
HAL Id: tel-00415845
https://theses.hal.science/tel-00415845

Submitted on 11 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The λµ∧∨-calculus
Khelifa Saber

To cite this version:
Khelifa Saber. The λµ∧∨-calculus. Mathematics [math]. Université de Savoie, 2007. English. �NNT :
�. �tel-00415845�

https://theses.hal.science/tel-00415845
https://hal.archives-ouvertes.fr

1

Université de Savoie

U.F.R. Sciences Fondamentales et Appliquées

Laboratoire de Mathématiques LAMA

Thèse

pour obtenir le grade de

Docteur de l’Université de Savoie
Discipline : Mathématiques

Titre :

Étude d’un λ-calcul issu d’une
logique classique

présentée et soutenue par

Khelifa SABER
Le 6 juillet 2007

dirigée par

Karim NOUR

Jury composé de:

Ph. De Groote Rapporteur
R. Matthes Rapporteur
R. David Examinateur
T. Ehrhard Examinateur
H. Herbelin Examinateur
K. Nour Directeur

2

3

”Nous élevons en rang qui Nous voulons et au-dessus de
tout savant se trouve un savantissime.”

Coran 12, 76.

4

5

Dédicaces

À celle qui a toujours compté pour moi et qui comptera
aussi longtemps que je vivrai, Ma Mère.

À Mon Père, symbole de patience et de résistance.

À ma femme, mes frères et soeurs, vous êtes le sourire
de ma vie.

6

7

Remerciements

Se lancer dans l’aventure d’une thèse, c’était difficile mais il a été encore plus
difficile de la mener à terme. On s’inquiète, on doute et surtout on souffre. Le
stress, les incertitudes... on frôle la dépression. Mais quand on a un directeur
qui s’appelle Karim, on s’accroche et on y croit. Je tiens à lui adresser mes pro-
fonds remerciements, sans son encadrement bienveillant, ses conseils et ses idées,
ce travail n’aurait pu voir le jour. Par ses qualités humaines, il n’a jamais été
avare de remonte-moral. Combien de fois a t-il supporté mes longues absences !?
Mes retards et rendez-vous reportés pour ne pas dire annulés ! Mais lui, restait
toujours patient et attentif à mes moindres soucis. Comment oublier son soutien
inconditionnel, sans faille jusqu’au bout !? Pour lui témoigner ma gratitude et
mon éternelle reconnaissance, les paroles ne peuvent suffire. Cela ne m’empêche
pas de te dire et de te répeter : Karim, merci du fond du coeur.

Je ne saurais manquer non plus de remercier René David pour son investis-
sement tout au long de ce parcours. J’ai eu l’extrême honneur d’avoir bénéficié
de son soutien lors de mon arrivée en France en octobre 2001 ; qu’il trouve ici
l’expression de mes sincères remerciements.

Je tiens à remercier les rapporteurs, Philippe De Groote et Ralph Matthes
pour leurs remarques pertinentes, qui ont contribué à l’amélioration de ce travail.

Je remercie également Thomas Ehrhard et Hugo Herbelin pour l’honneur
qu’ils m’ont fait d’accepter d’être examinateurs de cette thèse.

Mes salutations à tous ceux que j’ai cotoyés durant ces années au sein du
bâtiment ”Le Chablais” en particulier les membres de l’équipe de logique.

Je ne saurais oublier tous les membres du laboratoire LAIC à Clermont-
Ferrand pour leur chaleureux accueil et l’intérêt qu’ils ont porté à ce travail tout
au long de cette année.

Enfin, une pensée à tous mes amis d’ici et de l’autre rive.

8

Contents

1 Introduction 13

1.1 Historique de la déduction naturelle 13

1.2 Le cadre de mes recherches . 16

1.2.1 La contribution de mon travail au λµ∧∨-calcul 17

1.2.2 Les principaux résultats de ce travail 20

1.3 Le plan de la thèse . 20

2 Some properties of the λµ∧∨-calculus 27

2.1 Introduction . 27

2.2 Notations and definitions . 29

2.3 Characterization of the λµ∧∨-terms 30

2.4 Standardization theorem . 33

2.5 Head and leftmost reductions . 37

2.6 Finiteness of developments . 42

2.6.1 The marked terms . 42

2.6.2 Finiteness developments theorem 45

2.7 Krivine machine . 48

3 The strong normalization 55

3.1 Introduction . 55

3.2 The typed system . 56

3.3 Reducibility candidates . 58

3.4 Proof of the theorem 3.2.3 . 62

4 A Semantics of Realisability 67

4.1 Introduction . 67

4.2 Notations and definitions . 68

4.3 The semantics . 69

4.4 The operational behaviors of some typed terms 72

4.4.1 Terms of type ⊥→ P “Ex falso sequitur quodlibet” 72

4.4.2 Terms of type (¬P → P) → P “Pierce law” 73

4.4.3 Terms of type P ∨ ¬P “Tertium non datur” 74

9

10 CONTENTS

5 A completeness result for a class of types 79
5.1 Introduction . 79
5.2 The simply typed λµ-calculus . 80
5.3 The semantics of Sµ . 82
5.4 Characterization of some typed terms 84

5.4.1 The system Sµ
Ō . 85

5.4.2 Terms of type ⊥→ X . 86
5.4.3 Terms of type (¬X → X) → X 87

5.5 The completeness result . 90
5.6 Future work . 93

5.6.1 Second order typed λµ-calculus 93
5.6.2 ∀+ types and D+ types . 94
5.6.3 The normal typing . 96

5.7 Appendix . 97

6 A call-by-value λµ∧∨-calculus 101
6.1 Introduction . 101
6.2 Notations and definitions . 103
6.3 The extended structural reduction 106
6.4 Proof of the key lemma . 109
6.5 Future work . 111

CONTENTS 11

”Mon coeur m’a dit: ”Je veux savoir, je veux connâıtre !

Instruis-moi, Khayyâm, toi qui as tant travaillé !”

J’ai prononcé la première lettre de l’alphabet, et mon coeur m’a dit:

”Maintenant, je sais. Un est le premier chiffre du nombre qui ne

finit pas...”

Omar el-Khayyâm

12 CONTENTS

Chapter 1

Introduction

1.1 Historique de la déduction naturelle

Depuis les travaux de nombreux logiciens dont Georges Boole, Bertrand Rus-
sell, Alfred North Whitehead en passant par David Hilbert, Kurt Gödel, Gerhard
Gentzen et jusqu’à aujourd’hui, la théorie de la démonstration a été au coeur de
tout débat lié aux problèmes des fondements des mathématiques : des problèmes
dûs à leur complexification et à l’apparition de divers paradoxes.

Cette discipline a vu le jour officiellement au début du siècle dernier. Au cours
de son célèbre exposé, le 8 août 1900 à Paris, au second congrès international de
mathématiques, D. Hilbert la présenta comme un excellent outil pour résoudre
l’un de ses fameux 23 problèmes : en l’occurence, le deuxième dans lequel il
s’interrogea sur la consistance des axiomes de l’arithmétique. Ceci revient donc
à démontrer, par des moyens finitistes, la consistance de l’arithmétique. Cet
objectif a suscité de nombreux travaux en logique dans les années qui suivirent,
jusqu’en 1931 où il fût invalidé par K. Gödel et son célèbre théorème d’incomplétude,
démontrant ainsi l’impossibilité de réaliser un tel programme. Cela n’a toutefois
pas empêché cette discipline de se développer et de s’imposer parmi les sous-
domaines majeurs au sein de la logique, grâce notamment aux travaux de Jacques
Herbrand, Gerhard Gentzen et toute une génération de logiciens des années 30.

En effet, G. Gentzen fût le premier à avoir caractérisé la logique comme un
cheminement naturel, et cela à travers le développement de ses deux célèbres
formalismes : la déduction naturelle et le calcul des séquents dans leurs deux
variantes classique et intuitionniste. Pour la déduction naturelle, la principale
idée de départ était : pas d’axiomes logiques, uniquement des règles de déduction
et autant qu’il en faut pour reproduire toutes les formes élémentaires et naturelles
du raisonnement. Pour réaliser son idée, G. Gentzen développa un formalisme
où les déductions ne sont pas des suites de phrases mais des arbres, faites de

13

14 CHAPTER 1. INTRODUCTION

colonnes de phrases qui se rejoignent jusqu’à la conclusion. Pour G. Gentzen,
cette méthode était la mieux adaptée au style du raisonnement humain utilisé en
pratique, d’où la terminologie la déduction naturelle.

Les règles de la déduction naturelle permettent d’enchâıner logiquement les
phrases, c’est-à-dire introduire de nouvelles phrases comme conséquences logiques
de celles qui précèdent. A chaque connecteur logique sont associées deux sortes
de règles de déduction.

Une règle d’introduction qui permet d’avoir en conclusion une proposition
ayant ce connecteur comme principal.

Une règle d’élimination qui explique comment manipuler une proposition
ayant ce connecteur comme principal afin de poursuivre le raisonnement.

“Introduction” et “Elimination” sont nécessaires pour pouvoir assembler et
désassembler des formules et analyser les démonstrations.

G. Gentzen proposa alors son formalisme pour prouver la cohérence de l’arith-
métique. Mais les nombreuses difficultés qu’il rencontra le conduisirent à refor-
muler la déduction naturelle en une nouvelle version plus symétrique. Cela donna
naissance au calcul des séquents qui révèle mieux la dualité hypothèse/conclusion
exprimée par la symétrie parfaite entre la droite et la gauche dans les séquents, ce
qui permet de rendre explicite un grand nombre de propriétés de la logique. C’est
pourquoi le calcul des séquents doit se voir comme un formalisme pour raisonner
sur les preuves formelles plutôt que pour rédiger des preuves formelles.

Pour ce calcul, G. Gentzen chercha à démontrer la propriété suivante, dite
propriété de la sous-formule et appelée aussi Hauptsatz (théorème principal)
qui affirme : “toute démonstration peut se ramener à une autre qui ne comporte
pas de détours. On n’y introduit aucun concept qui ne soit pas contenu dans son
résultat final et qui, par conséquent, ne doit pas nécessairement être utilisé pour
obtenir ce résultat” [10]. Cette propriété est très importante, car c’est elle qui
lui permettra de démontrer la consistance du calcul des séquents. En effet, le
séquent le plus simple est le séquent vide qui ne contient aucune formule, ni à
gauche, ni à droite. Or ce séquent exprime une contradiction. Pour prouver que le
calcul est cohérent, il suffit de démontrer que le séquent vide n’est pas dérivable.
Néanmoins, une démonstration sans coupures du séquent vide ne devrait contenir
que des séquents plus simples mais il n’y en a aucun. C’est ainsi que dans sa
quête, G. Gentzen sera conduit à démontrer son célèbre théorème d’élimination
des coupures. L’adaptation de cette démonstration au cas de l’arithmétique lui
fournit une preuve de la cohérence relative de l’arithmétique. Une fois ce problème
résolu, resta celui de la consistance de la déduction naturelle elle-même. G.
Gentzen ne prouva cette consistance qu’en démontrant son équivalence au calcul
des séquents.

1.1. HISTORIQUE DE LA DÉDUCTION NATURELLE 15

Trente ans après, en 1965, D. Prawitz montra comment normaliser les preuves
dans le cas de la présence de la règle d’absurdité classique. Dans le but d’obtenir
la propriété de la sous-formule, D. Prawitz restreindra l’utilisation de cette règle
au cas où sa conclusion serait atomique. Ensuite, il montra comment transformer
toute déduction afin de réaliser cette propriété ([7] et [34]).

En 1980, W. Howard publia une correspondance entre les démonstrations en
déduction naturelle intuitionniste et les termes du λ-calcul de A. Church, où la
normalisation des preuves de D. Prawitz correspond à la β-réduction en λ-calcul.
Bien avant, certaines correspondances entre la logique et le λ-calcul ont été con-
statées séparément par H. Curry et R. Feys en 1958 d’une part, et De Bruijn en
1968 d’autre part. Cela donna naissance à ce qu’on appelle aujourd’hui la cor-
respondance de Curry-Howard (appelée aussi isomorphisme de Curry-Howard,
ou isomorphisme de Curry-Howard-De Bruijn). C’est une relation entre logique
intuitionniste, λ-calcul et informatique, ou encore entre démonstrations intuition-
nistes et calculs par intermédiaire du λ-calcul. Cette correspondance s’est avérée
être une puissante technique et un outil fiable par l’exposition du lien structurel
et profond, qui permet aux λ-termes de coder les preuves de la logique intuition-
niste, tandis que la β-réduction représente le calcul effectué par ordinateur.

Cependant, cette correspondance entre preuves et programmes resta partielle
selon deux points de vue. D’un point de vue informatique, certains aspects de
la programmation ne sont pas couverts comme la programmation parallèle ou
la gestion des erreurs. Ensuite, d’un point de vue mathématique, en logique
intuitionniste, le raisonnement par l’absurde utilisé dans la quasi-totalité des
mathématiques est interdit.

Or, depuis la voie ouverte par T. Griffin [12] au début des années 1990, il
est apparu naturel d’étendre la logique du λ-calcul, car la correspondance de
Curry-Howard a été enrichie. T. Griffin a découvert que certaines instructions
informatiques, telles que les commandes d’échappement, traduisent le processus
du raisonnement par l’absurde. Au niveau de la théorie de la démonstration,
le problème consista à définir un système de déduction naturelle classique doté
d’une procédure de normalisation de preuve, tel que la preuve normale satisfait
la propriété de la sous-formule. Cela permettra d’interpréter la procédure de
normalisation des preuves comme un processus de calcul.

Sur la base de ce nouvel apport, M. Parigot a introduit son λµ-calcul en 1992
([32] et [33]). C’est une extension du λ-calcul qui capture le contenu algorithmique
des preuves de la logique classique propositionnelle du second ordre. Le nouvel
opérateur µ est introduit pour coder la règle du raisonnement par absurde.

16 CHAPTER 1. INTRODUCTION

Signalons que les connecteurs ∧ et ∨ peuvent être codés dans cette logique
à l’aide du connecteur → et le quantificateur ∀. Le λµ-calcul possède toutes les
bonnes propriétés : préservation de type, confluence et forte normalisation [2],
[32], [33] et [36].

1.2 Le cadre de mes recherches

En 2001, Ph. De Groote [7] a introduit une extension du λµ-calcul : le λµ∧∨-
calcul. L’objectif était de donner une preuve de la forte normalisation de l’élimina-
tion des coupures en déduction naturelle classique propositionnelle. Ainsi, les
termes du λµ∧∨-calcul codent les démonstrations de cette logique, où sont con-
sidérées trois sortes de coupures : logiques, permutatives et classiques, nécessaires
à l’obtention de la propriété de la sous-formule. D’un point de vue informatique,
ce calcul peut être considéré comme un langage de programmation fonctionnelle
incluant produit et opérateurs de contrôles dans lequel la normalisation des ter-
mes correspond à un processus de calcul. Ceci justifie encore plus l’intérêt porté
au théorème de la forte normalisation car il garantit la terminaison de tout cal-
cul, en d’autres termes, l’existence d’une forme normale indépendamment de la
stratégie de réduction adoptée.

Dans [7], la preuve de ce résultat se décompose en deux grandes parties :
la première partie consiste à démontrer la terminaison des réductions permuta-
tives et classiques pour tout le calcul (typé ou non typé), ce qui prouve que ces
réductions structurelles n’ont aucun contenu calculatoire. La deuxième partie
consiste à traduire le λµ∧∨-calcul en λ-calcul par les transformations CPS, ce
qui revient finalement à réduire le problème à celui de la forte normalisation du
λ-calcul simplement typé.

L’idée principale des transformations CPS, c’est qu’elles préservent le ca-
ractère strict des réductions logiques, i.e. si un terme t se réduit à un terme u
par au moins une réduction, alors la transformation CPS de t se réduit aussi à
celle de u par au moins une réduction. Toutefois, cela ne fonctionne pas avec cer-
tains termes, en l’occurence les termes avec des µ-abstractions vacantes. Cepen-
dant, et même en isolant cette classe de termes, la preuve dans [7] n’est pas
complète, car certains termes qui n’ont aucune µ-abstraction vacante peuvent se
réduire à d’autres contenants des µ-abstractions vacantes. Récemment, quelques
travaux qui traitent ce problème sont apparus, avec comme objectifs de corriger
ou complèter les cas non couverts par les versions initiales de certaines preuves
de forte normalisation via les CPS transformations, et cela à travers la notion
d’augmentation [25] and [26].

1.2. LE CADRE DE MES RECHERCHES 17

Le théorème de la forte normalisation a suscité l’intérêt de nombreux auteurs:
R. David et K. Nour [4] ont produit une autre démonstration. Il s’agit d’une
preuve syntaxique basée essentiellement sur deux lemmes. Le premier lemme
stipule que la démonstration obtenue en substituant une démonstration fortement
normalisable dans une autre fortement normalisable l’est aussi. Le second lemme
est très technique et relatif aux réductions commutatives. Une version détaillée
de la preuve de ce dernier sera disponible sur la page web des auteurs.

Une autre preuve de la forte normalisation est fournie par R. Matthes [24].
Elle s’inscrit dans le cadre des preuves sémantiques dont la base est la notion des
ensembles saturés et points fixes.

1.2.1 La contribution de mon travail au λµ∧∨-calcul

1. Je présente ici une preuve du théorème de la forte normalisation. Ma preuve
rejoint celle de R. Matthes et s’inscrit également dans le cadre des preuves
sémantiques. C’est une adaptation de la preuve de la forte normalisation
du λµ-calcul typé de M. Parigot [33], basée sur les candidats de réductibilité
introduits par J.-Y. Girard [11]. Les types sont interprétés par des ensem-
bles de termes qui satisfont certaines propriétés. L’interprétation donnée
au type disjunction A ∨ B est très intuitive, elle traduit exactement la
règle d’élimination du connecteur ∨. De ce fait, cela m’a permis de réduire
de façon considérable la difficulté du problème de la forte normalisation.
Néanmoins, cette preuve s’appuie sur le lemme technique présenté dans [4].

2. A partir de la sémantique précédente qui est à la base de la preuve de
la forte normalisation, j’ai défini une nouvelle sémantique de réalisabilité
pour le λµ∧∨-calcul. Au coeur de cette nouvelle sémantique, l’ensemble
N des termes fortement normalisables est remplacé par un ensemble de
termes saturé par expansion, noté S. Cela permet plus de liberté dans
l’application du nouveau lemme d’adéquation. Donc, en fonction des pro-
priétés recherchées, l’ensemble S est redéfini afin de satisfaire les résultats
voulus. Ainsi, comme application de ce nouveau lemme d’adéquation, on
caractérise le comportement algorithmique de certains termes typés et clos
uniquement à partir de leurs types. Des travaux similaires ont déjà été
réalisés dans ce domaine (sémantique de réalisabilité et caractérisation de
comportement [17] et [31]). Pouvoir capter ce type de comportement con-
stitue une justification et montre l’intérêt d’une telle sémantique. Un autre
outil, les méthodes syntaxiques, est à notre disposition pour capter ce type
de comportement. A la différence des preuves syntaxiques, dans les preuves

18 CHAPTER 1. INTRODUCTION

sémantiques, il faut d’abord deviner ou avoir une idée de ce que fait ce ter-
me, ensuite vérifier cette preuve avec le bon ensemble S. Tandis que dans
les preuves syntaxiques, ce comportement se construit tout au long de la
démonstration.

3. La plupart des preuves sémantiques de la forte normalisation sont basées
sur un résultat appelé lemme d’adéquation, stipulant que chaque terme est
dans l’interprétation de son type. La question qu’on peut se poser est la
suivante : “a-t-on un résultat réciproque de ce lemme ?”; autrement dit :
“existe-t-il une classe de type pour laquelle la réciproque de ce lemme est
vraie ?”. J. R. Hindley fût le premier à s’être intéressé à cette question
dans le cadre des systèmes de types simples [13], [14] et [15]. Dans [21],
R. Labib-Sami a établi un résultat de complétude pour une classe de types
appelés types ∀-positifs du système F de J.-Y. Girard. Sa sémantique est
basée sur des ensembles stables par βη-équivalence. Plus tard, S. Farkh
et K. Nour ont démontré un résultat plus affiné que celui de [21] et cela
toujours pour la même classe de types mais avec une sémantique à base
d’ensembles saturés par réduction de tête faible [8], ce qui est plus léger
comme condition. Les mêmes auteurs ont prouvé dans [9] un autre résultat
de complétude pour une classe de types du système AF2 de J.-L. Krivine.
Dans le cadre du λµ∧∨-calcul, l’étude de cette question a donné lieu à une
réponse négative dûe à la présence des connecteurs ∧ et ∨. C’est pour
cela que je me suis restreint au λµ-calcul simplement typé, pour lequel un
résultat de complétude est démontré à travers un long travail et quelques
légères modifications apportées à notre sémantique.

4. La confluence reste parmi les plus importantes propriétés de tout système
de réduction abstrait. Elle garantit l’unicité de la forme normale au cas
où celle-ci existe. De ce fait, pour le λµ∧∨-calcul, diverses preuves de la
confluence sont apparues. Dans [7], Ph. De Groote propose de démontrer
la confluence par le lemme de Newman et la vérification de la confluence
locale. Dans [1], Y. Andou démontre ce résultat en utilisant des réductions
parallèles définies par une extension de la notion des segments de D. Prawitz
([34] et [35]) et de développement complet. Dans [5], R. David démontre
la confluence de la β-réduction en s’appuyant sur un théorème de standar-
disation et de développements finis. Ma démonstration s’inspire fortement
de celle de R. David. Je démontre tout d’abord un théorème de standar-
disation et un théorème de développements finis. La confluence découle par
arguments de forte normalisation, lemme de Newman et confluence locale.

5. Le théorème de standardisation est très utile et intéressant en lui même. Il
stipule que chaque suite de réductions peut être transformée en une autre
qui sera standard dans le sens où les réductions sont faites de gauche à
droite, éventuellement avec des sauts. Mais sans la possibilité de revenir

1.2. LE CADRE DE MES RECHERCHES 19

sur les redexes ou leurs résidus après les avoir sautés. Dans la littérature,
plusieurs définitions équivalentes sont données à cette notion. La définition
de R. David [5] me semble la mieux adaptée, d’autant plus qu’elle ne fait pas
intervenir explicitement la notion de résidus de redexes. La difficulté pour
le λµ∧∨-calcul, c’est la présence des réductions permutative et classique.
Pour cela, le travail effectué par F. Joachimski et R. Matthes [16] m’a été
d’une grande utilité.

En effet, dans [16], les auteurs présentent le ΛJ-calcul, une extension du
λ-calcul avec des applications généralisées, où ils traitent justement la ques-
tion de la standardisation en présence de réduction parmutative. Ainsi le
ΛJ-calcul sert comme un modèle minimal pour l’étude des systèmes de
réecriture avec réduction commutative. Je définis alors une réduction stan-
dard “à la David” qui capture la notion intuitive de réduire de gauche
à droite et de l’exterieur vers l’interieur d’une manière similaire à celle
présentée dans [16]. L’une des conséquences de cette définition est le fait
que la réduction gauche est une stratégie gagnante. Pour définir la réduction
gauche dans le λµ∧∨-calcul, il faudra d’abord définir la notion de réduction
de tête. La difficulté provient du fait que les λµ∧∨-termes n’ont pas qu’une
seule tête, d’où la formulation de la notion d’une réduction gauche comme
itérations de réductions de tête. Cette légère difficulté est contournée
en considérant la réduction gauche comme une réduction standard par-
ticulière déterministe, cela permet de dériver une définition équivalente à la
précédente.

6. Le théorème des développements finis est aussi important et joue le rôle
du théorème de forte normalisation quand on le combine avec le lemme de
Newman. Il stipule qu’en partant d’un terme et d’un ensemble fixé de ses
redexes, si on ne réduit que les résidus de ces redexes, alors toute réduction
termine. J’introduis dans ce travail une version colorée du λµ∧∨-calcul
afin de suivre les traces des redexes et leurs résidus. En n’autorisant que la
réduction des redexes colorés, je démontre un résultat de forte normalisation
(ce qui correspond intuitivement à un théorème des développements finis).

7. La machine de Krivine est une simple implémentation de la stratégie de la
réduction de tête faible des λ-termes. Cette machine a servi comme base
pour de nombreuses études théoriques et pour l’implémentation d’autres
stratégies de réductions ([3], [6] et [22]). Une extension de cette machine
au cadre du λµ∧∨-calcul sera présentée à la fin du second chapitre.

8. Plusieurs langages de programmation ont été développés à travers l’étude de
différents calculs par valeur comme ML et Lisp pour le λ-calcul, et µPCFV

pour le λµ-calcul. C’est pour cela que l’étude d’un λµ∧∨-calcul par valeur
semble intéressante. Je présente dans mes travaux un λµ∧∨-calcul par va-
leur. La preuve de la confluence de ce calcul est une adaptation de celle de

20 CHAPTER 1. INTRODUCTION

Y. Andou [1]. Cette méthode est la mieux adaptée pour fournir le résultat
voulu.
En effet, vu la présence des réductions permutatives ainsi que la µ′-réduction,
on ne peut démontrer la confluence à travers des résultats de retardement
ou de commutations. La forte normalisation de ce système n’étant pas
prouvée, on ne pourra pas non plus utiliser le lemme de Newman et la
confluence locale. Il est clair donc que la méthode la plus efficace reste la
méthode des réductions parallèles.

1.2.2 Les principaux résultats de ce travail

1. La standardisation, la confluence et une extension de la machine de J.-L.
Krivine.

2. Une preuve sémantique de la forte normalisation.

3. Une sémantique de réalisabilité qui permet de caractériser le comportement
calculatoire de certains termes typés.

4. Un théorème de complétude pour le λµ-calcul simplement typé.

5. Une introduction à un calcul par valeur confluent.

1.3 Le plan de la thèse

Cette thèse est divisée en cinq chapitres qui, hormis quelques points de détail,
sont indépendants les uns des autres et ”autosuffisants”. Le lecteur peut donc
les aborder au gré de son intérêt et de ses besoins.

– Le chapitre 2 présente une collection de résultats communs à tout système
de réduction abstrait. Tout d’abord, je démontre des résultats de standard-
isation, de développements finis et de confluence, puis je termine par une
extension de la machine de Krivine.

– Le chapitre 3 contient une preuve sémantique de la forte normalisation du
λµ∧∨-calcul typé. Cette preuve est basée sur la méthode des candidats de
réductibilités de G.-Y. Girard [11], adaptée par M. Parigot au cas classique
[32].

– Le chapitre 4 définit une sémantique de réalisabilité, et par conséquent,
un lemme de correction qui aura pour application la caractérisation de
quelques termes clos de certains types.

1.3. LE PLAN DE LA THÈSE 21

– Le chapitre 5 présente le λµ-calcul simplement typé. Je démontre que les
types de ce système sont complets pour la sémantique définie dans les deux
précédents chapitres.

– Le chapitre 6 introduit un λµ∧∨-calcul par valeur. La confluence est
prouvée par la méthode des réductions parallèles et du développement com-
plet, inspirée et basée sur le travail de Y. Andou [1].

22 CHAPTER 1. INTRODUCTION

Bibliography

[1] Y. Andou. Church-Rosser property of simple reduction for full first-order
classical natural deduction. Annals of Pure and Applied Logic, vol 119, pp.
225-237, 2003.

[2] K. Baba, S. Hirokawa & K. Fujita. Parallel Reduction in Type Free λµ-
Calculus. Electronic Notes in Theoritical Computer Science, vol 42, pp. 1-15,
2001.

[3] P. Crégut. Machines à environnement pour la réduction symbolique et
l’évaluation partielle. PhD Thesis, Paris 7 University, 1991.

[4] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of Symbolic Logic, vol 68, num
4, pp. 1277-1288, 2003.

[5] R. David. A simple proof of basic results in λ-calculus. Compte Rendu de
l’Académie des Sciences, Paris, Tome 320, Série 1, 1995.

[6] P. De Groote. An environment machine for the lambda-mu-calculus. Math-
ematical Structures in Computer Science, 8(6), pp. 637-669, 1998.

[7] P. De Groote. Strong Normalization of Classical Natural Deduction with Dis-
junction. In 5th International Conference on typed lambda calculi and ap-
plications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[8] S. Farkh and K. Nour. Un résultat de complétude pour les types ∀+ du
système F . CRAS. Paris 326, Série I, pp. 275-279, 1998.

