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Chapter 1

Introduction

Although the very idea that the positive charge of an atom could be concentrated in a
small volume at its center was first proposed by Nagaoka [Nag04], it was Rutherford
[Rutil] who gave evidence for this by interpreting the experimental results which
Geiger and Marsden obtained by impinging alpha particles on a gold foil [Gei09].
From this point on, the physics of atomic nuclei progressively emerged as a distinct
domain from atom physics. However, knowledge of the true composition of nuclei
could not be achieved before the discovery of the neutron by Chadwick [Cha32].

A subsequent step was made with the discovery of nuclear fission [Mei39], which
showed that quantum tunneling could happen for heavy systems, and gave rise to the
description of nuclei and their motion through the liquid drop model [Boh39]. The
nucleus was thus understood as a system dominated by collective behavior. This
view was supported by the saturation of binding energies per particle, indicating
that the interaction between nucleons was short-ranged and extremely strong. As
a consequence, quantum correlations were expected to be important. Indeed, after
Yukawa’s seminal work [Yuk35], the nuclear interaction appeared, in addition to be-
ing particularly difficult to understand from first principles, as a non-trivial potential
exhibiting a repulsive core even stronger than the attractive part and important spin

dependence [Mac89D).

However, it also became known that some nuclei were more bound than their
neighbors, causing irregularities on the mass table at well-defined neutron and proton
numbers. These “magic numbers”, as Wigner called them [Mos96], were explained
by Goeppert Mayer via an independent-particle shell model relying on strong spin-
orbit coupling for the reproduction of their experimental sequence [GM48] [GM49],
achieving as well to explain the majority of nuclear spins known at the time [GM50al,
[GM50D).

The mechanism by which a hard-core interaction can bind many-body systems
was due to Brueckner [Bru54b, Brub54a, Bru55b], Bethe and Goldstone [Bet56,
Bet57, [Gol57]. The reconciliation of collective and single-particle approaches to
nuclear structure ensued through the definition of an effective interaction arising
in the medium from short-range quantum correlations and useable in a mean-
field picture [Foc30], where each particle moves independently in the potential
created by the average effect of the others acting through the effective interac-
tion [Bru55d|. The linked-cluster expansion [Brub5al, Bra67] could then extend the
mean-field picture to include correlations not re-summed in the effective interaction,
and be incorporated in the general framework of many-body perturbation theory
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[Abr63, Noz63|, [Fet71] to provide, in principle, an ab-initio description of
both single-particle motion and many-body, collective effects in nuclear structure.
From then on, distinct approaches to independent-particle models for nuclear
structure emerged. First, models for the nucleon-nucleon interaction in the vac-
uum were gradually improved [Ham62, [Rei68), [Lac80L Wir84, [Mac87| and used in
Brueckner calculations of nuclei [Bec68, Bec74] as well as Brueckner and variational
calculations of nuclear matter [Day78|. Nuclei proved stubborn in their habit of
coming underbound and too small out of these calculations, while the saturation
point of nuclear matter was similarly underbound and occurred at too high a den-
sity compared to its empirical position. Coester et al. [Coe70] proved that two-body
potentials adjusted on the same nucleon-nucleon scattering data could not reproduce
the empirical saturation point. The missing piece was later identified as the three-

nucleon force [Pan79, [FTi81], the existence of which had been previously
expected from field-theoretical considerations [Loi67].

Second, shortly after Brueckner’s papers, appeared the idea that one could de-
vise simpler effective interactions based on more phenomenological grounds. Skyrme
proposed such an effective Hamiltonian consisting of a two-body, velocity-dependent
contact interaction and a matching three-body contact interaction [Sky56], Bel56]
[Sky58al, Sky58b]. The latter was supposed to mimic the medium dependence of
Brueckner’s effective force more than to reproduce the physics of a bare three-body
force. However, Skyrme’s idea came to use only later [Vau72|, being quantita-
tively motivated as an approximation to a more realistic effective interaction by the

density-matrix expansion method [Neg72l, [Neg75|.
Attempts were also made at finding a potential which could bind nuclei and pro-

vide saturation of nuclear matter without needing a hard core for that task [Tab64,
Bri67, [Gog70]. Such a potential could be employed directly in an independent-
particle framework, or in a low-order perturbative expansion where correlations
would bring a mere correction to the nuclear wave function, binding energy and
other observables. This idea, in the form then envisioned, reached its limits. How-
ever, a soft force, augmented by a term depending on the density, was proposed as
an approximation to an in-medium effective interaction by Gogny et al. [Gog75al
Dec80), Ber91]. It became the other highly successful non-relativistic nuclear mean-
field model, if less widely used than Skyrme’s one, due mainly to its higher numerical
cost.

An account of nuclear mean-field models would not be complete without a men-
tion of approaches involving effective relativistic Lagrangians, initiated by Walecka
[Wal74]. In this model, nucleons interact by exchanging pions and the semi-phen-
omenological sigma meson. Other degrees of freedom have since been added, aiming
at providing better nuclear phenomenology.

Let us now come back to Skyrme’s interaction. The latter included quadratic
velocity-dependent terms to simulate the range and non-locality of the in-medium
effective interaction, and its spin-isospin content was controlled by spin-exchange
operators, spin-orbit and tensor terms. A number of parameters thus had to be
determined. Given the rather schematic link between a microscopic effective inter-
action and Skyrme’s one, achieving predictive power required fitting the parameters
on a set of relevant data. Early choices included the binding energies of stable

or exotic nuclei [Bei75bl [Ton83) [Dob8&4] and the energies of excited states such as
collective vibrations [Kri80L [VGS8I]| or fission barriers |[Bar82a]. Indeed, Skyrme’s
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interaction could be successfully used not only to calculate static observables but

also collective excitations and nuclear reactions [Eng75], Neg82], [Kim97].

The concept of radioactive ion beams, first pioneered by Kofoed-Hansen and
Nielsen [KH51], was later implemented in increasingly capable and numerous facili-
ties, starting from ISOLDE at CERN, activated in 1967, and culminating with the
many dedicated research centers active today, which employ either isotope separa-
tion on line (ISOL) or in-flight fragment separation techniques to produce beams of
short-lived isotopes. Work performed at these facilities allowed to measure proper-
ties of increasingly unstable nuclei. Naturally, these new data spurred theoreticians
to improve the predictive power of available models by adjusting new parameter sets
[Re195] [Rei99, Bro98|. With the growing attention paid to the neutron-rich side of
the chart of nuclides, it was also realized that experimental data alone could not
bring enough constraints on models and that ab-initio calculations could supplement
them, when available, for experimentally unreachable systems such as neutron mat-
ter [Wir88, [AkmO98], which, together with data measured for stable nuclei, exerts a
strong lever arm on properties of the most neutron-rich ones. Parametrization of
Skyrme’s interaction built according to these principles by the Saclay-Lyon collab-

oration [Cha97, [Cha98] are still widely used today.

Nowadays, the steady progress of available computational power allows to per-
form calculations extending the mean-field framework and considering collective cor-

relations in ground and excited states [Bon90), [Taj93b| [Val00] on a more systematic
basis [Ben06al, Ber(7, [Ter08]. One might thus expect an increase of accuracy, which,
however, is taking a long time to come. Contemporary use of Skyrme-mean-field

theory is itself put into question concerning its very interpretation as relying on a
Brueckner-like effective interaction. Strong resemblances have been found, indeed,
with density functional theory, a powerful tool commonly used in condensed-matter
physics, which allows in principle to re-sum all quantum correlations present in a
range of many-particle systems within a universal functional, giving rise to an ef-
fective theoretical description by means of independent particles. Using such a for-
malism for nuclei, though, involves extending it to self-bound, symmetry-breaking
systems where single-particle and collective motion are tightly intertwined and both
have to be treated explicitly. As a result, in parallel to studies aiming at improving
the agreement of the model with experimental data and/or ab-initio calculations, a
more formal work is underway to find a rigorous and consistent formal motivation
of the method.

The present work is an attempt at improving the predictive power of the “Skyrme
interaction” model of nuclear structure. More specifically, our aim is to use the ever-
growing amount of data, coming either from experiments, first-principle calculations
or microscopic theory of the nuclear interaction itself, to devise new inputs and
constraints to be used in the construction of the next generation of models. Most
of the following will stay at the mean field level, the precise meaning of which is
specified in chapter Bl but we shall, as much as possible, try to keep in mind the
necessity to extend our calculations by the addition of collective correlations.

In a first part, we focus on the physical meaning and effect of particular parame-
ters of the Skyrme force, dealing first, in chapter B, with the momentum-dependence
of the mean field and its evolution in neutron-rich nuclei. The spin-isospin content of
the force is also studied at this point, both statically, by examining the contribution
of different channels of the interaction to the binding energy, and dynamically, by
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studying the response of infinite matter, used as a model system, to various pertur-
bations. In will be shown that pathologies of the model can thus be pointed out, and
solutions will be proposed. Then, in chapter @l we add a tensor interaction to the
model and study the impact of its parameters on nuclear observables. Single-particle
energies, total binding energies and density distributions are considered.

In a second part, we focus on the description of pairing in our model, by making
a direct connection with the bare nuclear interaction. In chapter Bl after a brief
review of the matter, we detail the formalism and interaction model we use. Then
in chapter [6l we perform and study systematic calculations of spherical nuclei across
the nuclide chart, discussing the comparison of our results with experimental pairing
gaps, giving clues as to the physical origin of nuclear pairing in terms of many-body
theory, assessing the importance of the Coulomb interaction in this specific case as
well as the care needed when using various bare nuclear-interaction models as an
input to our calculations.



Chapter 2

Overview of Nuclear Structure
Theory

2.1 Microscopic theory of nuclear structure

Although effective and empirical models have known some success in the theory of
atomic nuclei, the quest for a description of the latter from first principles is both a
long-standing and current topic of research. As the focus of nuclear theory is, more
than ever, on the description of nuclei lying at the fringe of experimental capabilities,
the motivation for achieving this is strong.

Let us first specify what we call first principles. The most microscopic theory
conceptually applicable to nuclei is the relativistic, non-perturbative Lagrangian of
quantum chromodynamics (QCD) ruling all hadronic systems. The latter is most
useful, however, at energies above the GeV scale, where asymptotic freedom makes
perturbation theory useful again, and for systems made of a few valence quarks which
can be simulated thanks to lattice techniques. At lower energies, an effective theory
can be built which involves only the physical, observable (i.e. colorless) degrees of
freedom: baryons (nucleons and their excitations) and mesons.

This brief foray into the realm of particle and hadron physics allows us to discuss
the very first difficulty faced by the study of nuclear structure as an application of
quantum many-body theory: the basic Hamiltonian. Practical applications require
to treat neutrons and protons as pointlike particles (further reducing them to differ-
ent states of a single object, the nucleon) interacting via some potential, the theory
of which, owing to the compositeness of hadrons and the complexity of their struc-
ture and dynamics, is the subject of vast literature. Let us simply mention several
relevant facts and assumptions.

2.1.1 The Nuclear Hamiltonian

The notion of a Hamiltonian acting on the sole nucleonic degrees of freedom relies
on the hypothesis that the structure of the nucleons, as well as the details of the
processes generating the interaction between them, are irrelevant for the study of
low-energy processes. Also, the assumption is made that a non-relativistic descrip-
tion of the system, neglecting anti-nucleon degrees of freedom and assuming the
usual quadratic expression for the kinetic energy, is valid. The latter is reasonable
for 940 MeV-mass particles evolving at about 50 MeV kinetic energy in the nucleus.

15
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Apart from a kinetic term, a realistic Hamiltonian also comprises, at least, two-
and three-body interaction terms. The basic experimental input used to determine
the two-nucleon interaction is nucleon-nucleon scattering differential cross sections.
A large amount of data are available for neutron-proton and proton-proton scattering
[SAIL Nij], while some essential features of the neutron-neutron interaction can be
obtained in more model-dependent ways. The assumption is made that isospin
symmetry is weakly broken, i.e. the potential can be described by a first part which
is the same for all combinations of nucleons (Vi, = V,, = Vip) to which one adds
a correction breaking charge independence (Vi, = V},, # V;,) and an even weaker
correction breaking charge symmetry (o, # V,p). The probability amplitude of
a transition from initial relative momentum k' to final relative momentum k for a
pair of nucleons at energy FE is expressed by the T-matrix obeying the Lippmann-

Schwinger (LS) equation ([Bro76], see also appendix [D.1.2]).

The current leading potential models rely on an effective meson-nucleon La-
grangian. The potential is defined, in this case, as the sum of diagrams entering the
scattering amplitude which are irreducible by cutting a pair of nucleon propagation
lines [Mac89b]. The repulsive core is either produced by heavy-meson exchange
[Mac01] or modeled by phenomenological terms [Wir05]. Scattering data suggest
that the interaction is attractive at low energy, while repulsion dominates the scat-
tering of particles having a kinetic energy in the laboratory frame FEi,, = h*k"?/m >
250 MeV, where m is the nucleon mass. At FEj,, > 350 MeV, pion production be-
comes significant, which indicates that the nonrelativistic NN Hamiltonian picture is
inappropriate. Hard-core potentials, however, have non-vanishing matrix elements
well into this domain, which is a consequence of the requirement to keep a (mostly)
local, i.e. velocity-independent potential. Is is thus obvious that this part of the
interaction models is purely effective. In fact, the choice of high-momentum matrix
elements of a potential is quite arbitrary and weakly constrained: models of the NN
interaction having different matrix elements due to varying choices for the repulsive
part yield the same low-energy scattering observables, having been fitted to them.

The above considerations have led to devise a method to produce a universal
potential that would not involve any uncontrolled high-energy physics. This was
achieved using renormalization group equations [Bog01], and will be further studied
in chapter Bl Moreover, a new approach to building NN potentials has been put
forward, relying on chiral effective field theory (EFT) [Ent03, [Epe03], i.e. an effective
Lagrangian including nucleon-pion, pion-pion and nucleon-nucleon contact terms,
constrained by chiral symmetry, an essential feature of QCD. This approach allows a
systematic, stepwise construction of the potential through a perturbative expansion,
which allows to control its accuracy. Moreover, this method has the advantage of
naturally producing consistent two-, three- and four-body potentials.

Indeed, a complete description of the nuclear Hamiltonian must include a short-
range three-body (NNN) interaction, which is necessary, as a complement to the
NN interaction obtained from scattering analysis, to obtain correct saturation prop-
erties of nuclear matter [Lag81] and accurate spectroscopy of light nuclei [Pud95,
[Pie01D]. Several models thus exist also for the three-nucleon interaction [Gra89,
[Pie0Tal, while current work on the subject focuses on obtaining NNN poten-
tials consistent with the field-theoretical content of NN ones [Epe07], [Li08].

Starting from the Hamiltonian detailed above, an ab-initio resolution of the many
problem can be undertaken for light and, nowadays, some medium-mass nuclei. For
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systems of three and four nucleons, the Faddeev and Faddeev-Yakubovsky equations
can be employed, while A < 12 systems can be treated using quantum Monte-Carlo
theory [Pud9d, Pie01b|, while the no-core shell model, i.e. diagonalization in a
full A-body model space [Bog08a], reaches A = 16, (or A = 40 [Rot07a] with a
disputed approximation). Finally, the coupled-cluster method has been employed
in doubly-magic nuclei up to A = 48 [Hag07, [Hag08].

Interacting shell model calculations, which describe correlations explicitly al-
beit in a reduced model space, implying to “freeze” deeply-bound nucleons [Can05],
are based on microscopically-derived effective Hamiltonians. However, they require
slight readjustments of the latter to become accurate [Hon02) BroO6h|, and are lim-
ited to nuclei up to the fp-shell or lying in the vicinity of closed shells [Cor(2].

Beyond lies the realm of effective models. Energy density functional models
based on empirical effective interactions allow to treat the majority of nuclides and
calculate a variety of observables with a single, reduced parameter set. However,
their effective nature means that the meaning of some of the results obtained with
them leaves room for interpretation. It is thus useful to put forward some elements
of comparison with microscopic many-body theory.

2.1.2 Single-particle Green’s function

A recurrent subject of discussion in the following of this work will be single-particle
energies. As this section deals with microscopic many-body theory, let us give a
short overview of single-particle motion in correlated systems, as understood from
Green’s functions, and the assumptions underlying EDF theory.

Let us define Fock-space operators éL corresponding to a an arbitrary set of
single-particle basis states |k) (which can correspond to coordinate-, momentum or
configuration-space, but contain all degrees of freedom including spin and isospin —
the latter shall not be made explicit or discussed in this part), and their Heisenberg-

representation counterpart éL(t), with
et = ettt el e At (2.1)

These operators allow to define a single-particle Green’s function (or propagator)
written as a matrix in the above representation

Gkt 1t = i <<I>0(A) ‘T [ék(t) é}(t/)] ) <I>0(A)> , (2.2)

7 being the time-ordering operator, and |®(A)) the ground state of the considered
A-body system (we shall not go into the details of working with two particle species
in this section). An important property is the relation between G(kt;[t') and the
density matrix,

G(k0;107) = G(k0~;10) = —ip, (2.3)
G(k;O,lO*) = G(/{?0+,l0) = i<5kl_pkl)7 (24)

The time variable introduced above is of little use for stationary problems. In this
case, G depends on t — t' only and one can perform the Fourier transform to the
energy representation. As of now, we shall measure energies from the Fermi level A
defined as a chemical potential

0&0(A)

e (2.5)
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The transform reads
Gk, liw) = / dt G(kt; It') A=) (2.6)
G(kt;lt") = / ;l—i: Gk, I; w) e”{OF)E=t), (2.7)

The single-particle Green function describes the propagation, in the considered sys-
tem, of an additional particle or of the hole produced by the removal of a particle. It
thus contains information on the excitation spectrum of A+1 and A— 1-particle sys-
tems. This can be made explicit thanks to the spectral, or Lehmann representation
of G. Defining the particle and hole spectral functions, respectively,

Stk Lw) = D (Po(A)|éx] @, (A + 1)) (0, (A+1)[¢]|Bo(A))

v

X 8 (E,(A+1) — E(A) —w — A), (2.8)
STk Lw) = > (Bo(A)[e]|D,(A = 1)) (D, (A — 1)|cx|Do(A))
B S(ENA=1)=E(A) —w—N), (2.9)

where we introduce ®,(A #+ 1) as the v excited state of the system with A &
1 particles, £,(A £ 1) being the corresponding energy, allows to write the Green
function as

. . ' STk, 1w S™(k,1:w)
Gk, w) = z/dw [_w—w'—i() -l (2.10)

The ground-state wave function of an A-body system ruled by a single-particle
Hamiltonian (let us write it Hy) is a Slater determinant, i.e. an antisymmetrized
product of occupied (hole) states. These hole states belong to the eigenstates of ﬁo,
which also comprise empty (particle) states. Let us choose, as the representation
|k) used above, the eigenstates of H,. Adding or removing a particle on such a state
yields another eigenstate of Hy. It is easy to see that the spectral functions then are
Dirac functions, and that the Green function reads

N Or(p) Or(h)
Gk, lw) = 0 Wi w—2—i0ot]’ (2.11)
where 0y, = 1 if |k) is a particle state, 0 otherwise, the converse being true of 5,
and the single-particle energy £ used in the denominator is given by the condition
Hylk) = £9|k), while &) = £ — \.

