邫

Modeling Musical Anticipation From the time of music to the music of time

Arshia Cont

Jointly supervised between
University of California in San Diego (UCSD), Music Department.
Center for Research in Computing and the Arts.
$+$
University of Paris VI, Ecole Doctorale de l'EDITE, IRCAM-Centre Pompidou, Equipe IMTR.

Committee in charge

Alain DE CHEVEIGNÉ	ENS, Paris	chair
Shlomo DUBNOV	UCSD, Music	chair
David WESSEL	UC Berkeley, CNMAT	Reporter
Lawrence SAUL	UCSD, CSE	Reporter
Miller S. PUCKETTE	UCSD, Music	Reader
Philippe MANOURY	UCSD, Music	Reader
Jean-Pierre BRIOT	UPMC, LIP6	President

Thesis

Explicit consideration of anticipatory mechanisms, as observed in music cognition, within a computational framework, could
O Address "complex" problems in computer music,
O Reduce complexity of computation and design,
O and Provide access to temporal structures of music information as they unfold in (real) time, for creative applications (computer music).

Motivations

Role of expectations in musical experience

- In listening experience

O Expectations imply mental representations in which our daily musical experience is being examined and updated.
O Major responsibility for musical emotions

- In musical creativity

O Meyer (1954): composition = choreography of musical expectations
O Huron (2006): Demonstrates explicit cases of these "choreographies"
O Grisey (I987):"A composer's reflections on musical time"
O The skin of time
O From the time of music to the music of time...

- No major consideration for expectation in computer music

Approach

- A voyage from the domain of natural science to the science of the artificial
O Define and clear out the context
O From modeling anticipation to anticipatory modeling
O Modeling anticipation: Research in music cognition literature for the study of musical behavior pertaining to expectations
O Anticipatory modeling: A cognitive design principle for modeling artificial systems.
- Propose anticipatory models addressing three main preoccupations of musical expectations:
O What to expect
O How to expect
O When to expect

PART (I)

Music Cognition

Modeling Investigations

"I think that the search for a universal answer to the questions raised by musical experience will never be completely fulfilled; but we know that a question raised is often more significant than the answer received. Only a reckless spirit, today, would try to give a total explanation of music, but anyone who would never pose the problem is even more reckless."

Remembering the future
Luciano Berio

Natural Science

Artificial Science

From Modeling Anticipation to Anticipatory Modeling

Anticipation, Expectation, Prediction

Definitions?

- Prediction: Act of forecasting based on previously gained knowledge from an environment.
- Expectation: "a form of mental or corporeal belief that some event or class of events is likely to happen in the future." (Huron 2006)
- But anticipation...

O Huron (2006): Anticipation is "a sub-product of expectation when the sense of appraisal for the expected future event is high."
O Bharucha (96) calls this arnin
O Narmour (90) calls this plica n.
O Schmuckler (97): "Expecration is an anricipation of upcoming events based on information from pa and esent

Psychology of Musical Expectation

ircam

Fact Constitution

I. Expectations entail mental representations, whether partial, accurate or fallible.
2. Expectations are learned through interactions with a surrounding environment (auditory learning)
O The determinant factor for learning auditory phenomena is their stability in the surrounding environment
O Statistical nature of auditory learning
3. Concurrent and Competitive Representations

O Listeners appear to possess multiple representations for the same phenomena (concurrency)
O Expectations are differentially favored depending on their predictive success (competitive)
4. Expectations lead to predictions, which by themselves evoke actions (physiological, mental or physical)
O Expectations are always coupled with their consequent actions
O In theory and also in practice....

What is Anticipation?

We study the activism aspect of expectation under the term Anticipation:

```
Definition Anticipation is an action, that a system takes as a result of pre-
diction, based on current belief or expectations, including actions on its own
internal state or belief.
```

- Implications:

O Expectations demand constant adaptation and interaction with an environment

O Anticipation is an activity of coupling with the environment.
O Anticipation is not a process in the brain, but a kind of skillful activity and a mode of exploration of the environment.

Modeling Investigations

- What is modeling?

