K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. Balandin, Micro-Raman investigation of optical phonons in ZnO nanocrystals, Journal of Applied Physics, vol.97, issue.12, p.124313, 2005.
DOI : 10.1063/1.1944222

C. A. Arguello, D. L. Rousseau, and S. P. Porto, First-Order Raman Effect in Wurtzite-Type Crystals, Physical Review, vol.181, issue.3, pp.1351-63, 1969.
DOI : 10.1103/PhysRev.181.1351

T. B. Bateman, Elastic Moduli of Single-Crystal Zinc Oxide, Journal of Applied Physics, vol.33, issue.11, p.3309, 1962.
DOI : 10.1063/1.1931160

. Serre, Cahiers de notes documentaires -Hygiène et Sécurité du Travail 187, p.75, 2002.

J. M. Calleja and M. Cardona, Resonant Raman scattering in ZnO, Physical Review B, vol.16, issue.8, pp.3753-61, 1977.
DOI : 10.1103/PhysRevB.16.3753

M. Catti, Y. Noel, and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations, Journal of Physics and Chemistry of Solids, vol.64, issue.11, p.2183, 2003.
DOI : 10.1016/S0022-3697(03)00219-1

Y. Chen, Y. S. Shi, J. Zhang, Y. J. Zhu, and . Yan, Size Dependence of Young???s Modulus in ZnO Nanowires, Physical Review Letters, vol.96, issue.7, p.75505, 2006.
DOI : 10.1103/PhysRevLett.96.075505

K. F. Cheng, H. C. Lin, W. F. Hsu, and . Hsieh, Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots, Applied Physics Letters, vol.88, issue.26, p.261909, 2006.
DOI : 10.1063/1.2217925

A. D. Corso, M. Posternak, R. Resta, and A. Baldereschi, study of piezoelectricity and spontaneous polarization in ZnO, Physical Review B, vol.50, issue.15, p.10715, 1994.
DOI : 10.1103/PhysRevB.50.10715

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals, Nature Materials, vol.115, issue.5, pp.395-403, 2005.
DOI : 10.1021/cm960513y

N. H. Duc, T. M. Danh, N. A. Tuan, and J. Teillet, Large magnetostrictive susceptibility in Tb???FeCo/FeCo multilayers, Applied Physics Letters, vol.78, issue.23, pp.3648-239, 2001.
DOI : 10.1063/1.1354663

-. A. Fonoberov and A. A. Balandin, Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect, Physical Review B, vol.70, issue.19, p.195410, 2004.
DOI : 10.1103/PhysRevB.70.195410

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Physical Review B, vol.73, issue.16, p.165317, 2006.
DOI : 10.1103/PhysRevB.73.165317

Y. S. Fu, S. Y. Cui, J. Zhang, D. P. Chen, S. L. Yu et al., Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size, Applied Physics Letters, vol.90, issue.26, p.263113, 2007.
DOI : 10.1063/1.2750527

P. Ga and Z. L. Wang, Self-Assembled Nanowire???Nanoribbon Junction Arrays of ZnO, The Journal of Physical Chemistry B, vol.106, issue.49, p.12653, 2002.
DOI : 10.1021/jp0265485

P. X. Gao and Z. L. Wang, Nanopropeller arrays of zinc oxide, Applied Physics Letters, vol.84, issue.15, p.2883, 2004.
DOI : 10.1063/1.1702137

L. Gerward and J. S. Olsen, The High-Pressure Phase of Zincite, Journal of Synchrotron Radiation, vol.2, issue.5, p.233, 1995.
DOI : 10.1107/S0909049595009447

J. He and C. M. Lilley, Surface stress effect on bending resonance of nanowires with different boundary conditions, Applied Physics Letters, vol.93, issue.26, p.263108, 2008.
DOI : 10.1063/1.3050108

X. Huang, Y. Bai, and . Zhang, mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles, Journal of Physics: Condensed Matter, vol.18, issue.15, pp.179-84, 2006.
DOI : 10.1088/0953-8984/18/15/L03