If the Hamiltonian H contains an interaction term, its ground state can be
expected to contain correlations corresponding to the coherent motion of the inter-
acting particles. In this case, the analytical structure of the Green function is non-
trivial, yet it can be expressed in a compact form by introducing the mass operator
INoz63|, or proper self-energy [Fet71] X(k,w) (hereafter called simply “self-energy”),
for which approximations will be discussed below. For the sake of simplicity, we
assume that there exists a representation where the Green function is diagonal for
all energies. It is the case in infinite nuclear matter (momentum representation),
but the case of finite nuclear systems may be more complicated. This is, anyhow,
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beyond the scope of the present discussion. Therefore, let us give the expression of
G in this case:

N Ok (p) 3 Ok(n)
w—=gp—Y(kw)—i0"  w-—2 —3(kw)—i0t

G(k,l;w) = 5kl . (212)
The mass operator is, in general, a complex function. The pole of G(k, k;w) thus
occurs for w = wy, = & — i['y, which is a solution of wy, = €} + X(k,wy). In infinite
matter, the Green function can be decomposed into a pole part and a background
part

2(k)

W — Wk

Gk, lw) = —6n + Gga(k, l;w) (2.13)

where z(k) is the residue of G at wy,

) = ll_az(k;,w)

-1
o w:wj . (2.14)

The imaginary part I'y is a measure of the correlations present in the system insofar
as its non-vanishing value means that no single-particle state é,t|(1>0) is an eigenstate
of H. As for the elementary excitation spectrum, it is given by the real part g.
Neglecting the imaginary part of X(k,w) (along with setting z(k) = 1) thus allows
to recover the quasiparticle picture.

Single-particle spectrum and effective mass

The single-particle spectrum of a nucleus usually has a non-trivial structure. A
essential feature, though, is its density, i.e. the number of levels per unit energy. This
is related to the dispersion relation of particles in the medium, which depends on
the momentum- and energy-dependence of the self-energy. This is measured by the
Landau mass m*, usually expressed in infinite matter (k then being the momentum
of the particle and £? its kinetic energy), which describes the derivative of the single-
particle energy (s.p.e.) with respect to the single-particle (s.p.) momentum.

(2.15)

m* 1 m d RE(k, w,) -
k dk ’

m

where R denotes the real part. This quantity integrates the effects of the explicit
momentum-dependence of the self-energy, described by the k-mass m,

3=

_ m 0 RE(k,w)
= [H?T

]_ (2.16)

and its energy-dependence, characterized by the e-mass m,

ORT(k,w)

= 1
ow

= z(k)™! (2.17)

313

(2.18)
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The s.p. spectrum density is thus a consequence of both the momentum-dependence
of the “mean field”, or self-energy, and its energy dependence. The latter arises from
quantum correlations present in the system, which will not be explicitly included (by
definition) in the independent-particle picture necessary to describe heavy nuclei.

2.1.3 Perturbation theory (or lack thereof)
According to the Gell-Mann-Low theorem [GM51], an eigenstate |®) of a Hamilto-
nian

H = Hy+V (2.19)

can be obtained from an eigenstate |®0) of H, by applying the perturbing operator
V' adiabatically, i.e.

U/ (0, —00)| %)
(PUL(0, —00)|9%) [y

e—0

D) (2.20)

where U;(t, t') is the time-evolution operator in the interaction picture for the Hamil-
tonian H(t) = H + exp(—e€|t]) V .

The evolution operator U!(t,#') can in principle be expanded in powers of the
interaction V, which is the basis of diagrammatic analysis techniques INoz63, [Fet1].
However, this expansion diverges for local NN potentials due to their repulsive core,
iterated tensor component and bound state.

The Brueckner-Bethe-Goldstone (BBG) approach can be formulated as a recast
of the perturbative expansion in terms of an effective NN vertex [Jeu76l, [Bal(O7al.
Indeed, the problematic short-range properties of the interaction can be taken into
account by performing the re-summation of diagrams which describe the scattering
of a pair of particles in the medium. Compared to the vacuum case, the latter is mod-
ified by the Pauli exclusion principle, which blocks the lowest-energy intermediate
states, the individual interaction of particles with the medium in the intermediate
states, and the three-body force, which is usually treated by averaging over the third
particle, yielding a medium-dependent two-body interaction.

An alternative scheme employed in self-consistent Green function approaches to
nuclear matter is the Feynman-Galitskii T-matrix approximation [Mut05|], which
differs from the BBG scheme by the re-summation of hole-hole scattering processes,
as shown on Fig. 211

Both schemes, because of the intermediate particle/hole propagation lines, yield
results depending on the starting energy. This means, in particular, that an energy-
dependence is present, e.g. in the self-energy X (k,w) whenever such an effective
vertex is used.

Once the re-summation underlying the scheme chosen has been performed, di-
agrammatic analysis can be performed with the effective interaction used as an
elementary NN vertex, attention being paid to double-counting of diagrams gener-
ated by the BBG or Feynman-Galitskii expansion. Fig. displays several possible
diagrams entering the self-energy. The first line contains the first diagrams of the
hole-line expansion practiced in BBG theory. The first term of each series is akin to
the Hartree-Fock self-energy (hence the name Brueckner-Hartree-Fock approxima-
tion, or BHF), but it must be kept in mind that the G-matrix is energy-dependent.
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Figure 2.1: Schematic presentation of diagrams re-summed in a Brueckner G-matrix
and Feynman-Galitskii T-matrix effective interactions. Whereas the
G-matrix only sums particle-particle “ladders”, the T-matrix treats
particle-particle and hole-hole scattering on an equal footing, yielding
additional diagrams.

The two-hole-line diagram for the particle self-energy is commonly referred to as a
rearrangement term, since it can be obtained by cutting an intermediate propagation
line in the BHF total energy diagram.

The second line of Fig. gives diagrams describing the coupling of particles
with collective vibrations described by the polarization propagator (or response func-
tion) II, here defined in the ring, or random-phase approximation (RPA), which
shall be discussed in chapter This whole contribution is usually not taken into
account in infinite matter studies, where the three-hole-line approximation yields
well-converged results [Son98| but has been shown to modify the single-particle
spectrum significantly in finite nuclei, where surface vibrations play a particular
role [Ber80), [Lit06].

2.2 Energy Density Functional formalism

The Energy Density Functional (EDF) method is frequently cited as the most general
theoretical tool in low-energy nuclear physics. Indeed, it is a microscopic tool, in the
sense that it fully takes into account the quantal shell structure of the nucleus, as
well as collective effects when extended to its multi-reference variant. At the same
time, it is tractable for nuclei going from medium masses to the heaviest ones, as
well as nuclei in the crust of neutron stars, the same values of the reduced parameter
set associated with the functional being useable for all these systems.

Let us first describe the mean-field approximation which serves as a formal basis,
then the EDF method itself.

2.2.1 Mean-field theory and pairing

It has been known, since the work of Bohr, Mottelson and Pines [Boh58§|, that
nuclei have common features with superconductors, and that the clear signatures for
pairing between nucleons of the same species abound, from the odd-even staggering
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Figure 2.2: Schematic presentation of diagrams entering the self-energy 3 (k,w). (a)
One-hole-line (BHF) and two-hole-line contributions for particle states,
(b) same for hole states. (c) Particle-vibration coupling contribution.
The polarization propagator II is defined in (d); for particle states, the
second-order term has to be substracted, being already included in the
BHF self-energy.

(c) (d)

of binding energies to rotational properties.

In this section we shall describe the Hartree-Fock-Bogolyubov formalism, which
allows to describe pairing in a mean-field approach and is the starting point of the
EDF method. We direct the reader to classic textbooks [Rin00} [Fet71] for a discus-
sion of the Hartree-Fock (HF) method it extends and the various derivations and
interpretations of the latter. A more thorough discussion of pairing, superfluidity,
associated nuclear observables as well as the relevant microscopic theory is contained
in chapter Bl

Bogolyubov transformation

Our basic tool to describe the pair condensation phenomenon, while remaining in a
framework as easily tractable as the independent-particle (HF) approximation, is the
generalized quasiparticle (q.p.) concept. Following the introduction of the Bardeen-
Cooper-Schrieffer (BCS) formalism [Bar57al Bar57h|, Bogolyubov and Valatin pro-
posed a canonical transformation which allows to treat elementary excitations of a
superfluid state as individual degrees of freedom [Bog58| [Val58|. The fully paired
ground state of the system is thus a vacuum with respect to the operators

Bo= Surd+vta (221)
!
B = Y UMa+ Ve (2.22)
l
where ¢; and élT are the annihilation and creation operators corresponding to an
arbitrary representation, as already mentioned in the last section.

The vectors UF and V}* fully parametrize the quasiparticle states as well as the
vacuum |®¢) defined by the requirement that Vk §;|®¢) = 0. In the case of vanishing
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pairing correlations, we have U* = 0 for hole states and V¥ = 0 for particle states.
Otherwise, pairing correlations are introduced by mixing particles and holes. In the
case of a continuous spectrum, this results in the vanishing of the discontinuity of
occupation probabilities at the Fermi level.

It is useful to examine the structure of the Bogolyubov transformation. Let us
write it under matrix form, arranging the operators ﬁAk and ¢, into vectors, then
“super-vectors” containing both creation and annihilation operators:

~

(ﬁﬁT) :WT(;T). (2.23)

The transformation matrix VW can be decomposed, according to the Bloch-Messiah-
Zumino theorem [Blo62], as

D 0 UV c 0
W‘(o D*)(VU)(O C*)' (224)
This expression involves two transformations of creation and annihilation operators
among themselves. The first one, D, transforms the initial basis into the set of

canonical states among which the Bogolyubov transformation takes a simple form.
The matrices U and V, have, themselves, the structure

U:<82), V:<—ng) (2.25)

where we split the canonical basis in two halves. Hereafter the states belonging to
the two halves will be distinguished by the notation k& for the first and k for the
second one, when necessary. The notation k will refer to the state associated with
|k) in the Cooper pair. The second block of the W-transform performs the mixing
of particles and holes to generate a set of quasiparticles defining the vacuum |®y).
The sub-matrices v and v are diagonal, we call u; and v; their eigenvalues, with
Upp = up = Up, = up and Vig = v = =V = —vp.

Finally, the C' transformation produces a different set of quasiparticles. This last
transformation can be used to diagonalize a single-quasiparticle Hamiltonian, as will
be discussed in the following.

In the representation ¢, the density matrix of the system, as well as the particle
number, read

pr = (Doléfen|®o) = D> VIV,
N = Tr(p) = > V"™V (2.26)
km

We see that each quasiparticle gives a (generally fractional) contribution to the par-
ticle number given by the norm of the corresponding V* vector. This allows to
distinguish between hole-like (|V*|> > 1/2) and particle-like (|]V*|*> < 1/2) quasipar-
ticles.

The addition of pairing in the quasiparticle picture involves the definition of the
pair tensor, or anomalous density matrix

ki = (Qoléid o) = > V" UM, (2.27)
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which is nonzero only for states mixing different particle numbers, which is caused
by mixing particles and holes in the Bogolyubov transformation.

One can easily infer from the definition of p and & that p' = p, and AT =
—#* hence &7 = —#&, where &7 denotes matrix transposition. Additionally, the
conservation of fermionic anticommutation rules for the quasiparticles Bk, BZ imply
relations between U and V' vectors

SWUFUR V) = Gy Y UPUM V™) = b,

k m
S (UMVEHVIUY) =0, S UMV VUM =0, (2.28)
k m

which translate into the following relationship between p and &

pp—RR = p. (2.29)
This expression generalizes the condition that the density matrix of a Slater deter-
minant (vanishing pairing limit of the above) is idempotent, i.e. pp = p.
Let us now consider the properties of the canonical basis. From the structure of
U and V matrices, we can see that

Prl — Uzélka Rgl = ukvkélg. (230)

These expressions allow for an efficient construction of local and quasi-local densities,
as well as a simple expression for the particle number (expressed here for a single
species, sums and the trace being understood accordingly),

N = (o] Y éfer|®o) = Tr(p) = > 1. (2.31)

k

They imply, moreover, that in the canonical basis the Bogolyubov q.p. vacuum
takes the BCS form. Additional properties of this case are discussed in chapter

Time-reversal symmetry

The Bogolyubov transformation involves a pairwise coupling of single-particle states.
For each quasi-particle (3, the states |I) and |I) are taken in two different halves of
the basis. The distinction is made according to symmetries of the interaction which
produces pair condensation and quantum numbers of the Cooper pair. Pairing be-
tween particles of the same species, being the most important and readily observable
form occurring in nuclei, involves pairs having total spin and angular momentum
zero. Accordingly, paired states are related by time-reversal symmetry [And59]. The
corresponding operator is antiunitary [Mes58]. Its action on a single-particle wave
function expressed in coordinate (r), spin (0 = £1/2) and isospin (¢ = £1/2) space
yields

(Ty)(roq) = (=1)"* 9" (xaq), (2.32)

with & = —o. Moreover the property 72 = —1 holds in the space of states with odd
particle number, while 72 = 1 when applied on states with even particle-number
parity. For a time-reversal-invariant state, i.e. if 7|®g) = |®¢), the time-reversed
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state of each canonical (basis) state can be found in the same basis, which gives a
formal definition to the correspondence k£ — k. It is easy to show that

with |n:| = 1. We can then choose the states |k) and |k) so that 1, = 1 and, by
convention, store the state |k) in the first half of the basis, i.e. |k) = |k). This fully
specifies the two halves through n; = 1 and 7, = —1.

It may then be interesting to define an anomalous density matriz p [Dob8&4],

Pl = TR, (2.34)

which is Hermitian for time-reversal-invariant systems. In particular, this anomalous
density can be expressed in coordinate space, where it has a nonvanishing local
(diagonal) component. The corresponding local anomalous density occurs naturally
in local pairing density functionals for spin-singlet pairing.

Time-reversal symmetry requires the pairwise symmetry between quasiparticles,
i.e. UF = U*, V¥ = —V* The resulting vacuum is a sum of Slater determinants
having different, but all even, particle numbers. It also implies that time-reversal
partner states have the same occupancy. Such a many-body state can thus only
describe nuclei with even particle numbers. Odd-mass and odd-odd nuclei require
to break this symmetry by creating one or two (unrelated) quasiparticles on top of
the fully paired vacuum. Such an operation amounts to replacing the corresponding
3y, operator in the set defining |®,) (through 3|®,) = 0 ) by ﬁ,i, defining a new
vacuum. The latter is said blocked since the contributions of the (ﬁk, ﬁ—) q.p. pair
to the pair tensor then vanish.

From the definition of 3, and B,Z, Eq. (Z22]), we see that this operation amounts
to exchanging

Ur e Ve VR o Uk (2.35)

The variations of p and & corresponding to a one-q.p. addition can be deduced from
their definitions. In particular, the variation of the particle number is given by

N = > (Uf U=V V), (2.36)
!

which is not, in general, an integer number: in order to obtain this way a reasonable
wavefunction or density matrix for the intended odd nucleus, a readjustment has to
be made to the particle number of the underlying fully-paired vacuum.

Hartree-Fock-Bogolyubov equations

The Hartree-Fock-Bogolyubov method [Rin00] uses the Bogolyubov quasiparticle
vacuum as a variational ansatz for the wavefunction of a superfluid system. Con-
sidering a system ruled by a Hamiltonian containing a kinetic term and two-body
interaction,

H = T+V = Z tklckcl + = Z vklmnckcl CnCms (2.37)

klmn


http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4

26 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORY

where Uy, is the antisymmetrized interaction matrix element
Tkt = (KI|V|mn) — (kI|V|nm). (2.38)

The energy of a configuration |®) reads

A 1 1
E[®] = (P|H|P) = ;tklplk + B Z Vklmn (pmkpnl + ilﬁzlﬁmn) , (2.39)

klmn

where we take advantage of the antisymmetry of ©. The fact that the q.p. vacuum
includes two-body correlations is exhibited by the additional x*x term extending
the factorization of the two-body density matrix (é,ié}éné@ pertaining to a normal
Slater determinant.

The HFB approximation for the ground state wave function can be obtained by
applying the Ritz variational principle. As already mentioned, however, the Bo-
golyubov transformation yields a state which mixes wave functions having different
particle numbers. It is possible, however, to conserve the average particle number by
applying a constraint by introducing Lagrange parameters relative to neutron and
proton numbers. The variational procedure can then be applied to the expectation
value of the modified Hamiltonian,

where N and Z are the neutron and proton number operators, respectively. The
expectation value of H corresponds to the shifted energy

S[@] = (B[H|®) = & —M\N — N7, (2.42)

This formulation applies, naturally, when no mixing of the two species is considered.
The quantities A\, and A, can be formally defined as

o0& o0&

A = —, Ap = —, 2.43

ON P 0z (2.43)
which exhibit their role as chemical potentials, and the fact that the HFB/BCS
formalism is initially intended to describe systems large enough to be amenable to
a statistical treatment or coupled to an external reservoir of particles.

Minimizing the shifted energy Eq. (2242]) with respect to quasiparticle degrees of

freedom yields the equations

(h__AA _hiA)(g:) :Ek(g];) (2.44)

which involves the particle-hole mean field ~ and the particle-particle or pairing field
A, expressed as matrices between single-particle basis states,

_ 1 _
hkm = tkm + Z VklmnPnl, Akl = _5 ; VklmnBlmn- (245)

in

In the above expression, A is a diagonal matrix in isospin space, having diagonal
matrix elements A, between neutron states and A, between proton states. The
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solution of the above equations can be obtained by iterating until self-consistency is
reached.

The ket |®;) being the state which yields minimal energy £ = &, the modified
Hamiltonian can be rewritten, by expressing particle operators through quasiparticle
ones and normal-ordering, as [Rin00]

~

H = &+ ) BB+ H, (2.46)
k

where Hiy is the residual interaction between quasiparticles, which is neglected at
the present mean-field level. It is a sum of products of four B or BT operators, each of
these products being normal-ordered with respect to the Bogolyubov q.p. vacuum
|®g). As a result, it is easy to check that its expectation values in |®g) and the
elementary excited states BZ\@O) vanishes. The shifted energy of a one-q.p. state is
thus

Ek = (®o|BHB|®o) = Eo+ By (2.47)

The non-shifted energy can be recovered by adding back the contribution of the
constraining term, which yields

E = (DolBHBlP0) = E+ B+ X > (UFUF =V VE), (248
!

Aq being the chemical potential of the species relevant to quasiparticle k, with ¢ =n
or p.

