tap®, and the head oD moves to the next
free slot.

free(i) to free the registet, wherei is read fromw.

halt to stop the machine.
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input tape
HIEEEEENEEEEEEEEEEE
. res(i;t)ers K‘
z; R(z';) 1 finite
control
o[ R - ——
o working memor NV\
HEEEEEEEEN
output tapeO o

Figure 3.1: Streaming Random Access Machine.

To define the intended inputs, we present a variant of visiolels with node
identifiers: vwy(t) is obtained from vWt) by adding the nodes in opening events
(we use the symbdlfor closing events). This corresponds to the stream geggerat
by the parser, and hence the real input of streaming algosithFor clarity, we
suppose that the parser uses our encoding of nodes as a ceq@fiamegers, i.e.
nod(t). For instance for the trefe= a(b, c) we get:

XML stream <a> <b> </ b> <c> </c> </la>
VWiy(t) = (0P, a,€)-(op, b, 1)-(cl, b, ) (op, ¢, 2)- (cl, ¢, ) (cl, a, £)

Registers are used to capture the number of candidate mmdeuffered simul-
taneously. Providing node identifiers only at opening timaids some hacks in
the representation of candidates. Kgbe a monadic query, and assume tfat
can determine at closing time whether a node is selectedn aheSRAM M
computing@ can be built, such thatM uses only one register (for the current
node), and a stack on the working tapeto store candidates, using an internal
representation (not node identifiers). Hence the numbeegéters used by

do not capture the number of simultaneous candidates. Merethe internal
representation of candidates @hallows compression techniques, that we want
to avoid in our model.

Definition 2 (Computation) An SRAMM computesa query( if for all trees
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t € dom@), if vwi4(t) is on the input tape, them outputs the sef)(¢), in any
order but without duplicates, and halts.

Node identifiers cannot be written to the working mem@ryso they cannot
be computed by the finite state control. Even if they couldreélwould be no way
to output them, as only the registers contents can be outpubde identifiers
were stored on the working memory, they could be computek s memory,
by tricky methods. Consider for instance the query on wohnds $elects all po-
sitions of a wordw before ab-position. The concurrency of this query is very
high (and even unbounded), as all positions are alive catelghtil ab-position
is read. However, the query can be computed with memidyg(|w|)), by just
maintaining a counter for the current position, and if it i, aterate from the
last b-position (to be also stored) to the current one. In our moiths trick is
impossible, as (identifiers of) alive candidates are storedgisters.

The working memory considers a candidatery, . .., m,) as the tuple of
registers addressés, . . ., i,,), with (7, ..., m,) = (R(i1), ..., R(i,)). Note that
the set of candidate tuples might be stored in a more compac{as investigated
for instance by Meuss et al. in [MSBO01]), but this is usualbt the case for
algorithms in the literature. This is why we choose to starly aodes in registers,
instead of tuples of nodes.

For queries defined by XPath expressions, the implementafican SRAM
does not exactly follow the XPath semantics defined by the WRGt, the W3C
XPath semantics requires that the subtrees rooted at eglacides should be
output, not only node identifiers. Second, the selectedgsupf) nodes should
be output in document order. We think however that both reguents are too
strong to be integrated inside the machine. The query etrafualgorithms can
be used in some transformation language (like XQuery or YSkhere the ma-
terialization of subtrees is not needed at the selecticgl land identifiers suffice.
Similarly, the document order is not useful in all transfatians, and known to
be incompatible with efficient stream processing (and fgtance with earliest
guery answering). We choose to keep a model based on the atimput/out-
put requirements of streaming evaluation of queries. Tinengthens our lower
bounds and hardness results.

Definition 3 (Complexity) An SRAMM computes the quergy with per-event
time Tim¢.M, t) and per-event space Spagd, ¢) if M computes), and during
the computation of)(¢):

1. at all time points,M uses some registers among regist&(g) with i <
SpacéM, t), and at most Spa¢é, ¢) slots in the working memory, and

2. the number of executed instructions between reading taeessive events
on the input tape is bounded by Tife, ¢). This includes the time be-
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fore reading the first event, and the time between readindatsteone and
halting.

Most of the algorithms will have to pass information from o to closing
events. This is usually done through a stack, that has todoedsin the working
memory. Hence for these algorithms, the space requiremelhise at least the
depth of the input tree.

These definitions are done modulo an encoding for the inpadibatput data.
The cost of instructions is supposed uniform. The size oheagister (i.e. the
number of bits that can be stored in a register) is exactlgitteeof node identifiers
in the input stream. As node identifiers cannot be computetdfinite state con-
trol, the number of registers that are simultaneously reguby monadic queries
is at least the concurrency of the query. This gives us a Ibwand for memory
consumption (Proposition 6 below), thanks to the separdietween registers
containing node identifiers, and the working memory. A wogkhypothesis here
is that the concurrency is a real lower bound for rich monagiery classes, as
proved by Bar-Yossef et al. for an XPath fragment [BYFJO05].

Proposition 6. Evaluating a monadic quer§ on a treet requires per-event space
Q(concugy(t)).

For n-ary queries, this is not true, as candidate tuples (coiniregisters
identifiers, not nodes) are stored in the working memory. tBatregisters need
to memorize which nodes are used in the alive candidates. aWeéhis quantity
concurnody(t):

concurnod,(t) = max |{r | 7isaliveatyandrisint}|
neevet)

Proposition 7. Evaluating a queryQ on a treet requires per-event space
2(concurnody(t)).

Proof. Let M be an SRAM computing a query. Lett € Tx, and consider
a candidate tuple # {e}" that is alive at eventy € evdt). Let =" be the
content of the input tapebeforer. Let 7 be a node appearing in and suppose
for contradiction thatr is not stored in registers after treatindi.e., just before
reading the event following). As 7 is alive atn, there is a continuatio@’ of the
input stream that selects Consider the run oM on the concatenation df”
andC'. As M is deterministic, the machine is in the same statg ab~ is not in
the registers M will have to outputr before halting, and could not be output
beforen because it is alive, and thus there is another continuafidieostream
for which 7 is not selected. Hencewill have to be output (strictly) aftey. The
only way to output is to use the “output” instruction. But this requires to iete
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7 from the registers. The identifier afis read only once on the input stream, at
event(op, 7). As it is not in registers aftey, and(op, 7) < n (asw isin 7, alive
atn), M cannot output, which contradicts its definition. O

This also proves Proposition 6, because for monadic queries
concurnod,(t) = concuiy(t).

3.3 Streamable Query Classes

3.3.1 Streamability

We now formally define our notion of streamability, and stgdyne properties of
this new notion.

Definition 4 (Streamability) Letm € NoU{oc}. A query clas® is m-streamable
with polynomialspy, p1, p» if one can compute SRAMSI(Q.) in time py(|e|)

for all e € Q such thatM(Q.) computes). and if concug, () < m then

SpacéM(Q.),1) < pi(|el) and TImMEM(Q.),t) < pa(lel). A query classQ

is m-streamablef it is m-streamable for somgy, p1, p», and streamablef it is

oo-Streamable.

We recall thatSpacéM (@), t) andTimg M (Q), t) are per-event complexity
measures. The definition directly provides a hierarchy iaghability for query
classes.

Lemma 1. Letm € Ny. If the query clas® is (m+1)-streamable then it is also
m-streamable, with the same polynomials. Furthermorg i§ streamable, then
it is m-streamable for alin € Ny, with the same polynomials.

Hence we get a hierarchy of query classes:
0-streamable 1-streamable - - - D m-streamable - - - D streamable

However, for classes of monadic queries, streamability fadeven thoughn-
streamability holds for alin € Ny. Consider for instance the quefy. defined

by the XPath expressian= /self::a[ch::b]/ch::c on trees off(,;.q4;. This query
selects alt-nodes that are children of aAlabeled root, and have a sibling labeled
by b. It is easy to see thap. has unbounded concurrency. For instance, on
the treea(c, .. ., ¢, b), all c-nodes are alive before opening thaode. LetQ =
{Q.}. This query class isn-streamable for alln € Nj: For a givenm, one
can build in BFIME an SRAMM((Q.) that uses polynomial per-event space and
time, on trees for which the concurrency is less thanHowever,Q is not oco-
streamable. This class is in Star-Free XPath, so by the Ibauend of Bar-Yossef



68 Chapter 3 — Streamability

et al. [BYFJO5], any algorithm computin@. requires spac€(concuy,,(t)) on
non-recursive, i.e., whent does not have a branch with duplicated labels. Hence
an SRAM computing). cannot use space bounded by some polynomijas().

has unbounded concurrency. In order to relate streamadildm-streamability,

we have to add a condition on the concurrency of the quergclas

Definition 5. A query classQ has polynomially bounded concurrendgf/there
exists a polynomiap such that concus, (t) < p(|e|) for all e € Q and trees

t € domQ).

Proposition 8 gives a sufficient condition for being strebleathe query class
has to ben-streamable for alb: with the same polynomials, and must have poly-
nomially bounded concurrency.

Proposition 8. If the concurrency of a query clagis polynomially bounded and
there exist polynomials, p1, p» such that for alln € Ny, Q is m-streamable with
Do, P1, P2, thenQ is co-streamable.

Proof. Letp, po, p1, p2 be polynomials such th& is m-streamable withy, p1, p»
for all m € Ny, and the concurrency @ is bounded by. Lett € Tx, ande € Q.
For everym € N, let M,,(Q.) be an SRAM computing). and verifyingm-
streamability. We show that1,,.)(Q.) verifiesco-streaming with polynomials
Py, P1, P2 Wherep( (X)) = po(X)+X+[p|. To generate the SRAMA,()(Q.) in
time po(|e|)+|e|+|p|, we first compute the value ¢@f|e|) in time |e| + |p|, and
then generateé\,,¢)(Q.) in time py(le|). A single step ofM,,¢)(Q.) on trees
t € Ty, cOStsSPacéM,.)(Q.), 1) < pi(le]) andTime(M, e (Qe), ) < pa(e]),
as bounded concurrency yieldsncur,, () < p(|e|). O

For the converse, we have already seen in Lemma bthatreamability im-
plies m-streamability for allm € Ny, with the same polynomials. We can also
prove a weaker form of bounded concurrency.

Proposition 9. If a query classQ is oco-streamable, there exists a polynomial
such that for alle € Q and allt € dom(()..), concucnod,, (t) < p(|e]).

Proof. Suppose tha@ is co-streamable, and le, be the corresponding polyno-
mial bounding space. By Proposition 7 we get, foreaf Q andt € domQ.),
and all for SRAMsM (Q.) computing®.:

concurnody, (t) < SpacéM(Q.),t) < pi(le|)

so thatconcurnodis polynomially bounded by;. O
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Benedikt and Jeffrey [BJO7] exhibited two-streamable query classes. Both
are fragments of backward,.;, an extension of CoreXPath 1.0 addinguartil
operator, but restricted to backward and downward axes. atiti@rs prove the
oo-streamability of two query classes:

1. Boolean queries (i.e. filters) defined by backwajg; formulas, over non-
recursive trees, and

2. monadic queries defined by strict backwatg; formulas, over non-
recursive treesStrict means that downward axes are not allowed. It implies
that concurrency is at most one, as all conditions to befeati®r selecting
a new candidate depend on the prefix until this candidateqoio-dhead is
needed).

3.3.2 Boolean and Monadic Queries

For Boolean and monadic queries, some properties of theucamcy give
stronger results. Boolean queries have a concurrency leouoyll, as the only
possible alive candidate is the empty tupje(which can be seen as either the
potentially selected tuple, or the empty partial candidafe).

Proposition 10. A Boolean query clas® is streamable if and only if is 1-
streamable.

Proof. Suppose tha@ is 1-streamable. Then it ig-streamable by Lemma 1. As
the concurrency of Boolean queries is bounded by is m-streamable for all
m € Ny, with the same polynomials, and by Proposition 8, itisstreamable.
The converse is immediate by Lemma 1. O

For monadic queries, the concurrency may be unbounded igetheral case.
However, both forms of concurrency we introduced coincadel we get the fol-
lowing equivalence.

Corollary 1. A monadic query clasg is streamable if and only if the concurrency
of Q is polynomially bounded and there exist polynomjals,, p» such that for
all m € Ny, Q is m-streamable withpg, p1, ps.

Proof. Immediate by Proposition 8, Lemma 1, Proposition 9, and #u¢ that
concurnod,(t) = concul,(t) for monadic queries. O
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3.4 Hardness of Streamability

We present hardness results for streamability of smalsekaef queries. Of course
these hardness results also hold for larger query classestai by studying the
complexity of deciding whether a query class has boundedwosancy (resp.
polynomially bounded concurrency). We then investigate streamability of
gueries defined by XPath expressions. In this section we amhgider queries
@ with universal schemdom(()) = 7, and the results also hold for queries with
other schemas.

3.4.1 Hardness of Bounded Concurrency

We start by defining, from any set of monadic queries, anaskénof monadic
gueries that requires high buffering. The idea is to stamnfa monadic query
@, and define the querll(Q) that selects all the children of the root(fhas a
match when evaluated from the last child of the root.

We call a monadic query) descendingf node selection by is indepen-
dent of the node’s upper context, i.e.nife Q(t) is equivalent tee € Q(t.7),
wheret.7 is the subtree of rooted atr. For all monadic querie§ we define
another monadic quell(Q)) whose semantics is given by the following XPath
expression:

all(Q) =¢ /ch:x[ns ::x[Q][not(ns:x*)]]

It selects all children of the root if the last child of the tdzelongs to the lan-
guage of the Boolean quef)], which isLig = {t € Tz | Q(t) # 0}. LetQ
be a language of monadic queries. We say that the opealitoan be defined
polynomially in Q if there exists a polynomigl such that for alle € Q there
exists an expressiofi € Q of size at mosp(|e|) such that)., = all(Q.). We
say that a node is safely selected (resp. safely rejected) by a query attevién
7 is selected (resp. not selected) in all valid continuatimfrtbe stream aftes.

Lemma 2. For all descending monadic queri€} treest matchinga(t,, . . ., t;),
andl <k < j:

1. nodek is safely selected by &) at (op, j) in ¢ iff Lig = Ts.
2. nodek is safely rejected by alY) at (op, j) in ¢ iff Lig = 0.
3. nodek is alive for all(Q) at (op, j) in t iff O # Lig # Ts.

Proof. («=) We first assume thaty = 7s and show that is safely selected at
event(op, j) in treest matchinga(ty,...,t;) andl < k < j. Lett € Ty be a
continuation ot beyond(op, j), i.e. equal,, (¢, ') holds. Let;j” be the last child
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of the root oft/, so thatj < j'. Thenk ¢ all(Q)(?) iff j' € [[Q]]k- The latter
is equivalent ta- € [[Q]]4: sinceq is descending. This holds sintg) = Ts.
Thus eventop, j) is sufficient for selection of in all continuations of.

We now assume thatg = (). The last child of the root cannot satisty] in
any continuation, so no node can ever be selected.

We suppose thdt # Lig # 7 and show thak is alive at(op, j) in trees
t € Ts with 7 € nod(t) and1 < k£ < j. Lett’ € Ty, be a continuation of beyond
(op, ) andy’ be the last child of’. Now % is selected if and only if'.;' € L.
Since) # Lg) # Ts this is the case in somébut not in others, so thatis alive

at <0p7 .]) "
(=) Since these cases are exhaustive, all inverse implicatmiow. O
As a consequence, the concurrency of the query definedl {@y) is bounded
only if L;) is empty or universal, as far= a(t,, ..., t;) we get:
CoNCUky () = ¢ 1 if Ligy=Ts

j+ 1 otherwise

The concurrency i$ whenL g = 75, because in this case the empty candidate
() is always alive. It is never alive on an empty query, i.e., mverl g = 0.

Proposition 11. Let Q be a class of descending monadic queries that can define
operators “all” and “not” in polynomial time, then the two dgsion problems
below are more difficult modulo BTIME reduction than universality(i;Te] =Ts
forall e € O.

Polynomially bounded concurrency
PARAMETER. Q
INPUT: ecQ
OUTPUT. decide whether there exists a polynomiauch that
Vt € Tx. concug, (t) < p(le])

Bounded concurrency
PARAMETER: Q
INPUT: ee€Q
OUTPUT. truth value of:3k € Ny. V¢ € Tx. concuy,, (t) < k

Proof. Since all queries defined by € Q are descending, the existence of a
polynomialp such thatvt. concukq,)(t) < p(le|) is equivalenttd g, = Ts V
Linot(e)) = T= by Lemma 2; equally foBkeN,. Vi€ Ts. concuty g, () < k. O

Proposition 11 gives a first result on the hardness of degioounded concur-
rency of queries. For deterministic automata, testing theeusality is in RIME,
and we will see in Chapter 7 that deciding bounded concuyreraiso in RIME.
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3.4.2 Hardness of Streamability

We now characterize the streamability of query clagde$he following theorem
states that being-streamable (while verifying two other properties) implibat
the universality of descending Boolean queries defined fgisin PTIME. This
can be used to prove that some query class islrgiteamable, and hence not
m-streamable for any: € N U {oo}.

Theorem 1. Let Q be a class of definitions of monadic queries such that there
exist polynomials, s such that:

1. query allQ.) is definable by an expression i@ of sizer(|e|) in time

O(r(lel))-
2. membership € Lq,, can be tested in time(|e|) for all a € 3.

If such a clasgQ is 1-streamable with polynomials, p1, p» then the universality
problem of Boolean querieR) | e € Q descending can be solved in polyno-

mial imeO (po(r(le])) + s(le]) + r(lel) + pa(r([e])) - pa(r(le]))).

Proof. Our polynomial time equivalence test for descending gsetedined inQ
works as follows:

fun univ_Q(e) # where e € Q descending
let aeX arbitrary
if ain LQ[E]
then # language norempty
compute ¢/ with Q. = all(Q.)
let | = pi(]e/])+1
let t=a(a,...,a) with j children
let M = M(Q.) # needs timepo(|e’|)
let out = run M on ¢ until event (©p,j)
if out.isEmpty ()
then return false
else return true
else # language nonuniversal
return false

Testing whether belongs toL, can be done in time(|e[). The construction
of ¢’ definingall(Q.) with sizele’| = r(]e|) requires timeD(r(|e|)). The whole
algorithm requires time (po(r(le])) + s(le]) + r(le]) + 7 - p2(|€'])), which is
O(po(r(lel)) + s(le]) + r(lel) + pi(r(le])) - p2(r(le]))). It remains to argue the
correctness of the algorithm.

Caselq,, = T=. Sincee is descending, we hawencug ,(t) = 1 for ¢t =
a(a, . ..,a) with j children from Lemma 2. Sinc€@ is streamable modulo
1-concurrency, there exists an SRAM (Q)./) that requires on input trees
t space at most; (|¢’|) and time at mosps(|€’|) per step. All nodeg €
nod(t) wherel < k < j are safely selected b. = all(Q).) at event
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(op,j) by part 1 of Lemma 2. These ape(|¢'|) + 1 many nodes, but the
space ofM (). ) is at mostj = p;(|¢/|) + 1. Since none of the nodes can
be discarded, one of them must be output ufg, j). Thusout # () and
our algorithm returnsrue as expected.

Caselq, # Ts. If a & Lg, then we know that, is not universal and can
safely returrfalse Otherwise, SRAMM (Q.-) is run ont, but cannot output
anything until eventop, j) since all nodeg € nod(t) with 1 < k < j are
still alive for Q). = all(Q.) by part 2 of Lemma 2. Thusut.isEmpty() is
true so that our algorithm returfiaslseas expected.

3.4.3 Non-Streamability of Forward XPath

We now apply the previous results on Forward XPath. Firg§ pmoves that
bounded concurrency and polynomially bounded concurreanynot be decided
in PTIME, unless RIME = NP.

Corollary 2. Deciding bounded concurrency resp. polynomially boundad ¢
currency is coNP-hard for monadic queries in Forward XPath.

Proof. Universality for a fragment of Forward XPath (using only dovard axes)
is coNP-hard by Proposition 4. So the corollary follows frBnoposition 11. [

In terms of streamability, we also get a negative result tomrard XPath.
Corollary 3. Forward XPath isnot 1-streamable except if P=NP.

Proof. Forward XPath permits to define the operaddirin linear time. Univer-
sality of [e] is equivalent to universality ofch::x[e], which is descending for all
Forward XPath queries The universality problem for monadic descending For-
ward XPath queries in the fragment is coNP-hard (by Projoos#). Theorem 1
thus shows that this query class is negtreamable except ifftMeE = NP. [

This shows that even the weak notionle$treamability is unfeasible for For-
ward XPath. In Chapter 6, we define fragments of Forward X&sh arem-
streamable for alln € N,.
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3.5 Conclusion

In this chapter we defined our computational model for quesnering through
a special form of RAMs called SRAMs. Based on this model ardnibtion of
concurrency of queries, we introduce a measure of stredityair classes of
gueries. This classifies query classes in the following wiagr query classes
that are not)-streamable, there is norRME algorithm detecting empty queries,
and thus memory consumption cannot be optimal withM2 processing. Query
classes that arei-streamable withn € Nj allow a polynomial space and time
evaluation for queries with concurrency at most co-streamable queries enjoy
this property for all queries of the class. We can observetheadefinition varies
from coarse-grained static requirementsdorstreamability to more fine-grained
requirements form-streamability, where the algorithm is supposed to evaluat
queries efficiently only on trees implying low concurrency.

The study of necessary and sufficient conditionsctesstreamability reveals
some asymmetry between monadic andry queries. Fon-ary queries, we have
to distinguish betweenoncug,(¢), the number of simultaneous alive tuples, and
concurnody(t), the number of nodes involved simultaneously in alive taple
This comes from the definition of SRAMSs, where registers dostare candidates
(i.e. tuples) but node identifiers used by candidates. Thsore of this design
choice is that in real algorithms, tuples might be represgtcompactly, and in
general the concurrency is not a lower bound for evaluatuegigs. Concurrency
is proved to be a lower bound only on some fragments of XPa#F[B®5]. An
interesting question would be to prove tltahcurnod,(t) is a lower bound for
large classes ofi-ary queries, which we conjecture to be true for large query
classes. For this, we would have to find fooling sets in ordampiply results from
communication complexity.

We have seen at the end of this chapter some negative rebalis Borward
XPath: it is coNP-hard to decide the bounded concurrencynimnadic queries,
and Forward XPath is ndt-streamable. In Chapter 6, we define fragments that
arem-streamable for alln € N, and anotheso-streamable fragment. In Chapter
5, we study the streamability of queries defined by Streanineg Automata.
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4.1 Introduction

Tree automata are acceptors for trees over a given alphathée being procedu-
ral objects, they enjoy clean relations with logics and laage theory [CDGO7].
Hence they can be considered either for algorithms (thepased on notions of
runs) or for specification (they define tree languages).

In this manuscript, we will use both aspects of tree automamaparticu-
lar, tree automata will define queries, and will also servéass for our algo-
rithms. For this reason, we are looking for tree automatasshrans can operate
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DTD

top-down automata ———___ ___—" nested word automata
overfcnsencoding <---________ STA —  —

»

stepwise tree automata pushdown forest automata

our translation preserves determinism
77777 - our translation does not preserve determinism

Figure 4.1: Translations provided in this chapter.

on XML streams, and thus respect a pre-order traversal of treeg alitomata
usually operate bottom-up (from the leaves to the root ofttée) or top-down.
Some automata models operating in pre-order were howewpoped for tree-
like structures. Neumann and Seidl propgsshdown forest automa(®FASs)
[NS98], a notion of automata for hedges, which generalizanked trees. These
automata were sometimes adapted to particular algoriticonitexts: They are
reformulated to Pre-Order Automata by Berlea in [BerO6H &mNon-Uniform
Automata by Frisch in [Fri04]. More recently, Alur and Madiugan introduce
visibly pushdown automat@/PAs) [AMO04] in the context of program verifica-
tion. This model is also used forn streams processing [KMV07]. VPAs were
reformulated tanested word automai@WAs) by Alur [Alu07]. All these models
do not operate directly on trees. PFAs operate on hedgess WRAvords over a
visible alphabet (where each letter either always pushas\@ys pops data onto
the stack), and NWAs on nested words, i.e. words with a binasting relation
on positions.

In this chapter, we defin8treaming Tree Automai&@TAs), a notion of au-
tomata operating directly on unranked trees in pre-ordé&AsSare a reformula-
tion of NWAs, that operate directly on trees, instead of @@stords. We start
by showing how DTDs can be translated to STAs. We then reflemtto PFAs
and NWAs by providing the back and forth translations towdhdse models. We
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also study the relationship between STAs and tree automadelisithat does not
operate in streaming order. We provide back and forth tediasis for two such

models. The first one is stepwise tree automata [CNTO04], vbarrespond to
standard bottom-up automata on the Curryfication of tredse Jecond one is
the notion of top-down automata on the first-child nextiadplencoding of trees.
We show in particular that the translations from both modelSTAs preserve
determinism, and hence that determinism of STAs is a strong&on than for

these two models. In [AMO09], Alur and Madhusudan claim thatepwise tree
automaton can be translated into a NWA with the same numbstabdés, but
without providing the translation. The translations pd®d in this chapter are
illustrated in Figure 4.1.

Thanks to these explicit translations, we fix the precisati@hs between au-
tomata notions, as for instance between NWAs and PFAs. @uslations permit
to reuse algorithms designed for a specific automata notiimather automata.
For instance, queries defined by NWAs can be processed by gunewering al-
gorithms for PFAs [BS04].

Throughout this manuscript, we will show the relevance oASTor stream
processing of XiL documents. In particular, deterministic STAs define querie
that enjoy remarkable streamability properties. In Chaptewe propose an
efficient query answering algorithm for queries by dSTAs¢d gmove them-
streamability of this query class for alh € N,, on shallow trees. In Chap-
ter 6, we define fragments of XPath, and prove their stredityaby translation
to dSTAs. In this translation, STAs are able to determio@ly detect ends of
scopes (regions of trees where matches of XPath expressaornsccur). Finally,
in Chapter 7, STAs are used to recognize some relations es, titeat we need to
prove decidability results. For instance, testing the étyuaf two tree prefixes
until an event is performed by a simple dSTA.

4.2 Streaming Tree Automata

4.2.1 Definition

We begin this chapter with the definition of Streaming Tre¢ofata (STAS) and
their corresponding notion of run.

Definition 6. An STAA = (X, stat init, fin, rul) consists of:
¢ a finite alphabet: of node labels,

¢ afinite set stat stat W stat, composed of event states std node states
stat,,
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Figure 4.2: An STA checking the Boolean XPath filfen*::a[ch::b]].

e initial states initC stat and final states firC stat,
e asetrulC {opcl} x 3 x stat, x stag of rules. We denote rules as:
qo0 B q1
wherea € {op, cl}, qo, ¢1 € Stat, a € X, v € stat,.

Whenever necessary, we will upper index components,as for instance,
writing rul”* instead ofrul. The size of an STA is its number of rules and states:
|A| = |rul| 4 |stat'|. An STA traverses the sequence of events of a givertfree
while annotating all events a@fby event states and all nodestdfy node states.
Let ¢o be the state of the previous event processed(and) be the current event.
The automaton chooses some rule with acticand labek: = lab’(7) whose left
hand side ig. If « = opthen it annotates the nodewith node state. If o = cl
then the rule matches only, if the node state annotated airggpeme tor is equal
to the node state of the rule. For matching rules, the automaton annotatés sta
¢1 on the right hand side to the current event.
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Runs More formally, a rurr of an STA on a tree is a pair of functiongre, rp)
with typesr, : evdt) — stat andr, : nod(t) — stat,, such thate(start) € init
and the following rules belong taul for all # € nod(t) with a = lab’(r), and
actionsa € {op, cl}:

re(pr((e, m))) “5 rel (o, m))

wherepr returns the preceding event. An example of a run of an STA en th
treea(a,a(a,a(b),b)) is given in Figure 4.2. It tests whether this tree satisfies
the Boolean XPath querich®::a[ch::b]], or equivalently the first-order formula
Jz. (lab,(z) A Jy. (ch(z,y) A laby(y))). When opening am-node in its initial
stated, this STA guesses whether it matchesdhmosition of the XPath expression
(state 1) or not (state 0). From stdteit waits while traversing a sequence of
states(2*1)*, until someb-child is opened, before concluding success in state
The information of being a child of the-node opened in statieis annotated by
node statgy, and passed over from the left to the right.

Arunr of Aonatree is successful ifo((cl, €)) € fin*. The set of all possible
runs of the STA4 on the tree is denoteduns?(¢) and the subset of all successful
runs byruns.succ'(t). The recognized languadé A) is the set of all trees € T,
that permit a successful run by i.e., L(A) = {t € Tx | runssucc!(t) # 0}. For
ahedgdty,...,t;), arunis successful if,(start) € init* andre((cl, k)) € fin.

Determinism An STA isdeterministicor adSTA, if it has a single initial state,
no twoop rules for the same letter use the same event state on tharidfho two
cl rules for the same letter use the same node state and the gantstate on the
left. Every STA has an equivalent dSTA, as proved in Secti@r?4

Run Computation and Stack The unique run of a dSTA on a treet can
be computed in a streaming manner, if it exists. The inpubésdrdered set of
eventsevet) for somet obtained by parallel preprocessing with a SAX parser,
and the output is the sequence of states thaissigns to the events of The
comparison between the run of a dSTA on events and on thespomding nested
word is illustrated in Figure 4.2(c). We study the link beemeSTAs and nested
word automata in more details, in Section 4.4. The common twagmplement
an STA is to use a current event state and a stack, in ordesr®tste node states
associated to ancestors of the current node, as these wilitee used when
closing these ancestors. In SRAMs, this stack will be stameile the working
tape.

Weakness Following [Alu07], we call an STAveakif stat, = stat and allop-
rules have the form, ——2 ¢,. As proved in Theorem 1 of [Alu07] for NWAs,
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every STAA is equivalent to some weak STA. For instance we can buil@ of
size at mostB| = O(|stat!| - |stat!|). To see this, lestat’ = sta’ = stat! x
stat!, with init? = init? x stat! andfin® = fin* x stat!. The rules ofB are
derived from those off according to the following two inference schemas.

o 252 ¢, € rul?

71,72 € stafl ¢ € stag

cl a:(g2,70)
(90, 71) ERE (q1,72) € rul”

4o M) q1 € rult Yo € Staﬁ

op a:(q0,71)
(q0,71) SR, (q1,72) € rul”

4.2.2 Determinization

We present here the determinization of STAs inspired froendéterminization
of VPAs [AMO04]. This procedure is slightly simpler because wanly consider
(encodings of) trees, and choose a more algebraic constiu¢ience the states
of the dSTA will reflect the accessibility relation throudiiethedge of left siblings.
The accessibility relation of an STA through a hedgé € s, is the set of pairs
(q1,q2) € stat* x stat' such that there is a run of throughh that begins iny,
and ends iny.

Proposition 12. For every STA4, a dSTAA’ recognizing the same language can
be computed in tim@(2/47).

Proof. A state of A’ is a set of pairs of statestat’ = gstat’xstat® - Eor sych a
stateP ¢ stat', we writeII,(P) = {¢ | 3¢ (¢.¢') € P} (same forl,). In the
following, ids1 denotes{(p, p) | p € stat'}, and similarly forid;,,1. For every
stateP < stat' and labek ¢ ¥, we also defindJpdaté, by:

Updaté = {(¢.¢) | (a1, @) € P.Fy. ¢ 20 g erult Agy 2% ¢ € rult)

In other words, ifP is the set of pairs of statés,, ¢») such that there is a run of
A from ¢; to ¢, through the hedgéiy, ..., ), thenUpdaté, is the set of pairs
of states(q}, ¢5) for which there is a run ofA from ¢; to ¢, through the tree
a(ty, ..., 1), asillustrated in Figure 4.3. We defing by:

initA/ — idinitA
fin'' = {P | m(P)Nfint #£ 0}
aeY  Pestat! a€ey PP Cstatt
P 2U G € rul? P 22, Updaté, o P’ € rul’

A’ is deterministic, and weak. For eveyy= (a, 7), we writeh,, for the hedge
whose roots are left siblings af (including 7 iff o = cl). We prove that the
following property is an invariant. From the definition oftial and final states of
A’, this is sufficient to prove the correctness of the consivact
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q

Y
Updat

Figure 4.3:Updaté,.

Invariant: for r = (re, ry) run of A" ont, andr € nod(t):

rn(m) = accessibility relation throughy ) and
re((cl, 7)) = accessibility relation throughg )

At opening of the root, the state is the identity of initishtgts, which corre-
sponds to accessibility through an empty hedge at the root.

Suppose that the property holds for events preceding evet), and that
n = (op,m). If pr(n) = (op, 7’) thenr is a first child and ,(7) = re((op, 7)) =
idsiarr, Which is the accessibility relation through the empty heetlg Otherwise,
if pr(n) = (cl,7’), then by induction hypothesig(7) = re((cl, 7')) is the acces-
sibility relation through the hedg@ /) = h,,.

Now suppose thay = (cl, ) andlab’(r) = a. Lety’ = pr(n) andP =
re(r’). By induction hypothesis;y(7) is the accessibility through ep ), SO it
only remains to show thdtipdaté, is the accessibility through the hedger)
wheret.r is the subtree of rooted atr. If 7 is a leaf thenP = idg . and
Updaté, is the accessibility through the hedge). If = is not a leaf, then by
induction hypothesis? is the accessibility through the hedge of childrenrp§o
Updaté, is the accessibility througft.;). O

Note that this procedure is close to optimal, in the sensethieaie exists a
family of regular tree languagds, (for s > 1) such that, can be recognized by
an STA of sizeO(s), but every dSTA recognizing, requires at leas?®” states
[AMO09].

4.2.3 Expressiveness and Decision Problems

In terms of expressiveness, STAs capture all MSO-definadéelanguages.

Proposition 13. STAs and MSO capture the same class of languages of unranked
trees.
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The logical operations can be performed with the same codtylkes for usual
tree automata.

Proposition 14. Union and intersection of STAs can be performedmME.
Complementation of STAsSEXPTIME-complete, and ifPTIME for dSTAs.

The complexity of inclusion and universality for STAs iSETIME-complete,
as other common automata models over unranked trees.

Proposition 15. Universality and inclusion are botEXPTIME-complete prob-
lems for STAs, and are iRTIME for dSTAs.

All these results will be proved by theTRME back and forth translations be-
tween STAs and other automata models (stepwise tree awdpifoatinstance)
provided in the sequel.