[9] S. Farkh and K. Nour. types complets dans une extension du système AF2.
Informatique théorique et application 31-6, pp. 513-537, 1998.

[10] G. Gentzen. Recherches sur la déduction logique. Press Universitaires de
France, 1955. Traduction et commentaires par R. Feys et J. Ladrière.

[11] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University
Press, 1986.

23

24 BIBLIOGRAPHY

[12] T. Griffin. A formulae-as-types notion of control. Proc. POLP, 1990.

[13] J. R. Hindley. The simple semantics for Coppe-Dezani-Sallé types. Proceed-
ing of the 5th Colloquium on International Symposium on Programming,
pp. 212-226, April 06-08, 1982.

[14] J. R. Hindley.The completeness theorem for the typing λ-terms. Theoretical
Computer Science, 22(1), pp. 1-17, 1983.

[15] J. R. Hindley. Curry’s type-rules are complete with respect to the F-semantics
too.Theoretical Computer Science, 22, pp. 127-133, 1983.

[16] F. Joachimski and R. Matthes. Standardization and Confluence for a Lambda
calclus with Generalized Applications. 11th International Confrence, RTA
2000, Norwich, UK, July 10-12, pp. 141-155, 2000.

[17] J.-L. Krivine. Lambda calcul, types et modèle. Masson, Paris, 1990.

[18] J.-L. Krivine. Un interpréteur du λ-calcul. Unpublished draft. Available at
http://www.pps.jussieu.fr/krivine/.

[19] J.-L. Krivine. A call by-name lambda-calculus machine. to apear in Higher
Order and Symbolic Computation.

[20] J.-L. Krivine. Opérateurs de mise en mémoire et traduction de Gödel.
Archive for Mathematical Logic, vol 30, pp. 241-267, 1990.

[21] R. Labib-Sami. Typer avec (ou sans) types auxiliaires. Manuscrit, 1986.

[22] F. Lang, Z. Benaissa and P. Lescane. Super-Closures. In Proc, of WPAM’98,
as Technical Report of the University of SaarBruck, number A 02/98, 1998.

[23] O. Laurent. Interprétation calculatoire de la logique classique: λµ-calcul et
machine de Krivine. Available at http://www.pps.jussieu.fr/laurent/.

[24] R. Matthes. Non-Strictly Positive Fixed Points for Classical Natural Deduc-
tion. APAL, vol 133, pp. 205-230, 2005.

[25] K. Nakazawa. and M. Tatsuka Strong normalization proof with CPS-
translation for second oder classical natural deductionλµ-calculus. The Jour-
nal of Symbolic Logic, vol 68, number 3, pp. 851-859, Sept. 2003.

[26] K. Nakazawa. Confluency and Strong normalizability of call-by-value λµ-
calculus. Theoretical Computer Science, vol 290, pp. 429-463, 2003.

[27] K. Nour and K. Saber. A Semantics of Realizability for the Classical Proposi-
tional Natural Deduction. Electronic Notes in Theoretical Computer Science,
vol 140, pp. 31-39, 2005.

BIBLIOGRAPHY 25

[28] K. Nour and K. Saber. A semantical proof of strong normalization theorem
for full propositional classical natural deduction. Archive for Mathematical
Logic, vol 45, pp. 357-364, 2005.

[29] K. Nour and K. Saber. Confluency property of the call-by-value λµ∧∨-
calculus. Computational Logic and Applications CLA’05. Discrete Mathe-
matics and Theoretical Computer Science proc, pp. 97-108, 2006.

[30] K. Nour. Opérateurs de mise en mémoire et types ∀-positifs. Theoretical
Informatics and Applications, vol 30, n◦ 3, pp. 261-293, 1996.

[31] K. Nour. Mixed Logic and Storage Operators. Archive for Mathematical
Logic, vol 39, pp. 261-280, 2000.

[32] M. Parigot. λµ-calculus: An algorithm interpretation of classical natural
deduction. Lecture Notes in Artificial Intelligence, vol 624, pp. 190-201.
Springer Verlag, 1992.

[33] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, vol 62 (4), pp. 1461-1479, 1997.

[34] D. Prawitz. Natural Deduction, A proof-Theoretical Study. Almqvist & Wik-
sell, Stockholm, 1965.

[35] D. Prawitz. Idea and result in proof theory. In 2nd Scandinavian Logic Symp,
pp. 235-307, 1971.

[36] W. Py. Confluence en λµ-calcul. PhD thesis, University of Chambéry, 1998.

26 BIBLIOGRAPHY

Chapter 2

Some properties of the
λµ∧∨-calculus

2.1 Introduction

The λµ∧∨-calculus is an extension of the λµ-calculus associated by the Curry-
Howard correspondence to the full classical natural deduction system, it was
introduced by P. De Groote [11].

In the λµ∧∨-calculus as in any other abstract reduction system, termination,
confluence and standardization appear among the principal properties. The ques-
tion of termination, of course for the typed λµ∧∨-calculus, was studied by many
authors [7], [11], [18] and [19].

The confluence is a very important property, it guaranteed the uniqueness of
the normal form (if it exists) independently of the strategy of reduction, i.e. if
we are allowed to write terms which necessarly do not finish under reduction,
one expects at least that the possible result is independent of the strategy of
reduction. There are different methods to prove the confluence property:
parallel reduction, complete development, finiteness developments and standard-
ization... For a strongly normalizable term rewriting system, one needs only to
check the local confluence which suffices when combinated with Newman lemma.

Standardization is classical and a very convenient tool, the issue is the order
in which the reduction steps are performed. In a standard reduction, this is
done from left to right. According to the standardization theorem, any sequence
of reductions can be transformed into a standard one. We find in the current
literature various equivalent definitions of this notion. In our work, we adopt the
one given by R. David and W. Py (see [8] and [22]), it is very convenient and has
the advantage that we do not need to explicit the notion of residus “descendant”
of a redex.

The presence of the permutative reduction of the form ((t [x.u, y.v]) ε) →δ

(t [x.(u ε), y.(v ε)]) has certain consequences not only on the termination of

27

28 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

the system, but also on the standardization and the confluence, since the re-
sulting rewriting system is not orthogonal. Therefore the treatment of these
two notions is not trivial at all. Intuitively standard reduction contract redexes
from external to internal and from left to right. However There is more free-
dom in the presence of permutative reductions, a permutative redex of the form
((µa.t [x.u, y.v]) [r.p, s.q]) ε may permute to (µa.t [x.(u [r.p, s.q]), y.(v [r.p, s.q])]) ε
and to (µa.t [x.u, y.v]) [r.(p ε), s.(q ε)] and both possiblities as well as the embed-
ded µ-redex should be treated equivalently. We can not privilege one between
them and consider for example the classical as external or the leftmost. That
would be also the same thing for the two permutatives. In this work we use a
definition “à la David” which captures this intuitive notion of standardization,
when restricted to the λ-calculus (resp the λµ-calculus) corresponds exactly to
the one given in [8] (resp [22]). As an application of this definition, we prove that
leftmost reduction in a sense precise later is a gaining strategy.

The finiteness developments theorem says that: if we mark a set R of redex
occurences in a given term t and reduce only the marked redex occurences and
redex occurences which descend from marked redex occurences, the reduction
process always terminates. If we reduce every marked redex occurence, then
the order in which such reductions are performed does not matter, R uniquely
determines a term u to which t is reduced under any complete reduction of marked
redex occurences. In addition, if we mark another set R′ of redex occurences in
t and follow this set through a complete R-reduction, the redex occurences from
R′ may be transformed by substitution or copied. However, it does not matter in
what way we perform a complete R-reduction, the set of redex occurences in u
which descend from R′ is again uniquely determined. This theorem has important
consequences like the confluence property, what guaranteed the uniqueness of
normal form if it exists. The proof of such theorem is difficult and required a
standardization theorem, this is what we do in the major part of this work.

The Krivine machine (see [15]) is a simple and natural implementation of the
weak-head call-by-name reduction strategy for the pure λ-terms. It can be de-
scribed just with three or four rules in minimal machinery. The Krivine machine
has served as a basis for many variants, extensions and theoretical studies.
P. Crégut [4] used it as a basis for the implementation of other reduction strategies
(call-by-need, head and strong reductions). Many others used it for their works
either practical or theoretical (see [10, 16, 23]). All these works demonstrated
that the simplicity of the Krivine machine makes it a valuable tool to study new
implementation techniques and various λ-calculus extensions. We define here an
extension of this machine to the λµ∧∨-calculus.

This chapter is presented as follows. Section 2 is an introduction to the
typed λµ∧∨-calculus. Section 3, contains some useful technical results, in order
to well defining head and leftmost reduction. In Section 4, we define the standard
reductions and prove the standardization theorem. In Section 5, we introduce a
coloured version of λµ∧∨-calculus, to keep the trace of the residus of redexes and

2.2. NOTATIONS AND DEFINITIONS 29

prove the finiteness developments theorem. We close this section by the main
theorem of this chapter, i.e. the confluence property. In Section 6, we extend the
Krivine machine to the λµ∧∨-calculus, in order to perform terms by a particular
weak-head reduction.

2.2 Notations and definitions

Definition 2.2.1 We use notations inspired by the paper [2].

1. Types are formulas of propositional logic built from the set of propositional
variables and the constant type ⊥, using the connectors →, ∧ and ∨.

2. Let X and A be two disjoint infinite alphabets for distinguishing the λ-
variables and µ-variables respectively. We code deductions by using a set of
terms T which extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)

E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term.

3. The meaning of the new constructors is given by the typing rules below
where Γ (resp ∆) is a context, i.e. a set of declarations of the form x : A
(resp a : A) where x is a λ-variable (resp a is a µ-variable) and A is a
formula.

Γ, x : A ` x : A ; ∆
ax

Γ, x : A ` t : B; ∆

Γ ` λx.t : A → B; ∆
→i

Γ ` u : A → B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e

Γ ` u : A; ∆ Γ ` v : B; ∆

Γ ` 〈u, v〉 : A ∧B; ∆
∧i

Γ ` t : A ∧B; ∆

Γ ` (t π1) : A; ∆
∧1

e

Γ ` t : A ∧B; ∆

Γ ` (t π2) : B; ∆
∧2

e

Γ ` t : A; ∆

Γ ` ω1t : A ∨B; ∆
∨1

i

Γ ` t : B; ∆

Γ ` ω2t : A ∨B; ∆
∨2

i

Γ ` t : A ∨B; ∆ Γ, x : A ` u : C; ∆ Γ, y : B ` v : C; ∆

Γ ` (t [x.u, y.v]) : C; ∆
∨e

30 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

Γ ` t : A; ∆, a : A

Γ ` (a t) : ⊥; ∆, a : A
⊥i

Γ ` t : ⊥; ∆, a : A

Γ ` µa.t : A; ∆
µ

4. The cut-elimination procedure corresponds to the reduction rules given be-
low. They are those we need to the subformula property.

• (λx.u v) .β u[x := v]

• (〈t1, t2〉 πi) .πi
ti

• (ωit [x1.u1, x2.u2]) .D ui[xi := t]

• ((t [x1.u1, x2.u2]) ε) .δ (t [x1.(u1 ε), x2.(u2 ε)])

• (µa.t ε) .µ µa.t[a :=∗ ε].

where t[a :=∗ ε] is obtained from t by replacing inductively each subterm in
the form (a v) by (a (v ε)).

5. Let ε and ε′ be E-terms. The notation ε . ε′ means that ε reduces to ε′ by
using one step of the reduction rules given above. Similarly, ε .∗ ε′ means
that ε reduces to ε′ by using some steps of the reduction rules given above.

6. Let ε and ε′ be E-terms and r a redex of ε. The notation ε .r ε′ means that
ε reduces to ε′ by reducing the redex r.

2.3 Characterization of the λµ∧∨-terms

In this section we develop some results present in [7]. The presence of the criti-
cal pairs for the standardization, and the fact that a λµ∧∨-term can have more
than one head, contrary to the λ-calculus or the λµ-calculus need such results
before defining the notion of standardization, head and leftmost reductions. For
simplicity of proofs, in the rest of this work we will consider only typed terms
and thus, for example, that terms such as (〈u, v〉 [x, p.y, q]) are not allowed since
they, obviously, can not be typed.

Definition 2.3.1 1. A term t is said to be simple if it is a variable or an
application.

2. Let ∗1, ..., ∗n, ... be an infinite number of holes. A general context C is a term
with holes. The set of general contexts is given by the following grammar:

C := ∗ij | λx.C | 〈C1,C2〉 | ω1C | ω2C |µa.C

We consider only general contexts with different holes, i.e. if ∗i1 , ..., ∗in are
the holes of a general context C, then, ∗ip 6= ∗iq for each p 6= q.

2.3. CHARACTERIZATION OF THE λµ∧∨-TERMS 31

3. Let C be a general context with holes ∗i1 , ..., ∗in and f a bijection from
N to N, then, the general context f(C) is the context C with the holes
∗f(i1), ..., ∗f(in), i.e. f(C) is the general context C just with a different
enumeration of its holes.

4. Let C and C′ be two general contexts, we said that C is equivalent to C′

and denote this by C ' C′, if there exists a bijection f from N to N such
that C′ = f(C). Thus, if C′ ' C, then, C and C′ have the same number
of holes.

5. A context is an equivalent class for the previous equivalent relation. Then
we can always suppose that the n holes of a context are ∗1, ..., ∗n in this
given order.

6. If C is a context with holes ∗1, ..., ∗n and t1, ..., tn are terms, then C[t1, ..., tn]
is the term obtained by replacing each ∗i by ti. The free variables of ti can
be captured in the term C[t1, ..., tn].

Lemma 2.3.1 Let t1, ..., tn, t
′
1, ..., t

′
m be simple terms and C,C′ two contexts. If

C[t1, ..., tn] = C′[t′1, ..., t
′
m], then, C = C′.

Proof. By induction on C. �

Lemma 2.3.2 Each term t can be uniquely written as C[t1, ..., tn], where C is
a context and t1, ..., tn are simple terms.

Proof. By induction on t.

- If t = x, t = (u ε) or t = (a u), then C = ∗1, t1 = t and t = C[t1].

- If t = λy.u, then, by the induction hypothesis, u = C′[u1, ..., un]. Hence
C = λy.C′ and t = C[u1, ..., un].

- The cases t = ωiu and t = µa.u are similar to the previous case.

- If t = 〈u, v〉, then, by the induction hypothesis, u = C1[u1, ..., un] and v =
C2[v1, ..., vm]. We can suppose that the holes of C1 and C2 are differents.
Hence C = 〈C1,C2〉 and t = C[u1, ..., un, v1, ..., vm].

For uniqueness, it suffices to use the lemma 2.3.1. �

32 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

Definition 2.3.2 1. A sequence w̄ = w1...wn of E-terms is said to be nice iff
wn is the only E-term which can be in the form [x.u, y.v].

2. A sequence w̄ = w1...wn of E-terms is said to be good iff wi is not in the
form [x.u, y.v] for each 1 ≤ i ≤ n. Observe that any good sequence is a nice
one but not vice versa.

3. A sequence w̄ = w1...wn is said to be normal iff each wi is normal. An
E-term of the form [x.u, y.v] is normal iff u and v are normal.

4. Let w̄ = w1...wi...wn, then w̄ . w̄′ iff w̄′ = w1...w
′
i...wn where wi . w′

i.

Lemma 2.3.3 (and definition) Let t be a simple term.

1. The term t can be uniquely written as one of the figures below where w̄ =
w1...wn is a finite sequence of E-terms.

2. A head of t (denoted as hd(t)) defined by the figures below, is either a
redex or a variable. In the cases (5) and (6) if εw̄ is not nice, then εw̄ =
r̄ [y.u, z.v]wis̄.

t hd (t)
1 (a v) a
2 ((λx.u v) w̄) (λx.u v)
3 ((〈u1, u2〉 πi) w̄) (〈u1, u2〉 πi)
4 ((ωiv [x1.u1, x2.u2]) w̄) (ωiv [x1.u1, x2.u2])

(µa.u ε) or
5 ((µa.u ε) w̄) any permutative redex in the form:

((µa.u r̄[y.u, z.v]) wis̄)
x if the sequence εw̄ is nice,

6 ((x ε) w̄) else, any permutative redex in the form:
((x r̄[y.u, z.v]) wis̄)

Proof. By induction on the simple term t. We have either t is a variable
which gives the case (1) or (6) (with empty sequences v and εw̄), either t = (u ε).
Therefore we will examine the form of u.

- If u is not a simple term, then u = λx.v, u = 〈u1, u2〉, u = ωiv or u = µa.v.
All these forms give us that t is respectively in the case (2), (3), (4) or (5).

- If u is a simple term, then the induction hypothesis concludes.

The uniqueness is clear. �

2.4. STANDARDIZATION THEOREM 33

Remark 2.3.1 Observe that simple terms of the form t = ((x ε) w̄) and t =
((µa.u ε) w̄) can have more than one head. For the first one, it suffices that εw̄
contains more than one term in the form [y.p, z.q], for the second, it is enough
that εw̄ is not nice.

The precedent lemma allows the λµ∧∨-term to be characterized in the follow-
ing corollary, this characterization will be useful for the standardization theorem
section.

Corollary 2.3.1 Any term t can be written in the following form: t = (T w̄),
where T = x, a, λx.u, 〈u1, u2〉 , ωiu or µa.u and w̄ is a finite sequence of E-terms
possibly empty.

Proof. A direct consequence of the precedent lemma.
�

Lemma 2.3.4 Let t = C[t1, ..., ti, ..., tn] be a term and r a redex of ti. If t .r t′,
then ti .r C′

i[t
i
1, ..., t

i
m] and t′ = C′[t1, ..., ti−1, t

i
1, ..., t

i
m, ti+1, ..., tn] where

C′ = C[∗i := Ci].

Proof. By induction on C. �

2.4 Standardization theorem

The standardization theorem is a useful result stating that if t .∗ t′, then there is a
reduction sequence from t to t′ “standard” in the sense that contractions are made
from left to right, possibly with some jumps in between. One of its consequences
is that normal forms, if existing, can be reached by leftmost reduction sequences.

Definition 2.4.1 1. Let w̄ = r̄[x.p, y.q]εis̄ be a finite sequence of E-terms,
we define a new reduction relation � by: w̄ � r̄[x.(p εi), y.(q εi)]s̄, where r̄
and s̄ are possibly empty. As usual �∗ denotes the reflexive and transitive
closure of �.

2. Let R be a simple term in the form (λx.u v) (resp (〈u1, u2〉 πi),(µa.u θ),
(ωiu [x1.v1, x2.v2]), x, a), we denote by r its possible reductom u[x := v]
(resp ui, µa.u[a :=∗ θ], vi[xi := u]).

Let also ε, ε′ be two E-terms, we define ε .∗st ε′ a standard sequence reduc-
tions from ε to ε′ by induction on the ordered lexicographic pair κ(ε.∗st ε

′) =
(l, c) where l stands for the length of the reduction ε .∗st ε′ and c the com-
plexity of ε. We use simultaneously the following abbreviations:

w̄ = ε1...εn .∗st w̄′ = ε′1...ε
′
n means that εi .∗st ε′i for each 1 ≤ i ≤ n.

34 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

(Cλ) If ε = (λx.u w̄), then ε′ = (λx.u′ w̄′) with u .∗st u′ and w̄ .∗st w̄′.

(Cµ) If ε = (µa.u w̄), then ε′ = (µa.u′ w̄′) with u .∗st u′ and w̄ .∗st w̄′.

(Cπ) If ε = (〈u1, u2〉 w̄), then (ε′ = 〈u′1, u′2〉 w̄′) with ui .∗st u′i and w̄ .∗st w̄′.

(Cω) If ε = (ωiu w̄), then ε′ = (ωi u′w̄′) with u .∗st u′ and w̄ .∗st w̄′.

(Vλ) If ε = (x w̄), then ε′ = (x w̄′) with w̄ .∗st w̄′.

(Vµ) If ε = (a u), then ε′ = (a u′) with u .∗st u′ .

• If ε = (R w̄), then:

(⇒) Either ε . (r w̄) .∗st ε′,

(�δ) Either ε . (R w̄′) .∗st ε′ with w̄ � w̄′.

(�µ) Either ε . (µa.u w̄′) .∗st ε′ with θw̄ � w̄′, and this only if R =
(µa.u θ).

(�ω) Or ε . (ωiu w̄′) .∗st ε′ with [x1.v1, x2.v2]w̄ � w̄′, and this only if
R = (ωiu [x1.v1, x2.v2]).

• If ε = πi, then ε′ = πi.

• If ε = [x1.u1, x2.u2], then ε′ = [x1.u
′
1, x2.u

′
2] with ui .∗st u′i.

Remark 2.4.1 1. In the rules Cλ, ..., Cω the sequence w̄ is possibly empty
and this corresponds to the cases where ε is not a simpe term.

2. Intuitively the standard reduction contract redexes from the external to the
internal and from left to right. For λ-calculus, a standard reduction from
the term (λx.u v)w1...wn either start by reducing the head redex (λx.u v),
else this one will never be converted after performing u, v or the arguments
wi, i.e. from external to internal. There is also another condition, standard
reduction from the term ((x u) v) has to reduce firstly in u and then in v,
in this given order from left to right, this last notion is not captured by the
definition above since we consider that reduction in u and v are independent
of each other.

3. Given a λµ∧∨-term of the form (R w̄) standard reduction strategies can
start with various permutations using the rule �δ (�µ, �ω according the
form of R) until either we obtain a nice sequence and then reducing the
possible head redex by the rule ⇒ or starts performing the subterms of the
arguments using the rules Vλ, Vµ or the rules Cλ, ..., Cω.

Lemma 2.4.1 Assume that ε .∗st ε′.

1. If v .∗st v′, then ε[x := v] .∗st ε′[x := v′].

2. If θ .∗st θ′, then ε[a :=∗ θ] .∗st ε′[a :=∗ θ′].

2.4. STANDARDIZATION THEOREM 35

Proof. Only the second assertion will be treated (a similar proof for the
first). By induction on κ(ε .∗st ε′). We give just the case where the substitution
intervenes. If ε = (a u), then ε′ = (a u′) where u .∗st u′, thus, ε[a :=∗ θ] =
(a (u[a :=∗ θ] θ)) and ε′[a :=∗ θ′] = (a (u′[a :=∗ θ′] θ′)). By the induction
hypothesis, we have u[a :=∗ θ] .∗st u′[a :=∗ θ′], then by definition, (a (u[a :=∗

θ] θ)) .∗st (a (u′[a :=∗ θ′] θ′)). �

Theorem 2.4.1 (Standardization theorem) If ε .∗ ε′, then ε .∗st ε′.

Proof. By induction on the length of the reduction ε .∗ ε′ it suffices to prove
the following lemma. �

Lemma 2.4.2 If ε .∗st ε′ . ε′′, then ε .∗st ε′′.

Proof. By induction on κ(ε .∗st ε′), we examine how ε .∗st ε′ following the
different forms of ε.

– The cases where ε is not a simple term are a direct consequences of the
induction hypothesis (decreasing of c).

– If ε is a simple term, we will examine some cases, the others are similar or
more simpler.

(Cλ) Let ε = (λx.u w̄) .∗st (λx.u′ w̄′) = ε′ . ε′′, with u .∗st u′ and w̄ .∗st w̄′

(here of course w̄ is not empty since ε is simple). We distinguish three
cases:

- If ε′′ = (λx.u′′ w̄′) (resp (λx.u′ w̄′′)), where u′ . u′′ (resp w̄′ . w̄′′)
then the induction hypothesis concludes.

- If ε′′ = (u′[x := v′] w′
2...w

′
n), then w̄ = vw2...wn where v .∗st v′,

wi .∗st w′
i and w̄′ = v′w′

2...w
′
n. Therefore by the lemma 2.4.1,

u[x := v] .∗st u′[x := v′], thus (u[x := v] w2...wn) .∗st (u′[x :=
v′] w′

2...w
′
n). Finally by the rule (⇒), we have ε . (u[x := v] w2...wn)

.∗st (u′[x := v′] w′
2...w

′
n) is a standard sequence of reductions.

- The last case is ε′′ = (λx.u′ w̄′′) where w̄′ � w̄′′. Therefore w̄ =
w1...[y.p, z.q]wi...wn .∗st w′

1...[y.p′, z.q′]w′
i...w

′
n and then w̄′′ =

w′
1...[y.(p′w′

i), z.(q
′w′

i)]...w
′
n. We have [y.(p wi), z.(q wi)] .

∗
st

[y.(p′w′
i), z.(q

′w′
i)], hence the rule (�δ) allows to conclude:

ε . (λx.u w1...[y.(p wi), z.(q wi)]...wn) .∗st
(λx.u′w′

1...[y.(p′w′
i), z.(q

′w′
i)]...w

′
n) = ε′′.

(Cµ) , (Cπ) and (Cω) are similar to the previous case.

(Vλ) Let ε = (x w̄), then ε = (x w̄) .∗st ε′ = (x w̄′) . (x w̄′′) = ε′′ then,

- Either w̄ = w1...wi...wn .∗st w′
1...w

′
i...w

′
n = w̄′ . w′

1...w
′′
i ...w

′
n = w̄′′,

hence by the induction hypothesis wi .∗st w′′
i . Therefore, we have

w̄ .∗st w̄′′ and ε = (x w̄) .∗st (x w̄′′) = ε′′.

36 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

- Or w̄ = w1...[y.p, z.q]wi...wn .∗st w′
1...[y.p′, z.q′]w′

i...w
′
n = w̄′ �

w′
1...[y.(p′w′

i), z.(q
′w′

i)]...w
′
n = w̄′′. We have [y.(p wi), z.(q wi)] .∗st

[y.(p′w′
i), z.(q

′w′
i)], therefore by the rule (�δ), (x w̄) .

(x w1...[y.(p wi), z.(q wi)]...wn) .∗st (x w′
1...[y.(p′w′

i), z.(q
′w′

i)]...w
′
n) =

(x w̄′′) is a standard sequence of reductions.

(Vµ) Is a direct consequence of the induction hypothesis (decreasing of c).

(⇒) , (� δ), (�µ) and (�ω) are direct consequences of the application of
the induction hypothesis (decreasing of l).

�

Remark 2.4.2 1. In [13], F. Joachimski and R. Matthes presented the ΛJ-
calculus which is an extension of the λ-calculus by a generalized application
that gives rise to permutative reductions, the resulting rewriting system is
not orthogonal as the λµ∧∨-calculus. The definition of the standardization
established here produced exactly the same treatment of the logical and the
classical reductions (.β, .πi

, .D and .µ) like that of β-reduction in [13], this
means that to avoid difficulties relative to the µ-reduction, we need to treat
it similarly to the β-reduction. The ΛJ-calculus has served us as a model
for studying our λµ∧∨-calculus. In fact, concerning the standardization, the
restriction of the λµ∧∨-calculus to the λµ-one can serve as a model for the
study of the rewriting system with permutative and structural reductions,
as well as the ΛJ-calculus serves as a minimal model for the study of term
rewriting systems with permutation.

2. In the definition 2.4.1, we can be more restrictive, by this we mean that, we
have also a standardization theorem when replacing the rules �δ and �ω

by:

(�λ) ε = ((λx.u v) w̄) . ((λx.u v) w̄′) .∗st ((λx.u′ v′) w̄′′′) = ε′ with u .∗st u′,
v .∗st v′ and w̄ � w̄′ �∗ w̄′′ .∗st w̄′′′.

(�π) ε = ((〈u1, u2〉 πi) w̄) . ((〈u1, u2〉 πi) w̄′) .∗st ((〈u′1, u′2〉 πi) w̄′′′) = ε′ with
ui .∗st u′i and w̄ � w̄′ �∗ w̄′′ .∗st w̄′′′.

(�D) ε = ((ωiu [x1.v1, x2.v2]) w̄) . ((ωiu w̄′) .∗st (ωiu
′ w̄′′′) = ε′ with u .∗st u′

and [x1.v1, x2.v2]w̄ � w̄′ �∗ w̄′′ .∗st w̄′′′.

This can be explained by the fact that:

• For the rules �λ and �π there are no interactions between v, πi and
w̄ via permutative reductions.

• For the rule �D even there are interactions between [x1.v1, x2.v2] and
w̄ via permutative reductions, after the .D-reduction we will always get
(vi w̄)[xi := u] = (vi[xi := u] w̄) since xi is not free in w̄.