As mentioned in section E2ZT], the one-q.p. state does not have an integer,
odd particle number as is practically required. To obtain the latter, the chemical
potential has to be adjusted accordingly. As a first-order approximation, though,
one can consider that the resulting energy is &, ~ & + Ej, £ )\, depending whether
the q.p. k is hole-like (—) or particle-like (+).

2.2.2 Density functional theory

The electron gas present in solids and molecules is another example of a correlated
fermion system. It was demonstrated by Hohenberg and Kohn that the wave func-
tion of this system, hence all its properties, could be expressed as a functional of the
local electron density [Hoh6G4]. In particular, the energy of the correlated electron
gas can be expressed as a functional of the density, this functional being universal,
i.e. valid for all electron numbers and external (ionic) potentials the electrons could
be placed in. The density and energy of the ground state can thus be obtained by
minimizing the energy functional with respect to the density (taken in the manifold
of densities generated from a sensible many-body state).

This result, known as the Hohenberg-Kohn variational principle, was first in-
tended at semiclassical implementations. However, the most successful embodiment
of this principle was proposed by Kohn and Sham [KohG5], who suggested generating
the density from an auxiliary Slater determinant. The method was later extended
to involve the non-local density matrix [GiI75] as well as spin and current densities.
It was also shown that superconductivity could be taken into account by including
a dependence on the anomalous density in the functional [OIi88 [Kur99]. The most
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general formulation of density functional theory (DFT) was proposed by Valiev and
Fernando [Val97|, who showed that one could build a functional of any family of
observables corresponding to Hermitian operators.

We restrict this short discussion to one-body operators, making the distinction
between particle-hole and particle-particle ones. Following the extended Hohenberg-
Kohn procedure, the energy functional of a superfluid system can thus be formally
defined as

Ep.k,#7] = FIQ.P,P] = min (®Hin + Vext|®) (2.49)

d—Q,P

where we make the distinction between the intrinsic Hamiltonian f]im and an ex-
ternal potential Vext, and & — (@), P means that the search is performed over trial
wave functions ® which yield the specified input normal and anomalous densities,
defined through the operators

Q(z) = ZQ( Vit €41, (2.50)
P(z) = - Z ( o) el + p(a)iy élék) ; (2.51)

q(x) and p(z) being Hermitian and skew-symmetric matrices, respectively, while x
is a set of coordinates and indices necessary to specify each density. We then have

Qz) = Tr (Q)p) = Zq( kP (2.52)
P(z) = Tr< "%> ZP T ) ki Kik- (2.53)

The functional of Eq. ([2:49) is universal in the sense that it is valid for all particle
numbers and external potentials of the form Vi = v - Q +w- P, vand w being
functions of x and - the scalar product defined by v - Q = [ dx o )Q(x)

In the original formulation of DFT, @Q(x) is the local particle density. It is
tempting to generalize this in order to extract more information from the auxiliary
state and potentially improve the predictive power of the functional more efficiently
that with a re-summation of all missing effects in the local functional. In addition,
a broader range of observables can be contrained this way. However, it should be
stressed that in principle, no Kohn-Sham approach can depend on the full density
matrix, as it is guaranteed that the latter, being a projector, can not be matched
with the exact density matrix of a correlated state (the case being less clear for the
generalized density matrix which appears with pairing).

Given the exact functional of Eq. (2249)), the ground state energy and densities
can be obtained as

& = min E[p, K, k"] (2.54)
Py, K*
= erlljlg FlQ, P, P*]. (2.55)

Several remarks are in order concerning the transposition of such a formalism
to nuclear structure as is currently envisioned. The first concern to be raised is
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related to symmetries of the underlying Hamiltonian. Indeed, any relevant H must
commute with operator such as total A-body linear and angular momentum, and
particle numbers. A nucleus being a self-bound system, contrary to the electron gas
in a solid, it has to be considered isolated, without any external potential acting
on it. Its wave function then factorizes into a center-of-mass part and an intrinsic
part, and the density corresponding to the ground state in the laboratory frame is,

trivially, a constant [Kre01].

The intrinsic density, on the other hand, is an A-body operator. However, as
shown by Engel for a model system, [Eng07] a useful approximate Kohn-Sham func-
tional of the intrinsic density can be built. Formally adding an external potential
term acting only on the center of mass, in order to obtain a localized state amenable
to a DFT description has also been proposed [Gir(7, [Gir08a]. The case of rotation
is more complicated, due to the coupling between collective and intrinsic motion
as well as the difficulty to properly define angular coordinates, to the point that it
was suggested to work only with spherically-symmetric states and densities [GirO8D].
Also, the pair tensor is non-zero only for states mixing different particle numbers.
The “exact” pair density should thus be defined from transition matrix elements
between A and A 4 2 states, or before projecting onto good particle numbers in an
accurate perturbative scheme.

Moreover, since DFT makes no direct reference to the system’s wave function
whatsoever (the Kohn-Sham Slater determinant should not be taken as such), ex-
plicit restoration of broken symmetries fails to find a place in its framework. More
generally, practical applications of Eq. (Z49) require to build a functional of the
relevant densities ( and P able to include all correlations. This implies missing the
explicit description of collective effects such as shape coexistence, which is known to
be essential for understanding the structure and spectroscopy of many nuclei, such

as ">™Kr [Kor04, Ben06b], °°Zr [Woh86, Mac89al [Skad3] or neutron-deficient lead
isotopes [Dug03|, [Ben04].

No extension of DFT, in the form of a Hohenberg-Kohn existence theorem, able
to provide a firm formal ground to calculations “beyond the mean field” has been
proposed yet. The definition of the EDF method proceeds by analogy with the self-
consistent mean field method, performed with a density-dependent interaction, and
its extensions such as the generator coordinate method (GCM) and the random-
phase approximation (RPA).

2.2.3 Single- and multi-reference EDF methods

The single-reference (SR) EDF method uses a Bogolyubov quasiparticle vacuum
as a reference state to generate the density matrix p and pair tensor k entering
the expression for the energy functional, the densities () and P being in principle
matched with their values in the nucleus’s rest frame. The approach consisting in
writing down the functional and fixing its parameters directly has been attempted
on several occasions [Neg72} [Fay98] [Fay00, Per04, Bal07h, [Kor(8]. Herafter we shall
adopt the more conventional scheme where the functional is expressed as the result of
normal and anomalous contractions of distinct effective, density-dependent vertices
for the particle-hole (p-h) and particle-particle (p-p) channels, which correspond,
respectively, to couplings of ()-densities only, and couplings involving P-densities.
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The following general expression for the energy functional results,

Aa Ak 1 — ~ 1 —KK [ A] ¥
S[p7 K, K ] = ; tklplk + 5 Z Umen[/)]/)mkPnl + Z Z vklmn[p]"ikl’%mn (256)

klmn klmn

where ty,; is the kinetic Hamiltonian (with an effective correction for spurious center-
of-mass motion, see Ref. [Ben(03b|), and ©7°[p] and v"*[p] are effective, medium-
dependent particle-hole and particle-particle interactions, respectively (regulariza-
tion subtleties may actually arise in the definition of the particle-particle functional,
section [2.7]).

Initially, both are devised to match as close as possible the physical content of an
effective interaction based on the re-summation of (classes of) diagrams in perturba-
tion theory. The trial state could then be understood as an unperturbed state used
as a starting point for the perturbative expansion. This is less clear in the case of
a DFT-oriented interpretation, however, and the rather simple effective interactions
used up to now lack prominent characteristics of microscopic ones such as energy
dependence, or finite range and non-locality, which makes a direct link between one
and the other rather difficult. As a side note, notice that perturbation theory pro-
vides the energy of a system as a functional of the Green function (restricted to the
single-particle G for two-body interactions) [Noz63|] of which DFT could be formally
seen as a special case.

If v = " and the corresponding interaction matrix elements are antisym-
metric with respect to interchanging the two particles or holes, the above energy
reduces to the standard HFB expression. Nonetheless, perturbative approaches to
superfluidity indicate that the effective vertices in the two channels should be dif-
ferent (see chapter Bl). Moreover, the antisymmetry of the particle-hole interaction
is often broken, either for practical or physical reasons, as this may enable to ad-
just useful degrees of freedom in the parametrization of the functional. Typical
examples are the independent adjustment of isoscalar and isovector spin-orbit terms
[Rei95] [Rei99], or the use of Landau parameters to fix independently the spin-isospin
terms of the functional [Ben02] [Zdu05].

Minimizing Eq. (256]) yields HFB-like equations, Eq. (Z44]), with the potentials
h and A redefined as

5E 5E
hy = — Ay = 22
kil 5plk kl 5/{7]?

(2.57)

Again, these expressions reduce to the HFB potentials, Eq. (2:45]), when the energy
of Eq. ([Z350]) corresponds to the HFB energy. In general, additional rearrangement
terms arise in Eq. (Z21) from the functional derivation of the interactions themselves
with respect to the density. This will be of some importance in the discussion of
single-particle energies below.

Multi-reference (MR) EDF calculations extend SR ones by allowing to mix differ-
ent reference states (usually obtained from separate SR-EDF calculations). Again,
this requires to attribute a certain meaning to the wave functions obtained from the
SR-EDF calculations. Just as the wave function used in SR-EDF is the same as
in the HFB method, The MR-EDF ansatz is inspired by the generator coordinate
method (GCM) |Rin00],

By) = / da f(a)|D2) (2.58)
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where |®%) is a Bogolyubov quasiparticle vacuum obtained by a constrained calcula-
tion (for configuration mixing) or by a group transformation (for symmetry restora-
tion), a being a (set of) collective coordinate(s) and/or order parameters pertaining
to the breaking of given symmetries. The mixing is implemented by the weight
function f(a), which is given by a group transformation in the case of symmetry
restoration, otherwise it is a solution of the Hill-Wheeler equation [Hil53| [Rin00]

/ db [H(a,b) — EY® T(a,5)] f,(5) = O, (2.59)
where EMR is the energy of the mixed state described by f,, Z is the overlap kernel

Z(a,b) = (DY Ph), (2.60)

and H the “Hamiltonian” kernel, which, once more, reduces in the Hamiltonian
(HFB/GCM) case to the non-diagonal matrix element

H(a,b) = (DYH|DY). (2.61)
When working with a generalized energy functional, H is redefined as
H(a,b) = E[p™, i, &, (2.62)

where the densities obtained in the q.p. vacuum have been replaced by the following
transition densities,

o = GRS Kb = (@G |eick | 25) Fab = W (2.63)
(PG|PE) (PG|®0) (5]25)

One last time, this choice is consistent with the special HFB/GCM case. In the
most complete and involved applications to nuclear structure, a is a set of coordi-
nates corresponding to the gauge angles relative to particle-number symmetry, Euler
angles and deformation coordinates, the weight function f, being partly determined
by symmetries and partly by the Hill-Wheeler equation. Symmetry restoration and
configuration mixing are thus performed simultaneously [Mey95|, yielding a multi-
dimensional problem [Ben08|. The full variational problem would require simulta-
neous optimization of f, and of the states |®¢). In practice, |®§) is optimized with
respect to the MR energy functional only when f, is known a priori, which leads to
the variation-after-projection (VAP) approach used in the case of particle-number
restoration [She(0, [Sto07].

A major difficulty arises, though, in the above definitions: the transition densities
diverge for orthogonal states. While this is not a concern in the Hamiltonian case
[Ang01b], since the corresponding contributions to the energy cancel out, the general
EDF kernel ‘H will indeed diverge. A well-understood case where this can happen
is particle-number projection of a wave function where a single-particle level crosses
the chemical potential [Dob(7]. The terms responsible for this divergence have been
recently identified as those contributing to self-interaction and self-pairing, and a
correction scheme derived [LacO8]. This correction remains limited, however, to
low-order polynomial density dependences in the effective interactions.

The straight generalization of the Hamiltonian “mean field and beyond” picture
to a density-functional-inspired one is thus rather tricky. In this work, we shall not
perform MR-EDF calculations, yet our results will be analyzed, whenever possible,
with the underlying physics in mind.
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EDF and single-particle energies

In Kohn-Sham DFT, single-particle (or quasiparticle) energies obtained from the
auxiliary potentials (iz, A) have a priori no particular meaning. However, the
prospect of obtaining single-particle spectra from such calculations is of great in-
terest. This has been studied in semiconductors, where, for example, it would
allow to extract band gaps [Sha85]. A proper determination of s.p. energies as
defined from Green functions, however, involves solving a modified Dyson equation
[Sha85l [Bha05], i.e. going back to perturbation theory.

On the other hand, provided one can build a functional which is valid not only
for the ground state, but also for a sufficient number of excited ones, elementary
excitations become a starting point for the general discussion of the excitation spec-
trum [Gor96]. A first step in this direction is the control of the effective mass, hence
the density of s.p. states, through non-local terms [Bha(5]. Excited state energies
can then be calculated by applying a constraint or adding quasiparticle excitations,
which is a rigorous approach when the calculations are performed self-consistently.
Physical single-particle energies are thus mass differences between the ground state
of the A-nucleon system, and ground or excited states in A + 1-nucleon ones.

In the very end, nothing prevents us from trying to adjust parameters of the
functional to match s.p. energies in addition to other observables. If eigenenergies
of the EDF potentials are used, care must be taken to make an explicit link with
self-consistent mass differences. For quasi-particles added on top of spherical nuclei,
a small rearrangement contribution can be expected in the SR framework [Rut98,
Zal0g).

Further comments are in order, though, concerning the microscopic definition of
s.p. energies and their calculation in a MR-EDF scheme. Nuclear single-particle en-
ergies can be measured by stripping and pickup reactions. Such experiments usually
yield a non-trivial spectrum where s.p. levels are fragmented due to correlations,
i.e. measured states are not pure, single quasiparticles but result from the coupling
of the q.p. to other degrees of freedom.

This is commonly discussed in the framework of the interacting shell model
as a coupling of several elementary excitations. In such a picture [Cau05|, which
amounts to decomposing the Hamiltonian into an effective single-particle (monopole)
part and a residual interaction acting in a reduced model space, the single-particle
energy can be recovered from the spectrum using spectroscopic factors. A similar
effect is obtained when performing particle-vibration coupling [Ber80), [Lit06] using
the (quasiparticle) random phase approximation [Bla77 [Sev02]| for the collective
vibrations. In these cases, the coupling to collective modes fragments the single-
particle strength (measured in terms of spectroscopic factors, or spectral functions,
Eqgs. (2.8) and (29)) and yields a lowest fragment with an energy lowered compared
to the initial s.p.e. (thus closer to the Fermi level), which translates into a denser
spectrum and higher effective mass.

Such a particle-vibration coupling scheme can be understood as an approxi-
mation of the full MR-EDF calculation of the odd nucleus, which we take as an
idealized standard. Indeed, RPA, or in its EDF-based embodiment, linearized time-
dependent EDF [Ben03b], can be considered as a low-amplitude-motion limit of a
MR-EDF formalism [Jan64l, [Sev06].

The EDF method thus has the potential to give a faithful account of single-
particle motion, subject to the condition that all relevant collective degrees of free-
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dom are taken into account by symmetry restoration and configuration mixing. This
clearly remains to be implemented in full-fledged form and on a systematic footing.

Single-particle energies and mass differences

In order to calculate a mass difference between two adjacent nuclei (of masses A
and A + 1), we have to create a quasiparticle on top of the A-body ground state
(possibly with a particle number adjusted to obtain the right number of particles
in the one-q.p. state, see Eq. (248]) and chapter [), then resume self-consistent
minimization. Further, it should be ultimately possible to perform a full MR-EDF
calculation of the odd system.

In order to understand the workings of the SR-EDF method in this respect, let
us express the energy of a the system following the addition of a single quasiparticle
(without any self-consistent rearrangement of the nucleus) with an expansion up to
second order in the corresponding variation of the density matrix and pair tensor:

Elp+0p,k+ 0k, K"+ 0Rk"] = Elp, R, K]
1 * *
+ hidpr + 5 (Apdng, + Ay k)
1 1
+ évlglhmnépmkapnl + §v£fmnél{2l5/{’mn
o0& o0&
—_— K‘I —_—
5plk5/‘€;m e 5plk:5"inm
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The first line in Eq. ([Z64) is the fully paired ground state energy, while the second
line corresponds to the quasiparticle energy, as in the HFB case, Eq. (Z48). The
third line involves the particle-hole and particle-particle residual interactions,

oh o0& o0&
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In the strict HFB case, these are (up to a factor) the antisymmetrized interaction
Hamiltonian, i.e. vP! =7, vPP = 7/2. In this case the third line vanishes, since

1 *
vklmnépmk 5pnl + évklmndﬁkl(sﬁmn

1
- §Eklmn [5pmk5pnl - 5pm15pnk + 5/{215/{77171] = 07 (266)

as can be verified by writing down the density variations in terms of quasiparticle
U and V vectors. In the general EDF case, the vertices are different, density-
dependent (which introduces non-antisymmetric rearrangement terms, which allow
the (A+1)™ particle to modify the interaction energy of the A core particles by alter-
ing the density on which the interactions depend) and may be non-antisymmetrized.
The cancellation of second-order terms does not occur anymore. The energy of a
one-(.p. state thus contains a self-interaction contribution (direct terms not can-
celled by exchange ones) and a self-pairing one [Lac08|. The latter corresponds to
terms of the form v77 -, which can be interpreted as the scattering of a pair of
particles onto the same state, which gives a spurious pairing energy contribution
since it is not cancelled by the opposite particle-hole term arising in strict HFB. As
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there is some freedom in the distribution of non-cancelled terms between the two
contributions, we may refer to their sum as quasiparticle self-interaction (QSI). The
same argument can be put forward for the fourth line, i.e. rearrangement terms
of the particle-particle interaction, which vanish in the Hamiltonian case and for
density-independent pairing interactions. These can, in any case, be expected to be
small.

Also, not included in the above expressions and discussion is the variation of the
center-of-mass correction with mass number A [Zal(08|, which results in a slight and
systematic variation of single-particle level spacings.

Self-consistent minimization of the energy will thus yield an energy lower than
Eq. (Z&4), but the position of the resulting minimal energy with respect to the
starting one can not be inferred a priori. The fact that QSI occurs in part due to
different particle-particle and particle-hole interactions is puzzling, as the latter is
required by diagrammatic analysis. One may wonder whether such a self-pairing
effect may be found in the latter method, and if it is the case, what kind of physics
may be contained therein. This question unfortunately belongs to the list of concerns
too involved to be addressed in this manuscript.

Although self-interaction contributions to one-quasiparticle state energies are
non-vanishing, they are, qualitatively, effects of order 1/A compared to bare q.p.
energies generated by the interaction with all nucleons. Depending on the situation,
this will have to be compared with the magnitude of the effects under investigation.