4.3 Translation of DTDs into STAs

In our algorithms, we often consider that schemas are peovity deterministic
STAs. They can be obtained by translating extended DTDsafeatestrained
competition and deterministikMVO07], so that running such STAs performs
one-pass typing. We present the translation of DTDs to STBwen a deter-
ministic DTD with alphabet:, we compute the collection of Glushkov automata
(G.)aes OVer X, which are deterministic finite automata for the regularrezp
sions of the DTD BK93]. Let root € X be the root symbol of the DTD.

From the collection of Glushkov automata, we construct ardenistic STA
S recognizing the trees validated by the DTD. The stateS ohify the states of
all Glushkov automata and add a unique initial staedad a unique final state

stat” = Wyerstat™ w {l, F}

The rules of the STAS are obtained systematically from those of the Glushkov
automata according to the two following inference schemas:

b .. . .. .
G = q €rul® g, €init® gy €fin® a=root ¢ €initS ¢ € fin“
b: op a:l
qo 2200 4y € rul® | 222 g0 € rul®
| b: cl a:l S
g5 —2 ¢, € rul® @ —= Ferul

These schemas can be read as follows. When readirghéd under am-node,
the STA associates the previous stat®f the Glushkov automato@', with the
b-node, and goes to the initial stateof GG,. Then the children of thé-node are
processed in streaming order by the STA. The intended negudtate is the final
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Figure 4.6: Successful run of the STA in Figure 4.5.

stategs of GG,. Hence the closing rule fdrhasg; as incoming state, checks that
qo was associated with tltienode, and goes to the next staten G,,.

For instance, the STA drawn in Figu#e5 accepts valid documents for the
DTD in Figure4.4. A successful run on the trega(b),b) is shown in Fig-
ure 4.6. This construction preserves determinism, in that DTD$ wigtermin-
istic Glushkov automata are translated to deterministi@sSTA translation of
deterministic restrained competition EDTDs to deterntioi$TA over thefcns
encoding is provided by Champavere et al. @GLN0Y (Lemma 33).
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Figure 4.7: Successful run of the NWA in Figure 4.5.

4.4 Nested Word Automata

In this section we present the relation between STAs ancedesbrd automata.
This notion of automata is itself very similar to visibly gjndown automata. The
difference is in the way the structure is given as input. Heibly pushdown

automata, the input word is defined on a visible alphabethabdach letter is
associated with one action (opening or closing, and alsa¢héral local letters in
the general definition). For nested word automata, the iwpud is given as a flat
word plus a binary nesting relation on its positions.

4.4.1 Definition

Nested word automata (NWAsSA[uO7] are equal to STAs syntactically but run
on nested words, so they have different semantics. We shavbtith semantics
coincide modulo encoding unranked trees into nested words.

A nested word ovek is a pair(w, E) wherew € ¥* is a word andE’ C
domw) x dom(w) a set of forward edges without overlap. We assume that every
position in a nested word is adjacent to exactly one edgetratdor every edge,
both adjacent positions have the same label.

A run of an NWA A on a nested wordw, ') annotates all positions of
domw), the start positior), and all edges irfl by states, as illustrated by the
example in Figuret.7. More precisely, a run ol as an NWA consists of two
functionsr = (re, ry) with typesre : domw) U {0} — stat! andr, : £ — stat!.

It is licensed byA if for all edges(i, j) € F adjacent to positions labeled ly
the following tuples belong toul:

re(i — 1) 2200,y )
. cl a:rn(i,5) .
re(j — 1) > Telj)

Unranked trees € 75, can be encoded into nested words(tiw= (w, E) overx.
For instance, the nested word fafu(b), b) is drawn in Figuret.7. More formally,

IMore general definitions of nested words in the literaturgeionit dangling edges, internal
positions, and unmatched labels, that we exclude here.
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letn, ... n, be the sequence of eventstiexceptstart in their total order. The
word:

wW=ay...a,

is the sequence of all € ¥ labeling the nodes of eventin ¢t wherel < i < n.
The edges link opening to closing events of the same node, i.e

E={(i,j) | = enodt), n; = (op,m),n; = (cl,m)}

4.4.2 Translations into and from STAS

The function/ : evet) — domnw(t)) U {0} with Ie(start) = 0 andlg(n;) = ¢
forall 1 < i < nis a bijection, as well as the functialy : nod(t) — E with
In(m) = (Ie((0op, 7)), Ie((cl,7))). Thus, events of correspond to positions of
nw(¢) or 0 and nodes of to edges of nW). The edges of do not have immediate
counterparts in n), but can be inferred from the relations of positions in(tiw
nevertheless.

Proposition 16. Let A be an STA ovekE andt € Ty an unranked tree. A run
(rn, re) on NW(t) is licensed byA as an NWA if and only if the rur, o I, re o I)
ontis licensed by as an STA.

As a consequence, the runs.font and nw(t) correspond bijectively, and
is accepted byl as an STA if and only if n\) is accepted byl as an NWA.

Nested word$w, F) encoding unranked trees satisfy the following restriction
no hedges:there exists an edge, |w|) € E.

Conversely, every nested word satisfying this conditiocogles some unranked
tree. Every edgé:, j) in £ corresponds to one nodeof this tree, using the
common label ofi andj. As no overlap occurs, positions betweeand j can
be translated into a sequence of trees, defining the chilafren Theno hedges
condition ensures that this sequence of trees has a unigtie ro

4.5 Pushdown Forest Automata

We recall PFAs from Neumann and SeiNI§98 which operate on hedges (called
forests there), and show how they relate to STAs.
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| N
4_h, 3 4 b 3 % .2
(a) Example of run. (b) downb1—4 (c) upa3—3 (d)sidel 3’'—2

Figure 4.8: Run of a PFA.

4.5.1 Definition

We reformulate the original recursive definition of PFAslaators by formalizing
a corresponding notion of runs. We restrict ourselves ®larguages, in that we
define runs on trees only. This is no serious restrictiorgesour results extend
easily to sequences of trees.

Definition 7. A pushdown forest automaton (PF&)a tuple(3Z, stat init, fin, rul)
whereX is a finite set, stat= stat W stat, is a finite set of states, composed of
event states and node states,.ifiit C stat, are finite sets of event states, and rul
is a set of rules of the following forms, whegg ¢; € stat, v € stat, anda € 3:

downa ¢y — q1 sideqo v — ¢ upaqy — v

Event states are originally callddrest statesand node states correspond to
the originaltree states PFAs traverse trees in document order. When leaving a
noder, two rules are used. First, arp-rule maps the node to some node state.
Second, siderule assigns an event state to the closing event of the nupeelles
can be eliminated, but are kept here as in the original defimit

More formally, PFASP permit runsr = (re, rn) On treest, with re:evet) —
stat andr,: nod(t) — stat, if P contains the following rules for all nodesc
nod(t) with a labela € ¥:

down a re(pr((op,m))) — r
side r(pr((op,m))) r(m) —  Te
up a re(pr((cl,m))) — r
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andre(start) € init. The run is successful ife((cl,¢)) € fin. Figure4.8(a)
presents a run of a PFA on our example tree. The representidtiales is ex-
plained in Figure4.8(b) 4.8(c)and4.8(d)

4.5.2 Equivalence to STAs

We present polynomial time translations between weak STsPEAs and vice
versa, which preserve runs up to simple correspondence$asthnguages.

From PFAs to weak STAs

We transform PFA$ into weak STAss( P) by removing intermediate tree states,
identifying rules fordownandop, and combining rules foup andsideinto cl.
Let stat®) = staf’, init*™ = init”, andfin*®) = fin”, and let the following
schemas define the rules gfP):

upa g — v €rul?

downa gy — rul” )
9o — ¢1 € sideqy 11 — ¢2 € rul”

q0 —>0p a0 ¢ € ruIS(P)

| a:

From weak STAs to PFAs

Let A be a weak STA. We define a corresponding RIFA) such thats(p(A)) =
A. This shows thap(A) and A recognize the same tree language. dta =

stat* andstaf! = % x stat!, initial and final states remaining the same. The
following inference schemas detail how the ruleg ) are inferred fromA.

O :
qo M) S ruIA

downa gy — ¢1 € rul?™®

do —)CI wa o2 € I'U|A
upa qgo — (a,qo) € rul?4)
sideq; (a,q) — ¢o € rulP@

Theorem 2. Every PFA can be converted into an STA accepting the same lan-
guage, and vice versa.

Proof. First, we prove thatl.(s(P)) = L(P). This translation preserves the first
functionr, of runs. Since(P) is weak, this function is sufficient to define a whole
run of s(P). Conversely, given a run 6f P) ont, we can easily build the second
functionr, as everycl rule used ire is generated using an intermediate tree state.
These translations preserve acceptancé,($0 = L(s(P)).

Second, we show that for all weak STAS s(p(A)) = A. Recall that weak-
ness can be assumed w.l.0.g. Translationgpainddownrules are exactly sym-
metric. The double inclusion afl rules of A ands(p(A)) can be easily checked.
Initial and final states are also preserved. ]
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Thus, PFAs can be converted into weak STAs with fewer statéisad the tree
languages are preserved. Vice versa, there exists a lamguasgerving translation
of weak STAs to PFAs which may increase the number of stateségtor of|>|.

The runs of STAs and corresponding PFAs assign the same statas to
opening and closing events. This means that they define tine san-based
gueries, when selecting in event states only. This is fastl in Figuret.8(a) by
a run of the PFA corresponding to the STA of the previous exarfRjgure4.6.

As a consequence, we can rely on the query answering algofah push-
down forest automataBS04 for answering run-based weak STA queries. Re-
moving the weakness limitation does not create any probléns. way, we obtain
a query answering algorithm farary queries defined by STAs and NWAs.

4.6 Standard Tree Automata

In Section2.1.3 we have seen how standard automata, that were originally de
fined for ranked trees, can be combined with binary encodimgsder to recog-
nize unranked trees. In this section, we consider two ofetimegdels. The first
one is given by bottom-up tree automata operatingmy encodings of trees,
also calledStepwise Tree Automat@NTO04]. The second one uses top-down tree
automata orfcnsencoding of trees. The reason why we are interested in these
models, is that they operate in a way that is compatible wilr@aming evalua-
tion. They can be considered as special classes of STAs. Wvdprback and
forth translations between each model and STAs, and shawhbadranslations

to STAs preserve determinism. This shows that determinisBTAs is stronger
than determinism of these classes.

4.6.1 Stepwise Tree Automata
From Stepwise Tree Automata to STAS

The translation of stepwise tree automata to STAs is quidggsttforward, as they
can be seen as a weaker form of STAs: a stepwise tree autormabrates a
hedge (of children of a node) sequentially, from left to tighhe difference with
STAs is that when evaluating a new tree of the hedge, the &si#ting from the
evaluation of the beginning of the hedge is unknown. Thestedion of a stepwise
tree automatori to an STA A’ is detailed and proved below, and illustrated in
Figure4.9. The key idea here is to translate an @-rule by a closing tidet uses
the stack to know how the hedge of preceding siblings of thheeat node was
evaluated, and the current state to know what is the statbéossubtree rooted at
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i q;
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/@q< - QOCLQf .-~
74 @ a7 @ QO/ 3
/ \ / \ v \
q}@\ N 7€ Q1bQQ Q3CQ4 ‘ c‘iqis
i 05!
g0 ba g6 € g1

(a) Arun of a stepwise tree automatdron  (b) A run of the corresponding STA’
t€Trg- oncurry=t(t).

Figure 4.9: Example of runs for the translation of stepwise automata to STAS.

the current node. Labels are only used at opening.
stat' = stat' W {g;, ¢;}  init" = {g}  fin" = {¢;}

Qlgo, 1) » @ eru® g gerl?  gestat gefint  aeX

| a: / op a:q ’ :qi
@~ g, € rul? G 2 q € rul? q =" qy

Correctness relies on the following property, that can lsdyeproved inductively
on the structure of € Ty, :

there is a rum of A ont iff there is a run’ of A’ oncurry=1(¢), and if such
runs exist, them(e) = r’((cl, k)) if the root of curry='(¢) hask children,
andr’((op, €)) = r(n.) wherer. is the first leaf of in pre-order.

From STAs to Stepwise Tree Automata

We exhibit a translation from an STA to a TA recognizing the language of cor-
respondingcurry encodings of trees, i.e. an equivalent stepwise tree astoma
This time the translation is more intricate, as STAs allowead the current state
from one node to its right sibling, but stepwise tree aut@naiat not. This is why
we have to guess this state, and then to check whether this goeresponds to
the state reached when closing the previous sibling. Thetnation is shown
above and illustrated in Figue1Q

stat¥ = 2 x stat* x stat?

4o M ¢ € rult {2 Clﬂ) qs € rult qo € init4 qs € fint
((I, q1, 92) < finA,
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q0

X 71
R (a,q1,99) Q
T a1 acho - / \
s / - ) (a,q1,95) @ (d,g6,95) @
QQb(B Q4CQ5 %dqg 7N VRN

A (a,q1,93) Q c d e
| 7\5 ‘ N (eana) (dasas) (erq7,a7)
+ 75

a b
Q7\ e(qg (a,q1,q1) (b, g2,92)

(@) Arunofthe STAAont € Tx. (b) A run of the corresponding stepwise tree automa-
ton A’ oncurry(t).

Figure 4.10: Example of runs for the translation of STAs tpstise tree au-
tomata.

qo M) 1 € rUIA
A/
a— (a’7 Chan) € rUI

b: | b:
o SN ¢ €rult G2 =7, g3 € rult qq € stat® a€ X

@<<a’7 44, QO>7 (b7 q1, Q2>> — (a’a q4, QB) € rU|AI
The following invariant can be proved inductively on theusture oft € 7y, :

there is a runr’ of A’ on ¢ such thatr’(¢) = (a,qo,q) iff the root of
curry1(¢) is labeled bya, there is a rurr of A on curry='(¢) such that
r((op,€)) = qo andr((cl, k)) = ¢, wherek is the last child of the root.

4.6.2 Top-Down Tree Automata w.r.t.fcns Encoding

As already mentioned in Secti@?2, DTDs can easily be translated into TAs over
fcnsencodings of trees. We now relate these automata to STASs.

From Top-Down Tree Automata to STAsS

Let A be a]TA recognizing binary trees iffy, , that arefcnsencodings of un-
ranked trees. We define an STA over X such thatL(A) = L(A’). This is
illustrated by Figurel.11, with runs of A onfcngt) and A’ ont.

stat! =stat' L g)enlt Log el aey g estat!
|n|t — |n|t op a:q2 Al cl a:qa Al
fin? — statd g —— q €rul G — q2 € rul

This preserves determinism, and the correctness is easig g using the follow-
ing invariant:
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doa qO‘ q10

7N ‘Cha(ho‘

aibp qiol
N
@1  ac ;a3 / qg \
2N

QZZ)Q3 Q4CQ5 %‘dqg

441  45d ‘ '
/ N ‘ ‘

C]/6€\ q9 | * as }

gvl g8l q?ff“

(@) ArunofalTA Aont € Ty, . (b) A run of the corresponding
STA A’ onfens ! (¢).

Figure 4.11: Example of runs for the translation|dAs overfcnsencoding to
STAs.

if h = (t1,...,t) is an hedge ovex, then there is a runof A onfcns, (h)
iff there is a rurr’ of A’ on h, and if such runs exist, then,f is the root of
t; andr the corresponding node fans, (h) we have:r,((op, 7)) = r(w-1)
andri(7') = r(m-2).

From STAs to Top-Down Tree Automata

Let A be an STA over the alphabEt We define theg, TA A’ overX, such that
L(A") = L(A):

stat = stat* x stat®  fin? = init? x fin?

q0 M Q€ rUlA g2 M qs € rUlA qq € stat! qc stat’
1 A/
(90, q4),a — ((q1,2), (g3, q4)) € rul? L= (g,9) €rul

Figure4.12illustrates this translation. The following property isgdo prove by
induction on the structure @f and gives the main idea of the construction:

there is a run’ of A’ ont iff there is a runr of A on the hedgédcns (),
and if such runs exist thai(e) = (go, ¢1) iff there is a run ofA onfcns ™ (¢)
starting ingy and ending iny;.

4.7 Conclusion

These translations between automata models allow to régesthms designed
for specific models. In our framework, automata can be useddieema defini-
tion or query definition. While STAs, NWAs and PFAs are quiteikr models,
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qo\ " (490, 910) @ -
//’/ 6 C‘qu T (q1,99) b 1 (q10, q10)
/ N ~ ~
v V2 3 Y4 (a2,92) | P C (g3,99)
qz\\b}qg - Q4\\C/(B - q? d (]49 (qa,94) | d (g5,99)
! N
v V5! (qs,q/s) e - 1 (g9, 99)
(J7\ 64(]8 (q7,97) 1 1 (gs,gs)

() Arun of the STAA ont € Tx. (b) A run of the correspondingTA A onfcngt).

Figure 4.12: Example of runs for the translation of STAs tes T erfcnsencod-
ing.

operating in pre-order traversals of trees, the use of pieacodings on top of
ranked tree automata define models with weaker notions efmétism.

In the remainder of the manuscript, we use dSTAs for definingrigs and
schemas. STAs benefit from a simple definition, which impletaigon (using
SAX, for instance) is easy to explain. Moreover, STAs arselyp related to our
computational model. An STA can be implemented by an SRAMrevtiee work-
ing tape stores the current configuration, i.e. the curredenand the stack of
node states for its ancestors. The next chapter providegsampde of how an
algorithm can be defined on top of STAs.
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5.1 Introduction

Streamability of queries defined by deterministic autonmtavestigated in this
chapter. We prove that queries defined by dSTAs, when resdrio shallow trees,
arem-streamable for alln € N,. They are however net-streamable, as queries
with high concurrency can be defined with small dSTAs. In otdeobtain these
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results, we propose an earliest query answering algorifinngueries defined by
dSTAs.

Earliest Query AnsweringEQA) has been introduced by Bar-Yossef et al.
in [BYFJOF and Berlea in Ber0g. An EQA algorithm outputs selected (tuples
of) nodes at the earliest time point when they can be outpuimnetrically, it
rejects failed candidates at the earliest time point, orceatid continuation of
the stream will select them. Violating one of these constsameans that some
candidate is unnecessarily buffered. Indeed, EQA algostanly memorize alive
candidates. This corresponds to a lower memory bound forcomnputational
model, as already proved in Propositién

In this chapter, we present an EQA algorithm for dSTAs querids pre-
viously mentioned, EQA ensures good properties in termgpats complexity.
Thanks to determinism, our algorithm is also efficient imtgiof time cost. When
the depth of valid trees is bounded, this algorithm achievBsIME preprocess-
ing, and then a RME cost per event and per candidate, in the size of dSTAs
defining the query and schema. The main idea of the algorighthd dynamic
computation of safe states, that ensure selection (rejgetion) of candidates.

The complexity of EQA is also investigated, for arbitraryequ languages.
Deciding for selection and rejection in an earliest manseften computationally
hard, and can be reduced to inclusion of Boolean queries. ddasequence, for
non-deterministic STAs, earliest selection and reject®EXPTIME-complete.
Thus, there is no AME EQA algorithm for queries by STAs. For XPath, we
exhibit a fragment with only downward axes, for which EQA @t feasible in
PTIME, unless RIME =NP.

Related work The idea of earliest query answering originates from twcepsp
In [BYFJO0Y, Bar-Yossef et al. define the concurrency of a query w.itte@, and
prove that it constitutes a lower memory bound for a fragneérXPath. They
also provide an algorithm with space complexity close to ¢bacurrency for
shallow trees. InBer0q, Berlea proposes an EQA algorithm for queries defined
by grammars, and then translated into pushdown forest ai#orithis algorithm
is however different from ours, as it assumes an infiniteabgihand does not take
schemas into account. This is a major difference, as exgidimSectioril.4.

Earliest detection of rejected candidates is also studyeBdmedikt et al. in
[BIJLWOS for filtering XML streams, through thiast-fail property. The authors
prove that this problem is not tractable unlessME = PSPACE. The solution
adopted by the authors is to approximate the detection eftej candidates.

In the streaming literature, it is often claimed that ansage output as soon
as possible. From the hardness results previously mewtjdhis is often false.
For instance Gou and Chirkov&{074 claim that their algorithmachieves op-
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timal buffering-space performanos a fragment of XPath that contains tree pat-
terns. Their algorithm runs inTE, which is impossible for EQA algorithms,
unless RIME = NP. Usually, a query answering algorithm for XPath outputs
an answer when all positive filters have found a match, anaduhent event is
outside the scopes of all negative filters. This is the casenftance for SPEX,
proposed by Olteanu ir(JIitO7y and for the logics considered by Benedikt and
Jeffrey in BJO7. These algorithms are not earliest, because it could bieleléc
before the end of the scopes of negative filters whether tapystll be satisfied

in any continuation of the stream. Consider for instanceXRath expression
//a[b or not(b)] that selects alk-nodes, if they have &child or not. Here, all
a-nodes can be selected when they are read, as the filter igsatruee. However
these algorithms will output-nodes when closing them.

Madhusudan and ViswanathaV08] propose an EQA algorithm fas-ary
gueries defined by non-deterministic nested word autoneatagnizing canonical
languages, without schema considerations. However, th®esiassume that the
input automaton does not accept the full linearization akea,tbut the smallest
prefix of a tree linearization such that all well-nested seffiare in the canoni-
cal language of the query. Transforming an automaton rezimgna canonical
language, to an equivalent one accepting these prefixesamplex task. Our
algorithm avoids its entire construction by computing ies on demand. An-
other difference is that we require deterministic automiaéhe non-deterministic
case, the complexity of this transformation is not studigdMadhusudan and
Viswanathan.

Earliest Query Answering algorithms decide at every eveatsafety of out-
putting (resp. rejecting) every candidate. This safetypprty seems related to
safety properties studied in formal verification, where siggstem has to verify
such a property in every possible future. For instanc&WMJ1], Kupferman and
Vardi propose to build an automaton recognizing all bad pesfisuch that all suf-
fixes will lead the system into a bad configuration. The linksA@en such formal
verification methods and earliest query answering aretstile investigated.

5.2 Earliest Query Answering

We recall the foundations of earliest query answering (EQWection3.4, we
introduced the notions of safe selection and rejection:pAau is safely selected
(resp. rejected) by a query at evenif 7 is selected (resp. rejected) in all valid
continuations of the stream beyond We formalize these notions through suf-
ficient events for selection and rejection, and derive sogwsin problems of
EQA algorithms fom-ary node selection queries. We establish lower complexity
bounds for such algorithms.
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5.2.1 Earliest Event for Selection

Before defining earliest events for selection, we introdsig#icient events for
selection Lett € Tx be an unranked tree arigl a query of arityn. An event
n € evdt) is said sufficient for the selection of tuptec nod(¢)" by @ if for
every continuation of the stream beyomd- is selected byy. This quantification
over all continuations is expressed through all trees sgdhe same prefix until
7, in the following definition. Note that this formalizes thetion of safety for
selection (resp. rejection) briefly introduced in SectBoh

Definition 8 (Sufficient events for selection).et () be ann-ary query oveix: and
t € dom@) a tree. We relate tuples € nodt)” to events) € evet) that are
sufficient for their selection:

T € dom,(t)™ A
(7.m) € seh(t) < { vt e dghnf(Q). equal(t,t') = 7 € Q(t)

The first condition,r € dom,(t)", restricts the considered tuples to those
containing nodes that were read befgreas streaming algorithms cannot output
nodes that have not be seen yet. Note that)) € sel(¢) impliesT € Q(t).
Furthermore, successors of sufficient events are sufficient

Theearliesteventy for selectingr is the first sufficient event for selecting

(1,m) € earliestsely(t) < n = min{n' | (1,n') € sely(t)}

Consider for instance the monadic query; with b

schema 7, defined by the XPath expression \a
/ch*::a[ch:c] /ch::b, or equivalently by the first-order VAN
formulalab,(z) A Jy. (lab,(y) A ch(y, z) A 3z. (ch(y, 2) A @b c
lab.(z))) with one free variabler. On the treet = b(a,a(a,b,c)), the

earliest time point to select nod22 is event (op,2-3) when the c-child
is opened, i.e.((2:2),(op,2:3)) € earliestsel, (f). Events following
(op,2-3) are sufficient for selecting2-2, but not earliest. For instance:
((2-2), (cl,2:3)) € sely, (t) — earliestsel, (t).

For query@, defined by the same XPath expression, but with the more re-
strictive schema, requiring that all innemodes have at least onehild, we can
select node-2 at opening time, i.e((2-2), (op, 2-2)) € earliestsel,, ().

5.2.2 Earliest Event for Rejection

For optimal memory management, it is equally important szdidrejectedans-
wer candidates in an earliest manner, i.e., candidatesmiiatever be selected
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in any possible future. Going one step further, one might alant to remove
rejected partial candidates, for which no completion wiktiebe selected in any
future.

Definition 9 (Sufficient events for rejection)Me call a candidate rejectedat
eventn, or equivalentlyy sufficient for rejectingr, if no completion ofr can be
selected in the future:

T € donf (¢)" A

(1,m) €r€jn(t) = { vt' € domQ). equal (¢, t') =
vr' e complr,t',n). 7" ¢ Q')

Theearliesteventry for rejectingr is the first sufficient event for rejecting

(7,m) € earliestrej,(t) < n = mgn{n' | (7,n) € rej(t)}

We illustrate these definitions at the queépy defined by the XPath expres-
sion /ch™::a[ch::c]/ch:b, on the treeé = b(a,a(a,b)). All nodesr that are not
labeled byb (and the rook) can be immediately rejected, i.€(n), (op, 7)) €
earliestrej,, (t). For theb-node2-2, the earliest event for rejection sl, 2), as
all siblings of2-2 must have been inspected.

Link to Concurrency Earliest events for selection and rejection are closely re-
lated to the concurrency of the query, introduced in Sec3@3 A tupler is
alive at eveny) iff 7 is not sufficient for selecting, nor for rejecting it:

(r,m) € aliveg(t) <« (7,m) ¢ sel(t) Urejy(t)

5.3 Complexity of Selection Sufficiency

5.3.1 Sufficiency Problem

The definition of sufficient events for selection leads to pheblem of deciding
whether an eveny is sufficient for selecting a tuple. This problem has to be
solved by all EQA algorithms at every processed event, amdeh&ill give us
lower bounds for the per-event time of EQA algorithms. Fangdicity, we only
address the sufficiency for selection here, not for rejactio

Definition 10 (Sufficiency problem) ThesuFFIiCIENCY problem is defined by the
following parameters, input and outputs:

PARAMETERS: a signatube, a classQ of queries of arityn,
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INPUTS: an expression € Q, atreet € Ty, ann-tupler € nod¢)”, and an
event) € evet) — {start}.

OUTPUT: the truth value ofr, n) € sel,.(1).

We provide hardness results feUFFICIENCY. To establish these results, we
reduce language inclusion SWFFICIENCY.

5.3.2 Reduction from Language Inclusion

Letcy. -, be the set of trees on whichis selected or that have a prefix different
from =7
Cormt = 1t € Tx | equal(t,t') = 7€ Q(t')}

Then we can rephrase sufficiency for selection in the folhgwvay.
Lemma3. (7,7) € seh(t) <« 7 edom,(t)" AdomQ) C Co -

This reformulation relateSUFFICIENCY to language inclusion for classes of
Boolean queries. ThaicLUSION problem for a clas®) of Boolean queries inputs
an expressiom € Q and outputs the truth value dbm@.) C Lg,.. UNIVER-
SALITY returns the truth value ofy; C L, instead.

Lemma 4 (Hardness) For all classesQ of Boolean queries there is a linear
time reduction ofiNCLUSION to SUFFICIENCY, and of UNIVERSALITY to SUFFI-
CIENCY for queries with schem@s..

Proof. Lete € Q andt € domQ) a tree. Since), is Boolean, the definition
yieldscy, () sttt = Lo.. Thus, Lemma8 proves that|(), start) € sel,, (¢) if and

only if dom(@.) C Lo,. O
5.3.3 Hardness of EQA for XPath and STAs

We consider Boolean filters in the following fragment of Fard: XPath, where
e XU {x}:

Fou=|[ch:lF] | [ch:0F] | [F1andFs] | [not(F)] | [tru€]

Proposition 17. SUFFICIENCY for Boolean queries defined in the above fragment
of Forward XPath is coNP-hard, even without schema assumgti

Proof. According to Lemmad, SUFFICIENCY without schemas is harder than
UNIVERSALITY of Boolean queries. The latter problem was proven coNP-hard
for the above fragment of Forward XPath in Proposi#on O
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Adding schemas does not reduce the complexity of the prabkesva conse-
quence, every EQA algorithm for a larger fragment of XPathnca be in poly-
nomial time, except if PIME = NP.

For queries defined by non-deterministic automaaFFICIENCY remains
hard, even with Boolean queries.

Proposition 18. SUFFICIENCY for Boolean queries defined by STA&PTIME-
hard.

Proof. By Lemmad4, SUFFICIENCY without schemas is harder thanIVERSAL-
ITY for STAs, and thus EPTIME-hard by Propositioid5. O

However, when restricted to deterministic STAs, the problbecomes
tractable. The crucial point here is that dSTAs can checlakguof prefixes
of two trees until eveny deterministically.

As previously introduced, we writ€ 4 for the query defined by the STA
recognizing a canonical language, ile,,, = L(A) anddomQ4) = 7x=. When a
schema s provided by an STB, ), 5 denotes the query such thag, , = L(A)
anddom @ 4,5) = L(B).

Lemma 5. If a dSTAA recognizes a canonical language, then for alE 7,
7 € nodt)"” andn € evet), we can compute a dSTA recognizing the language
CQ 4t IN PTIME in | A], [t], |7| and|n].

Proof. We prove that we can build a dSTA recognizing. ,, ; in polynomial time
from A, t, 7 € nod(t), « € {op,cl}, and7 € nod(t)". We define two tree
languages:

Eq, ={t" | equaj(t,t)} Q- ={t' | 7€ Qa(t)}

With these definitions, we geb, .., = ES™ U Q, whereL®™' = {t € Ty, |
t ¢ L} for L C Tx. Hence it suffices to build dSTAs recognizikg, , and@ in
PTIME.

First of all, we define a weak dSTA recognizikg, , = {¢' | equal,(t,¢')}.
We setstat, = evet="), stat, = {7} (arbitrary),init = {start}, fin = {5}, and
the following rules where< andpr are interpreted opve1):

(a,m) <1 a = lab’(r) a€y
pr((a,ﬁ)) a ay (Oz,ﬂ') " op a:y " n cl a:y n

Second, we define a dSTA recognizing the@et= {t' | 7 € Q4(t')}. Such a
dSTA can be built in several steps. We first build a dSAAecognizing all trees
annotated with the tuple, i.e.:

LA ={tx7 | teTs}
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Figure 5.1: A run of the dSTAY, whenr = (2-1,1). The domain for this is
domain= {e, 1,2,2-1}, as indicated by framed nodes.

Then we can intersect’ with A, in order to distinguish all annotated trees on
which 7 is selected by) 4. Finally, we can project on the-component in order
to obtain the desired trees:

Q- =IIx(QaNQu)

The corresponding automata operations preserve detesmmim this particular
case: for each tree ¢ Ty, there is at most one run of N A’ ont * 7, as both
automata are deterministic. Hence, after projectiongtigerlso at most one run
ont, and thus the determinism is preserved by the projectiajsncase.

It remains to detail the construction df. If the arity of Q4 isn = 0 then
7 = () and we can take a universal automaton,/4d’) = 7x. Otherwise,
in order to define this automaton in polynomial size€4fy some preprocessing
on 7 is required, which factorizes common prefixes of node adesesRoughly
speaking, we callomainthe domain of the smallest tree containingand build
a dSTA that computes in its states the next elemewloohainto be checked, as
illustrated in Figureb.1 Formally, letdomainbe the set of positions smaller or
equal to some position affor the order defined by.: < 7.jif i < jandr < x.i.
We writedomain. = domainu { L }. We introduce the functionext {op, cl} x
(N*U{L}) — domain_ that indicates whether the domain still continues above
(resp. at the right of) the current nodewhen called withop, 7) (resp.(cl, 7)):

nex{op,7) = -1 if 7-1 € domain 1 otherwise
nex{cl,7i) = m-(i+1) ifn-(i+ 1) € domainL otherwise
nexta, L) = L for o € {op, cl}

We also introduce the functiovars.: domain, — 2Y» that associates with each
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node the variables corresponding to the annotation: by

if = (my.....m,) then { vars(m < du [ m=)

We can now define the dSTA’. A run of A’ is shown in Figurés.1

stat! = stat"’ = domain ac 7, n € domain [ = vars,(m)

. Al 0): ’
init = ¢ 7 PV extop, 1) € rul”
inAT I (a,l): /
fin™ = {1} " LT nextel, ) € rul”

Theorem 3. SUFFICIENCY for n-ary dSTA queries is in polynomial time.

Proof. We can testL(B) C Cy, -, in polynomial time, if B is given an dSTA,
since we can compute a dSTA fof ,, . in linear time by Lemm&, and since
INCLUSION for dSTAs is in polynomial time (Propositialb). ]

As a corollarysuFFICIENCY for STAs is EXPTIME-complete. A XPTIME
algorithm follows from STA determinization and Theor@&@nBy Propositionl8,
the lower bound holds already for STAs defining Boolean easeri

5.4 EQA Algorithm for dSTAs

From the previous results, we know ttgeaiFFICIENCY can be decided in RME
for queries defined by dSTAs. In this section we propose aiestguery ans-
wering algorithm for such queries, using polynomial peergvime and space for
each candidate. We start with a static transformation oti8ieA A defining the
query(@ 4 into another dSTAE(A), in Section5.4.1 E(A) and A recognize the
same language, but the statesE9f4) contain enough information for deciding
sufficiency for selection and rejection. This is not the dased, as in general the
sufficiency depends on the configuration, and hence frométessof the ancestor
nodes (as their states will be later used at closing). Hovyéws translation oA
into E(A) implies an exponential blow-up. In Sectié.2 we propose a RME
algorithm that avoids this blow-up by constructing the rezkgarts ofE(A) on
the fly. In Section5.4.3 we show how schemas can be taken into account, and
illustrate it at an example in Sectidn4.4 Finally, we show how the algorithm
can be efficiently implemented in Sectidr.5
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5.4.1 Safe States Computation for dSTAs

We define a partial runof an STAA on a treel like a run, except that it operates
only on a prefixt=" for some event € evet). We writep_runs’(t) for the set of
all partial runs ofA on¢t.

Safe States for Selection

Let A be a dSTA ovel: x 2V» defining a quen@Q,4, t € Ts, n € evet), and
7 € nod(t)". We consider for the moment queries with universal schemas.