O In natural sciences, by modeling musical expectations researchers aim at
0 assessing a theory regarding one among many aspects of the psychology of musical expectations

- Things to be aware of...
(A) Imperfect Heuristics

O Recall "fact I": Consequent mental representations out of auditory learning can be fallible.
O We are selective and imperfect learners, constrained by all problems of induction.
O Biological goal of expectation vs. Musical goal of expectation
0 Biological goal: Faulty heuristics \square Potential danger
O Musical goal: Every danger is... welcome!
O Our senses are biased through the world!

Modeling Investigations

- Things to be aware of...
(B) Naive Realism

O Naive Realists consider senses as unbiased windows through the real world.
O A sobering point for music theorists!
O Considering that the structures seen in notations are the ones we experience, and what is experienced is what is seen in the notation.
O The majority of music theoretic models of expectation undergo naive realism.
O Example: The story of post-skip reversal
O Common perception pattern among western-listeners
O Adopted by many music theory researchers as an "rule"
 underlying melodic expectation (Narmour, Lerdahl, Margulis).
O Not true!
O Von Hipple and Huron (2000) show that post-skip reversal in music scores is the result of a less exciting phenomena.
O Except in the music of Giovanni Palestrina, the initiator of the rule.

So... Should we "model" anticipation?

Revise the question!

Modeling Musical Anticipation

Modeling Investigations

Reactive Frameworks

- Computational models based on causality

O Action is the result of a belief based on the past and present
O A universal framework:
Given any mode of system behavior which can be described sufficiently accurately, there is a purely reactive system which exhibits precisely this behavior
O Practical problems for modeling cognitive behavior
O Representations are fallible! (no accurate description)
O Not all forms of cognitive interactions can be transcribed or assumed as disposed
O would not necessarily generalize to unknown situations.

Anticipatory Modeling

Definition

- Anticipatory behavior:

A process or behavior that does not only depend on the past and present but also on predictions, expectations or beliefs about the future.

- Anticipatory Modeling is the design process for anticipatory systems:

> Definition An Anticipatory System is a system containing a predictive model of its environment, which allows it to change state at an instant in accord with the model's predictions pertaining to a later instant.

- In contrast to Modeling Anticipation:

O No attempt to provide a universal framework for anticipatory behavior, but to provide models that anticipate.
O Considers Anticipation as the fore-front concept in cognitive system design to achieve complex systems.

Anticipatory Modeling

Modeling Anticipation vs.Anticipatory Modeling

- Modeling Anticipation: An effort to explain musical behavior, as in natural sciences.
- Anticipatory Modeling :

O A design process that addresses anticipatory behavior observed in music.
O Complexity a result of adaptation... .
O To avoid naive realism, and problems of imperfect heuristic

PART (II)

What to Expect

Music Information Geometry

Motivations

- To represent relevant and stable part of information arriving from the environment
- Classical Information Theory

O Few answers to the representation and fidelity concerns

- Advances in Machine Learning

O MIR Techniques based on measures of self-similarity
O Lack of consideration for time

- Bring the two literatures together
\Rightarrow Information Geometry

Information Geometry

Motivation

Consider the problem of extracting structures of musical information:

O Extracting this kind of information from a symbolic score is trivial, but a difficult problem in the signal domain.
O Specially with no a priori knowledge of music
o Worse in real time!
O Goal: To make this possible and more...
O To obtain methods of access to structures of music signals
O A general framework to fill in the following gap for musical applications:

Information Geometry

Intuition

- Consider the following geometry:

0 Points are probability distributions $p(x, \xi)$ (instead of dots)
O Distance between two points is some measure of information between them

- Welcome to the world of Information Geometry!

O Geometric manifolds with information metrics on probability space
O Marriage of Differential Geometry, Information Theory, and Machine Learning
O Considering probabilistic representations as well-behaved geometrical objects, with intuitive geometric properties
O Spheres, lines (geodesics), rotations, volumes, lengths, angles, etc.

- Getting real...