2.3 Skyrme energy density functional

The usual ansatz for the Skyrme effective interaction [Cha97, [Cha98| leads to an
energy density functional which can be written as the sum of a kinetic term, the
Skyrme potential energy functional that models the effective strong interaction in
the particle-hole channel, a pairing energy functional corresponding to a density-
dependent contact pairing interaction, the Coulomb energy functional (calculated
using the Slater approximation [Sla51]) and correction terms to approximately re-
move the excitation energy from spurious motion caused by broken symmetries
[Ben03b],

&= gkin + SSkyrme + SCoulomb + Spairing + Scorr . (267)

In this section we focus on the particle-hole part of the functional consisting of
all the terms mentioned above except the pairing part, which will be the subject of
the next section.

2.3.1 Quasi-local energy density functional

Throughout this work, we will use an effective Skyrme energy functional that cor-
responds to an antisymmetrized density-dependent two-body vertex in the particle-
hole channel of the strong interaction, that can be decomposed into a central, spin-
orbit and tensor contribution

,USkyrme — 'UC + 'Ut + ULS ) (268)

Other choices for the writing of the Skyrme energy functional are possible and have
been made in the literature, which might affect the form of the effective interaction,
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its interpretation and the results obtained from it. We will come back to that in
section [4.2.2] below.

The Skyrme energy density functional is a functional of local densities and cur-
rents

€Skyrme = /dg’r HSkyrme(r) s (269)

which has many technical advantages compared to finite-range forces such as the
Gogny force. All exchange terms have the same structure as the direct terms, which
greatly reduces the number of necessary integrations during a calculation.

Local densities and currents
The general density matrix, expressed in coordinate, spin and isospin variables,
reads

Sy

p(roq.v'o'q) = (el Croq). (2.70)

Throughout this manuscript we will assume that we have pure proton and neutron
states, except for the calculation of the residual interaction, in appendix [C.3], where
the general framework leads to more compact formulae. The formal EDF framework
for the general case including proton-neutron mixing is discussed in Ref. [Per04]. As
of now, let us consider that the matrix can be written independently for neutrons
and protons,

p(roq,v'o’q) = py(ro,x'o’) d,y, (2.71)
and separate the spin part [Dob00]
pa(ro, o) = (el treq) = Lpg(r,x)000 + Esy(r, 1) - (0'|G|0)  (2.72)

where

prt) = S ptore),  s,rr) = 3 por'd) (ol6lo). (2.73)

The Skyrme energy functional up to second order in derivatives that we will intro-
duce below can be expressed in terms of seven local densities and currents [Per04]
that are defined as

(r) = pylr,x)| _,
(r) = sy(r,v)|,_,
,(r) = V-V p,r, r’)}r:r,
(r) = V-V s, r')}r:r,
(r) (V= V') py(r, )] _,
(r) (Vi = V,,) squ(r, 1),

N[ N

=r/

e
=
—~
=
~—
I
N[

> (VWY + ViV, seu(r,r)] (2.74)

which are the density p,(r), the kinetic density 7,(r), the current (vector) density
jq(r), the spin (pseudovector) density s,(r), the spin kinetic (pseudovector) den-
sity Ty(r), the spin-current (pseudotensor) density J, . (r), and the tensor-kinetic
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(pseudovector) density F,(r). The densities p,(r), 7,(r) and J, ., (r) are time-even,
while s,(r), Ty(r), j,(r) and F,(r) are time-odd. For a detailed discussion of their
symmetries see Ref. [Dob00]. There are other local densities up to second order
in derivatives that can be constructed, but when constructing an energy functional
they either cannot be combined with others to terms with proper symmetries or
they lead to terms that are not independent from the others [Dob96al.

The Cartesian spin-current pseudotensor density J,, can be decomposed into
pseudoscalar, (anti-symmetric) vector and (symmetric) traceless pseudotensor parts,
all of which have well-defined transformation properties under rotations

z

Jur (1) = 50 TOM) + 53 € IO () + IO (x), (2.75)

R=X
where 0,, is the Kronecker symbol and ¢,,, the Levi-Civita tensor. The pseu-
doscalar, vector and pseudotensor parts expressed in terms of the Cartesian tensor
are given by

T = 3 ), (2.76)

z

Jlgl) (I') = Z S qu<r)7

nv=z
JAE) = 1) + Tulr) laﬂyzjm

The vector spin current density JM(r) = J(r) is often called spin-orbit current,
as it enters the spin-orbit energy density. Some authors, though, call J(r) spin
density, which is ambiguous when discussing the complete energy density functional
including terms that contain the time-odd s(r).

For the formal discussion of the physical content of the Skyrme energy functional
it is of advantage to recouple the proton and neutron densities to isoscalar and
isovector densities, for example

po(r) = pul(r) +pp(r),  pi(r) = pa(r) —pp(r) (2.77)
and similarly for all other ones. As we assume pure proton and neutron states, only
the T, = 0 component of the isovector density is non-zero, which we have exploited
to drop the index 7T, from the isovector densities pi7, (r), etc.

Skyrme’s central force

In each part of this work, we will use different parametrizations of the density-
dependent central Skyrme interaction. The number of density-dependent terms will
be chosen as one or two depending on specific requirements. The most general (for
our purpose) central Skyrme interaction reads

°(R,r) = to(1+zoP,) o(r)
Lts(1+a3b)p ( ) 6(r)
Lt6 (1+ 26P,) p” (R) 8(x
Lty (1+ 21 P,) [K? 6(r) + 6(r) K?
> (1+22P,) K -6(r) k

+ o+ + o+

(2.78)
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where we use the shorthand notation
r = r|—7ry, R = %(r1+r2), (2.79)
while k is the usual operator for relative momenta
k=-1(V,—V,) (2.80)

and k' its complex conjugate acting on the left. Finally, P, is the spin exchange
operator that controls the relative strength of the S = 0 and S = 1 channels for a
given term in the two-body interaction

P,=1(1+6, 6,). (2.81)

As said above, we restrict ourselves to a parametrization of the Skyrme energy
functional as obtained from the average value of an effective two-body vertex in
the reference quasiparticle vacuum. We decompose the isoscalar and isovector parts

of the resulting energy density functional H¢ into a part H;**" that is composed

entirely of time-even densities and currents, and a part Hf’Odd that contains terms
which are bilinear in time-odd densities and currents and vanishes in intrinsically

time-reversal invariant systems

Ho(r) = Y [HE™"(r) + HPY ()] (2.82)
t=0,1
Both H®" and H° are of course constructed such that they are time-even; they
are given by [Eng75, [Per(4]

Hg,even = A’[po] P? + AtAp peApe + A pii — A? Z Tty Tt s

w V=2
H = Aflpolst — A3+ AR s - Asp+ Al'sy - T, (2.83)

where A?[pg] and A$[p] are density dependent coupling constants that depend on
the total (isoscalar) density. The detailed relations between the coupling constants
of the functional and the central Skyrme force are given in appendix[Al The notation
reflects that two pairs of terms in HS ™" and HS* are connected by the requirement

of local gauge invariance of the Skyrme energy functional [Dob95al.

Zero-range spin-orbit force

The spin-orbit force used with most standard Skyrme interactions
D"S(r) = iW, (61 + 63) - K x 6(r) k (2.84)

is a special case of the one proposed by Bell and Skyrme [Bel56, [Sky58b|. As above,
the corresponding energy functional [Eng75| [Per04] can be separated into a time-
even and a time-odd term

HS) = D [ + 15 )] (2.85)
t=0,1
where
HtLS’even = AtV'J otV - Jy, HtLS’Odd = AtVJ St -V X ji (2.86)

which share the same coupling constant as, again, both terms are linked by the local
gauge invariance of the energy functional. The relation between the AY/ and the
one coupling constant of the two-body spin-orbit force W, is given in appendix [A]
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Skyrme’s tensor force

Although rather uncommon in the Skyrme parametrizations published so far, the
tensor force has been the subject of renewed attention, and will be the main topic
of chapter [l

By convention, the tensor operator in the tensor force is constructed using the
unit vectors in the direction of the relative coordinate e, = r/|r| and subtracting
6'1 . 6'2 R

512:3(&1'87)(&2'67,)—6’1'6'2, (287)
such that its mean value vanishes for a relative S state, which decouples the central
and tensor channels of the interaction. The operator Slg commutes with the total
spin [Slg, SQ] = 0, therefore it does not mix partial waves with different spin, i.e. spin
singlet and spin triplet states. In particular, it does not act in spin singlet states at
all, as S12Pg_o = 0 (see section 13.6 of Ref. [Nil95]). As a consequence, there is no
point in multiplying a tensor force with an exchange operator (1 —i—xtf?o) as done for
the central force, as this will only lead to an overall rescaling of its strength.

The derivation of the general energy functional from a zero-range two-body ten-
sor force is discussed in detail in Refs. [Flo75l [Per04]. We repeat here the details
relevant for our discussion, starting from the two zero-range tensor forces proposed
by Skyrme [Sky56 [Sky58a

otr) = 1t {[3 (61 -K) (69 K) — (61 62) K?

K

+0(x) [3(61-K) (62 K) — (61 - 62) K] }

" {3 (61 -K)6(r) (82 -K) — (01 - 00) K - 6(r) 1;} (2.88)

where r, k and k' are defined as above, Eqgs. (Z79) and ([Z3J0). The corresponding

energy density functional can again be decomposed in a time-even and a time-odd
part

M) = 3 [ + )] (2:89)
t=0,1
with [Per(4]
z < 2 z
H‘;,even _ _BtT Z Jt#w]t,uu — %BtF (ZJt7MM> — %BtF Z Jt,;uu]t,uu
w,v=x H=x py==
‘;,odd _ BtT s, - T, + Bf s, - F, + BtAs st - As; + BtVS (V-s0)?, (2.90)

where we already used the local gauge invariance of the energy functional [Per04] for
the expressions of the coupling constants. The actual expressions for the coupling
constants expressed in terms of the two coupling constants ¢, and ¢, of the tensor
forces are given in appendix [Al

The “even” term proportional to ¢, in the two-body tensor force (Z88) mixes
relative S and D waves, while the “odd” term proportional to ¢, mixes relative
P and F' waves. Thus, due to the fact that both act in spin-triplet states only,
antisymmetrization implies that the former acts in isospin-singlet states (and hence
contributes to the neutron-proton interaction only) and the latter in isospin-triplet
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states (contributing both to the like-particle and neutron-proton interactions). The
central and spin-orbit interactions as we use them, however, do not contain D or
F wave interactions. From this point of view, one might suspect a mismatch when
combining the various interaction terms. From the point of view of the energy
functional ([Z90), however, all contributions from the zero-range tensor force are of
the same second order in derivatives as the contributions from the non-local part of
the central Skyrme force (2.83) and from the spin-orbit force ([2Z.80]).

In the time-even part of the energy functional H,*"®", there appear three dif-
ferent combinations of the Cartesian components of the spin current tensor. The
term proportional to B/ contains the symmetric combination .J,,.J,, as it already
appeared in the energy functional from the central Skyrme interaction ([2:83]), while
the term proportional to Bl contains two different terms, namely the antisymmetric
combination J,,J,,, and the square of the trace of J,,.

Combining central and tensor interactions

The Skyrme energy functional representing central, tensor, and spin-orbit interac-
tions is given by

€Skyrme - 5 +€LS +5t
= /d3 Z {Cp pol o7 + C7 (o = 37) + CPpi Ay

t=0,1

+ C}[po] s? + C’tvs(V -5¢)% 4 CtAsst - As,

+ CtT (St Ty — zz: Jt,;th,;w>

w,v=x
+cf [st Fy — %(Z Jw>2 -1y Jt,WJW]
n=x w,v=x
+ C¥ (V- T +8 -V % jt)} : (2.91)

This functional contains all possible bilinear terms up to second order in the deriva-
tives that can be constructed from local densities and that are invariant under spatial
and time inversion, rotations, and local gauge transformations [Per04].

Some of the coupling constants are completely defined by the standard central
Skyrme force, i.e. Cf = A?, CF = As, C7 = A7, and C~* = A", two by the
spin-orbit force, CV7 = AY”, others by the tensor force, CI' = B’ and CY* = BY*,
while some are the sum of coupling constants from both central and tensor forces,
CI = AT + BT and CA* = A2s + BAs,

The three terms bilinear in J,, can be recoupled into terms bilinear in its pseu-
doscalar, vector, and pseudotensor components J(©, JU and J?), Eq. ([E76), which
is preferred by some authors [Per(4]

Z Jt,;u/t]t,,uu = %(J(O 1']2_'_ Z tuu tuu (292)

M7V:$ M?V z

(S ) + 3 ] = 2O 1T S I, (299
p=x

M?V:x l”’7V x
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After combining ([Z91]) with the kinetic, Coulomb, pairing and other contributions
from (267), the mean-field equations are obtained by standard functional deriva-
tive techniques from the total energy functional, see section 2.2 appendix and
Refs. [Ben03b, [Per(4].

The complete Skyrme energy functional (2X91]) has quite complicated a structure,
and in the most general case leads to seven distinct mean fields in the single-particle
Hamiltonian [Per04]. In the present manuscript, we enforce spherical symmetry
which removes all time-odd densities and all but one out of the nine components of
the spin-current tensor J,, as will be outlined in section BTl

2.3.2 Skyrme energy functional in spherical symmetry

For the rest of this manuscript, we will concentrate on spherical nuclei, enforcing
spherical symmetry of the (A)-body wave functions. As a consequence, the canonical
single-particle wave functions ¢; can be labeled by j;, ¢; and m;. The index n; labels
the different states with same j; and ¢;. The functions ¢; separate into a radial part
u;(r) and an angular and spin part, represented by a tensor spherical harmonic Q;4,,

Pnjem(r) = . Qjem(7), (2.94)
Qiem(7) = Y _(tmysaljm) Yy, (0,0) |so),

with s = 1/2. Spherical symmetry also enforces that all magnetic substates of ¢;,em
have the same occupation probability v7.,,, = v, for all —j <m < j. For a static
spherical state, all time-odd densities are zero s,(r) = T,(r) = j,(r) = F,(r) = 0,
as are the corresponding mean fields in the single-particle Hamiltonian.
Altogether, the Skyrme part of the energy density functional in spherical nuclei

is reduced to

R = Z{Cf (o] 7 + 77 iy

t=0,1
+CTpm+ 102+ OV p V- Jt} , (2.95)

where we have introduced an effective coupling constant C; of the J? tensor terms
at sphericity.

2.4 Local pairing functional

For our EDF to be fully defined, we need to specify its essential pairing part. In
this section we focus on local pairing functionals formally generated from zero-range
effective pairing interactions, and specific issues associated with them. A different
kind of pairing functional will be presented in chapter (Bl

Let us write down the coordinate-space expression of the pair density matrix,

ﬁ(rlu 01,4;Y2,09, Q) = <_)1/2+02 <ér252qér101q>7 (296)

as well as the local pair density,

) = Yotroqrog) = S() Rt 0 gr7q). (2.0

ez
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The pairing functional commonly used in conjunction with the Skyrme-interaction-
derived particle-hole functional can be formally derived as the particle-particle con-
traction of a local, zero-range density-dependent delta interaction (DDDI),

air air Po 1-F,
v (r) = VP (1 — cpsat) 5 i(r), (2.98)

which is here defined by a strength V;’air and a parameter ¢ which determines the
density dependence and hence the localization of the pairing field, in the volume of
the nucleus (for ¢ = 0) or at the surface (¢ = 1) [JDOI]. The corresponding pairing
functional reads

Sl = [ 5Ol 7, (2.99)
where the coupling constant is density-dependent and given as
~ Vpair
cr o= q—(l—cpo). (2.100)
4 Psat

Unfortunately, such a theory diverges. Indeed, the pairing field derived from
such a functional is local,

A(r105g;12029) = Uy(r1) 8(r1 —12) (=)/2520,,5,,
3 SE .
U,(r) = = 2CP"(r) py(r 2.101
q( ) 5ﬁ;(r) q ( )pq( 1) ( )
which means that matrix elements of A, i.e. pairing gaps are essentially independent
from the momentum or energy of single-particle states.
It is useful at this point to make use of the BCS gap equation in infinite matter,
which is further discussed in chapter

ke k2dk! . A (K
A(k) = —/ 2 oF) : (2.102)
e 2\/eb + Ag(K)?

It follows immediately that A, (k') is in fact a constant. With g, = A?k?/2m, this
expression diverges linearly when k. — oo.

Summing over quasiparticles with non-bounded q.p. energy yields a pair density
which diverges as 1/|r; — rp| for r; — ry — 0 [Bru99, Bul02al, making the pairing
energy undefined [Dob96b|. It is thus necessary to regularize p, as well as all den-
sities. This can be achieved by substracting the contributions to the density and
pair tensor of states lying outside of a pairing window defined as an energy interval
in the single-particle (HF), canonical or quasiparticle spectrum. A truncation of
single-particle bases is necessary for practical applications whatever the functional
used, however for a local pairing functional no convergence of observables is obtained
with respect of this truncation, which has to be defined as a part of the model.

As an example and to be more specific, let us give the expressions for the case
where the cutoff is implemented in the quasiparticle basis,

P = (q)o‘é}ék‘q)@ = me vy,

Ky o= (ol ®o) = Y fh ViU, (2.103)

m
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where f,, and f/ are equal to one at the Fermi level, and put to zero for states
outside a given energy window (which has an upper bound only for f;, and may
also have a lower one for f/ ). In practice, a smooth cutoff is implemented, which
alleviates convergence issues due to transitions of ¢.p. states in and out of the
window during iterations:

1 1

Jm = 1+ expl(em —et)/ea)’ for = 1+ exp[—(em +&7)/ed]

, (2.104)

where ¢, is the single-particle equivalent energy of quasiparticle k& [Ben05), e. the
cutoff energy and g4 a diffuseness parameter, typically of the order of 1 MeV.

Thus, the functional actually used involves not the strict local pair density, but
a regularized one, the other densities (including in the particle-hole channel) being
replaced by their regularized counterparts as well. Such a pairing functional is
not, strictly speaking, the expectation value of the effective interactions given thus
far, which serves only as a formal intermediate. In addition to the parameters of
Eq. (298), the functional needs a cutoff energy to be fully defined. Moreover, the
strength parameter has to be adjusted consistently with the cutoff, which underlines
the fact that & is not only a numerical parameter, but an integral part of the model.

As shown by Matsuo [Mat06], the energy cutoff employed in a local pairing
functional plays a role similar to the range of a finite-range interaction with respect
to the structure of the non-local pair density, and can be adjusted so as to control
the latter rather precisely. The value of £f that was found appropriate in this
respect was of the order of 50 MeV. The fact that a (regularized) local functional
can describe nuclear pairing with a satisfactory accuracy comes from the fact that the
spatial extension of the Cooper pair wave function (defined, up to a normalization
factor, as the non-local part of p) is typically larger than the range of the underlying
interaction, implying that the spatial dependence of the latter is not resolved.