Definition 11 (safe states for selectiarijVe call a state € stat! safe for selection
of 7 at event if the existence of a partial run r ol ont that maps; to g implies
(1,m) € seb,(t). In other terms, these are the states that ensure sufficiemcy
selection when they are reached:

safesel, , (t) ={q | (Ire prunst(t 1) A re(n) = q) = (7,n) € seb, (1)}

In general, A does not have safe states, or more precisely, 7
a sufficient event can be reached by a rumofbut the cor- 1 ,,(,a’ U) ©
responding run does not go into a safe state for selection. rm 0
now describe how these states can be computed by a
dSTAE(A), which permits to decide sufficiency. Here we need some ianil
definitions. Letruns(ﬁ)_,ql(h) be the set of runs of an STA on a hedgé that start
in stateg, and end in statg,. The operatoev.cl” (h, ¢, (a,v),v) evaluates hedge
h from statey, and subsequently applies a closing rule with Idbel) € ¥ x 2V
and statey:

ev.cl?(h, g, (a,v),7) = {q | Ir € runs; . (k). ¢ dna, ¢ € rulty
We consider continuations through hedgesig, = Hsx .y, as safe states for
selection are defined for complete tuples, and thus valitirmeations cannot use
variables anymore. The operataniv_sel*((a, v), v, P) computes all states, from
where all hedges ifts can be evaluated and closed w.(d, v) andy into a state
of P C stat!:

UniV_SelA((a, U)a s P) = {CJO | Vh e %sel- eV—CIA(hv qo, ((I, U)a ’7) np 7£ ®}
Given A, t, and 7, we can compute inductively the safe statgg(n) =

safesel; ,(t) for all eventsy € evet), using three propagation rules, as illus-
trated in Figurés.2and proved by Lemm@.
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Figure 5.2: Propagation rules for safe states.

Rule 1 Forthe closing event of the root, the eveétlt ¢) is sufficient for selection
of the givenr on ¢ iff all continuations after(cl, ¢) succeed. The only existing
continuation is the empty one, so the sufficiency only dependthe success of
the run. Thus when closing the root, the set of safe statesefection are the final
states:

Ssei((cl, €)) = fin?

Rule 2 At each noder, the safe states for the opening event can be computed
from those of the corresponding closing event. These arstétes for which the
traversal of any hedge (of children), followed by the closure of the node, leads
to a safe state at closing.

Ssei((0p, 7)) = univ_sel*((a, v), v, Ssel (Cl, 7))

where(a,v) = lab’(7) andy = r ().

Rule 3 Third, the safe states for the opening event afe equal to those for the
closing events of children of:

Ssel((Cl, 7)) = Ssel((Op, 7))

This might seem surprising at first sight. However, the ctodlifor rule 2 can
be rephrased in the following way for rule 3: the traversahoy hedge (here, of
right siblings and their descendants) followed by the dlesaf the parent node
must lead to a safe state for closing the parent node.
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Safe States for Rejection

The treatment of safe states for rejection is more deli¢é¢ee we have to assume
determinism and completeness for a proper treatment abpeaandidates. The
definitionssaferej anduniv_rej remain the same, except that we have to replace
selbyrej, 7 € nod(t)"” by 7 € nod,(¢)". Furthermore?{se is replaced byHe =
Hsovn, @S Safe states for rejection consider partial tuples. eleoatinuations
can still contain variables in their labels, and we cannstriet the hedges to be
traversed tdH s (g

saferejém)(t) ={q | 3Areprunst(tx7) A re(n) =q) = (1,n) € rejg, (1)}

univ_rej’((a, v), v, P) = {qo | Vh € Hiej. ev.Cl* (1, qo, (a,v),7) N P # 0}

Propagation rules definingj; are also easily adapted from those defintiag

Rule 1 Rejection states at the root are precisely non-final states:

Srei((cl, €)) = stat! — fin

Rule 2 The critical rule

Stej((0p, )) = univorej ((a,v), 7, Swi((Cl, 7))

remains correct when imposing determinism and compleseors!, since this
ensures that a hedge will fail iff a run on this hedge leadsrigjexction state. The
additional quantification over hedges#f,; (in the definition ofuniv_rej), which
may turn continuations into non-canonically annotateddyenakes no difficulty,
since such trees cannot be recognizeddbyhen assuming that the language of
A'is canonical (it defines a query), as we do.

Rule 3 The third rule is the direct adaptation:
Srej((C-l, WZ)) - Srej((opa W))

Building E(A)

Now the propagation rules allow to infer boﬂ;hfese(im) (t) and saferejém) (1)

for all eventsy. We can see in FigurB.2 that the definition of safe states is
incompatible with a streaming evaluation. Nevertheldss,computation of safe
states can be done by running the SHM) defined in Figuré.3. This STA does

all the computation when opening nodes. In particular, weading(op, 7) it
computes the safe states for the eveéalsr) and assigns them to the node state of
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S; = univsel((a,v),71,So)
R, = univ_l’ejA((a,v),%,Ro)

(qO,So,RQ) op (a,v):(v1,50,Ro) (Q1,31,R1) c rulE(A)

O V)
% P (a,v)m qlerU|A

I (a,v):
qo M) q1 € rulA 80,81,7—\),0,7—\),1 - Staﬁ

I (a,v):(v0,S1,
(QO,SO, RO) c ( ) (’yo s R1)> (Q1>Sh Rl) S rU|E(A)
init5@= (init4, fin*, stat! —fin?)
finfA) = {(q, fin, staf! —fin") | ¢ € fin"}

Figure 5.3: Construction d&(A) from A.

7 (i.e. they are pushed on the stack), so that they can be uskediaiy. Safe states
are also propagated among siblings through node states tNat for sake of
clarity, this construction does not hold for earliest setecof () at thestartevent,
for Boolean queries. However, this case can be processéy eagsonsidering
every possible label of the root. The signaturdEofl) is still 3 x 2V», as for A.
The state sets may be exponentially large, ssta§) = stat! x 2stat' x ostat’
andstaf = stat! x 2@ x 25t Note thatE preserves determinism.

Proposition 19. Let A be a dSTA o x 2 that defines a query. Thern(E) is
a dSTA that accepts the same languagelas

Furthermore, ifr4 (resp.r54)) is the unique run ofd (resp. EA))ont x 7 €
Tsxov. then for alln € evegn) — {start}:

(5 () = (rf (n), safesetl,, (1), safere]{, , (1)

Proof. We prove this proposition by Lemmé&sand7. For the whole section, we
fix A, a dSTA on® x 2Y» that defines a query,x 7 € Ts,ov., and we suppose
thatr4 is the unique run off ont * 7.

We first prove that the propagation rules define the safesstaés us consider
the functionf that associates a pdif, R) € 25t x 252" with each event of «
(exceptstart) using the following inference rules:

f((cl,€)) = (fin?, stat! — fin?) (5.1)

renodt)  f(chw)=(S,R)  (a,v)=labl(x) y=ri(n)
f((op,m))= (univ_seIA((a, v),7,S), univrejt((a,v), v, R))

(5.2)

renodt) mienodt)  f((opw)) =(S,R) (5.3)

f(el,m-i)) = (S, R)
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Lemma 6. For every event) € evdt) — {start},
f(n) = (safesel}  (t), saferej’ (1))

Proof. We proceed by induction on eventsiafexceptstart), according to a top-
down, breadth-first, right-to-left traversal of

For (cl, €), the result is trivial from ruleq.1) and the definitions oafesel
andsafere;.

Let »» = (op,m), and suppose that the property holds for
(cl, m). From the application of rule 5(2), we know that f(n) =
(univ_sel*((a,v), v, S), univrej*((a,v), v, R)) with f((cl,7)) = (S, R),
(a,v) = lab'(m) and v = ri(m). By definition, we have:
univsel*((a,v),7,S) = {¢ | Vh € Hsa evcl(h,q, (a,v),7) € S},
and by induction hypothesis, = safese(‘ﬂ(clm))(t).

We first prove thauniv_sel'((a,v)),v,S) = safese +n(t). Suppose that
q € safesell, (t). Leth € Msy andq = evcl(h,q,(a,v),7). Then
¢ € safese@,(c,m))(t), as sufficiency remains true for events following
Thus, ¢ € univsel'((a,v),v,S). Conversely, if; € univsel'((a,v),7,S)
then = < dom,(¢)" (consider the empty continuation). So for every
t" € 7Ty such thatequal(t,t'), the hedgeh of children of 7 in ¢ is in
Hse Thusevcl!(h,q,(a,v),7) € safesell g (t), which means that
Qa(t'), son is sufficient for selectingr, andq € safese(‘m)(t). Finally,
univ_set'((a,v),7,S) = safesel} , (t).

Now we prove the similar result for safe states for rejectiom., that:
univ.rej* ((a,v),7, R) = saferej{‘m) (t). The difference here is that we deal with
partial candidates. We write=" for the partial tuple obtained by replacing every
component strictly aftey by e. Inclusionsaferej{‘m) (t) C univrej((a,v), 7, S)
holds for the same reason, namely events followjmgmain sufficient for rejec-
tion, even for completions af=". Now suppose that € univ.rej*((a, v),v, S).
Fix ¢ € Tx such thatequal (¢,#'), and leth be the hedge of children of in ¢,

Thenevcl’(h, ¢, (a,v),7) € saferej(. 4 . (t), and thus every completiori of
=1 aftern fails. Hencey is sufficient for rejecting=", andq € saferejé,n) (t).
Finally we considem = (cl,x-i), and assume that the property holds for
(op,w) and(cl, 7). From Rule §.3) and induction hypothesis, we obtain that:
f(cl,mi)) = (safesel) o, ) (), saferej(. o) (1))
First we prove tha$afese(‘77(opm))(t) = safesel; ,(t). We have:
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q € safesel] ;0. (t)
(3r € pruns'(t + 7) Are((0p, 7)) = q) = (7, (0p, 7)) € sek,(t)
(Ir € pruns(t + 7) Are((op, 7)) = q) =

Vh 67'[Se|~ eV—CIA(hv q, (av U) ) S afe—seﬁ (cl,m)) )

=

&

U (3r e pruns(t « 7) Are((clmi)) = q) = (7, (cl, m1)) € seby, (1)

& g € safesel] g .y (1)

The equivalencé:) holds because when applyinog-rules, STAs do not distin-
guish between downward or rightward moves, i.e., they dknotv whether the
last action wasp or cl. We now show tha$aferej 7 (opn (1) = saferej{‘m) (t):

q € saferej (op, W))(t)
& (Irep runsA(t *T) Are((0p, 7)) = q) = (7, (0p, 7)) € rejg, (1)
& (Ireprunsi(t+7) Are((op, 7)) =q) =
VheHe. ev.el? (h,q, (a,v),7) esaferej’ . (t)

& (Irep. runs“(t *7) Are((cl,m4)) = q) = (7, (cl,77)) € rej, , (1)

& q€ saferej (i (t)
wherer;, is obtalned fromr by adding variables it. O

IIU’

Lemma 7. There is a run(rs" ri™)) of E(4) ont « 7 € L(A), and for every
event) € evdt) — {start},

re V() = (rg (), S, R) with (S, R) = f(n)

Proof. Inference schemas definiigj A) show that every run of A has a unique
corresponding rum’ in E(A), andr is the first component af . Again, we use
an induction on events af(exceptstart) according to a top-down, breadth-first,
left-to-right traversal of.

Forn = (cl,e), we havef(n) = (fin, stat! — fin?). At the root, we have
rn(e) = (ri(e), fin? stat' —fin?) , sore((cl, €)) = (ri((c I €)), fin’ stat;‘ fint)

Now consider thaty = (op,7) and suppose that we havé (cl,m)) =
rd((cl,m), S\ R) with (§',R) = f((cl,m)). This implies that
rE(A)(w) = (rid(n),S,R'), so we getS' = univsel'((a,v),7,S), R' =
univ_rej* ((a, v), v, R) andrs™ (n) = (rd(n),S, R) where(a, v) = lab!(x) and
v =ri(r). Hence (S, R) = f((op,7)).

Finally, let us assume that = (cl,7-4) and also thar5“ ((op,m)) =
(rd((op,7)),S,R) with S, R defined by(S,R) = f((op, 7)). By an immediate
induction on children ofr, each childrj of verifieer(A)(w-j) = (ri{(m),S,R)
and for the state§' ((cI mj)) = (ri((cl, 7)), S, R), and in particular foy = .
From rule §.3) of the definition off, we know thatS, R) = f((cl, 7-7)). O

These two lemmas finally prove the correctnesg(of). O
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a,v): | (a,v):
(a,v) € X x {0} ¢ P (@v)y, g3 € ruld qa LGN g € ruld

aC(b{seI(qla q2) - aCGHsel(q37 Q4)

q € stat! q1, 2, q3 € stat!
aCC’HseI(Q) Q) aCC'Hsel(qla q2) - aCCHsel(qla q3)aaCCHsel(Q3a (12)

Figure 5.4: Inference rules for the definitionanfc;;_.

Running automatoiE(A) for a candidate permits to test sufficiency for se-
lection and rejection at the event when it happens. At mostron has to be
processed per candidate, thanks to determinism.

5.4.2 Generic EQA Algorithm and its Instantiation for dSTAs

We present an EQA algorithm for queries defined by dSPAwhich runs in
polynomial time per step and candidate. The idea is to rueénkest automaton
E(A) of Section5.4.1on the input stream in order to decide selection and rejectio
sufficiency for all answer candidates at all time pointshwiit constructindg(A)
explicitly.

Running E(A) on the fly

Given a dSTAA overY. x 2¥» and a tree * 7 over the same signature, we want to
compute a run oE(A) ontx7 in polynomial time in the size ofl. The application

of closing rules oE(A) is easy, since it only has to look for a rule 4f Applying
opening rules oE(A) is a little more tedious, since we have to compute the sets
univ_sel(a,v), v, P) anduniv.rej((a, v),~, P') while givena € ¥, v € stat}, and

P, P’ C stat.

When assuming the completenessiah addition to determinism (which can
be ensured in polynomial time for a fixed arity, these sets can be computed
by reduction to information on accessibility through hesif@r A. Given a set
H C Hy,ov. Of hedges, and event stat@sq, € stat!, we define the following
accessibility predicate:

accy(q,q2) < 3heH.runs,_ (h) #0

We compute it forHse) = Hxw gy aNdHej = Hyova, With the Datalog program
in Figures5.4and5.5.
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a,v): I (a,v):
(a,v) € X x 2 G P (@v)y, g € rult qa o ), g € rult

aCCHrej (q17 Q2) - aCCHrej (q37 q4)

q € stag! 1, G2, gs € Stag
acc’?"{re] (q’ Q)’ aCCHre] (q17 q2) :- aC(‘a‘lreJ (q17 q3)7aCCHre] (q37 qZ)'

Figure 5.5: Inference rules for the definitionalfc,‘_“rej.

Proposition 20. The collections of values agc (¢1, ¢) and acéLrej (q1, q2) can be
computed in tim@(|rul|? + |stat|*) for every complete dSTA.

To explain the computation of univ.sel’, we introduce
beforeClosé((a,v),v, P), the set of states that lead to a state fafter
closing(a, v) with :

cl (a,v):y

beforeC|OSé((CL7 U)ufya P) = {QO ‘ HQ1 S o —q1 € rUIA}

Lemma 8. For deterministic and completd, and for X € {selrej}, the safe
states univX”((a,v), v, P) are equal to:

{q| VYao. accy, (¢.q0) = qo € beforeClosé((a,v),~, P)}

Proof. Immediate from the definitions. O

We will see in the sequel how the relaticanscy,
and then reused dynamically.

sel

andacg,,, are precomputed

Generic Algorithm

Our algorithm will be obtained by instantiating the sketeio Figure5.6 of a
generic EQA algorithm, which is parameterized by a cl@ssf query defini-
tions. In our computational model, such an algorithm, for\aeigy query@, is
implemented by an SRAM, where candidates are stored in thkingomemory,
whereas the node identifiers are stored in registers. Tlie staut of the al-
gorithm is a query definitiom € Q, and its dynamic input on the stream is its
ordered set of events. We assume that the stream is alreaslydpas in our
SRAM model. Our algorithm adds the tuples@®@ft) to the external output col-
lection incrementally at the earliest possible event. Tléndea is to generate
all candidate tuples, test their aliveness repeatedlputselected candidates and
remove rejected candidates.
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fun answerg,t) % ec Q, te domQ)
let candidates = set.newj
in
for n in evgt) in streaming-order do
candidates . update)
for 7 in candidatesdo
if (t,m) € selg,(t)
then add-output(r)
candidates .remove()
elseif (7,n) € rejg.(t)
then candidates .remover(

Figure 5.6: Generic EQA algorithm for a clagsof query definitions.

Instantiation for dSTAs

Now suppose that the query is defined by a dSTAFor every candidate we
maintain its configuration iE(A), i.e. its current statg;, S, R) € staE“" and a
sequence € (staﬁ(A))* inside a stack. Sufficiency for selection e) € sel,, (t)
is verified by testing; € S, and sufficiency for rejectiofir, ¢) € rej, () by
checkingg € R. Updating the current state is done by applying a rul&(f),
that we can compute using the alternative definitionrf/_X in Lemmas.
Updating the current set of candidates at evgemeans to apply a rule of

E(A) to the current staté;, S, R) € E(A), and for opening events to create all
new candidates, where the current node is usedClLigie number of candidates
to be processed at evefdp, 7). Each of theC' candidates originates from an
alive candidate at the previous event(op, 7)), with a possible completion of
components withr. We distinguish between candidates that get safe for sahect
or rejection atop, 7) from those that are still alive. We write= simultsafe,  (¢)
for a bound on the former (when iterating ewgt)), while the second is bounded
by the concurrency = concur,, (¢). Hence we havé’ < ¢+ 1. Let us formalize
simultsafe,(t), the maximal number of candidates becoming safe for selecti
or rejection at the same event. For a tupland a noder, we writeT—m for the
tuple obtained fromr by replacingr by e.

. T—m is alive at evenpr((op, =
simultsafe, () =maxxenoa) {T | A 7is not alive at even(to(é, ) ) H

A g {T | (7=, pr((op,7))) ¢ Seb(t)UfeJ'Q(t)H
menod(?) A (7, (op.7)) € sely(t) U rejq(t)

The maximal value fosimultsafe, () is reached when there are many alive can-
didatesr—7 atpr((op, 7)), and all the candidatesare not alive atop, 7). There
can be at most” values forr, for a givent—m, so we get the following upper
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bound:
simultsafe,(t) < 2" - concuiy(t)

We have already seen how to apply rulesof!) in polynomial time in the
size of A. The node state of the rule is pushed to stédior opening events, and
popped fromY for closing events.

Theorem 4. For every complete dSTA recognizing a canonical language over
¥ x 2¥», one can compute in tim@(|A[?) an SRAMM 4, computing the query
@4 and using at each event:

o TimgMy,t) =O((c+1i) - |A]?)
e SpaceM 4, t) =0O(c-d-|A|)
with ¢ = concug, (t), i = simultsafe, (t), andd = depth).

Proof. The computation o\ 4 from A consists mainly in building the accessi-
bility relationsaccy; for X € {sel rej}. We can compute these relations fbin
time O(| A]*) according to PropositioB0. These relations are stored in the finite
state control.

Processing an opening event requires more computationsaticbbsing one,
as it needs to determine the sufficient events. Given a taleel and a current

state(qo, So, Ro) for the partial run of the candidate, we have to considerutesr

of A of the formg, '™, 4, For each of these rules, the computation of

beforeClosé(a, v), 71, Sp) can be performed in tim@(|rul*|). Then, the compu-
tation ofuniv.X whereX € {sel rej} can be done in tim@(|stat!|?), by Lemma
8. There are at most: + i) such updates to process per event.

The fact that this algorithm is an EQA algorithm implies taatostc candi-
dates are stored at a time. For each candidate, we have ¢dliséonode states of
its ancestors and its current event state, which requiréd|. OJ

5.4.3 Adding Schemas

With respect to sufficiency checking, we can integrate tles@a into the query.
Validation of the document with respect to the schema is dependent task, that
we run in parallel. Given am-ary query@ with a schemalom @) C Ts, we
define the querie§se and@ e With universal schema:

Qselt) :{ Qu) iftedom@) o0 0T

nod(¢)" otherwise

Ort) — { Q(t) ift € domQ) dom Q) = T

0 otherwise
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g 210, (@ g erult d opa, ¢, erul®
(g0, @) 2O, (4 gy e ruls

o @0, g erul? @ LN ¢, erul?
(90, 90) SRS ILON (q1,q)) € ruls

init= = init* x init?  fin?e = (fin* x fin®) U (stat' x (staf — fin®))
Figure 5.7: Construction ofis¢ from A and B.

Lemma 9. sel, = se,, and rej, = rej,_.

sel

Proof. Straightforward from definitions.

(1,m) € sely, iff 7edom, ()" AVt € Ts. equal(tt') = 7 € Qselt’)
iff 7 edom,(t)" A V' e domQ). equal(t,t') = 7€ Q)
T € donf (¢)" A
(1.m) € rejg,, iff vt' € Ts. equal (t,t') =
vr' e complr,t',n). 7" & Quj(t')
T € donf (¢)" A
iff vt' € domQ). equal (¢, ') =
vr' e complr,t',n). 7" € Q(t)

0

For selection detection, the idea is to build an automatgn recognizing
Qsel from the STAsA and B recognizing@ 4 5. This automaton will be similar
to the product automaton of and B, but final states will be enriched by all
invalid selections, as introduced in the definitiortag,. Figure5.7 shows how to
obtain the STAAge. Prior to this constructiord and B must be determinized and
completed. For rejection detection, we proceed the sameavalgtain A, such
that@ Ay = Qrej- The only difference betweefse and A, lies in the final states:
finei = fin x fin®.

Lemma 10. L(Ase) = Lo, and L(Arej) = Ly

This way, we can compute the safe states for selection Efith,)) and the
safe states for rejection with(A.;). From an implementation point of view, there
is no need to compute the safe states for rejectioB(afs.) and the safe states
for selection ofE(Ayj). Thus, we can run the efficient algorithm presented in
Section5.4.2and compute the same amount of safe states ag(fdy, but on
a bigger automaton. We get the following result for our EQ4oaithm with
schemas.
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Theorem 5. For every complete dSTA recognizing a canonical language over
¥ x 2¥» and every complete dSTA, one can compute in tim@(|A|® - | B|?) an
SRAMM 4 5 computing the querg) 4 5, whereM 4 p uses for each event:

o TimgMy p,t) = O((c+1i) - |AP* - |B|?)
e SpacéM, 5, t) =O(c-d-|A|-|B])
with ¢ = concug,, , (t), i = simultsafe,,  (¢), andd = depth).
Proof. The complexity analysis is similar to TheorenThe difference is that we

useAse and A instead ofA, and|Ase| and|Agj| are inO(|A| - |B]), and can be
computed with this time complexity. ]

5.4.4 Example Run of the Algorithm with Schema

For illustration, let us consider the monadic quéxythat selects all nodes without
next sibling. It can be defined in MSO by the formway. ngz, ). The root oft

is selected, and this can be decided when opening it. Wideh@ma, membership
T € Qo(t) cannot always be decided at opening time, so the algoritred®
memorize nodes until, either encountering the openingtavietine next sibling
(for nodesr ¢ ()y(t)) or the closing event of the father (for selected nodes
Qo(t)). When assuming the DTDB — (a*b)* andb — ¢, one knows that all
a-nodes except the root have a next sibling in all trees satgfthe DTD, so
selection ofu nodes be decided early at opening time. b~oodes, selection can
still be decided only later, when closing the parent. We m@rshe schem&,
which corresponds to the DTRu — a*b, b — €}, and choose it as domain of
Qo: dom(Qy) = So. We show how the algorithm would behave on this input.

For clarity, we omit node states in the following figures, ak/@ne occurs in
each automaton. Moreover, whene¥@ccurs in a rule, this means that this rules
exists for/ € {a,b}. Let A be the dSTA represented in Figuse3(a) and B the
dSTA in Figure5.8(b) We havel)y = Q4 5.

We start by completing! with the sink stat& and B with the sink stat@. By
applying the inference rules in Figube7, we obtain the STAde represented in
Figure5.9(states resulting from completion are omitted for clarifjfie STAA;
only differs on final states.

Then we compute the relatiorec;,, andacc,,,. Figure5.10is an array
of Booleans representing the relatiagc,,,. States(q,q:) are writtengyq
for sake of conciseness. The relatiacc,,, is obtained from this array by re-
placing values in italics by. For instanceaccy,,((0,2),(1,2)) holds, but not

aceu,((0,2), (1,2)).
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op (¢,0) opa
op (¢, {z1}) op (£,0) opb

cla . clb
cl (¢,0) cl (¢,0) G

(a) dSTAA recognizing_q,,. (b) dSTA B recognizing
L(B) = dom(Qo).

; cl (¢, {xl})@ cl (¢,0) ©

Figure 5.8: Input dSTAs.

Figure 5.9: The dSTAse Obtained fromA and B (sink states are omitted).

Suppose that we want to compute the safe states at a roatddtng(a, ) on
our example. This corresponds to computiadesels=((a, (), v, fin=), where
~ is the only node state iAge. First, we obtain from thec!” rules of A

beforeClosé=((a, (), v, fins!) =
{(0,0),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), (3,0),(3,2)}

We denote this seBC,. From the previous section, we can look at which states
verify Vq,. accy,(q, @) = qo € BC). These states are the safe states:

safesel'=((a, ), v, fins) = {(0,2), (1,1), (1,2),(2,0),(2,1),(2,2),(3,2)}

Using this processing at each opening event for safe statsgliection and rejec-
tion, we obtain the run on the canonical tree representedjur€5.11 Here, safe
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Figure 5.10:acgy,, associated t@), and.Sy.

rej

states for selectiof are those provided hytsg and safe states for rejectiGhare
those provided byl,;. We only represent them as they are the only relevant ones
(safe states for rejection computed Ay, are useless, for instance).

5.4.5 Implementation

We are currently implementing the algorithm described abova project named
EvoXs [GP09. A first step is to have an earliest query answering algorifar
queries defined by dSTAs. Then we would like to implement thadlation of
XPath fragments to dSTAs, in order to have an EQA XPath et@alu@he trans-
lation of XPath fragments to dSTAs is provided in Chajéier

We provide here a more precise and efficient procedure farahgputation of
safe stateaniv.X whereX < {sel rej} fora dSTAA. We first exhibit some prop-
erties of the function mapping set3 to beforeClos§a, v), v, P), where(a, v)
and~ are fixed.

Lemma 11. For every(a,v) € ¥ x 2¥», v € stat}, and P, P, C stat:
beforeClosé&a, v), v, P,UP,) = beforeCloséa, v), v, P;)UbeforeCloséu, v, P»)

So we getbeforeClos€a,v),y, ») = Ugp,beforeCloséa,v),v, {q}).
Hence we can precompubeforeClos€(a,v), v, {¢q}) for eacha € ¥, v € stat!
andq < stat!, and reuse it for computinigeforeClos€(a, v), v, P,). This prepro-
cessing requires tim@(|X| - |A|*) and space(|X| - |A]?). This could also be
replaced by a computation on-demand, and by keeping in metheresults.

Now we look into more details the properties of the functioampming sets®
to univ_X((a, v), v, P) for fixed (a, v) and-~.
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(0,0), So, Fo

v 7, So, Fo
0.5, 7 (a,)) 0.5, 7

""""’Ya S1, Fy v, S1, F1 .
©.0.5:, 7 (a, () ©0,5,F Loosur (b {r}) ansm
/ [N T

»

53={(0,1),(0,2),(1,1),(1,2),(2,0),(2,1),(2,2), (3,1), (3,2)}
54={(0,0),(0,1),(0,2), (1,1),(1,2),(2,1),(2,2), (3, 1), (3,2)}
F5={(0,0),(0,1),(0,2), (1,1),(1,2),(2,1),(2,2), (3,0), (3,1), (3,2)}
F1={(0,1),(0,2),(1,0),(1,2),(2,2),(3,0), (3,1), (3,2)}
F5={(0,2),(1,0),(1,2),(2,2),(3,0), (3,1), (3,2)}

F3={(0,1),(0,2), (1,1),(1,2),(2,1),(2,2),(3,0), (3,1), (3,2)}
F4={(0,1),(0,2), (1,0), (1,1),(1,2),(2,0),(2,1), (2,2), (3,0), (3,1),(3,2)}

(b) Sets involved in this run.

Figure 5.11: Run of the algorithm on a tree.

Lemma 12. For every(a,v) € ¥ x 2¥», v € stat', P;, P, C stafl and X €
{sel rej}:

univX((a, v),y, Pr U Pe) 2 univX((a,v), v, P1) U univ-X((a, v), v, Ps)

A consequence is that the function mapping dets» univ_X((a,v),v, P)
is monotonic. Note that in the general casmivX((a,v),v,PL U P») &
univ-X((a, v),~, P1) U univ-X((a,v),v, P»). For instance, in our example,
(0,2) ¢ univrej(a,0,{(1,2)}) and (0,2) ¢ univrej(ai,0,{(3,2)}), but
(0,2) € univrej(ay, 0,{(1,2),(3,2)}).

Algorithm in Figure 5.12 uses these results, and also the fact that, from
Lemmas8, univ-X((a,v),v, P») C beforeClos€a,v),v, P,). Note that if we
choose to store all the computations of safe states (usée ifirstfor loop), this
can use memory of siz@(|X| - |stat}| - |252¢'|2). However, this can be weakened.
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fun univ.X((a,v) ,v,P)
let safeStates = set.neW|
let beforeCl = U,cpbeforeClosé(a,v),~,{q})
let agenda = beforecCl

in

/I first we set the agenda to what really needs to be computed
for P; C P such that univ.X((a,v),v,P1) is memorized
let U = univ-X((a,v),, P1)
in
safeStates .addf)
agenda .remove()

/I then we perform the needed computations
for ¢ in agenda
is_safe = true
for ¢’ such that accy, (q,q¢")
if ¢ not in beforeCl
is_safe = false
if is_safe
safeStates .add

return safeStates

Figure 5.12: Algorithm computingniv_X((a, v),~, P).

For instance a good trade-off between memory and time copisoimcan be to
store all safe states of all previous siblings of the curleanch. The reason is
that the safe states at openifg, 7) are computed from the safe states at closing
(cl, 7-i), which are the same for all siblings (as they are equal toafeedates at
(op, m)). Thus, if two siblings have the same label and the same adsdmode
state, their safe states are equal.

5.5 Streamability of dSTAs

The EQA algorithm previously described gives®We procedure for evaluating
queries defined by dSTAs, while keeping only alive candsl@aememory. As
a consequence, dSTAs are a streamable query class whemiteegisallow, i.e.
when there is a bound on the depth of valid trees. Qgf;, be the class of
queries of fixed arity: where all expressionse Q are composed of two dSTAs
A,B defining@ 4,5, with the semantic restriction that schenig$s) only contains
trees of depth at most

Theorem 6. For everyd € N, the clasQdsracis m-streamable for alln € N,

Proof. The EQA algorithm requires complete dSTAS, so a first step®mplete
AandB. This can be done in tim@(|X|- 2" - |stat}| - |stat!| + |rul?|) for A, and
similarly for B. Asn is fixed, this is a PIME procedure. Then the precomputation
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step of the EQA algorithm is in ®ME, so we can find a polynomiak, for the
computation of SRAMs\ 4 5 computing@ 4 5.

If we suppose that the concurrency ofis less than a givenn, then
concup, ,(1) + simultsafe,, () < (2" + 1) - m, as we know that
simultsafe,,  (f) < 2" - conculy, ,(t). Hence from Theorerb, the time used
per eventisirO((2"+1)-m-|AJ*-|B|*), and we can find a polynomig} bound-
ing this, asn is fixed. The space complexity is (m - deptht) - |A| - | B]), and
deptht) is bounded byl. Hence a polynomial, bounding the space complexity
exists. O

However dSTAs allow to define queries with unbounded cornay, so they
are notoo-streamable.

Proposition 21. For everyd > 2, the classQdsraiS NoOtoo-streamable.

Proof. We can for instance define a dSHAfor the query selecting all children of
the root, if the last one is labeled hy For this query and any value 6f the tree
t with k + 2 children is such thatoncurnod, , (¢) > k. By Propositiord, Qdsas
IS notoo-streamable for shallow trees containing trees of depth2. 0J

5.6 Conclusion

In this chapter, we have seen that dSTAs enjoy good stredityglsbperties, by
proposing an EQA algorithm using low buffering (close toioyal) while still be-
ing in polynomial. More generally, EQA is time consuming farmerous query
classes. We believe that dSTAs are the good model for effigien stream pro-
cessing, and conjecture that a query class-streamable for alln € N iff there

is a PriME translation to dSTAs. In Chaptér we provide such a translation for
a fragment of XPath, thus proving its-streamability for allm € N,. Finding
oo-streamable classes of dSTAs-defined queries by syntaxtisemantic restric-
tions is an open issue.

Processing XiL streams often implies a tradeoff between time and space com-
plexity. In earliest query answering algorithms, the phjois given to a minimal
space consumption. In the future, we plan to validate ousrdlgn experimen-
tally. For some queries, significant improvements are elggeon space con-
sumption. In this chapter we provided some details on effiac@®@mputation of
safe states. Some further work is also planned, to get as®daita structure for
the set of alive candidates to be buffered. Another chadleago avoid the com-
pletion of the input dSTAg! and B, as the completeness was always assumed, but
the completion requires time (|| - 2" - [stat!| - |stat,|) for A, and similarly
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for B. It will also be interesting to distinguish which querieg &fficiently pro-
cessed. In Chapt&t we give a procedure to detect some of these queries, namely
those having bounded delay and concurrency.

Another future work is to investigate how the EQA algorithambe extended.
We propose three extensions in the sequel. The first possitd@sion is on the
query class. We studied queries defined by dSTAs, but is siplesto adapt
the algorithm for deterministic pushdown automata? Thesrsereasonable, as
STAs are a reformulation of visibly pushdown automata,pieshdown automata
where the letter gives the action (push or pop). Without d&t@sm, we can-
not build a BIME EQA algorithm (by Propositiot8), and determinism, together
with our representation through canonical languages, wareial in our con-
struction. The second extension is to consider other strest and for instance
directed acyclic graphs. These structures models fornostaiML documents
with ID/IDREF links. The third extension could be on the property compined
the algorithm. Here, the property is the safety for selectind rejection. But the
core of the algorithm consists in putting the interestirfgimation from the con-
text (the states of ancestors, typically) into the currégiies so that the algorithm
can use it progressively.
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Streamable Fragments of Forward
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6.1 Introduction

Forward XPath is not streamable, even if restricted to dosdvaxes, as we have
seen in Chapted (Corollary 3). In this chapter, we distinguish fragments of For-
ward XPath that are:-streamability for allm € Ny. A streaming algorithm is
obtained by compilation to dSTAs inTRME. Here, we overcome the difficulty
that Vardi and Wolper’'s automata construction for formusdshe modal logic
LTL [VW94] and thus for XPathl{S08 may produce non-deterministic tree au-
tomata of exponential size. In contrast, our constructiefdg deterministic tree
automata of polynomial size.