2.5. HEAD AND LEFTMOST REDUCTIONS 37

Contrarly for example to the case ε = ((µa.u [x.p, y.q]) [r.k, s.l]θ) in which
there are more complications: suppose that we give the priority to the clas-
sical redex, i.e. if it is not converted in the beginning then it will be never
performed, thus the lemma 2.4.2 does not hold for this sequence of reduc-
tions: ε . ((µa.u [x.p, y.q]) [r.(k θ), s.(l θ)]) .
(µa.u [x.(p [r.(k θ), s.(l θ)]), y.(q [r.(k θ), s.(l θ)])]) .∗st (µa.u [x.P ′, y.Q′]) = ε′

. µa.u[a :=∗ [x.P ′, y.Q′]]] = ε′′, where (p [r.(k θ), s.(l θ)]) .∗st P ′ and
(q [r.(k θ), s.(l θ)]) .∗st Q′, for the simple reason which is: we do not know how
these two standard sequence reductions are made (p [r.(k θ), s.(l θ)]) .∗st P ′

and (q [r.(k θ), s.(l θ)]) .∗st Q′ (it depends on p and q). To resolve this prob-
leme we have to consider the rule �µ.

2.5 Head and leftmost reductions

Definition 2.5.1 1. A one step head reduction of a simple term t consists
in reducing a head redex if any. We denote t .hd t′ if t is reduced to t′ by a
head reduction.

2. A one step head reduction of a term t = C[t1, ..., tn] corresponds to a one
step head reduction of one of the simple terms ti (1 ≤ i ≤ n).

3. We denote by .∗hd the reflexive and transitive closure of .hd.

4. A simple head normal form is a simple term in the form (x w̄) or (a u),
the elements of the sequence w̄ (resp u) are called the arguments of the head
variable x (resp a). The sequences w̄ is a nice one, and these are the only
cases where we cannot reduce in the head, because there is no head since the
arguments of the sequences cannot interacte between them via commutative
reductions.

5. A head normal form is a term in the form C[t1, ..., tn] where all the ti are
simple head normal forms.

Remark 2.5.1 Observe that there is no unicity of ”the” head normal form.
Take the simple term t = ((x [y.u, z.v]) [r.p, s.q]ε), then
t .∗hd (x [y.((u [r.p, s.q]) ε), z.((v [r.p, s.q]) ε)]) = t1,
t .∗hd (x [y.(u [r.(p ε), s.(q ε)]), z.(v [r.(p ε), s.(q ε)])]) = t2, and both of t1 and t2 are
head normal froms. For this reason we will define an extra head reduction, which
will be exactly the same on all the terms except of course on terms in the forms
(x w̄) and ((µa.u θ) w̄).

Definition 2.5.2 1. The outer most redex of a simple term of the form
((µa.u θ) w̄) (resp (x w̄)) is the classical redex (µa.u θ) (resp the possible
permutative (x R̄[y.p, z.q])εS̄, where w̄ = R̄[y.p, z.q]εS̄ and εS̄ is a nice
sequence).

38 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

2. Let t be a term,

• If t is a simple one, then

(a) If t is of the form (x w̄) or ((µa.u θ) w̄), then the one step extra
head reduction of t consists in reducing the outer most redex.

(b) Else it consists to the head reduction of t.

(c) We denote t .ehd t′ if t is reduced to t′ by the extra head reduction

• Else t = C[t1, ..., tn], then a one step extra head reduction of t, corre-
sponds to the one step extra head reduction of one of the simple terms
ti.

3. We denote by .∗ehd the reflexive and transitive closure of .ehd.

4. A simple extra head normal form is a simple term of the form (x w̄) or (a u),
where w̄ is nice and if the last E-term wn is in the form [i.(u s̄), j.(v s̄)], then
s̄ is a nice sequence (it can be empty also).

5. An extra head normal form is a term in the form C[t1, ..., tn], where all the
ti are simple extra head normal forms.

Proposition 2.5.1 (The diamond property of the extra head reduction)
Let t, u and v be terms such that t .ehd u and t .ehd v, where u 6= v, then there
exists w such that: u .ehd w and v .ehd w.

Proof. We can suppose that t = C[t1, .., ti, ..., tj, ..., tn], ti .ehd C′
i[t

i
1, ..., t

i
p],

tj .ehd C′
j[t

j
1, ..., t

j
q], u = C1[t1, ..., t

i
1, ..., t

i
p, ..., tj, ..., tn] and

v = C2[t1, .., ti, ..., t
j
1, ..., t

j
q, ..., tn] where C1 = C[∗i := C′

i] and C2 = C[∗j := C′
j].

Therefore it suffices to reduce in u the simple term tj and reduce in v the simple
term ti to construct the commun redectum w =
C′[t1, ..., t

i
1, ..., t

i
p, ..., t

j
1, ..., t

j
q, ..., tn], where C′ = C[∗i := C′

i, ∗j := C′
j]. �

Definition 2.5.3 Let t and t′ be two terms such that t .∗ehd t′, then |t, t′| denotes
the length of an extra head reduction which leads t to t′.

Proposition 2.5.2 (Confluence of the extra head reduction) Let t, t1 and
t2 be terms such that t .∗ehd t1 and t .∗ehd t2, then there exists t3 such that t1 .∗ehd t3
and t2 .∗ehd t3 and |t1, t3| = |t, t2|, and |t2, t3| = |t, t1|.

Proof. A direct consequence of the diamond property. �

One of the important consequences of confluence is the uniqueness of the
normal form.

Corollary 2.5.1 If an extra head reduction of a term t finishes by a term τ ,
then τ is the unique extra head normal form of t.

2.5. HEAD AND LEFTMOST REDUCTIONS 39

Proof. Directly from the previous proposition. �

Definition 2.5.4 Let u1, ..., un be terms and ε, ε1, ..., εm E-terms, then
ε[(xi := ui)1≤i≤n; (aj :=∗ εj)1≤j≤m] is obtained from the E-term ε by replacing
inductively each xi by ui and each subterm in the form (aj u) in ε by (aj (u εj)).

The followings lemmas show that, to carry out an extra head reduction of tσ
it is equivalent (the same result and the same number of steps) to carry out a
certain number of steps of an extra head reduction of t, which gives t′, then to
make an extra head reduction of t′σ.

Lemma 2.5.1 Let t be a simple term, t′ a term and σ a substitution. If t .ehd t′,
then tσ .ehd t′σ.

Proof. Easy. �

Lemma 2.5.2 Let t, t′ be terms and σ a substitution. If t.∗ehd t′, then, tσ .∗ehd t′σ
and |t, t′| = |tσ, t′σ|.

Proof. By induction on the length of the reduction t .∗ehd t′ and we use the
previous lemma. �

Definition 2.5.5 On the set of terms we define an equivalence relation 'ehd by
t 'ehd t′ iff there exists t′′ such that, t .∗ehd t′′ and t′ .∗ehd t′′.

Corollary 2.5.2 Let t, t′ be terms and σ a substitution. If t 'ehd t′, then,
tσ 'ehd t′σ.

Proof. Directly from the previous lemma. �

Lemma 2.5.3 Let t be a simple term, t′ a term and ε an E-term, such that
t .ehd t′. Then there exists a term τ such that (t ε) .∗ehd τ , (t′ ε) .∗ehd τ and
|(t ε), τ | = |t, t′|+ |(t′ ε), τ |.

Proof. Cases are examinated following the form of the simple term t, here
|t, t′| = 1. In what follows S̄ is a nice sequence of E-terms and T̄ a good one.

– If t = (x w̄) = (((x R̄)[y.p, z.q])wiS̄) .ehd ((x R̄)[y.(p wi), z.(q wi)]S̄) = t′,

- If S̄ is a good sequence, then (t ε) .ehd (t′ ε). We just take τ = (t′ ε),
so we have |(t ε), τ | = |t, t′|+ |(t′ ε), τ |.

- If S̄ is not a good sequence, then S̄ = T̄ [r.K, s.L]. This implies that
(t ε) .ehd ((x R̄)[y.p, z.q]wiT̄ [r.(K ε), s.(L ε)]) .ehd

((x R̄)[y.(p wi), z.(q wi)]T̄ [r.(K ε), s.(L ε)]), hence take
τ = ((x R̄)[y.(p wi), z.(q wi)]T̄ [r.(K ε), s.(L ε)])
and check that (t′ ε) .ehd τ . This provides also that |(t ε), τ | = |t, t′|+
|(t′ ε), τ |.

40 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

– The others are more simpler.

�

Lemma 2.5.4 Let t, t′ and ε be E-terms, such that t .∗ehd t′. Then there exists
a term τ such that (t ε) .∗ehd τ , (t′ ε) .∗ehd τ and |(t ε), τ | = |t, t′|+ |(t′ ε), τ |.

Proof. By induction on the length of the reduction t .∗ehd t′, it suffices to
examine the case where |t, t′| = 1. Therefore we process by induction on C, where
t = C[t1, ..., ti, ..., tn].

- If C = ∗i, then t is a simple term and the result is by the previous lemma.

- If C = µa.C1, then t = µa.C1[t1, ..., ti, ..., tn] .ehd µa.C′
1[t1, ..., t

i
1, ..., t

i
p, ..., tn]

= t′, where ti .ehd Ci[t
i
1, ..., t

i
p] = t′i and C′

1 = C1[∗i := Ci]. By the lemma
2.5.1, ti[a :=∗ ε] .ehd t′i[a :=∗ ε] = Ci[t

i
1[a :=∗ ε], ..., tip[a :=∗ ε]], then

(t ε) = (µa.C1[t1, ..., ti, ..., tn] ε) .ehd

µa.C1[t1[a :=∗ ε], ..., ti[a :=∗ ε], ..., tn[a :=∗ ε]], and (t′ ε) .ehd

µa.C′
1[t1[a :=∗ ε], ..., ti1[a :=∗ ε], ..., tip[a :=∗ ε], ..., tn[a :=∗ ε]]. Hence τ =

µa.C′
1[t1[a :=∗ ε], ..., ti1[a :=∗ ε], ..., tip[a :=∗ ε], ..., tn[a :=∗ ε]], and we check

easily that |(t ε), τ | = |t, t′|+ |(t′ ε), τ |.

- The other cases are similar to the previous.

�
This lemma shows that, to carry out the extra head reduction of (t w̄) it is

equivalent (the same result and the same number of steps) to carry out a certain
number of steps of an extra head reduction of t, which gives t′, then, to make the
extra head reduction of (t′ w̄).

Lemma 2.5.5 Let t, t′ be two terms such that t .∗ehd t′, and w̄ = w1...wn a
sequence of E-terms. Then there exists a term τ such that (t w̄) .∗ehd τ , (t′ w̄) .∗ehd τ
and |(t w̄), τ | = |t, t′|+ |(t′ w̄), τ |.

Proof. By induction on n where w̄ = w1...wn−1wn. It is trivial when
n = 0 (take τ = t′). Suppose the result true until (n − 1), this implies that
there exists a term τ0 such that (t w1...wn−1) .∗ehd τ0, (t′ w1...wn−1) .∗ehd τ0 and
|(t w1...wn−1), τ0| = |t, t′|+ |(t′ w1...wn−1), τ0|. By the previous lemma, there exist
τ1 and τ2 such that:

- (t w̄) .∗ehd τ1, (τ0 wn) .∗ehd τ1 and |(t w̄), τ1| = |(t w1...wn−1), τ0|+ |(τ0 wn), τ1|.

- (t′ w̄) .∗ehd τ2, (τ0 wn) .∗ehd τ2 and |(t′ w̄), τ2| = |(t′w1...wn−1), τ0|+|(τ0 wn), τ2|.

2.5. HEAD AND LEFTMOST REDUCTIONS 41

Since (τ0 wn) .∗ehd τ1 and (τ0 wn) .∗ehd τ2 and, by the proposition 2.5.1, there
exists a term τ3 such that τ1 .∗ehd τ3, τ2 .∗ehd τ3 and |τ0 wn, τ1|+|τ1, τ3| = |τ0 wn, τ2|+
|τ2, τ3|.

Therefore |(t w̄), τ3| = |(t w̄), τ1|+ |τ1, τ3|
= |(t w1...wn−1), τ0|+ |(τ0 wn), τ1|+ |τ1, τ3|
= |(t w1...wn−1), τ0|+ |(τ0 wn), τ2|+ |τ2, τ3|
= |t, t′|+ |(t′ w1...wn−1), τ0|+ |(τ0 wn), τ2|+ |τ2, τ3|
= |t, t′|+ |(t′ w̄), τ2|+ |τ2, τ3| = |t, t′|+ |(t′ w̄), τ3|. �

Corollary 2.5.3 Let t, t′ be two terms such that t .∗ehd t′, and w̄ = w1...wn a
sequence of E-terms. If t 'ehd t′, then (t w̄) 'ehd (t′ w̄).

Proof. By the previous lemma. �

Definition 2.5.6 A leftmost reduction of a term t consists to apply a head re-
duction on t until its head normal form τ = C[τ1, ..., τn] (if it exists) and reiterate
it on the arguments of τi. We denote t.∗l t′ if t is reduced to t′ by a leftmost reduc-
tion. When an argument of a head variable is an E-term in the form [x.u, y.v],
the reduction consists simply to reduce in u and v.

The following theorem says that every sequence of leftmost reductions is a
standard one.

Theorem 2.5.1 If t .∗l t′, then this sequence of reductions is a standard one.

Proof. By induction on κ(t .∗l t′).

- The cases where t is not a simple term are a direct consequences of the
induction hypothesis:
If t = λx.u, then t′ = λx.u′, where u .∗l u′. Therefore, by the induction
hypothesis (decreasing of the complexity c), u .∗l u′ is a standard sequence
reductions, thus λx.u .∗l λx.u′ is a standard one too.

- The cases where t is a simple term:
If t = (µa.u ε) w̄, then either t .hd (µa.u[a :=∗ ε] w̄) .∗l t′ or t .hd ((µa.u ε) r̄) .∗l
t′ where εw̄ � εr̄. Therefore, by the induction hypothesis (decreasing of
the length l), (µa.u[a :=∗ ε] w̄) .∗l t′ and ((µa.u ε) r̄) .∗l t′ are two standard
sequence reductions, thus, by definition, both of t .hd (µa.u[a :=∗ ε] w̄) .∗l t′

and t .hd ((µa.u ε) r̄) .∗l t′ are standard sequence reductions also.

- The other cases are similar to the previous.

�

Remark 2.5.2 This theorem gives another way to define a leftmost reduction
similarly to the definition of the standard reduction, this definition can be easily
proven to be ”equivalent” to the one given above.

42 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

Definition 2.5.7 Let ε, ε′ be two E-terms, w̄ and w̄′ two finite sequences of
E-terms. We define simultaneously ε.∗l ε′ and w̄ .∗l w̄′ by induction on the ordered
lexicographic pair κ(ε.∗l ε

′) = (l, c) (resp κ(w̄.∗l w̄
′)) where l stands for the length

of the reduction ε .∗l ε′ (resp (w̄ .∗l w̄′)) and c the complexity of ε (resp w̄).

1. ε .∗l ε′

• If ε = λx.u, then ε′ = λx.u′ with u .∗l u′.

• If ε = µa.u, then ε′ = µa.u′ with u .∗l u′.

• If ε = 〈u, v〉, then ε′ = 〈u′, v′〉 with u .∗l u′ and v .∗l v′.

• If ε = ωiu, then ε′ = ωiu
′ with u .∗l u′.

• If ε = (a u), then ε′ = (a u′) with u .∗l u′ .

• If ε = (x w̄), then ε′ = (x w̄′) with w̄ .∗l w̄′.

• If ε = ((λx.u v) w̄), then ε .l (u[x := v] w̄) .∗l ε′.

• If ε = ((µa.u θ) w̄), then

– Either ε .l (µa.u[a :=∗ θ] w̄) .∗l ε′.

– Or ε .l (µa.u ε) s̄) .∗l ε′ with θw̄ � εs̄.

• If ε = ((〈u1, u2〉 πi) w̄), then ε .l (ui w̄) .∗l ε′,

• If ε = ((ωiu [x1.v1, x2.v2]) w̄), then ε .l (vi[xi := u] w̄) .∗l ε′.

• If ε = πi, then ε′ = πi.

• If ε = [x1.u1, x2.u2], then ε′ = [x1.u
′
1, x2.u

′
2] with ui .∗l u′i.

2. w̄ .∗l w̄′

• If w̄ is not nice, then w̄ � s̄ .∗l w̄′.

• Else w̄ = ε1...εn, then w̄′ = ε′1...ε
′
n with εi .∗l εi for each 1 ≤ i ≤ n.

2.6 Finiteness of developments

2.6.1 The marked terms

For the purpose of this section, which is the finiteness developments theorem, we
introduce a coloured version of the λµ∧∨-calculus.

Definition 2.6.1 1. We extend the syntax of the λµ∧∨-calculus by adding
coloured λ, µ, 〈 , 〉, ωi and [. , .]. The sets T and E of coloured (or
marked) terms are defined by the following grammars:

T := T | (λX .T T) | (〈T , T 〉 πi) | (ωiT [X .T ,X .T]) |
(T E) | µa.T

2.6. FINITENESS OF DEVELOPMENTS 43

E := E | T | [X .T ,X .T]

2. The reduction rule I of E consists in the union of the following reduction
rules. The meaning of these new reductions is to capture the definition of
the finiteness development, where we reduce only redexes at the beginning
or only their residus (which will be exactly the marked redexes).

• (λx.t u) Iβ t[x := u]

• (〈t1, t2〉 πi) Iπi
ti

• (ωit [x1.u1, x2.u2]) ID ui[xi := t]

• ((t [x1.u1, x2.u2]) ε) Iδ (t [x1.(u1 ε), x2.(u2 ε)])

• (µa.t ε) Iµ µa.t[a :=∗ ε].

We denote by I∗ the reflexive and transitive closure of I.

3. Let t be a term and r a redex of t, we define r̂ the coloured redex obtained
by colouring r as follows:

• If r = (λx.u v), then r̂ = (λx.u v)

• If r = (〈t1, t2〉 πi), then r̂ = (〈t1, t2〉 πi)

• If r = (ωiu [x1.u1, x2.u2]), then r̂ = (ωiu [x1.u1, x2.u2])

• If r = ((u [x1.u1, x2.u2]) ε), then r̂ = ((u [x1.u1, x2.u2]) ε)

• If r = (µa.t ε), then r̂ = (µa.t ε)

We denote Red(t) the set of all the redexes of t. Let R be a subset of Red(t),
we define t̂R the marked term obtained from t by colouring each redex of t
which belongs to R. We said that t̂R is the corresponding marked term to t
according to R.

4. Let ε ∈ E, we define ε̌ by induction on ε:

• If ε ∈ E, then ε̌ = ε

• If ε = (λx.u v), then ε̌ = (λx.ǔ v̌)

• If ε = (〈t1, t2〉 πi), then ε̌ = (〈ť1, ť2〉 πi)

• If ε = (ωit [x.u, y.v]), then ε̌ = (ωiť [x.ǔ, y.v̌])

• If ε = (t ε), then ε̌ = (ť ε̌)

• If ε = µa.u, then ε̌ = µa.ǔ

• If ε = [x.u, y.v], then ε̌ = [x.ǔ, y.v̌]

44 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

The operation ”̌ ” quite simply consists in projecting any marked term in
the set T , i.e. to consider any coloured term as any other term without
colors.

Example 2.6.1 Let t = ((µa.u [x.p, y.q]) ε), let also R, S, T , K and L be
subsets of Red(t) such that: R = {(µa.u [x.p, y.q])}, S = {t}, K ⊂ Red(p),
L ⊂ (Red(u) ∪Red(ε)) and T = {(µa.u [x.p, y.q]), t} then,

1. t̂R = ((µa.u [x.p, y.q]) ε)

2. t̂S = ((µa.u [x.p, y.q]) ε)

3. t̂K = ((µa.u [x.p̂K , y.q]) ε)

4. t̂L = ((µa.ûL [x.p, y.q]) ε̂L)

5. t̂T = ((µa.u [x.p, y.q]) ε)

Remark 2.6.1 1. Let t be a term and R ⊆ Red(t) it is clear that ˇ̂tR = t.

2. When there is only one given set R of redexes of a given term t, we use the
abusive notation t̂ to denote the corresponding marked term to t according
to R.

3. Observe that ”terms” in the forms: λx.t, 〈t1, t2〉 and ωit are not elements
of E. Colours can only occur as colours of redexes except in terms of the
form µa.t and the form (t [x.u, y.v]). It follows that a I-normal form never
contains any colours except µ or [. , .].

4. It is also clear that any term is a I-normal marked term (since I consists
only in reducing marked redexes).

The following lemma shows that the set of marked terms is closed under β
and µ-substitutions.

Lemma 2.6.1 Let t, u and θ be E-terms, then, t[x := u] and t[a :=∗ θ] are
E-terms.

Proof. By induction on t. �

The next lemma shows that the set E is closed under the I reduction.

Lemma 2.6.2 If t ∈ E and t I∗ t′, then t′ ∈ E.

Proof. By induction on the marked term t using the lemma 2.6.1. �

Lemma 2.6.3 Let t, ε and θ be E-terms such that: t I t′, ε I ε′ and θ I∗ θ′,
then ε[x := t] I∗ ε[x := t′] and ε[a :=∗ θ] I∗ ε[a :=∗ θ′].

Proof. Easy. �

2.6. FINITENESS OF DEVELOPMENTS 45

2.6.2 Finiteness developments theorem

Definition 2.6.2 Let t be a term and R a subset of Red(t).

1. A sequence of reductions t̂ = t0 I t1 I t2 I ... is called R-development of
t (it is clear that the reduced redexes are only marked redexes). It is denoted
by t̂ I∗ t′ if it finishes with the marked term t′. We denote it also by t .∗R ť′

(t = ť0 .R ť1 .R ť2R ť′).

2. Let t be a term, t is said to be R-strongly normalizable iff there are no
infinite R-developments of t, i.e. all the R-developments are finites.

Remark 2.6.2 If t is a term and R a set of some redexes of t, then note that .R

and I reduction are the same, any infinite sequence of I reductions starting from
t̂ corresponds to an infinite sequence of .∗R reductions starting from t. Thus one
can be able to identify them, this fact will be implicitly used in the next paragraph,
where .R and I will be confused.

Lemma 2.6.4 Let t and t′ be terms, ε, ε′, θ and θ′ E-terms. Let also R be a
set of redexes of t, ε and θ such that: ε .∗R ε′.

1. If t .∗R t′, then, ε[x := t] .∗R ε′[x := t′].

2. If θ .∗R θ′, then, ε[a :=∗ θ] .∗R ε′[a :=∗ θ′].

Proof. By induction on ε. �

Definition 2.6.3 Let w̄ = ε1 ...εm be a finite sequence of E-terms.

1. The length of w̄ is defined as follows: lg(w̄) = m.

2. A semi-permutative redex of w̄ is any initial segment in the form (r̄[x.p, y.q])εi,
where (2 ≤ i ≤ m) and r̄ is possibly empty.

3. A set of redexes of w̄ is the union of sets of redexes of each εi and any
possible semi-permutative redex of w̄.

Lemma 2.6.5 Let t be a term, ū = u1 ...un a finite sequence of terms and
ε̄ = ε1 ...εm a finite sequence of E-terms. Let also σ = [(xi := ui)1≤i≤n; (aj :=∗

εj)1≤j≤m] and R be a set of redexes of t, ū and ε̄. If t, ū and ε̄ are R-strongly
normalizables, then, tσ is R-strongly normalizable.

Proof. A similar proof to the one of the next theorem. �

Theorem 2.6.1 Let t be a term and R ⊆ Red(t), then t is R-strongly normal-
izable.

46 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

Proof. First, let t = (u w̄) as in the corollary 2.3.1. We prove this by induc-
tion on the ordered lexicographic pair (lg(w̄), c) where c denotes the complexity
of t (for the simplicity and the clearness of the proof, we prefer to do not use
coloured terms, we think that now everyone understand the idea behind marking
terms).

– The cases where t is not simple are direct consequences of induction hypthe-
sis (decreasing of c).

– The case t = (x w̄)

- If w̄ = w1...wm is nice, then by the induction hypothesis, each wi is
R-strongly normalizable. Therefore t too.

- Else t = (x w1...wj−2)[y.p, z.q]wj...wm. Suppose that there exists a
sequence of infinite R-reductions starting from t, then by induction
hypothesis, this sequence does not start from any wi. Therefore t =
(x w1...wj−2)[y.p, z.q]wj...wm .∗R (x w′

1...w
′
j−2)[y.p′, z.q′]w′

j...w
′
m .R

(x w′
1...w

′
j−2)[y.(p′w′

j), z.(q
′w′

j)]...w
′
m = t′j .∗R By the standard-

ization theorem t .∗st t′j, this standard reduction is in the form t =
(x w1...wj−2)[y.p, z.q]wj...wm .R (x w1...wj−2)[y.(p wj), z.(q wj)]...wm

.∗R (x w′
1...w

′
j−2)[y.(p′w′

j), z.(q
′w′

j)]...w
′
m. This means that

(x w1...wj−2)[y.(p wj), z.(q wj)]...wm .∗R ..., since we can not reduce the
possible created redexes (p wj) or (q wj), this gives a contradiction with
the induction hypothesis (decreasing of lg(w̄), from m to m− 1).

– The case t = (µa.u ε)w̄, this gives by the induction hypothesis and the
standardization theorem two possibilities to the form of the sequence of the
R-infinite reductions:

- t = (µa.u ε) w1...wm .R (µa.u[a :=∗ ε] w1) w2...wm .∗R (µa.u′[a :=∗

ε′] w′
1) w′

2...w
′
m .∗R This means that (µa.u[a :=∗ ε] w1) w2...wm .∗R.

By the lemma 2.6.5 u[a :=∗ ε] is R-strongly normalizable, therefore
this gives a condradiction with the induction hypothesis (decreasing
of lg(w̄), from m to m− 1).

- t = (µa.u ε) w1...[x.p, y.q]wj...wm .R(µa.u ε) w1...[x.(p wj), y.(q wj)]...wm

.∗R (µa.u′ ε′) w′
1...[x.(p′w′

j), y.(q′w′
j)]...w

′
m .∗R This means that

(µa.u ε) w1...[x.(p wj), y.(q wj)]...wm .∗R By a similar argument as
the previous this gives a contradiction.

�

Theorem 2.6.2 (Local confluence of .R) Let t, t1, t2 be terms and R ⊆ Red(t),
such that t .R t1 and t .R t2, then there exists t3 such that t1 .∗R t3 and t2 .∗R t3.

2.6. FINITENESS OF DEVELOPMENTS 47

Proof. By induction on the complexity of t. Let us check the following
cases, the other cases are simple consequences of the induction hypothesis. In
this proof we only marke the redexes which will be reduced.

– t = (x w1)w2...[r.u, s.v][y.p, z.q]wj...wm,
t1 = (x w1)w2...[r.(u [y.p, z.q]), s.(v [y.p, z.q])]wj...wm

and t2 = (x w1)w2...[r.u, s.v][y.(p wj), z.(q wj)]...wm. Therefore check that
t3 = (x w1)w2...[r.(u [y.(p wj), z.(q wj)]), s.(v [y.(p wj), z.(q wj)])]...wm

is the commun marked redectum obtained of course by R-reductions, thus
ť3 concludes.

– t = ((µa.u [x.r, y.s]) εw̄).

- If t1 = ((µa.u′ [x.r, y.s]) εw̄) and t2 = (µa.u [a :=∗ [x.r, y.s]] εw̄), then,
by the lemma 2.6.3, we take t3 = (µa.u′ [a :=∗ [x.r, y.s]] εw̄).

- If t1 = ((µa.u′ [x.r, y.s]) εw̄) and t2 = ((µa.u [x.(r ε), y.(s ε)]) w̄), then
we take t3 = ((µa.u′ [x.(r ε), y.(s ε)]) w̄).

- If t1 = (µa.u[a :=∗ [x.r, y.s]] εw̄) and t2 = ((µa.u [x.(r ε), y.(s ε)]) w̄),
then, both of the commutative and the classical redexes are marked re-
dexes in t̂ = ((µa.u [x.r, y.s]) εw̄), hence t̂1 = (µa.u[a :=∗ [x.r, y.s]] εw̄)
.R (µa.u[a :=∗ [x.r, y.s] ε] w̄) .R (µa.u[a :=∗ [x.(r ε), y.(s ε)]]w̄) = t3,
and t2 = ((µa.u [x.(r ε), y.(s ε)]) w̄) .R (µa.u[a :=∗ [x.(r ε), y.(s ε)]] w̄)
= t3.
It is obvious that ť3 = (µa.u[a :=∗ [x.(r ε), y.(s ε)]]w̄) is the commun
redectum.