O Riemannian Manifolds over probability spaces with Fisher Information measure
O Characterized by the type of employed distance (called divergences)
O Our interest, canonical elements:
O Space of exponential distributions
O with Bregman divergences
O Bijection between the two

Information Geometry

Elements of Bregman Geometry

- Bregman Centroids

O Significant property (Thm 4.1)
O The "right type" centroid is independent of the choice of Bregman divergence and is equal to the mean:

- Bregman Balls

O In analogy to Euclidean geometry, we can define balls using Bregman divs,
centered at ${ }^{\mu_{k}}$ with radius R_{k}

- Bregman Information of a random variable X

O Defined as the expectation over divergences of all points from the centroid
O Special cases: variance, mutual information

Music Information Geometry

General Framework

- Points $=$ time domain windows of audio signal \boldsymbol{X}_{t}, represented by their frequency distributions $\boldsymbol{S}_{t}(\omega)$
O Arriving incrementally / in real time
O Corresponding to normalized log-scale Fourier transform amplitudes
O Mapped to Multinomial points in the information geometry (one-to-one)
O Corresponding Bregman divergence is Kullback-Leibler divergence
O Therefore, Bregman Information is equivalent to mutual information

Goal: To capture, represent and qualify the information structure of audio data streams.

Music Information Geometry

Approach

- Do not formalize information content!
- Control changes of information content instead

O Using some metric d, that gives rise to the notion of similarity:
Definition Two entities $\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1} \in \mathcal{X}$ are assumed to be similar if the information gain by passing from one representation to other is zero or minimal; quantified by $d_{X}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}\right)<\epsilon$ which depends not on the signal itself, but on the probability functions $p_{X}\left(x ; \boldsymbol{\theta}_{0}\right)$ and $p_{X}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{1}\right)$.

- Candidates for $\mathrm{d}(.,$.$) :$

O Information Rate (IR) of Dubnov $(2005,2008)$
O Data-IR: For stationary signals
O Model-IR: Between sub-sets of quasi-stationary signals

Music Information Geometry

Appoach

- Proposal: Use the bijected Bregman divergence of the information geometry of audio data streams
- Data-IR:

O Is proven (mathematically) to be equal to Bregman Information

- Model-IR:

O Requires segmenting audio stream into chunks.
O Proposal:
Definition Given a dual structure manifold $\left(\mathcal{S}, g, \Delta^{D}, \Delta^{D^{*}}\right)$ derived on a regular exponential family formed on data-stream X_{k}, a model θ_{i} consist of a set $\mathcal{X}_{i}=\left\{\boldsymbol{x}_{k} \mid k \in \mathcal{N}, \mathcal{N} \subset \mathbb{N}\right\}$ that forms a Bregman Ball $B_{r}\left(\boldsymbol{\mu}_{i}, R_{i}\right)$ with center $\boldsymbol{\mu}_{i}$ and radius R_{i}.

Music Information Geometry

From Divergence to Similarity Metric

- Further requirements for d :

O symmetric

$$
\begin{gathered}
d(\boldsymbol{x}, \boldsymbol{y})=d(\boldsymbol{y}, \boldsymbol{x}) \\
d(\boldsymbol{x}, \boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{z})+d(\boldsymbol{z}, \boldsymbol{y})
\end{gathered}
$$

O and to hold the triangular inequality
to obtain equivalent classes.

- Problem: Bregman divergences are neither symmetric, nor hold the triangular inequality!
- Solutions: (Nielsen and Nock, 2007)
a. Triangular inequality hold IFF y is the geometric projection of x onto the tangent plane passing through zy.

b. In our geometry, the notions of max. likelihood and projection are equivalent! (Proposition 4.1)
c. Symmetrize Bregman divergence using a max. likelihood formulation!

We can approach both notions of symmetry and triangular inequality.

Music Information Geometry

Model Formation

- Incrementally segment information regions into quasi-stationary chunks

O A model is a Bregman ball whose information radius reveals the maximum distance in terms of mutual information within the ball.
O Detect balls with jumps in information distance between a new point and a forming ball
O Assume a fixed information radius R to detect jumps and account for continuity of information change.
O Computationally cheap: Only comparing with the last

...Simulation...

ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation
ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation
ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation
ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation
ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation
ircam

Music Information Geometry

Incremental Segmentation

Imaginary Bregman Geometry

Modeling Musical Anticipation

Music Information Geometry

Incremental Segmentation

- Sample Result: Beethoven's first piano sonata, first movement

O performed by Friedrich Gulda (1958)
Piano Sonate Opus 2 No 1 (1st Mov., 1st theme)

Modeling Musical Anticipation

Methods of Information Access

Incremental Structure Discovery

- Idea: The models in music information geometry provide instantaneous similarities between consequent models.
O What about similarities between subsets of models at different time intervals?

O What about grabbing long term regularities in the music signal?

- Literature of Audio Structure Discovery algorithms: Usually off-line and/or incorporate a priori beliefs over music structure
- Our goal:

O Do it online and incrementally as audio signals arrive
O Grab and learn regularities on-the-fly from the signal itself and without a priori knowledge
O Key for Anticipatory Modeling: Grabbing stabilities and regularities of information in the environment

Methods of Information Access

Incremental Structure Discovery

- Proposal: Extend an existing algorithm in the symbolic domain to the continuous audio domain by passing through information geometry and Models.
- Point of departure: Factor Oracles

O Used primarily on text and DNA data to detect repeating structures.
O A finite-state automaton learned incrementally.
O A state-space representation of repeating structures in a sequence

O Provides forest of suffix tree structures
O The beauty of MIG

O Keep the algorithm, replace symbols by models or points and equivalence by similarity in a music information geometry!
\Rightarrow Audio Oracle

Methods of Information Access

- Audio Oracle results

O On points: (each state=one analysis window)
O Natural bird uttering (natural repetition)
O Using MFCC audio features on Multinomial music information geometry

Modeling Musical Anticipation
Part II. What to Expect

Methods of Information Access

- Audio Oracle results:

O On models
O Beethoven's first Piano Sonata,Third Movement (Gulda, 1958)
O Using Constant-Q amplitude spectrum on Multinomial music information geometry O 150 seconds, > 9500 analysis frames, resulting to 440 states

Modeling Musical Anticipation
Part II. What to Expect

Methods of Information Access

Fast Information Retrieval

- Proposal: Compile an search engine over a database of audio and using an outside audio query
O That is also capable of recombining/reassembling chunks of audio within a large target, to reconstruct the query.
- Related works: Concatenative Synthesis, Unit Selection
- Idea: Do not search on the audio itself but on audio structures

O Audio Oracle as Meta data
O (ab)use the long-term structures of Audio Oracle to maintain perceptual continuity of the results (access to long term structures)

- Simple Dynamic Programming algorithm:

O Follow the forest of suffix tree structures to find the longest and best possible result
O Maintains all the results (paths) at all times!

Modeling Musical Anticipation

둔UCSD

 Methods of Information Access

 Methods of Information Access}

Guidage Results

- Self-Similarity test

O Task: Search for the first theme of the first Beethoven's sonata in the entire sonata.
O Query:Audio of the first theme
O Target:The entire first sonata's Audio Oracle (650 states)

(10)-(0):-0.) Modeling Musical Anticipation

Part II. What to Expect

Methods of Information Access

Guidage Results

- Database Search

O Task: Find audio, or a recombination within a file that are similar to query
O Query: African drum sample
O Database: Loop database (Kontakt) 140 audio files, 200Mb, Mean duration 7s
O Convergence time: 20s in Matlab on a 2.3Ghz unicore Intel machine

Search Panel
(1) Choose Query

Open Query
Volumes/ARSHIACONT2/Databases/DrumTest/Set2// (2) Choose Search Folder

	Choose Search Folder
lumes/ARSHIACONT2/Databases/DrumTest/Set2/Mat/	
(3) Choose Search Parameters Search Criteria: Search Threshold: Sepsmat	

Export Panel
temp.wav
Save Wave

PART (III)

How to Expect

Adaptive and Interactive Learning

How what?

- We just saw how in interaction with an environment,

O We can capture the regularities in the information structure,
O represent it,
O and have (fast) access to it.