This chapter illustrates that dSTAs guide us towards ralekestrictions on
Forward XPath. We conjecture that most of our restrictioresiadeed neces-
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sary for streamability and thus independent of our autormjgpsoach. While our
results can be understood as a proof of concept, they do matoyestitute an
exhaustive treatment with narrow upper and lower bounds.

Our translation will be by induction on the structure of paitpressions. For
simplicity, we consider the fragment of Forward XPath witwthward axesh
andch® only. Our construction requires the following syntacticlaemantic re-
strictions (based on the schema), which define the querygek-Downward
XPath fork € N.

First of all, the usage of intersections needs to be limiduch arise when
translating conjunctions in path expressions. Allowinguabounded number of
conjunctions would correspond to intersecting an unbodmdenber of automata,
and thus require exponential time. As we needrav translation, we limit the
number of branches éfDownward XPath expressions to

Second, non-determinism must be avoided when translagegethdant axis
ch*, since otherwise, simultaneous treatments of all possiatehes may overlap.
Suppose for instance, that we want to construct a dSTA fortla @gpression
ch'::x[F] from a dSTA A for filter F. Then, for each descendant of the root,
we have to rurdg. This can lead to an unbounded number of simultaneous runs
of Ar to be handled by, so thatA cannot be of polynomial size. In order to
avoid such overlaps, we require that all steps with desceradas are guarded
by a node label, i.e., they must have the farim::a[F]. Furthermore, we impose
the semantic restriction, that no tree satisfying the seheray contain nested
nodes. This way, there exists at most aneode per branch of every valid tree,
so that we can check them by independent rungobn all subtrees rooted at
a-nodes. Automatoni starts by looking for am-node, and once such a node is
found, it runs the automatodr in order to check whether this-node verifies
F. When closing the:-node, the automaton checks whether the rumpfvas
successful, and searches for anothode on another branch.if- failed.

Based on these restrictions, we obtain a translatidgrDbdbwnward XPath ex-
pressions to equivalent dSTAs imiRe. Combined with the earliest query ans-
wering (EQA) algorithm for dSTAs of Chapté this translation yields an EQA
algorithm fork-Downward XPath and proves-streamability for alln € Ny, but
not oco-streamable, sincé-Downward XPath contains queries with unbounded
concurrency.

Even thought-Downward XPath is small in that it supports only downward
axes, it is still very expressive, as it allows for conjunos, disjunctions, nega-
tions, and supports-ary queries. The restrictions #fDownward XPath are nat-
ural, in that they avoid overlapping tests of the same filberdifferent matches.
We conjecture that our approach can be extended to furtierar that removing
some of these other restrictions would lead to non-stredityaln the last section
of this chapter, we discuss some opportunities for exteissamd improvements.



Section 6.1 — Introduction 123

First, we present a further restriction érlDownward XPath, that should imply
oo-streamability, and second, we discuss a generalizatitmivarizontal axes.

Related work The idea of translating XPath expressions into automatstfea-
ming XPath evaluation has been proposed for a long timendllind Franklin
[AFOQ] proposed a translation of non-branching downward pathresgions to
word automata on the language of branches. Green eGMJS03 GGM'04]
also use this kind of translation, while allowing branchexgpressions, and using
a stack during the evaluation.

Gupta and SuciuGS038 propose the use of deterministic pushdown au-
tomata, and come up with an algorithm that is closer to ourseims of com-
plexity, the algorithm by Gupta and Suciu requires expaaétime in the size of
the query, as determinization is needed. Only needed phiite @utomaton are
determinized, though, as the algorithm computes it la2ipreover, their frag-
ment subsumes-Downward XPath, as it mainly consists in CoreXPath 1.0hwit
downward axes and data joins.

Compact representations of automata were also invedtigatehe context
of XPath streaming evaluation. Transducer networks arle sampact represen-
tations. They consist in a network of pushdown transdudkeg,are pushdown
automata sending messages to other automata. Translatieemgeral XPath frag-
ments to transducer networks were investigated. Peng aad&he PC04 focus
on XPath with downward axes, while OltearDlf074] translates all of Forward
XPath. Benedikt and Jeffrey\BPJ07 study the filtering case for a fragment of
XPath where matching can be decided at opening (resp. glosine. Benedikt,
Jeffrey and Ley-Wild BJLWOS§ prove that this translation can be done in linear
space and time for a fragment using backward guarded movese lenerally,
all the aforementioned translations of XPath fragmentsaiastducer networks are
in PTIME and yield time-efficient algorithms. However, transducetworks are
not adapted to static analysis, and all these algorithme steeless candidates
in some cases. IBJLWO0§), Benedikt, Jeffrey and Ley-Wild propose to replace
transducer networks by binary decision diagrams (BDBry$6]), as these can
also be used as compact data structures for automata. dtianslof transducer
networks and BDDs to standard automata are in exponential 8o that we can-
not use these representations to getravB EQA algorithm using the algorithm
for dSTAs in Chapteb.

XPath is a navigational language, whose similarities wittdai logics has
been extensively studied.ip06]. LTL, the Linear Temporal Logic, is a modal
logic defining properties over words, using modality oparaiNext Previous
Until andSince A variant of LTL for tree structures, called Tk, has been pro-
posed by Schlingloff$ch92, and XPath expressions can be translated in linear
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time to equivalent Tkee formulas Mar054.

Vardi and Wolper YW94] propose a translation of LTL formulas to automata
in exponential time, for infinite words. This constructioancbe easily adapted
for TLyee OVer finite trees. Libkin and Sirangela$08 propose such a transla-
tion from TLyee formulas into query automatdNE03, i.e. tree automata using
word automata to recognize the languages of labels of @mldifhis translation
also uses exponential time. Calvanese et &IDGLV09] proved recently that
Regular XPath can also be translated in exponential timenedeterministic tree
automata (standard automata ofens encodings of trees). This time, the au-
thors do not use modal logics as intermediate query langlag@lternating tree
automata.

CoreXPath 1.0 has the expressiveness as the two-variablgsdnt of FO
over trees MdROY, and is thus strictly less expressive than MSO and tree au-
tomata. Using the standard techniques for translating M&@ilas to tree
automata Pon7Q TW68] leads to algorithms with non-elementary complexity
[KMVO07, Cla0§.

6.2 m-Streamable Fragments of Forward XPath

We start this chapter by introducing-streamable XPath fragments, far e Nj.
We definek-Downward XPath by imposing semantic and syntactic regines
simultaneously. The expressionsieDownward XPath are pairs of definitions
of n-ary queries and schemas. Schemas are defined by dSTAs anesdue
filters terms withn variables. Using filter terms with variables instead of Famav
XPath expressions is not essential, but has the advantdggirngf more general
while simplifying algorithms. In the remainder of the chaptwe assume that
3] > 2.

6.2.1 Filter Terms with Variables

Let D = {ch",ch} be the set of axis antl a set of variables. Filter terms are
ranked trees with signaturd = {and not true, /,x} U D U X UV as below,
whered € D, € ¥ U {x} andx € V.

T == andTy,Ty) | not(T) | true | /(T) | d(T) | «T) | «

The only additional restriction we assume, is that the dpeyacan appear in root
position only. Terms of the form(7") correspond to root filters and all others to
ordinary filters. Given a tree and a variable assignment: V — nod(t), we
define a set valued semanti&s]; , C nod(¢) for all filter terms in Figures.1
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[/TTe = {e} N [T]ep [d(T)]ep = {n | 37" € [T]e . (m,7') € d'}
[]e={p(2)} [T = {7 | £ € {x,1a0"(m)}} N [T]s
[true],,, = nod(t) land Ty, 75)]e, = [Tille, O [T2] e

[not(T)]:,u = nod(®) — [T,

Figure 6.1: Semantics of filter terms.

T ([self::4]) = £(true) T([d::0]) = d(¢(true))

T([self::t F]) = £(T(F))) T([d::0F]) = d(£(Z(F)))
T([self::0/P]) = £(T([P]))  F([d:€/P]) = d(E(Z([P])))
T([not(F)]) = not(Z(F)) T([F1 and F3)) = and(T(F1), T(Fy))
la]) == T(/P) = /(Z([P]))

Figure 6.2: Filters and rooted paths as filter terms, whlesé self. We assume
the selection position of rooted paths was marked at befm@by a variablér].

In Figure6.2, we map XPath filters and rooted paths using gsedf, ch, ch*}
to filter terms. The translation of filter§(F) is straightforward. Similarly, we
translate rooted paths to filter termsT(R(x)) with a single free variable. We
annotate this variable before translationRdoy using the extra filtefz]. The
translation preserves the semantics: For filters, we have

[[F]]lfilter = Hi((F)Ht#

for all variable assignmenjs For root filtersR, wherex annotates the selection
position, we have

[R(@)]fner = {u(2) | [T(R(2))]e # 0}

6.2.2 k-Downward XPath

Let thewidth of a termT" be the number of its leaves. This corresponds to the
maximum number of conjunctions to be tested simultaneoMgtyhave to bound
this number for our automata constructions (conditidoelow).

Descendant axis are a source of trouble since they are mghlyeterministic.
The query defined by(ch*(x(andx,ch*(a))))) for instance has unbounded con-
currency, since the selectioni@hodes in treeg(b(b(. .. (a) . ..))) can be decided
only when encountering theleaf. This problem is solved by three restrictions:
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All descendant steps must be guarded by a labg], afe., they must all be of the
form ch*(a(7")) (condition3). We impose a semantic restriction on all trees-
ceptable by the schema, stating that no furtheode may be encountered below
ana-node int (condition4). All filters must start at the root, in order to avoid any
implicit descending step (conditio2). Finally, we only consider shallow trees

(conditionb).
Let £ € N. We definek-Downward XPathas the query class containing all
pairs(T'(z1,...,z,), B) of termsT with a sequence of variables, ..., z, and

dSTAs B with signatureX, that satisfy the following conditions:
1. the width ofT" is bounded by, i.e., T has at mosk leaves.
2. T starts at the root, i.€Z) matches some terp(7").
3. if ch*(7”) is a subterm of" thenT” matches some term(7").

4. if ch*(a(T")) is a subterm of " then:

Vt € L(B).Vm, " € lab,(t). 7 # 7’ = —(ch*)!(m, 7)

5. the depth of the valid treesc L(B) is bounded by some constant.

6.2.3 Deciding Membership tok-Downward XPath

A procedure for testing in BRME whether a pair(T(zy,...,2z,),B) is in
k-Downward XPath can be obtained. We first characterize S&ééagnizing trees
of bounded depth, in order to decide condit®n

Lemma 13. For fixedn, it can be decided ifPTIME whether an STAB accepts
trees of bounded depth, i.e., whetRlere N. ¢t € L(B) = deptht) < d.

Proof. To decide whether trees in B) are of bounded depth, we look for vertical
loops. Letdeepbe the relation oristatf )* defined by:

3t € Tx. Ir € runs?(t). A(w, 7’) € ch' (¢).
deeftq:, ;. 42, ¢3) < { ¢ =r(pr((op,m))) A ¢i =r((cl,m)) A
2 = r(pr((op,7'))) A g5 = r((cl, 7))

The relationdeepcan be computed by the Datalog program given by inference
rules in Figure6.3. We use a smooth notation: rules in hypothesis of inference
schemas have to be rulesi®f andacc,,. is the accessibility relation a8 through
hedges on alphabét, as defined in SectioB.4.2 The first inference schema
handles the case wheré is a child ofr. The second one is the recursive case
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op a:y1 aCCyy, op bz aCCyyy, cl by, 8CCHy clavy
T B} q2 44 ds 43 ds a4

deemqh qia q2, qé)

op a:y1 aCCy s, aCCyy, cl aiyp
¢ qs Q4 4 6 q q2, Qs € Stak

deemqh q17 q2, qé) - deemq47 qzlp q2, qé)

Figure 6.3: Inference rules for the definitionagep

for deeper depths. We call a stagmductiveif it can be reached by an initial
state, and a final state can be reached from(if3) is not of bounded depth iff we
can loop betweely, ¢;) and(qi, q;) itself, i.e. iff there exists productive states
q1,q, € statf such thatleedq:, ¢}, ¢1, ¢;). This can be checked inTvE. O

Proposition 22. Given a termil’(xy, ..., x,) and a dSTAB overy, itis decidable
in PTIME depending onT|, | B|, |X|, ¥ andn whether(T(z,...,z,), B) isin
k-Downward XPath.

Proof. Conditions1 to 3 are syntactic, and can be checked miNE in |T7|.
Condition 5 can be checked in ®vE in |B| by Lemmal3. For condi-
tion 4, let D, be a dSTA accepting trees having twenodes in a branch, i.e.:
L(D,) = {t € T | 3, € lab,. ch(x,7’)}. Then, for every label
a € ¥ such thatch*(7”) is a subterm off” for someT”, we have to check that
L(B)N L(D,) = (. This can be done in tim@(|7'| - | B| - |X]). O

6.2.4 Translating k.-Downward XPath to dSTAs

For fixed k€N, we propose a new TME translation of expressions
(T'(xq,...,2,),B) of k-Downward XPath into dSTAs(A, B) such that
(T'(x1,...,x,), B) and (A, B) both recognize the same quepy, 5. The dSTA
B defining the schema does not need translation, and we onlpitterms
T(xy,...,z,) iInto dSTAsA. The translation is correct and inTRIE if B is
such thatl7'(zy, ..., z,), B) isin k-Downward XPath.

For clarity, we first provide a translation of expressiongdnownward XPath
to dSTAs such that the target dSTAs accept non-canonicd:tneariables in/,
may not appear, or appear several times in those trees. iE@uitpose, we extend
canonical annotations. For a tree 7. and a function’: nod(t) — 2¥», let txv
be the tree witidom(t¥v) = don(t) and for all nodesr € nod(t), lab™ (r) =
(lab’(7), v(m)). The semantics of filter terms is extended in the natural \wgy,
changing the semantics of variables V,: [z]:, = {m € nod(t) | = € v(m)}.
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Moreover, dSTAs resulting from the translation are suchtthere exists a run
on every tree ovex. x 2V». STAs having these property are calfgbudo-complete
in the sequel.

Lemma 14. There exists > 0 such that for every expression; (z1, ..., z,), B)

of k-Downward XPath and subterffi of 77, a pseudo-complete dSTAover sig-
naturey x 2¥» with at most(3 - |7'|)"9"(") event and node states can be computed
in time at most: - ([rul| - (5 - |%])"9N(T) 1 |T|) such that for every treec L(B)
andv: nodt) — 2V

txv € L(A) iff e € [T]in

Proof. The proof is by induction on the structure of filter terms. ko {op, cl}
anda € ¥, we writerul}, = {¢g —> ¢ € rul}. In the following, we
assume that dSTAs are stored by a data structure for whiclawérad constants
¢; (1 <4 < 7)such that:

(i). for every pair of pseudo-complete dSTAsl,, A5), a pseudo-complete
dSTA for A; N A, with |stat't | - |stat'2| event stategstat)! | - stat?| node
states and such thatll | = 3= ;o0 oy aes [TUIZL|-|rul2| can be computed
intimec; - [rul’|.

(ii). for every dSTAA, the dSTAA’ obtained by swapping the final statesf
(i.e.,fin" = sta! — fin") can be obtained in constant timg*

(iii). for every dSTAA, the set of rulegs = {1 2“2% g e rult | ¢ €
init} can be computed in timeg - |14].

(iv). for every dSTAA and every(a,v,7) € ¥ x 2V» x stat!, the set of closing

rulesCy = {g1 2“% 4, € rul*} can be computed in time - |C'4).

(v). for every dSTAA and symbok € 3, we can build in constant timg the
dSTA A’ obtained fromA by removing all rules using, i.e. rul*’ = rul* —
(g 297, g, € ruld) 2

(vi). for every dSTAA and symbok € ¥, the set of ruledR4 = {¢ d vk,

¢ € rul*} can be computed in time - |Ra4|.

1This can be achieved, for instance, with one flag for the aatom indicating whether the set
of final states has to be interpreted as its complement.
2We assume in the sequel thgt> 2.
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(vii). for every dSTAA and statesy, ¢1, ¢2, 7, the following sequence of opera-
tions can be performed in constant time addgq, to stat!, add~ to stat/,
setinit® to {¢; }, and sefin® to {¢,}.

Let us now prove the invariant by induction on the structuré’owith ¢ = 5 +

Co + 3+ ¢4 + ¢5 + cg + 3 - ¢7. The time needed for building a rule (given all its
parameters) and adding it to the set of rules of a dSTA is ssgrpto bel in the
following.

CaseT = and(T},T»). Let A; be the pseudo-complete dSTA for and A, the
pseudo-complete dSTA fod,. Let A be the product of the two, such
that pairs of final states are accepting, and pairs of ingiates are ini-
tial. A recognizes the correct tree language, as for all trees.(B) and
v: nod(t) — 2V

txv € L(A) < txv e L(A)) A tiv € L(Ay)
& ee [Ny N €€ [To]in by induction hypothesis
& €& [[T]]t,u

A is deterministic and pseudo-complete sineand A, are deterministic
and pseudo-complete. The number of event statesisf

sta| = |[stag"|- |stat®|

(3 - |Ty|)Matn(TL) . (3 . | To|)Wet(72) by induction hypothesis
(3 |T|)Wldth T1) . ( |T|)Width(T2)

(3 |T| )Wldth T1)+width(7%)
(

3. |T|)Wldth

and similarly for node states. Building consists in building4d; and A,
(which can be done in time- ([rult| - (5 |X])V9NT) | Ty]) + ¢ (Jrul2| -
(5 - |S|)Wdth(Z2) 1| T5|) by induction hypothesis) and thenfrom these two
dSTAs, which can be done in timg - |rul| by condition(i). Hence the
total time for buildingA is:

c-([rul |- (5[ 32]) T 4| T3 )
+ e(|rul2 |- (5:[3) T LTy ) + - frul ]
=0 + (|11 +|T3]) + cr-|rul?|

VAVARVANIVAN |

with
O = cx(Jrul] (5[]
e ([rule]- (5[] en)
< (|ru|A1| + |ru|A2|) (5 |Z]|)Wi°'th(T)_1 aswidth(7")—1 > width(7;)
< |ru|A| [rul A1 |+ [rul 42| (5- |Z|)Width(T)71
<

[rul4|

c-|rul|-4- || (5-| ) width(T cf below
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For the last inequality, we know from conditiofi) that |rul?| =

Zae{op,cl},aeE |ru| - rul#2 2 |. By grouping by actions and letters, we get:
A 2] Irul A1 | rul A2 |  Saciopel)ees Ila k| Hlula?
|rUIA‘ ZaE{Op,Cl},aGE ‘rUIg} HrUI 2 ZaE{Op,Cl},aEE ‘rUIS}aHrUIa,a
|ru| |+\ru|
— Zae{op,cl},aez \rul s ‘ \rul 4 |Z|

Note tharul;,| > 0 and|rul;2| > 0 asA s pseudo-complete. Finally, the
total time for computingd is:

O+ C(|T1| + |T2|) + Cl"rU|A|
<O+ C|T‘ +cy- ‘rU|A| aS‘T|:|T1H—|T2H—1
< c-|rul?|-4-]2)-(5 |E|)W'dth(T + ¢|T| 4 ¢;-|rul?|
< e (rul (5 B)) "D (4-[32]) + <) + |T)
< e (|rul (5" (4[] + ) + |T)
< e(Jrut?]- (5|15 5)) + [7])

(Irul™[-(5

as? <2 < X
< c-(Jrul? |- (5[5 | T))

CaseT = not(T"). Let A’ be the pseudo-complete dSTA built fof. Let A be
the STA obtained fromd’ by swapping the final states, i.e.:

stat! = stat init* = init? rul4 = rul?’
stat! = stat” fin? = stat) — fin"
A’ is deterministic and pseudo-complete SO we get:

"D g [T, o ee [Tl

tiv € L(A) &  tiv ¢ L(A)
The number of states of is:
stat!| = |stat)’| < (3-|7"|)VW9N(T) by induction hypothesis
< (3 . |T‘)width(T’)
< (3 . |T‘)width(T)

and similarly for|stat'|. By induction hypothesis, building’ can be done
intime c - (Jrul®’| - (5 - |2|)W9NT) 4 |77]). By condition(ii), the time for
building A from A’ is bounded by:,, so the total time for building! is at

most:
e ([rul| - (5 [Z)YET) | T7)) + e
= c-(jrul?]- (5 |E|)W'd”‘T' +[T7]) + c2
= c-(jrul?] - (5 |SWENT) L T")) 4 ¢, aswidth(T) = width(T")
< e (jruld] - (5 ST 4T ) 4 ¢ ase > ¢y
< e (jrut?]- (5 IEI)W"’”‘(T’ + (1" +1)
< c-(rul?]- (5 - |Z])WENT) 4 7) as|T| = |T"|+1
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CaseT = true. As [true],, = nod(t), A is universal, and we can build as

follows:
aeX vCV, ac{opcl
stat! = stat! = init* = fin" = {1} PROE] {A )
1 ———=1¢€rul

Obviously, |stat!| = |stat!| < (3 - |T'|)@(T), Building A requires time
at mostc; for setting the states (by conditigwii)), plus time|rul#| for the
rules, so a total time of:

rul?| + ¢

([rul?] 4 1) asc > ¢,
S([rul?] - (5 - [S))WED 4 1)

S(rul?] - (5 - 2" 4 |T7))

rul| 4 ¢;

VA VANVANRPVAN
oo o o

CaseT = /(1"). By definition,e € [T];, < € € [T"]:, so we can keep the
automaton fofl”.

CaseT = ch(7”). Let A’ be the automaton built fdf’. The automatom for T
has to launckd’ when opening each child of the root. Here we need three
additional event statestat! = stat!’ w {start 0, 1}: startis only used as
initial state, to detectop, ¢), while 0 and1 are used between the children
of the root, to propagate the detection of matchingit = {start} and
fin® = {1}. We also need two new node states, in order to pass informatio
about matchings through children of the rostat' = stat w {0,1}. We
detect the last everttl, ¢) by the fact that we close from an event state in
{0, 1}, if the root has children. Otherwise, we close in statso the run
will not be accepting. We define the rules 4fby the following inference

schemas:
ace¥X  vCV, opening the root:
start 2 (a,v):0 0 move to0
g 2 el g einith be {0,1}  opening a child:
a,v): b i !
b op (a,v) 0 start testingl’

” a (a,v)y g € rulA/

: run test of7”
a (a,v)y

g —— Q2
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cl (a,v):y Al . A
¢ ——— ¢ € rul ¢ € fin .
) @)y ! e initA b €{0,1} failure of "
il ¢ €U | ~|ih no new match
@ cl (a,v): b
g L0 el g € fin®
op @)y a ! initd »€{0,1} success of”:
il 7 €U @ move tol
cl (a,v): b
qGq — 1
acl vCV, b e{0,1} _
ol (a,0):0 closing the root

b b

A is deterministic. The fact that all axes Th are downwards permits to
decide, when closing a child, whether this child matchésBy a left-to-
right induction on the children of the root 0% v, we can prove that the run
r of Aontxwv assignd to (cl,7) if there is an accepting run of on a child

j (with 1 < j < j) of ¢, and0 otherwise. As this Boolean is kept when
closing the root, and is set toif there is no child, we have:

a(ty,...,tg)xve L(A) & N <i<k.txy € L(A)

"L 31 < <koee [T,

= € € [[T]]t’y

wherey; is the restriction of to nodes of;. Moreover, we just introduced
three event states:

S| T')Weth(T) 3 by induction hypothesis
. |T/|)width(T) +3

. (|T’| + 1))width(T)

X |T|)Width(T)

|stat)| = |stat’| + 3

VANIVANIVANIVA
W W W w

and we only introduced two node states, which is even loweteims of
time cost, we have to prove that every new rule is built in tamistime.
This is straightforward for the, rules operating at the root. By condition
(i) , thens rules for opening a child are built in timg-n,. For thej-th rule
among thesey, rules, we can computg; rules with corresponding labels
and node states in timg - p;, according to conditiofiv). We include inc,
the cost for testing whether the target state is final. Mozedwne time for
adding the new states &tat! andstat', and setting initial and final states
is bounded by3 - ¢7, according to conditiorfvii). Let © be the time for
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computingA’ and for setting initial and final states:

0 = c-(JrulY|-(5-]%])NT) 1 |T"|) 4 3-¢; by induction hyp.
< e (Ul (5 IS)MT) L7 1) as3er < o
< e (Jrul? (5| S])WidhT) | 77)) as|T|=T"|+1
< e ([rul? (5|2 )WdT) 7)) aswidth(7") = width(T)

The total time for buildingA is:

O +ny+c3-ny +Zl§j§n2 €4 Pj
=0 +n +03'n2+c4'21§j§n2pj

S @ + (C3 + C4) : (nl + To + ZlSJSNZ p])
§@+c-(n1+n2+21§j§n2pj) ascs +c4 <c

< c-([rul |- (5:[ ST 1 |T| 4y + ny + 32, p;)  cf above
< e-([rul]- (5- )M 4y oy + Zlgjgng p; +|T1)

< (Il g 12+ 30, < e, ) (5[ 2N [T

< c([rul?]-(5-|%])Wen™) 4 |7)) cf below

The last inequality holds becaugal”| = |rul?'| + n; +ny + D 1<j<ny Pi-

CaseT = ch*(T"). By condition3, 7" = a(1") for somea € ¥ and filter term
T'. Let A’ be the pseudo-complete dSTA constructediforWe define the
pseudo-complete dSTA for 7" as follows:

stat! = stat!’ v {0, 1} init* = {0}
stat! = stat’ w {0} fint = {1}

In event staté), automatond searches for an-node matching’, while in
event statel it has found such a node. Node statés used everywhere
except below:-nodes. At every time point there is at most eirode to be
considered, by conditios.

be¥X—{a} vCV, «ac{opcl} _
a (b0):0 wait for a-node
0 ———0

g —BT (@) @ erul? g einit?

0 op (a,v)y "

find a-node: start testin@”

be X —{a} Q1MQQ€rU|A/

a (bv)y
q1 —> q2

run test of7”
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I (a,v): / Y
g 0 e rulh g, o find

: failure of T": restart
cl (a,v):y
——0

0
| (a,v): / . Al
g 27 0 @erl? g efind

success of”
cl (a,v):y
—1

q1

be¥ vCV, a«ac{opcl} _
@ (b,0):0 filter T" successful
1 ——1

Now one can show how to construct a runfor all trees verifying con-
dition 4 such that € [717;,, and vice versa, if there exists a successful run
of A on some tree « v verifying condition4 thene € [T7];,,.

One reason for which this works is thdt is pseudo-complete, so that the
run for 77 can always be continued. No matchwotan be missed, since
no node above is labeled bya (condition4). The only reason to move
into a state different frond before opening the-node is anothet-node

on the left. Either the run of” there succeeds, and the automaton goes
into the universal state, or else, it finishes but fails, and returns back into
statel, so that new:-nodes can be tested. Automatéms deterministic, by
determinism ofA’ and the inference schemas defining its rules. Moreover,
A is pseudo-complete by construction. We obtain the follgwmaomber of
states:

statt] = [stat! | +2 < (3 |77 4 2 — (3. |77])0T) 4 o
< (3 . |T‘)width(T)

sta] = [sta’| + 1< (3 77T 4 1 = (3. 7| WeD) 4 1
S (3 . |T|)width(T)

The time cost for buildingd can be decomposed as follows. Each of the
ny rules waiting for arm-node, or propagating that filt@f is successful, is
generated in constant time. From condit{@i) , then, rules used when an
a-node is found can be built in tim& - n,. The rules for testing” are
constructed in times, according to conditiolfiv). Thens rules used after

a failure or success df’ are generated in time; - n3, by condition(vi).
Finally, the time needed for settirsgat, stat?, init* andfin” is bounded
by 2 - ¢, by condition(vii). Let © be the time for buildingd’ plus the time
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needed for settingtat!, stat!, init* andfin®:

O = c-(Jrul|-(5-|2)WINT) 1| T'|) + 2-¢; by induction hypothesis
< e ([rul) (5 BWENT) T +1) as2-¢r < e
< e (Ul (5[] ) as|T| = T'] +2
< e ([rul? (5| S )WdhT) 7)) aswidth(7") = width(7”)

The overall time cost for computing is:

©O+ny+c3-ng+c5+cg-ns
< O + (Cg + c5 + CG) . (TLl + no + TLg) asni+cs < nj-cs
<O +c-(ng+ns+ng) ascs+cs+cg<c
<c- (|ru|A/\-(5-\Z\)Width(T) +mny+ny+n3+|T|) cfabove
<c- ((|ru|Al\ + 1y + ng + ng)-(5-| X )MANTD) | T7))
< ¢ (rul?|-(5-|%| )W) 1|7 cf below

Here we supposed that + c; < n; - ¢5, which is true as;, = (|X] —
1) - 271 > 2 andc; > 2. The number of rules oft is exactly: [rul?| =
Irul?’| + ny + ny + ng, which justifies the last inequality.

CaseT = ((1"). Let A’ be the automaton built fdf”. If ¢ = x then we can take
A = A'. Otherwise/ = a € X. We can buildA from A’ by adding one
event staté) and one node state The event staté is a sink state. When
opening the rootA checks whether it is labeled lay If this is the caseA
performs the run of’ until the end. Otherwiseq goes to the sink state

stat' = stat!’ v {start 0} init* = {start}
stat! = stat” v {0} fin! = fin?’
op (a,v):y A Y
— ¢ € rul € init .
n & oo o n opening aru-root
start ——— ¢

be ¥ —{a} vCV,

start 22220

opening a-root, withb # a

bey Q1M>QQEI’U|A/
a (byv)y
G — q2

beX vCV, _ _ .
o (b:0)0 sink stated is universal
0 ———0

test7”
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The number of states of is:

‘Stat_ﬂ |stag4 ‘ 192< ( |Tl|>WIdth (T") 192 = ( . |T/|)width(T) +2
( |T‘ )WIdth(T)
( |Tl|>WIdth (T") 41 = ( . |T/|)width(T) +1

( |T‘ )WIdth(T)

In order to buildA, we have to go through the, rules of A’ starting from

an initial state. This can be done in timg n,, according to conditiofiii) .
Copying rules ofA” has no cost, as we transforAi to A. Then, rules for
opening a-node and for the sink stafecan be built in timex;. The event,
node, initial and final states can be set in titne; by condition(vii). Let©

be the time needed to buildf and to set event, node, initial and final states:

stat!] = [stag| + 1

IN I/\ IAINA

O = c- (\rul""|~(5-|2|)width (") + IT'|) +2 - ¢; by induction hypothesis
< OUM”HMMWWW-HN) as|T'| = |T"[+1
< e ([rul)- (55T 4| 7)) aswidth(T)=width(7")
The overall time cost for buildingl is thus at most:
O+ c3-ny+no
< O©+cz-(ng+ng)
< @+c-(n1+n2)_ ascy < c
< e (JrulY|(5+| ST 4y g + |T])  cf above
< e (| 4 ny 4 no)-(5:[ )W) 4 |7))
< e ([rul] (5[5 )W 4 | TY) cf below

We havelrul| = |rul®’| + n, + n,, so the last inequality is true.

CaseT = z. Suppose that the root of the tree is labeled by(a, v). Then the
automatonA only needs to check that € v. We can do it using only two
event states (ag must be pseudo-complete).

stat! = {0,1} init* = {0}

stat! = {0} fin' = {1}
q€{0,1} a € X vCV, )

op (a,0):0 at opening, go to

—— 0

q€{0,1} a€ v CV, TEV _ _
ol (@) 0, atclosing,gotd if z € v

g€{0,1} a€¥ wCV, xdv _ _
ol (a0):0 at closing, go t® if = ¢ v
— 750
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A is deterministic and pseudo-complete, and the correcisessnediate.
The number of states verifies the desired property:

|stat!] = 2
stat!] =1

< (3 . 1)1 — (3 X |T|)width(T)

< (3 . 1)1 — (3 . |T‘)width(T)

Building each rule ofd is done in timel, and setting the event, node, initial
and final states is done in tin2e c¢; by condition(vii), so we can build4 in

time:
rult[+2-¢; < |rul?| +¢ as2-c; <c
< c-(jrut|+1)
< c-(jrul] + |T) as|T| =1
< e (ruld(5-[5)WET 4 7))
This completes the proof of Lemnia. O

In the sequel we extend the definition of canonical trees € Ts,ov. built
from a treef and tupler € nod(¢)". We define canonical trees 1 from ¢ and an
assignment : V,, — nod(t) in the natural wayt * p = t * (u(z1), ..., u(x,)).

Theorem 7. Letk andn be fixed, and let assume that| > 2. Given an expres-
sion(T(xy,...,x,), B) of k-Downward XPath, a pseudo-complete dSTAver
signatureX x 2¥» can be computed in polynomial timd¥ |T'|?* - 30% - |Z|*1 . 67)
such that for every treec L(B) andu: V,, — nodt):

txue L(A) iff €€ [T,

Proof. Let Ay be the pseudo-complete dSTA obtained fbrin time c -
(Jrulo|-(5-|S|)Wdh(T) | T|) by Lemmal4. By conditionl, width(T') < k, and
we have|statle| < (3 -|T|)* and|stat’| < (3 - |T|)k. As 4, is a deterministic
STA over alphabet x 2", [rul?| is in O(|statl®| - |statle| - |2] - 2"), S04, can
be computed in timé&((3 - |T])?* - 27 - 5% . |[S[k+1),

To obtainA from Ay, it suffices to intersect, with the dSTAC, that recog-
nizes canonical trees, i.e. trees over signallise2"» where every variable o,
appears exactly once. We propose the following constmdtoC, that simply
collects read variables at opening time:

staf=2""  init°={0}  fin"°={V,}  staf={}

a € v,v' CV, vNv =10 a € vV CouCV,

o) ,’:_
UMH)UU’EMIC

@ e rulC
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We can build” in time O(]X] - 3"): For opening rules, choosingandv’ consists
in determining for each variable € V, whetherz € v — v/, x € v — v or
x ¢ vUv'. Similarly, for closing rules, we have to choose whethet v — ¢/,
zev,orx govuU.