The local or non-local pair density, however, is not an observable, and the fact
that an additional parameter is introduced may seem unsatisfactory. To address
this issue, Bulgac and Yu [Bul02b] introduced a method to regularize the pair den-
sity and obtain a cutoff-independent functional (for sufficiently large cutoffs). The
divergence in the pair density is of ultraviolet character, caused by the accumulation
of contributions from high-momentum continuum states, for which a local density
approximation is reasonable. One can indeed obtain an accurate analytical expres-
sion for the divergent part of the pair density at each point r and for each species
q by studying a uniform gas subject to a potential U,(r), a pairing field Uq(r), an
effective mass m(r) and a chemical potential \,. The regularized pair density then
reads

P = 4 O, Y (kg ko), (2.105)

where the function Y (kg,, kc) is given by

my ke kg kg + ke
Vikro ko) = 5o [1 o (m)} ’ (2100

which involves the position-dependent quantities my, kr, and k., defined by

n2k2 h2k,
FU = A 2m

U, = . 2.107
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Here, we consider only an upper bound for the pairing window, with e, = —oo. The
local effective Fermi momentum kp, may be an imaginary number where \, < U,,
but it is easy to check that Y stays real in that case. The regularized density
is independent from e when the latter is taken sufficiently large. One requires,
moreover, that observables computed with the regularized functional are also cutoff-
independent. Being closely linked with odd-even mass differences, the pairing field
U is such a quantity. The pairing functional being quadratic in j, we must then
have

q 5p

e
q

" 5
U £ _ 9aPyg (2.108)

g, being a position/density-dependent but cutoff-independent quantity. One may
rewrite the above as

. ren ~ 1 1
Uy = 9q4°Pg> ﬁ = g_q_Y(quvkc)- (2.109)

We finally rewrite the pairing energy functional as

Salpo ] = [aelyiy = [dra i g,

= /d3rgq 0y oy (2.110)
_ _ g2
= [rcpa a0 = S = ali-aY ek
q

We see that the pairing energy is not cutoff-independent; in fact, it is a divergent
quantity. However, it is not an observable. The total energy, in turn, is cutoff-
independent thanks to a cancellation between the divergent contributions of the
pairing and kinetic energies (including effective-mass terms), which behave similarly
for large k. [Bul02al.
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Chapter 3

New Constraints for the Nuclear
Energy Density Functional

The accuracy and predictive power of EDF models needed for unknown regions of
the nuclear chart still leave a lot of room for improvement. The phenomenological
nature of Skyrme functionals makes their ability to faithfully predict observables or
phenomena not linked with those used for their construction quite weak. Indeed,
the limited number of adjustable parameters (compared to the wealth of nuclear ob-
servables to be matched) turns fitting a Skyrme functional into an overconstrained
problem (which, of course, does not prevent some parts of it from being undercon-
strained).

As a direct consequence, many properties of existing parametrizations are biased
to the fitting procedure and the limited analytical form of the Skyrme interaction,
rather than to physical reasoning. A well-known example is the equation of state
(EOS) of Pure Neutron Matter (PNM), which is sometimes subject to a pathological
collapse at high density when not explicitly constrained. This is problematic insofar
as one of the major challenges of contemporary nuclear theory is to predict properties
of very isospin-asymmetric nuclear systems, i.e. neutron rich nuclei and matter in
neutron stars. Experimental data being unavailable in this domain of isospin, one
has started relying on ab-initio theoretical results to constrain isovector properties
of the functional. It has led to the construction of the “Saclay-Lyon” SLy series of
parametrizations [Cha97, [Cha98| by fitting (among other quantities) a theoretical
equation of state of neutron matter.

Isovector features of the nuclear EOS are crucial for a good understanding
of neutron stars, exotic nuclear collisions produced at radioactive beam facilities
and to describe the structure of exotic nuclei. For instance, the density depen-
dence of the volume symmetry energy determines the proton fraction in g equi-
librium in neutron stars, which ultimately drives the cooling rate and neutrino
emission [Lat04]. The high-density part of the symmetry energy, which happens
to be strongly model dependent, also influences significantly the isospin diffusion in
heavy-ion collisions [Che05]. Finally, the low-density part of the symmetry energy
is correlated with the size of neutron skins in finite nuclei [TypO1].

Beyond global isospin-dependent properties of the EOS, the isovector part of
nucleon-dependent quantities may influence the behavior of the above mentioned
systems. Thus, collision observables depend on the momentum dependence of the
mean-field, in particular on its isovector component [Li04al [Li04D]. Also, some
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properties of neutron stars require a precise knowledge of isoscalar and isovector
nucleon effective masses [Bet90, [Far01]. The latter, which drives the splitting of
neutron and proton effective masses with neutron/proton asymmetry, will serve as
a starting point for the study presented in this chapter. Indeed, a lot of efforts has
recently been devoted to the microscopic characterization of neutron and proton
effective masses in infinite Asymmetric Nuclear Matter (ANM) [Bom91l [Kub97,

[Z1099, [Gre01l, Hof01) Liu02, [Riz04, Ma04, Dal05a, Sat06]. Either in ANM or in

nuclei, the two species acquire different effective masses. This property is quantified
by the difference Am*(I) = m;(I) — m5(I), where I = (py — pp)/(pn + pp) is the
isospin asymmetry while p, and p, denote neutron and proton densities, respectively.
Note that the different effective masses m* discussed in the following always refer
in fact to the ratio m*/m, where m is the bare nucleon mass. The latter is taken to
be the same for neutrons and protons.

This effective-mass splitting, though, is only one of a wealth of quantities which
can be subject to comparison between ab-initio predictions and EDF models. In
this chapter we present results of a classical yet long unused test: the separation of
infinite Symmetric Nuclear Matter (SNM) potential energy per particle into spin-
isospin channels.

We shall also pay particular attention to controlling instabilities (i.e. non-
physical spontaneous breaking of spin, isospin and/or spatial symmetries), and cor-
relate Am*(I) with vector properties of the functional. We thus investigate the
behavior of the latter with respect to the breaking of time-reversal invariance and
the onset of spin polarization, looking for an overall consistency check of its spin-
isospin content. Indeed, such properties will become more and more important as
one attempts to use full-fledged Skyrme functionals to study odd-mass nuclei, calcu-
late rotational properties through self-consistent cranking calculations, or use more
general dynamical methods [Ben(2].

This chapter is organized as follows: in section B.I]l we present the set of Skyrme
parametrizations used and examine basic properties of nuclear matter and finite
nuclei. From then on, in section we perform a more detailed study of the spin-
isospin content of the functionals and of their stability against finite-size spin and

isospin perturbations using response functions in the random-phase approximation
(RPA).

3.1 Constraining the isovector effective mass

As mentioned in section 1], the nucleon effective mass m* is a key property charac-
terizing the propagation of (quasi)nucleons through the nuclear medium [Jeu76]. It
is a reminder of the non-locality and energy dependence of the nucleon self-energy
Y (k,w), themselves originating from the finite range and non-locality in time and
space of the in-medium effective nucleon-nucleon interaction. Mean-field-like theo-
ries of finite nuclei or infinite matter rely on a quasiparticle approximation, and thus
include only a limited part of the effects associated with the energy dependence of
Y (k,w), while neglecting fragmentation of the spectroscopic strength. In this con-
text, either microscopic [Bal99] or making use of phenomenological interactions or
functionals [Ben03b], EDF methods do not correspond to a naive Hartree-Fock the-
ory and always amount to renormalizing a certain class of correlations into the
effective vertex. However, the energy dependence of the self-energy arising from the
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correlations only influences the position of the quasi-particle peak energy.

Let us recall that our approach of the nuclear EDF method is to aim, ultimately,
at building functionals which reproduce desired observables at the multi-reference
level (MR-EDF), i.e. “beyond the mean field”. We thus have to “leave room” for
corrections arising from correlations added on top of the single-reference (SR) cal-
culations which we use as an exploration tool.

Thus, the effective mass adjusted at the pure mean-field level is not expected
to generate single-particle spectra matching exactly experimental data extracted
through binding energy differences from neighboring odd-mass nuclei. In particu-
lar, the coupling of single-particle motion to surface vibrations in closed-shell nuclei
is known to increase the density of states at the Fermi surface and thus the ef-
fective mass [Ber80), [Lit06 [Gor03]. An isoscalar effective mass m? lying in the
interval 0.7/0.8 in SNM, is able to account for a good reproduction of both isoscalar
quadrupole giant resonances data in doubly closed-shell nuclei [Liu76] and of single-
particle spectra in neighboring ones provided particle-vibration coupling has been
properly included. When the latter coupling is taken into account, the effective
mass becomes greater than one for states near the Fermi surface. Certainly, a lot
remains to be done to understand these features microscopically in more involved
cases [ChaO6bh]. This is not only true for mid-shell nuclei where the coupling to both
rotational and vibrational states can be important, but also for exotic nuclei where
the coupling to the continuum becomes crucial and where shape coexistence and/or
large amplitude motion appear more systematically.

In very exotic systems, the isovector behavior of mys and mj should play an im-
portant role. However, so far, no experimental data from finite nuclei has allowed
a determination of the effective mass splitting as a function of neutron richness.
In this context, ab-initio calculations of ANM are of great help. Non-relativistic
Brueckner-Hartree-Fock (BHF) calculations, with or without three-body force, and,
with or without rearrangement terms in the self-energy, predicted Am*(I) to be
such that mj > mj in neutron-rich matter, that is, for / > 0. Such a conclusion was
also reached by calculating the energy dependence of the symmetry potential (the
Lane potential [Lan62]) within a phenomenological formalism [[i04a]. The latter
result was confirmed by microscopic Dirac-Brueckner-Hartree-Fock (DBHF) calcu-
lations [Sam05]. The situation regarding the prediction of the effective mass splitting
was complexified due to an apparent contradiction between results obtained from
BHF [Bom91l Zu099] and DBHF calculations [Hof01]. However, the situation was
finally clarified in Refs. [Ma04l [Dal05a] where the importance of the energy depen-
dence of the self-energy and the need to compare the non-relativistic effective mass
with the vector effective mass in the relativistic framework [Jam89] were pointed
out.

Thus, the sign of the splitting is rather solidly predicted. However, its amplitude
is subject to a much greater uncertainty. Starting from that observation, the goal of
the present section is to study the impact of the effective-mass splitting on properties
of exotic nuclei predicted by Skyrme-EDF calculations. As far as the effective-
mass splitting is concerned, one expects consequences onto structure properties of
neutron-rich nuclei. As a relatively large asymmetry may be necessary to reveal the
influence of the splitting, data from nuclei not yet studied experimentally should
provide crucial information in that respect. As the effective mass governs the density
of states at the Fermi surface (together with the spin-orbit and the tensor forces),
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the amplitude of the splitting may influence properties such as masses and single
particle properties of exotic nuclei, the evolution of isotopic shifts across neutron-rich
closed-shell nuclei or shell corrections in superheavy nuclei around the (N = 184, Z =
120) island of stability [Ben99al [KruO0, Ben01) Ber01]. Also, neutron and proton
correlations beyond the mean-field should develop rather differently depending on
the direction and amplitude of the effective-mass splitting. This could be true for
static and dynamical pairing correlations as well as for the coupling to vibrational
and rotational states. Finally, the effective mass splitting should leave its fingerprint
onto the characteristics of isovector vibrational states of different sorts in neutron-
rich nuclei [Paa05].

3.1.1 Fitting protocol

Trying to keep a coherence, throughout this work, in the way we construct Skyrme
functionals, we take the fitting protocol used to define the SLy functionals [Cha97,
Cha98| as a basis for the present Study. Also, we pay attention to the fact that any
improved or complexified functional includes all features validated by the SLy ones.

We presently take the SLy5 parametrization as a starting point. Thus, the two-
body part of the center of mass correction is omitted whereas the J? terms are fully
kept. The spin-orbit term is the standard one, with a single parameter adjusted on
the splitting of the 3p neutron level in 2%Pb.

Within this general scheme, we have built a series of three new Skyrme interaction
parametrizations, denoted hereafter f_, fy and f.. The departures from the SLy
protocol considered presently are (i) a better control of spin-isospin instabilities via
Landau parameters (ii) the use of two density-dependent zero-range terms [Coc04]
(iii) a constraint on the isovector effective mass, such that, in neutron-rich systems,
my < mg for f_, my =my for fo and mj > mg for f,.

With two density dependent terms, the compressibility and the isoscalar effective
mass are no longer bound together and can be chosen independently. However, this
is not directly used here and an isoscalar effective mass of m’ = 0.7, close to the SLy5
value, is chosen for the three parametrizations f_, fy, f+. The additional freedom
brought about by the second density-dependent term is only used to adjust more
easily the high-density part of the PNM EOS (see below). In the end, the only
parameter subject to variation between f_., fy and f, is the isovector effective mass
m’ which, m} being constant, drives the splitting Am*(I).

In the present work, we use the SLyb interaction as a reference, and include a
comparison with the LNS parametrization [Cao06] which was also built to match
the splitting of effective masses and the neutron matter EOS predicted by BHF
calculations. The SkP interaction [Dob84], initially built for the study of pairing
effects, will be used for a special purpose in the discussion about instabilities.

3.1.2 Elementary properties of studied functionals

As we focus on the behavior of effective masses m; with isospin asymmetry, we recall
that these quantities are related to the dependence of the energy density functional,
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Table 3.1: Infinite nuclear matter properties of the Skyrme functionals quoted in
the text. The quantities pg,y and £/A denote the density and energy per
particle at saturation in SNM. The symmetry energy and the compress-
ibility (for symmetric matter) are respectively 32 MeV and 230 MeV for
SLy5 and all f, parametrizations. In the case where m; ~ 0.7, kg ~ 0.43,
so we have Am* > 0 if k, = 0.43.

Parametrization Psat EJA me Ky me Am*

SLyb5 0.161 -15.987 0.697 0.25 0.800 -0.182
fo 0.162 -16.029 0.700 0.15 0.870 -0.284
fo 0.162 -16.035 0.700 0.43 0.700 0.001
fa 0.162 -16.036 0.700 0.60 0.625 0.170
LNS 0.175 -15.320 0.825 0.38 0.727 0.227
SkP 0.170 -16.590 1.030 0.32 0.760 0.418

Eqs. [C29HC.32] on kinetic densities 7,, as

h? OH h?
= — = — +(C7 I1CT
QmZ(I) o, 2m o potal Crpo
m m m m
= I — 3.1
ma) o (m;f m:) (31)

where pq is the scalar-isoscalar density and ¢ = +1, —1 respectively for neutrons and
protons. The splitting of effective masses, quantified by
Am*(I) mi(I)  my(I)

= M) 3.2
- o o (3:2)

is governed by the isoscalar and isovector effective masses

m

= 1422 C7 po = 1+ kg, (3.3)
Tn’s 2m T T —
m ]_ + 7 (CO — Cl) po = 1 + Ry - (34)

We use the usual convention for the isovector effective mass, which stems from
its definition through the enhancement factor s, of the Thomas-Reiche-Kuhn sum
rule [Boh79]. However, m’ and k, are not isovector quantities in the sense of
isovector couplings of the functional.
In the following, we shall discuss the value of Am*(I) at I = 1, which we note
Am* in the following, for the sake of brevity. We have
Am* 2(Ky — Kg) (3.5)

m (14 k)2 — (Ky — Kg)2’

such that Am* > 0 for k, > kg, or equivalently m? < m?, or CT < 0.
Bulk properties of f, parametrizations are displayed in Table Bl We note that,
while the position of the saturation point varies little between our parametrizations
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(SLy5 and f,), this consistency is lost in the case of LNS and SkP. These properties
depend on the observables used in the fitting procedure. In the case of LNS, the
saturation point relates to an Extended Brueckner-Hartree-Fock (EBHF) calcula-
tion [Zu099|, predicting values of (£/A)s and pgyy which are larger than empirical
ones. A similar but lesser trend is observed for SkP. In this case it seems to be corre-
lated with the choice of effective masses and their interplay with other parameters of
the interaction. Indeed, binding energies computed with SkP compare satisfactorily
with experimental ones, while LNS suffers in this respect from the lack of readjust-
ment of the saturation point on nuclear data. As it has been shown in Ref. [Ber03l,
nuclear binding energies are highly sensitive to the choice of the energy at satura-
tion, which is therefore constrained to a very tight interval if one wants to reproduce
such quantities. This constraint is especially tight compared to the uncertainty of
ab-initio predictions. Despite the fit of surface properties (C’OAP parameter) on a set
of nuclear data, the accuracy of binding energies predicted by LNS is of the order
of 5%, to be compared with less than 1% for SLy5.

3.1.3 Properties of the nuclear matter EOS

It is interesting to note that SLy parametrizations were fitted to PNM EOS with
the idea of improving isospin properties of the functionals. One consequence was
to generate functionals with Am* < 0, in opposition to ab-initio predictions. On
the other hand, older functionals such as SIII [Bei75a] and SkM* [Bar82b|, which
were not fitted to PNM, had Am* > 0. The same exact situation happens for
the Gogny interaction [Cha06a]. Thus, improving global isovector properties (EOS)
seems to deteriorate those related to single-particle states (m?*) with currently used

functionals. This can be better understood by examining the expressions for SNM
and PNM EOS:

£ 3 K2 /372\ %3 3 /372\ %3
(P, 1=0) = o~ (—> Py + Chipo) po+ Coz (—> >, (3.6)

A 52 2 2
E 3 h? 2/3 2/3
(o, I=1) = =om (37%) oy
3
+ [C8lpo) + Cpo)lpo + (G5 +CF) £ (30°) 3. (37)

If C{(po) coefficients only contain one low power of the density (o ,0(1]/6), the
latter influences low-density parts of the EOS more than high-density ones. The
effective mass term then determines the high-density part of the EOS. In SNM,
this translates into the well-known relation between m} and the incompressibility
K [Cha97, [Cha98]. In the case of PNM, the EOS above pg, is then mostly fixed by
the term proportional to C§ + C7] in Eq. (B), and any attempt to use the density
dependence to counteract its effects, results in a very strong constraint on the latter.
This in turn degrades the behavior of the functional at and below saturation density
and the fit to properties of finite nuclei. We recall at this point that the condition
Am* > 0 corresponds to C] < 0, which drives the high-density PNM EOS down
and explains why usual Skyrme functionals predict either a collapse of the PNM
EOS if Am* > 0, or, like the SLy functionals fitted to PNM EOS, the wrong sign
of the effective mass splitting in neutron rich matter.
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Figure 3.1: SNM and PNM EOS as given by Skyrme functionals presently dis-
cussed (see text), compared with VCS results by Akmal et al. [Akm98)|
(x: PNM, +: SNM).
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If Cf(po) coefficients contain an additional density dependence with a higher
power, the previous discussion does not apply: using two density-dependent terms
in the functional (o ,0(1]/3;03/3) [CocO4] allowed us to construct (f_, fo, fi) with
a good fit to PNM EOS, a free choice of effective masses and satisfactory nuclear

properties.