�

Theorem 2.6.3 (Confluence of .R) Let t, t1, t2 be terms and R ⊆ Red(t),
such that t .∗R t1 and t .∗R t2, then there exists t3 such that t1 .∗R t3 and t1 .∗R t3.

Proof. This is now a direct consequence of the theorem 2.6.2 and Newman
lemma. �

Lemma 2.6.6 Let R be the reduction relation defined as follows: tR t′ iff t .R t′,
where R = Red(t). Then .∗ is the reflexive and transitive closure of R.

Proof. Let us denote by R∗ the reflexive and transitive closure of R. If
tR t′, then t .∗ t′ and R∗ ⊆ .∗. If t . t′, then tR t′ and .∗ ⊆ R∗. Therefore
.∗ = R∗. �

48 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

We are now in position to prove the main result of this chapter.

Theorem 2.6.4 (Confluence of .) Let t, t1, t2 be terms such that t .∗ t1 and
t .∗ t2, then there exists t3 such that t1 .∗ t3 and t1 .∗ t3

Proof. Directly from the previous lemma and theorem 2.6.3. �

One of the consequences of the standardization theorem is that the normal
form if it exists can be reached by the leftmost reduction.

Theorem 2.6.5 If t′ is the normal form of t, then t .∗l t′.

Proof. Since t .∗ t′, then there exists a standard reduction from t to t′, i.e.
t .∗st t′. We process by induction on κ(t .∗st t′). The cases where t is not a simple
term are direct consequences of the induction hypothesis (decreasing of c). Let
us examine the two following cases:

– t = (x w̄)

- If w̄ = w1...wn is nice, then t′ = (x w̄′) where w̄′ = w′
1...w

′
n and each

wi .∗ w′
i normal. Therefore the induction hypothesis concludes.

- Else t = ((x R̄[y.p.z.q])wiK̄) and the standard reduction is in the form:
t = ((x R̄)[y.p.z.q]wiK̄) . ((x R̄)[y.(p wi).z.(q wi)])K̄) .∗st t′. Therefore
by the induction hypothesis (decreasing of l), we have that
((x R̄)[y.(p wi).z.(q wi)])K̄) .∗l t′. Thus t = ((x R̄)[y.p.z.q]wiK̄) .l

((x R̄)[y.(p wi).z.(q wi)])K̄) .∗l t′.

- t = ((µa.u ε) w̄), then the standard reduction from t to the normal form t′

is in the following forms: Either t = ((µa.u ε) w̄) . ((µa.u ε) r̄) .∗st t′ or t =
((µa.u ε) w̄) . (µa.u[a :=∗ ε] w̄) .∗st t′. Therefore by the induction hypothesis
(decreasing of l) we have that ((µa.u ε) r̄) .∗l t′ and (µa.u[a :=∗ ε] w̄) .∗l t′,
hence t = ((µa.u ε) w̄) . ((µa.u ε) r̄) .∗l t′ and ((µa.u ε) w̄) .l (µa.u[a :=∗

ε] w̄) .∗l t′.

�

2.7 Krivine machine

The Krivine machine (KAM) (see [15]), is a simple and natural implementation
of the normal weak-head-reduction strategy for pures λ-terms. O. Laurent in
[17], gave an extension of the KAM to the λµ-calculus (see also [5] and [6]).

2.7. KRIVINE MACHINE 49

Lemma 2.7.1 (and definition)

1. A term t either has an extra weak head redex which is its head redex (or
its outer most redex) (if t is simple), or is in an extra weak head normal
form which is one of the following forms: A simple extra head normal form,
λx.u, µa.u, 〈u, v〉 or ωiu.

2. The extra weak head reduction of a term t consists in reducing its extra
weak head redex, it is denoted by .w. It is clear that any term which is not
simple is in extra weak head normal form.

Proof. Similar to the one of the lemma 2.3.3. �

Definition 2.7.1 We consider three areas in the memory: the environment, the
stack and the terms area reserved to the terms which will be performed.

1. An environment E is a partial function with a finite domain (denoted
Dom(E)) of λ and µ-variables such that:

• If x ∈ Dom(E), E(x) is a closure.

• If a ∈ Dom(E), E(a) is a stack.

2. A closure c is an ordered pair (ε, E), where ε is an E-term and E is an
environment. A nice closure is a closure (ε, E) such that ε is not in the
form [x.u, y.v].

3. A stack Π is a finite sequence of closures, sometimes it can be denoted also
by c1 :: c2 :: ... :: cn. A stack Π is called a nice stack iff all its closures are
nice except the last (which can be nice or not nice).

4. A state is a triple (ε, E, Π), where ε is an E-term, E an environment and
Π a stack.

Remark 2.7.1 The intuition is that an environment defines the value of some
variables, a closure contains a term and the definitions necessary to its free vari-
ables (which are in the environment).

Definition 2.7.2 1. Ξ (resp Φ) denotes the empty environment (resp the
empty stack).

2. The stack c :: Π is the stack obtained by pushing the closure c on the top of
the stack Π.

3. Two environments are said to be compatibles if they do not associate two
differents values to the same variable.

50 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

4. We denote E ′ ⊆ E, if E and E ′ are two compatibles environments such
that Dom(E ′) ⊆ Dom(E).

5. Let Π = (ε1, E1) :: (ε2 E2) :: ... :: (εn, En), then, the state (ε, E, Π) is said to
be good iff :

• Fv(ε) ⊆ E,

• En ⊆ ... ⊆ E1 ⊆ E.

6. The transition rules of the machine describe how to pass from a state
(ε, E, Π) to an other one (ε′, E ′, Π′).

Push:
Terms Environments Stacks
(t ε) E Π

t E (ε, E) :: Π

Pop:
Terms Environments Stacks
λx.t E (v, E ′) :: Π

t E + (x = (v, E)) Π

Pop’:
Terms Environments Stacks
〈t1, t2〉 E (πi, E

′) :: Π
ti E Π

Pop”:
Terms Environments Stacks

ωit E ([x1.u1, x2.u2], E
′) :: Π

ui E + (xi = (t, E)) Π

Save:
Terms Environments Stacks
µa.t E Π

t E + (a = Π) Φ

Restore:
Terms Environments Stacks
(a t) E Φ

t E Π

where E(a) = Π.

Deref: If Π is nice,

Terms Environments Stacks
x E Π
t E Π

where E(x) = (t, E ′)

2.7. KRIVINE MACHINE 51

If no rule from the seven rules given above makes it possible to pass then,
either one uses the following rule:

Save up: If Π′ nice,

Terms Environments Stacks
x E Π :: ([y.v, z.w], E ′) :: Π′

x E Π :: ([y.(v w̄), z.(w w̄)], E ′)

where Π′ = (ε1, E1) :: (ε2 E2) :: ... :: (εn, En) and w̄ is the nice sequence
ε1 ε2 ...εn.

Or,

Stop: The machine stops.

Lemma 2.7.2 For any transition of the machine from a good state (t, E, Π) to
a state (t′, E ′, Π′) we have:

1. E ⊆ E ′.

2. If Π′ = (ε′1, E
′
1) :: (ε′2 E ′

2) :: ... :: (ε′n, E
′
n), then E ′

n ⊆ E ′
n−1 ⊆ ... ⊆ E ′

2 ⊆
E ′

1 ⊆ E ′.

3. (t′, E ′, Π′) is a good state.

Proof. (1) and (2): By a simultaneous induction. We prove these properties
for each transition rule of the machine.

(3): We check that is a direct consequence of (1) and (2). �

Definition 2.7.3 (and notations)

1. Let x be a λ-variable and E an environment, such that E(x) = (v, E ′),
hence we denote v by Eλ(x) and E ′ by Ee(x).

2. Let a be a µ-variable and E an environment, such that E(a) = Π, hence we
denote Π by Eµ(a).

3. Let (ε, E) be a closure and Π = (ε1, E1) :: ... :: (εn, En) a stack. We define,
by simultaneous induction, the E-term ε{E} and the sequence of E-terms

Π̃.

• ε{E} = ε[(x := Eλ(x){Ee(x)})x∈Dom(E); (a :=∗ Ẽµ(a))a∈Dom(E)].

• Π̃ is the sequence of E-terms ε1{E1}...εn{En}.

Lemma 2.7.3 Let (t, E, Π) and (t′, E ′, Π′) be two consecutive states of the ma-

chine, then (t{E} Π̃) is reduced by the extra weak head reduction to a term tw
such that (t′{E ′} Π̃′) is obtained from tw by erasing the µai on the head of tw and
the occurences of the µ-variables ai bounded by these µai.

52 CHAPTER 2. SOME PROPERTIES OF THE λµ∧∨-CALCULUS

Proof. We prove this for each transition rule of the machine.

Push: Then (t ε){E} Π̃ = (t{E} ε{E}) Π̃ = (t{E} ˜(ε, E) :: Π) = (t′{E ′} Π̃′).

Pop: Then ((λx.t){E} ˜(u, E1) :: Π) = (λx.t{E} u{E1}) Π̃ .w (t{E}[x := u{E1}] Π̃)

= (t{E + x = (u, E1)} Π̃) = (t′{E ′} Π̃′).

Pop’: Similar to the rule Pop.

Pop”: Similar to the rule Pop.

Save: Then ((µa.t){E} Π̃) = (µa.t{E} Π̃) .∗w µa.t{E}[a :=∗ Π̃] = (µa.t{E + a =

Π̃} = which gives t{E + a = Π̃} = (t′{E ′} Π̃′) when erasing µa and the
correspondings a.

Restore: Then (a t){E} = (t{E} Π̃′) = (t′{E ′} Π̃′), in this case Π̃ is empty and

E(a) = Π̃′.

Save up: In this case Π = Π1 :: ([y.v, z.w], E1) :: Π2, where Π2 is nice. Then

(x{E} Π̃) .∗w (x{E} Π̃1[y.(v{E1} Π̃2), z.(w{E1} Π̃2)])

= (x{E} Π̃1[y.(v w̄){E1}, z.(w w̄){E1}]) = (x{E} Π̃1
˜([y.(v w̄), z.(w w̄)], E1)

= (x{E ′} Π̃′), E = E ′, Π1([y.(v w̄), z.(w w̄)], E1) = Π′, Π2 = (ε1, E
1) :: ... ::

(εn, E
n) and the nice sequence w̄ = ε1...εn.

�

Corollary 2.7.1 (The extra weak head normal form) Let t be a closed term,
if the machine from the state (t, Ξ, Φ) stops at the state (t′, E ′, Π′) and tw is the

extra weak head normal form of t, then (t′{E ′} Π̃′) is obtained from tw by erasing
the µai on the head of tw and the occurences of the µ-variables ai bounded by
these µai.

Proof. Immediatly from the previous lemma. Observe that (t, Ξ, Φ) is a
good state since t is a closed term. �

Bibliography

[1] Y. Andou. A normalization-procedure for the first order classical natural
deduction with full logical symbols. Tsukuba J. Math, vol 19, pp. 153-162,
1995.

[2] Y. Andou. Church-Rosser property of simple reduction for full first-order
classical natural deduction. Annals of Pure and Applied Logic, vol 119, pp.
225-237, 2003.

[3] H. P. Barendregt. The Lambda Calculus, its syntax and semantics. North
Holland 1984.

[4] P. Crégut. Machines à environnement pour la réduction symbolique et
l’évaluation partielle. Phd Thesis, Paris 7 University, 1991.

[5] T. Crolard. Extension de l’hisomorphisme de Curry-Howard au traitment des
exceptions (application d’une étude de la dualité en logique intuitionniste).
Thèse de Doctorat, Université Paris 7, 1996.

[6] T. Crolard. A confluent Lambda-calculus with a catch/throw mechanism.
Journal of Functional Programming, 9(6): 625-647, 1999.

[7] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of Symbolic Logic, vol 68, num
4, pp. 1277-1288, 2003.

[8] R. David. Une preuve simple de résultats classiques en λ-calcul. C.R. Acad.
Sci. Paris, t. 320, Série I, pp. 1401-1406, 1995

[9] P. De Groote. An environment machine for the lambda-mu-calculus. Math-
ematical Structures in Computer Science, 8(6), pp. 637-669, 1998.

[10] P. De Groote. On the Strong Normalization of Natural Deduction with
Permutation-Conversions. In 10th International Conference on Rewriting
Techniques and Application, RTA’99, volume 1631 of Lecture Notes in Com-
puter Science, pp. 45-59. Springer Verlag, 1999.

53

54 BIBLIOGRAPHY

[11] P. De Groote. Strong Normalization of Classical Natural Deduction with Dis-
junction. In 5th International Conference on typed lambda calculi and ap-
plications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[12] G. Gentzen. Recherches sur la déduction logique. Press Universitaires de
France, 1955. Traduction et commentaires par R. Feys et J. Ladrière.

[13] F. Joachimski and R. Matthes. Standardization and Confluence for a Lambda
Calculus with a Generalized Applications. Rewriting Techniques and Appli-
cations, 11th International Conference, RTA 2000, Norwich, UK, July 10-12,
pp. 141-155, 2000.

[14] J.-L. Krivine. Lambda calcul, types et modèle. Masson, Paris, 1990.

[15] J.-L. Krivine. Un interpréteur du λ-calcul. Unpublished draft. Available at
http://www.pps.jussieu.fr/krivine/.

[16] F. Lang, Z. Benaissa and P. Lescanne. Super-Closures. In Proc. of WPAM’98,
as Technical Report of the University of SaarBruck, number A 02/98, 1998.

[17] O. Laurent. Interprétation calculatoire de la logique classique: λµ-calcul
et machine de Krivine. Available at http://www.pps.jussieu.fr/laurent/.

[18] R. Matthes. Non-strictly positive fixed point for classical natural deduction.
Annals of Pure and Applied Logic 133, pp.205-230, 2005.

[19] K. Nour and K. Saber. A semantical proof of strong normalization theorem
for full propositional classical natural deduction. Archive for Mathematical
Logic, vol 45, pp. 357-364, 2005.

[20] K. Nour and K. Saber. Confluency property of the call-by-value λµ∧∨-
calculus. Computational Logic and Applications CLA’05. Discrete Mathe-
matics and Theoretical Computer Science proc, pp. 97-108 ,2006.

[21] M. Parigot λµ-calculus: An algorithm interpretation of classical natural
deduction. Lecture Notes in Artificial Intelligence, vol 624, pp. 190-201.
Springer Verlag, 1992.

[22] W. Py. Confluence en λµ-calcul. PhD thesis, University of Chambéry, 1998.

[23] P. Sestoft. Deriving a lazy abstract machine. Journal of functional program-
ming, 7(3), pp. 231- 264, 1997.

[24] Terese. Term Rewriting Systems. Cambridge Tracts in Theoritical Computer
Science 55, CAMBRIDGE Univesity Press, 2003.

Chapter 3

The strong normalization

3.1 Introduction

This chapter gives a semantical proof of the strong normalization of the cut-
elimination procedure for full propositional classical logic written in natural de-
duction style. By full we mean that all the logical connectives (⊥, →, ∧ and ∨)
are considered as primitive. We also consider the three reduction relations (log-
ical, commutative and classical reductions) necessary to obtain the subformula
property (see [4]).

Until very recently (see the introduction of [4] for a brief history), no proof
of the strong normalization of the cut-elimination procedure was known for full
logic. In [4], Ph. De Groote gives such a proof by using a CPS-style transfor-
mation from full classical logic to implicative intuitionistic logic, i.e. the simply
typed λ-calculus. However its proof is not finished yet, since the modified CPS-
transformations do not preserve always the stricteness of reductions, and this for
the same reasons pointed out in [8] and [9].

A very elegant and direct proof of the strong normalization of the full logic is
given in [6] but only the intuitionistic case is given.

R. David and K. Nour give in [3] a direct and syntactical proof of this result.
This proof is based on a characterization of the strongly normalizable deductions
and a substitution lemma which stipulates the fact that, the deduction obtained
while replacing in a strongly normalizable deduction an hypothesis by another
strongly normalizable deduction is also strongly normalizable. The same idea is
used in [3] to give a short proof of the strong normalization of the simply typed
λµ-calculus of [12].

R. Matthes recently found another semantical proof of this result (see [7]).
His proof uses a complicated concept of saturated subsets of terms.

Our proof is a generalization of M. Parigot’s strong normalization result of the
λµ-calculus (see [13]) for the types of J.-Y. Girard’s system F using reducibility
candidates. We also use a very technical lemma proved in [3] concerning com-

55

56 CHAPTER 3. THE STRONG NORMALIZATION

mutative reductions. To the best of our knowledge, this is the shortest proof of
a such result.

This chapter is organized as follows. In section 2, we give the syntax of the
terms and the reduction rules. In section 3, we define the reducibility candidates
and establish some important properties. In section 4, we show an ”adequation
lemma” which allows to prove the strong normalization of all typed terms.

3.2 The typed system

We use notations inspired by the paper [1].

Definition 3.2.1 1. The types are built from propositional variables and the
constant symbol ⊥ with the connectors →, ∧ and ∨.

2. Let X and A be two disjoint infinite alphabets for distinguishing the λ-
variables and µ-variables respectively. We code deductions by using a set of
terms T which extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)

E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term.

3. The meaning of the new constructors is given by the typing rules below
where Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A
(resp. a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a
type.

Γ, x : A ` x : A ; ∆
ax

Γ, x : A ` t : B; ∆

Γ ` λx.t : A → B; ∆
→i

Γ ` u : A → B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e

Γ ` u : A; ∆ Γ ` v : B; ∆

Γ ` 〈u, v〉 : A ∧B; ∆
∧i

Γ ` t : A ∧B; ∆

Γ ` (t π1) : A; ∆
∧1

e

Γ ` t : A ∧B; ∆

Γ ` (t π2) : B; ∆
∧2

e

Γ ` t : A; ∆

Γ ` ω1t : A ∨B; ∆
∨1

i

Γ ` t : B; ∆

Γ ` ω2t : A ∨B; ∆
∨2

i

3.2. THE TYPED SYSTEM 57

Γ ` t : A ∨B; ∆ Γ, x : A ` u : C; ∆ Γ, y : B ` v : C; ∆

Γ ` (t [x.u, y.v]) : C; ∆
∨e

Γ ` t : A; ∆, a : A

Γ ` (a t) : ⊥; ∆, a : A
absi

Γ ` t : ⊥; ∆, a : A

Γ ` µa.t : A; ∆
abse

4. The cut-elimination procedure corresponds to the reduction rules given bel-
low. There are three kinds of cuts:

(a) The logical cuts: They appear when the introduction of a connective is
immediately followed by its elimination. The corresponding rules are:

• (λx.u v) . u[x := v]

• (〈t1, t2〉 πi) . ti
• (ωit [x1.u1, x2.u2]) . ui[xi := t]

(b) The permutative cuts: They appear when the elimination of the dis-
junction is followed by the elimination rule of a connective.The corre-
sponding rule is:

• ((t [x1.u1, x2.u2]) ε) . (t [x1.(u1 ε), x2.(u2 ε)])

(c) The classical cuts: They appear when the classical rule is followed by
the elimination rule of a connective. The corresponding rule is:

• (µa.t ε) . µa.t[a :=∗ ε], where t[a :=∗ ε] is obtained from t by
replacing inductively each subterm in the form (a v) by (a (v ε)).

Notation 3.2.1 Let t and t′ be E-terms. The notation t . t′ means that t reduces
to t′ by using one step of the reduction rules given above. Similarly, t .∗ t′ means
that t reduces to t′ by using some steps of the reduction rules given above.

The following result is straightforward.

Theorem 3.2.1 If Γ ` t : A; ∆ and t .∗ t′ then Γ ` t′ : A; ∆.

We have also the confluence property (see [1], [4] and [11]).

Theorem 3.2.2 If t .∗ t1 and t .∗ t2, then there exists t3 such that t1 .∗ t3 and
t2 .∗ t3.

Definition 3.2.2 An E-term t is said to be strongly normalizable if there is no
infinite sequence (ti)i<ω of E-terms such that t0 = t and ti . ti+1 for all i < ω.

The aim of this chapter is to prove the following theorem.

Theorem 3.2.3 Every typed term is strongly normalizable.

In the rest of the chapter we consider only typed terms.

58 CHAPTER 3. THE STRONG NORMALIZATION

3.3 Reducibility candidates

Lemma 3.3.1 Let t, u and u′ be E-terms such that u . u′, then:

1. u[x := t] . u′[x := t] and u[a :=∗ t] . u′[a :=∗ t].

2. t[x := u] .∗ t[x := u′] and t[a :=∗ u] .∗ t[a :=∗ u′].

Proof. 1) By induction on u. 2) By induction on t. �

Notation 3.3.1 The set of strongly normalizable terms (resp. E-terms) is de-
noted by N (resp. N ′). If t ∈ N ′, we denoted by η(t) the maximal length of the
reduction sequences of t.We denote also N ′<ω the set of finite sequences of N ′.

Definition 3.3.1 Let w̄ = w1...wn ∈ N ′<ω, we say that w̄ is a nice sequence iff
wn is the only E-term in w̄ which can be in the form [x.u, y.v].

Remark 3.3.1 The intuition behind the notion of the nice sequences will be
given in the proof of the lemma 3.3.3.

Lemma 3.3.2 Let w̄ = w1...wn be a nice sequence and w̄′ = w1...w
′
i...wn where

wi . w′
i. Then w̄′ is also a nice sequence.

Proof. This comes from the fact that if ε . [x.u, y.v] then ε = [x.p, y.q],
where p . u or q . v. �

Notation 3.3.2 1. The empty sequence is denoted by ∅.

2. Let w̄ = w1...wn a sequence of E-terms and t a term. Then (t w̄) is t if
n = 0 and ((t w1) w2...wn) if n 6= 0. The term t[a :=∗ w̄] is obtained from
t by replacing inductively each subterm in the form (a v) by (a (v w̄)).

3. If w̄ = w1...wn is a nice sequence, we denote η(w̄) =
∑n

i=1 η(wi).

Lemma 3.3.3 Let w̄ be a nice sequence.

1. (x w̄) ∈ N .

2. If u ∈ N and (t[x := u] w̄) ∈ N , then ((λx.t u) w̄) ∈ N .

3. If t1, t2 ∈ N and (ti w̄) ∈ N , then ((〈t1, t2〉 πi) w̄) ∈ N .

4. If t, u1, u2 ∈ N and ui[xi := t] ∈ N , then (ωit [x1.u1, x2.u2]) ∈ N .

5. If t[a :=∗ w̄] ∈ N , then (µa.t w̄) ∈ N .

3.3. REDUCIBILITY CANDIDATES 59

Proof.

1. Let w̄ = w1...wn. All reduction over (x w̄) take place in some wi, because
w̄ is a nice sequence, and therefore the wi cannot interact between them
via commutative reductions. Since all wi are strongly normalizable, then
(x w̄) itself is strongly normalizable.

2. It suffices to prove that: If ((λx.t u) w̄) . s, then s ∈ N . We process by
induction on η(u) + η(t[x := u] w̄). Since w̄ = w1...wn is a nice sequence,
the wi cannot interact between them via commutative reductions. We have
four possibilities for the term s.

• s = ((λx.t′ u) w̄) where t . t′: By lemma 3.3.1, (t′[x := u] w̄) ∈ N and
η(u) + η((t′[x := u] w̄)) < η(u) + η((t[x := u] w̄)), then, by induction
hypothesis, s ∈ N .

• s = ((λx.t u′) w̄) where u.u′: By lemma 3.3.1, (t[x := u′] w̄) ∈ N and
η(u′) + η((t[x := u′] w̄)) < η(u) + η((t[x := u] w̄)), then, by induction
hypothesis, s ∈ N .

• s = ((λx.t u) w̄′) where w̄′ = w1...w
′
i...wn and wi .w′

i: By lemma 3.3.2,
w̄′ is a nice sequence. We have (t[x := u] w̄′) ∈ N and η(u)+η((t[x :=
u] w̄′)) < η(u) + η((t[x := u] w̄)), then, by induction hypothesis,
s ∈ N .

• s = (t[x := u] w̄): By hypothesis, s ∈ N .

3. Same proof as 2).

4. Same proof as 2).

5. It suffices also to prove that: If (µa.t w̄) . s, then s ∈ N . We process
by induction on the pair (lg(w̄), η(t[a :=∗ w̄]) + η(w̄)) where lg(w̄) is the
number of the E-terms in the sequence w̄. We have three possibilities for
the term s.

• s = (µa.t′ w̄) where t . t′: By lemma 3.3.1, t′[a :=∗ w̄] ∈ N and
η(t′[a :=∗ w̄]) < η(t[a :=∗ w̄]), then, by induction hypothesis, s ∈ N .

• s = (µa.t w̄′) where w̄′ = w1...w
′
i...wn and wi . w′

i: by lemma 3.3.2,
w̄′ is a nice sequence and, by lemma 3.3.1, t[a :=∗ w̄′] ∈ N and
η(t[a :=∗ w̄′]) + η(w̄′) < η(t[a :=∗ w̄]) + η(w̄), then, by induction
hypothesis, s ∈ N .

• s = (µa.t[a :=∗ w1] w̄
′) where w̄′ = w2...wn: It is obvious that w̄′ is

a nice sequence and lg(w̄′) < lg(w̄). We have t[a :=∗ w1][a :=∗ w̄′] =
t[a :=∗ w̄] ∈ N , then, by induction hypothesis, s ∈ N .

�

60 CHAPTER 3. THE STRONG NORMALIZATION

Lemma 3.3.4 Let w̄ be a nice sequence.
If (t [x.(u w̄), y.(v w̄)]) ∈ N , then ((t [x.u, y.v]) w̄) ∈ N .

Proof. This is proved by that, from an infinite sequence of reduction
starting from ((t [x.u, y.v]) w̄), an infinite sequence of reduction starting from
(t [x.(u w̄), y.(v w̄)]) can be constructed. A complete proof of this result is given
in [3] in order to characterize the strongly normalizable terms. �

Definition 3.3.2 1. We define three functional constructions (,f and g)
on subsets of terms:

(a) K L = {t ∈ T / for each u ∈ K, (t u) ∈ L}.
(b) K f L = {t ∈ T / (t π1) ∈ K and (t π2) ∈ L}.
(c) K g L = {t ∈ T / for each u, v ∈ N : If (for each r ∈ K,s ∈ L:

u[x := r] ∈ N and v[y := s] ∈ N), then (t [x.u, y.v]) ∈ N}.

2. The set R of the reductibility candidates is the smallest set of subsets of
terms containing N and closed by the functional constructions ,f and
g.

3. Let w̄ = w1...wn be a sequence of E-terms, we say that w̄ is a good sequence
iff for each 1 ≤ i ≤ n, wi is not in the form [x.u, y.v].

Lemma 3.3.5 If R ∈ R, then:

1. R ⊆ N .

2. R contains the λ-variables.

Proof. We prove, by simultaneous induction, that R ⊆ N and for each
λ-variable x and for each good sequence w̄ ∈ N ′<ω, (x w̄) ∈ R.

• R = N : trivial.

• R = R1 R2: Let t ∈ R. By induction hypothesis, we have x ∈ R1, then
(t x) ∈ R2, therefore, by induction hypothesis, (t x) ∈ N hence t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence and v ∈ R1. Since w̄v is a good sequence,
then, by induction hypothesis (x w̄v) ∈ R2, therefore (x w̄) ∈ R1 R2.

• R = R1 f R2: Let t ∈ R, then (t πi) ∈ Ri and, by induction hypothesis,
(t πi) ∈ N , therefore t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence, then w̄πi is also a good sequence and,
by induction hypothesis, (x w̄πi) ∈ Ri, therefore (x w̄) ∈ R.

3.3. REDUCIBILITY CANDIDATES 61

• R = R1gR2: Let t ∈ R and y, z two λ-variables. By induction hypothesis,
we have, for each u ∈ R1 ⊆ N and v ∈ R2 ⊆ N , y[y := u] = u ∈ N and
z[z := v] = v ∈ N , then (t [y.y, z.z]) ∈ N , therefore t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence and u, v ∈ N such that for each r ∈
R1, s ∈ R2, u[x := r] ∈ N and v[y := s] ∈ N . We have [x.u, y.v] ∈ N ′

because u and v ∈ N . Thus w̄ [x.u, y.v] is a nice sequence, and by lemma
3.3.3, (x w̄ [x.u, y.v]) ∈ N , therefore (x w̄) ∈ R.

