[. Bibliographie, M. Amenta, and . Bern, Surface Reconstruction by Voronoi Filtering, Discrete and Computational Geometry, vol.22, issue.4, pp.481-504, 1999.

[. Alliez, D. Cohen-steiner, M. Yvinec, ]. I. Mathieu-desbrun, A. K. Babuska et al., Variational Tetrahedral Meshing On the Angle Condition in the Finite Element Method, Proceedings SIGGRAPH, 2005. 29, pp.33214-226, 1976.

[. Bern, D. Eppstein, and J. Gilbert, Provably good mesh generation Provably good mesh generation, Proceedings ., 31st Annual Symposium on, pp.231-241, 1990.
DOI : 10.1016/s0022-0000(05)80059-5

URL : http://doi.org/10.1016/s0022-0000(05)80059-5

H. Borouchaki, P. L. George, F. Hecht, P. Laug, and É. Saltel, Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elements in Analysis and Design Delaunay mesh generation governed by metric specifications. Part II. applications. Finite Elements in Analysis and Design, pp.61-83, 1997.
DOI : 10.1016/s0168-874x(96)00057-1

E. [. Baker, C. S. Grosse, and . Rafferty, Nonobtuse triangulation of polygons, Discrete & Computational Geometry, vol.21, issue.2, pp.147-168, 1988.
DOI : 10.1007/BF02187904

J. Daniel, B. , and S. Oudot, Provably good sampling and meshing of surfaces, Graphical Models, vol.67, issue.5, pp.405-451, 2005.

J. Daniel-boissonnat and S. Oudot, Provably good sampling and meshing of Lipschitz surfaces, Proceedings of the twenty-second annual symposium on Computational geometry , SCG '06, 2006.
DOI : 10.1145/1137856.1137906

J. Daniel-boissonnatbow81 and ]. A. Bowyer, Vornoi Diagrams, Triangulations and Surfaces, chapitre 5. Inria, Computing Dirichlet tessellations. The Computer Journal, vol.46, issue.242 11, pp.47162-47175, 1981.

. Bws-+-87-]-p, S. Baehmann, M. Wittchen, K. Shephard, and M. Grice, Yerry: Robust, geometrically based, automatic two-dimensional mesh generation, International Journal for Numerical Methods in Engineering, vol.24, issue.6 9, pp.1043-1078, 1987.

D. Cohen-steiner, É. Colin-de-verdière, and M. Yvinec, Conforming Delaunay triangulations in 3D, The 18th Annual Symposium on Computational Geometry (SCG '02), pp.199-208, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00072243

D. Cohen-steiner, É. Colin-de-verdière, and M. Yvinec, Conforming Delaunay triangulations in 3D, SODA '02 : Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, pp.217-233, 2002.
DOI : 10.1016/j.comgeo.2004.03.001

URL : https://hal.archives-ouvertes.fr/inria-00072243

T. K. Siu-wing-cheng, H. Dey, M. A. Edelsbrunner, and S. H. Facello, Silver exudation, Delaunay Refinement for Piecewise Smooth Complexes. Proc. 18th Annual ACM-SIAM Symposium Discrete Algorithms (SODA'07), pp.883-904, 2000.
DOI : 10.1145/355483.355487

[. Cheng, T. K. Dey, E. A. Ramos, and T. Ray, Quality meshing for polyhedra with small angles, Proceedings of the twentieth annual symposium on Computational geometry, pp.290-299, 2004.

[. Cheng, T. K. Dey, E. A. Ramos, and T. Ray, Weighted Delaunay Refinement for Polyhedra with Small Angles, Proceedings 14th International Meshing Roundtable, IMR2005, p.83, 2005.
DOI : 10.1007/3-540-29090-7_20

J. C. Cavendish, D. A. Field, and W. H. Frey, An apporach to automatic three-dimensional finite element mesh generation, International Journal for Numerical Methods in Engineering, vol.3, issue.2, pp.329-347, 1985.
DOI : 10.1002/nme.1620210210

]. L. Che89 and . Chew, Guaranteed-quality triangular meshes, p.12, 1989.

]. L. Che93 and . Chew, Guaranteed-quality mesh generation for curved surfaces, SCG '93 : Proceedings of the ninth annual symposium on Computational geometry, pp.274-280, 1993.