Let A = Ay N C. A accepts canonical treés« i whereyu: V,, — nod(t).
For such a tree¢ and assignment, we know by definition of operato¥ that
txpu € L(A) & tx(u™') € L(Ay). From the definition ofdy, tx(u!) €
L(Ay) & € € [T

The time for buildingA is the time for buildingA, and C', and the cost of
intersecting them. Buildingl, is in time O((3 - |T'[)?* - 2 - 5% - |3S[*1), and
building C'in time O(]%| - 3"). For the intersection afi, andC, we have rul*°|
inO((3-|T])% -] -2"), and|rul®| in O(|%| - 3"), so their intersection is in time
O(|Z]2- 6™ - (3 - |T])**). Hence the total time for building is in O((3 - |T|)?* -
(27 5% |S|FL |32+ 6")), which is alsaO((3 - |T|)?* - |21 . 5% . 67), and thus
O(|T )% - |3|F+1. 30k - 6m). O

6.2.5 k-Downward XPath is m-streamable for everym € N

Theorem 8. For every fixedk,n > 0, the query languagé-Downward XPath
restricted ton-ary queries isn-streamable for alin € N,.

Proof. Let (T'(xy,...,x,), B) be an expression df-Downward XPath, which
consists of a filter term¥” with n variablesz, ..., z, and a dSTAB over X..
Let @ be then-ary query defined b{'(z4, ..., z,), with the schemd.(B). Let
A(Q) be the algorithm that first applies the algorithm of Sec#o?.4in order
to translatel’'(zy, . .., z,) to a pseudo-complete dSTA with signature® x 2V»
in PTIME, completes it (also in BRME for fixed n) and then applies theTivE
precomputation of the query answering algorithm of Chaptes build an SRAM
M computing@. Letp, be a polynomial bounding the time of these steps.
The algorithm of Chapteb has the following costs per step (Theor&n
O((c+1)-|Al*|B|?) intime andO(c-d-|A|-| B|) in space, where = concur(t),
i = simultsafe,(t) andd = depth{t). Letm € Ny, and suppose that < m.
Then, as < 2" - ¢, |A| being inO(|T'|?*), andd being bounded by restrictidh
there are polynomialg, andp, such that for every event of every tree L(B),
SpacéA,t) < p(|T|-|B|) andTimeg A, t) < po(|T| - |B]). Thus, the query class
is m-streamable fopy, p1 andp,. O

The concurrency ok-Downward XPath expressions is not always bounded,
however, so that streamability fails by PropositnEven thoughn-streamable
for all m € Ny, we can define queries with unbounded concurrency in
k-Downward XPath. For binary queries, counter examples asg 8 construct.
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For instance, the query(and(ch(a(z)), ch(b(y)))) selects alla, b) pairs in trees
c(a,a,a,...,b) but nothing in trees:(a,a,a,...,a). This shows that an un-
bounded number of partial candidates may be alive, wheng thel first com-
ponent is instantiated to somenode. The previous example can also be adapted
to the monadic case, with the expressjgdandch(a(x)), ch(b(true)))). With the
same trees, we also prove that this query has unboundedrcency

In many practical use cases-streamability suffices to ensure the existence
of efficient algorithms. Consider for instance a bibliodragdile, where every
child of the root describes a book. Consider also the qqetiiat looks for co-
authors of a given authar. The concurrency of) may be unbounded, as we
can read an unbounded number of authors under a book, befacking an:-
node. However, in practice, the number of co-authors is &wl queries inn-
streamable query classes, wheteis greater than the maximal number of co-
authors, can be processed with polynomial per-step spatctmaea cost.

6.3 Beyondk-Downward XPath: Prospective Ideas

In this section we propose two extensionskeDownward XPath. The first one
limits the concurrency, in order to obtain an-streamable fragment of XPath.
The second extension adds horizontal axeandns'. This section intends to
provide prospective ideas for future work. Most results arenot proved and
should be considered as conjectures.

6.3.1 oo-Streamable Fragments of Forward XPath

In TheorenB, we proved that-Downward XPath ign-streamable for alt, € N.
As previously mentioned, it is however net-streamable. However, restricting
k-Downward XPath to queries of polynomially bounded conency would be
sufficient.

Theorem 9. Every fragment ok-Downward XPath having polynomially bounded
concurrency isxo-streamable, for every € N.

Proof. By PropositiorB and hypothesis, it suffices to show that there exist polyno-
mialspg, p; andp, such that for alin € Ny, k-Downward XPath ign-streamable
with po, p1, p2. We need to prove that polynomialg, p; andp, used in the
proof of Theorem8 are independent frorm. This is obviously the case for
po- The concurrency is polynomially bounded (by hypothesss)there exists

a polynomialp such thatconcuy, (t) < p(le|) for all t € Ts and all expres-
sionse in k-Downward XPath. Ife = (T'(x4,...,z,), B), then by Theoren?,
T(x1,...,z,) can be converted inTME into a dSTAA recognizinglr(;, .. z,)-
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Hence there exists a polynomigllsuch thai A| < p'(|T'(xy,...,x,)|), and we
can find polynomialg,; andp, such that for every expressiofi(zy, ..., z,), B)
of k-Downward XPathSpaceA,t) < pi(|7(x1,...,z,)|-|B]) andTimg A, t) <
p2(|T (21, ..., x)|"| Bl). O

Thanks to downward axes and guards o axes, every branch of
k-Downward XPath queries only has at most one match at a titms.ig however
not sufficient to bound concurrency. We propose two additisats of conditions,
in order to obtain a fragment of -Downward XPath with boundedcurrency.

Variables below negation In the sequel we calpositionsthe set of nodes of a
termT. A negativeposition is a position with an odd number of strict ancestors
labeled bynot An or -position is a negative position labeled agd

Variables in negative positions raise trouble. Consideirfstance the query
/(andnot(x), ch*(a(true)))) which selects all nodesthat are not the root, if the
tree contains am-node. This query has unbounded concurrency. The problem
is variablex which occurs in negative position, so that it does not haveaatch
the current position. We have to forbid variables in negapwsitions all over
(condition7 below). Note that the selecting position in CoreXPath 1jiressions
is always positive, so this restriction is quite natural.

Variables in disjunctions are a further source of troubla. iRstance, consider
the query defined by(or(ch*(c(and(x, ch*(a(true))))), ch*(b(true)))) which se-
lects all nodes in tree(a(...(a(b)))), where the second branch becomes true
independently of the value of variabten the first branch. A streaming algorithm
can decide selection only at the end when opening4leaf. Thus this query has
unbounded concurrency. This query can be expressed in alectof Forward
XPath, by using conjunction and negation. We need to impuestedil choices of
or-positions contain the same variables (conditpn

Variables below axes or label tests in negative positioise teouble. Consider
for instance the query: for allnodes there existstachild which is selected, i.e.,
/(not(ch*(a(not(ch(b(x))))))). This query selects all-nodes in tree:(c,. .., c)
but notinc(c, ..., c,a(b)) where it selects theé-node. Thus, none of thenodes
is safe for selection before the end, i.e., the concurrehtheauery is unbounded.

In order to avoid this, we have to forbid variables below aoenices of axes (resp.
label tests) in negative position (conditi8h This again is satisfied by all paths
of CoreXPath 1.0.

Variables below conjunction Queries using conjunctions may have high
concurrency. Consider for instance the query defined by th@ession
/(andch(a(z)), ch(b(true)))), that selects alk-children of the root, if the root
has ab-child. It selects alle-nodes on treé(a, ..., a,b) but nothing on tree



Section 6.3 — BeyonHd-Downward XPath: Prospective ldeas 141

b(a,...,a), and thus has unbounded concurrency. This query implitétys
among siblings of nodes. We can avoid this effect by forliiddaxes between
and-positions and variables, as expressed by cond@ibelow.

Weak k-Downward XPath Let V(7') be the set of variables used in a term
T. The query languag®/eaki-Downward XPathprovides all pairgT, B) of
k-Downward XPath that satisfy the following further restioos:

6. all or-positionp of 7" with choicesT’, . . ., T,, satisfyV(71) = ... = V(T,,),
i.e. use the same variables.

7. variables appear in positive positions only, i.e.laif’ (p) then there is an
even number ofotlabeled positions aboye

8. on the branch of a positignlabeledr, there is no negative position labeled
by an axisd or a label test.

9. no position labeled by an axiscan have both a descendant, labeled by a
variablez, and an ancestor, labeled agd

We conjecture that monadic queries in Wéakownward XPath have con-
currency at mos®, and thus that Monadic WeadkDownward XPath isoo-
streamable.

6.3.2 Adding Horizontal Axes

In this section we propose some ideas for dealing with hatadoaxesns and
ns‘. The major difference with downward axes is that selectiomoales (or their
validity w.r.t. to a match) cannot always be decided at cigsime.

Deciding at Last Siblings A solution is to postpone this decision to the closing
time of the parent node. Indeed, suppose that we want to knogther a node
7 € nod(t) verifies a filter ternf’, i.e., whetherr € [T]; .. Then, as we only use
axesD = {ch ch*,ns ns‘}, the validity ofr € [1;, can be decided when all
right-siblings ofr and their descendants have been seen. The earliest tinte poin
where we know that all this region has been read is at closi@agparent ofr.

In order to maintain a RME translation to dSTAs, we need to still have at
most one match to compute at a time. This implies some updatesditionsl
to 5. For instance, label guards must be imposed for lmbthand ns, and if
such a guard symbalis in 7', thena-nodes are forbidden among right-siblings of
a-nodes, and their descendants.
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k-Forward XPath We define an extension df-Downward XPath with axes
D = {ch,ch*,ns ns‘}. Fork € N, k-Forward XPathis the query class containing
all pairs(7'(zy, ..., x,), B) of termsT with a sequence of variablés,, ..., z,)
and dSTASB over alphabek verifying the following conditions:

1. the width ofT" is bounded by, i.e., T has at mosk leaves.
2. the termT starts at the root, i.€Z; matches some terf(7”).

3. if d(71") is a subterm of", with d € D, thenT” matches some tera(7"),
with a € .

4. if d(a(T")) is a subterm of’, whered € D, then:

o # T,
Vt € L(B). V7., 7, € lab,(t). Br € nod(t). { A (7., 7) € (ns)!
A (m, 7)€ (ch')t

5. the depth of the valid treesc L(B) is bounded by some constant.

All conditions are identical to those éfDownward XPath except conditions
3 and4. Condition3 imposes a label guard below every axis position. If such
a guarda appears irfl’, then conditiord forbids a-nodes among descendants of
right-siblings of anotheti-node int € L(B). Hence, before testing a new match
for the a-position, we can decide the validity of the previous matchthis a-
position.

We conjecture that the algorithm translatikgpownward XPath expressions
into dSTAs in BIME can be easily adapted teForward XPath. The only treat-
ments to change are those for axes, ilé+~ d(a(7")). Instead of running the
automaton forl” until closing thea-noden, we have to run it until closing the
parent node ofr. If this holds, this would also mean thatForward XPath is
m-streamable for alln € N,.

Let Weakk-Forward XPath be the fragment bfForward XPath with the ad-
ditional restrictions to 9 of Weakk-Downward XPath. We also conjecture that
Weakk-Forward XPath isxo-streamable. Moreover, membershipitd-orward
XPath and Weak-Forward XPath can be decided imIiRE.

Discussion on Improvements The restrictions ofc-Forward XPath are quite
strong. Consider for instance the que€y; defined by the expression
/(ch*(a(ch(b(x))))), and the queryy), defined by/(ch"(a(ns'(b(z))))). Query
(), selects alb-nodes having an-node as parent, where&s selects alb-nodes
having ana-node as previous sibling. Ik-Forward XPath, for both queries, no
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a-node can appear among next-siblingspéind their descendants. FQs, for-
biddinga-nodes among right-siblings efnodes avoids unbounded concurrency,
as for instance in tree(q, . . ., a,b). Nevertheless, this is useless gy, as the
subtermch(b(x)) belowch®(a) looks for matches only in descendants:iafodes.
This would justify to introduce a notion afcope wherescopé(7") would
contain the region from which the truth value of € [T7];, depends. In
the previous examplescopé (ch(b(x))) would contain children ofr, whereas
scopé(ns(b(z))) would contain all right-siblings of. Hence, instead of forbid-
ding a-node in right-siblings and their descendants whér(7")) appears irl’,
we would forbida-nodes only irscopé (7”), for all t € L(B) andr € lab,(t).

6.4 Conclusion

After non-streamability results on Forward XPath in Cha@tewe presented in
the present chapter the hierardpownward XPath (fok € N) of query classes
enjoying streamability properties. To prove these propgrive provided a trans-
lation to dSTAs in RIME. We also proposed some insights far-streamable
extensions, and for extensions allowing rightward moves.df€cuss in the fol-
lowing some further possible improvements and open islated to these frag-
ments and their translations.

The first question is whethérForward XPath can be enlarged, while remain-
ing m-streamable for alln € N,. In our translation we excluded one forward
axis: thefoll axis. We conjecture that adding this axis is not a problenhe t
translation, as the end of scope for this axis is always wherradot is closed,
which can be easily detected. However strong restrictiongatid trees will have
to be added, as the presence of a $tdpa will impose that there is at most one
a-node per valid trees. About extendikegForward XPath, an open question is
the definition of a necessary and sufficient criterion on FodwPath fragments,
that ensures BME translation to dSTAs.

Concerning Weak-Forward XPath, we conjectured that restrictigto 8
imply bounded concurrency, whereas polynomially boundattarrency would
be sufficient for beingo-streamable. This leads to an open question: can we take
weaker restrictions and remain polynomially bounded?

One may also want to improve the proposed translationkf@ownward
XPath, in order to infer assertions at their earliest positand thus get an au-
tomatonA being earliest, like=(A) in Chapterb. In order to obtain this property,
the algorithm has to take the schema into account, as it wifietimes have to
infer assertions before their corresponding ends of scapspme subterm af
might be unsatisfiable or always satisfied for every contionaof ¢ x 1 beyond
the current event. It is also open whether this could be diugeatly.
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Another question is whether we could get better query arneg@igorithms
without translating the XPath expressions to dSTAs, buteratvorking directly
with the XPath expressions. We are not optimistic about sogirovements,
as dSTAs are close to the implementation level oflXstreaming algorithms,
and in our translation, only relevant information is storetb the states of the
automaton.
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7.1 Introduction

The classQds1as Of queries defined by dSTAs where valid trees have depth at
mostd is m-streamable, for alln € Ny. Qdgrasis however nobo-streamable,
as it contains queries of unbounded concurrency defined Iayl si8TAs. The
m-streamability ofQ4<, means that queries in this class can be efficiently evalu-
ated, when the concurrency of queries w.r.t. input treesialsr thanm. Hence,
bounding the concurrency of queries w.r.t. all valid treesuges efficient evalua-
tion in streaming mode. LeD%S,,. be the subclass aDisa containing queries
having concurrency at moston all valid trees. By Propositio8, Qﬁ’SCTAS IS oo-
streamable.

In this chapter, we prove that it can be decided in polynotma¢ whether a
guery defined by a dSTA has bounded concurrency on all vaastrand whether
for a givenk, the concurrency is bounded by This provides an efficient proce-
dure for deciding whether a query belonggggms.

To establish that boundedness for concurrency is decidalffeiIME, we use
automata techniques. We start with the case of queries ocvetsywdefined by
standard deterministic word automata. Bounded (afdunded) ambiguity of
word automata is known to be decidable imi®®e, as studied for instance by
Stearns and HungH89, Weber and SeidMvS86, or more recently by Allauzen
et al. [AMRO08]. We transform automata defining queries to non-deterriinis
automata, whose ambiguity is exactly the concurrency ofigeeHence, we lift
the decision problem from bounded concurrency to boundduigarty.

For trees, however, this method cannot be used directly. Mdese to use
recognizable relations, as studied by Tison for rankedstf€s90 CDGH07),
and recently investigated by Benedikt et @8LD2, BLNOQ7] for unranked trees.
A relation between trees is recognizable if the set of oysrlaf tuples in this
relation is recognized by some tree automaton. Concurreimyeries defined by
automata can be expressed by recognizable relations. Welsiw to define the
relation capturing concurrency by first-order formulaswiree-valued variables,
from the automaton defining the query. Our reduction isTiMZ if we assume
determinism, since we only use a restricted class of firdéioflormulas in prenex
normal form, where all quantifiers are existential. Note tpaantification over
trees (instead of nodes of trees in MSO) allows us to expreagdirect manner
properties of queries to be checkedalhcontinuationsof the stream.

In order to obtain our PME decision procedure, we prove that for fixed
bounded and:-bounded valuedness of binary recognizable relations eatieb
cided in polynomial time even when the automaton definingréhaion is non-
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deterministic (wherk is variable, it becomesXTIME-complete). The valued-
ness of a binary relatioR is the maximal number of trees that are in relation
with the same tree,; in the first component, i.e. such that,¢,) € R. For
bounded valuedness, we reduce the problem to the boundeedvedss of tree
transducers, studied by Seidl i84i99. For k-bounded valuedness, we use the
equivalence between operations on relations and opesatimautomata.

In [BLO2, BLNO7], Benedikt et al. define two extension operators (downward
and rightward) plus an operator checking that a relationnslabeling (i.e. re-
lates trees with the same shape). They prove that a relati@ognizable if and
only if it can be expressed by an FO formula, using these oparas predicates.
Compared to this work by Benedikt et al., our results on \@hgss are new.

In addition to concurrency, we are interested in the maxuhetdyof a query,
for which we obtain similar decidability results. For moragueries, the delay is
the number of events between reading a selected node, ardrfest time point
from which its selection can be safely decided, i.e., fromclvlany continuation
of the stream will select it. For-ary queries, we start counting when the tuple
becomes complete (as it cannot be output before).

Bounded delay is interesting for two reasons. First, thaydef a query mea-
sures quality of service, whereas the concurrency measwaaemory require-
ments. It bounds the waiting time for selection, in terms vimber of events.
Second, bounded delay implies bounded concurrency, foediogueries. More-
over, the delay of a query is easier to characterize thawitswarency. Hence, for
guery over words, we give a direct procedure for computiegigiay. For queries
over trees, bounded delay can be decidedtimB when the arityn of queries is
variable, whereas we have to fix it for deciding bounded caoeagey in PriME.

For n-ary queries, delay and concurrency are incomparable. Ayquéh
bounded concurrency but unbounded delay is easy to findpstance the query
that selects the root if its last child is labeled dylts concurrency is bounded, as
only the root node is alive, but the delay is the number of &s/batween opening
the root and closing its last child, and thus unbounded. @rcdmtrary, we can
build queries with bounded delay but unbounded concurtehbis is due to the
fact that concurrency takes partial tuples into account,tbe delay does not.
Hence we can build queries that generate a lot of partialidates, but for which
the answer tuples can be output immediately once they gepleden This is for
instance the case, for the query that selects all pairs adsadtrequires to buffer
all partial tuples containing previously opened nodes ia oamponent. Once
a new node is read, we can complete all these partial tupléstiais node, and
output the resulting tuples immediately, without delay.
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7.2 Delay and Concurrency for Words and Trees

We generalize the earliest query answering definitions cfi®@e3.2to both words
and trees. We define the notion of delay, and generalize camay to words and
trees.

7.2.1 EQA for Words and Trees

We consider the cases of words and trees in simultaneouséreseithels = *
is the set of all words of = 7Ty, the set of all unranked tree ovEr

We consider words as relational structures, as introdut&ection2.1.2 A
wordw = a;-.. ..a; € ¥* has domairdom(w) = {1, ..., k}, and by analogy with
trees, we define its set of events lewew) = {0, ..., k}. Given a wordw € ¥*,
we writedom,(w) = {1,...,n} for the set of positions ofv visited before the
eventy), anddonf (w) = dom,(w) U {e}.

Let @ be ann-ary query in structures§, s € S a structure, ang € eves) an
event ofs. A complete candidatentil eventy is a tupler € dom,(s)”. Given two
structuress;, s, € S and an event € eves,) U eves,), we say that the prefixes
of the linearizations 0§, ands, until n coincide, if:

dom,(s;) = domy(sz) A
equal(s;, ) < { van;? X Vr € dnc;"mq(sl). (lab () < lab? (7))

Definitions of sufficient events for selection (resp. rdpmt} are easily lifted to
arbitrary structures. We writeompl(r, s, ) for the set of complete candidates,
in which all unknown components efhave been instantiated with elements

dom(s) — dom,(s).
(1,m) € sely(s) & 7 e€domy(s)" AVs € domQ). equal(s,s) = 7€ Q(S)

T € donf(s)" A

(1,m) € rejg(s) < { vs € dom@Q). equal (s,s) =
V7' € complr,s,n). 7" ¢ Q(S)

Alive candidates af if 7 are those being neither rejected nor selected at
(m,m) € aliveg(s) < 7 € donf(s)" and(7,n) & rejy(s) and(r,n) & sel(s)

We introduce the concurrency at an evenwhich is more fine-grained than the
global concurrency defined in Secti8r2.3

concuiy(s,n) = [{T € donf(s)" | (7,71) € alivey(s)}|

With this definition, we obtain the following equivalencetiwour previous notion
of concurrencyconcui, (S) = max,cevgs) CONCUL (S, 7).
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7.2.2 Delay

We formally introduce the notion afelayin our query answering framework, for
both words and trees. For monadic queries, it is the numbeverits between a
node and the earliest event for its selection. Given a strast(a word or a tree),
let

lates{(7ry, ..., m,)) = min{n € eves) | m,...,m, € dom,(s)}

be the minimal event, where all elements of the tuple hava bsited.

Definition 12 (Delay) Thedelayof ann-ary query( for a tupler € dom(s) is
the number of eventgfollowing latestr) such that; is insufficient for selection,

i.e. (7,n) & seb(s).
delay,(s,7) = [{n € eves) | lates(r) <, (7,71) & sely(s)}|

A query( hask-bounded delayf delay,(s,7) < k for all s € dom(@) and
7 € Q(w). It has bounded delay if it hasbounded delay for sonie> 0.

Having bounded delay means that every EQA algorithm wilpatiselected
tuples a constant time after completion. This is a guaraoteéhe quality of
service.

7.2.3 Link to Concurrency

For monadic queries, some links exist between concurremdylalay.

Lemma 15. For all monadic queries), structures s= dom()), and events) €

eves):
concug(s,n) < sup delay, (s, ) +1
g edom(@),7eQ(S)

The lemma fails for queries of higher arities, where the ylblstween the tu-
ple components may be unbounded even though the delay ofisalef complete
tuples is bounded. In this case, the set of alive partiakesiphay grow without
bound, even though the set of alive complete tuples is balirfet® instance con-
sider the query) with Q(t) = nod(t)? for all treest € Tx. This query has delay,
since every pair of nodes can be selected immediately, tveaéstlast component
has been visited. Nevertheless, all partial tugte®) with 7 € dom,(¢) are alive
at all events), so that the concurrency of this query is not bounded.

Proof. Lets € S andk € Ny U {oo}. In the case of words (whe® = >*),
we definedoni;(s’) by {7’ | n — k < 7" < n}, and in the case of trees (where
S = Tx), we definedonf (s) as{x’ | pr*(n) < (op, ') < n}.
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Let  be a monadic query. Let = supscdonq),req(s)delay,(s, 7) be the
number in the lemma, argle dom() be a structure with event € evds). We
claim for allm € dom(s) that:

m ¢ donf(s) ,n) & alivey(s)
To see this, we first note thatif ¢ dom,(s) thenr is not alive at). Now let us
considerr € dom,(s) — donf(s). We distinguish two cases.

1. In the first case, there exists a continuatso dom(()) with equal (s, s
such that(7r) € Q(s). This continuatiors’ satisfiesdelab(s’,(w)) < d,

so thatr € dom,(s) — donﬁ ) yields ((7),n) € sels). This contradicts
aliveness.

2. Otherwise, all continuations of s beyondr satisfy(7) ¢ Q(S), so that
((m),n) € rej(s). This equally implies non-aliveness.

This proves the claim, which yields for all partial tuples

(1,n) € aliveg(s) = 7 € donf(s) U {e}
Henceconcur,(s,n) < d + 1 by definition of concurrency. O

Proposition 23. A monadic query witlk-bounded delay has-+1)-bounded con-
currency.

Proof. This is an immediate consequence of Lemiba O

The converse does not hold. As a counter example, considemtmadic
guery which selects the first letter of all words whose latsétas ab. This query
has concurrency bounded Ry since the first letter is the only alive candidate
before the end, but unbounded delay.

7.3 Bounded Delay and Concurrency for Queries in
Words

We consider the case, where queries in words are defined byétesministic
finite automata, that recognize the canonical languageeaftiery and its schema
respectively. We obtain ®ME decision procedures for bounded delay and con-
currency by reduction to bounded ambiguity of non-deterstimfinite automata.
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7.3.1 Finite Automata

A finite automator(nFA) overY. is a tupleA = (stat init, rul, fin) whereinit, fin
andstatare finite sets withinit, fin C stat andrul C staé x (X U {¢}) contains
rules that we write ag = ¢’ or ¢ = ¢’ whereq, ¢’ € statanda € 3. Whenever
necessary, we will index the components/bby A. Let the size ofd count all
states and rules, i.eA| = |staty| + |rul 4|. We also sometimes use the notation
Alinit=I] (resp.A[fin=1]) for the automaton obtained frorhby setting its initial
(resp. final) states to.

A run of A on a wordw is a functionr : evgw) — staty so thatr(0) € init4
andr(rm—1) <555 () isjustified byrul for all 7 € dom(w) with a = lab” ().
A run is successful if-(|w|) € fin,. The languagd.(A) C ¥* is the set of all
words that permit a successful run By An nFA is calledproductive if all its
states are used in some successful run. This is the casesthtds are reachable
from some initial state, and if for all states, some finalestatn be reached.

An nFA A isdeterministicor a dFA if it has at most one initial state, no epsilon
rules, and for every paig, a) there exists at most one ruje™ ¢ < rul,. Note
that for every wordo there exists at most one run by a dBA

Bounded Ambiguity

We next consider the degree of ambiguity of nEAsTheambiguity amh(w) is
the number of successful runs dfon w. Clearly,amb,(w) < 1 for all w € ¥*
if Ais a dFA. We call the ambiguity ofl k-boundedif amby(w) < k for all
w € X*. Itis boundedif it is bounded by somé.

Stearns and HuntgH83 (Theorem 4.1) present for fixedd € N a PriMme
algorithm for decidingk-bounded ambiguity of nFAs. Let us wrife= ¢ by A
if there exists a run ofi[init={p}] onw that ends iry. Weber and Seid\W/S86
show that an nFA has unbounded ambiguity iff there exists a wardg X+ and
distinct stateg +# ¢ such thap = p, p = ¢, andq — ¢ by A. This can be tested
in O(]A]?) as shown very recently byAMRO08].

7.3.2 Definingn-ary Queries

As usual, we can define queries by two automata, one for thenczal language
and another for the schema. We call an nFA canonical if anglibit$ language is.
Let A be a canonical nFAL with alphabet: x 2¥» and B an nFA with alphabet
¥, such thatw € L(B) for all w « 7 € L(A). The queryQ 4 5 defined by the
pair (A, B) is the uniquerz-ary query with domair.(B) and canonical language
L(A). If L(B) = X1 then we writeQ) 4 instead of) 4 5. AutomatonB is needed
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in order to distinguish those words, on which the query isdafined, from those,
where the query returns the empty set. Note th@Lifs(w) # 0 thenw € L(B).

Let the type of a wordy with alphabet: x 2V be a functiortype, : V,, — Ny
that counts how many times a variable appears in labelsfare: € V,:

type, (x) = |{r € dom(w) | laby, () with € v}|

We say that a wora has typel " if type, (z) = 1 for all € V,,. All words over

¥ x 2V of type 1Y have the formw = 7, and vice versa. We next show that all
states of productive canonical nFAs have unique types. Wassalready noticed
in Lemma 3 of CLNO4]:

Lemma 16. If A is a productive canonical nFA angl € stat, then all words
recognized byl[fin = {¢}] have the same type.

Proof. SinceA is productive, there exists a word e L(Ainit = {¢}]). Assume
that there exist words,, ws € L(Al[fin = {¢}]) with different types. Hence, the
wordsw;-w andw,w must have different types, sintge, ., = typg,, +type, #
typg,, + typg, = typg,,,,. This is impossible, though, sindg A) is canonical,
so thattype,,,(v) = typg, ., (z) = L forallz € V, O

We can thus define the type of a stagt@f a productive canonical nFA in
a unique manner, by the type of some wardthat is evaluated into this state.
typgq) will denote this type. Furthermore, as the automaton is c&ab and
productive, this type is determined by the $ete V, | type,(z) = 1}. So we
can identify the type of a state with a subselpf

Consider the query),,,) in words with alphabe{a, b}, which selects all
positions labeled by or eventually succeeded by anin Figure7.1, we illustrate
an automaton for the canonical language of this query gcafifi Its states have
the following types:0) for ¢, (no variables seen before entering in this state), and
{z,} for ¢; andq, (x; seen before entering in these states).

Query answering fodFAs is the algorithmic problem that receives as input
two dFAs A and dFA B defining ann-ary query and a wordv € L(B), and
returns as outpup 4 z(w). The objective is to find all tuples of positions inw
such thatw * 7 € L(A). The naive algorithm enumerates all tuptes dom(w)”
and runsA deterministically onv x 7. This algorithm first resolves the choice of
7 nondeterministically, before running the deterministitcanatonA.

Determinism for canonical automata will turn out to be esiséfor PTIME
streaming algorithms and decision complexity (e.g. thetggbroperty below).

It should be noticed that canonical nFAs can always be détered without
changing the query they define. This would fail when definingregs by se-
lection automata, i.e. nFAs ov&rwith a set of selection states as considered in
[FGKO3 NPTTOS.



Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 153

Figure 7.1: A dFA for the canonical language®@f,,) where¢ = 3Jz,. (z; <
xo Alab,(z3)).

7.3.3 Computing Delays of Queries

We show how to decide whether a query has bounded delay antchmympute
this delay in polynomial time. We consider the case with sté® Schema elimi-
nation as proposed in Sectidi.3can easily be adapted to queries over relational
structures. However, it would require to fix the arityof the queries, and spoll
small polynomials: Given automathand B defining) = Q) 4 5, we cannot build

an automaton recognizin@se Or Q)r¢j Without a blowup inO(2") in the general
case, since we have to extend the alphabét 6bm X to & x 2V,

Safe States for Selection

For every languagé. C X+ we define a language of annotated wordsy ()
with alphabet: x 2V» such that all letters of words ih are annotated bf, i.e.,
Leb="{(a,0)-...-(ag, D) | ay-...-ax, € L}

Definition 13. If dFAs A and B define a query then we call a stdte ¢) € staty x
statg safe for selectioby Q 4 5 if L(Blinit={q}]) ® 0 C L(A[init={p}]).

Figure7.2illustrates an automaton for the query that selectg-@bdes that
are succeeded lyb. In this example, we assume the universal schéhath a
single state, so that is isomorphic taP(A, B). The types and safety properties
of all states are indicated in the figure.

We next show that safe states capture sufficiency for selechh order to do
so, we construct a dFR(A, B) which runsA and B in parallel. Its alphabet is
¥ x 2¥» as for A, while B has alphabe¥.

Stab 4 ) = Staty x stat (@) o
T - . — rul — rul
|n|tp(A7B) =Init4 X Initg P LS A g IS B

. . . (a,v
finp 4 ) = fin, x fing (p,q) ) (¢, q) € rulpa,p)
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(a,0) (a,0)
(b,0) (b,0)
(av {xl}) <b7 @> (bv (Z))
unsafe, unsafe, unsafe, safe,,
0 {a1} {z1} {z1}

Figure 7.2: Automatomi for the query selecting-nodes followed by-b. There
are two reachable unsafe states of type} = Vi, p; andp,. The restriction of
A to these two states is acyclic, so the selection dela§ ofis bounded. It is
bounded by2, since the longest path in this part of the automaton has 2s10d

Building P(A, B) needs time irO((|X| +n)- |A]-|B
that variables i are stored in a vector of bits.

), if we suppose for instance

Lemma 17. Let A and B be productive dFAs that define a query, and r a run of
P(A, B) onw x 7 andn € evew). Then state () is safe for selection b§ 4 g if
and only if(7,n) € sel, (w).

Proof. Sufficiency for selection(r,7) € sel, ,(w) is equivalent tor ¢
dom,(w)" andvw’ € L(B) : equal (w,w’) = w'* 7 € L(A). Letw = wy-w,
such thatw,| = 7. Sincer € dom,(w)", we havew 7 = (wo *7)-(w; ® 0). Fur-
thermore equal (w, w’) is equivalent tadw). w' = wy-wj. Now r(n) is the state
that the unique run d?( A, B) onwy * 7 reaches (determinism). FQs, q) = r(n)
we have:

Vw' € L(B) : equa) (w,w') = w' * T € L(A)

Vw]. wy-wy € L(B) = (wo*7)-(w; ® 0) € L(A)

Vuw!. wi € L(B[init = {¢}]) = w] ® 0 € L(A[init = {p}]) (determinism)
L(Binit = {g}]) ® 0 < L(Afinit = {p}])

r(n) safe for selection b{) 4 5

teoe

Conversely, assume thatn) = (p, q) is safe for selection by, 5. Since we
assumed and B to be productive, this implies thagpep) = V,, so thatr €
dom,(w)™. We can thus decompose = w,-w; such thatw,| = n as above,
and apply the above equivalence, in order to conclude frdetyséor selection,
thatvw' € L(B) : equa)(w,w’) = w7 € L(A), and thus sufficiency for
selection. O

The parallel automatoR(A, B) is canonical, sincé.(A) = L(P(A, B)), but
may contain non-productive states, everd ibnd B are productive. For instance,
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consider productive automataand B that define the querg) with dom @) =
{a,aa}, Q(a) = {1} andQ(aa) = (. We will be interested only in the productive
part of the canonical automaté&A, B), for which unigue types exist.

Lemma 18. If A and B are productive, then all safe states@f 5 that are reach-
able in R A, B) are productive and have type,.

Proof. To see this, suppose that ¢) is safe and reachable. SinBds productive,
there exists a word € L(B[init={q}]). Safety proves that ® () € L(A[init =
{p}]). Thus,w € P(A, B)[init = {(p, q) }], so that(p, ¢) is productive. Sincel is
canonicalP(A, B) is canonical, so thaypgp) W typgw @ () = V,. O

Capturing the Delay

Proposition 24. Let 4 5 be defined by productive dFAsand 5, and let P be
the restriction of nFA PA, B) to productive unsafe states of typg.