�

Notation 3.3.3 For S ⊆ N ′<ω, we define S K = {t ∈ T / for each w̄ ∈
S, (t w̄) ∈ K}.

Definition 3.3.3 A set X ⊆ N ′<ω is said to be nice iff for each w̄ ∈ X , w̄ is a
nice sequence.

Lemma 3.3.6 Let R ∈ R, then there exists a nice set X such that R = X N .

Proof. By induction on R.

• R = N : Take X = {∅}, it is clear that N = {∅} N .

• R = R1 R2: We have R2 = X2 N for a nice set X2. Take X = {u v̄ /
u ∈ R1, v̄ ∈ X2}. We have u v̄ is a nice sequence for all u ∈ R1 and v̄ ∈ X2.
Then X is a nice set and we can easily check that R = X N .

• R = R1 fR2: Similar to the previous case.

• R = R1 g R2: Take X = {[x.u, y.v] / for each r ∈ R1 and s ∈ R2 , u[x :=
r] ∈ N and v[y := s] ∈ N}. We have X is a nice set and, by definition,
R = X N .

�

Remark 3.3.2 Let R ∈ R and X a nice set such that R = X N . We can
suppose that ∅ ∈ X . Indeed, since R ⊆ N , we have also R = X ∪ {∅} N .

Definition 3.3.4 Let R ∈ R, we define R⊥ = ∪{X / R = X N and X is a
nice set}.

Lemma 3.3.7 Let R ∈ R, then:

1. R⊥ is a nice set.

2. R = R⊥ N .

62 CHAPTER 3. THE STRONG NORMALIZATION

Proof.

1. By definition.

2. This comes also from the fact that: If, for every i ∈ I, R = Xi N , then
R = ∪i∈IXi N .

�

Remark 3.3.3 For R ∈ R, R⊥ is simply the greatest nice X such that R =
X N . In fact any nice X such that ∅ ∈ X and R = X N would work as
well as R⊥.

Lemma 3.3.8 Let R ∈ R, t ∈ R and t .∗ t′. Then t′ ∈ R

Proof. Let ū ∈ R⊥. We have (t ū) .∗ (t′ ū) and (t ū) ∈ N , then (t′ ū) ∈ N .
We deduce that t′ ∈ R⊥ N = R. �

Remark 3.3.4 Let R ∈ R, we have not in general N ⊆ R, but we can prove,
by induction, that µaN = {µa.t / t ∈ N and a is not free in t} ⊆ R.

3.4 Proof of the theorem 3.2.3

Definition 3.4.1 An interpretation is a function I from the propositional vari-
ables to R, which we extend to any formula as follows: I(⊥) = N , I(A → B) =
I(A) I(B), I(A ∧B) = I(A)f I(B) and I(A ∨B) = I(A)g I(B).

Lemma 3.4.1 (Adequation lemma) Let Γ = {xi : Ai}1≤i≤n , ∆ = {aj :
Bj}1≤j≤m, I an interpretation, ui ∈ I(Ai), v̄j ∈ I(Bj)

⊥ and t such that:
Γ ` t : A ; ∆, then, t[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] ∈ I(A).

Proof. For each term s, we denote
s[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] by s′.
We look at the last used rule in the derivation of Γ ` t : A ; ∆.

• ax, →e and ∧j
e: Easy.

• →i: In this case t = λx.t1 with Γ, x : C ` t1 : D ; ∆ and A = C → D. Let
u ∈ I(C) and w̄ ∈ I(D)⊥. By induction hypothesis, we have t′1[x := u] ∈
I(D), then (t′1[x := u] w̄) ∈ N , and, by lemma 3.3.3 ((λx.t′1 u) w̄) ∈ N .
Therefore (λx.t′1 u) ∈ I(D), hence λx.t′1 ∈ I(C) I(D) = I(A).

• ∧i similar to →i.

3.4. PROOF OF THE THEOREM 3.2.3 63

• ∨1
i (a similar proof for ∨2

i): In this case t = ω1t1 with Γ ` t1 : A1; ∆ and
A = A1 ∨ A2. By induction hypothesis t′1 ∈ I(A1). Let u, v ∈ N , let
r ∈ I(A1) and s ∈ I(A2) such that: u[x := r] ∈ N and v[y := s] ∈ N .
We have to prove that (ω1t

′
1 [x.u, y.v] ∈ N), this is true since u, v ∈ N and

u[x := t′1] ∈ N (take r = t′1).

• ∨e: In this case t = (t1 [x.u, y.v]) with Γ ` t1 : B ∨ C ; ∆ , Γ, x : B ` u :
A ; ∆ and Γ, y : C ` v : A ; ∆. Let r ∈ I(B) and s ∈ I(C). By induction
hypothesis, we have t′1 ∈ I(B) g I(C), u′[x := r] ∈ I(A) and v′[y := s] ∈
I(A). Let w̄ ∈ I(A)⊥, then (u′[x := r] w̄) ∈ N and (v′[y := s] w̄) ∈ N ,
therefore (t′1 [x.(u′w̄), y.(v′w̄)]) ∈ N . By lemma 3.3.4, ((t′1 [x.u′, y.v′])w̄) ∈
N , therefore (t′1 [x.u′, y.v′]) ∈ I(A).

• abse: In this case t = µa.u and Γ ` µa.u : A ; ∆. Let v̄ ∈ I(A)⊥. It suffices
to prove that ((µa.u′) v̄) ∈ N . By the induction hypothesis, u′[a :=∗ v̄] ∈
I(⊥) = N , then, by lemma 3.3.3, (µa.u′ v̄) ∈ N . Finally (µa.u)′ ∈ I(A).

• absi: In this case t = (aj u) and Γ ` (aj u) :⊥ ; ∆′, aj : Bj. We have to
prove that t′ ∈ N , by induction hypothesis, u′ ∈ I(Bj), then (u′ v̄j) ∈ N ,
therefore t′ = (a (u′ v̄j)) ∈ N .

�

Notation 3.4.1 We denote IN the interpretation such that, for each proposi-
tional variable X, IN (X) = N .

Proof.[of theorem 3.2.3]: If x1 : A1, ..., xn : An ` t : A; a1 : B1, ..., am : Bm,
then, by the lemma 3.3.5, xi ∈ IN (Ai), and, by definition, ∅ ∈ IN (Bj)

⊥. Therefore
by lemma 3.4.1, t = t[x1 := x1, ..., xn := xn, a1 :=∗ ∅, ..., am :=∗ ∅] ∈ IN (A) and
finally, by lemma 3.3.5, t ∈ N . �

Remark 3.4.1 We can give now another proof of remark 3.3.4: “if R ∈ R, the
µa.N ⊆ R”. Let t = λz.µa.z, we have ` t :⊥→ p for every propositional variable
p. By lemma 3.4.1, for every R ∈ R, t ∈ N R, then, for every u ∈ N ,
(t u) ∈ R, therefore, by lemma 3.3.8, µa.u ∈ R.

We end this chapter by giving characterization of the normal terms, then
deriving the subformula property. All this work is already presented in [4].

Definition 3.4.2 Consider the following grammar:

P := λX .P | 〈P ,P〉 | ω1P | ω2P | (Q [X .P ,X .P]) | µA.P | Q

Q := X | (Q P) | (P π1) | (P π2) | (A P)

A term which belongs to P (resp Q) is said to be P-canonical (Q-canonical).

64 CHAPTER 3. THE STRONG NORMALIZATION

Lemma 3.4.2 Let Π be a derivation of Γ ` t : A ; ∆, then

1. If t is Q-canonical then every type occuring in Π is either ⊥, or a subformula
of a type occuring in Γ or ∆.

2. If t is P-canonical then every type occuring in Π is either ⊥, or a subformula
of a type occuring in Γ or ∆, or a subformula of A.

Proof. By a simulateous induction on 1 and 2. We look at the last used
rule in Π.

�

Lemma 3.4.3 Let Γ ` t : A ; ∆, if t is normal, then t is P-canonical.

Proof. By induction on the derivation of Γ ` t : A ; ∆.
�

Corollary 3.4.1 (The subformula property) Let Γ ` t : A ; ∆, if t is nor-
mal, then every type occuring in Π is either ⊥, or a subformula of a type occuring
in Γ or ∆, or a subformula of A.

Proof. A direct consequence of the two precedent lemmas.
�

Bibliography

[1] Y. Andou. Church-Rosser property of simple reduction for full first-order
classical natural deduction. Annals of Pure and Applied logic 119 (2003)
225-237.

[2] R. David and K. Nour. A short proof of the strong normalization of the
simply typed λµ-calculus. Schedae Informaticae vol.12, pp. 27-33, 2003.

[3] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of symbolic Logic, vol 68, num
4, pp 1277-1288, 2003.

[4] Ph. de Groote. Strong normalization of classical natural deduction with dis-
junction. In 5th International Conference on typed lambda calculi and ap-
plications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[5] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University
Press , 1986.

[6] F. Joachimski and R. Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Gödel’s T. Archive for
Mathematical Logic 42, pp 59-87 (2003).

[7] R. Matthes. Non-Strictly Positive Fixed Point for Classical Natural Deduc-
tion. APAL, vol 133, pp. 205-230, 2005.

[8] K. Nakazawa. Confluency and strong normalizability of call-by-value λµ-
calculus. Theoritical Computer Science, vol 290, pp. 429-463. 2003.

[9] K. Nakazawa and M. Tatsuta. Strong normalization proof with CPS-
Translation for the second order classical natural deduction. The Journal
of Symbolic Logic, vol 68, num 3, pp. 851-859. Sept 2003.

[10] K. Nour and K. Saber A semantical proof of the strong normalization theorem
for full propositional classical natural deduction. Archive for Mathematical
Logic, vol 45, pp. 357-364, 2005.

[11] K. Nour and K. Saber Some properties of the λµ-calculus. Manuscript, 2007.

65

66 BIBLIOGRAPHY

[12] M. Parigot λµ-calculus: An algorithm interpretation of classical natural de-
duction. Lecture Notes in Artificial Intelligence (624), pp. 190-201. Springer
Verlag 1992.

[13] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

Chapter 4

A Semantics of Realisability

4.1 Introduction

Natural deduction system is one of the main logical system which was intro-
duced by Gentzen [4] to study the notion of proof. The full classical natural
deduction system is well adapted for the human reasoning. By full we mean that
all the connectives (→, ∧ and ∨) and ⊥ (for the absurdity) are considered as
primitive and they have their intuitionistic meaning. As usual, the negation is
defined by ¬A = A →⊥. Considering this logic from the computer science of
view is interesting because, by the Curry-Howard correspondence, formulas can
be seen as types for the functional programming languages and correct programs
can be extracted. By this isomorphism the corresponding calculus is an extension
of the λµ-calculus with product and co-product.

Until very recently (see the introduction of [3] for a brief history), no proof
of the strong normalization of the cut-elimination procedure was known for full
logic. In [3], Ph. De Groote gives a such proof for classical propositional natural
deduction, by using the CPS-transformations. However its proof is not finished
yet, since the modified CPS-translation does not always preserve the stricteness
of reductions, and this for the same reasons pointed out in [7] and [8]. R. David
and K. Nour give in [2] a direct and syntactical proof of this result. R. Matthes
recently found another semantical proof of this result (see [6]).

In order to prove the strong normalization of classical propositional natural
deduction, we introduce in [10] a variant of the reducibility candidates, which
was already present in [14]. This method has been introduced by J.Y. Girard. It
consists in associating to each type A a set of terms |A|, such that every term is
in the interpretation of its type (this is called “the adequation lemma”). To the
best of our knowledge, we obtain the shortest proof of this result.

In this chapter, we define a semantics of realisability of classical propositional
natural deduction inspired by [10] and we estabilish a correctness theorem. The
idea is to replace the set of strongly normalizing terms used in the proof presented

67

68 CHAPTER 4. A SEMANTICS OF REALISABILITY

in [10] by a set having the properties necessary to keep the adequation lemma.
This result allows to characterize the operational behaviour of terms having some
particular types.

The chapter is organized as follows. Section 2 is an introduction to the typed
system and the relative cut-elimination procedure. In section 3, we define the
semantics of realisability and we prove the correctness theorem. In section 4, we
give some applications of this result.

4.2 Notations and definitions

Definition 4.2.1 We use notations inspired by the paper [1].

1. Let X and A be two disjoint infinite alphabets for distinguishing the λ-
variables and µ-variables respectively. We code deductions by using a set of
terms T which extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)

E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term.

2. Types are formulas of propositional logic built on the set of propositional
variables and the constant type ⊥, using the connectors →, ∧ and ∨.

3. The meaning of the new constructors is given by the typing rules below
where Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A
(resp. a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a
formula.

Γ, x : A ` x : A ; ∆
ax

Γ, x : A ` t : B; ∆

Γ ` λx.t : A → B; ∆
→i

Γ ` u : A → B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e

Γ ` u : A; ∆ Γ ` v : B; ∆

Γ ` 〈u, v〉 : A ∧B; ∆
∧i

Γ ` t : A ∧B; ∆

Γ ` (t π1) : A; ∆
∧1

e

Γ ` t : A ∧B; ∆

Γ ` (t π2) : B; ∆
∧2

e

Γ ` t : A; ∆

Γ ` ω1t : A ∨B; ∆
∨1

i

Γ ` t : B; ∆

Γ ` ω2t : A ∨B; ∆
∨2

i

4.3. THE SEMANTICS 69

Γ ` t : A ∨B; ∆ Γ, x : A ` u : C; ∆ Γ, y : B ` v : C; ∆

Γ ` (t [x.u, y.v]) : C; ∆
∨e

Γ ` t : A; ∆, a : A

Γ ` (a t) : ⊥; ∆, a : A
absi

Γ ` t : ⊥; ∆, a : A

Γ ` µa.t : A; ∆
abse

4. The cut-elimination procedure corresponds to the reduction rules given be-
low. They are those we need to the subformula property.

• (λx.u v) . u[x := v]

• (〈t1, t2〉 πi) . ti

• (ωit [x1.u1, x2.u2]) . ui[xi := t]

• ((t [x1.u1, x2.u2]) ε) . (t [x1.(u1 ε), x2.(u2 ε)])

• (µa.t ε) . µa.t[a :=∗ ε].

where t[a :=∗ ε] is obtained from t by replacing inductively each subterm in
the form (a v) by (a (v ε)).

5. Let t and t′ be E-terms. The notation t . t′ means that t reduces to t′ by
using one step of the reduction rules given above. Similarly, t .∗ t′ means
that t reduces to t′ by using some steps of the reduction rules given above.

The following result is straightforward

Theorem 4.2.1 (Subject reduction) If Γ ` t : A; ∆ and t .∗ t′, then Γ ` t′ :
A; ∆.

We have also the following properties (see [1], [2], [3], [10] and [11]).

Theorem 4.2.2 (Confluence) If t .∗ t1 and t .∗ t2, then there exists t3 such
that t1 .∗ t3 and t2 .∗ t3.

Theorem 4.2.3 (Strong normalization) If Γ ` t : A; ∆, then t is strongly
normalizable.

4.3 The semantics

Definition 4.3.1 1. We denote by E<ω the set of finite sequences of E-terms.
The empty sequence is denoted by ∅.

2. We denote by w̄ the sequence w1w2...wn. If w̄ = w1w2...wn, then (t w̄) is
t if n = 0 and ((t w1) w2...wn) if n 6= 0. The term t[a :=∗ w̄] is the term
obtained from t by replacing inductively each subterm in the form (a v) by
(a (v w̄)).

70 CHAPTER 4. A SEMANTICS OF REALISABILITY

3. A set of terms S is said to be µ-saturated iff:

• For each terms u and v, if u ∈ S and v .∗ u, then v ∈ S.

• For each a ∈ A and for each t ∈ S, µa.t ∈ S and (a t) ∈ S.

4. Consider two sets of terms K, L and a µ-saturated set S, we define new
sets of terms:

• K L = {t / (t u) ∈ L, for each u ∈ K}.
• K f L = {t / (t π1) ∈ K and (t π2) ∈ L}.
• K g L = {t / for each u, v: if (for each r ∈ K,s ∈ L: u[x := r] ∈ S

and v[y := s] ∈ S), then (t [x.u, y.v]) ∈ S}.

5. Let S be a µ-saturated set and {Ri}i∈I subsets of terms such that Ri =
Xi S for some Xi ⊆ E<ω. A model M = 〈S; {Ri}i∈I〉 is the smallest set
of subsets of terms containing S and Ri and closed under constructors ,
f and g.

Lemma 4.3.1 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M.
There exists a set X ⊆ E<ω such that G = X S.

Proof. By induction on G.

• G = S: Take X = {∅}, it is clear that S = {∅} S.

• G = G1 G2: We have G2 = X2 S for a certain set X2. Take X = {u v̄
/ u ∈ G1, v̄ ∈ X2}. We can easily check that G = X S.

• G = G1 f G2: Similar to the previous case.

• G = G1 g G2: Take X = {[x.u, y.v] / for each r ∈ G1 and s ∈ G2 , u[x :=
r] ∈ S and v[y := s] ∈ S}. By definition G = X S.

�

Definition 4.3.2 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M, we define the
set G⊥ = ∪{X / G = X S}.

Lemma 4.3.2 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M.
We have G = G⊥ S (G⊥ is the greatest X such that G = X S).

Proof. This comes from the fact that: if, for every j ∈ J , G = Xj S, then
G = ∪j∈JXj S. �

4.3. THE SEMANTICS 71

Definition 4.3.3 1. LetM = 〈S; {Ri}i∈I〉 be a model. AnM-interpretation
I is an application from the set of propositional variables to M which we
extend for any type as follows:

• I(⊥) = S
• I(A → B) = I(A) I(B).

• I(A ∧B) = I(A)f I(B).

• I(A ∨B) = I(A)g I(B).

The set |A|M = ∩{I(A) / I an M-interpretation} is the interpretation of
A in M.

2. The set |A| = ∩{|A|M / M a model} is the interpretation of A.

Lemma 4.3.3 (Adequation lemma) Let M = 〈S; {Ri}i∈I〉 be a model, I
an M-interpretation, Γ = {xi : Ai}1≤i≤n, ∆ = {aj : Bj}1≤j≤m, ui ∈ I(Ai),
v̄j ∈ I(Bj)

⊥. If Γ ` t : A; ∆, then,
t[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] ∈ I(A).

Proof. Let us denote by s′ the term
s[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m].
The proof is by induction on the derivation, we consider the last rule:

1. ax, →e and ∧e: Easy.

2. →i: In this case t = λx.u and A = B → C such that Γ, x : B ` u : C ; ∆.
By induction hypothesis, u′[x := v] ∈ I(C) = I(C)⊥ S for each v ∈
I(B), then (u′[x := v] w̄) ∈ S for each w̄ ∈ I(C)⊥, hence ((λx.u′ v) w̄) ∈ S
because ((λx.u′ v) w̄) . (u′[x := v] w̄). Therefore t′ = λx.u′ ∈ [I(B)
I(C)] = I(A).

3. ∧i and ∨j
i : A similar proof.

4. ∨e: In this case t = (t1 [x.u, y.v]) with (Γ ` t1 : B ∨ C; ∆), (Γ, x : B ` u :
A; ∆) and (Γ, y : C ` v : A; ∆). Let r ∈ I(B) and s ∈ I(C), by induction
hypothesis, t′1 ∈ I(B) g I(C), u′[x := r] ∈ I(A) and v′[y := s] ∈ I(A).
Let w̄ ∈ I(A)⊥, then (u′[x := r] w̄) ∈ S and (v′[y := s] w̄) ∈ S, hence
(t′1 [x.(u′ w̄), y.(v′ w̄)]) ∈ S, since ((t′1 [x.u′, y.v′)] w̄).(t′1 [x.(u′ w̄), y.(v′ w̄)])
then ((t′1 [x.u′, y.v′)] w̄) ∈ S. Therefore t′ = (t′1 [x.u′, y.v′]) ∈ I(A).

5. abse: In this case t = µa.t1 and Γ ` µa.t1 : A ; ∆′, a : A. Let v̄ ∈ I(A)⊥. It
suffices to prove that (µa.t′1 v̄) ∈ S. By induction hypothesis, t′1[a :=∗ v̄] ∈
I(⊥) = S, then µa.t′1[a :=∗ v̄] ∈ S and (µa.t′1 v̄) ∈ S.

72 CHAPTER 4. A SEMANTICS OF REALISABILITY

6. absi: In this case t = (aj u) and Γ ` (aj u) :⊥; ∆′, aj : Bj. We have to
prove that t′ ∈ S. By induction hypothesis u′ ∈ I(Bj), then (u′ v̄j) ∈ S,
hence t′ = (a (u′ v̄j)) ∈ S.

�

Theorem 4.3.1 (Correctness theorem) If ` t : A, then t ∈ |A|.

Proof. Immediately from the previous lemma. �

4.4 The operational behaviors of some typed

terms

The following results are some applications of the correctness theorem.

Definition 4.4.1 Let t be a term. We denote Mt the smallest set containing t
such that: if u ∈ Mt and a ∈ A, then µa.u ∈ Mt and (a u) ∈ Mt. Each element
of Mt is denoted µ.t. For example, the term µa.µb.(a (b (µc.(a µd.t)))) is denoted
by µ.t.

In the rest of this chapter P denotes a propositional variable.

4.4.1 Terms of type ⊥→ P “Ex falso sequitur quodlibet”

Example 4.4.1 Let T = λz.µa.z. We have ` T :⊥→ P and for every term t
and ū ∈ T <ω, ((T t) ū) .∗ µa.t.

Remark 4.4.1 The term (T t) modelizes an instruction like exit(t) (exit is
to be understood as in the C programming language). In the reduction of a term,
if the sub-term (T t) appears in head position (the term has the form ((T t) ū)),
then, after some reductions, we obtain t as result.

The general operational behavior of terms of type ⊥→ P is given in the
following theorem:

Theorem 4.4.1 Let T be a closed term of type ⊥→ P , then for each λ-variable
x and for each finite sequence ȳ of λ-variables, we have ((T x) ȳ) .∗ µ.x.

Proof. Let x be a term and ȳ a finite sequence of λ-variables. Take S =
{t / t .∗ µ.x} and R = {ȳ} S. It is clear that S is µ-saturated set and
x ∈ S. Let M = 〈S;R〉 and I an M-interpretation such that I(P) = R. By
the theorem 4.3.1, we have T ∈ S ({ȳ} S), then ((T x) ȳ) ∈ S. Therefore
((T x) ȳ) .∗ µ.x. �

4.4. THE OPERATIONAL BEHAVIORS OF SOME TYPED TERMS 73

4.4.2 Terms of type (¬P → P) → P “Pierce law”

Example 4.4.2 Let C1 = λz.µa.(a (z λy.(a y))) and
C2 = λz.µa.(a (z (λx.(a (z λy.(a x)))))).
We have ` Ci : (¬P → P) → P for i ∈ {1, 2}.
Let u, v1, v2 be terms and t̄ ∈ E<ω, we have :
((C1 u) t̄) .∗ µa.(a ((u θ1) t̄)) and (θ1 v1) .∗ (a (v1 t̄)) and
((C2 u) t̄) .∗ µa.(a ((u θ1) t̄)), (θ1 v1) .∗ (a ((u θ2) t̄)) and (θ2 v2) .∗ (a (v1 t̄)).

Remark 4.4.2 The term C1 allows to modelizing the Call/cc instruction in the
Scheme functional programming language.

The following theorem describes the general operational behavior of terms
with type (¬P → P) → P .

Theorem 4.4.2 Let T be a closed term of type (¬P → P) → P , then for
each λ-variable x, for each finite sequence ȳ of λ-variables and for each sequence
(zi)i∈N∗ of λ-variables such that: x and each yj are differents from any zi. There
exist m ∈ N∗ and terms θ1, ..., θm such that we have:

• ((T x) ȳ) .∗ µ.((x θ1) ȳ)

• (θk zk) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

• (θm zm) .∗ µ.(zl ȳ) for a certain 1 ≤ l ≤ m

Proof. Let x be a λ-variable, ȳ a finite sequence of λ-variables and (zi)i∈N∗

a sequence of λ-variables as in the theorem. Take S = {t / ∀ r ≥ 0, ∃m ≥
0, ∃ θ1, ..., θm, ∃ j: t .∗ µ.((x θ1) ȳ), (θk zk+r) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤
m− 1 and (θm zm+r) .∗ µ.(zj ȳ)} and R = {ȳ} S.

It is important to clarify the case m = 0 in the definition of S, this corre-
sponds exaclty to ∃ j: t .∗ µ.(zj ȳ), thus they do not exist terms θi.

It is clear that S is a µ-saturated set. LetM = 〈S;R〉 and anM-interpretation
I such that I(P) = R. By the theorem 4.3.1, T ∈ [(R S) R] ({ȳ} S).
Let us check that x ∈ (R S) R. For this, we take θ ∈ (R S) and we
prove that (x θ) ∈ R, i.e, ((x θ) ȳ) ∈ S. By the definition of S, (zr ȳ) ∈ S for
each r ≥ 0, hence zr ∈ R. Therefore (θ zr) ∈ S, so we have:

∀r′, ∃m ≥ 1, ∃θ1, ..., θm, ∃j :

• (θ zr) .∗ µ.((x θ1) ȳ)

• (θk zk+r′) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

74 CHAPTER 4. A SEMANTICS OF REALISABILITY

• (θm zm+r′) .∗ µ.(zj ȳ).

(when m = 0, this gives: ∃j : (θ zr) .∗ µ.(zj ȳ), then ((x θ) ȳ) .∗ µ.((x θ′1) ȳ)
and (θ′1 zr) .∗ µ.(zj ȳ) with m′ = 1 and θ′1 = θ. Therefore ((x θ) ȳ) ∈ S).

More general, since this holds for any r′, take r′ = r + 1, then,
∃m ≥ 1, ∃θ1, ..., θm, ∃j :

• (θ zr) .∗ µ.((x θ1) ȳ)

• (θk zk+1+r) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

• (θm zm+1+r) .∗ µ.(zj ȳ).

Therefore, take also m′ = m+1, and the terms θ′1 = θ, θ′2 = θ1, ..., θ′m+1 = θm,
therefore check easily that we have for any fixed r:

∃m′ ≥ 1, ∃θ′1, ..., θ′m′ , ∃j :

• ((x θ) ȳ) .∗ µ.((x θ′1) ȳ)

• (θ′1 zr) .∗ µ.((x θ′2) ȳ)

• (θ′k zk+r) .∗ µ.((x θ′k+1) ȳ) for every 1 ≤ k ≤ m′ − 1

• (θ′m′ zm′+r) .∗ µ.(zj ȳ).

Thus ((x θ) ȳ) ∈ S which implies that ((T x) ȳ) ∈ S. By the fact that T is a
closed term, the λ-variable x and the sequence ȳ are differents from each zi, one
can ensure that the assertion [∃m = 0, ∃j : ((T x) ȳ) .∗ µ.(zj ȳ)] can not hold.
Then for r = 0, ∃m ≥ 1,∃θ1, ..., θm,∃j such that:

• ((T x) ȳ) .∗ µ.((x θ1) ȳ)

• (θk zk) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

• (θm zm) .∗ µ.(zj ȳ) for a certain 1 ≤ j ≤ m.

�

4.4.3 Terms of type P ∨ ¬P “Tertium non datur”

Example 4.4.3 Let W = µb.(b ω1µa.(b ω2λy.(a y))). We have ` W : P ∨ ¬P .
Let x1, x2, v1 be λ-variables, u1, u2 terms and t̄ ∈ E<ω. We have:
(W [x1.u1, x2.u2]) .∗ µb.(b u1 [x1 := θ1

1])
(θ1

1 t̄) .∗ µa.(b u2 [x2 := θ2
2])

(θ2
2 v1) .∗ (a(v1 t̄))

where θ1
1 = µa.(b (ω2λy.(a y) [x1.u1, x2.u2])) and θ2

2 = λy.(a (y t̄)).

4.4. THE OPERATIONAL BEHAVIORS OF SOME TYPED TERMS 75

Remark 4.4.3 The term W allows to modelizing the try...with... instruction
in the Caml programming language.

The following theorem gives the behavior of all terms with type P ∨ ¬P .