The previous discussion already shows the type of problems and information
arising from our attempt to improve on the fitting protocol of SLy functionals by
using more inputs from ab-initio calculations. Now, Fig. Bl shows SNM and PNM
EOS as obtained from (f_, fo, fi, SLy5) and as predicted by Variational Chain
Summation (VCS) methods [Akm98|. At this point, one can see that the four
parametrizations (f_, fo, f4, SLy5) reproduce both microscopic EOS with the same
accuracy. However, it remains to be seen whether or not this translates into identical
global spin-isospin properties and into similar nuclear structure properties.

3.1.4 Effects on properties of nuclei

We now study the effects of the variation of the isovector effective mass on selected
properties of spherical nuclei. We start with HF single-particle energies, then binding
energies, ending with a short sum-rule based analysis of isovector giant resonances.

For computations of open-shell nuclei, we use, in the particle-particle channel, a
local functional with a density dependent form factor (mixed surface and volume,
ie. ¢c=1/21in Eq. (298)). The local HFB equations are renormalized following the
procedure developed by Bulgac and Yu.

The strength V4 is adjusted to the mean pairing gaps of six semi-magic nuclei
(neutron gaps in 2°Sn, %¥Pb, 212Pb and proton gaps in “>Mo, *4Sm and #'?Rn). In
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Figure 3.2: Single-particle energies [MeV] in 132Sn and 2*Pb computed with indi-
cated interactions. Thick lines indicate the Fermi level .

this procedure we compute theoretical spectral gaps defined as

ZAkEUlﬂ)k] / [Z Ukvk] ) (3.8)

A,z being a pairing field matrix element between canonical states and ug, vy, the cor-
responding quasiparticle amplitudes, and adjust each of them upon an experimental
gap extracted through a five point difference formula from masses of neighboring
nuclei, as suggested in Ref. [Dug01b].

(A =

Single-particle energies

Effective masses are known to control the average density of single-particle states.
It is thus interesting to check to what extent such statement applies to neutron-
rich nuclei when varying m. In this part of the study, we are mainly interested in
evaluating the change in the single-particle energies generated by the functional for
different splittings and not directly by a comparison with experimental results.

Single-particle energies in '32Sn and 2°®Pb are plotted on Fig. B2l The general
trend followed by neutron states with increasing Am* (from f_ to f,) corresponds
to an increase of the density of neutron states: they tend to come closer to the
Fermi energy ep; notable exceptions being both neutron 1i levels in 2°Ph. The
opposite behavior is observed in proton levels, which spread away from ep with
increasing Am* (except for the proton 1hi1/2 level). However, these trends are rather
marginal, which can be linked with the moderate bulk asymmetry of these nuclei
(I = (N —Z)/A = 0.24 for '¥Sn and 0.21 for 2®Pbh). This moderate asymmetry
means that the isovector term in the definition of the effective mass (Eq. BI)) is
weakly probed.

Let us therefore examine similar spectra for more neutron-rich nuclei, i.e. "Ni
(I = 0.28, experimentally observed [Hos03]) and '5Sn (I = 0.36). The nucleus '%5Sn
is used as an example of an extremely asymmetric system, even beyond the reach
of planned radioactive beam facilities [sp206]. We observe on the rightmost panel
of Fig. that the effect of Am* on proton single-particle energies at Z = 50 is
more pronounced in ®°Sn than it was in *?Sn. The modification of level densities
appears quite clearly in "®Ni also, while neutron levels around e in '°Sn are shifted
in a slightly more disordered way.

High-¢/low-n orbitals (n, ¢ being respectively the principal and orbital quantum
numbers) are in fact more sensitive to variations of the spin-orbit field than to Am*


http://link.aps.org/abstract/PRC/v65/e014311
http://dx.doi.org/10.1103/PhysRevLett.94.112501

3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 53

0 F——— 1
R E— 2 E
2***3?;22 Br—— — v T — g | O — = — e ]
BNi, n ey Paz 1 0Ff { a8t "
At : {18} ip f N O g 1530, p
6_l"199/2_-20-l {1 1~ — — 1%
i 22 — = M ] — % 22— — gy
-8t 24 } i 2 1 24— :
2Py 26 b 3 156Sn, n T
A0 F — T —1fy, — 5 3L 1 26 F — — 20, 1
12 b  —2py ] 2B —— 1d3,22 E 2y 28k — e 1fg,
: ot f, b T f E S A : £t f,

Figure 3.3: Same as Fig. B2 in ™Ni and '°°Sn.

because of their spatial localization near the surface of the nucleus. The spin-orbit
field is modified between functionals by the interplay between J?-term coefficients
and effective mass parameters, since these both depend on the same non-local terms
of the Skyrme interaction [Dob06]. The spin-orbit interaction (pV - J terms in the
EDF), which is subject to a slight readjustment, does affect the spectra as well.
We observed, overall, a marginal increase of the spin-orbit field strength when going
from f_ to f.. This implies that while the global effect of modifying the level density
is quite clearly observed when we alter the effective mass parameters, details of the
spectroscopy are at least as sensitive to the terms connected to the spin-orbit field.

Pairing gaps

As an example, neutron spectral gaps are plotted on Fig. B4l for Sn and Pb series,
up to the drip line, against experimental gaps extracted through five-point mass
formulas [Dug01a), [Dug0OTh]. The slight change in the level density translates into a
modification of the pairing gaps: a higher neutron effective mass (f;) corresponds
to a denser spectrum and higher gaps. The effect, which increases with asymmetry,
remains however very small, because of the limited alteration of single-particle levels
seen on Figs. and B3]

In the end, the effect is negligible and would be overwhelmed by any other
modification of the particle-hole part of the functional. For example, variations in
the detailed level scheme, could alter the shape of gaps. The pairing functional
itself is a subject of current debate regarding its density dependence, regularization
scheme and finite-range corrections, while the choice of observables to be compared
(definition of theoretical an experimental gaps) can be improved. Most of these
issues will be addressed in the following of this manuscript.

Binding energies

Let us now study the effect of the aforementioned variation of level densities and
pairing gaps on binding energies. On Fig. we show the binding energy residuals
Ei — Eexp for Sn and Pb isotopes and N = 50 and N = 82 isotones. The evolution
of Eiy, — Eeyp along such chains is usually plagued by an underbinding of open-shell
nuclei with respect to closed-shell ones which translates into an arch shape of F-
residual curves. Although the variation of m} seems to impact the arches, again, the
effect is negligible compared to the absolute value of deviations from experiment,
except in the N = 82 series where open-shell nuclei tend to be more underbound in
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Figure 3.4: Neutron spectral gaps computed in Sn (bottom) and Pb (top) chains
with parametrizations f_, fy, fi, as a function of asymmetry. Experi-
mental A®) gaps extracted from masses [Aud03] are plotted with error
bars.

the case of f,.

Isovector giant resonances

The isovector effective mass is usually defined from the energy-weighted sum rule my
(the Thomas-Reiche-Kuhn sum rule [Boh79]) of the isovector giant dipole resonance
(IVGDR):
h? NZ h? NZ m
m(El; T=1)= o A (14 ky) = %7%,
which exhibits its link with the strength distribution of isovector collective modes.
We perform here a schematic overview of dynamical properties of f_, fy, f+ by means
of results derived in Ref. [Col95]. Thanks to RPA sum rules similar to Eq. (83,
it is possible to fit an accurate parametrization of the energy F; = m;/m_; of
isovector giant resonances in a given nucleus as a function of Skyrme parameters.
Results for GDR (L = 1) and isovector giant monopole (IVGMR, L = 0) modes in
208Ph are shown in Table B2l compared to experimental energies (respectively from
Refs. [Rit93] and [Ere86] and corrected, as suggested in [Col95], for the shift due
to the spreading of the strength by damping effects: 2 MeV for GMR, 1 MeV for
GDR).

While f_ predicts both energies lower than experimental ones, values for f, and
f1 are compatible with experiment for the . = 0 mode, and only f, approaches the
experimental value for the . = 1 mode. This suggests that values of x, correspond-
ing to a positive value of Am* (equal to, or higher than 0.43 in our case) better
describe isovector dynamics than lower values.

As a summary, the effect of the splitting of neutron and proton effective masses
with isospin asymmetry on single-particle energies, pairing gaps and binding en-

(3.9)
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Figure 3.5: Binding energy residuals computed with interactions f_, fy and f, for
semi-magic series of nuclei, as indicated.

Table 3.2: E; energies of 2°®Pb isovector giant resonances computed thanks to a
sum-rule parametrization (see text), compared to experimental energy
centroids. Experimental uncertainties are as indicated. We infer from
figures in Ref. [Col95] the accuracy of theoretical energies computed with
the fits in that reference, with respect to full RPA calculations, to be of
the order of 1 MeV.

ke FE(L=0T=1) E(L=1T=1)

f 0.15 24.55 12.68
fo 0.43 26.43 13.60
o 0.60 27.25 14.01

exp. centroid 263 £ 1.1 143 £ 0.1
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ergies, is noticeable and consistent, yet limited and thus hardly meaningful when
compared to the overall (in)accuracy of the predictions made by the current nuclear
EDEF. In fact, the main reason for not seeing a dramatic modification of EDF pre-
dictions when altering Am* is the limited amount of strongly asymmetric nuclear
matter at high enough density in the ground state of nuclei with realistic isospin as
already suggested in [Gor03]. This makes the effect of the isovector effective mass
rather marginal. Giant isovector resonances are certainly more fruitful to seek for
an effect of a modification of Am*. Indeed, a sum-rule-based analysis of isovector
collective modes allows a slightly more clear-cut conclusion, with a tendency to favor
Am* 2 0. The conclusion of the phenomenological study done in this section is that,
while no observable listed here strongly ask for Am* > 0, there is no reason to omit
this constraint in future functionals, since, as already stated, ab-initio predictions
for the sign of Am* are solid. There remains to check the intrinsic consistency of
the functional in terms of other ab-initio inputs and stability criteria, which, as will
be discussed below, we have found to be a concern.

3.2 Further study of infinite matter

3.2.1 Separation of the EOS into (5,7) channels

In this section, we discuss the contributions to the potential energy of SNM from
the four two-body spin-isospin (S,7") channels. We compare our results with those
predicted by BHF calculations [Bal06] using the Argonne vz [Wir95] two-body
interaction and a three-body force constructed from meson exchange theory [Gra89,
Lej00].

Using projectors on spin singlet and triplet states, respectively

A A ~

. 1
PS:O — 5(1—P0), PS:l — 5(1—|—P0), (310)

where P, is the spin-exchange operator, and similar expressions for isospin projectors
Pr using the isospin exchange operator P, yields the potential energy in each (S, T")
channel

1 LA —
Epot = 2 > < ki ’VPSPT’ ki >PkkPu, (3.11)
K

where the sum on £,/ runs over all HF single-particle eigenstates whereas pgi des-
ignates the diagonal one-body density matrix. The notation |kl) denotes a non-
normalized but antisymmetrized two-body state. In order to compare different
many-body approaches (ab-initio or EDF), we use the “potential energy” which
refers to the total binding energy from which is subtracted the kinetic energy of the
non-interacting particle system.

Note that due to the zero-range character of the Skyrme interaction, together
with at most second-order derivative terms, only L = 0,1 partial waves occur ex-
plicitly whereas higher partial waves contribute to the ab-initio EOS. We find, for
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SNM,
% - %tz(l — ) (3%2)2/3 p”, (3.12)
%?t = 1—36t0(1 + x0)po + 93—6t3(1 +23)p "+ 9_?:3%@ + 376)/)(1)”,
- %tl(l + 77) (37“2)2/3 o3, (3.13)
% - %to(l — To)po + 93_6753(1 —a3)p T+ 9:))_6t6(1 —we)ppt”
+ F?Otl(l — 1) (3771-2) i 08/3, (3.14)

where (t;,x;) are coefficients of the Skyrme interaction as defined in Eq. (275).
The coefficients occurring in Eqs. (B12)—(3I3) stem from the antisymmetrization
condition (—)5*+5*T = —1, the relative angular momentum L being even for to; and
t; (k?) terms and odd for ¢, (k' - k) terms. The expression of the potential energy in
channels (S,7T) = (0,0) and (1, 1) is very simple since only the ¢y term contributes.

Force vs. functional

Previous statements, however, apply only to the case where the EDF is computed as
the expectation value of an (antisymmetrized) effective interaction. In the more gen-
eral case, it is still possible to define (S,7T) channels starting from any Hartree-like
functional. Indeed, the functional can always be expressed in terms of an effective
non-antisymmetrized vertex and one can still plug a projector in the calculation of
its matrix elements. In the pure functional case, there is however no more clear
definition of partial waves, and spin-isospin channels emerge from the balance be-
tween coefficients of (iso)scalar/(iso)vector couplings (see appendix [B] for the formal
definition).

As long as there are not enough inputs to constrain all degrees of freedom of a
general functional, the effective-interaction approach remains as an acceptable path,
and hence shall be used in the following.

Results

Results are plotted against BHF predictions on Fig. B.6l First, one can observe that
results are rather scattered. Second, the main source of binding, from (S,7) = (0, 1)
and (1,0) channels, is not well described and the detailed saturation mechanism is
not captured. It is clear that, even though all four functionals reproduce perfectly
PNM and SNM EOS, they do not have the same spin-isospin content, and that the
latter is in general rather poor. Thus, fitting the global EOS is an important element
but it does not mean that spin-isospin properties of the functional are fixed once
and for all. One needs to do more and fitting ab-initio predictions of Elf,i;T) seems
to be a good idea in the near future. However, one needs to make sure that the
theoretical uncertainty of the data used is smaller than the expected accuracy of the
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Figure 3.6: Energy per particle in each (S,7) channel for SNM, as a function of
density. Crosses refer to the BHF calculations [Bal06].

fit to them. This calls for predictions from other ab-initio methods using the same
two-body plus three-body Hamiltonian. Then, those ab-initio calculations should
be repeated using different sets of two-body plus three-body Hamiltonians in order
to provide a theoretical error bar on those predictions.

The most obvious discrepancy appears in channels (0,0) and (1, 1) where Skyrme
and BHF data have opposite signs above saturation density. The SLy5 parameter set
shows a particular behavior in channel (1, 1) due to the choice of 25 = —1 to prevent
ferromagnetic instabilities in PNM. Note that in the Skyrme functional, these two
channels contain contributions, of the density-independent P-wave term only. The
upper-right panel of Fig. points out the tendency of Skyrme parametrizations to
be attractive in polarized PNM, and hence to cause a collapse of its EOS at high
density. At lower densities, BHF data show a distinctive behavior, being slightly
attractive below pg,; and repulsive above. This feature cannot be matched by the
standard Skyrme functional which exhibits a monotonous behavior as a function of
density in this channel, regardless of the value of (5, x2).

It is also worth noticing that the failure in channel (1, 1) becomes more and more
prominent as one makes Am* closer to the ab-initio predictions (parametrization
f+). The effective masses being governed by the momentum-dependent terms of
the interaction, it is not a surprise that the modification of the former impacts
channels (0,0) and (1,1). What changes in the coefficients entering Eqs. (12
BI0) stems only from the variation of m? and the associated rearrangement of
parameters in the functional, most notably the C’(ff coefficients closely related to
surface and surface-symmetry energies. The relatively tight requirements on the
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latter imply that the four parameters of the non-local terms in the standard Skyrme
energy functional would be dramatically overconstrained if we were to add the (S, T')-
channel decomposition in the fitting data.

In the end, the rather poor properties of the functional in channels (0,0) and
(1,1), the degradation of the latter as the effective mass splitting is improved, the
idea of using ab-initio (S,7") contributions in the fit, call, at least, for a refinement
of the odd-L term in the sense either of a density dependence or of a higher-order
derivative term. The latter being prone to numerical instabilities and interpreta-
tion problems, a density-dependent k' - k term remains as one of the next poten-
tial enhancements to be brought to the Skyrme EDF (density-dependent derivative
terms have been considered already, but with a focus on even-L terms of the form
ty(k* + k’2)pg [Far97]).

Phenomenological constraints on gradient terms are mainly related to the surface
of nuclei, i.e. low-density regions. One can expect that, to first order, BHF data in
channel (S,7) = (1,1) can be matched with an extended functional while retaining
a good agreement with other (experimental) data. It is less clear in channel (0, 0)
but further exploration of the extended parameter space may bring Skyrme and
BHF data in better agreement.

3.2.2 RPA linear response functions and the diagnosis of in-
stabilities]

We attempt here to study general stability conditions of SNM with respect to finite-
size density, spin, isospin and spin-isospin perturbations. Our basic ingredient is
the RPA response function [Fet7I] derived analytically by Garcia-Recio et al. in
Ref. [GR92| for the central part of the Skyrme interaction. Recent work was done
to incorporate the effect of the spin-orbit part, which was found to be quite neg-
ligible [Mar(6], and will be omitted in the present work. One starts by defining a
one-body perturbing operator

Q) = e Y Celare 9, (3.16)

where a indexes particles in the system. The one-body spin-isospin operators el
are defined as

oY =1, O =0, O) =17, O} =0,7, (3.17)

where we use the denomination of (iso-)scalar (s) and (iso-)vector (v) channels in or-
der to distinguish the particle-hole spin-isospin channels from the two-body-coupled
(particle-particle) (S,T') channels discussed in the previous section. In Eq. (BIT)
and the following, the first (second) subscripts denotes the spin (isospin). We then

!This chapter is an adapted and corrected version of Ref. [Les06]. Indeed, an an error was made
in the derivation of the RPA residual interaction, which, when corrected, yields an additional
contribution to the terms discussed. The magnitude of this contribution (and its variation) is
smaller than the one discussed but not completely negligible. The quantitative results are modified
in a way which does not affect the validity of the method proposed for diagnosing finite-size
instabilities. Details of the discussion have been updated accordingly.
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study the response to each type of perturbation separately through the response
functions

1 1
w—FEyoy+im w+Emy—m

w0 = & Yo ( ). e

at the RPA level, where Q) stands for a normalization volume and |v) is an excited
state of the system, E,q being the corresponding excitation energy. Since the central
residual interaction does not couple the channels defined through Eq. (BI7) in SNM,
we can indeed consider each channel separately.

The response function II(®) can be seen as the propagator of the collective per-
turbation, or polarization propagator, i.e. the positions of its poles in the (g,w)
plane yield the dispersion relation of the mode. In this formalism, the onset of an
unstable mode is marked by the occurrence of a pole in II®) at w = 0, corresponding
to zero excitation energy. Such a pole marks the transition between stable (with our
convention, I1(® < 0) and unstable (II'® > 0) domains. Unstable modes of infinite
wavelength (¢ = 0) are those traditionally discussed in terms of Landau parameters.
A pole at finite ¢ characterizes a system which is unstable with respect to the ap-
pearance of a spatial oscillation of a given type (density, spin, isospin or spin-isospin)
with a given wavelength A = 27 /¢. In unstable domains, an imaginary-energy mode
appears.