1. The delay of) 4 5 is bounded if and only if the digraph of nFA'B acyclic.

2. In this case, the delay @} 4 5 is equal to the length of the longest path in
P

Proof. Let P = P(A, B) andP* the restriction oP to productive unsafe states of
typeV,. Letq be a state oP* for which a cycle exists. Since all statesRSfare
productive inP, there exists a word; € L(P[fin = {q}]). SinceP" has a cycle,
there exists a nonempty wowd € L(P[init = {¢}, fin = {¢}]). Again, sinceP is
productive, there exists a wokg € L(P[init = {¢}]). It follows for all m > 0,
thatv = v, - (vy)™-v3 € L(P). SinceL(P) = L(A), wordv has the formwu * 7 for
some wordw € ¥* andr € domw)”. By Lemmal?, none of the events ijvy|™
is sufficient for the selection af in w since the run oP onv maps all of them to
unsafe states. This shows that the selection delayiofv is at leastn and thus
unbounded.

For the converse, we suppose tRats acyclic and show that the delay©f; 5
is bounded by the length of the longest patlsiap.. Letw andr be such that
w* 1 € L(A) andr be the successful run of that accepts this word. Letbe an
arbitrary event that contributes to the delayrof.e., an event withr € dom,(w)
and(r,n) ¢ sel, ,(w). The first condition yields thaypegr(n)) = 1¥» and
the second condition thatn) is unsafe for selection by Lemni&. Thus,r(n) €
stak.. SinceP" is acyclic, it follows that stategn) are distinct for distinct events
7 that contribute to the delay. Furthermore, all these statmng to the same path
of P*, such thadelayQA’B(w, 7) is bounded by the length of the longest path in
pv.
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If P is acyclic, letr alongest path i?" and letw a word such that () labels

r. Since all states oP are reachable and productive, there existsc = which

reaches irP the first state of; similarly, there exists a word, such thatv, * ()

labels a path from the last staterofo a final state oP. Thendela;b(wl-w-wQ, T)
is the length (here, the number of statesy.of

O

In order to compute the set of all safe states, we rely on th@xmg charac-
terization of unsafe states.

Lemma 19. Let A, B be productive dFAs that define a query. A reachable state
(po, q0) Of P(A, B) is unsafe for selection by 4 5 if and only a statép, ¢) can be
reached from(po, ¢o) such that:

(U1) eitherp ¢ fin, andq € fing,

(U2) or there exists a transition - ¢’ € rul z but no transitiorp @) p € ruly
forall p’ € staty.

Proof. LetP = P(A, B). We start with a claim about propagation of unsafety.
Claim 14. Reachable states of P that can reach unsafe states are unsafe

To see this, letp, ¢;) be a reachable state afg, ¢2) be an unsafe state that
is reached from(p;, ¢;) by some wordvy, i.e. v; € Plinit = {(p1,q1)},fin =
{(p2,q2)}]- Since(ps, q2) is unsafe, there exists a word € L(B[init = {¢}])
such thatw @ 0 ¢ L(A[init = {p,}]). We distinguish two cases.

1. If v matchesw; ® 0 thenw,-w € L(BJinit = {¢;}]) and(w;-w) @ ¢
L(A[init = {p-}]), so that(p;, ¢1) is unsafe.

2. If v; does not matchy; ® () thentype(p;) # V,, so that(py, ¢1) is unsafe by
Lemmals, since(p;, ¢1) is reachable if? and sinced and B are productive.

Based on this claim, we can now show both directions of therlam

“«<" By Claim 14 it is sufficient to show that all statg®, ¢) satisfying (Ul)
or (U2) are unsafe. In case of (y wherep ¢ fin, andg € fing, the
empty word contradicts the safety @f, ¢), sincee € L(B[init = {q}]) but

e® (0 ¢ L(Alinit = {p}]). In case of (), there exists some transition

q = ¢ € rulg but no transitiorp (ﬂ) p’ € ruly forall p’ € staty. Since

B is productive, there exists a word € L(B[init = {g¢.}]). The word
a-w now contradicts safety ofp, ¢) sincea-w € L(BJinit = {p}]) but

(a-w) @0 & L(A[init = {q}]).
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“=" We show that all unsafe statgs), qo) can reach some statg, ¢) that satis-
fies (UL) or (U2). If (po, qo) is unsafe then there exists a wards ¥* such
thatw € L(BJinit = {g}]) andw ® 0 ¢ L(A[init = {po}]). Letw, be the
longest prefix ofv such that there exists a run®finit = {(po, ¢o) }] on wy.
Let (p, q) be the state reached by this run after readipgand letw; be the
suffix of w such thatv = wq-w,. State(p, ¢) is thus reached frorfpy, qo).
It remains to show thalp, ¢) satisfies (U) or (U2).

1. If w; = ethenp € fing andq ¢ fin,, so that(p, q) satisfies (U).

2. If wy; matchesiw, then there cannot exist any transit'ymlgfﬂ) p’ since
wo was chosen of maximal length. There exists a transitieh ¢’ for
someq’ though. Hence(p, q) satisfies (12).

O

Lemma 20. The set of reachable safe states for selection foz-amy queryQ 4 5
can be computed in tim@((|X| + n) - |A| - | B]) from dFAsA and B.

Proof. Instead of the set of reachable safe states, we computettbkersachable
unsafe states. A Datalog program testing the reachabilgyates satisfying (U)
or (U2), which characterizes unsafety for reachable states bymah®, can be
defined as follows:

p ¢ finy q € fing vp'.p @) P ¢ rul s ¢S q erulp
unsafey(p, q). unsafe,(p, ).
(a,V) ;.
(p,q) = (p',q) € rulpa,p
unsafge(p, ¢) :- unsafeq(p', ¢').
This programP can be computed in tim@((|X| + n) - |A| - | B|), while being of

sizeO(|A| - |B]). Itis a ground Datalog program, so its least fixed p¢fimtP)
can be computed in tim@(|A| - | B|) (see Propositiob in the appendix). [

Theorem 10. The delay of querie® 4 5 in words with alphabekE and arityn &
Ny defined by dFAs! and B can be computed in tim@((|X| +n) - |A| - | B]).

In particular, we can decide in the same time, whether a qaery; has
bounded delay ok-bounded delay, even if belongs to the input.

Proof. We first renderB productive and construct the dAX A, B). Second, we
compute all reachable safe states by Len2@and derive the sub-automat8,
that restrict®?( A, B) to productive unsafe states of type. By Proposition24,
the delay of) 4 5 is oo if and only if P* contains a cycle. Otherwise, we compute
the delay by counting the length of the longest patR‘afAll of these operations
can be performed in tim@((|X| +n) - |A4| - | B|). O
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(a,) (a, )
(b, 0) (b,0)
. (a,{z1}) () {m) (0,0) ”
unsafe, unsafe, unsafe,
{o1} {z1} {1}

Figure 7.3: nFAD(A, B) for the dFA A in Figure 7.2 with trivial universabB.
The ambiguity oD (A, B) is 2 (on word(a, {x1})-(b, ) for instance), such as the
delay ofQ 4 5.

7.3.4 Reduction to Bounded Ambiguity

Before moving on to bounded concurrency, we introduce a rgeneral method
to decide boundedness by reduction to bounded ambiguitlyAd at the example
of bounded delay.

The idea is to turn the dFA?(A, B) it into an nFA D(A, B) such that
amby 5y (w = 7) = delay,,  (w,7) forall 7 € Qap(w). We can then test
whetherD(A, B) has bounded ok-bounded ambiguity, which can be done in
PTIME as shown inAMRO0S, Sei93.

We construcD(A, B) from P(A, B) by adding a new statekande-transitions
from all unsafe states of type, to ok Figure7.3 presents the result of this
operation on the automaton in Figufe

stap(4,p) = Stap4,5) W {ok}, initD(AB) = initp(AB), finD(AB) = {ok}

7 € rulpi4,p) unsafe,(p, q) p has typeV, a€ X
r € rulpa (p,q) = oke rulp(a,B) ok (Y ok € rulp4,p)

Proposition 25. For all 7 € Q4 s(w): delay,, , (w,7) = ambba p)(w * 7).

Proof. Consider a rum of D(A, B) on a canonical word = 7 with 7 € Q(w).

We can show inductively onthat the ambiguity oD(A, B) onw is exactly the
number of states used irthat are not safe for selection. The initial state is unique
asA is deterministic, so at the beginning the ambiguity.i$When reading a new
letter, if the associated stagds not unsafe or has not typé,, then there is only
one way to continue the run, via a ruleBfA, B). If it is unsafe with typeV,,
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then there are two possibilities: either by using the ru@t, B), or by firing
the e-transition. Both runs will succeed (@& is universal), so in this case the
ambiguity is increased by one. Her@ly 4 5)(w * 7) is the number of unsafe
states used in the run 8{ A, B), and also of4, onw * 7. From the definitions of
delay (here the typ¥, ensures that we start countingaties(r)), safe states and
by Lemmal7, this is exactlydelay, , , (w, 7). O

Proposition25 yields slightly weaker results than Theordfd It permits to
apply Prime algorithms for deciding bounded érbounded ambiguity of dFAs,
in order to decide bounded érbounded delay in RME. However, it doesiot
allow to compute the optimal bound f-time, requires to fix in order to decide
k-boundedness i-time, and yields higher polynomials. As we will show next,
this general approach is useful to decide boundedanounded concurrency, for
which we do not dispose any more direct algorithm.

7.3.5 Deciding Bounded Concurrency

We show how to reduce inTME bounded concurrency to bounded ambiguity
andk-bounded concurrency fobounded ambiguity.

The concurrency of a query counts the number of simultarigailige partial
candidates. Beside of sufficiency for selection, alivertegsends on sufficiency
for rejection. We thus need a notion of safe states for rieject

Definition 15. A pair of statesp, ¢) of P(A, B) is safe for rejection by) 4 5 if no
final state can be reached frofp, ¢), i.e., if L(P(A, B)[init = {(p,q)}]) = 0.

We saw in the proof of TheoredD how to compute safe states for selection,
so now we need a method to compute safe states for rejection.

Lemma 21. The set of safe states for rejection®y s for nFAsA and B can be
computed in tim®(|A| - | B|).

Proof. We compute the set of all unsafe states for rejection. Inrdaddo so, it is
sufficient to compute the set of all statesRgfA, B) from which some final state
can be reached. This can be done by the following ground &gfaogram:

pefing ¢ efing p Wyerul, g% ¢ eruly
unsafe,(p, q). unsafe(p, q) :- unsafe,(p/, ¢').

This program can be constructed in tié| A| - | B|) from A andB. By Proposi-
tion 5, thelfp(P) can be computed in tim@(|A| - | B|). O
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(b {y})
(b,0)

unsafe, unsafe, unsafe,
unsafg, unsafg, unsafe, unsafe,

Figure 7.4: nFAC(A, B) for query dFA A in Figure 7.2 and trivial universal
B. Even though nondeterministic, the ambiguityQifA, B) is 1, equally to the
concurrency of)4 .

We define an nFAC(A, B) such thatamly 4 g (w * ) = concug(w,n).
The situation is a little different than f@(A, B), in thatC(A, B) runs on words
annotated by events rather than tuples. We fix a new varialgte),, that will
denote the event of interest, and define the alphab€( df B) to beX x 2{¥},
The idea of NFAC(A, B) is to guess a partial candidateuntil the event markey
comes, and to test whethers alive at that event, and to accept in case of success.

a

S

stat(4,5)=Staty x statg & {0k}
initc(AB):initAXinitB
fing 4.5 ={0k} (P a)
a,v)
(n,0) 'S (,, q1)€rulpa,p) unsafey(p1,¢1) unsafe,(pi, q1)
(p;q) ety ok € rulcia, )

Ik

(
(p.q) (v, q') € rulpia,p

(a7

1g

(0',q') € ruleia,py

Both rules guess a set of variablésand check that the current position is the
denotation of all variables ifv’, by running automatom with V' in the input
letter. The second rules inputs the event marker, and geeshe ok-state, if
automatonP(A, B) could move to states that are unsafe for both selection and
rejection, so that the current partial candidate is aliver iFustration, consider
Figure 7.4 which shows the automatd®( A, B) obtained from the automatof
in Figure7.2and the trivial universal automatds

Given awordw = a;-. ..-a,, and a position < n < m we writew|n for the

word <a17 ®> ’ (CLn,b @) ' (a177 {y})
Proposition 26. concug,, ,(w,n) = amly g (w|n), for all w € L(B) and
n € domuw).

Proof. Let w € L(B) andn € domw). Suppose that; andr, are different
partial tuples that are alive gt Letr; andr, be the runs oA on the prefixes of
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w * 11 resp.w * 75 until n. Sincer; andr, are different, there exists a position
such that the prefixes of lengih< n of w *x 7, andw * 7 have different types.
SinceA is canonical, this implies that both runs assign statesftdrdnt types to
positioni, so thatr (i) # (7).

Leta,-...-a, be the prefix ofw until positionn. By construction ofC(A4, B),
both runsr; restricted to{1,...,n—1} are also runs oC(A, B) on wordv =
(ay-...-a,—1) ® (). These runs can be extended to successful ru@¥.4f B) on
w|n = Vv-(a,, {y}) by mapping positiom to ok, since both tuples; are alive at
eventy (and thus neither safe for selection nor rejection). Botisrare different,
since rung; andr, differ at some position < 7. Henceconcul,, ,(w,n) <
ambya,p)(w(n).

For the converse, consider two different rupnsindr, of C(A, B) onw|n. We
now build two partial tuples; andr, and the corresponding runsandr’, of A
on the prefixes ofv « 7, andw * 7, until . These are hidden in the rules applied for
producing rung; andr, by C(A, B). Since the states which permitted to move
to ok are alive, the runs| andr/, can be extended into an alive statejatThis
shows that both tuples andr, are alive. They are different, since produced from
distinct runsr; andr,. This shows thaamiyx 4 g)(w|n) < conculy, ,(w,n). O

Theorem 11. Bounded and:-bounded concurrency for queries and schemas de-
fined by canonical dFAs can be decidedPmnME for any fixed: > 0.

Proof. From Lemmas20 and 21, C(A, B) can be constructed inTRVE from
A and B. By Proposition26, it remains to decide the finite (resg-bounded)
ambiguity of C(A, B). This can also be done inffME [AMRO08, Sei93. Before
the construction, we need to makeand B productive, which can be done in time
O(|A| + |BI). O

7.4 Recognizable Relations between Unranked
Trees

Even with STAs, it remains difficult to lift our RME algorithms for words to
trees, since the notion of safe states becomes more complexdifference is
that in STAs, the configuration depends on the current dbatealso on the con-
tent of the stack. Given a canonical dSPAor query(@ 4, one can define another
dSTA E(A) for which appropriate notions of safe states w@}, exist, as shown
in Chapterb. The size ofE(A), however, may grow exponentially jai|. There-
fore, we cannot us&/(A) to construct polynomially sized counterpartsivfA)
andC(A) in the case of unranked trees, for instance automata whidigauity
captures the delay (resp. the concurrency). We conjedtatert the general case
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there is no PIME algorithm for computing deterministic automata capturtimg
delay and the concurrency frorh
Nevertheless, we are able to prove the following theorem:

Theorem 12(Main). Bounded delay is decidable RTIME for n-ary queries de-

fined by deterministic streaming tree automata wheneay be variable. Bounded
concurrency is decidable iATIME for fixedn. For fixedk andn, k-bounded delay
and concurrency are decidable FTIME.

Since top-down deterministic tree automataT@s) modulofcns encoding
and bottom-up deterministic automata (dTAs) modalory encoding can be
translated to dSTAs in BME (see Chapted), Theorem12 does equally apply
for queries defined by such automata. The proof will be baseductions to
bounded respk-bounded valuedness of recognizable relations betweamked
trees. It will be presented in Sectidrb.

Regular tree languages enjoy closure properties overdbgperations, thanks
to the underlying properties of tree automata. A tree lagguaan be considered
as a unary relation over the set of all trees. A generalinatomsists in considering
n-ary relations over trees, i.e., setsmefuples of trees.

In this section, we show how to extend the notion of recodieaelations
[CDG'07] to the case of unranked trees. Closure properties of autostidl en-
sure that FO-formulas over recognizable relations wiftee variables define rec-
ognizable relations betweenunranked trees (so that satisfiability is decidable).
Unlike the framework proposed by Benedikt et aBLNO7], we do not define
basic relations, and allow different alphabets on the carepts of the relations.
Our major contribution here is that bounded valuednesskabdunded valued-
ness (for a fixedc) of binary relations can be decided ImIME. For bounded
valuedness, we use a reduction to bounded valuedness sdtrears $ei93. k-
bounded valuedness is resolved by reduction to the emptwfesn automaton,
that can be computed inTAVE thanks to properties of recognizable relations.

7.4.1 Closure Properties
Cylindrification Extension

Cylindrification of queries has been defined in Sect®8 as the inverse pro-
jection. We extend the definition in order to allow the ingmrtof several com-
ponents (instead of one), plus copying and permutation ofpmments, but no
deletion. For am-ary query(@ over relational structureS, cylindrificationc,@)
for a functiond : {1,...,m} — {1,....m}with {1,...,n} CO({1,...,m})is
defined by the following equality, for all structursg S:

coQ(s) = {(moqy, - - -, Toemy) € dOM(S)™ | (m1,...,m) € Q(s)}
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The schema is unchangetbm(cyQ) = dom(@).

Queries by First-Order Formulas

In Section2.3 and in the previous paragraph, we defined logical operatons
queries. We show how they can be used to define queries frarofdsr formu-
las. This is an alternative definition of first-order defiraleries introduced in
Section2.3

Every FO formulap with at mostm free variables) = (y1,...,yn) € V™
defines an-ary query@,; whose domain contains afl-structures.

Qoingn@ = Qo) NRen@) @0 = Qo)
Q@Eze)@) = F2-Qo(.2) Qr (1, yn) Wo(1y o (my) = COT

Here, we identify relation symbol with the query of arityar(r) that satisfies
r(s) = r®for all structures € S.

Logical Operations on Tree Languages

Beyond standard Boolean operations on langua@&d"07], we define pro-
jection operationgroj;: Ts,x..xx,, — Ty, forall 1 < i < m, such that all
proj;(¢) relabels all nodes € nod(t) to thei-th component of its label. We
write ¢t = 3 * -+ % b, If Aj<;<proj;(t) = t;. We can define more gen-
eral projection operationgroj;: Ts,«..xx,, — Tsi % x5, that preserve a sub-
set of componentd = {iy,...,i,} wherel < 4 < ... < i, < m by
proj,(t; ... xt,) = t; *...*t; . Projections can be lifted to languages of
treesL C Ty, «..xx,, by proj;(L) = {proj,(t) | t € L}.

We also need cylindrification operations on tree languagesch may add,
copy, and exchange components of tuple trees, but not dblate We formalize
unsortedcylindrification operations that apply to treésC 7s.», where all com-
ponents have the same signatdreFor functions : {1,...,m} — {1,...,m}
with {1,...,n} CO({1,...,m}) we define:

Note that all newly added components have signalur&ortedcylindrification
operations, that add components of particular types, cabtagned from unsorted
cylindrification and intersection.

Closure Properties of Automata

In this chapter, we assume an arbitrary class of tree auggnizdt satisfy the
properties in PropositioB7. In particular, we consider three classes of tree au-
tomata studied in Chaptdr TAs w.r.t. fcnsandcurry encodings, and STAs. They
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all have the same expressiveness, as proved by the backrdmdrémslations in
Chapter4, and exactly capture MSO-definable queries (and languayes)un-
ranked trees. In the following, we say that a tree languagecisgnizablef it is
MSO-definable.

Proposition 27 (Closure properties)Recognizable languages are closed under
Boolean operations, projection and cylindrification. Adreesponding operations
on tree automata can be performedrRmiME, except for the complementation of
non-deterministic tree automata. They all preserve det@sm except for pro-
jection.

Proof. Closure properties of recognizable languages are due tihdbere proper-
ties of MSO-definable languages. It is folklore that theserapons are in PME
and preserve determinism except for projection, for thedlulasses of automata
we consider.

Cylindrification operationgy are a little richer than the usual cylindrifica-
tion operations; that insert a single new component at positig€DG*07]. In
addition, they can copy components, which can be testedtbgsection with de-
terministic tree automata that recognize the{get ¢ | t € 7x}, and permute
components. While operatiap can be implemented inTPME for every fixedd
by computing intersections with a fixed number of tree autarmthis cannot be
done in AIME for variabled.

Note, however, that cylindrification cannot delete compasesuch as projec-
tion, since projection operations on automata may spodrdgthism. O

7.4.2 Recognizable Relations

We study recognizable relations between tré&®G*07] in the ranked and un-
ranked caseBLNO7]. These are sets of tuples of trees, such that the set ofyserl
of these tuples is recognizable by a tree automaton.

We first recall a standard method to define recognizableioakin FO logic
from a set of basic recognizable relations, while relyingluclosure properties
of tree automata. We then present the second main contnibotithis article. We
show that bounded valuedness d@nldounded valuedness (for a fixejlof binary
relations can be decided imRME. For bounded valuedness, we presentravi2
reduction to bounded valuedness of transducgesdd, and for k-bounded val-
uedness, aRME reduction to emptiness of tree automaton.

In this section, we assume an arbitrary class of automatarfranked trees
A that satisfy the following properties. Here, we assume ¢vaty automaton
A € A has an abstract notion of states

(A1) every automaton ofl can be transformed into an STA ITIME.
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L
a \ /\
b/ \c ® (‘3 = (bye) (c,0)

T @

Figure 7.5: Example for overlays

(A2) classA is closed under intersection, complementation, cylincatfon and
projection modulo PIME transformations, that preserve determinism ex-
cept for projection.

All these properties hold for the three classes of autontatiied in the previous
section: Chaptet proves the expressiveness requiremeni) @nd Propositio27
the closure properties (. Note however, that hedge automata with dFAs for
horizontal languagesODG'07] fail to satisfy (A2), since deterministic hedge
automata cannot be complemented Nk

Theoverlayof k£ unranked treeg € 7 is the unranked treg ® ... ® t; In
7‘21DX_“XZ;€ obtained by superposing thekdrees top-down and left-to-right; the
1 symbol represents missing children where the structurdeedfees differ. This
is illustrated in Figur&.5and formally defined by:

a(tl,...,tk)@b(t’l,...,t;) =
(a,b)(ty®t), ..., @, i ®E, ..., @) ifI<k
(a,b)(ty®t), ..., tpy®t, D®tpr1, ..., D®) otherwise

Overlays of ranked trees can be obtained this way @0G07], except that
overlayed symbols need to inherit the maximal arity.

Definition 16. A k-ary relation R between unranked treesriscognizableff the
language of its overlays o) = {t; ® ... ® t;, | (t1,...,tx) € R} is recog-
nizable by a tree automaton. We say tliats recognized by the automatohif
oVI(R) = L(A).

Prime examples for recognizable relatioB$ NO7] are the tree extension re-
lation <, <_,C Ty, x Ty, such that <, ¢'if ¢’ is obtained by repeatedly adding
children to leaves of, andt <_, ¢’ if ¢ is obtained by repeatedly adding next-
siblings to right most children of

7.4.3 Sorted FO Logic

We need a sorted first-order logic in order to define recodphézeelations be-
tween trees with various signatures. Note that only the lengase with a single
signature was treated iBLNO7].
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A sorted relational signaturés a relational signaturé = Sortsw &, that
consists of a set of monadic symbeis= Sortscalled sorts and a set of relation
symbolsr € R, each of which has a sesbrt(r) € Sort$'"). A sorted relational
structure sover S = Sortsw R is a relational structure such thatioms) =
Usesorts?” and for every relation symbel e R of arity m:

S
m

sort(r) = (o1, ...,0m) =1r°Co} X ... X0

In the FO logic of sorted relational structures, we can deforé bounded quanti-
fiers:
Jr€o.¢p =g Jz.(0(x) A @)

A sorted FO formulas a FO formula in which all quantifiers are sort bounded.
Every sorted FO formula overS with at mostn free sorted variables defines an
n-ary relation for every sorted relational structsreverS:

R¢(x1101,---,xm:0m)(s) = Q(b(au ----- J:m)(s> N Uf X.oo. X0,

7.4.4 Sorted FO Logic of Recognizable Relations

We assume a collection of alphabéts A structures of recognizable relations
between trees with alphabets §h has a sorted relational signature with sorts
Sorts = {7, | w € Q} that are interpreted by themselves in every structure,
such that every relation symbel € R is interpreted as a recognizable relation
rs C sort(r) between trees.

A sorted FO formula for recognizable relations with alphaléehas the fol-
lowing form wherer € ® andTy,...,T,,7T € V andw € (.

¢ o= r(Th,....Tam) | ¢ NG| —¢ | ITET,. ¢

Here we use capital letters for variables, since they ravge toees rather than
nodes of a single tree. The sizg of a formula is the number of nodes of

We write FO,[}] for the set of sorted formulas, where quantifiers are existen
tial and in prenex positions. Lat= {A,},x be a collection of automata that
recognize the relations i, or equivalently, the structure of recognizable rela-
tions they induce. Every sorted FO formudlavith at mostn free sorted variables
defines am-ary relation between trees:

R¢(T1:7:,,;1 ..... Tm:nm)(ﬁ> g 7;1 X o+ee X 7;m

The closure properties of tree automata w.r.t. Booleanatjgers, cylindrification,
and projection ensure that all such relations are recoglaza
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Proposition 28. Let ¢ be a fixed formula in FGIR| with at mostm free sorted
variablesT:7,,,...,Tu:T,,, . Then there exists a polynomiakuch that for all
structures of recognizable relations= { A, },c» defined by tree automata such
that A, is deterministic ifr occurs below in negation, one can compute in time
p(>_,en |Ar]) @an automaton that recognizes the relatiéyyr,.7, ..z,..7.,.) (V).
The computed automaton is deterministic, if all automatadeterministic and

is free of existential quantifiers.

Proof. The proposition depends of the closure propertie®) @ the class of au-
tomata under consideration. The proof is by induction orsthecture of formulas
in FOs[R]. It follows from two claims, that relate operations on tre&tions to
operations on tree languages to closure properties of tieenata.

Claim 17. For all Q@ € T, X ... X Ty Vi = {Xq,..., X} and 0
{1,....m} = A{1,....om}with{1,...,n} CO{1,...,m}):

oVI(3X;.Q) = Projyy . i—1,i41,...m (OVI(Q))  0VI(cyQ) = cooVI(Q)
ovl(=Q) = ovI(T,, X ... X 7;m) ovl(Q) ovl(@Q1 A Q2) =ovl(@Qr) Novl(Q2)

The proof is straightforward from the definitions. The neat@nd claim re-
lates connectives of sorted FO formulas to operations @vréiations.

Claim 18. For all alphabetsw = (wi,...,w,) and w1, variables X =
(X1,...,X,n) and X, that are pairwise distinct, structures s of tree relations,
functionsf : {1,...,m} — {1,...,m}with{1,....,n} CO({1,...,m}), sorted
formulasg, ¢y, ¢ in FO[R], and relations symbols € %:

VI(R
vl

(@)

X 1€ o 41 (X ( S) = prOJ{1 ..... (OVI(R¢()~(:7]3,Xm+1:7Lm+1)(S)))
S
Ry ()Xo Tagay s Xomy T, ))(s)) = ovl(7;9(1) X oo X Tagy ) M coOVI(r®)

.....

(5

(
Vl(R¢1/\¢2(XT )(S)) - OV|(R¢1 X:T5 )( s)) N 0V|(R¢2 X:T5 )( s))
VI(R_yx.7.)(8)) = oVI(Ts, X ... X Ty,,,) — OVI(Ry 5.7-(9))

(@)

o O

The proof is straightforward from the definitions and thevpres claim. For
illustration, we elaborate the case of negation, where tineng information is
needed. LeL; = ovl(7,, X ... x T, ).

OVI(R_y%.7.)(8) = LaNovQ_yx.7.(9)
= Ls N (Lo —ovl(Qyx.7,)(S))) (previous claim)
= Ly — OVI(Ry%.7.)(9))

Finally, we illustrate the induction for formula = —¢'. Since¢ € FOs[R], for-
mula¢’ cannot contain existential quantifiers. Furthermore,athaataA, for re-
lations symbols occurring it must be deterministic by assumption. By induction
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hypothesis, there exists a polynomiakuch that for all structure$ = {A, },cn
defined automata automath, one can compute in timg(} . |A,|) a deter-
ministic automatormd’ recognizing the languagevl(R, <.~ ,(J)). Recall that
OVI(R, .7 ) (V) is equal toovl(T,, x ... x T,,,) — OVI(Ry %7, (s)) as shown
by the previous claim. We obtain an automatémecognizing this language by
complementingd’ and intersecting it with an automaton (7., x ... x 7T, ).
This can be done in timg, (|A’|) - |wq] - ... - |w| for some polynomiap,, since
A" was deterministic. Furthermore, automatbran be constructed deterministi-
cally from A’. We can thus define polynomiaby p(¢) = p1(p'(§))-|w1]-. . -+ |wim]-
The only construction, where non-determinism is needegrmjections. This
is why we require existential quantifiers to appear only iengx position. Note
that the proposition can be extended to general FO formblasyot in PriME.
(|

In Section7.5, we will see that relations capturing the notions of delagt an
concurrency of querie§ 4 g can be defined in ”ME from A and B by using
FOs[R] formulas, for a suitable set of relation symbétswhose interpretation
depends ol and B. The delay and concurrency will exactly be the valuedness
of the corresponding recognizable relations. In the redeiof this section, we
prove that bounded valuedness a@ntiounded valuedness or recognizable rela-
tions are decidable inTPE from automata defining the relations.

7.4.5 Bounded Valuedness

Let R C Tx, x Ty, be a recognizable binary relation. For everye 7Tx,, the
number#R(t;) = [{t2 | (t1,t2) € R}| counts the trees iffy, in relation to it.
Thevaluednessf R is the maximal such numbeal(R) = max,cr, #R(t). We
call R k-boundedf val(R) < k, andboundedf itis k-bounded for somé € Ny.

We want to reduce bounded valuedness of recognizable aetabver un-
ranked trees to the same problem for ranked trees. This cabtaéned by a
correspondence between the overlay of a tree and the owrigfcnsencoding.
Let ren be the morphism on binary trees that renames constants ., [J) to [
and preserves the trees otherwise. This morphism is limeghoae-to-one, so it
preserves regularity in both directioné:is recognizable iffen(L) is recogniz-
able. The following lemma relates overlays of unranked amked trees. Note
that this nice correspondence does not hold forctmey encoding.

Lemma 22. fengty ® ... @ t,) = ren(fengt;) ® ... ® fengt,,))

The following proposition shows that valuedness is presgbwy thefcnsen-
coding. Letfeng R) = {(fcngt,), fengts)) | (t1,t2) € R}.



Section 7.4 — Recognizable Relations between Unranked Tree 169

Proposition 29. A binary relation R between unranked trees is recognizable iff
the corresponding relation between binary trees {étisis, and valfcng R)) =
val(R).

Proof. By definitionfcng R) = {(fcngt,),fcndty)) | (t1,t2) € R}. Lemma22
yieldsfcngovl(R)) = ren(ovl(fcng R))). The morphisnren preserves recogniz-
ability back and forth. Thudcng R) is a recognizable relation itivli(fcng R)) is
recognizable language of binary treesréh(ovl(fcng R))) is a recognizable lan-
guage of binary trees ificngovl(R)) is a recognizable language of binary trees
iff ovI(R) is a recognizable language of unranked treeRififs a recognizable
relation of unranked trees. O

Theorem 13. For every automatori recognizing a binary relatiom? between
unranked trees, vaR) < oo can be decided iRTIME in |A|.

This theorem holds for all classes of automata for unrankesktthat satisfy
the expressiveness propertyl()Aand thus to kinds of tree automata introduced
before. Note that we will apply this theorem to non-detetistio automataA
later on.

Proof. We prove Theorem3in two steps. First we show by PropositiBa that

the result holds for relabeling relations. A relabelin@t@in R C Tsi X ... X Tsn

is a relation between trees of the same structure, i.e. weef®g,....t,) € R
thennod(t;) = ... = nod(t,). In other words, the overlays iovi(R) do not
contain any place holdefrl. Then we exhibit how to associate with any relation
R a relabeling relatior’; with the same valuedness, where the automaton rec-
ognizingC'’y can be constructed inTAME from A defining R. The correctness of
the construction is proved by Lemrad. ]

Proposition 30. The finite valuedness of a binary relabeling recognizaliztien
R can be decided i®TIME in | A|, when given an automatot recognizingR.

Proof. Every automaton can be converted to an STA inME by assumption
(A1), and thus to a TAs modulo tHensencoding by translations of Chapikr
Proposition29 permits to reduce the current Proposition to recognizadéions
of binary trees defined by standard TAs.

So letkR C 72" x T2 be a relabeling relation for binary signatures, ahd
a TA for trees in72" ;. that recognizes, i.e. L(A) = ovl(R). We transform
A into a bottom-up tree transducérfor defining the relation? of the format in
[Sei93. The rules ofl" are inferred as follows whete , z, are variables:

(f,9)(q1,q2) = g €ruly (a,b) — g €ruly
f@i(1), ga(x2)) — q(g(21, 22)) € ruly a— q(b) € ruly
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Figure 7.6: A recognizable relatiaR and the relabeling'r with the same val-
uedness.

This transducef’ has the same valuednessfasTheorem 2.8 of$ei93 shows
that it can be decided in polynomial time whetHeéis finite-valued, i.e. whether
R is bounded. O

The above construction of bottom-up transducers cannatted to recogniz-
able relations beyond relabelings. Instead, we show howneeart recognizable
relations into recognizable relabelings, while presegwialuedness.

So, letR be a recognizable relation ovEP" x 72", We define a recognizable
relabelingCr € 7;’%”@%, where we have 2 symbol&], [J) with arities0 and
2 respectively. The idea is to expand both trees in pdirss) € R to trees
(t),t,) € Cg of the same structure, by repeatedly additighildren to leaves
of ¢, or ¢,. Expansionex(t,t') holds for two treeg € 72" andt' € sz'; if
nod(t) C nod(t’), both trees have the same labels on common nodes, and all new
nodes oft’ are labeled by:. We define the relabeling’r by:

CR - {(tllvtIQ)e,Tle]X,TZzD | (tlth)eRa exl(tlatll)a e)@(t%té)v nOd(tll):nOd(tIQ)}

An example is given in Figuré.6. While the relation® there is finite, the corre-
sponding relabeling’'x is infinite, since it has infinitely many witnesses of every
pair of R.

Lemma 23. If A is a dTA recognizingz, then there exists a dTA' of sizeO(|A|)
that recognizes’x.