Theorem 4.4.3 Let T be a closed term of type P ∨¬P , then for each λ-variable
x1, x2, for each term u1, u2, for each sequence of sequences of λ-variables (ȳi)i∈N∗,
for each sequence of λ-variables (zi)i∈N∗ such that: x1 and x2 are differents from
any zi and from any element yi of any sequence ȳi and such that any variable
zi and any variable yi of any sequence ȳi are not free in u1 or u2. There exist
m ∈ N∗ and terms θj

1, ..., θ
j
m 1 ≤ j ≤ 2 such that we have:

• (T [x1.u1, x2.u2]) .∗ µ.uj[xj := θj
1]

• (θ1
k ȳk) .∗ µ.uj[xj := θj

k+1] for all 1 ≤ k ≤ m− 1

• (θ2
k zk) .∗ µ.uj[xj := θj

k+1] for all 1 ≤ k ≤ m− 1

• (θ1
mȳm) .∗ µ.(zp ȳq) for a certain 1 ≤ p ≤ m and a certain 1 ≤ q ≤ m

• (θ2
m zm) .∗ µ.(zp ȳq) for a certain 1 ≤ p ≤ m and a certain 1 ≤ q ≤ m

Proof. Let x1, x2, u1, u2, (ȳi)i∈N∗ and (zi)i∈N∗ as in the theorem. Then take
S = {t / ∀r ≥ 0, ∃m ≥ 1, ∃ θj

1, ..., θ
j
m(1 ≤ j ≤ 2)∃ l, ∃ s: t .∗ µ.uj[xj := θj

1],

(θ1
k ȳk+r) .∗ µ.uj[xj := θi

k+1] for all 1 ≤ k ≤ m− 1, (θ2
k zk+r) .∗ µ.uj[xj := θj

k+1]
for all 1 ≤ k ≤ m− 1, (θ1

m ȳm+r) .∗ µ.(zl ȳs) and (θ2
m zm+r) .∗ µ.(zl ȳs) },

take also R = {ȳ1, ..., ȳi, ...} S.

Let us clarify the case m = 0: this corresponds to ∃ l,∃ s : t .∗ µ.(zl ȳs), they

do not exist terms θj
i .

By definition, S is a µ-saturated set. LetM = 〈S;R〉 and anM-interpretation
I such that I(P) = R. By the theorem 4.3.1, T ∈ Rg [R S].

We want to prove that (T [x1.u1, x2.u2]) ∈ S. Then let θ1 ∈ R and θ2 ∈ R
S, it suffices to prove that uj[xj := θj] ∈ S for 1 ≤ j ≤ 2.

Let us check that u1[x1 := θ1] ∈ S: Since θ1 ∈ R, then for any r ≥ 0,
(θ1 ȳr) ∈ S. This gives: ∀r′, ∃m ≥ 1, ∃θ1, ..., θm, ∃l, ∃s :

• (θ1 ȳr) .∗ µ.uj [xj := θj
1]

• (θ1
k ȳk+r′) .∗ µ.uj[xj := θi

k+1] for all 1 ≤ k ≤ m− 1

• (θ2
k zk+r′) .∗ µ.uj[xj := θj

k+1] for all 1 ≤ k ≤ m− 1

• (θ1
m ȳm+r′) .∗ µ.(zl ȳs) and (θ2

m zm+r′) .∗ µ.(zl ȳs)

76 CHAPTER 4. A SEMANTICS OF REALISABILITY

This is true for any r′, hence take r′ = r + 1, we get:

• (θ1 ȳr) .∗ µ.uj [xj := θj
1]

• (θ1
k ȳk+1+r) .∗ µ.uj[xj := θi

k+1] for all 1 ≤ k ≤ m− 1

• (θ2
k zk+1+r) .∗ µ.uj[xj := θj

k+1] for all 1 ≤ k ≤ m− 1

• (θ1
m ȳm+1+r) .∗ µ.(zl ȳs) and (θ2

m zm+1+r) .∗ µ.(zl ȳs)

We process as in the proof of the theorem 4.4.2, take: m′ = m + 1 and

θ1
1
′
= θ1, θj

2

′
= θj

1, ..., θ
j
m′
′
= θj

m, therefore check that:

• u1[x1 := θ1] .∗ µ.uj [xj := θj
1]

• (θ1
1
′
ȳr) .∗ µ.uj [xj := θj

1]

• (θ1
k
′
ȳk+r) .∗ µ.uj[xj := θi

k+1] for all 1 ≤ k ≤ m− 1

• (θ2
k
′
zk+r) .∗ µ.uj[xj := θj

k+1] for all 1 ≤ k ≤ m− 1

• (θ1
m′
′
ȳm′+r) .∗ µ.(zl ȳs) and (θ2

m′
′
zm′+r) .∗ µ.(zl ȳs)

since x1, x2 are differents from any zi and any variable yi of any ȳj, zl and
ȳs do not provide from x1 or x2. For similar reasons since zl and ȳs are not
free in u1 or u2 this implies that 1 ≤ l ≤ m′ and 1 ≤ s ≤ m′.

By a similar way we check that u2[x2 := θ2] ∈ S. �

Bibliography

[1] Y. Andou. Church-Rosser property of simple reduction for full first-order
classical natural deduction. Annals of Pure and Applied Logic 119 (2003)
225-237.

[2] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of Symbolic Logic, vol 68, num
4, pp 1277-1288, 2003.

[3] Ph. De Groote. Strong normalization of classical natural deduction with dis-
junction. In 5th International Conference on Typed Lambda Calculi and
Applications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[4] G. Gentzen. Recherches sur la déduction logique. Press Universitaires de
France, 1955. Traduction et commentaires par R. Feys et J. Ladrière.

[5] J.-L. Krivine. Lambda calcul, types et modèle. Masson, Paris, 1990.

[6] R. Matthes. Non-Strictly Positive Fixed Point for Classical Natural Deduc-
tion. APAL, vol 133, pp. 205-230, 2005.

[7] K. Nakazawa. Confluency and strong normalizability of call-by-value λµ-
calculus. Theoritical Computer Science, vol 290, pp. 429-463. 2003.

[8] K. Nakazawa and M. Tatsuta. Strong normalization proof with CPS-
Translation for the second order classical natural deduction. The Journal
of Symbolic Logic, vol 68, num 3, pp. 851-859. Sept 2003.

[9] K. Nour and K. Saber. A Semantic of Realizability for the Classical Natural
Deduction. Electronic Notes in Theoretical Computer Science, vol 140, pp.31-
39, 2005.

[10] K. Nour and K. Saber. A semantical proof of strong normalization theorem
for full propositional classical natural deduction. Archive for Mathematical
Logic, vol 45, pp.357-364, 2005.

[11] K. Nour and K. Saber. Some properties of the λµ∧∨-calculus. Manuscrit,
2007.

77

78 BIBLIOGRAPHY

[12] K. Nour. Mixed Logic and Storage Operators. Archive for Mathematical
Logic, vol 39, pp. 261-280, 2000.

[13] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural
deduction. Lecture Notes in Artificial Intelligence, 624, Springer Verlag, 1992.

[14] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

Chapter 5

A completeness result for a class
of types

5.1 Introduction

What came to be called the Curry-Howard correspondence has proven to be
a robust technique to study proofs of intuitionistic logic, since it exhibits the
structural bond between this logic and the λ-calculus. T. Griffin’s works [7]
in 1990 allowed to extend this correspondence to the classical logic, which had
several consequences. On basis of this new contribution, the λµ-calculus was
introduced by M. Parigot [19] and [20]. The λµ-calculus is a natural extension of
the λ-calculus which exactly captures the algorithmic content of proofs written
in the second order classical natural deduction system. The typed λµ-calculus
enjoys all the good properties: the subject reduction, the strong normalization
and confluence theorems.

The strong normalization theorem of the second order classical natural deduc-
tion [20] is based on a result known as the correctness lemma, which stipulates
that each term is in the interpretation of its type. This is also based on the notion
of the semantics of realizability. The idea of this semantics consists in associating
to each type a set of terms which realizes it, this method has been very effective
for establishing the strong normalization of type system “à la Tait and Girard”.
J.- Y. Girard used it to give a proof of the strong normalization of its system F ,
method known also as the reducibility candidates, later M. Parigot extended this
method to the classical case and provided a proof of the strong normalization
of the typed λµ-calculus. In a previous work [16], we adapted Parigot’s method
and established a short semantical proof of the strong normalization of classical
natural deduction with disjunction as primitive.

In general all the known semantical proof of strong normalization use a variant
of the reducibility candidates based on a correctness lemma, which has been
important also for characterizing the operational behavior of some typed terms

79

80 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

and this only through their types, as it was done in J.-L. Krivine’s works [12]. This
inspired us also to define a general semantics for the classical natural deduction
in [15] and gave such characterizations.

The question that we can ask now is: “does the correctness lemma have
a converse?”. By this we mean: “can we find a class of types for which the
converse of the correctness lemma (completeness result) holds?”. J.R. Hindley
was the first to study the completeness of simple type system property [8], [9] and
[10]. R. Labib-sami has established in [14] completeness for a class of types in
Girard’s system F known as positive types, and this for a semantics based on the
sets stable under the βη-equivalence. S. Farkh and K. Nour revisited this result,
and generalized it, in fact they proved a refined result by indicating that weak-
head-expansion is sufficient [4]. In [5], they established an other completeness
result for a class of types in Krivine’s system AF2. Recently, F. Kamareddine
and K. Nour improved the result of Hindley, to a system with an intersection
type. Independently, T. Coquand established in [1] by methods using Kripke’s
models, the completeness for the simply typed λ-calculus.

In the present work we dealt with this problem and we prove the complete-
ness for the simply typed λµ-calculus. The semantics that we define here is not
completely different from that of [16] and [15], nevertheless we add a slight but
an indispensable modification to the notion of the µ-saturation. In fact, to show
that each element R of the model can be written in the form R⊥ → S (where
S replaced the set N of strongly normalizable term and satisfied the saturation
property), and under the constraint of the definition of these R imposed by the
completeness side, we are compelled to bring this subtle modification.

Moreover the strong normalization, the semantics of the adequation lemma
allows to give short proofs of theorems describing the computational behavior
of closed typed terms through their types. Nevertheless, the proofs suppose
well known the behaviors, therefore the models are exactly built to satisfy the
required properties. This is not the case of the syntactical proofs, where we guess
the behavior through the type, which is rather constructive, but of an other share
these proofs are more complicated than the semantical ones. In what follows, we
give at each time, both of semantics and syntactical proofs.

This chapter is organized as follows. Section 2 is an introduction to the
simply typed λµ-calculus. In section 3, we define the semantics and prove a
correctness lemma. In Section 4, we give characterizations of some closed typed
terms. Finally, Section 5 is devoted to the completeness result.

5.2 The simply typed λµ-calculus

Definition 5.2.1 1. Let X and A be two infinite sets of disjoint alphabets
for distinguiching λ-variables and µ-variables. The λµ-terms are given by
the following grammar:

5.2. THE SIMPLY TYPED λµ-CALCULUS 81

T :=X | λX .T | (T T) | µA.T | (A T)

2. Types are formulas of the propositional logic built from the infinite set of
propositional variables P = {X,Y, Z, ...} and a constant of type ⊥, using
the connector →.

3. As usual we denote by ¬A the formula A →⊥. Let A1, A2, ..., An, A be types,
we denote the type A1 → (A2 → (... → (An → A)...)) by A1, A2, ..., An → A.

4. Proofs are presented in natural deduction system with two conclusions, such
that formulas in the left of ` are indexed by λ-variables and those in right
of ` are indexed by µ-variables, except one which is indexed by a term.

5. Let t be a λµ-term, A a type, Γ = {xi : Ai}1≤i≤n and ∆ = {aj : Bj}1≤j≤m,
using the following rules, we will define “t typed with type A in the contexts
Γ and ∆” and we denote it Γ ` t : A ; ∆.

Γ ` xi : Ai ; ∆
ax for 1 ≤ i ≤ n.

Γ, x : A ` t : B; ∆

Γ ` λx.t : A → B; ∆
→i

Γ ` u : A → B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e

Γ ` t :⊥; ∆, a : A

Γ ` µa.t : A; ∆
µ

Γ ` t : A; ∆, a : A

Γ ` (a t) :⊥; ∆, a : A
⊥

We denote this typed system by Sµ.

6. The basic reduction rules are β and µ reductions.

• (λx.u v) .β u[x := v]

• (µa.u v) .µ µa.u[a :=∗ v]

where u[a :=∗ v] is obtained from u by replacing inductively each sub-
term in the form (a w) in u by (a (w v)).

7. We denote t . t′ if t is reduced to t′ by one of the rules given above. As
usual .∗ denotes the reflexive transitive closure of ., and ' the equivalence
relation induced by .∗.

We have the following results (for more lecture, see [20]).

Theorem 5.2.1 (Confluence result) If t .∗ t1 and t .∗ t2, then there exists t3
such that t1 .∗ t3 and t2 .∗ t3

82 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Theorem 5.2.2 (Subject reduction) If Γ ` t : A; ∆ and t .∗ t′ then Γ ` t′ :
A; ∆.

Theorem 5.2.3 (Strong normalization) If Γ ` t : A; ∆, then t is strongly
normalizable.

Definition 5.2.2 1. Let t be a term and v̄ a finite sequence of terms (the
empty sequence is denoted by ∅), then, the term tv̄ is defined by (t ∅) = t
and (t uū) = ((t u) ū).

2. Let t, u1, ..., un be terms and v̄1, ..., v̄m finite sequences of terms, then

t[(xi := ui)1≤i≤n; (aj :=∗ v̄j)1≤j≤m] is obtained from the term t by replac-
ing inductively each xi by ui and each subterm in the form (aj u) in t by
(aj (u v̄j)).

Lemma 5.2.1 Let σ = [(xi := ui)1≤i≤n; (aj :=∗ v̄j)1≤j≤m] and t, t′ two terms
such that t .∗ t′, then, tσ .∗ t′σ.

Proof. By induction on t. �

5.3 The semantics of Sµ

Definition 5.3.1 1. Let S be a set of terms, we say that S is a saturated set
iff for each terms u and v, if u ∈ S and v .∗ u, then, v ∈ S.

2. Let us take a saturated set of terms S and a set C of an infinite classical
variables (µ-variables). We said that S is C-saturated iff for each t ∈ S and
for each a ∈ C, µa.t ∈ S and (a t) ∈ S.

3. Consider two sets of terms K and L, we define a new set of terms:
K L = {t / (t u) ∈ L, for each u ∈ K}. It is clear that when L is a
saturated set, then K L is also a saturated one.

4. We denote T ∪ A by T ′ and T ′<ω the set of finite sequences of T ′. Let
t be a term and π ∈ T ′<ω, then the term (t π) is defined by (t ∅) = t,
(t π) = ((t u) π′) if π = uπ′ and (t π) = ((a t) π′) if π = aπ′.

5. Let S be a set of terms and X⊆ T ′<ω, then we define X S = {t / (t π) ∈
S, for each π ∈ X}.

Remark 5.3.1 The fact that the application (a t) is denoted by (t a) is not some-
thing new, it is already present in Saurin’s work [22]. Except that for us, it is a
simple notation in order to uniformize the definition of the application. But for
Saurin, it is crucial to obtain the theorem of separation in the λµ-calculus.

5.3. THE SEMANTICS OF Sµ 83

Definition 5.3.2 Let S be a C-saturated set and {Ri}i∈I subsets of terms such
that Ri = XRi

 S for some XRi
⊆ T ′<ω. A model M=〈C,S, {Ri}i∈I〉 is

the smallest set of subsets of terms containing S and Ri, and closed under the
constructor .

Lemma 5.3.1 Let M = 〈C,S, {Ri}i∈I〉 be a model and G ∈ M. There exists a
set XG ⊆ T ′<ω such that G = XG S.

Proof. By induction on G.

- If G = S, take XG = {φ}.

- If G = Ri, take XG = XRi
.

- If G = G1 G2, then, by the induction hypothesis, G2 = XG2 S where
XG2 ⊆ T ′<ω, and take XG = {uv̄ / u ∈ G1 and v̄ ∈ XG2}.

�

Definition 5.3.3 Let M = 〈C,S, {Ri}i∈I〉 be a model and G ∈ M. We define
the set G⊥ = ∪{XG / G = XG S}.

Lemma 5.3.2 Let M = 〈C,S, {Ri}i∈I〉 be a model and G ∈ M. We have
G = G⊥ S.

Proof. This comes from the fact that: if for every j ∈ J , G = XGj
 S,

then, G = (∪j∈JXGj
) S. �

Definition 5.3.4 1. LetM = 〈C,S, {Ri}i∈I〉 be a model. AnM-interpretation
I is an application X 7→ I(X) from the set of propositional variables P in
M which we extend for any formula as follows:

• I(⊥) = S
• I(A → B) = I(A) I(B).

2. For any type A, we denote |A|M=
⋂
{I(A) / I an M-interpretation}.

3. For any type A, |A| =
⋂
{|A|M / M a model}.

4. Let u, v be two terms. The expression v ≈C u means that v is obtained from
u by replacing the free classical variables of u by some others in C, i.e. if
we denote u by u[a1, ..., an] where the ai are the free classical variables of u,
then v will be u[a1 := b1, ..., an := bn] where bi 6= bj for (i 6= j) and bi ∈ C.

Lemma 5.3.3 (Adequation lemma) Let Γ = {xi : Ai}1≤i≤n, ∆ = {aj :
Bj}1≤j≤m, M = 〈C,S, {Ri}i∈I〉 a model, I an M-interpretation, ui ∈ I(Ai),
v̄j ∈ (I(Bj))

⊥, σ = [(xi := ui)1≤i≤n; (aj :=∗ v̄j)1≤j≤m], and u, v two terms such
that v ≈C u. If Γ ` u : A ; ∆, then, vσ ∈ I(A).

84 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Proof. By induction on the derivation, we consider the last used rule.

ax: In this case u = xi = v and A = Ai, then vσ = ui ∈ I(A).

→i: In this case u = λx.u1 and A = B → C such that Γ, x : B ` u1 : C ; ∆.
Then v = λx.v1 and v1 ≈C u1. By the induction hypothesis, v1σ[x := w] ∈
I(C) for each w ∈ I(B), hence (λx.v1σ w) ∈ I(C), therefore λx.v1σ ∈
I(B) I(C). Finally vσ ∈ I(A).

→e: In this case u = (u1 u2), Γ ` u1 : B → A ; ∆ and Γ ` u2 : B ; ∆. We have
also v = (v1 v2) where v1 ≈C u1 and v2 ≈C v1. By the induction hypothesis,
v1σ ∈ I(B) I(A) and v2σ ∈ I(B), therefore (v1σ v2σ) ∈ I(A), this
implies that vσ ∈ I(A).

µ: In this case u = µa.u1, then v = µb.v1 where v1 ≈C u1 and b is a new
variable which belongs to C and not free in u1 (there is always such variable
because C is infinite). Let v̄ ∈ (I(A))⊥. By the induction hypothesis,
v1σ[b :=∗ v̄] ∈ S, and, by the definition of S, we have, µb.v1σ[b :=∗ v̄] ∈ S,
since (µb.v1σ v̄) .∗ µb.v1σ[b :=∗ v̄], then, µb.v1σ ∈ I(A), i.e, vσ ∈ I(A).

⊥: In this case u = (a u1), then, v = (b v1) where v1 ≈C u1 such that the free
variable a was repalced by b in u1 and b /∈ Fv(u1) is new variable which
belongs to C. By the induction hypothesis, v1σ[b :=∗ v̄] ∈ I(A) where
v̄ ∈ (I(A))⊥, hence (v1σ[b :=∗ v̄] v̄) ∈ S. Therefore, by the definition of S,
(b (v1σ[b :=∗ v̄] v̄)) ∈ S, and finally vσ ∈ S.

�

Corollary 5.3.1 Let A be a type and t a closed term. If ` t : A, then, t ∈ |A|.

Proof. Let M be a model and I an M-interpretation. Since ` t : A, then,
by the adequation lemma, t ∈ I(A). This is true for any M model and for any
M-interpretation I, therefore t ∈ |A|. �

5.4 Characterization of some typed terms

We start this section by adding to our system new propositional constants to
obtain a new parametrized typed system. This will be useful for the proof of
the lemma 5.4.3, which allows us to provide the syntactical proofs concerning the
characterization of some typed terms.

5.4. CHARACTERIZATION OF SOME TYPED TERMS 85

5.4.1 The system Sµ
Ō

Definition 5.4.1 Let Ō = O1, ..., On be a sequence of new propositional con-
stants.

1. We said that Ō is different from ⊥ iff each Oi is different from ⊥.

2. A type A is said to be ending by Ō iff A is obtained by the following rules:

• Each Oi ends by Ō.

• If B ends by Ō, then, A → B ends by Ō.

3. The typed system Sµ
Ō is the system Sµ at which we add the following con-

ditions:

• The rules ax is replaced by

Γ `Ō xi : Ai ; ∆
ax

where ∆ does not contain declarations of the form a : C such that C
ends by Ō.

• The rules →e is replaced by

Γ `Ō u : A → B; ∆ Γ `Ō v : A; ∆

Γ `Ō (u v) : B; ∆
→e

where B is not ending by Ō.

Remark 5.4.1 It is obvious that Sµ
Ō can be seen as a subsystem of Sµ where the

syntax of formulas is extended by the new constants Ō, therefore in the remain-
der of this work we consider that, any typed term in the system Sµ

Ō is strongly
normalizable.

Lemma 5.4.1 If Γ ` t : A ; ∆ then Γ `Ō t : A[X := F] ; ∆ where F does not
end by Ō.

Proof. By induction on the derivation.
�

The following lemma stipulates that the new system Sµ
Ō is closed under

reduction (subject reduction).

Lemma 5.4.2 If Γ `Ō t : A ; ∆ and t .∗ t′, then Γ `Ō t′ : A ; ∆

Proof. By induction on the length of the reduction t.∗ t′. It suffices to check
this result for t .β t′ and t .µ t′. We process by induction on t. �

86 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Lemma 5.4.3 Let Γ = {xi : Ai}1≤i≤n, ∆ = {aj : Bj}1≤j≤m Ō = O1, ..., Ok

different from ⊥ and 1 ≤ l ≤ k. If Γ `Ō t : Ol ; ∆, then, t = xj for certain
1 ≤ j ≤ n and Aj = Ol.

Proof. By induction on the derivation.

ax: Then, Γ ` xj : Aj; ∆, hence t = xj and Ol = Aj

→i: A contradiction because this implies that Ol is not atomic.

→e: This implies that t = (u v), then, Γ ` u : A → Ol; ∆, therefore this gives a
contradiction with the restriction on the rule →e since Ol ends by Ō.

µ: Then, t = µa.t1 and Γ ` t1 :⊥; ∆′, a : Ol, where ∆ = ∆′ ∪ {a : Ol},
therefore this gives a contradiction with the fact that ∆ does not contain
declarations in the form aj : Oj.

⊥: A contradiction because Ol is different from ⊥.

�
We give now some applications of the adequation lemma.

Definition 5.4.2 Let t be a term. We denote Mt the smallest set containing t
such that: if u ∈ Mt and a ∈ A, then µa.u ∈ Mt and (a u) ∈ Mt. Each element
of Mt is denoted µ.t. For example, the term µa.µb.(a (b (µc.(a µd.t)))) is denoted
by µ.t.

5.4.2 Terms of type ⊥→ X

Example 5.4.1 Let T1 = λz.µa.z and T2 = λz.µb.(b µa.z), we have
` Ti :⊥→ X.

Let then, x be λ-variable and ȳ a finite sequence of λ-variables, we have:

• (T1 x) ȳ .∗ µa.x

• (T2 x) ȳ .∗ µb.(b µa.x)

The operational behavior of closed terms with the type ⊥→ X is given in the
following theorem.

Theorem 5.4.1 Let T be a closed term of type ⊥→ X, then, for each λ-variable
x and for each finite sequence of λ-variables ȳ, (T x) ȳ .∗ µ.x

5.4. CHARACTERIZATION OF SOME TYPED TERMS 87

Proof.

Semantical proof:
Let x be a λ-variable and ȳ a finite sequence of λ-variables. Let C = A and

take S = {t / t.∗µ.x} and R = {ȳ} S. It is clear that S is C-saturated set and
x ∈ S. So let M =< C,S;R > and take I the interpretation which at X asso-
ciates I(X) = R. By the adequation lemma, T ∈ I(⊥→ X), then, T ∈ S R,
i.e, T ∈ S ({ȳ} S), therefore (T x) ∈ {ȳ} S, and (T x) ȳ ∈ S. Finally
(T x) ȳ .∗ µ.x.

Syntactical proof:

We can give also a syntactical proof of this result. Let Ō = O1, ..., On be a
sequence of new constants different from ⊥, A = O1, ..., On → ⊥ and ȳ = y1...yn

a sequence of λ-variables. By the lemma 5.4.1, `Ō T :⊥→ A,, then, x :⊥, (yi :
Oi)1≤i≤n `Ō (T x)ȳ :⊥, hence (T x)ȳ .∗ τ . It suffices to prove that, if τ is a
normal term and x : ⊥, (yi : Oi)1≤i≤n `Ō τ : ⊥ ; (bj : ⊥)1≤j≤m, then τ = µ.x.
This can be proved easily by induction on τ . �

Corollary 5.4.1 Let T be a closed term of type (⊥→ X), then, for each term
u and for each v̄ ∈ T <ω, (T u) v̄ .∗ µ.u

Proof. Immediately from the previous theorem and the lemma 5.2.1. �

Remark 5.4.2 Let ` T : ⊥ → X, the term (T u) modelizes an instruction like
exit(u) (exit is to be understood as in the C programming language). In the
reduction of a term, if the sub-term (T u) appears in head position (the term has
the form ((T u) v̄)), then after some reductions, we obtain u as result.

5.4.3 Terms of type (¬X → X) → X

Example 5.4.2 Let the terms T1 = λz.µa.a(z λy.(a y))
and T2 = λz.µa.(a (z (λs.a(z λy.(a s))))),
we have ` Ti : (¬X → X) → X.

Let x, z1, z2 be λ-variables and ȳ a finite sequence of λ-variables, we have:

• (T1 x) ȳ .∗ µa.a ((x θ1) ȳ) and (θ1 z1) .∗ a(z1 ȳ).

• (T2 x) ȳ .∗ µa.((a((x θ1) ȳ)) ȳ), (θ1 z1) .∗ (a ((x θ2) ȳ)), and (θ2 z2) .∗

(a (z1 ȳ)).

The following theorem describes the computational behavior of closed terms
with type (¬X → X) → X.

88 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Theorem 5.4.2 Let T be a closed term of type (¬X → X) → X, then, for
each λ-variable x, for each finite sequence of λ-variables ȳ and for each sequence
of λ-variables (zi)i∈N∗ such that: x, yj are differents from any zi. There exist
m ∈ N∗ and terms θ1, ..., θm, such that we have:

• (T x)ȳ .∗ µ.(x θ1) ȳ

• (θk zk) .∗ µ.(x θk+1) ȳ for all 1 ≤ k ≤ m− 1

• (θm zm) .∗ µ.(zl ȳ) for a certain 1 ≤ l ≤ m

Proof.

Semantical proof:
Let x be a λ-variable, ȳ a finite sequence of λ-variables and (zi)i∈N∗ a se-

quence of λ-variables as in the theorem. Take S = {t / ∀ r ≥ 0, ∃m ≥
0, ∃ θ1, ..., θm, ∃ j: t .∗ µ.((x θ1) ȳ), (θk zk+r) .∗ µ.((x θk+1) ȳ) for every 1 ≤
k ≤ m− 1 and (θm zm+r) .∗ µ.(zj ȳ)} and R = {ȳ} S.

It is important to clarify the case m = 0 in the definition of S, this corre-
sponds exaclty to ∃ j: t .∗ µ.(zj ȳ), thus they do not exist terms θi.

It is clear that S is a µ-saturated set. LetM = 〈S;R〉 and anM-interpretation
I such that I(X) = R. By the theorem 5.3.1, T ∈ [(R S) R] ({ȳ} S).
Let us check that x ∈ (R S) R. For this, we take θ ∈ (R S) and we
prove that (x θ) ∈ R, i.e, ((x θ) ȳ) ∈ S. By the definition of S, (zr ȳ) ∈ S for
each r ≥ 0, hence zr ∈ R. Therefore (θ zr) ∈ S, so we have:

∀r′, ∃m ≥ 1, ∃θ1, ..., θm, ∃j :

• (θ zr) .∗ µ.((x θ1) ȳ)

• (θk zk+r′) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

• (θm zm+r′) .∗ µ.(zj ȳ).