M. L. Kahn-adv, M. Kahn, V. Monge, F. Collière, A. Senocq et al., Size- and Shape-Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method, Advanced Functional Materials, vol.14, issue.644, pp.458-68, 2005.
DOI : 10.1002/adfm.200400113

H. S. Kuok, S. C. Lim, N. N. Ng, Z. K. Liu, and . Wang, Brillouin Study of the Quantization of Acoustic Modes in Nanospheres, Physical Review Letters, vol.90, issue.25, p.255502, 2003.
DOI : 10.1103/PhysRevLett.90.255502

W. R. Lambrecht, A. V. Rodina, S. Limpijummong, B. Segall, and B. K. Meyer, Valence-band ordering and magneto-optic exciton fine structure in ZnO, Physical Review B, vol.65, issue.7, p.75207, 2002.
DOI : 10.1103/PhysRevB.65.075207

P. Lawaetz, Stability of the Wurtzite Structure, Physical Review B, vol.5, issue.10, p.4039, 1972.
DOI : 10.1103/PhysRevB.5.4039

D. L. Leslie-pelecky, R. D. Leslie-pelecky, and . Rieke, Magnetic Properties of Nanostructured Materials, Chemistry of Materials, vol.8, issue.8, p.1770, 1996.
DOI : 10.1021/cm960077f

H. M. Lin, H. C. Cheng, L. J. Hsu, W. F. Lin, and . Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol???gel method, Chemical Physics Letters, vol.409, issue.4-6, pp.208-219, 2005.
DOI : 10.1016/j.cplett.2005.05.027

B. ). Manjón, J. Marí, A. H. Serrano, and . Romero, Silent Raman modes in zinc oxide and related nitrides, Journal of Applied Physics, vol.97, issue.5, p.53516, 2005.
DOI : 10.1063/1.1856222

A. Mézy, S. Anceau, T. Bretagnon, P. Lefèbvre, T. Taliercio et al., Optical properties of ZnO nanorods and nanowires, Superlattices and Microstructures, vol.39, issue.1-4, pp.358-65, 2006.
DOI : 10.1016/j.spmi.2005.08.079

R. E. Miller and V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol.11, issue.3, pp.139-186, 2000.
DOI : 10.1088/0957-4484/11/3/301

M. Monge, M. L. Kahn, A. Maisonnat, and B. Chaudret, Room-Temperature Organometallic Synthesis of Soluble and Crystalline ZnO Nanoparticles of Controlled Size and Shape, Angewandte Chemie International Edition, vol.42, issue.43, pp.5321-5345, 2003.
DOI : 10.1002/anie.200351949

M. E. Motamedi, Acoustic Accelerometers, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.34, issue.2, p.237, 1987.
DOI : 10.1109/T-UFFC.1987.26937

P. Müller and A. Saúl, Elastic effects on surface physics, Surface Science Reports, vol.54, issue.5-8, pp.157-258, 2004.
DOI : 10.1016/j.surfrep.2004.05.001

A. Nelet, A. Crut, A. Arbouet, N. Del-fatti, F. Vallée et al., Acoustic vibrations of metal nanoparticles: high order radial mode detection, Applied Surface Science, vol.226, issue.1-3, pp.209-224, 2004.
DOI : 10.1016/j.apsusc.2003.11.022

M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, Optical phonon confinement in zinc oxide nanoparticles, Journal of Applied Physics, vol.87, issue.5, pp.2445-2493, 2000.
DOI : 10.1063/1.372199

L. Saviot, D. B. Murray, and M. , Vibrations of free and embedded anisotropic elastic spheres: Application to low-frequency Raman scattering of silicon nanoparticles in silica, Physical Review B, vol.69, issue.11, p.113402, 2004.
DOI : 10.1103/PhysRevB.69.113402

URL : https://hal.archives-ouvertes.fr/hal-00000522

D. G. Thomas, The exciton spectrum of zinc oxide, Journal of Physics and Chemistry of Solids, vol.15, issue.1-2, p.86, 1960.
DOI : 10.1016/0022-3697(60)90104-9

W. Verma, G. Cordts, J. Irmer, and . Monecke, Acoustic vibrations of semiconductor nanocrystals in doped glasses, Physical Review B, vol.60, issue.8, p.5778, 1999.
DOI : 10.1103/PhysRevB.60.5778