Proof. We add one more state #y so thastat{ A’) = stat A)U{¢x} andfin(A) =
fin(A’). AutomatonA’ runsA top-down, untilJ occurs, and then checks for equal
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(a,b) = q €ruly
(a,0)(qm, qm) — q € rul(A’)
(a,b)(gm) — g € rul(A)

(E,08) — g € rul(A)
L, 1) (gm, gm) — gm € Tul(4')

Lemma 24. Cr and R have the same valuedness.

Proof. If ex(t,¢) holds for (¢,¢) € Ts: x Ty, then we writeclean(t') = ¢,
which is well-defined asis unique for a given'. It is easy to check that:

o if s € Ty, thens € ovl(Cp) iff (clean (proj, (s)), cleary(projy(s))) €
R

o (t1,19) € Criff (clean(t,), clean(ty)) € R andnod(t;) = nod(ts).

First, let us prove that the valuedness(¢f is at least the valuedness ff
Let ¢ in 7x: such that there exists at ledstdistinct ¢; with (¢,¢;) € R. Let
D = nod(t)UUt_ nod(t;). For atree: and a set of node® such thahod(t) C D,
we define the completion of w.r.t. D as the tree.” defined bynod(u”) = D
andlab“D(w) = lab“(x) if p belongs tonod(u), Iab“D(w) = [J otherwise. As
nod(t”) = nod(t”) andclean (t?) = t, cleany(t?) = t;, we have(t?,tP) € O,
1 <i < n. Asthet;, 1 < i < n, are distinct, so are th€”, 1 < i < n: the
valuedness of ' is at least the valuedness Bf

Now, let us prove that the valuedness(df is at most the valuedness &f
Letw in Ty such that there exists at ledstlistinctv; with Cr(u, v;). Lett =
clean (u),t; = cleany(v;): we have(t, ;) € R. It remains to prove that the are
all distinct.

Letl < i < j < n: asw; # v; there exists a position such thatab” (7) #
lab® (7r):

e eitherlab”(7) # [0 andlab“ (w) # [J: thenw belongs tonod(t;) and to
nod(¢;) andlab’ () # lab® (7).

e eitherlab”(r) # [ andlab”(x) = [J: thenw belongs tonod(¢;) and =
does not belong tood(t;).

e eitherlab® () # [0 andlab” () = [1: similar to the precedent case.

So, there exists € Tx: such that there exists at ledsdistinctt; with (¢,¢;) €
R. O
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Even if testing bounded valuedness of tree transducersawrknio be in
PTIME, the complexity of known polynomial algorithms is much heghhan for
testing bounded ambiguity of tree automesa$09.

Note that if we add the condition that is deterministic, then a similar con-
struction could have been done using automata instead médugers. IfA" is
the automaton or, obtained fromA by projecting theX; components, then
amh(A’) = val(R), and ambiguity and:-ambiguity of A" can be obtained in
PTIME [Sei93. However, we will use relations defined by E@] formula, which
corresponding automata are non-deterministic.

7.4.6 k-Bounded Valuedness

In this section we study the problem of deciding whether atyimecognizable
relation hast-bounded valuedness. We first prove that, whes fixed, we can
still decidek-bounded valuedness imRE. Then we consider the problem when
k is variable, and prove that it becomegH IME-hard.

Here we cannot prove thatbounded valuedness can be decided Tnvi2
through the use of transducers, like for Lem8@a as known algorithms for de-
ciding k-boundedness of transducers are in non-deterministicnpatyal time
(Theorem 2.2 of$ei93).

The problem does neither reduce to decidingitteanbiguity of an automaton.
We will need to measure the valuedness of relations (as tiieyapture delay and
concurrency), buamb( A) andval( R) are not comparable, whetirecognizesh.

Theorem 14. Let Y; and X, be two alphabets and € N fixed. There exists a
polynomialp such that for every structure s with a single relatiBnC 7s, x Tx,
recognized by a possibly nondeterministic tree automatowmal( R) < k can be
decided in timep(| A|).

Proof. We consider the tree relatiocBameTree= {(¢,t) | t € Tx,} which is
recognizable by a tree automaton of gi2@g¥,|?). We fix a binary relation symbol

r that is interpreted by structureggiven by R such that> = R. We define a
formulaval., with k& + 2 free variables in the logic of recognizable relations in
FOs[r, SameTreg such thatRva, , (1.7, 1175, 13,75, (R) = 0 if and only if
val(R) > k:

val.; =g /\ r(T,T;) A /\ —SameTre;, T})

1<i<k+1 1<i<j<k+1

A tree automaton recognizing relatidﬁ,a|>k(T:TEI,TI:TEQ,MTW:TZQ)(R) = () can
be computed in polynomial time from tree automatbnwhere the polynomial
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depends on the fixed parametéYs|, |X2| andk. This follows from Proposi-
tion 28 since formula relation symbeldoes not occur below negation in formula
val.. Emptiness of the language of this automaton can be testiateer time.
Hence, there exists a polynomia{depending on the fixed parametérs:,, and
¥,), such that we can chealal(R) > k in polynomial timeO(p(|A|)) from an
automatonA recognizingR. O

Theoreml4 provides a PIME decision procedurk-bounded valuedness, un-
der the assumption thatis fixed and the proof relies on an automaton of size
O(]A[¥+1). Without this assumption, however, we cannot avoid an egptal
blow-up.

Theorem 15. The problem that inputs € N, and an automatonl recognizing a
binary relation R between unranked trees, and outputs the truth value ¢fyak
k is EXPTIME-complete.

Proof. By the proof of Theorem4, the problem is in EPTIME. For the hardness
part, we will reduce emptiness of intersection of deterstinitree automata in
this problem. Let/nt(S) the problem that inputs, a finite sequence of deter-
ministic tree automata, and outputs “yes” if and only if #hes at least one term
recognized by each automaton of the sequence. Now, fronutdhaatad we
can build in polynomial time a binary relatiaR, that associates with a treet
labeled by an accepting run, if such a run exists. So, ffomw.l.0.g. we sup-
pose the set of states are disjoint- we construct in polyabtimne an automaton
Ag for the binary relationv 4,cs R 4. As the automata are deterministi¢g will
be (|S| — 1) — bounded iff there isn't any term recognized by each automaton
of the sequence. We conclude as emptiness of intersectidatefministic tree
automata is EpTIME-hard. O

Using the above constructions and Theorem 2.7S&i93, we can build an
algorithm for computing the exact value wdl( R), if it exists. The overall com-
plexity is a fixed number of exponentials|iA|.

7.5 Deciding Bounded Delay and Concurrency

We prove the main Theored® on deciding bounded delay and concurrency for
queries defined by dSTAs by reduction to bounded valuedniesscognizable
relations.
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a a 0 0
/N 7N\ AN 7N\
t‘z b c‘z t‘z cl 0 0 op
\ \
b b a 0 0
(a) Treet (b) Trees (c) Treeren(t)  (d) Treeren” (t)

Figure 7.7:(t, s, ren(t)) € Eqbut(t, s, ren” (t)) ¢ Eq

7.5.1 Basic Recognizable Relations

We start by defining various relations between trees by dSird we will use
later on for defining the delay and concurrency of dSTA defmgeties by recog-
nizable relations between trees.

The prime example is the tree relati&ig C 7s, x Ts; X Tio0pc;y- FOr every
eventy = (a, ) € evet) and treel € Ty, letren’(t) € Tyoopen DE Obtained by
renaming the label of to « and the labels of all other nodesfo 0. We then
define:

(t,s,ren’(t)) € Eq<¢ €qual (t, s)

so thatt ands have the same prefix until evemtSee Figur&.7for an example.

Lemma 25. For every signaturé: we can compute a dSTA in timk|3|?), that
recognizes the relation EG 75, x Ts. X T{o,0p,cl}-

Proof. We define adSTA onXy x ¥ x {0, 0p, cl}z such thatl.(A) = ovl(EQ).
We use two statestat! = {before after}, whereinit* = {beforg andfin® =
{after}. We use a single dummy node statat! = {_}. The rules are given by
the following inference schema:

a € {op,cl} a€y be Xy

before ™% pefore before™ % hefore
before ™" after after ““"Y after
after L “"P atter after 2 after
op (a,a,cl):.

Note that the ruldoefore ————— beforeis used to check the equality below a
noder if prefix equality has to be checked untdl, 7). AutomatonA has size
O(|~?]) and can be computed in this time. O

The next kind of tree relations express canonical languafjgaeries. Given
atreet € Ty and a complete tupte € dom(¢)”, we define atreprun€ (t) € Tov.,
as follows. Lett’ be the prefix of with domaindomaesy-) (). We seprun€ (t) =

proj, (¢’ * 7).
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For everyn-ary query), we define a recognizable relati@an, C Ts x Tov,
which relates treese Ty, with tuplesr € Q(t):

Can, = {(t,prun€ (1)) | 7 € Q(1)}

Lemma 26. Let A and B be dSTAs that define arary query@) = Q4 5. Then
we can compute a dSTA framin time O(|A|? - |X]) that recognizes Can

Note that the size of the computed automaton is independeneven though
2V» appears in the alphabet 6fn,.

Proof. An automatonA. recognizingCan, can be built in polynomial time in
|A| and|X|. The idea is exploit the types of states of canonical autanairder

to detect eventy = lates(r), rather than storing the variables seen so far in the
state. In order to ensure the uniqueness of types, we havake smnproductive.
We can then compute the types of all states during a travefshe automaton.
The automatomi can then be computed as follows:

a (av)y

Go —— q1 € ruly qo not of typeV,, or a = cl
stat/¢ = sta a (av)y
initté14c = init§ G —a €Ml
fin'c = fin" ,
a (a,0):y
Staﬁc — Staﬁ o — q1 € rulA qo of typeVn

a (a,[)y
gy — q1 € rulAC

The automaton simulates$ until it reaches states of typé,. From there on,
it expectsld as annotation, instead @f Note thatA. is deterministic sinced
is. O

The relationBef = {(¢,prun€ (t),ren’(t)) | 7 € dom,(t)"} is the subset
of Tx x Taove X Tpo0pey that captures alh-tuples of nodes of (on its second
component) that contain only nodes opened before an ey@ovided by the third
component.Bef is recognizable by a dTA of siz@(2"), so we cannot use this
relation for PriME algorithms without fixingz:. The problem can be circumvented
by using the following relatioiBef&Can, which can be recognized while using
the states of the canonical automaton£o€)) for checking types:

Bef&Can, = {(t, s, 5,) € Ts X Tova X Tio,0pely | Cay(t, s7), Bef(t, s7,s,)}

Lemma 27. We can compute a dSTAggc recognizing Bef&Cap, , in time
O(JAJ? - ).
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Proof. We build a dSTAAgc that recognizeBef&Can, in PTIME from the
dSTA A recognizingCan,. We have to check, that at most one evemns an-
notated into the third component, and that is comes &ites{7) for the tupler
of the second component, i.e., when automaterhas moved into a state of type
V.

Let B = {0, 1} be the set of Booleans. We defisg@t'z«c = stalc x B, in
order to control by a Boolean, whether the third componestigen seen before.
We define initial states binit*#«c = init4c x {0}, final states byfin'z&c =
fin'e x {1}, and node states kstat's«c = static.

a (a):

qo —=27 @ eruly, beDB o £«

b) a (a0 )y (

(QO7 qi1, b) € rU|AB&C

a (a):

G — gy eruly, ¢ hastypeV, in Ac
0) a (av,a):y (

(QO> q1, 1) € rUIAB&C

0

We define a variant dBef for partial tuples, calle®ef,. Here, we do not try
to avoid the blow-up for two reasons. FirBef, will be used with another relation
calledC,v.., and a blow-up is necessary to recogrnize,. Second, separating the
relations permits to clarify the definition of the formulaptaring concurrency.
Letren(s) € T,v. be the projection of x 7 to 2V, i.e.,nod(ren"(s)) = nod(s)
andlab™" ) (1) = v if lab* () = (a, v) for somea € ¥, and allr € nod(s).

The relatiorBef, = {(ren’(¢),ren’(t)) | 3t € Tx. 7 € donf(¢)"} is a subset
of Tov. X Tio,0pcy that relates annotations of trees with tupteand events), such
thatlates{r) < 7.

Lemma 28. A dSTA recognizing Bgtan be computed in tim@(3").

Proof. The following dSTA Ages, recognizes the relatioBef,. In the states, we
collect (at opening) variables corresponding to the coreptsofr that have been
encountered. We also add a Boolean, that indicates whétb@vent; has been
read. Note that on the second component, we can read valifieeai from0
when we are not at. For instance if) = (op, 7), we will read ‘op” on the second
component when we go througél, ).

stag®+ =2V xB init*se={(0,0)}  fin'see=2""x {1}  staf**={_}

Rules are defined by the following inference schemas. At iogerwe check
canonicity ifn has not been reached; otherwise we forbid variables in the fir
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component. When is reached, we still allow to read variables, and change the
Boolean.
a € {0,cl} v, o' CV, vNv =10

(v,0) 2L 0y, 0) € rulee

(v,0) 2L o, 1) € ruldests

(v,1) 28D, 1) € rul e

At closing, we do not check anything. We just change the Boolhens is
reached.
beB a € {0, op} vV CoCV,

(v,0) LD ) 1) € rulAsen

(0,0) L5 (4 b) € rulde,

Ager, can be computed in tim@(3"): For opening rules, choosingandv’ con-
sists in determining for each variablec V,, whetherx € v — v, x € v/ —v or
x ¢ v U . Similarly, for closing rules, we have to choose whethet v — v/,
rev,orx gvU. O

Finally, the relatiorC,v,, C T,v. is the set of trees df;v. of type1-.
Lemma 29. An dSTA recognizing4,. can be computed in tim@(3").

Proof. Here we just have to collect variables in states at openindread only
variables that have not been seen so far.

A A
stag 2" =2Vn it ={0}  fin"%v={V,}  staf, 2" ={}

v, 0" CV, vNv =10 vV CuCV,
/i | v’ A
v 25 U €l v 225 e rul v
The complexity comes from the same argument as Le28na O

7.5.2 Bounded Delay

Our objective is to define the formuladelay, and concug, in the logic
FOs[Eq, Can S, Bef, Bef&Can preferably without usindef. Relational struc-
tures for interpretation are fixed by a qu&py which maps the relation symbols
to the following recognizable relatiorGan,, Bef&Can,, and S, = domQ).
All other relation symbols have a fixed interpretation by tékation of the same
name.
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We start with the definition of the relatioBel, = {(¢,ren(¢),ren’(t)) |
(1,m) € seb(t)} by an FO formulaSel with three free variables, such that

Seb - Rse(TﬁTE,TﬁTQVn 7T7]:T{O,op,cl}) (Q)

Sel =g S(E) A Bef(Tt,TT,Tn)
AV € T, (S(T)) A EA(T, T/, T,) = CanT.T,)

Note that entailment o€an(7},T’) is correct only since we prune trees using
Bef: if (¢/,¢,n) belongs to relationREq(Tt:TE,T{:T&TWIT{O%ORC'}) thent and¢’ may have
different domains beyong. Given dSTAsSA and B defining) = Q4 5 we can
thus define a dSTA recognizireel)(1;, 7, T,)). Unfortunately, we cannot con-
struct this dSTA in PIME yet, since formul&eldoes not belong to the existential
fragments of FO and uses relati@ef. Nevertheless, we obtain algorithm for
deciding judgmentsér, n) € sel(t).

We define the relatioDelay, = {(¢,ren’(t),ren’(t)) | n € delay,(t,7)} by
the following formula of FQ[Eq, Bef&Can S, Can, that expresses thatis an
event increasing the delay if the nodesrof ()(t) are before; in ¢, and there is
a treet’ that equalg until » but with7 ¢ Q(¢'). The formula has 3 free variables

such thaDelay, = Rpelay(t, 7,7+ Ty, 77—{070’)&'})(@).

Delay =4 37} € Tx. S(1}) AN Bef&Can1y,T;,T,)
AS(T!) A EQT,, T),T,) A ~Can(T},T;)

All base relations can be defined by dSTAs of polynomial sibenvleavingn
variable (since we do not need the relat®ef here, and by Lemmaz5, 26 and
27). Given deterministic automatd and B, we can thus define a possibly non-
deterministic automaton recogniziﬁgplayQA’B(ZI}, T;,T,) in PTIME from A and
B. Let2Delay, = {(t ® s;,s,) | (t,s:,5,) € Delay,}. Both relations are
recognized by the same automaton. This relation exactlyuoapthe delay:

val(2Delay,) = max delay, (¢, 7
(2Delay,) = max delay,(r,7)

By Proposition28 we can define automata recognizing relatbelay, in
PTIME, so that we can decide bounded delay aAdounded delay of) for a
fixed k in PTIME by Theoremd.3and14.

7.5.3 Bounded Concurrency

For concurrency, we proceed in a similar manner.

Proposition 31. If arity n € N is fixed, then for every-ary queryQ = Qa5
defined by dSTA4 and B, we can compute iPTIME a possibly nondetermin-
istic STA that recognizes the relation Alive= {(¢,ren(t),ren’(t)) | (1,n) €

aliveg(t)}.



Section 7.5 — Deciding Bounded Delay and Concurrency 179

Proof. We defineAlive, by a formula of FQ[S, Can Eqy, Eq,y, , Cov., Bef,],
such thatAlive, = Ralive(T,:Ts T Ty, 7T7]:T{O’Op’cl})(Q). Here we use the relatidaq
with two different alphabetst and2Y». The latter permits to express completions
of tuples.

Alive(T3, T, T,) =g 3T, € Ts. IT}' € Ts. IT. € Tovn. TV € Tovn.
S(TE) A S(TY)
A Carg (T}, T1) A Eqy(Ty, T}, T,) A By, (T7, T2, T,) A Bef,(T:,T,)

N =Cang (17, T7) N Bau(T3 T\ Ty) A EGuun (T7,T7.T5) A Cova (T7)

This formula expresses thatis alive atn of ¢ € Ty, if there exists continuations
t',t" € Ty of t beyondn and two completions’, 7" of 7 beyondn such that
e Q(t') butt” ¢ Q(t"). Bef, checks whethelates{r) < n. C,v, verifies that
T! is canonical, as this is not done byCan, (7}, 7)). All relations used in the
formula are recognizable by automata that can be computedire by Lemmas
25, 26, 28and29, so that an STA foAlive, is obtained from Propositio®8 (since
Ais deterministic). Indeed, this result remains trugifs nondeterministic, since
relation symbolS does not occur below negation. ]

Note that we cannot integrate the canonicity controlf8rinto the negated
relation—Can(7}, 7). The deeper problem is that automatéor canonical lan-
guages of querie§ 4 5 do not have a notion of safe statesthe case of tregs
since safety depend also on the current stack content.

Let 2Alive, be the binary version dAlivey, i.e., 2Alivey = {(t ® s, s;) |
(t,s,,s:) € Alivey }, then:

val(2Alivey) = terdré%(x@ concury(t)

We can recogniz@Alive, with the same automaton &divey, which can be
computed in PIME for fixed n from A and B by Proposition31. Hence we
can decide bounded andbounded concurrency af) for fixed n and & in
PTIME by Theoremsl3 and 14. The cost of the automaton construction is in
O(p(|2],|A], |B]) - (2™)* - (3™)?) for some polynomiap: building the automaton
for Eq,v, is in O((2")?) by Lemma25, and the automata fdef, andC,v, are
built in O(3™) by Lemmas28 and29. A lower complexity may be obtained by
more ad hoc constructions, for instance by directly conmguéin automaton for
Aliveg.

7.5.4 Discussion of Direct Construction

We end this section by pointing out an alternative (and maext) construction,
that computes in tim®(p(|X|, | 4, |B|) - (2")?) (for some polynomiap) an STA
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recognizingAlivey. In Chapterb, we explained how to compute a dSTA)
recognizingL(A), and such that each state is either safe or unsafe for selecti
(and respectively for rejection). This cannot be doneApas the safety condition
depends on the current configuration, which contains a staatent. This comes
however at a cost: each stateE(fA) includes a set of safe states, and thus the
size ofE(A) isin O(2!4]),

To avoid this blowup, we use non-determinism. When builditg), a new
set of safe states is computed for each opening rule. Insteedmputing this
set, we guess non-deterministically a state that is unsafeelection and a state
that is unsafe for rejection. Hence statesiaf,e are 3-tuples of states of: one
state for the run ofd and two unsafe states. The computation of unsafe states
follows the same line as the computation of safe stateEfdr. We just have to
replace a universal quantification on continuations (tHeyae to be safe) by an
existential quantification (one must fail, to be unsafe fdestion).

While avoiding a blowup in the size of, we still have to make it complete,
which requires time i (|X| - (27)?). The completion is needed, as there must be
an accepting run ofl e When we reach an unsafe state for selection @tthe
second state of the pair was also unsafe for rejection). Nhatiethis alternative
construction requires that the automatBrrecognizing the schema language is
deterministic. This is not the case for the constructiomgisecognizable rela-
tions.

7.6 Conclusion

In this chapter, we proved that deciding whether a query dédflsy dSTAs has
bounded (respk-bounded) delay and concurrency can be performed in polyno-
mial time, for a fixedk. We chose to focus on measures of delay and concurrency
that were motivated by query answering in a streaming mai@wne extensions
of these measures could be also investigated, especiatlydalelay. For instance
we studied the delay for selecting a tuple, but we could alsdysthe delay for re-
jecting a candidate tuple. This measure is close to conecyras bounded delay
for rejection implies bounded concurrency, whereas bodntitay for selection
does not (fom-ary queries).

We also chose to measure the delay from the point where tliedzda tuple
gets complete, as it cannot be output before. We could ddfmeth delay like
in our definition, but starting to count wheércomponents of the tuple are filled.
Hencen-th delay would be the delay studied in this chapter. Thisldonake
sense if we want to decide whether all completions of a ddude will succeed,
and in this case output it. Then the completion with any inc@mode could be
performed by a parallel process.
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Another variant for the-th delay is to measure the number of events between
completingi components and completing 1 components of the candidate tuples.
If all these delays are bounded, then the query has bounday @ecording to
the definition studied in this chapter. This would give intediate measures of
bounded delay. For instance, we could characterize querigghich components
of candidates are quickly filled, except one component foicwkhe delay may
be unbounded. This could help designing streamable queries

In terms of improvements, we would like to replace the reiducto the
bounded valuedness of tree transducers to a more directrecisn. Indeed,
tree transducers are more powerful than binary recogrezaiations, so we can
hope for more efficient algorithms. This requires howeverdnsider two kinds
of non-determinism inside the automaton recoginzing theryjuthe usual non-
determinism (on runs of the automaton) and the non-deté&smion the second
component of the binary relation. Another open questionhstiver a restriction
on shallow trees could lead to more efficient algorithms.
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Chapter 8

Conclusion

8.1 Main Results

The work presented in this manuscript focused anLXdata, and more specif-
ically to the query answering overm streams. We addressed two kinds of
queries. The first one is XPath, a W3C standard based on aatiavigl language.
The second one is tree automata, a tool originating fromuagg theory, that we
use here as query definition language. Usually/.Xata come with a schema that
describes the structure of validw{ documents. We took schemas into account in
our framework, as they can improve the efficiency of querywmsg algorithms.
All query classes that we studied allow the definitiomedry queries, i.e., queries
that select:-tuples of nodes, instead of simple nodes.

We started this dissertation with a description of our frework for query
answering on streams in Chapt@r To establish a clear definition, and get a
precise complexity measure, we introduced Streaming Rarklcess Machines
(SRAMs). These are RAMs with some registers, a working mgnamd two
tapes: a read-only input tape and a write-only output tafrenTwe introduced a
measure for the streamability of queries. A query is saebstrable if there is an
algorithm computing it, that uses aRIE preprocessing, and polynomial space
and time for processing each event of the stream. These egitypineasures are
in the size of the query, but constant in the size of the treg.rdbaxing these
strong requirements, we defined a hierarchyreétreamable query classes, for
m € Np. Then we studied the streamability of queries defined by XRaid
tree automata, the two query classes studied in this maptsiYe proved that
both are not streamable, even at low levels of our hierar@iys motivated the
investigation of streamable fragments.

For tree automata, we defined Streaming Tree Automata (S&Aspdel that
evaluates trees according to a pre-order traversal. Thregmonds to the way
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a tree is read when its corresponding X document is accessed in a streaming
mode. In Chapted, we studied the links between STAs and other automata mod-
els: models that also evaluate in pre-order (nested womhsata, visibly push-
down automata and pushdown forest automata) and standaelsitbat evaluate
in a bottom-up or top-down manner. In particular, deterstiniSTAs (dSTAS)
can be obtained in AME from all other models. In Chapt&; we proved that
dSTAs arem-streamable on shallow trees for all € N,,. To get this positive re-
sult, we introduced Earliest Query Answering (EQA). An EQ@aaithm outputs
each answer at the earliest time point where it can be detidedt is selected by
the query, whatever the continuation of the stream is. Tigisrahm also discards
candidates that will not be selected in any continuatioth@earliest time point.
We study the complexity of such algorithms, and establigrefdbounds. These
bounds are of great interest, as any streaming query amgyvalgorithm with
optimal memory consumption has to be an EQA algorithm, and these lower
bounds indicate how much time is needed to reach optimakspauoplexity. The
m-streamability of dSTAs is shown by building an EQA algomitfor queries de-
fined by dSTAs, that uses polynomial per-event space and tomeach candidate
that needs to be buffered.

For queries defined by XPath expressions, we propésedwnward XPath
(for £ € N), a set of fragments suitable to streaming evaluatibibownward
XPath ism-streamable for alln € Ny. It allows only downward axesh and
ch®, and restricts the inherent non-determinism of XPath, sb AFDownward
XPath expressions can be translated mME to equivalent dSTAs. The positive
streamability results were obtained by reduction to stedahty of dSTAs, as pre-
viously described. Our translation to dSTAs allows us toyapf our algorithms
for dSTAs onk-Downward XPath expressions, in particular the EQA aldponit
and the decision procedures described in the sequel.

Finally, we established that deciding bounded (aAfitbunded) delay and con-
currency of queries defined by dSTAs can be decidedrimP. The delay of a
monadic query is the maximal number of events between rgadselected node,
and the earliest event where it can be decided that it willdbecsed in any con-
tinuation of the stream. For-ary queries, we start measuring the delay when the
tuple is filled. Hence having-bounded delay ensures that once a candidate is
complete, we have to way at mastevents before being able to output it. The
concurrency is the number of simultaneously alive candslate. candidates that
have to be buffered, as their selection or rejection caneaddrided yet. Both
results were established using properties of recognizatdéons over unranked
trees, for which we proved that the bounded valuedness cdadided in RIME
for a givenk, even from non-deterministic automata.
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8.2 Perspectives

Throughout the dissertation, we studied the scalabilitgudry classes through
our notion of streamability. We proved non-streamabilitySome classes (XPath,
non-deterministic tree automata) and aisestreamability for some others, for
all m € Ny (k-Downward XPath, and dSTAs). However, we did not provide a
method to effectively compute the degree of streamabifity query class, when

it is in-between. In particular, it would be interesting tadiicharacterizations that
are equivalent ton-streamability. Moreover, our computational model implae
memory lower bound for all queries (see Propositi)n Some results by Bar-
Yossef et al. BYFJOY prove that this bound is a real lower bound for any query
answering algorithm for some fragment of XPath. It is sgdea whether this also
holds for other XPath fragments, and for queries defineddsy automata.

In Chapter6, we have seen that translatingDownward XPath to dSTAs
proved them-streamability ofk-Downward XPath, for alin € Ny. An open
question (which was also our working hypothesis) is whethesry classes for
which a PriME translation to dSTAs exist are exactly query classes theatar
streamable for alin € Ny. This would prove that dSTAs are the good model for
defining streamable queries. Another interesting chanaaten of streamability
could also exist at the level of logics, as proposed recéntlizey and Benedikt
[LBO9]. In particular, it is known that FO formulas can only deberiocal prop-
erties. This may restrict the number of simultaneous caatdg] and thus lead
to streamable query classes. However, when allowed mosespfiedicates) are
not along the document order, this fails. For instance atigwransitive closure
in axes likech® allows jumps in the tree, and thus moves with unbounded delay
Even the next-sibling axiasis problematic, as the number of events between
the opening of two direct siblings can be unbounded, everhahasv trees. All
streamable classes studied in this dissertation have ansiemastriction on the
depth of trees, i.e. only consider shallow trees. Then atmues whether we
could use this fact to get better algorithms. For instancewdd translate tree
automata to word automata (recognizing the words of taggherfly, and use
more efficient algorithms for words. Moreover, we only foedn queries that
only take the structure of the tree into account, not theutdxdata.

The framework adopted in this dissertation may be externnlsdveral ways.
First, we could allow multiple scans over thevX stream, instead of a single
pass. This makes sense for stored data that can be readl sewesa This was
studied by Grohe, Koch and Schweikar@®{S07 for XPath, but not for queries
by automata. It would be also interesting to study how sewpreries can be si-
multaneously computed on severaliX streams. The challenge here is to find a
data structure for the compact representation of the sedradidate tuples. This
guestion is also relevant for our EQA algorithm for dSTAs endwe did not ad-
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dress this problem. It was studied for instance by Meuss. endgMSBO01], but
outside the scope of a streaming evaluation. Another atieeframework for
XML streams is the use of indexed streams, where one streamnsdi&i each
label of the alphabet, and in each stream, elements aresgctb@sdocument order.
This has been recently investigated by Shalem and Bar-¥dssehe restricted
case of tree pattern§SBY08. More generally, this raises the question oiX
serialization. It could be interesting to allow more flexilbbrms of serialization,
not only the document order. The wayX documents (and their schemas) are
generated usually ignores which queries will have to beuatat on these do-
cuments. Hence the information may be stored in a differeshérothan what is
needed for the evaluation of queries. To solve this prob&esolution could be to
distinguish between the DOM representation of am_Xdocument and its serial-
ization, by serializing it according to some informationmotential queries asked
on this document.

Concerning the earliest query answering algorithms stlisti€Chapters, the
goal was to prove lower memory bounds. As a consequence aithedtf between
space and time complexity is here on the extreme side of @pspace consump-
tion, at any time cost. A way to relax this requirement is talfireuristics, as
investigated by Benedikt et aBJLWO0§ for approximating the earliest rejection
of candidates. Other results are known for approximateycaeswering, as those
established by De Rougemont et &ZJJRO08dRV0E. Approximate validation of
XML streams has been investigated by Thomo et alTW08], and Schewe et
al. in [STWO0§. Another way to relax the earliest decision requiremeid igost-
pone these decisions (selection or rejection) to a timetpdiere we are sure that
enough information has been read. This is a common soluti@xisting algo-
rithms. For instance for fragments of XPath allowing onlywdvard moves and
tests, the decision for selecting a node is usually done wlusing it. It could be
interesting to try to improve this, for instance by considgischema information.

Query answering is a first step towards the evaluation ofsfaamations.
Hence a natural extension of our work is to take XQuery FLOWRressions
into account. These are for-loops with variables, that camésted, and also
select tuples of nodes. The next step is to produce the oMtputdocument pro-
gressively. This will create new difficulties, as once moeewill have to decide
whether some part can be output because it will not changayircantinuation
of the input stream. Transformation languages contain suotimer features like
aggregators, and their streaming evaluation also has téued. XProc pro-
poses to define transformations througkilXpipelines. This language allows to
separate regions of thend. tree where a transformation (defined for instance in
XQuery or XSLT) occurs, and thus avoids to buffer too mucloiinfation. This
is why this language looks more suitable to a streaming atialu than XQuery
transformations on full documents.



Chapter 9

Resune

9.1 Contexte

Le format XML, introduit il y a dix ans, s’est imposé comme le standardr pes!
applications orientées Web et le traitement des docuniB®SM"08]. Emanant
de ML, XML définit des documents semi-structurés, modélisés gaadores.
La syntaxe d’un document ML est une suite de balises bien imbriquées, dont
certaines contiennent des données textuelles. Ceerelitfes bases de données
relationnelles, ou les données sont stockées dans loles.tahvec XL sont ap-
parus des langages de schémas comme les DTDs (DocumenDe&fipéion),
XML Schema ou Relax NG. Un schéma définit la structure atteddsedocu-
ments XvL utilisés au sein d’'une application donnée.

Considérons par exemple le documemtiXreprésenté dans la figugel(a)
Ce document contient des données géospatiales contefaax villes, et est
modélisé par I'arbre représenté dans la figdu2 Un schéma pour ce document
est présenté dans la figu®el (b)

Le premier type de traitement des documentig >est lavalidationd’un docu-
ment par rapport a un schéma donné. Ceci est nécesaaiepplications manip-
ulant des donnéesm_, afin de de s’assurer de leur conformité envers le schéma
souhaité. Le second type de traitement consiste a reépank requétes, c’'est-
a-dire a trouver les nceuds d’'un documemiiLXsélectionnés par une requéte. Il
s’agit d'une étape de base pour récupérer des informmtitans un document
XML. Dans notre exemple il peut étre intéressant de sélewioles triplets
(noml at ,l on). Le filtrage est un cas particulier de réponse aux requétes, ou
il suffit de déterminer si un documentM{ possede une solution par rapport
a une requéte. Le troisieme type de traitement estalasformationde docu-
ments XL, elle-méme souvent basée sur une notion de requétedrdredor-
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<geo>
<poi nt >
<nonwLille</ non®
<| at >50.6305@&/ | at >
<l on>3.07063/ | on>
</ poi nt >
<poi nt >
<nonrHellemmes/ none
<l at >50.6274&/ | at >
<l on>3.1085%/ | on>
</ poi nt >
</ geo>
(a) Document XiL.

geo —point*

poi nt — (noml at? 1 on?)
nom — #PCDATA

| at — #PCDATA

lon — #PCDATA

(b) Schéma défini par une DTD.

Figure 9.1: Fichier XaL contenant des données géospatiales, conforme a une
DTD.

geo

point point

PN ) T

nom lat lon nom lat lon

Lille 50.63050 3.07063  Hellemmes 50.62746 3.10853

Figure 9.2: Représentation arborescente du fichier Xe la figure 9.1(a).

mations possedent beaucoup d’applications dans le cadrelacuments ML.
Par exemple I'échange de données consiste a transfameiwcument conforme
a un schéma, en un document conforme a un autre schémaarisformation
de données désigne I'ensemble des transformations aiaandent XL en un
autre. Un autre exemple fréquent est la transformationddesments XiL en
pages Web, en utilisant des feuilles de style XSLT.