(when m = 0, this gives: ∃j : (θ zr) .∗ µ.(zj ȳ), then ((x θ) ȳ) .∗ µ.((x θ′1) ȳ)
and (θ′1 zr) .∗ µ.(zj ȳ) with m′ = 1 and θ′1 = θ. Therefore ((x θ) ȳ) ∈ S).

More general, since this holds for any r′, take r′ = r + 1, then
∃m ≥ 1, ∃θ1, ..., θm, ∃j :

• (θ zr) .∗ µ.((x θ1) ȳ)

• (θk zk+1+r) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

5.4. CHARACTERIZATION OF SOME TYPED TERMS 89

• (θm zm+1+r) .∗ µ.(zj ȳ).

Therefore take also m′ = m+1, and the terms θ′1 = θ, θ′2 = θ1, ..., θ′m+1 = θm,
hence check easily that we have for any fixed r:

∃m′ ≥ 1, ∃θ′1, ..., θ′m′ , ∃j :

• ((x θ) ȳ) .∗ µ.((x θ′1) ȳ)

• (θ′1 zr) .∗ µ.((x θ′2) ȳ)

• (θ′k zk+r) .∗ µ.((x θ′k+1) ȳ) for every 1 ≤ k ≤ m′ − 1

• (θ′m′ zm′+r) .∗ µ.(zj ȳ).

Thus ((x θ) ȳ) ∈ S which implies that ((T x) ȳ) ∈ S. By the fact that T is a
closed term, the λ-variable x and the sequence ȳ are differents from each zi, one
can ensure that the assertion [∃m = 0, ∃j : ((T x) ȳ) .∗ µ.(zj ȳ)] can not hold.
Then for r = 0, ∃m ≥ 1,∃θ1, ..., θm,∃j such that:

• ((T x) ȳ) .∗ µ.((x θ1) ȳ)

• (θk zk) .∗ µ.((x θk+1) ȳ) for every 1 ≤ k ≤ m− 1

• (θm zm) .∗ µ.(zj ȳ) for a certain 1 ≤ j ≤ m.

Syntactical proof:

We give now a syntactical proof of this result. Let Ō = O1, ..., On be new
constants different from ⊥, A = O1, ..., On → ⊥ and ȳ = y1...yn a sequence of
variables. By the lemma 5.4.1 `Ō T : (¬A → A) → A, then, x : ¬A → A, (yi :
Oi)1≤i≤n `Ō (T x)ȳ : ⊥. Therefore, (T x)ȳ .∗ τ , where τ is a normal term and
x : ¬A → A, (yi : Oi)1≤i≤n `Ō τ : ⊥.

Following the form of τ we have only one case to examine, the others give
always contradictions. This case is τ = µ.(x U1) t1...tn where U1, t1, ..., tn are
normal terms, x : ¬A → A, (yi : Oi)1≤i≤n `Ō U1 : ¬A ; (bj : ⊥)1≤i≤m and for all
1 ≤ k ≤ n, x : ¬A → A, (yi : Oi)1≤i≤n `Ō tk : Ok ; (bj : ⊥)1≤j≤m. We deduce, by
lemma 5.4.3, that, for all 1 ≤ k ≤ n, tk = yk.

We prove, by induction and using the lemma 5.4.3, that if x : ¬A → A, (yi :
Oi)1≤i≤n, (zk : A)1≤k≤i−1 `Ō Ui : ¬A ; (bj : ⊥)1≤j≤m, then

(Ui zi) .∗ µ.(x Ui+1)ȳ and x : ¬A → A, (yi : Oi)1≤i≤n, (zk : A)1≤k≤i `Ō Ui+1 :
¬A ; (bj : ⊥)1≤j≤m

or
∃j : (1 ≤ j ≤ i), such that: (Ui zi) .∗ µ.zj ȳ

The sequence (Ui)i≥1 is not infinite, else the term ((T λx.µa.(x z))ȳ) is not nor-
malizable, which is impossible, since
x : ¬A, z : A, (yi : Oi)1≤i≤n `Ō ((T λx.µa.(x z))ȳ) : ⊥. �

90 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Corollary 5.4.2 Let T be a closed term of type (¬X → X) → X, then, for
each term u, for each sequence w̄ ∈ T <ω and for each sequence (vi)i∈N∗ of terms.
There exist m ∈ N and terms θ1, ..., θm such that we have:

• (T u)w̄ .∗ µ.(u θ1) w̄

• (θi vi) .∗ µ.(u θi+1) w̄ for all 1 ≤ i ≤ m− 1

• (θm vm) .∗ µ.(vi w̄) for some 1 ≤ i ≤ m

Proof. Immediately from the previous theorem and the lemma 5.2.1. �

Remark 5.4.3 Let ` T : (¬X → X) → X, the term T allows to modelizing the
Call/cc instruction in the Scheme functional programming language.

5.5 The completeness result

The following part is devoted to the construction of the completeness model.

Definition 5.5.1 (and notation)

1. Let Ω = {xi / i ∈ N} ∪ {aj / j ∈ N} an enumeration of infinite sets of λ
and µ-variables.

2. Let Ω1 = {Ai / i ∈ N} an enumeration of all types where each type comes
an infinite times.

3. Let Ω2 = {Bj / j ∈ N} an enumeration of all types where ⊥ comes an
infinite times.

4. We define G = {xi : Ai / i ∈ N} and D = {aj : Bj / j ∈ N}.

5. Let u be a term, such that Fv(u) ⊆ Ω, the contexts Gu (resp Du) are defined
as the restrictions of G (resp D) at the declarations containing the variables
of Fv(u).

6. The notation G ` u : C; D means that Gu ` u : C; Du, we denote G `∗ u :
C; D iff it exists a term u′, such that u .∗ u′ and G ` u′ : C; D.

7. Let C = {aj / (aj :⊥) ∈ D} and S = {t / G `∗ t :⊥; D}. For each
propositional variable X we define a set of terms RX = {t / G `∗ t : X; D}.

Lemma 5.5.1 1. S is a C-saturated set.

2. The sets RX are saturated.

3. For each propositional variable X, RX = {aj / aj : X ∈ D} S.

5.5. THE COMPLETENESS RESULT 91

4. M = 〈C, S, (RX)X∈P〉 is a model

Proof. Easy. �

Remark 5.5.1 Observe that the model M is parametrized by the infinite sets of
variables and the enumerations.

Definition 5.5.2 We define the M-interpretation I as follows:

• I(⊥) = S.

• I(X) = RX for each propositional variable.

Lemma 5.5.2 Let y be a λ-variable, σ = [(xi := y)1≤i≤n, (ai :=∗ y)1≤j≤m] and
t a term.

1. If (tσ y) is normalizable, then t is normalizable.

2. If tσ is normalizable, then t is normalizable.

Proof. By a simultaneous induction on t, we use the standardization theorem
of the λµ-calculus [21].

1. We examine the case where t = λx.u. Then (tσ y) = (λx.uσ y) is nor-
malizable, this implies that uσ[x := y] is normalizable, hence by (2), u is
normalizable, therefore t is normalizable too.

2. We examine the case where t = (a u). Then tσ = (a (uσ y)) is normalizable,
this implies that (uσ y) is normalizable, hence by (1), u is normalizable,
therfore t is normalizable too.

�

Corollary 5.5.1 Let t by a term and y a λ-variable. If (t y) is normalizable,
then, t is normalizable also.

Proof. Immediately from the previous lemma. �

Lemma 5.5.3 Let t and τ be two normal terms, y a λ-variable such that y /∈
Fv(t), (t y) .∗ τ , A and B types, and Γ, y : A ` τ : B; ∆. Then Γ ` t : A →
B; ∆.

Proof. See the appendix. �

Lemma 5.5.4 Let A be a type and t a term.

1. If G `∗ t : A ; D, then t ∈ I(A).

92 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

2. If t ∈ I(A), then G `∗ t : A ; D.

Proof. By a simultaneous induction on the type A.

Proof of (1)

1. If A = X or ⊥, the result is immediately from the definition of I.

2. Let A = B → C and G `∗ t : A ; D, then t .∗ t′ such that: G ` t′ : B →
C ; D. Let u ∈ I(B). By the induction hypothesis (2), we have G `∗ u :
B ; D, this implies that u.∗u′ and G ` u′ : B ; D. Hence G ` (t′ u′) : C ; D,
so, by the fact that (t u) .∗ (t′ u′), we have G `∗ (t u) : C ; D, then, by the
induction hypothesis (1), (t u) ∈ I(C). Therefore t ∈ I(B → C).

Proof of (2)

1. If A = X or ⊥, the result is immediately from the definition of I.

2. Let A = B → C, t ∈ I(B) I(C) and y be a λ- variable such y 6∈ Fv(t)
and (y : B) ∈ G. We have y : B ` y : B, hence, by the induction
hypothesis (1), y ∈ I(B), then, (t y) ∈ I(C). By the induction hypothesis
(2), G `∗ (t y) : C ; D, then (t y) .∗ t′ such that G ` t′ : C ; D and, by the
corollary 5.5.1, t is a normalizable term. The normal form of t can be either
(x u1) u2...un either λx.u or µa.u (the case (a u) gives a contradiction for
typing reasons).

(a) If t .∗ (x u1) u2...un with ui normal terms, then G ` (x u1) u2...uny :
C ; D, x : E1, E2, ..., En → (B → C) ∈ G, G ` ui : Ei ; D and
G ` y : B ; D. Therefore G ` (x u1) u2...un : B → C ; D, and finally
G `∗ t : B → C ; D.

(b) If t .∗ λx.u where u is a normal term, then, since G contains an
infinite number of declarations for each type, let y be a λ-variable
such that y : B ∈ G and y /∈ Fv(u). We have (t y) .∗ u[x := y]
and G ` u[x := y] : C ; D, hence G ` λy.u[x := y] : B → C ; D
and, by the fact that y /∈ Fv(u), λy.u[x := y] = λx.u. Therefore
G ` λx.u : B → C ; D, and finally G `∗ t : B → C ; D.

(c) If t .∗ µa.u where u is a normal term, then let y be a λ-variable such
that y : B ∈ G and y /∈ Fv(u). We have (t y) .∗ µa.u[a :=∗ y] .∗ µa.u′

where u′ is the normal form of u[a :=∗ y], so we have G , y : B ` µa.u′ :
C ; D. By the lemma 5.5.3, we obtain G ` µa.u : B → C ; D, and
finally G `∗ t : B → C ; D.

�

5.6. FUTURE WORK 93

Theorem 5.5.1 Let A be a type and t a term. We have t ∈ |A| iff t .∗ t′ and
` t′ : A.

Proof. ⇐) By the lemma 5.3.3.
⇒) We can suppose that the sets G and D do not contain declarations for the

free variables of t. If t ∈ |A|, then t ∈ I(A), hence by (1) of the lemma 5.5.4 and
by the fact that Fv(t′) ⊆ Fv(t), we have t .∗ t′ and ` t′ : A. �

Corollary 5.5.2 Let A be a type and t a term.

1. If t ∈ |A|, then t is normalizable and t ' t′, where t′ is a closed term.

2. |A| is closed under equivalence (i.e. if t ∈ |A| and t ' t′, then, t′ ∈ |A|).

Proof. (1) is a direct consequence of theorem 5.5.1. (2) can be deduced
from theorem 5.5.1 and the lemma 5.3.3. �

5.6 Future work

Through this work, we have seen that the propositional types of the system Sµ

are complete for the semantics defined previously. But what about the types of
the second order typed λµ-calclus? We know that, for the system F , the ∀+-types
(types with positive quatifiers) are complete for a realizability semantics [14] and
[4]. But for the classical system FC , we cannot generalize this result. We check
easily that, if t = µa.(a λy1λzµb.(a λy2λx.z)) and A = ∀Y {Y → ∀X(X → X)},
then t ∈ |A|, but t does not have the type A. We need to add more restrictions
on the positions of the quantifier ∀ in the ∀+-types to obtain a smallest class
which we suppose that it can be proved complete. The problem is not the same
when we consider the propositional classical natural deduction system with the
connectives ∧ and ∨. The term µa.(a 〈µb.(a 〈λx.x, µc.(b λy.λz.z)〉), λx.x〉) be-
longs to the interpretation of the type A = (X → X) ∧ (X → X) [15] and [16]
but it does not have the type A. The treatment of the disjunction is even hard,
so we think that to circumventing this difficulties, and if we hope a completeness
theorem, we have to modified the semantics.

We give here a brief details of the precedent paragraph.

5.6.1 Second order typed λµ-calculus

Definition 5.6.1 1. Types are formulas of second order propositional logic
built from the set of propositional variables P: X, Y, Z, ... and a constant of
type ⊥ using the connector → and the quantifier ∀. As usual we denote by
¬A the formula A →⊥.

94 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

2. The typing rules are those of Sµ at which we add the rules:

Γ ` t : A; ∆

Γ ` t : ∀XA; ∆
∀i ∗

Γ ` t : ∀XA; ∆

Γ ` t : A[X := F]; ∆
∀e ∗ ∗

* X is not free in Γ and ∆.
** For any type F .

3. The basic reduction rules are β and µ reductions.

We denote this typed system by FC.

In addition to the strong normalisation and confulence properties, FC enjoys
also the subject reduction property [20]:

Theorem 5.6.1 (Subject reduction) If Γ ` t : A; ∆ and t .∗ t′ then Γ ` t′ :
A; ∆.

Remark 5.6.1 We check that we get a similar results of those of the section
5.3, we have just to consider that:

1. The C-saturated set S of the definition 5.3.2 is also closed under arbitrary
intersection.

2. The definition of an M-interpretation I is extended as follows:
I(∀XA) = ∩G∈M{IX

G (A)}, where IX
G is the M-interpretation such that:

IX
G (X) = G and IX

G (Y) = I(Y) for Y 6= X.

5.6.2 ∀+ types and D+ types

Definition 5.6.2 The ∀+ (resp. ∀−) types are defined as follows :

• ∀− = ⊥ | X | ∀+ → ∀−.

• ∀+ = ⊥ | X | ∀− → ∀+ | ∀X∀+, where X is free in the type ∀+.

The class of the ∀+ types satisfies the completeness result in the intuitionistic
logic coded by the terms of the λ-calculus. But in the case of the classical logic
according to the previous semantics, we do not have such a result, here is a
counter example.

Lemma 5.6.1 Let the term t = µa.(a λy1.λz.µb.(a λy2.λx.z)), and the types
Y, Id = X → X and Id′ = ∀X(X → X). Then,

1. y : Y ` (t y) : Id′ and t ∈ |Y → Id′|.

2. But, 0 t : Y → Id′.

5.6. FUTURE WORK 95

3. Nevertheless, ` t : Y → Id.

Proof. 1) and 3) : Easy.
2) Else suppose that ` t : Y → Id′, then,
` λy1.λz.µb.(a λy2.λx.z) : Y → ∀X(X → X); a : Y → ∀X(X → X), hence
y1 : Y ` λz.µb.(a λy2.λx.z) : ∀X(X → X); a : Y → ∀X(X → X), therefore
y1 : Y, z : X ` µb.(a λy2.λx.z) : Y → ∀X(X → X); a : Y → ∀X(X → X). This
implies that :
y1 : Y, z : X ` λy2.λx.z : Y → ∀X(X → X); a : Y → ∀X(X → X), b : X, finally
y1 : Y, z : X, y2 : Y ` λx.z : Y → ∀X(X → X); a : Y → ∀X(X → X), b : X.
This gives a contradiction since we can not obtain a such derivation using and
respecting the rule ∀i. �

This counter example let us think that we need some restrictions on the ∀+

types to obtain a completeness result for another class of types, which we denote
by D+.

Definition 5.6.3 The D+, D++ and D− types are defined as follows:

• D− = ⊥ | X | D+ → D−.

• D++ = ⊥ | X | D− → D++.

• D+ = D++| ∀XD+, where X is free in the type D+

Intuitively a D+ type is type which does not contain quantifiers in the right of
the arrows.

J.-L. Krivine gave a syntactical definition of the main data type, which is the
following:

Definition 5.6.4 (Data types) A data type is a formula D defined inductively
as follows: D ≡ ∀X{∆1[X], ..., ∆n[X] → X}, where for each 1 ≤ j ≤ n
we have: ∆j[X] ≡ {Dj

1, ..., D
j
m, X, ..., X → X}, and where the Dj

i are data types.

Example 5.6.1 Here are the main basic data types:

• The boolean types: Bool = ∀X{X, X → X}.

• The type of integers: Nat = ∀X{(X → X), X → X}.

• The type of list (finite sequences) of elements of a given data type U :

LU = ∀X{(U, X → X, X → X}.

Lemma 5.6.2 The class of data types is included in the class of the D+ types.

Proof. Let D ≡ ∀X{∆1[X], ..., ∆n[X] → X} be a data type. It suffices to
prove that each ∆i ∈ D−. Let ∆i = {Di

1, ..., D
i
m, X, ..., X → X}. It suffices to

prove that Di ∈ D+, which is true by the induction hypothesis. �

96 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

5.6.3 The normal typing

Using the methodes seen in the subsection 5.4.1, which we have to develop more,
a proof of the completeness have to pass by a similar result to the ”lemma” 5.6.4
(a proof of this lemma is one of our perspectives).

Definition 5.6.5 1. A ∀-cut (resp µ∀-cut) is a succession of ∀i (resp µ) and
∀e rules.

2. A ∀-normal derivation (resp µ∀-normal derivation) is a derivation which
does not contain ∀-cuts (resp µ∀-cut).

3. A normal derivation is a derivation which is ∀-normal and µ∀-normal.

4. A height of a derivation is the number of the rules used in this derivation.

Notation 5.6.1 Let X̄ = X1, ..., Xn be a finite sequence of propositional vari-
ables, we denote by ∀X̄A the formula ∀X1...∀XnA. We said that X̄ is not free
in A iff Xi(1 ≤ i ≤ n) is not free in A. If F̄ = F1, ..., Fn is a finite sequence of
formulas, we denote by A[X̄ := F̄] the formula A[X1 := F1]...[Xn := Fn].

Lemma 5.6.3 If Γ ` t : A ; ∆, then, for each sequence of formulas F̄ :
Γ[X̄ := F̄] ` t : A[X̄ := F̄] ; ∆[X̄ := F̄].

Proof. By induction on the derivation. �

Lemma 5.6.4 Each derivation can be supposed normal.

Proof.

Idea of a possible proof: This lemma can be deduced as a corollary of a result
of strong normalisation of the union of the ∀-cut and µ∀-cut. This result of
termination is still under studies. �

5.7. APPENDIX 97

5.7 Appendix

This part is devoted to the proof of the lemma 5.5.3.

Notation 5.7.1 Let y be a λ-variable. The expression u .βy v (resp u .µy v)
means that we reduce in u only a β (resp µ)-redex where y is the argument, i.e,
a redex in the form (λz.u y) (resp (µb.u y)). We denote by .y the union of .βy

and .µy and .∗y (resp .∗βy, .∗µy) the transitive and reflexive closure of .y (resp .βy,
.µy).

Lemma 5.7.1 Let t be a normal term, σ = [(ai :=∗ y)1≤i≤n] and τ the normal
form of tσ, then, tσ .∗y τ .

Proof. By induction on the normal term t, the important case is the one
where t = (ai u) and u a normal term, the others are direct consequences of
the induction hypothesis. Let us examine the different forms of the normal term
u, here there are two important subcases u = λx.v and u = µb.v with v a
normal term (these are the two cases where there is a creation of redexes after
the substitution).

1. If u = λx.v, then, uσ = λx.vσ and tσ = (ai (λx.vσ y)) .βy (ai vσ[x := y]).
By the induction hypothesis, vσ .∗y v′ where v′ is the normal form of vσ,
hence (ai vσ[x := y]) .∗y (ai v′[x := y]) which is the normal form of tσ.

2. If u = µb.v, then, uσ = µb.vσ and tσ = (ai (µb.vσ y)) .µy (ai µb.vσ[b :=∗

y]). By the induction hypothesis, vσ[b :=∗ y] is normalizable only with .∗y
reductions, therefore tσ is also normalizable only by .∗y reductions.

�

Lemma 5.7.2 Let t be a normal term, τ the normal form of t[a :=∗ y] and A, B
two types. If Γ , y : A ` τ : B; ∆. Then Γ , y : A ` t[a :=∗ y] : B; ∆.

Proof. By induction on the length of the reduction t[a :=∗ y] .∗y τ . By the
lemma 5.7.1, it suffices to prove the following lemma. �

Lemma 5.7.3 Let τ be a normal term, t a term and A, B two types. If t .βy τ
(resp t .µy τ) and Γ , y : A ` τ : B ; ∆ then Γ , y : A ` t : B ; ∆.

Proof. By induction on t, we examine how t .βy τ (resp t .µy τ). The proof
is similar to the proof of (2) of the lemma 5.5.4. �

Lemma 5.7.4 Let t be a normal term, y a λ-variable such that y 6∈ Fv(t),
σ = [a :=∗ y] and A, B, C types. If Γ , y : A ` tσ : B ; ∆, a : C, then, Γ ` t :
B ; ∆, a : A → C.

98 CHAPTER 5. A COMPLETENESS RESULT FOR A CLASS OF TYPES

Proof. By induction on t.

1. t = (x u1) u2...un, then, tσ = (x u1σ) u2σ...unσ and Γ , y : A ` (x u1σ) u2σ...
unσ : B ; ∆, a : C. Therefore x : E1, ..., En → B ∈ Γ and Γ, y : A ` uiσ :
Ei; ∆, a : C. By the induction hypothesis, we have Γ ` uiσ : Ei; ∆, a : A →
C, hence Γ ` (x u1) u2...un : B ; ∆, a : A → C.

2. t = λx.u, then, tσ = λx.uσ and Γ , y : A ` λx.uσ : B; ∆, a : C, this implies
that B = F → G and Γ , y : A, x : F ` uσ : G; ∆, a : C. By the induction
hypothesis, Γ , x : F ` u : G; ∆, a : A → C, then, Γ ` λx.u : F → G; ∆, a :
A → C, therefore Γ ` λx.u : B; ∆, a : A → C.

3. t = µb.u, then, tσ = µb.uσ and Γ , y : A ` µb.uσ : B ; ∆, a : C, this
implies that Γ, y : A ` uσ :⊥ ; ∆, a : C, b : B. By the induction hypothesis,
Γ ` u :⊥ ; ∆, a : A → C, b : B, therefore Γ ` µb.u : B ; ∆, a : A → C.

4. t = (a u), then tσ = (a (uσ y)) and Γ , y : A ` (a (uσ y)) :⊥ ; ∆, a : C,
this implies that Γ , y : A ` (uσ y) : C ; ∆, a : C and Γ , y : A ` uσ : A →
C ; ∆, a : C. By the induction hypothesis, Γ ` u : A → C ; ∆, a : A → C,
therefore Γ ` (a u) :⊥ ; ∆, a : A → C.

5. t = (b u), then, tσ = (b uσ) and Γ , y : A ` (b uσ) :⊥ ; ∆, a : C, this implies
that Γ , y : A ` uσ : G ; ∆, b : G, a : C. By the induction hypothesis,
Γ ` u : G ; ∆, b : G, a : A → C, therefore Γ ` (b u) :⊥ ; ∆, a : C.

�
Proof.[of lemma 5.5.3] By induction on t, the cases where t = (x u1) u2...un

and t = λx.u are similars to those in the proof of (2) of the lemma 5.5.4. Let
us examine the case where t = µa.u, then (t y) .∗ µa.u[a :=∗ y] .∗ µa.u′ = τ
where u′ is the normal form of u[a :=∗ y]. We have Γ , y : A ` µa.u′ : B; ∆,
then Γ , y : A ` u′ :⊥; ∆, a : B. By the lemma 5.7.1, u[a :=∗ y] .∗y u′, then, by
the lemma 5.7.2, Γ , y : A ` u[a :=∗ y] :⊥; ∆, a : B. Hence by the lemma 5.7.4,
Γ ` u :⊥; ∆, a : A → B and finally Γ ` µa.u : A → B; ∆. �

Bibliography

[1] T. Coquand Completeness theorem and λ-calculus. The 7th International
Conference, TLCA 2005, Nara, Japan, April 21-23, 2005, pp. 1-9, volume
3461/2005.

[2] R. David and K. Nour. A short proof of the strong normalization of the
simply typed λµ-calculus. Schedae Informaticae vol 12, pp. 27-33, 2003.

[3] R. David. Une preuve simple de résultats classiques en λ-calcul. Compte
Rendu de l’Académie des Sciences. Paris, Tome 320, Série 1, pp. 1401-1406,
1995.

[4] S. Farkh and K. Nour. Un résultat de complétude pour les types ∀+ du
système F . CRAS. Paris 326, Série I, pp. 275-279, 1998.

[5] S. Farkh and K. Nour. Types Complets dans une extension du système AF2.
Informatique Théorique et Application, 31-6, pp. 513-537, 1998.

[6] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University
Press, 1986.

[7] T. Griffin. A formulae-as-types notion of control. Proc. POLP, 1990.

[8] J. R. Hindley. The simple semantics for Coppe-Dezani-Sallé types. Proceed-
ing of the 5th Colloquium on International Symposium on Programming,
pp. 212-226, April 06-08, 1982.

[9] J. R. Hindley. The completeness theorem for typing λ-terms. Theoretical
Computer Science, 22(1), pp. 1-17, 1983.

[10] J. R. Hindley. Curry’s type-rules are complete with respect to the F-semantics
too. Theoretical Computer Science, 22, pp. 127-133, 1983.

[11] F. Kamareddine and K. Nour. A completeness result for a realizability se-
mantics for an intersection type system. Submitted.

[12] J.-L. Krivine. Lambda calcul, types et modèles. Masson, Paris, 1990.

99

100 BIBLIOGRAPHY

[13] J.-L. Krivine. Opérateurs de mise en mémoire et traduction de Gödel.
Archive for Mathematical Logic, vol 30, pp. 241-267, 1990.

[14] R. Labib-Sami. Typer avec (ou sans) types auxiliaires. Manuscrit, 1986.

[15] K. Nour and K. Saber. A Semantics of Realizability for the Classical Proposi-
tional Natural Deduction. Electronic Notes in Theoretical Computer Science,
vol 140, pp. 31-39, 2005.

[16] K. Nour and K. Saber. A semantical proof of strong normalization theorem
for full propositional classical natural deduction. Archive for Mathematical
Logic, vol 45, pp. 357-364, 2005.

[17] K. Nour. Opérateurs de mise en mémoire et types ∀-positifs. Theoretical
Informatics and Applications, vol 30, n◦ 3, pp. 261-293, 1996.

[18] K. Nour. Mixed Logic and Storage Operators. Archive for Mathematical
Logic, vol 39, pp. 261-280, 2000.

[19] M. Parigot λµ-calculus: An algorithm interpretation of classical natural
deduction. Lecture Notes in Artificial Intelligence, vol 624, pp. 190-201.
Springer Verlag, 1992.

[20] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, vol 62 (4), pp. 1461-1479, 1997.

[21] W. Py. Confluence en λµ-calcul. PhD thesis, University of Chambéry, 1998.

[22] A. Saurin. Separation and the λµ-calculus. Proceedings of the Twentieth An-
nual IEEE Symp. on Logic in Computer Science, LICS 2005, IEEE Computer
Society Press, pp. 356-365, 2005.

[23] W. W. Tait, A realizability interpretation of the theory of species. In : R.
Parikh (Ed.), Logic Colloquium Boston 1971/72, vol. 435 of Lecture Notes
in Mathematics, Springer Verlag, pp. 240-251, 1975.

Chapter 6

A call-by-value λµ∧∨-calculus

6.1 Introduction

In [8], Gentzen introduced the natural deduction system to study the notion of
proof. The full classical natural deduction system is well adapted for the human
reasoning. By full we mean that all the connectives (→, ∧ and ∨) and ⊥ (for
the absurdity) are considered as primitive. As usual, the negation is defined
by ¬A = A → ⊥. Considering this logic from the computer science of view is
interesting because, by the Curry-Howard correspondence, formulas can be seen
as types for the functional programming languages and correct programs can be
extracted. The corresponding calculus is an extension of M. Parigot’s λµ-calculus
with product and coproduct, which is denoted by λµ∧∨-calculus.