B. Wen, J. E. Sader, and J. J. Boland, Mechanical Properties of ZnO Nanowires, Physical Review Letters, vol.101, issue.17, p.175502, 2008.
DOI : 10.1103/PhysRevLett.101.175502

G. Xiong, U. Pal, and J. G. Serrano, Correlations among size, defects, and photoluminescence in ZnO nanoparticles, Journal of Applied Physics, vol.101, issue.2, p.24317, 2007.
DOI : 10.1063/1.2424538

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan et al., Low Frequency Raman Scattering from Acoustic Phonons Confined in ZnO Nanoparticles, Physical Review Letters, vol.97, issue.8, pp.85502-85506, 2006.
DOI : 10.1103/PhysRevLett.97.085502

Y. H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays, Journal of the American Chemical Society, vol.127, issue.8, p.2378, 2005.
DOI : 10.1021/ja043121y

W. Zeng, Y. Cai, J. Li, P. Hu, and . Liu, Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, The Journal of Physical Chemistry B, vol.109, issue.39, p.18260, 2005.
DOI : 10.1021/jp052258n

S. L. Zhang, Y. Zhang, Z. Fu, S. N. Wu, M. Gao et al., Study of the size effect on the optical mode frequencies of ZnO nanoparticles with nearly uniform size, Applied Physics Letters, vol.89, issue.24, pp.243108-243144, 2006.
DOI : 10.1063/1.2403925

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Physical Review B, vol.73, issue.16, p.165317, 2005.
DOI : 10.1103/PhysRevB.73.165317

T. B. Bateman, Elastic Moduli of Single-Crystal Zinc Oxide, Journal of Applied Physics, vol.33, issue.11, p.3309, 1962.
DOI : 10.1063/1.1931160

E. Duval, Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules, Physical Review B, vol.46, issue.9, p.5795, 1992.
DOI : 10.1103/PhysRevB.46.5795

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste et al., Vibrational Response of Nanorods to Ultrafast Laser Induced Heating:?? Theoretical and Experimental Analysis, Journal of the American Chemical Society, vol.125, issue.48, pp.14925-14958, 2003.
DOI : 10.1021/ja037443y

C. Jagadish and S. J. , Pearton Zinc Oxide Bulk, Thin Films and Nanostructures, Jagadish, 2006.

G. Lewis and C. Catlow, C : Solid State Phys, J. Phys, vol.18, p.1149, 1985.

M. Mofakhami, H. Toudeshky, and S. Hashemib, Finite cylinder vibrations with different end boundary conditions, Journal of Sound and Vibration, vol.297, issue.1-2, p.293, 2006.
DOI : 10.1016/j.jsv.2006.03.041

P. Müller and A. Saúl, Elastic effects on surface physics, Surface Science Reports, vol.54, issue.5-8, pp.157-258, 2004.
DOI : 10.1016/j.surfrep.2004.05.001

A. Tamura, K. Higeta, and T. Ichinokawa, Lattice vibrations and specific heat of a small particle, Journal of Physics C: Solid State Physics, vol.15, issue.24, pp.4975-91, 1982.
DOI : 10.1088/0022-3719/15/24/010

W. Verma, G. Cordts, J. Irmer, and . Monecke, Acoustic vibrations of semiconductor nanocrystals in doped glasses, Physical Review B, vol.60, issue.8, p.5778, 1999.
DOI : 10.1103/PhysRevB.60.5778

). Wu, Y. P. Stetsko, K. Tsuei, R. Dronyak, and K. S. Liang, Size dependence of tetrahedral bond lengths in CdSe nanocrystals, Applied Physics Letters, vol.90, issue.16, p.161911, 2007.
DOI : 10.1063/1.2727559

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan et al., Low Frequency Raman Scattering from Acoustic Phonons Confined in ZnO Nanoparticles, Physical Review Letters, vol.97, issue.8, pp.85502-68, 2006.
DOI : 10.1103/PhysRevLett.97.085502