- Anticipation is expectations or beliefs of a system bound to actions

O We need to know how to act
O We need to learn interactively the consequence of actions in the environment, take lessons, and adapt ourselves to new situations

Adaptive and Interactive Learning

Automatic Improvisation

- We showcase this part on the problem of Automatic Improvisation and Style imitation
O Existing systems are based on predictions on learned context models
O We extend this to Anticipation through anticipatory modeling
o DISCLAIMER:
O No interest in imitating or recreating Bach!
O To show that anticipatory learning provides ways to learn and act to gain longterm complex structures
O With no a priori knowledge or incorporated rules
O With presence of little data
O With relative cheap computation and design
- In this part, we focus on symbolic data (MIDI signals, scores)

Adaptive and Interactive Learning

General Framework

- The system comprises of agents and its environment, interacting at all times. At each interaction cycle,
O The system perceives the state of the environment
O Select actions based on some belief
O Based on this action, the environment might change state

O and a reward/punishment signal might be sent to the agent.

- Design elements:

O Agent: Computer improvisor,
O Multiple agents [fact 3]
O Environment: Human performer/Music Score
o Dynamics of the environment $\underset{\sim}{ }$ state transitions

- Interactions rewards/guides for learning

O Actions: Music generations by the computer
O Policies:Values associated to state-actions

O used during generation/decision-making, learned during interactions

Modeling Musical Anticipation

Adaptive and Interactive Learning

General Framework

- Problems to solve:
I. How to represent the environment (memories/musical representations)?
[Use Factor Oracles (symbolic data), Audio Oracle (continuous data) to model regularities in the environment

2. How to incorporate interaction? (rewards)

V Use Guidage to reinforce recurrent structures and retrieve regularities
0 At each interaction, reinforce the states in the memory that are factors of the new incoming sequence (from the environment).
3. How to learn?
a. Learning the dynamics of the environment
\square Use the Oracle incremental updates
b. Learning policies for action decisions

- Active Learning algorithm... .

Adaptive and Interactive Learning

1. Musical Representation

- Using multiple attributes each treated as an independent sequence:

Modeling Musical Anticipation

Adaptive and Interactive Learning

1. Musical Representation

	Event Number I_{t}	\boldsymbol{I}_{1}	\boldsymbol{I}_{2}	\boldsymbol{I}_{3}	\boldsymbol{I}_{4}	\boldsymbol{I}_{5}	\boldsymbol{I}_{6}	\boldsymbol{I}_{7}	\boldsymbol{I}_{8}	\boldsymbol{I}_{9}	\boldsymbol{I}_{10}	\boldsymbol{I}_{11}	\boldsymbol{I}_{12}	\boldsymbol{I}_{13}	\boldsymbol{I}_{14}
\boldsymbol{I}_{15}															
MIDI Pitch $\left(i_{t}^{1}\right)$	0	51	63	62	63	0	65	0	67	67	63	68	68	58	60
Harmonic Interval	0	0	0	0	24	0	0	0	4	5	0	8	6	0	0
Duration $\left(i_{t}^{3}\right)$	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1

Modeling Musical Anticipation

Adaptive and Interactive Learning

	\boldsymbol{I}_{1}	\boldsymbol{I}_{2}	\boldsymbol{I}_{3}	\boldsymbol{I}_{4}	\boldsymbol{I}_{5}	\boldsymbol{I}_{6}	\boldsymbol{I}_{7}	\boldsymbol{I}_{8}	\boldsymbol{I}_{9}	\boldsymbol{I}_{10}	\boldsymbol{I}_{11}	\boldsymbol{I}_{12}	\boldsymbol{I}_{13}	\boldsymbol{I}_{14}	\boldsymbol{I}_{15}
MIDI Pumber I_{t}	\boldsymbol{I}_{1}														
Match $\left(i_{t}^{1}\right)$	0	51	63	62	63	0	65	0	67	67	63	68	68	58	60
Harmonic Interval	0	0	0	0	24	0	0	0	4	5	0	8	6	0	0
Duration $\left(i_{t}^{3}\right)$	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1