P. Neto, . Wawrzynek, L. Carvalho, . Martha, and . Ingraffea, An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions with Cracks, Engineering With Computers, vol.17, issue.1, pp.75-91, 2001.
DOI : 10.1007/PL00007196

J. O. Coplien, Curiously recurring template patterns Lippman (rédacteur) : C++ gems, tome 5 Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio, SODA '03 : Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pp.135-144, 1996.

K. Tamal and . Dey, Curve and Surface Reconstruction : Algorithms with Mathematical Analysis 46 [DW06] Qiang Du et Desheng Wang: Recent progress in robust and quality Delaunay mesh generation, Journal of Computational and Applied Mathematics, vol.195, issue.12 9, pp.8-23, 2006.

D. [. Edelsbrunner, N. R. Guoy, and . Shah, An Experimental Study of Sliver Exudation Engineering With Computers, Special Issue on 'Mesh Generation Triangulating Topological Spaces, International Journal on Computational Geometry, vol.18, issue.7, pp.229-240, 1997.

P. J. Frey, H. Borouchaki, and P. L. George, Delaunay tetrahedralization using an advancing-front approach, 5th International Meshing Roundtable, pp.31-48, 1996.
DOI : 10.1016/s0045-7825(97)00222-3

P. J. Frey, H. Borouchaki, and P. L. George, 3D Delaunay mesh generation coupled with an advancing-front approach Computer methods in applied mechanics and engineering 14 [Fed69] H. Federer: Geometric Measure Theory Frey: Selective Refinement : a New Strategy For Automatic Node Placement in graded triangular meshes, International Journal for Numerical Methods in Engineering, vol.157, issue.111, pp.115-131, 1969.

P. L. , G. Et-houman-borouchakigeo71, and ]. J. George, Delauney Triangulation and Meshing : Application to Finite Elements Computer implementation of the finite element method [Geo97] Paul Louis George: Improvements on Delaunay-based threedimensional automatic mesh generator, Thèse de doctorat, pp.13-10297, 1971.

P. L. , G. , and P. Frey, Maillages : Applications aux éléments finis, Hermes Sciences, issue.9, p.11, 1999.

P. L. , G. Et-Éric-sevenolc87, ]. W. Lorensen, and H. E. Cline, The advancing-front mesh generation method revisited 10 [Her82] François Hermeline: Triangulation automatique d'un polyèdre en dimension N. RAIRO numerical analysis Marching cubes : A high resolution 3D surface construction algorithm, Proceedings of the 14th annual conference on Computer graphics and interactive techniquesLee99] CK Lee: Automatic adaptive mesh generation using metric advancing front approach. Engineering Computations, pp.3605-3619, 1982.

T. S. Lau and S. H. Lo, Finite element mesh generation over analytical curved surfaces, Computers and Structures, vol.59, issue.2 11, pp.301-309, 1996.

T. [. Lo and . Lau, Mesh generation over curved surfaces with explicit control on discretization error, Engineering Computations, vol.15, issue.3, pp.357-373, 1998.
DOI : 10.1108/02644409810208516

]. S. Lo85, . H. Lolo89-]-s, . H. Lolo91a-]-s, and . Lo, A new mesh generation scheme for arbitrary planar domains Delaunay triangulation of non-convex planar domains Volume discretization into tetrahedra-I. Verification and orientation of boundary surfaces, Volume Discretization into Tetrahedra-II. 3D Triangulation by Advancing Front Approach. Computers and StructuresLöh96] Rainald Löhner: Progress in grid generation via the advancing front technique, pp.1403-1426, 1985.

[. Löhner, Automatic unstructured grid generators, Finite Elements in Analysis and Design, vol.25, issue.1-2, pp.111-1341135, 1988.
DOI : 10.1016/S0168-874X(96)00038-8

[. Labelle, J. R. Shewchuk-]-x, and S. H. Li, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation Teng: Generating well-shaped Delaunay meshed in 3D, SCG '03 : Proceedings of the nineteenth annual symposium on Computational geometry SODA '01 : Proceedings of the twelfth annual ACM- SIAM symposium on Discrete algorithms, pp.191-200, 2001.

L. Marshal and . Merriam, An efficient advancing front algorithm for Delaunay triangulation, Aerospace Sciences Meeting, p.14, 1991.