L. Phonons, anisotropie des nanoparticules an de décrire nement les eets de la contrainte de surface. Néanmoins, au cours de notre étude, nous avons pointé deux insusances. D'une part le shell-model ne rend pas bien compte des modes optiques de ZnO. D'autre part les ligands, greés à la surface des nanoparticules, ne sont jamais pris en compte dans l'étude théorique 1 , alors qu'ils aectent a priori les fréquences de vibration des nanoparticules. Dans le présent chapitre, nous proposons de dépasser ces insusances, an d'aller plus loin dans la compréhension des propriétés vibrationnelles des nanoparticules de ZnO. Les ligands utilisés comme stabilisant lors de la synthèse des nanoparticules restent accrochés sur ces dernières sans opération supplémentaire visant à les décrocher (recuit thermique) Il est ainsi clair que les ligands perturbent mécaniquement la nanoparticule. De plus

. Et-non-polaires, Aux premiers est associé une onde électromagnétique qui se couple à l'onde mécanique par les ions du réseau, et vice versa ; tandis que les seconds ne voient qu'une onde mécanique. Les modes optiques polaires constituent donc naturellement de bons candidats pour étudier l'eet diélectrique des ligands ; de même que le mode E 2 est une bonne sonde de l'eet purement mécanique des ligands. Dans un premier temps (partie 1), nous allons présenter un modèle permettant de calculer les fréquences de modes polaires optiques de ZnO, en montrant l'existence de modes de surface, lesquels vont nous permettre de sonder

Q. Adu, H. R. Xiong, G. Guiterrez, P. C. Chen, and . Eklund, Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires, Applied Physics A, vol.20, issue.3, pp.287-97, 2006.
DOI : 10.1007/s00339-006-3716-8

C. A. Arguello, D. L. Rousseau, and S. P. Porto, First-Order Raman Effect in Wurtzite-Type Crystals, Physical Review, vol.181, issue.3, pp.1351-63, 1969.
DOI : 10.1103/PhysRev.181.1351

V. A. Fonoberov and A. Balandin, Interface and confined optical phonons in wurtzite nanocrystals, Physical Review B, vol.70, issue.23, p.233205, 2004.
DOI : 10.1103/PhysRevB.70.233205

V. A. Fonoberov, A. Balandin, and J. Phys, Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures, Journal of Physics: Condensed Matter, vol.17, issue.7, pp.1085-97, 2005.
DOI : 10.1088/0953-8984/17/7/003

J. Gerard-marzin, A. Gérard, D. Izraël, G. Barrier, and . Bastard, Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs, Physical Review Letters, vol.73, issue.5, pp.716-735, 1994.
DOI : 10.1103/PhysRevLett.73.716

J. Gleize, M. A. Renucci, J. Frandon, and F. Demangeot, Anisotropy effects on polar optical phonons in wurtzite GaN/AlN superlattices, Physical Review B, vol.60, issue.23, pp.15985-93, 1999.
DOI : 10.1103/PhysRevB.60.15985

V. Gupta, P. Bhattacharya, Y. I. Yuzuk, K. Sreenivas, and R. S. Katiyar, Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition, Journal of Crystal Growth, vol.287, issue.1, pp.39-43, 2006.
DOI : 10.1016/j.jcrysgro.2005.10.039

S. Hayashi and H. Kanamori, Raman scattering from the surface phonon mode in GaP microcrystals, Physical Review B, vol.26, issue.12, pp.7079-82, 1982.
DOI : 10.1103/PhysRevB.26.7079

A. Sood, J. Sood, M. Menéndez, K. Cardona, and . Ploog, Interface Vibrational Modes in GaAs-AlAs Superlattices, Physical Review Letters, vol.54, issue.19, pp.2115-2133, 1985.
DOI : 10.1103/PhysRevLett.54.2115

V. V. Ursaki, M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov et al., Photoluminescence and resonant Raman scattering from ZnO-opal structures, Journal of Applied Physics, vol.96, issue.2, pp.1001-1007, 2004.
DOI : 10.1063/1.1762997

URL : http://hdl.handle.net/10261/52311

W. Zeng, B. Cai, J. Cao, Y. Hu, P. Li et al., Surface optical phonon Raman scattering in Zn???ZnO core-shell structured nanoparticles, Applied Physics Letters, vol.88, issue.18, p.181905, 2006.
DOI : 10.1063/1.2199968