The evaluation of response functions calls for the residual interaction VP!, defined
as the second-order functional derivative of the energy with respect to the density
matrix. Its momentum-space matrix elements can be written, using total momentum
conservation, as [GR92]:

Vph(QhQ%Q) = (a1 92 +q| veh a1 + 9 q2),
Wi(q) + Wa(q) (a1 — q2)?, (3.19)

with

[Wi*(a) + Wi™(q) 6162+ Wi¥(q) 7107
—|—W1VV<Q) &1'6’2 7:107:2], (320)

| =

Wl(‘l) =

and a similar expression for W5. We find, as an expression for W; functions (see
also appendix [C.3)),

W%@ = 2020 + CPY(y 4+ 2) (v + )pl + CEY (v +2)(v + 1)pl

- {QCOA” + %Cg} @, (3.21)
W%@ = 2050 4205757 + 2057 pY — {QCOAS n %CST] @ (3.22)
Wf;(CI) — 2000 4 2007 7 4 2007 g — [QClAp N %C{} <. (3.23)
Wf;(CJ) — 2050 4 20 4205 [QClAs N %CTT} <. (3.24)
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where we split the density-dependent coupling constants C¥(pg) and C;(pg) following
the model C?(py) = CP° + CPpl + CP7 p', and for W, functions,

W) _ -~ W59

5 % oA
WSV WVV

Given the above expression for the residual interaction, one can calculate the re-
sponse function, which reads

2
N(w,q) = 4l | 1— W, — 2W k3 (a? -— ) I,
1— mFkg W(a)
372 2
+ WSR2 (2 T — T,) (3.26)

-1

2m*k
+ (W3 k)2 (H% — oIy + 4q°V°11; — T;TQF§2H0) ;

where § = ¢/2kp, v = wm/qkr and Il 4 are generalized Lindhard functions, see
Ref. [GR92].

As already said, the limit q — 0 corresponds to perturbations of infinite wave-
length, keeping the system homogeneous. In this limit, the residual interaction is
uniquely determined by Landau parameters Fj, F],G;, G}, with [ = 0,1, and well
known stability conditions are obtained under the form [Mig67|:

X

1
T

> 0, (3.27)

where X, represents any of the Landau parameters. We have used this criterion in the
fit of our parametrizations f,, ensuring that no spin or spin-isospin instability would
occur below 2pg,;. We observe that, from the point of view of Landau parameters,
the most critical channel is the vector-isovector one, with associated instabilities at
densities as low as 2p (see the upper-right panel of Fig. B3). This behavior is
linked to the attractive character of the functional in channel (S,7") = (1, 1) which
gives rise to a collapse of spin-polarized PNM, and accordingly, a vanishing spin-
isospin symmetry energy. Therefore, better reproducing the decomposition into
(S,T) channels of EOS obtained from ab-initio methods is not only a matter of
microscopic motivation, but also a necessity to avoid unwanted instabilities.

Beyond infinite-wavelength instabilities, we also aim at demonstrating that a
more general treatment is needed to fully describe and control unstable modes which
arise in the Skyrme EDF framework. Thus, contributions to the residual interaction
coming from functional terms of the form pAp are zero for q = 0, whereas such
terms drive finite-size instabilities.

Indeed, we have observed that existing (SkP) or new parametrizations built
with a high value of x, in order to reproduce the microscopic splitting of effective
masses, tend to spatially separate protons from neutrons in spherical mean-field
calculations, where enough iterations lead to states with strongly oscillating densities
and a diverging energy. Following a preliminary phenomenological reasoning, we
could relate this effect to the C’lAppl Ap; term in the functional, as this term can
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Table 3.3: Values of the effective mass splitting (in nucleon mass units), and C7 and
CP? coefficient, in MéV fm?,

f-  SLy5 fy f+ LNS SkP
Am* -0.284 -0.182 0.001 0.170 0.227 0.418
CT 229 238 -0.2 -22.0 -19.5 -41.9
C* 54 167 214 294 3375 35.0

energetically favor strong oscillations of the isovector density p; which arise in the
case of such a spatial n-p separation.

Moreover, Eqs. (B2IH320) show that such a term can yield an attractive contri-
bution to the residual interaction in the case of a short-wavelength (high ¢) pertur-
bation. We found empirically that parameter sets for which this instability arises are
characterized by a high value of C’lAp, that is ClAp 2 30. However, the term propor-
tional to g2 in the expression for the residual interaction contains contributions from
both the isovector gradient and effective mass (C7) terms, indicating that Am* may
also have a direct effect on the phenomenon, which is less intuitive. As seen from
Table B3] these parameters are strongly correlated together and with the effective
mass splitting Am* in such a way that for more positive splitting corresponds to
more negative CT (which follows from the definition of effective masses, Eq. (B1]))
and more positive C’lAp. Given the weighting of both contributions to the residual
interaction, we see that it is the attractive (and destabilizing) one from the gradient
term which dominates. The effect of the isovector effective mass alone, when going
towards microscopic values, is a stabilizing one, and the sole rearrangement of the
isovector gradient term is the cause of the fact that a positive splitting, as required
by ab-initio predictions, tends to favor instabilities.

Whereas with our fitting protocol we were unable to provide both a fully con-
verged (and hence physically meaningful) and clearly unstable functional to illustrate
the previous statements, we found that certain functionals available in the litera-
ture present the aforementioned behavior. For example, convergence problems have
arisen (and have already been pointed out in another study [Ter(7]) for the SkP pa-
rameter set [Dob84]. The nature of the instabilities discussed here is illustrated on
the left panels of Fig. 37 where neutron and proton densities are plotted at various
stages of execution of a self-consistent iterative procedure with SkP in *Ni. We see
that strong, opposing oscillations of neutron and proton densities are formed, and
steadily increase with iterations. Such a behavior happens after a seemingly con-
verged situation for which the relative energy variation is small but almost constant
over a large number of iterations and the evolution of the energy is monotonous.

The study of the linear response function in the scalar-isovector channel allows
us to provide a more quantitative ground to the previous observation. By plotting
critical densities (lowest density p. of occurrence of a pole in II™(w = 0, q)) for a
given ¢ on Fig. [3.8 we see that these critical densities can be lower for ¢ ~ 2.5 to
3 fm~! than for ¢ = 0, reaching down to about 0.22 fm™®, which is quite near to the
saturation density. This is the case for SkP and LNS, with SkP having also lower
critical densities at lower values of q. Accordingly, SKP is the most prone to a lack
of convergence in HF calculations.
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Figure 3.7: Neutron and proton densities in central regions of **Ni (left panels)
and “°Ca (right panels) plotted for a fully converged computation using
the SLy5 interaction (solid line; relative variation of energy between
iterations less than 1071%) and along a series of iterations done with SkP
(for ®Ni) and LNS (for “°Ca). The number of iterations corresponding to
each curve is indicated in key. In both cases the collapse happens after a
seemingly converged situation (~ 1079 relative energy variation, steady
over a large number of iterations indicating a nearly linear evolution of
the energy), which can be mistaken for an energy minimum if too loose
a convergence criterion is used.
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Figure 3.8: The lowest density of occurrence of a pole in II*(w = 0,q) is plotted
against the wave-number ¢ of the scalar-isovector perturbation. The
curves end at ¢ = 2kp since the ground state can not couple to excita-
tions with w = 0,q > 2kp.

The link between response functions and convergence problems can indeed be
understood by classifying them by their magnitude: in case of a stable but very
soft mode, lack of convergence arises from the existence of a continuum of quasi-
degenerate mean-field states, among which no minimization or self-consistency al-
gorithm shall be able to decisively find an energy minimum without a considerable
amount of iterations. If the soft mode becomes unstable, it causes a divergence of
the energy and of other observable such as the densities. We see in the agreement
between the RPA study of SNM and the observation of unstable HF calculations
of nuclei a qualitative validation of our local-density approximation (LDA)-based
treatment of instabilities: soft or unstable modes occurring in INM at densities in
the vicinity of the saturation density, happen for the same parameter sets in finite
nuclei.

On the other hand, self-consistent calculations of nuclei diverge although no
unstable mode appears strictly at saturation density, which shows the limits of the
transposition of results from INM to nuclei in a LDA scheme: it seems that nuclei
probe properties of the functional up to higher densities and momenta than occur
in INM at saturation.

The large number of iterations needed for the divergence to occur on Fig. B is
a consequence of the limiting case embodied by SkP, such that the existence of a
definite instability is highly dependent on finite-size effects (choice of the nucleus)
and discretization details in the numerical procedure. If SkP is a limiting case,
LNS also displays a low critical density in the scalar-isovector channel (Fig. B.8). In
this case, we observed proton-neutron separation in *°Ca and for small mesh steps
(0.1 fm) only (see Fig. B7), while it is more frequent with SkP. Our functional f,,
with a critical density of 0.30 fm ™2, which is barely lower than SLy5, while being
slightly higher that SkP and LNS, successfully passed the test of computing a set
of 134 spherical nuclei. This again demonstrates that testing finite-size instabilities
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through response functions constitutes an accurate tool. The critical density (and its
proximity to pg.s, keeping in mind that values which yield instabilities in calculations
of finite nuclei have been here seen to reach 0.22 fm_?’) appears as a good measure
of the gravity of the problems one might encounter in finite nuclei. Although the
actual occurrence of instabilities is subject to details of the numerical treatment, it
is now clear that their origin can be traced back to the choice of parameters in the
functional itself.

Nevertheless, even if a functional does not display clear instabilities but only
spurious soft collective modes, convergence difficulties shall arise in SR-EDF cal-
culations while such a mode will translate into a non-physical low-lying spectrum
in a multi-reference framework. This can then yield excessive correlation energies
if one systematically includes correlations in the ground state e.g. in (Q)RPA or
GCM-based methods. One should thus make sure that no spurious (even remotely)
soft mode occurs at saturation density in order to prevent such problems.

Having demonstrated the importance of finite-size instabilities, let us go back
to discussing our original set of functionals and perform a generalization to other
spin-isospin channels.

Critical densities are plotted on Fig. B9 for the four channels defined in Eq. (B17).
The upper-left panel shows that, while no unstable mode occurs at ¢ = 0 thanks to
fitting PNM EOS to relatively high density, scalar-isovector instabilities may hap-
pen little above pg, for ¢ &= 2.5 to 3 fm~'. In addition, there is a clear trend for
lowering the critical density when Am™* is increased, in agreement with the prelimi-
nary phenomenological reasoning on ClAp. The fact that critical densities for SLy5
lie in the lower range of values obtained with our new parametrizations, despite the
negative value of Am™* it exhibits, must then be attributed to the slightly different
fitting protocol involving a single density-dependent term.

Spin channels have been taken care of during the fit thanks to Landau param-
eters, which describe the residual interaction at ¢ = 0. The result can be seen on
the right panels of Fig. B0 where the critical densities of instability are plotted for
spin-flip modes (isoscalar and isovector). As previously stated, the most dangerous
q = 0 instability is found in the vector-isovector channel. By looking at the upper-
right panel of Fig. one can see that the critical density is however increased at
higher ¢ for our parameter sets.

An even more prominent finite-size effect can be observed in the isoscalar spin-
flip channel (lower-right panel of Fig. B.9]) where, while no instability occurs at ¢ =0
as in the case of most Skyrme functionals, finite-size instabilities occur at densities
lower than observed in the scalar-isovector channel for pathological parametrizations.
These instabilities are linked to the C’OAS So - Asy term which makes the vector-
isoscalar V,,_, attractive at large ¢ whereas it is repulsive at ¢ = 0. Values of
C5¢ indeed, are as high as 45.85 and 47.32 for SLy5 and f_, respectively. As a
consequence, one can expect divergences in calculations of odd or rotating nuclei
with the latter functionals if the aforementioned terms are included. In this case,
though, increasing Am* pushes the critical density farther from pg: fo and fi
functionals are thus the only ones to be free from instabilities near pg,, fo being on
the edge of the dangerous region and f* well above.

The previous discussion is valid if the full time-odd functional is taken into ac-
count. This must be stressed since sy - Asy terms, which drive the most critical,
finite-size instabilities, have never been included in self-consistent mean field calcu-
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Figure 3.9: Same as Fig.[B.8 for all spin-isospin channels. The lower-left panel shows
the region of spinodal instabilities below pg.;. The domain of ¢ covered
in this case determines the size of structures formed, while the region
between 0.1 and 0.16 fm™! appears as metastable.

lations employing the SLy series of parametrizations. However, RPA calculations are
commonly performed by computing the residual interaction matrices directly from
the antisymmetrized interaction (plus rearrangement terms), which amounts to im-
plicitly including the contribution to V,_}, from all terms in the functional [Ter(5al.

The latter findings finalize the picture of a competition between spin and isospin
instabilities. All in all, the strong interplay between the various quantities linked to
the four parameters of the non-local terms in the Skyrme interaction does not seem
to allow for a fully satisfactory compromise between stability criteria and ab-initio
constraints on Am*. Again, we see that the non-local part of the Skyrme interaction
is too simplistic to control all relevant properties. An extension with density- and
momentum-dependent terms, allowing the fine-tuning of the functional at various
densities, combined with the formal checks advocated in this paper, could prove to
significantly improve the predictive power of Skyrme EDF.

3.3 Summary

We have built a series of Skyrme energy density functionals to study the effect
of a variation of the splitting of neutron and proton effective masses with isospin
asymmetry on properties of this EDF model. Thanks to the use of a second density-
dependent term in the underlying effective interaction, we could cover a wide range
of effective mass splittings (Am*) with a satisfactory fit to nuclear properties. In-
deed, nuclear observable predicted by our functionals f_, f; and f, show a remark-
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able similarity, pointing out that spectra, pairing gaps and masses of bound nuclei
are weakly sensitive to Am*, mostly due to their relatively low isospin asymme-
try. Although observable were affected in a noticeable and consistent way, no clear
improvement was seen when altering Am* either way.

Beyond this phenomenological study, we have compared the splitting of the equa-
tion of state of symmetric infinite matter into spin-isospin channels provided by our
functionals and by ab-initio Brueckner-Hartree-Fock calculations. Such a compar-
ison showed an obvious discrepancy in (S,7) = (0,0) and (1,1) channels, where
energies predicted by Skyrme functionals and by BHF calculations have opposite
signs. The inconsistency in channel (S,T) = (1, 1), where the Skyrme functional is
attractive, translates into a collapse of polarized neutron matter EOS, related to the
onset of spin-isospin instabilities at quite low density (2psa). In this channel, ab-
initio predictions cannot be matched (in the Skyrme effective-interaction approach)
without an extension of the P-wave term. We also identified finite-size isospin in-
stabilities caused by strong isovector gradient terms, which prevent the convergence
of SR-EDF calculations. We were able to provide a firm and quantitative basis to
these observations through an analysis of finite-size instabilities by use of RPA linear
response functions in SNM. The latter showed that finite-size effects in the analysis
of instabilities tend to always dominate.

The present study leads us to propose the systematic inclusion of consistency
checks with ab-initio predictions of spin-isospin properties in the construction of our
future functionals, as well as a systematic diagnosis of finite-size instabilities.

Whereas effective masses are key parameters in the discussion of nuclear single-
particle spectra, the latter are determined by the particle-hole potential derived from
the whole p-h functional. Most notably, spin-orbit splittings, an essential feature of
nuclear structure, are another example of quantity to investigate and control in the
quest for better predictive power. This is the subject of the next chapter.
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Chapter 4

Tensor Part of the Skyrme Energy
Density Functional

4.1 Introduction

The strong nuclear spin-orbit interaction in nuclei is responsible for the observed
magic numbers in heavy nuclei [GM48] [Hax49. [Fee49, [(GM49]. While a simple spin-
orbit interaction allows for the qualitative description of the global features of shell
structure, the available data suggest that single-particle energies evolve with neutron
and proton number in a manner that cannot be related to the geometrical growth
of the single-particle potential with N and Z. Many anomalies of shell structure
have been identified that do not fit into simple experimental systematics, and that
challenge any global model of nuclear structure.

The evolution of shell structure with N and Z as a feature of self-consistent
mean-field models has been known for long. To quote the pioneering study of shell
structure in a self-consistent model performed by Beiner et al. [Bei75b|, the “most
striking effect is the appearance of N = 16, 34 and 56 as neutron magic numbers
for unstable nuclei, together with a weakening of the shell closure at N = 20 and
28”. Various mechanisms that modify the appearance of gaps in the single-particle
spectra have been discussed in detail in the literature. The two most prominent
ones that were worked out by Dobaczewski et al. in Ref. [Dob94], however, play
mainly a role for weakly-bound exotic nuclei far from stability, as they are directly or
indirectly related to the physics of loosely bound single-particle states, namely that
the enhancement of the diffuseness of neutron density distribution reduces the spin-
orbit coupling in neutron-rich nuclei on the one hand, and the interaction between
bound orbitals and the continuum results in a quenching of shell effects in light and
medium systems on the other hand. The former effect was also extensively discussed
in the framework of relativistic models by Lalazissis et al. [Lal98al, [Lal98b|, while
the latter triggered a number of studies that discussed the potential relevance of this
so-called “Bogolyubov enhanced shell quenching” to explain the abundance pattern
from the astrophysical r-process of nucleosynthesis [Che95, [Dob95bl [Pead6, [Pfe97].

These two effects take place in neutron-rich nuclei. In proton-rich nuclei, the
Coulomb barrier suppresses both the diffuseness of the proton density and the cou-
pling of bound proton states to the continuum. But the Coulomb interaction itself
can also modify the shell structure: for super-heavy nuclei, it begins to destabi-
lize the nucleus as a whole. Mean-field models predict that it amplifies the shell
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oscillations of the densities for incomplete filled oscillator shells, which leads to
strong variations of the density profile that feed back onto the single-particle spec-
tra [Dec99, Ben9ah].

Interestingly, most theoretical papers about the evolution of shell structure from
the last decade have speculated about new effects that mainly affect neutron shells
in nuclei far from stability in the anticipation of the rare-isotope physics that might
become accessible with the next generation of experimental facilities. The known
anomalies, some of which have been known for a long time, and many more have
been identified recently, concern also proton shells and already appear sufficiently
close to stability that “exotic phenomena can be ruled out for their explanation” in
most cases, to paraphrase the authors of Ref. [Lan03|. By contrast, this suggests that
there exists a mechanism that induces a strong evolution of single-particle spectra
already in stable nuclei that has been overlooked for long.

There is a prominent ingredient of the nucleon-nucleon interaction that has been
ignored for decades in virtually all global nuclear structure models for medium and
heavy nuclei, be it macroscopic-microscopic approaches or self-consistent mean-field
methods. It is only very recently, that the systematic discrepancies between model
predictions and experiment have triggered a renaissance of the tensor force in the
description of finite medium- and heavy-mass nuclei.