Toutes ces types de traitement peuvent étre effectués ddférents modes.
Le premier est Bvaluation en ramoire centraleDans ce cas, le documentviX
est entierement chargé en mémoire centrale, puietrdil sortie est produite
uniquement lorsque I'ensemble des solutions est caltil@. des inconvénients
de cette méthode est une consommation mémoire importabtie autre in-
convénient est de devoir attendre la fin du traitement poodyire les sorties,
alors que souvent certaines sont connues avant. Une apt@chp permettant de
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résoudre cet inconvénient esttfiunérationdes solutions. Cela consiste a sortir,
apres une phase de précalcul, chaque solution, I'uresdjanitre, avec un délai
raisonnable entre deux solutions consécutives. Enfin,ddemd’évaluatioren
flux (streaming impose davantage de restrictions sur la consommationainém
Dans ce mode, le documentiX est lu en une seule passe, de la premiere balise a
la derniere. Cet ordre est appelé ordre du document. liee &®t également pro-
duite en flux : lorsqu’une solution est trouvée, ou qu’'undipalu document de
sortie est produite, elle est envoyée sur un périphéragusortie. L'objectif d’'une
évaluation en flux est d’utiliser moins de ressources m&men ne stoquant que
I'information nécessaire. Le stockage est nécessaisgl@ la sortie dépend de
la suite du flux d’entrée. Le but est de pouvoir traiter desudieents ne pouvant
étre chargés en mémoire centrale, ou de traiter a kevdé's flux XiL provenant
d’'un réseau.

Plusieurs standards ont été mis en place pour les diff&tgpes de traitements
évoqueés ci-dessus. Nous avons déja illustré les zamde schéma par les DTDs,
définies au sein du standarduX [BPSM™08]. XML Schema FW04] est une
extension des DTDs permettant par exemple de caract@liseprécisement le
contenu des données textuelles. De plus, les schemassaafiXvL Schema sont
eux-mémes des documentsX, a la difference des DTDs. Relax N&dVO03]
décrit la structure des arbres valides, et délegue &xiBpation des données
textuelles valides a ML Schema.

XPath [CD99 est le standard pour la sélection de nceuds dans les dotsimen
XML. XPath est basé sur la description des chemins, par dess dligtapes
a suivre jusqu’a atteindre les noeuds sélectionnés. thXparmet également
d’ajouter des filtres a chaque étape. Un filtre est une coardn booléenne
d’expressions de chemins, et est satisfait si un noceudattistte combinaison.

Il est également possible de tester le contenu textuel dasds. XPath est un

langage de requéte central, utilisé comme mécanismeldeti®n de nosuds dans
de nombreux autres langages, comme XPoirb#J01], un standard pour la

sélection de fragments dans les documenis X

XPath est également utilisé par les deux langages defdramastion XQuery
[BCFr07] et XSLT [Cla99. XQuery est un langage impératif utilisant des boucles
for pour sélectionner des tuples de nceuds. Ceux-ci sont enssérés dans un
contexte XML pour produire un documentML de sortie. XSLT est plus proche
de la programmation fonctionnelle. Une feuille de style XSist composée de
patrons, activés pour les nceuds satisfaisant I'expnesdtath.

XProc WMTOQ9] propose de combiner tous ces standards grace a un langage
de pipelines. Alors que XPath, XQuery et XSLT n’étaient pascus pour une
évaluation en flux, XProc permet de définir des parties adbie ou operent la
sélection et la transformation. Ainsi, les difficultéh@mentes a I'évaluation en
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flux sont circonscrites a certaines régions. Comme &a@pns ce manuscrit,
d’autres langages, comme STBBCO0Z], ont &té congus spécifiquement pour une
évaluation en flux, mais aucun standard n’a été adopté.

Les automates finis de motdJ79] operent sur les mots en un seul passage,
afin de décider de leur appartenance au langage de l'awtodiatsi, ils évaluent
naturellement les mots en flux. Ces objets ont été &udélongue date, et
bénéficient de liens intéressants avec la logique etdarifd des langages. Les
documents XiL sont modélisés par des arbres, et non par des mots. Cependa
les documents ML de base sont des linéarisations de ces arbres : un document
XML est une suite de balises (un fluxvX), et donc un mot. Ici les balises sont
bien imbriquées, et refletent la structure d’arbre. Leéemmates de mots sontinca-
pables de prendre en compte cette relation d’'imbricati@mudhavons donc besoin
d’'un modele d’automates plus puissant pour traiter lesXiunx .

Les automates d'arbre€PG"07] fournissent un cadre pour la définition
et I'eétude des traitementsN{. Des relations directes avec la logique et la
théorie des langages d’arbres ont été égalementi€tadnl travers de nombreux
travaux. En particulier, ils représentent un cadre aigéle pour les bases de
données XiL, de la méme maniere que l'algeébre relationnelle pourbleses
de données relationnelles. Il a é&té montré que les aattsrd’arbres capturent
tous les langages de schémas standards, et la traductiansdhéma en au-
tomate d’arbre est relativement simpMLUMO1]. Les automates d’arbres ont
eégalement été proposés comme mécanisme de défidéioaquétes dans les ar-
bres NS02 Koc03 BS04 CNTO04. Les expressions XPath peuvent également
etre traduites en automates d'arbres, mais cette foiathuttion n’est pas triv-
iale. La validation et le traitement des requétes onteégaht été étudiés pour
les automates d’arbres. Les transformations sont défpaesles transducteurs
d’arbres. Par rapport aux automates d’arbres, ils pernteteeproduire une sortie
tout en lisant I'entrée.

9.2 Motivations

Dans ce manuscrit, nous étudions les algorithmes de sepamx requétes, util-
isant une évaluation en flux, pour des requétes définiedgsexpressions XPath
et des automates d’arbres. L'évaluation en flux est désisrom défi majeur pour
le traitement des requétes XPath. Michael Kay, le concepte Saxon (le moteur
de référence pour XQuery) déclarait recemmé&atyj09 :

Les capacités de traitement en flux [de Saxon] sont déssiinae
des principales raisons pour lesquelles les gens acHeétpraduit.
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entrée a b a a b b b a b d
mémoire|1 1 3 4 4 8 8
sortie 4 8

Figure 9.3: Evaluation en flux pour la sélection des pas#tiosuivies pai-b.

Le traitement en flux des documentsX est étudié depuis longtemps. Nous
illustrons ce mode d’évaluation et les concepts affargatr une requéte sur les
mots de l'alphabefa,b}. Considérons la requéte qui sélectionne les positions
étiquetées pat, et directement suivies pé. Par exemple, sur le mabaabbbabd,
cette requéte sélectionne les positions 4 et 8, commeuédilans la figuré.3
Toutes les positions étiquetées pgreuvent immédiatement &tre écartées. Pour
les positions étiquetées parla sélection ou le rejet d’'une position candidate ne
peuvent pas étre décidés immédiatement. Les positaivges para (comme
la position 3) peuvent étre rejetées apres une étapeellets suivies pab - a
(comme 1) apres deux. Cette requéte peut etre évaltgeume fenétres(id-
ing window de longueur 3, et nécessite de mémoriser au plus un sedidzd
a la fois. Nous appelondélai la taille minimale de la fenétre, ebncurrence
[BYFJO] le nombre minimal de candidats simultanément vivants.climdidat
estvivanta un certain moment, s'’il existe une continuation du fluxmpettant sa
sélection, et une autre permettant son rejet. Ainsi ledidars vivants nécessitent
d’étre mémorisés. Il est souvent facile de définir depigtes ayant une concur-
rence élevée, par exemple ici en permettantigiepparaisse apreés mais pas
immeédiatement. Les schémas peuvent permettre de eddujuantité de données
a mémoriser. Par exemple supposons que tous les motevalight tels qu’une
fois que troish successifs sont apparus, toute positiogst suivie pab-b. Dans
ce cas, toutes les positions étiquetéesqgpapparaissant apres trdisuccessifs
pevent étre immédiatement sélectionnées. Par examapienotre cas, la position
8 peut étre sortie a la position 8 au lieu de la position 10.

Dés les premiers travaux, les algorithmes d’évaluatiofiex ont montré de
meilleurs performances, mais ne permettaient de n’évajue des fragments re-
streints des langages de requétes. De nombreuses dfidides a ce mode
d’évaluation ont été identifiees. Pour la validati®VpPZ, un premier obsta-
cle est la nature récursive des documentsLX Le traitement de documents
récursifs nécessite de stocker dans une pile des infamnss propos des ancétres
des noeuds. Ainsi la mémoire peut étre bornée par la pdefonde I'arbre,
mais ne peut pas étre bornée indépendamment pour towshess. Les lan-
gages de requéte comme XPath sont, de maniere inhérentegéterministes
[PCO0], a la difference des langages de schémas. Par exempthXpermet
de parcourir I'arbre suivant I'axdescendantEn partant d’'un nceud, cela corre-
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spond a sélectionner tous ses descendants, et donegensombreux candidats
pour I'étape suivante. Parmi ces candidats, certainabesoin d’étre stockés,
puisqu’ils peuvent avoir besoin d’informations suppl&taéres pour déterminer
s'ils satisfont la requéte. Ces difficultés apparaissi&ja pour le filtrage de do-
cuments XML par des expressions XPatAHOQ]. De plus, XPath permet le
branchement, via les filtres et les conjonctions au sein dessfi Cela aug-
mente souvent la complexité des algorithmes. Les tramsfbons apportent des
problemes supplémentaires pour I'évaluation en fleEWNM*05, Mic07]. C’est
typiguement le cas pour les opérateurs manipulant leigpasparmi les éléments
sélectionnés, par exemple en cherchant le dernierezléselectionné, ou pour
trier ces eléments.

Par rapport a ces aspects bloquants, des bornes in&sipour la mémoire ont
eté établies pour ces differents traitements. Pouelgsétes, la notion centrale est
la concurrence, précédemment introduite. 1l a été méoj@YFJO0] que la con-
currence est une borne inférieure pour la mémoire, lotsaiiement des requétes
XPath appartenant a un certain fragment. Cela améne @sge la question suiv-
ante : peut-on atteindre cette borne ? Cette question peutiécomposée en
plusieurs variantes. Tout d’abord, ce résultat se g#isert-il a d’autres classes
de requétes ? Il serait également intéressant de savoatte borne inférieure
est proche de la borne supérieure, c’est-a-dire s’iltexdes algorithmes dont la
consommation mémoire soit proche de cette borne infé@ieQuel est le colit en
temps de calcul pour atteindre de telles bornes ? En d’atére®es, ces algo-
rithmes nécessitent-ils des temps de calcul importanisgiecider de la sélection
ou du rejet des candidats ? Comment ces colts varientdifed|asse de requétes
a l'autre ? Existe-t-il des classes de requétes pour &gpudes algorithmes ef-
ficaces existent ? Ces classes sont-elles caractérisgesipe certaine propriété
? Les classes ayant une concurrence non bornée peuvenegi traitées ef-
ficacement ? Quelles requétes nécessitent peu de matmrigméme si cette
mémorisation ne peut étre bornée) ? Ces questions motealéfinition d’'une
mesure plus fine que la concurrence :steeamabilie d'une requéte, i.e. une
notion mesurant a quel point une requéte est adaptée &waduation en flux.
La concurrence établit une premiere frontiere entreréggiétes ayant une con-
currence bornée (et pouvant ainsi étre évaluées awwo@moire bornée sur des
arbres de profondeur bornée) et les autres. Mais les questi-dessus justifient
la définition d’une notion plus fine de streamabilité.

Nous nous intéressons aux requétesires, pourn > 0. Celles-ci
sélectionnent des-uplets de nceuds dans les arbres. Lewas- 0 corre-
spond aux requétes booléennes, qui peuvent uniquemsimgilier les arbres
sélectionnant le tuple vide des autres arbres. Ainsi lgsig&es booléennes
définissent des langages d’arbres, et sont utilisées filtrer les arbres satis-
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faisant certaines contraintes. Paue 1, nous obtenons les requétes monadiques,
qui sélectionnent dans chaque arbre un sous-ensemble decsels. La sélection
de n-uplets de noeuds est une opération centrale dans les Emgagtransfor-
mation. Dans XPath 2.0 et XQuery, cette opération est teféecvia des boucles
pour imbriquées, appelées expressions FLOWR. XPath 1.0itd@fmuement
des requétes monadiques. En ajoutant des variables, eomefons a XPath
1.0 de définir des requétesaires. Par rapport aux expressions FLOWR, cela
donne plus de flexibilité en terme d’évaluation, et peumpbquer la tache de nos
algorithmes. Les expressions FLOWR sont des instructienglas bas niveau,
permettant au développeur de définir des requétes eelmpt une évaluation en
flux ou pas. Pour les requétes par automates, les requiess sont définies par
des langages d’arbres annotés.

Etat de I'art  Atteindre la borne inférieure en terme de consommatiomoiée

a un co(t tres important en temps. Benedikt et 8JLUWO08 montrent par ex-
emple que pour XPath avec DTDs, pouvoir rejeter les carsl@agant échoué au
plus tdt, avec un algorithme construit en temps polynompgalrapport a la taille
de la requéte, et utilisant un temps polynomial (par rap@da requéte) a chaque
événement du flux, est équivalent ailRe = PSPACE

Berlea Ber0g Ber07] étudie lesrequétes egulieres d’arbresdéfinies par des
grammaires d’arbres. Pour cette classe de requétesaBedpose un algorithme
basé sur les automates d’'arbres, utilisant un espace im€omimal en terme
de nombre de candidats, tout en traitant chaque événesnet@mps et espace
polynomial, pour chaque candidat. Cependant, cette clissequétes suppose
un alphabet infini, a la difference des documenta X La taille infinie de alphabet
simplifie grandement le fait de pouvoir sélectionner oatesjles candidats au plus
tot.

Certains algorithmes ont été proposés pour I'évatmagn flux de XPath.
Pour les axes vers le bas (descendants), nous pouvons nrenties travaux
de Bar-Yossef et al. BYFJO5 BYFJO7, Ramanan Ram05 Ram09, et Gou
and Chirkova GC073. Les algorithmes de Barton et alBCG"03] et de Wu
et TheodoratosWTO08| autorisent les axes vers le haut (ancétres) et vers le bas.
Olteanu et al. DMFB02 OKBO03, OIt07l prouvent que Forward XPath, le frag-
ment de XPath ou seuls les axes respectant I'ordre du dotdwsonat autorisés,
est aussi expressif que XPath (en terme de capacités tiavigelles). lls pro-
posentSPEX un algorithme efficace basé sur les réseaux de transaacigui
évaluent les expressions Forward XPath. Nizar et KuiN&OB] définissent un
algorithme pour les expressions Forward XPath ou aucegation n'apparait.
Récemment, ils étendent cet algorithme aux axes invgli€89]. Benedikt et
Jeffrey BJO7 étudient des logigues équivalentes a la partie navigatlle de
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XPath, et déterminent si elles conviennent a une évaluan flux. Ils iden-
tifient des fragments utilisant des modalités vers le bagaes I'ordre inverse
du document, sans négation, de telle sorte que la séledtim noeud peut étre
décidée lors de son ouverture ou de sa fermeture. Pouragménts, ils mon-
trent que des algorithmes en temps et espace polynomiaéx@aement existent.
Benedikt et al. BJLWO§ étudient le filtrage des flux ML par des contraintes
XPath, et proposent une heuristique pour la détectionw@tpt des violations de
contraintes. Tous ces algorithmes pour I'évaluation datKRur des flux XiL
n'atteignent pas une consommation mémoire optimalepeksnt inutilement des
candidats (ou des correspondances patrtielles) dansnsecas. Ley et Benedikt
et al. LBO9] étudient I'existence d’extensions de XPath ayant I'eggivité de la
logique du premier ordre, et n’utilisant que des axes coiblestavec 'ordre du
document. lls prouvent que les extensions ayant I'expriéggégiu premier ordre
lorsque tous les axes sont permis ne suffisent pas lorsggi'stint restreintes aux
axes compatibles avec I'ordre du document.

D’autres bornes inférieures ont été établies, indédpenment de la concur-
rence. Bar-Yossef et al.BYFJ04 BYFJO7 prouvent trois bornes inférieures
pour des fragments de XPath. La premiere edialbe de la frontere de la
requete c’est-a-dire le nombre maximal de freres des ancétigs nieud, dans
la représentation arborescente de la requéte. La seastdaprofondeur de
récursiondu document, ce qui correspond au nombre maximal d’arecayent la
méme étiquette. La troisieme est le logarithme daddondeurde I'arbre. Grohe,
Koch et SchweikardtGKS07, en étudiant des machines de Turing modélisant
I'évaluation en flux avec plusieurs passes, montrent que lpgartie navigation-
nelle de XPath, Iprofondeurde I'arbre est une borne inférieure.

9.3 Contributions

Nous présentons a présent nos contributions. Tout agy donmanuscrit, nous
considérons les requétesaires, i.e., les requétes qui sélectionnentdeplets
de nceuds, au lieu de simples nceuds, comme défini dans XBaibe2plus, nous
essayons toujours de prendre les schémas en considératfilo d’améliorer le
traitement des flux, puisque les schémas sont souventrdidps dans les appli-
cations concretes.

Streamabilité Nous commencons par définir un modele de calcul pour
'évaluation des requétes en flux : |&reaming Random Access Machines
(SRAMSs). Puis nous introduisons notre notion steeamabilie. Nous avions
précédemment constaté qu’une telle notion manquait.raison de I'absence
de telles définitions formelles, plusieurs publicationssgntent des erreurs dans
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I'analyse de complexité en espace. De maniere simplifiéar un entier naturel
m, OU pourm = oo, une requéte est-streamable si elle peut &tre calculée en util-
isant un temps et un espace polynomial sur tous les arbre$gsouels la concur-
rence de la requéte est inférieurea Cela introduit une hiérarchie de classes de
requétes. Etre:-streamable avec une valeur elevée powest souhaitable, et sig-
nifie que les arbres d’entrée entrainant une concurrem@agare an peuvent étre
traités efficacement. Les requétesstreamables utilisent toujours un temps et
un espace polynomial par événement, independammentamturrence. Nous
étudions les relations entre les classes de requétereamables, et les classes
de requétesn-streamable pour toutr € Ny. Ces dernieres doivent avoir une
concurrence polynomialement bornée pour étrstreamables (pour les requétes
monadiques). Nous étudions la dureté de décider si wasselde requéte a une
concurrence bornée, ou une concurrence polynomialenoenéb. Pour Forward
XPath, ces problemes sont coNP-durs. Nous montronsrgul&treamable a
pour conséquence I'existence d’un test d’universali§mpomial sur la classe de
requétes, des que cette classe vérifie certaines ptepriComme l'universalité
de Forward XPath est coNP-dure, Forward XPath n’estlpstseamable, et donc
n’est pasn-streamable, pour tout € N U {oco}.

Streaming Tree Automata Nous définissons leStreaming Tree Automata
(STAs), un modele d’automates évaluant les arbres dandré du document.
Cela correspond exactement a I'ordre d’évaluation du Xwx. correspondant.
Nous établissons les correspondances entre ce modeés etutres modeles
évaluant dans I'ordre du document, mais sur d’autres tstres : lespushdown
forest automatgdNS9g, les visibly pushdown automatpAMO04] et les nested
word automatgAlu07]. Nous montrons également comment les DTDs peuvent
étre traduites en STAS, ainsi que les relations entre STks @automates d’arbres
standard (opérant vers le haut ou vers le bas). Les rexjdéfmies par des STAs
déterministes (ASTASs) sont streamables, des lors qeehess ont une profondeur
bornée. Nous le prouvons en élaborant un algorithmeiémtles requétes au plus
tot pour les requétes définies par dSTAs.

Traitement des Reqletes au plus dt pour les Streaming Tree Automata Les
algorithmes permettant de répondre aux requéteplus 6t ont la propriété de
sortir les réeponses aux requétes des qu'assez d'infmnsont été lues pour as-
surer la sélection d’'une solution, quelle que soit la sditeflux. De maniere
duale, tous les candidats rejetés sont éliminés délegticertain qu’aucune suite
du flux ne permettra de sélectionner ce candidat (une @i@pmommeédast-fail
dans BJLWO0§). Ce cadre de travail, bien que n'ayant jamais été déimelle-
ment, trouve son origine dans les travaux de Bar-Yossef. efBYFJ03 et de
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Berlea Ber0§. Nous proposons une telle définition formelle.

Cette capacité a répondre aux requétes au plus toegsise par tout algo-
rithme ayant une consommation mémoire optimale. Dansdecoatraire, cela
signifierait qu’a un certain moment un candidat est inotéat stocké. Cepen-
dant, le fait de pouvoir répondre au plus tdt a souvent i icoportant en temps
de calcul. Pour les requétes XPath, nous montrons qu’dasP-dur de décider
si le préfixe d'un flux assure la sélection d’'un candidatrdonPour les requétes
définies par dSTAs, le probleme devient traitable, etenatgorithme de réponse
au plus tdt fonctionne en temps polynomial, pour une aritlonnée. Ceci fait
des dSTAs un modele robuste pour définir des requéteséatap une évaluation
en flux. Notre hypothése de travail est que toute classe glgete streamable
peut étre traduite en temps polynomial vers les dSTAs. t@éesas par exemple
pour le fragment de XPath défini ci-apres, pour lequel fousissons une telle
traduction, prouvant ainsi sa streamabilité.

XPath Nous étudions ensuite la streamabilité de XPath plusetaild"Nous
identifions une hiérarchie, nommé&eDownward XPath, ayant pour propriété
d’étre m-streamable pour tout: > 0. La propriété fondamentale ici est que
k-Downward XPath permet de n’avoir au plus qu’un seul cartdiohaultanément,
pour toutes les etapes de chaque branche de I'expressiath XPour obtenir
cette propriété, nous combinons des restrictions syouas (sur la requéte) et
sémantiques (sur le schema}Downward XPath est un fragment expressif, par
le fait qu’il autorise la négation, le branchement (cowfion et disjonction), ainsi
gue les axes vers le bas (fils et descendants). De plus, nouss®ons une tra-
duction effective et en temps polynomial des expressieDswnward XPath vers
les dSTAs. De cette maniere, nous pouvons réeutiliser igosithmes congus pour
les dSTAs avec des expressignBownward XPath, et en particulier notre algo-
rithme permettant d’évaluer au plus tot.

Borner la concurrence et le ckelai Enfin, nous prouvons que pour les requétes
définies par dSTAs, il peut étre décidé en temps polyabsii une requéte a
un délai borné et/ou une concurrence bornée.délai est le nombre maximal
d’événements entre la lecture d’'un nceud (ou dibmplet de nceuds dans le cas
n-aire) et le premier @vénement a partir duquel sa selepeut étre décidée. Le
délai et la concurrence sont deux mesures clés pour lansatgilite : le délai est
lié a la qualité de service, alors que la concurrence estoesure de la quantité
de mémoire nécessaire. Pour obtenir ces propriétass antlisons et étendons
les résultats concernant les relations reconnaissatagses, déja étudiées pour
les arbres d’arité bornéd@ig90, CDG'07] ainsi que les arbres d’arité non bornée
[BLO2, BLNO7]. Ces relations entre arbres ont la particularité d’@@nnues
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par des automates, modulo un codage des relations entes adrs les langages
d’arbres. Nous montrons qu'’il peut étre décidé en tenggnomial si la val-
uation d’une relation reconnaissable binaire est boragsi elle est bornée par
un certaink donné. Nous obtenons ces résultats par réduction sualleton
bornée des transducteurs d’arbrggiP3 et I'ambiguiték-bornée des automates
d’arbres. Cela nous permet de décider en temps polynomjabsr unk donné
et une aritén donnée, une requéte a un délai borné jpat/ou une concurrence
bornée pak.
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Soumis aux termes et conditions définis dans cette autionsat ceci pendant
toute la durée de protection de I'Oeuvre par le droit de t@ppété litteraire et
artistique ou le droit applicable, I'Offrant accorde a ¢@eptant I'autorisation
mondiale d’exercer a titre gratuit et non exclusif les trguivants :
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1. reproduire I'Oeuvre, incorporer 'Oeuvre dans une ou @uss Oeuvres
dites Collectives et reproduire I'Oeuvre telle gu’incorpe dans lesdites
Oeuvres dites Collectives;

2. distribuer des exemplaires ou enregistrements, prasamgrésenter ou
communiquer I'Oeuvre au public par tout procédé tech@jgqucompris in-
corporée dans des Oeuvres Collectives;

3. lorsque I'Oeuvre est une base de données, extraire dliséudes parties
substantielles de I'Oeuvre.

Les droits mentionnés ci-dessus peuvent étre exeragé®ss les supports,
médias, procédés techniques et formats. Les droitessub incluent le droit
d’effectuer les modifications nécessaires techniqueradidxercice des droits
dans d’autres formats et procédés techniques. L'exembéctous les droits qui
ne sont pas expressément autorisés par I'Offrant ou tlotdurait pas la gestion
demeure réservé, notamment les mécanismes de gestiective obligatoire ap-
plicables décrits a I'article 4(d).

Restrictions

L'autorisation accordée par I'article 3 est expressérasaujettie et limitée par le
respect des restrictions suivantes :

1. L'Acceptant peut reproduire, distribuer, représentercommuniquer au
public 'Oeuvre y compris par voie humérique uniquemernobrsdes ter-
mes de ce Contrat. L'Acceptant doit inclure une copie ouréade Internet
(Identifiant Uniforme de Ressource) du présent Contratudet reproduc-
tion ou enregistrement de 'Oeuvre que I’Acceptant disigilreprésente ou
communique au public y compris par voie numérique. L'Ad¢aepne peut
pas offrir ou imposer de conditions d'utilisation de I'Oeewqui alterent
ou restreignent les termes du présent Contrat ou I'exembés droits qui
y sont accordés au bénéficiaire. L'Acceptant ne peut paercde droits
sur I'Oeuvre. L'Acceptant doit conserver intactes toutes informations
qui renvoient a ce Contrat et a I'exonération de resplitiga L'Acceptant
ne peut pas reproduire, distribuer, représenter ou cornguenau public
I'Oeuvre, y compris par voie numérique, en utilisant unesume technique
de contrdle d’acces ou de contrble d’utilisation quesezontradictoire avec
les termes de cet Accord contractuel. Les mentions ci-desappliquent a
I'Oeuvre telle gu’incorporée dans une Oeuvre dite ColNegtmais, en de-
hors de I'Oeuvre en elle-méme, ne soumettent pas I'Oeutecdllective,
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aux termes du présent Contrat. Si I’Acceptant crée unev@edite Col-
lective, a la demande de tout Offrant, il devra, dans la meedu possible,
retirer de I'Oeuvre dite Collective toute référence au@ifrant, comme
demandé. SiI’Acceptant crée une Oeuvre dite CollecéiMe,demande de
tout Auteur, il devra, dans la mesure du possible, retiref@euvre dite
Collective toute référence au dit Auteur, comme demandé

. L'Acceptant ne peut exercer aucun des droits conféréd'qudicle 3 avec

l'intention ou l'objectif d’obtenir un profit commercial oune compensa-
tion financiere personnelle. L'échange de I'Oeuvre avaatdes Oeuvres
protégées par le droit de la propriété littéraire distique par le partage
électronique de fichiers, ou par tout autre moyen, n’estpasidéré comme
un échange avec l'intention ou I'objectif d’'un profit commmial ou d’une
compensation financiere personnelle, dans la mesureauingaiement ou
compensation financiere n’intervient en relation avechange d’Oeuvres
protégées.

. Si I’Acceptant reproduit, distribue, représente ou comigue I'Oeuvre

au public, y compris par voie numérique, il doit conservgactes toutes
les informations sur le réegime des droits et en attribuepdgernité a
I'Auteur Original, de maniére raisonnable au regard awdiom@ ou au
moyen utilisé. Il doit communiquer le nom de I’Auteur Ongi ou son
eventuel pseudonyme s’il est indiqué ; le titre de 'Oeu@riginale s'il
est indiqué ; dans la mesure du possible, I'adresse Intetnédentifiant
Uniforme de Ressource (URI), s'il existe, spécifié parfif@nt comme as-
socié a I'Oeuvre, a moins que cette adresse ne renvoi@yxasformations
legales (paternité et conditions d'utilisation de 'Qeg). Ces obligations
d’attribution de paternité doivent étre exécutées dmigre raisonnable.
Cependant, dans le cas d’'une Oeuvre dite Collective, cesniattions
doivent, au minimum, apparaitre a la place et de manigssiaisible que
celles a laquelle apparaissent les informations de méneen

. Dans le cas ou une utilisation de I'Oeuvre serait soumise degime légal

de gestion collective obligatoire, I'Offrant se résereedroit exclusif de
collecter ces redevances par I'intermédiaire de la $&dé perception et de
répartition des droits compétente. Sont notamment codeda radiodiffu-
sion et la communication dans un lieu public de phonogranpnétiés a
des fins de commerce, certains cas de retransmission daratadatellite,
la copie privée d’Oeuvres fixées sur phonogrammes owwgidnmes, la
reproduction par reprographie.
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Garantie et exoreration de responsabilie

1. En mettant 'Oeuvre a la disposition du public selon leses de ce Con-
trat, I'Offrant déclare de bonne foi qu'a sa connaissagtagans les limites
d’'une enquéte raisonnable :

(a) L'Offrant a obtenu tous les droits sur I'Oeuvre nécessaipgur

(b)

pouvoir autoriser I'exercice des droits accordés par &s@nt Con-
trat, et permettre la jouissance paisible et I'exercicé@dide ces
droits, ceci sans que I'Acceptant n’ait aucune obligatienverser
de rémunération ou tout autre paiement ou droits, dansigeldes
mécanismes de gestion collective obligatoire applicallécrits a
I'article 4(e);

L'Oeuvre n’est constitutive ni d’'une violation des droits tlers, no-
tamment du droit de la propriété littéraire et artisgqulu droit des
marques, du droit de I'information, du droit civil ou de toartre
droit, ni de diffamation, de violation de la vie privée ou tdeit autre
préjudice délictuel a 'égard de toute tierce partie.

2. Al'exception des situations expressément mentionnass k& présent Con-
trat ou dans un autre accord écrit, ou exigées par la Idicgtye, I'Oeuvre
est mise a disposition en I'état sans garantie d’aucunte,squ’elle soit
expresse ou tacite, y compris a I'égard du contenu ou dadi@gude de
I'Oeuvre.

Limitation de responsabilité

A I'exception des garanties d’ordre public imposées pdoilapplicable et des

réparations imposées par le régime de la respongabikta-vis d'un tiers en

raison de la violation des garanties prévues par l'articléu présent contrat,
I'Offrant ne sera en aucun cas tenu responsable vis-ae/iBAtceptant, sur

la base d’aucune théorie legale ni en raison d’aucurugi& direct, indirect,

matériel ou moral, résultant de I'exécution du prégeantrat ou de l'utilisation

de I'Oeuvre, y compris dans I'hypothése ou I'Offrant av@nnaissance de la
possible existence d’un tel préjudice.

Résiliation

1. Tout manquement aux termes du contrat par I'Acceptant imetréa
résiliation automatique du Contrat et la fin des droits quidécoulent.
Cependant, le contrat conserve ses effets envers les pesphysiques
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ou morales qui ont recu de la part de ’Acceptant, en exéawtu présent
contrat, la mise a disposition d’'Oeuvres dites Dériyeasd’Oeuvres dites
Collectives, ceci tant qu’elles respectent pleinementslebligations. Les
sections 1, 2, 5, 6 et 7 du contrat continuent a s’appligpersala résiliation
de celui-ci.

. Dans les limites indiquées ci-dessus, le présent Costagiplique pen-

dant toute la durée de protection de I'Oeuvre selon le dipjlicable.
Néanmoins, I'Offrant se réserve a tout moment le draxgloiter 'Oeuvre
sous des conditions contractuelles differentes, ou désser la diffusion;
cependant, le recours a cette option ne doit pas condu@trar les effets
du présent Contrat (ou de tout contrat qui a été ou daatdtcordé selon les
termes de ce Contrat), et ce Contrat continuera a s’applidans tous ses
effets jusqu’a ce que sa résiliation intervienne dansdeslitions décrites
ci-dessus.

Divers

1. A chaque reproduction ou communication au public par vore&nigue de

'Oeuvre ou d’'une Oeuvre dite Collective par I’Acceptan©ffrant pro-
pose au bénéficiaire une offre de mise a disposition deli®@e dans des
termes et conditions identiques a ceux accordés a lepgssteptante dans
le présent Contrat.

. La nullité ou I'inapplicabilité d’'une quelconque disgtisn de ce Contrat

au regard de la loi applicable n’affecte pas celle des adisgmsitions qui
resteront pleinement valides et applicables. Sans actditi@nnelle par
les parties a cet accord, lesdites dispositions devrioatigerprétées dans
la mesure minimum nécessaire a leur validité et leuriagbilité.

. Aucune limite, renonciation ou modification des termes @pdsitions du

présent Contrat ne pourra étre acceptée sans le consaittecrit et signé
de la partie compétente.

. Ce Contrat constitue le seul accord entre les parties aoprage

'Oeuvre mise ici a disposition. Il n’existe aucun élémennexe, ac-
cord supplémentaire ou mandat portant sur cette Oeuvrecharsl des
éléements mentionnés ici. L'Offrant ne sera tenu par aacdisposition
supplémentaire qui pourrait apparaitre dans une quelemrcommunica-
tion en provenance de I'Acceptant. Ce Contrat ne peut étdifié sans
'accord mutuel écrit de I'Offrant et de I'’Acceptant.

. Le droit applicable est le droit frangais.
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A.2 Creative Commons

Creative Commons n’est pas partie a ce Contrat et n'offreuiae forme de

garantie relative a I'Oeuvre. Creative Commons déclmgd responsabilité a
I'égard de I'’Acceptant ou de toute autre partie, quel gudsdéondement Iégal de
cette responsabilité et quel que soit le préjudice suf@ct] indirect, matériel ou

moral, qui surviendrait en rapport avec le présent Con@apendant, si Creative
Commons s’est expressément identifie comme Offrant paitrenune Oeuvre a
disposition selon les termes de ce Contrat, Creative Comarnuuira de tous les
droits et obligations d’un Offrant.

A I'exception des fins limitées a informer le public que €@vre est mise a
disposition sous CPCC, aucune des parties n'utilisera laued'Creative Com-
mons” ou toute autre indication ou logo afferent sans leseatement préalable
écrit de Creative Commons. Toute utilisation autoriséera étre effectuée en
conformité avec les lignes directrices de Creative Consr®four au moment
de l'utilisation, telles qu’elles sont disponibles sur sie Internet ou sur simple
demande.

Creative Commons peut etre contacté
http://creativecomons. org/.


http://creativecommons.org/
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