G. L. Miller, D. Talmor, S. H. Mitchell, A. Scott, . Mitchell et al., Teng: Data generation for geometric algorithms on non uniform distributions Quality mesh generation in three dimensions, 8th ACM Symp. Comp. Geom, pp.577-599, 1992.

L. David, N. P. Marcum, and . Weatherill, Unstructured grid generation using iterative point insertion and local reconnection, AIAA Journal, vol.33, issue.9, pp.1619-1625, 1995.

S. Oudot, L. Rineau-et-mariette-yvinecowe98, and ]. S. Owen, Meshing Volumes Bounded by Smooth Surfaces A survey of unstructured mesh generation technology, Proc. 14th International Meshing Roundtable 7th International Meshing Roundtable, pp.203-219, 1998.

F. Jean-philippe-pons, J. D. Ségonne, L. Boissonnat, M. Rineau, R. Yvinec et al., High-quality consistent meshing of multi-label datasets. Dans Information Processing in Medical Imaging, pp.198-210, 2007.

A. Rassineux, Generation and optimization of tetrahedral meshes by advancing front technique, Rin07] Laurent Rineau: 2D Conforming Triangulations and Meshes, pp.651-674, 1998.
DOI : 10.1002/(SICI)1097-0207(19980228)41:4<651::AID-NME304>3.0.CO;2-P

C. Dans and . Board, CGAL User and Reference Manual. 3.3 édition, 2007.

J. Ruppert, A New and Simple Algorithm for Quality 2-D Mesh Generation, Proc. ACM Symp. on Disc. Alg, pp.83-92, 1993.

J. Ruppert, A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation, Journal of Algorithms, vol.18, issue.3, pp.548-585, 1995.
DOI : 10.1006/jagm.1995.1021

C. User and R. Manual, 3 édition http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/ packages.html#Pkg:SurfaceMesher3. 73 [RY07b] Laurent Rineau et Mariette Yvinec: A generic software design for Delaunay refinement meshing, Computational Geometry : Theory and Applications, vol.3, issue.3812, pp.100-110, 2007.

L. Rineau and M. Yvinec, Meshing Volumes Bounded by Piecewise Smooth Surfaces, Proc. 16th International Meshing Roundtable (à paraître), p.14, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00410864

M. Shephard and M. Georges, Automatic three-dimensional mesh generation by the finite octree technique, International Journal for Numerical Methods in Engineering, vol.20, issue.4, pp.709-749, 1991.
DOI : 10.1002/nme.1620320406

J. R. Shewchuk, What Is a Good Linear Finite Element ? Interpolation, Conditioning, Anisotropy, and Quality Measures

J. R. Shewchuk, Triangle : Engineering a 2D Quality Mesh Generator and Delaunay Triangulator Applied Computational Geometry : Towards Geometric Engineering, pp.203-222, 1996.

J. R. Shewchuk, Delaunay Refinement Mesh Generation

J. R. Shewchuk, Tetrahedral mesh generation by Delaunay refinement, Proceedings of the fourteenth annual symposium on Computational geometry , SCG '98, pp.86-95, 1998.
DOI : 10.1145/276884.276894

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. R. Shewchuk, Mesh generation for domains with small angles, Proceedings of the sixteenth annual symposium on Computational geometry , SCG '00, pp.1-10, 2000.
DOI : 10.1145/336154.336163

J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Computational Geometry, vol.22, issue.1-3, pp.21-74, 2002.
DOI : 10.1016/S0925-7721(01)00047-5

J. R. Shewchuk, What is a good linear element ? interpolation , conditioning, and quality measures, 11th International Meshing Roundtable, pp.115-126, 2002.

J. G. Siek, L. Quan-lee, and A. Lumsdaine, The boost graph library : user guide and reference manual Unstructured Mesh Generation : Theory, Practice, and Perspectives, Int. J. Comput. Geometry Appl, vol.10, issue.3, pp.78227-266, 2000.

[. Yerry and M. Shephard, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal A Modified Quadtree Approach To Finite Element Mesh Generation, Computer Graphics and Applications IEEE, vol.24, issue.31 9, pp.16739-16785, 1981.

M. A. Yerry and M. S. Shephard, Automatic three-dimensional mesh generation by the modified-octree technique, International Journal for Numerical Methods in Engineering, vol.11, issue.11, pp.1965-1990, 1984.
DOI : 10.1002/nme.1620201103