Modeling Musical Anticipation
ircam

Adaptive and Interactive Learning

1. Musical Representation

Event Number I_{t}	\boldsymbol{I}_{1}	\boldsymbol{I}_{2}	\boldsymbol{I}_{3}	\boldsymbol{I}_{4}	\boldsymbol{I}_{5}	\boldsymbol{I}_{6}	\boldsymbol{I}_{7}	\boldsymbol{I}_{8}	\boldsymbol{I}_{9}	\boldsymbol{I}_{10}	\boldsymbol{I}_{11}	\boldsymbol{I}_{12}	\boldsymbol{I}_{13}	\boldsymbol{I}_{14}	\boldsymbol{I}_{15}
MIDI Pitch $\left(i_{t}^{1}\right)$	0	51	63	62	63	0	65	0	67	67	63	68	68	58	60
Harmonic Interval	0	0	0	0	24	0	0	0	4	5	0	8	6	0	0
Duration $\left(i_{t}^{3}\right)$	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1

Modeling Musical Anticipation
Part III. How to Expect

Adaptive and Interactive Learning

II. Interaction Modes

- Two modes:

O "Interaction mode": (left) interacting with an environment, receiving rewards (or guides) and constructing knowledge.
O "Self-listening mode": (right) During automatic generation. Reflecting on the changes in the environmental context caused by the system itself.

Modeling Musical Anticipation

Adaptive and Interactive Learning

Anticipatory Learning

- Goal: To maximize rewards on each action by updating the policy of each state-action pair (reinforcement learning).
O Rewards on a future horizon: $\quad R\left(s_{t}\right)=\sum r\left(s_{t}, a_{t}\right)+\gamma r\left(s_{t+1}, a_{t+1}\right)+\cdots+\gamma^{m} r\left(s_{t+m}, a_{t+m}\right)+\cdots$
O Predicting possible steps and evaluating them
O Similar to the idea of a rehearsing musician
O Updates on selected state-actions by Guidage at each interaction cycle
- Competitive and Collaborative Learning

O Choose the winning agent at each cycle
O Follow the winner for updates during in that episode.
O Upon each update, influence relevant states in other agents

Adaptive and Interactive Learning

Sample Generation

- Learn sequentially on J.S.Bach’s "Two-part Invention, Book II, Nr. 3"
- Generate (self-listening mode) using the gained knowledge

Improvisation Session after learning on Invention No. 3 by J.S.Bach

Modeling Musical Anticipation
Part III. How to Expect

둔UCSD

 Adaptive and Interactive Learning

 Adaptive and Interactive Learning}

Generalization

- As a result of collaborative learning and generation

O Preliminary evidence of long-term planning and complex structures
O No a priori knowledge of the domain

- Fast learning and generation

O Little data needed for training
O with many questions to ask and directions to pursue

Modeling Musical Anticipation

PART (IV)

When to Expect

Anticipatory Synchronization

Motivations

- Technical
- Score Following problem

O Real Time Audio to Symbolic Score Synchronization
O More focus on acoustic features, less emphasis on time

- Coordination problem

O Musicians employ various sources for synchronization
O Expectations about future events play a role as important as the musical events themselves.

- Musical

O Extend the score following paradigm
O At the Time of Composition: Enable concurrent and flexible representations of events/time.

O At the Time of Performance: Bring in the composition on stage by the virtue of interpretation of the written score.
\rightarrow Towards a "writing" of Time and Interaction in Computer Music
Modeling Musical Anticipation
Part IV. When to Expect

General Architecture

- Time of Composition:

O One score containing declarative instrumental events and electronic actions

O Concurrent Representations
O Concurrent event time-scales

- Time of Performance:

O Two collaborative and competitive agents: Event Agent and Tempo Agent
O Interpreting and giving life to score parameters and written time structures

Probabilistic Models of Time

- Concern: Uncertain nature of time occupancy of musical events (neither deterministic nor arbitrary)
- Two mainstream views:
I. Non-Parametric Markov Occupancy Models

2. Semi-Markov Occupancy Models

- One (and only one) state per macro-event!
- But with an Explicit distribution $d_{j}(u)$ for time occupancy of each event j

Probabilistic Models of Time

Proposal

- Use advantages of both worlds:

O Hybrid Markov/Semi-Markov Models

- Collaborative and Competitive Inference

O Use predicted tempo to anticipate (and prepare for) future events!
O Coupling event (audio) and tempo agents instead of cascading!
O Adaptive/online learning

- Advantages:

O No need for offline training of the system
O Reduce in number of parameters
O No need for strong acoustic model!