The tensor force is a crucial and necessary ingredient of the bare nucleon-nucleon
interaction [Wir93, [Mac01]], and consequently is contained in all ab-initio approaches
that are available for light, mainly p-shell nuclei [Pie01b, Nav03]. One of the first
experimental signatures of the tensor force was the small, but finite quadrupole mo-
ment of the deuteron. In a boson-exchange picture of the bare nucleon-nucleon in-
teraction, the tensor force originates from the exchange of pseudoscalar pions, which
have both central and tensor couplings, see for example section 2.3 in Ref. [Eis72]
or appendix 13A of Ref. [NiI95]. In a nuclear many-body system, the bare tensor
force induces a strong correlation between the spatial and spin orientations in the
two-body density matrix. For two nucleons with parallel spins, the tensor force
energetically favors the configuration where the distance vector is aligned with the
spins, while for anti-parallel spins the tensor force prefers when the distance vector
is perpendicular to the spins, see the discussion of Fig. 13 in Ref. [Nef03] and of
Fig. 3 in Ref. [Rot04]. The authors of these papers also demonstrate very nicely
the well-known fact [Bet68), that in an approach that starts from the bare
nucleon-nucleon interaction, nuclei are not bound without taking into account the
two-body correlations induced by the tensor force.

In a perturbation-theory interpretation of the EDF scheme, most of the effect of
the bare tensor force on the binding energy is integrated out through the renormaliza-
tion of the coupling constants associated with a central effective vertex, in a similar
fashion as the tensor part of the bare interaction is renormalized into the central
one when going from the bare nucleon-nucleon force to a Brueckner G matrix. The
tensor terms of the EDF relate to a residual tensor vertex, in terms of many-body
perturbation theory, that gives nothing but a correction to the spin-orbit splittings,
which for light p-shell nuclei might be of the same order as the contribution from the
genuine spin-orbit force. The interplay of spin-orbit and tensor forces in the mean
field of medium and heavy nuclei was explored in Refs. [Sch76, [Goo78| [Zhe91], where
the particular role of spin-unsaturated shells was pointed out.

Despite the quite recent character of the emphasis seen in the literature on the


http://www.sciencedirect.com/science/article/B6TVN-3W78GT0-2/2/3e0855647aba58aa5d30d8299bbbb42d
http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.67.044314
http://link.aps.org/abstract/PRC/v51/p38
http://link.aps.org/abstract/PRC/v63/e024001
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.51.101701.132506
http://link.aps.org/abstract/PRC/v68/e034305
http://www.sciencedirect.com/science/article/B6TVB-472BCGB-1/2/03938e7bc96c2c9bff4e755c4532e320
http://www.sciencedirect.com/science/article/B6TVB-4DD881G-1/2/b0382015cc64f62632b9803b6aa19e5f
http://link.aps.org/abstract/PR/v167/p879
http://link.aps.org/abstract/PRC/v1/p1260
http://www.sciencedirect.com/science/article/B6TVN-46YMDDM-DN/2/4d5f36c57c8e3af2e4aa497fb5c32473
http://www.sciencedirect.com/science/article/B6TVB-471YTWX-93/2/053352f0ce01e41b555171f28d553c64
http://www.sciencedirect.com/science/article/B6WB1-4DDR7M5-1TS/2/ffcf324895684cc9eb1804683d7579b3

4.1. INTRODUCTION 71

tensor part of nuclear EDF models, the effective zero-range non-local interaction pro-
posed by Skyrme in 1956 [Sky56l, [Sky58al, [Bel56, already contained a zero-
range tensor force. The first applications of Skyrme’s interaction in self-consistent
mean-field models that became available around 1970, however, neglected the tensor
force, and the simplified effective Skyrme interaction used in the seminal paper by
Vautherin and Brink [Vau72| soon became the standard Skyrme interaction that was
used in most applications ever since. Until very recently, there was only very little
exploratory work on Skyrme’s tensor force. In their early study, Stancu, Brink and
Flocard [Sta77|, who added the tensor force perturbatively to the SIII parametriza-
tion, pointed out that some spin-orbit splittings in magic nuclei can be improved
with a tensor force. A complete fit including the terms from the tensor force that
contribute in spherical nuclei was attempted by Tondeur [Ton83|, with the relevant
coupling constants of the spin-orbit and tensor terms adjusted to selected spin-orbit
splittings in 190, ®Ca and 2°*Pb. Another complete fit of a generalized Skyrme
interaction including a tensor force was performed by Liu et al. [Liu91], but the au-
thors did not investigate the effect of the tensor force in detail, nor was the resulting
parametrization ever used in the literature thereafter.

Similarly, the seminal paper by Gogny on the evaluation of matrix
elements of a finite-range force of Gaussian shape in an harmonic oscillator basis
contains the expressions for a finite-range tensor force, which, however, was omit-
ted in the parametrizations of Gogny’s force adjusted by the Bruyéres-le-Chatel
group [Dec80]. It were Onishi and Negele [Oni78] who first published an effective
interaction that combined a Gaussian two-body central force, a finite-range tensor
force with a zero-range spin-orbit force and a zero-range non-local three-body force,
which, however, also fell into oblivion.

The role of the tensor force is slightly different in Skyrme and Gogny interac-
tions. In the Gogny force, the contributions from the central and tensor parts remain
explicitly distinct, although, of course, this does not prevent a certain entanglement
of their physical effects. In the context of Skyrme’s functional, however, the contri-
bution of a zero-range tensor force to the spherical mean-field state of an even-even
nucleus has exactly the same form as a particular exchange term from the non-local
part of the central Skyrme force.

Thus, one must always keep in mind that both the central and tensor part of the
effective vertex contribute to the J? “tensor” terms of the functional, as they will be
referred to in this chapter.

In the context of relativistic mean-field models, the equivalent of the non-relat-
ivistic tensor force appears as the exchange term of effective fields with the quantum
numbers of the pion, which by construction do not appear in the standard relativistic
Hartree models. Only relativistic Hartree-Fock models contain this tensor force, with
the first predictive parametrizations becoming available recently [Lon06].

We also mention that there is a large body of work on the tensor force in the inter-
acting shell model, see Ref. for a review, that concentrates on a completely
different aspect of the tensor force, namely its unique contribution to excitations
with unnatural parity.

The recent interest in the effect of the tensor force in the context of self-consistent
mean field models was triggered by the observed evolution of single-particle levels
of one nucleon species in dependence of the number of the other nucleon species.
Otsuka et al. [Ofs05] proposed that at least part of the effect is caused by the proton-
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neutron tensor force from pion exchange. Many groups attempt now to explain
known, but so far unresolved, anomalies of shell structure in terms of a tensor force.
A particularly popular playground is the relative shift of the proton 1g7/» and 159
levels in tin isotopes, which is interpreted as the reduction of the spin-orbit splittings
of both levels with their respective partners with increasing neutron number [Sch04].

Otsuka et al. [Ots06] added a Gaussian tensor force, adjusted on the long-range
part of a one-pion-+p exchange potential, to a standard Gogny force. After a con-
sistent readjustment of the parameters of its central and spin-orbit parts, they were
able to explain coherently the anomalous relative evolution of some single-particle
levels without, however, being able to describe their absolute distance in energy.
Dobaczewski [Dob06] pointed out that a perturbatively added tensor interaction
with suitably chosen coupling constants in the Skyrme energy density functional does
not only modify the evolution of shell structure, but does also improve the descrip-
tion of nuclear masses around magic nuclei. Then, concentrating of single-particle
energies, Zalewski et al. [Zal08] adjusted the tensor and spin-orbit parameters of
the Skyrme EDF on spin-orbit splittings in the Ca-Ni region, neglecting somewhat
the reproduction of binding energies, which will be discussed in this study. Ko-
rtelainen et al. [Kor(8§] performed a singular-value decomposition analysis of the
fit to single-particle energies of a general quasi-local functional, implicitly includ-
ing the degrees of freedom associated with the tensor in an interaction-derived EDF.
Brown et al. [Bro06a] fitted a Skyrme interaction with added zero-range tensor force
with emphasis on the reproduction of single-particle spectra. While the authors ap-
preciated the qualitatively correctly described evolution of relative level distances,
they pointed out that the combination of zero-range spin-orbit and tensor forces
does not and can not correctly describe the /-dependence of spin-orbit splittings.
Colo et al. [Col07], and Brink et al. [Bri07] added Skyrme’s tensor force perturba-
tively to the existing standard parametrization SLy5 [Cha97, [Cha98|, and to the
SIIT [Bei75bh] one, respectively. They investigated some single-particle energy dif-
ferences: the 1hy;/ and 1g7/, proton states in tin isotopes as well as 1ii3/, and
Lhg/2 neutron states in N = 82 isotones and proposed similar parameters as in
Ref. [Bro06al. The effect of the tensor force on the centroid of the GT giant reso-
nance was also estimated by Colo et al. using a sum-rule approach and found to be
substantial. Long et al. [Lon08|, demonstrated that the tensor force that emerges
naturally in relativistic Hartree-Fock also improves the relative shifts of the proton
1g7/2 and 1hyy /5 levels in tin isotopes.

Many studies on the tensor force published so far aim at an optimal single
parametrization, that establishes a best fit to either the underlying bare tensor
force [Ofs06l Bro06al or empirical data [Ton83|, [Dob06], [Col07]. The published re-
sults, as well as our first exploratory studies, however, suggest that adding a tensor
force to the existing mean-field models gives only a local improvement of the relative
change of certain single-particle energies, but not necessarily a global improvement
of single-particle spectra or other observables. In the framework of the Skyrme EDF,
there is also the already mentioned ambiguity that the contribution from the tensor
force to spherical nuclei has the same structure as a term from the central force. In
view of this situation, we will pursue a different strategy and investigate the effect
of the tensor terms on a multitude of observables in nuclei though a set of Skyrme
interactions with systematically varied coupling constants of the tensor terms.

The present study was motivated by the finding that the performance of the
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existing Skyrme-type effective interactions for masses and spectroscopic properties
is limited by systematic deficiencies of the single-particle spectra [BenO6al, [Ben03al,
Ben(6bl, [Cha06¢] that seem to be impossible to remove within the standard Skyrme
interaction. The details of single-particle spectra were so far somewhat outside
the focus of self-consistent mean-field methods, on the one hand as they do not
correspond directly to empirical single-particle energies (we will come back to that
below), and on the other hand because many of the observables that are usually
calculated with self-consistent mean-field methods are not very sensitive to the exact
placement of single-particle levels. By contrast, there is an enormous body of work
that examines the infinite and semi-infinite nuclear matter properties of the effective
interactions that are the analog of liquid-drop and droplet parameters in great detail.
The reason is, of course, that the global trends over the whole chart of nuclei have
to be understood before one can look into details. The last few years have seen an
increasing demand on predictive power. Moreover, beyond-mean-field approaches
of the projected generator coordinate method (GCM), or Bohr-Hamiltonian type,
have become widely used tools to analyze and predict spectroscopic properties in
medium and heavy nuclei, employing either Gogny or Skyrme interactions. The
underlying single-particle spectra thus now deserve more attention, as many of the
spectroscopic properties of interest turn out to be extremely sensitive to even subtle
details of the single-particle spectra. As the tensor force is the most obvious missing
piece in all standard mean-field interactions, it is the natural starting point for the
systematic investigation of possible generalizations with the ultimate goal to improve
the predictive power of the interactions for spectroscopy.

In the present chapter, we will describe the fit of the parametrizations, analyze
the role of the tensor terms for single-particle spectra, then masses and radii of
spherical even-even nuclei.

4.2 The fits

4.2.1 Properties of tensor terms in spherical symmetry

As discussed in section 23] in time-reversal-invariant systems, only the J? terms
of the functional generated by the tensor force remains. Furthermore, enforcing
spherical symmetry greatly simplifies the spin-current tensor, Eq. (276]), as both
the pseudoscalar and pseudotensor parts of J,, vanish. From the vector spin-orbit
current, only the radial component is non-zero, which is given by [Vau72]
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so that there is only one out of the nine components of the spin-current tensor density
that contributes in spherical nuclei. Unlike the total density p and the kinetic density
7, that are bulk properties of the nucleus and grow with the size of the nucleus, the
spin-orbit current is a shell effect that shows strong fluctuations. Assume the two
shells with same n and ¢ which are split by the spin-orbit interaction, one coupled
with the spin to j = ¢ + %, the other to j = ¢ — % It is easy to verify that their
contributions to J,(r) are equal but of opposite signs such that they cancel when

(i) both shells are completely filled and (ii) their radial wave functions are identical
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Unit1/20 = Uny—1720- Although the latter condition is never exactly fulfilled, this
demonstrates that the spin-orbit current is not a bulk property, but a shell effect
that strongly fluctuates with NV and Z. It nearly vanishes in so-called spin-saturated
nuclei, where all spin-orbit partners are either completely occupied or empty, and it
might be quite large when only the j = £+ 1/2 level out of one or even several pairs
of spin-orbit partners is filled.

In spherical symmetry, the contribution to the energy functional of the J? terms

=Y 1C) I =) (3¢l +ich) 37 (4.2)
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is

The effective coupling constants can be separated back into contributions from the
non-local central and tensor forces

C/— A+ B (4.3)
which are given by
A = étl(%—xl)—%tz(%Hz)
Af =t — 1ty
Bl = %@—Hﬁ):f%T+3U)
Bf = f(to—t)=5U-T), (4.4)

where we also give the expressions using the notation 7' = 3t, and U = 3¢, employed
in [Flo75, [Sta, [Col07].

For the following discussion it will be also illuminating to recouple this expression
to a representation that uses proton and neutron densities, where we use the notation
introduced in Ref. [Sta77]

H = 1a@2+3)+6T.-73,, (4.5)
with

a=CJ+0f, B=0C -0,
) =Y(atB). Cl=La—p). (1.6

The proton-neutron coupling constants a = a¢ + ar and § = B¢ + Br can again be
separated into contributions from central and tensor forces

ac = §(t—to) = § (hy +tas),

Be = —L(tim+ tm)

ar = %to - % v,

Br s(tett,) = (T+U). (4.7

As could be expected, the isospin-singlet tensor force contributes only to the proton-
neutron term, while the isospin-triplet tensor force contributes to both.
The spin-orbit potential of the neutrons is given by

o0& W
Wa(r) = e = = (2Vpu+ V) tadi . (4.8)
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The expression for the protons is obtained exchanging the indices for protons and
neutrons. In spherical symmetry, the tensor force gives a contribution to the spin-
orbit potential, but does not alter the structure of the spin-orbit terms in the single-
particle Hamiltonian as such. This will be different in the case of deformed mean
fields [Per04], Ben09].

The dependence of the spin-orbit potential W, (r) on the spin-orbit current J,(r)
through the tensor terms is the source of a potential instability. When the spin-orbit
splitting becomes larger than the splitting of the centroids of single-particle states
with different orbital angular momentum ¢, the reordering of levels might increase
the number of spin-unsaturated levels, which increases the spin-orbit current .J,, and
feeds back on the spin-orbit potential by increasing it even further, which ultimately
leads to an unphysical shell structure.

4.2.2 A brief history of tensor terms in the central Skyrme
energy functional

For the interpretation of the parametrizations we will describe below it is impor-
tant to point out that within our choice of the effective Skyrme interaction as an
antisymmetrized vertex the two coupling constants of the contribution from the
central force to H', Eq. ([&Z), either represented through AJ, A or through ac,
fc, are not independent from the coupling constants A7, A7, AOAP, and AlAp, that
appear in Eq. (Z295)). Through the expressions given in appendix [A] all six of them
are determined by the four coupling constants t;, x1, t3, and x5 from the central
Skyrme force, Eq. (ZZ8). As a consequence, a tensor force is absolutely necessary
to decouple the values of the C7 from those of the C7 and C;*, which determine
the isoscalar and isovector effective masses and give the dominant contribution to
the surface and surface asymmetry coefficients, respectively.

This interpretation of the Skyrme interaction is, however, far from being com-
mon practice and a source of confusion and potential inconsistencies in the lit-
erature. Many authors have used parametrizations of the central and spin-orbit
Skyrme energy functional with coupling constants that in one way or the other do
not exactly correspond to the functional obtained from Eqns. (Z78) and (2384,
which, depending on the point of view, can be seen as an approximation to or
a generalization of the original Skyrme interaction. As the most popular mod-
ification concerns the tensor terms, a few comments on the subject are in or-
der. Again, the practice goes back to the seminal paper by Vautherin and Brink
[Vau72], who state that “the contribution of this term to [the spin-orbit poten-
tial] is quite small. Since it is difficult to include such a term in the case of
deformed nuclei, it has been neglected”. This choice was further motivated by
the interpretation of the effective Skyrme interaction as a density-matrix expan-

sion (DME) [Neg70, [Neg72l Neg75], [Cam78]. All early parametrizations as SI and
SIT [Vau2|, SII-SVI [Bei75h], SkM [Kri80] and SkM* [Bar82a] followed this exam-

ple and did not contain the J? terms. Beiner et al. [Bei7hb]| weakened the case for J?
terms further by pointing out that they might lead to unphysical single-particle spec-
tra. During the 1980s and later, however, it became more popular to include them,
for example in SkP [Dob8&4], the parametrizations T1-T9 by Tondeur et al. [Ton8&4],
E, and Z, by Friedrich and Reinhard [ETi86]. Some of the recent parametrizations
come in pairs, where variants without and with J? terms are fitted within the same
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fit protocol, for example (SLy4, SLy5) and (SLy6, SLy7) in Ref. [Cha9§], or (SkO,
SkO’) in Ref. [Rei99].

Interestingly, all but one parametrization of the central Skyrme interaction found
in the literature set the coupling constants of the J? terms either to their Skyrme
force value ([(AJ]) or strictly to zero. The exception is Ref. [Ton83| by Tondeur,
where an independent fit of the coupling constants of the J? terms was attempted,
making explicit reference to a DME interpretation of the energy functional.

Setting the coupling constants of a term to zero when one does not know how
to adjust its parameters is of course an acceptable practise when permitted by
the chosen framework. For Skyrme interactions fitted without the J? terms, the
situation becomes confusing when one looks at deformed nuclei and any situation
that breaks time-reversal invariance. First of all, Galilean invariance of the energy
functional dictates that the coupling constant of the s - T terms is also set to zero,
as already indicated by the presentation of the energy functional in Eq. (291J).
Second, using a DME interpretation of the Skyrme energy functional in one place,
but the interrelations from the two-body Skyrme force in all others is not entirely
satisfactory. Many authors who drop the J? terms rarely show scruples to keep
most of the time-odd terms in the Skyrme energy functional (Z3I) with coupling
constants A3 and A2¢ from ([A]), although they are not at all constrained in the
common fit protocols employing properties of even-even nuclei and spin-saturated
nuclear matter. For a list of exceptions see Sect. II.A.2.d of Ref. [BenO3b]. An
alternative is to set up a hierarchy of terms, as it was attempted by Bonche, Flocard
and Heenen in their mean-field and beyond codes, which set A2* = 0 in addition
to