Ph. De Groote introduced in [7] the typed λµ∧∨-calculus to code the classical
natural deduction system, and showed that it enjoys the main important prop-
erties: the strong normalization (However this proof is not finished yet, since the
modified CPS-transformations do not preserve always the stricteness of reduc-
tions, and this for the same reasons pointed out in [10] and [11]), the confluence
and the subformula property. This would guarantee that proof normalization
may be interpreted as an evaluation process. As far as we know the typed λµ∧∨-
calculus is the first extension of the simply typed λ-calculus which enjoys all the
above properties. In [20], E. Ritter, D. Pym and L. Wallen introduced an ex-
tension of the λµ-calculus that features disjunction as primitive (see also [21]).
But their system is rather different since they take as primitive a classical form
of disjunction that amounts to ¬A → B. Nevertheless, in [22], they give another
extension of the λµ-calculus with an intuitionistic disjunction. However, the re-
duction rules considered are not sufficient to guarantee that the normal forms
satisfy the subformula property. The question of the strong normalization of the
full logic has interested several authors, thus one finds in [3], [9] and [13] different
proofs of this result.

101

102 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

From a computer science point of view, the λµ∧∨-calculus may be seen as the
kernel of a typed call-by-name functional language featuring product, coproduct
and control operators. However we cannot apply an arbitrary reduction for im-
plementation of programming languages, we have to fix a reduction strategy and
usually it is the call-by-value strategy. Many programming langagues and control
operations were developed through the studies of the call-by-value variant like ML
and Lisp for λ-calculus, the calculus of exception handling λ→exn and µPCFV for
the λµ-calculus. In [15], C.-H. L. Ong and C. A. Stewart showed that µPCFV is
sufficiently strong to express the various control constructs such as the ML-style
raise and the first-class continuations callcc, throw and abort. In this sense,
it seems to be important to study the call-by-value version of λµ∧∨-calculus.

Among the important properties required in any abstract reduction system,
there is the confluence which ensures the uniqueness of the normal form (if it
exists). The notion of parallel reduction which is based on the method of Tait and
Martin-Löf is a good tool to prove the confluence property for several reduction
systems. The idea is very clear and intuitive: it consists in reducing a number
of redexes existing in the term simultaneously. However, this method does not
work for the λµ∧∨-calculus. In fact the diamond property which stipulates that:
If t � t′ then t′ � t∗ (where t∗ is usually referred as the complete development of t)
does not hold because more complicated situations appear, and that is due to the
presence of the permutative reductions “((u [x.v, y.w]) ε) . (u [x.(v ε), y.(w ε)])”.
Hence the proof of the confluence becomes hard and not at all trivial as it seems
to be.

Let t = (((u [x.v, y.w]) [r.p, s.q]) ε), t1 = ((u [x.(v [r.p, s.q]), y.(w [r.p, s.q])]) ε),
and t2 = ((u [x.v, y.w]) [r.(p ε), s.(q ε)]). We have: t � t1 and t � t2, if we want
the diamond property to hold, t1 and t2 must be reduced to the same term t∗

by one reduction step, however this is not possible. To make it possible we need
another step of permutative reduction. We consider such a successive sequence
of reductions as a one parallel reduction step, i.e. we follow the permutative
reductions in the term step by step to a certain depth which allows to join and
consider this sequence as a one reduction step. The notion of Prawitz’ s segment
yields the formulation of this new parallel reduction. Therefore the difficulties are
overcame by extending this notion to our system (see [1], [2], [17] and [18]) and
considering the extended structural reductions along this segment which allow us
to define a complete development to obtain directly the common reductum, hence
the Church-Rosser property. This is exactly what is done in [2]; our proof is just
a checking that this method is well adapted to provide the diamond property for
the call-by-value λµ∧∨-calculus including the symmetrical rules. Thus t1 � t∗

and t2 � t∗, where t∗ = (u [x.(v [r.(p ε), s.(q ε)]), y.(w [r.(p ε), s.(q ε)])]).
This chapter is organized as follows. Section 2 is an introduction to the typed

system, the relative cut-elimination procedure of λµ∧∨-calculus and the call-by-
value λµ∧∨-calculus. In section 3, we define the parallel reduction related to the
notion of segment-tree, thus we give the key lemma from which the diamond-

6.2. NOTATIONS AND DEFINITIONS 103

property is directly deduced. Section 4 is devoted to the proof of the key lemma.
We conclude with some future work.

6.2 Notations and definitions

Definition 6.2.1 We use notations inspired by [2].

1. Let X and A be two disjoint infinite alphabets for distinguishing the λ-
variables and µ-variables respectively. We code deductions by using a set of
terms T which extends the λ-terms and is given by the following grammar
(which gives terms at the untyped level):

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)

E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term. Application between two
E-terms u and ε is denoted by (u ε).

2. Types are formulas of propositional logic built from the set of propositional
variables and the constant type ⊥, using the connectors →, ∧ and ∨.

3. The meaning of the new constructors is given by the typing rules below
where Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A
(resp. a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a
formula.

Γ, x : A ` x : A ; ∆
ax

Γ, x : A ` t : B; ∆

Γ ` λx.t : A → B; ∆
→i

Γ ` u : A → B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e

Γ ` u : A; ∆ Γ ` v : B; ∆

Γ ` 〈u, v〉 : A ∧B; ∆
∧i

Γ ` t : A ∧B; ∆

Γ ` (t π1) : A; ∆
∧1

e

Γ ` t : A ∧B; ∆

Γ ` (t π2) : B; ∆
∧2

e

Γ ` t : A; ∆

Γ ` ω1t : A ∨B; ∆
∨1

i

Γ ` t : B; ∆

Γ ` ω2t : A ∨B; ∆
∨2

i

Γ ` t : A ∨B; ∆ Γ, x : A ` u : C; ∆ Γ, y : B ` v : C; ∆

Γ ` (t [x.u, y.v]) : C; ∆
∨e

104 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

Γ ` t : A; ∆, a : A

Γ ` (a t) : ⊥; ∆, a : A
⊥i

Γ ` t : ⊥; ∆, a : A

Γ ` µa.t : A; ∆
⊥e

4. A term in the form (t [x.u, y.v]) (resp µa.t) is called an ∨e-term (resp ⊥e-
term).

5. The cut-elimination procedure corresponds to the reduction rules given be-
low. They are those we need to the subformula property.

• (λx.u v) .β u[x := v]

• (〈t1, t2〉 πi) .π ti

• (ωit [x1.u1, x2.u2]) .D ui[xi := t]

• ((t [x1.u1, x2.u2]) ε) .δ (t [x1.(u1 ε), x2.(u2 ε)])

• (µa.t ε) .µ µa.t[a :=∗ ε]

where t[a :=∗ ε] is obtained from t by replacing inductively each sub-
term in the form (a v) by (a (v ε)).

6. Let t and t′ be terms. The notation t . t′ means that t reduces to t′ by using
one step of the reduction rules given above. Similarly, t .∗ t′ means that t
reduces to t′ by using some steps of the reduction rules given above.

The following result is straightforward

Theorem 6.2.1 (Subject reduction) If Γ ` t : A; ∆ and t .∗ t′, then Γ ` t′ :
A; ∆.

We have also the following properties (see [2], [3], [7], [9], [13] and [14]).

Theorem 6.2.2 (Confluence) If t .∗ t1 and t .∗ t2, then there exists t3 such
that t1 .∗ t3 and t2 .∗ t3.

Theorem 6.2.3 (Strong normalization) If Γ ` t : A; ∆, then t is strongly
normalizable.

Remark 6.2.1 Following the call-by-value evaluation discipline, in an applica-
tion the evaluator has to diverge if the argument diverges. For example, in the
call-by-value λ-calculus, we are allowed to reduce the β-redex (λx.u v) only when
v is a value. In λµ-calculus, the terms µa.u and (u [x1.u1, x2.u2]) cannot be taken
as values, then the terms (λx.t µa.u) and (λx.t (u [x1.u1, x2.u2])) cannot be re-
duced. This will be able to prevent us from reaching many normal forms. To
solve this problem, we introduce symmetrical rules (δ′v and µ′v) allowing to reduce
these kinds of redexes.

6.2. NOTATIONS AND DEFINITIONS 105

Now we introduce the call-by-value version of the λµ∧∨-calculus. From a
logical point of view a value corresponds to an introduction of a connective; this
is the reason why the Parigot’s naming rule is considered as the introduction rule
of ⊥.

Definition 6.2.2 1. The set of values V is given by the following grammar:

V := X | λX .T | 〈V ,V〉 | ω1V | ω2V | (A T)

Values are denoted U, V,W, ...

2. The reduction rules of the call-by-value λµ∧∨-calculus are the followings:

• (λx.t V) .βv t[x := V]

• (〈V1, V2〉 πi) .πv Vi

• (ωiV [x1.t1, x2.t2]) .Dv ti[xi := V]

• ((t [x1.t1, x2.t2]) ε) .δ (t [x1.(t1 ε), x2.(t2 ε)])

• (V (t [x1.t1, x2.t2])) .δ′v (t [x1.(V t1), x2.(V t2)])

• (µa.t ε) .µ µa.t[a :=∗ ε]

• (V µa.t) .µ′v µa.t[a :=∗ V]

where t[a :=∗ V] is obtained from t by replacing inductively each sub-
term in t in the form (a u) by (a (V u)).

The first three rules are called logical rules and the others are called struc-
tural rules.

3. The one-step reduction .v of the call-by-value λµ∧∨-calculus is defined as
the union of the seven rules given above. As usual .∗v denotes the transitive
and reflexive closure of .v.

The following lemma expresses the fact that the set of values is closed under
reductions. In the remainder of this chapter, this fact will be used implicitly.

Lemma 6.2.1 If V is a value and V .∗v W , then W is a value.

Proof. From the definition of the set of values. �

Theorem 6.2.4 (Subject reduction) If Γ ` t : A ; ∆ and t .∗v t′, then Γ ` t′ :
A ; ∆.

106 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

Proof. Since the reduction rules correspond to the cut-elimination proce-
dure, we check easily that the type is preserved during the reduction from the
redex to its reductom. �

The rest of this chapter is an extension of [2] to our calculus according to the
new considered reduction rules δ′v and µ′v. One can find all the notions given here
in [2]. Since the new symmetrical rules that we add don’t create any critical pair
with the existing rules, then in the examples and proofs that we give, one will
mention only the cases related to these new rules and check that they don’t affect
the core of [2]’s work.

6.3 The extended structural reduction

Definition 6.3.1 1. Let t be a term, we define a binary relation denoted by
At on subterms of t as follows:

• (u [x1.u1, x2.u2]) At ui

• µa.u At v, where v occurs in u in the form (a v)

If u At v holds, then v is called a segment-successor of u, and u is called
a segment-predecessor of v. We denote by wt the reflexive and transitive
closure of At.

2. Let r be a subterm of a term t, such that r is a ∨e- or ⊥e-term and r has no
segment-predecessor in t. A segment-tree from r in t is a set O of subterms
of t, such that for each w ∈ O:

• r wt w

• w is a ∨e- or ⊥e-term

• For each subterm s of t, such that r wt s wt w then s ∈ O

r is called the root of O.

3. Let O be a segment-tree from r in t, a subterm v of t is called an acceptor
of O iff v is a segment-successor of an element of O and v is not in O.

4. A segment-tree O from r in t is called the maximal segment-tree iff no
acceptor of O has a segment successor in t.

5. The acceptors of O are indexed by the letter O.

6. Let O be a segment-tree from t in t itself, and t .∗v t′, then we define canon-
ically a corresponding segment-tree to O in t′ by the transformation of in-
dexes from redexes to their residuals. This new segment-tree is denoted also
by O if there is no ambiguity.

6.3. THE EXTENDED STRUCTURAL REDUCTION 107

Remark 6.3.1 For typed terms, all the elements of a segment-tree have the
same type.

Definition 6.3.2 Let O be a segment-tree from r in t, suppose that r occurs in
t in the form (V r) (resp (r ε)). The extended structural reduction of t along O
is the transformation to a term t′ obtained from t by replacing each indexed term
vO (the acceptors of O) by (V v) (resp (v ε)) and erasing the occurence of V (resp
ε) in (Vr) (resp (r ε)) . This reduction is denoted by t �O t′.

Remark 6.3.2 By the definition above, every structural reduction is an ex-
tended structural reduction. It corresponds to the particular case where the segment-
tree consists only of its root.

Example 6.3.1 Here are two examples of segment-trees and the extended struc-
tural reduction. Let t = (u [x.µa.(a 〈x, (a w)〉), y.v]) and V a value.

1. The set O1 = {t} is a segment-tree from t in t itself. The acceptors of O1

are µa.(a 〈x, (a w)〉) and v. Then t is represented as follows:

t = (u [x.(µa.(a 〈x, (a w)〉))O1 , y.vO1]),
and (V t) �O1 (u [x.(V µa.(a 〈x, (a w)〉)), y.(V v)]).

2. The set O2 = {t, µa.(a 〈x, (a w)〉)} is also a segment-tree from t in t. The
acceptors of O2 are 〈x, (a w)〉, w and v. Then t is represented as follows:

t = (u [x.µa.(a 〈x, (a wO2)〉O2), y.vO2]),
and (V t) �O2 (u [x.µa.(a (V 〈x, (a (V w))〉)), y.(V v)]).

Definition 6.3.3 The parallel reduction � is defined inductively by the following
rules:

• x � x

• If t � t′, then λx.t � λx.t′, µa.t � µa.t′, (a t) � (a t′) and ωit � ωit
′

• If t � t′ and u � u′, then 〈t, u〉 � 〈t′, u′〉

• If t � t′ and ε�̃ε′, then (t ε) � (t′ ε′)

• If t � t′ and V � V ′, then (λx.t V) � t′[x := V ′]

• If Vi � V ′
i , then (〈V1, V2〉 πi) � V ′

i

• If V � V ′ and ui � u′i, then (ωiV [x1, u1, x2, u2]) � u′i[xi := V ′]

• If t � t′, V � V ′ (resp ε�̃ε′), and O is a segment-tree from t in t, and
(V ′ t′) �O w (resp (t′ ε′)�O w), then (V t) � w (resp (t ε) � w), where
ε�̃ε′ means that:

108 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

– ε = ε′ = πi, or

– (ε = u and ε′ = u′) or (ε = [x.u, y.v] and ε′ = [x.u′, y.v′]) such that
u � u′ and v � v′.

It is easy to see that .∗v is the transitive closure of �.

Definition 6.3.4 Let t be a term, we define the complete development t∗ as
follows:

• x∗ = x

• (λx.t)∗ = λx.t∗

• (µa.t)∗ = µa.t∗

• 〈t1, t2〉∗ = 〈t∗1, t∗2〉

• (ωit)
∗ = ωit

∗

• (a t)∗ = (a t∗),

• (t ε)∗ = (t∗ ε∗), if (t ε) is not a redex

• (λx.t V)∗ = t∗[x := V ∗]

• (〈V1, V2〉 πi)
∗ = V ∗

i

• (ωiV [x1.u1, x2.u2])
∗ = u∗i [x := V ∗]

• Let Om be the maximal segment-tree from t in t, and (V ∗ t∗) �Om w (resp
(t∗ ε̃∗) �Om w), then (V t)∗ = w (resp (t ε)∗ = w), where ε̃∗ means:

– ε, if ε = πi

– u∗, if ε = u

– [x.u∗, y.v∗], if ε = [x.u, y.v]

Lemma 6.3.1 1. If t � t′ and V � V ′, then t[x := V] � t′[x := V ′].

2. If t � t′ and ε�̃ε′, then t[a :=∗ ε] � t′[a :=∗ ε′].

3. If t � t′ and V � V ′, then t[a :=∗ V] � t′[a :=∗ V ′].

Proof. By a straightforward induction on the structure of t � t′. �

Lemma 6.3.2 (The key lemma) If t � t′, then t′ � t∗.

Proof. The proof of this lemma will be the subject of the next section. �

6.4. PROOF OF THE KEY LEMMA 109

Theorem 6.3.1 (The Diamond Property) If t � t1 and t � t2, then there
exists t3 such that t1 � t3 and t2 � t3.

Proof. It is enough to take t3 = t∗, then the theorem holds by the key
lemma. �

Since .∗v is identical to the transitive closure of �, we have the confluence of
the call-by-value λµ∧∨-calculus.

Theorem 6.3.2 If t.∗v t1 and t.∗v t2, then there exists a term t3 such that t1 .∗v t3
and t2 .∗v t3.

6.4 Proof of the key lemma

For technical reasons (see the example below, see also [2]), we start this section
by extending the notion of the segment-tree.

Definition 6.4.1 1. Let v be a subterm in a term t, v is called a bud in t iff
v is t itself or v occurs in t in the form (a v) where a is a free variable in t.

2. Let O1,...,On be segment-trees from respectively r1, ..., rn in a term t, and
P a set of buds (possibly empty) in t. Then a segment-wood is a pair
〈O1 ∪ ... ∪ On,P〉 such that:

• ri is a bud in t for each i,

• O1, ...,On and P are mutually disjoints.

3. Let Q = 〈O1∪...∪On,P〉 be a segment-wood in t, the elements of O1∪...∪On

are called trunk-pieces of Q, and those of P are called proper-buds of Q.

(a) We denote by Bud(Q) the set of buds P ∪ {r1, ..., rn} in t.

(b) An acceptor of a segment-wood Q is either an acceptor of Oi for some
i, either a proper-bud.

(c) The acceptors of Q are indexed by Q.

(d) If the root r of a segment-tree O in t is a bud in t, then we identify O
with the segment-wood 〈O, ∅〉.

4. Let Q be a segment-wood in t, and s a subterm in t. The restriction of
indexed subterms by Q to s constrcuts a segment-wood in s, which we will
denote also by Q if there is no ambiguity.

Remark 6.4.1 1. If v is a bud in t, then v has no segment-predecessor in t.
Therefore any segment-successor is not a bud.

110 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

2. Let Q = 〈O1 ∪ ...∪On,P〉 be a segment-wood, since a segment-successor is
not a bud, then any acceptor of any Oi is not in Bud(Q).

3. The two conditions in (2) of the above definition are equivalent to the fact
that all the elements of P and the buds r1, ..., rn are distincts.

4. If O is a segment-tree from t in t, and s is a subterm in t, then the restriction
of O to s constructs a segment-wood in s.

5. Proper-buds and trunk-pieces cannot be treated in a uniform way, since in a
term, what will be indexed are the proper-buds themselves and the acceptors
of the trunk-pieces, thing which is allowed by a formulation which makes
difference between these two notions.

Definition 6.4.2 Let t, ε be E-terms, V a value and Q a segment-wood in t, we
define the term t[V/Q] (resp t[ε/Q]) which is obtained from t by replacing each
indexed term vQ (the acceptors of Q) in t by (V v) (resp (v ε)).

Remark 6.4.2 It’s clear that if (V t) �O w (resp (t ε) �O w), then w = t[V/O]
(resp w = t[ε/O]) .

Example 6.4.1 Let t = µa.(a µb.(b ω2λs.(a ω1s))) be a term and r the subterm
µb.(b ω2λs.(a ω1s)) in t. We define two segment-trees from t in t, O1 = {t}
and O2 = {t, r}, observe that the acceptors of O1 are r and ω1s, however those
of O2 are ω2λs.(a ω1s) and ω1s. The restriction Q1 (resp Q2) of O1 (resp O2)
to r is the following segment-wood: Q1 = 〈∅, {r, ω1s}〉 (resp Q2 = 〈{r}, {ω1s}〉).
Remark also that Bud(Q1) = Bud(Q2) and the set of trunk-pieces of Q1 is a
subset of that of Q2. Suppose that V is a value then:

• t[V/Q1] = µa.(a (V µb.(b ω2λs.(a (V ω1s))))).

• t[V/Q2] = µa.(a µb.(b (V ω2λs.(a (V ω1s))))).

• t[V/Q1] � t[V/Q2]

Lemma 6.4.1 Let Q1 and Q2 be two segment-woods in a term t such that:
Bud(Q1) = Bud(Q2) and the set of all trunk-pieces of Q1 is a subset of that of
Q2. Suppose also that t � t′ and V � V ′ (resp ε�̃ε′), then t[V/Q1] � t′[V ′/Q2]
(resp t[ε/Q1] � t′[ε′/Q2]).

Proof. By induction on t. We look at the last rule used for t � t′. We ex-
amine only one case. The others are either treated similarly, either by a straight-
forward induction.

t = (W u) and t′ = u′[W ′/O], where O is a segment-tree from u in u, u � u′

and W � W ′.

6.5. FUTURE WORK 111

• If t is not an acceptor of Q1 and then nor of Q2: By the induction hy-
pothesis, u[V/Q1] � u′[V ′/Q2] and W [V/Q1] � W ′[V ′/Q2]. Since O is a
segment-tree from u in u, we have:
t[V/Q1] = (W [V/Q1] u[V/Q1]) � u′[V ′/Q2][W

′[V ′/Q2]/O] =
u′[W ′/O][V ′/Q2] = t′[V ′/Q2].

• If t is an acceptor of Q1 but not of Q2: Let Q2 = 〈Ot ∪ Or1 ∪ ... ∪ Orn ,P〉
and Q−

2 = 〈Or1 ∪ ... ∪ Orn ,P〉, where Os denotes a segment-tree from
the bud s in t. By the induction hypothesis, u[V/Q1] � u′[V ′/Q−

2] and
W [V/Q1] � W ′[V ′/Q−

2]. Moreover (W ′[V ′/Q−
2] u′[V ′/Q−

2]) �O
u′[V ′/Q−

2][W ′[V ′/Q−
2]/O]. Hence (W [V/Q1] u[V/Q1]) �

u′[V ′/Q−
2][W ′[V ′/Q−

2]/O]. Therefore, t[V/Q1] = (V (W [V/Q1] u[V/Q1]))
u′[V ′/Q2][W

′[V ′/Q−
2]/O][V ′/Ot] = u′[W ′/O][V ′/Q−

2][V ′/Ot] =
u′[W ′/O][V ′/Q2]= t′[V ′/Q2].

• If t is an acceptor of Q1 and Q2, then t[V/Q1] = (V (W [V/Q1] u[V/Q1]))
� (V ′ u′[V ′/Q2][W

′[V ′/Q2]/O]) = (V ′ u′[W ′/O][V ′/Q2]) = t′[V ′/Q2].

�
Proof.[of the key lemma]

By induction on t. We look at the last rule used in t � t′. Only one case
is mentioned: t = (V u) and t′ = u′[V ′/O] where O is a segment-tree from u in
u, u � u′ and V � V ′. In this case t∗ = u∗[V ∗/Om], where Om is the maximal
segment-tree from u in u. Therefore, by the previous lemma (it’ s clear that O
and Om as segment-woods satisfy the hypothesis of this lemma 6.4.1) and the
induction hypothesis, u′[V ′/O] � u∗[V ∗/Om].

�

6.5 Future work

The strong normalization of this system cannot be directly deduced from that
of λµ∧∨-calculus, since we consider the symmetric structural reductions µ′v and
δ′v. Even if the strong normalization of λµµ′-calculus is well known (see [4]), the
presence of µ′v and δ′v complicates the management of the duplication and the
creation of redexes when the other reductions are considered.

112 CHAPTER 6. A CALL-BY-VALUE λµ∧∨-CALCULUS

Bibliography

[1] Y. Andou. A normalization-procedure for the first order classical natural
deduction with full logical symbols. Tsukuba J. Math. 19 (1995) 153-162.

[2] Y. Andou. Church-Rosser property of simple reduction for full first-order
classical natural deduction. Annals of Pure and Applied logic 119 (2003)
225-237.

[3] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of symbolic Logic, vol 68, num
4, pp 1277-1288, 2003.

[4] R. David and K. Nour. Arithmetical proofs of the strong normalization results
for the symmetric λµ-calculus. TLCA 2005, LNCS 3461, pp 162-178, 2005.

[5] R. David and K. Nour. Why the usual candidates of reducibility do not work
for the symmetric λµ-calculus. Electronic Notes in Theoretical Computer
Science, 2005.

[6] Ph. De Groote. On the Strong Normalization of Natural Deduction with
permutation-conversions. In 10th International Conference on Rewriting
Techniques and Application, RTA’99, volume 1631 of Lecture Notes in Com-
puter Science, pages 45-59. Springer Verlag, 1999.

[7] Ph. De Groote. Strong normalization of classical natural deduction with dis-
junction. In 5th International Conference on typed lambda calculi and ap-
plications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[8] G. Gentzen. Recherches sur la déduction logique. Press Universitaires de
France, 1955. Traduction et commentaires par R. Feys et J. Ladrière.

[9] R. Matthes. Non-Strictly Positive Fixed Points for Classical Natural Deduc-
tion. APAL, vol 133, pp. 205-230, 2005.

[10] K. Nakazawa. Confluence and strong normalizability of call-by-value λµ-
calculus Theoretical Computer Science 290 (2003) 429-463.

113

114 BIBLIOGRAPHY

[11] K. Nakazawa and M. Tatsuta. Strong normalization proof with CPS-
Translation for the second order classical natural deduction. The Journal
of Symbolic Logic, vol 68, num 3, pp. 851-859. Sept 2003.

[12] K. Nour and K. Saber. A semantical proof of strong normalization theorem
for full propositional classical natural deduction. Archive of Mathematical
Logic, 2005.

[13] K. Nour and K. Saber. Confluency property of the call-by-value λµ∧∨-
calculus. Computational Logic and Applications CLA’05. Discrete Mathe-
matics and Theoretical Computer Science proc, pp. 97-108, 2006.

[14] K. Nour and K. Saber. Some properties of full propositional classical natural
deduction. Manuscript, 2007.

[15] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional
computation with control. Conference Record of POPL’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principes of Programming languages,
pages. 215-227, Paris, France, 15-17 January 1997.

[16] M. Parigot λµ-calculus: An algorithm interpretation of classical natural de-
duction. Lecture Notes in Artificial Intelligence (624), pp. 190-201. Springer
Verlag 1992.

[17] D. Prawitz Natural deduction- A Proof Theoretical Study. Almqvist & Wik-
sell. Stockholm, 1965.

[18] D. Prawitz Idea and result in proof theory. In: Proc . 2nd Scandinavian Logic
Symp. North-Holland, Amsterdam, 1971, pp.235-307.

[19] W. Py. Confluence en λµ-calcul. PhD thesis, University of Chambéry, 1998.

[20] E. Ritter, D. Pym and L. Wallen On the intuitionistic force of classical
search. Theoretical Computer Science, 232:299-333,2000.

[21] E. Ritter, D. Pym and L. Wallen Proof-terms for classical and intuitionistic
resolution. Journal of Logic and Computation, 10(2):173-207, 2000.

[22] E. Ritter and D. Pym On the semantic of classical disjunction. Journal of
Pure and Applied Algebra, vol 159, pp.315-338, 2001.

Résumé

Le λµ∧∨-calcul est une extension du λ-calcul associée à la déduction naturelle
classique où sont considérés tous les connecteurs.

Les principaux résultats de cette thèse sont :

- La standardisation, la confluence et une extension de la machine de J.-L.
Krivine en λµ∧∨-calcul.

- Une preuve sémantique de la forte normalisation du théorème d’élimination
des coupures.

- Une sémantique de réalisabilité pour le λµ∧∨-calcul qui permet de car-
actériser le comportement calculatoire de certains termes typés et clos.

- Un théorème de complétude pour le λµ-calcul simplement typé.

- Une introduction à un λµ∧∨-calcul par valeur confluent.

Mots-clés : λ-calcul, λµ-calcul, standardisation, confluence, développements
finis, forte normalisation, complétude, calcul par valeur, réductions parallèles.

Abstract

The λµ∧∨-calculus is an extension of the λ-calculus associated to the full classical
natural deduction.

The main results of this thesis are:

- A standardization theorem, the confluence theorem, and an extension of
J.-L. Krivine machine to the λµ∧∨-calculus.

- A semantical proof of the strong normalization theorem of the cut elimina-
tion procedure.

- A semantics of realizability for the λµ∧∨-calculus and characterization of
the operational behavior of some closed typed terms.

- A completeness theorem for the simply typed λµ-calculus.

- A confluent call-by-value λµ∧∨-calculus.

Keywords: λ-calculus, λµ-calculus, standardization, confluence, finiteness
developements, strong normalization, completeness, call-by-value, parallel reduc-
tions.