Observers

- Are the "eyes and ears" of the system during live performance!

O Traditionally pitch only
O Recently: Raw audio (audio matching), gesture (gesture following), Audio features,Video streams, etc.

- Proposal: Concurrent Observations
- Hard-coded Audio Observer for Polyphonic Events:

O Compare real time audio spectrum to pre-constructed harmonic templates out of the score.

0 Normalized Audio Spectrum \Rightarrow Multinomial Dists \Rightarrow Use KL divs

Modeling Musical Anticipation

Antescofo's Score Semantics

- Simple (and young) text-based and declarative language for writing of time and interaction
- Important Specificity:

O Co-existence of instrumental score and electronic actions.

O Bridging the gap between the time of composition to time of performance
O Actions can be written in relative time, whose values are evaluated at runtime (live performance), coupled with real-time tempo

Modeling Musical Anticipation

Antescofo

Antescofo has been used...

- "... of Silence", Marco Stroppa, for Saxophone and chamber electronics (Antescofo Premiere)
- "Anthèmes 2", Pierre Boulez, forViolin and Live electronics
- "... Explosante-Fixe...", Pierre Boulez for flute, orchestra and electronics
- LA Philharmonic
- "Speakings", Jonathan Harvey for orchestra and live electronics
- BBC Scotish Orchestra
- and more to come...

Evaluation

- Tempo Evaluation:

O Use synthesized audio from score to attain milli-second tempo precision
tempo $=60 \mathrm{BPM}$ on whole note

Accelerandos and decelerandos:

Discrete Tempo Change during performance:

(a) Waveform and alignment result

(b) Estimated and real tempi for acceleration and deceleration in BPM

Modeling Musical Anticipation
Part IV. When to Expect

Evaluation

- Alignment Evaluation:

O MIREX 2006-08 Evaluation Campaign for Score Following
O Augmented the database to contain polyphonic music

$\#$	Piece name	Composer	Instr.	Files	Prefix	Events
1	Explosante-Fixe	P. Boulez	Flute	7	t x-s y	615
2	K. 370	Mozart	Clarinet	2	k370	1816
3	Violin Sonata 1	J.S. Bach	Violin	2	vs1-	2019
4	Fugue BWV.847	J.S. Bach	Piano	1	RA	225

O Total Precision obtained $=\mathbf{9 1 . 4 9 \%}$
O Details in the manuscript

Contributions

I. From Modeling Anticipation to Anticipatory Modeling
O Modeling Anticipation
O Anticipatory Modeling
II. What to Expect?

O Music Information Geometry
O Methods of Information Access
III. How to Expect?

O Anticipatory Learning in an environment
IV. When to Expect?

O Anticipatory Synchronization
O Towards a "writing" of time and interaction in computer music
V. Conclusions
$\boxed{\square}$ A formal of definition of anticipation destined for computational models of sound and music.
\square A formal definition of anticipatory modeling inspired by music cognition.
I A mathematical framework for quantification and qualification of music information and content based on Information Geometry.
■ An online algorithm for incremental clustering and structure discovery of music signals.
\square A fast and online algorithm for unit selection over large databases of music based on users' audio query.
\square An online adaptive and interactive learning framework achieving anticipatory planning strategies, based on Active Learning.
■ A preliminary computational anticipatory
framework for automatic style imitation and automatic improvisation.
\square An anticipatory design for real-time audio to score alignment featuring coupled audio/tempo agents and capable of decoding real-time position as well as tempo of the performer for polyphonic music signals. \square A preliminary framework and language for writing of time and interaction destined for interactive mixed instrumental and live computer music repertoires

ircam ㅋㄹ른 Centre
 Pompidou

Thank you!

More Audio Examples:
http://cosmal.ucsd.edu/arshia/

Online Manuscript:
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_PhD.pdf