). Zhang and J. J. Shi, Polar interface optical phonon modes and Fr??hlich electron???phonon interaction Hamiltonians in wurtzite quantum well wires, Semiconductor Science and Technology, vol.20, issue.6, pp.592-600, 2005.
DOI : 10.1088/0268-1242/20/6/019

-. Zhang and J. J. Shi, Oscillating spectra of polar IO and SO phonons and electron???IO and SO phonon couplings in a freestanding wurtzite quantum wire, physica status solidi (b), vol.245, issue.8, pp.1775-84, 2006.
DOI : 10.1002/pssb.200541221

. Concrètement and . Qu, an d'augmenter le rapport signal sur bruit, en chaque pixel du CCD

M. Laissant-de-côté-la-luminescence-visible and . Kahn, nous avons étudié l'émission excitonique, en examinant diérents eets Tout d'abord celui de la température (sur la plage 10 K ? 300 K), an d'accéder à l'énergie de localisation des excitons. Ensuite, nous nous sommes intéressés à l'eet de la taille des nanoparticules : compte-tenu que certaines d'entre elles ont un rayon voisin du rayon de Bohr de l'exciton dans ZnO (0.9 nm, il est intéressant d'étudier les recombinaisons excitoniques dans de tels systèmes. Enn, nous avons étudié l'eet du, pp.5971-73, 2004.

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Physical Review B, vol.73, issue.16, p.165317, 2006.
DOI : 10.1103/PhysRevB.73.165317

B. Guo, Z. Ye, K. S. Wong, and J. Cryst, Time-resolved photoluminescence study of a ZnO thin film grown on a (100) silicon substrate, Journal of Crystal Growth, vol.253, issue.1-4, p.252, 2003.
DOI : 10.1016/S0022-0248(03)01006-6

A. B. Kwok, Y. H. Djurisic, W. K. Leung, D. L. Chan, and . Phillips, Time-resolved photoluminescence from ZnO nanostructures, Applied Physics Letters, vol.87, issue.22, p.223111, 2005.
DOI : 10.1063/1.2137456

H. M. Lin, H. C. Cheng, L. J. Hsu, W. F. Lin, and . Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol???gel method, Chemical Physics Letters, vol.409, issue.4-6, pp.208-219, 2005.
DOI : 10.1016/j.cplett.2005.05.027

B. K. Meyer, J. Sann, D. M. Hofmann, C. Neumann, and A. Zeuner, Shallow donors and acceptors in ZnO, Semiconductor Science and Technology, vol.20, issue.4, p.62, 2005.
DOI : 10.1088/0268-1242/20/4/008

W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yia, Excitonic emissions observed in ZnO single crystal nanorods, Applied Physics Letters, vol.82, issue.6, pp.964-66, 2003.
DOI : 10.1063/1.1544437

G. Xiong, U. Pal, and J. G. Serrano, Correlations among size, defects, and photoluminescence in ZnO nanoparticles, Journal of Applied Physics, vol.101, issue.2, p.24317, 2007.
DOI : 10.1063/1.2424538

N. Combe, P. Chassaing, and F. Demangeot, Surface effects in zinc oxide nanoparticles, Physical Review B, vol.79, issue.4, p.45408, 2009.
DOI : 10.1103/PhysRevB.79.045408

F. Demangeot, V. Paillard, P. Chassaing, C. Pagès, M. L. Kahn et al., Experimental study of LO phonons and excitons in ZnO nanoparticles produced by room-temperature organometallic synthesis, Applied Physics Letters, vol.88, issue.7, p.71921, 2006.
DOI : 10.1063/1.2177545

. Nota, Les articles marqués d'un trèe ont été sélectionnés et publiés par le, Virtual Journal of Nanoscale Science and Technology

. Conférences, École thématiques et Séminaires Vibrational properties of Zinc Oxide nanoparticles surrounded by organic molecules, Chaudret, 12 th International Conference on Phonon Scattering in Condensed Matter, p.2007

. P. Vibrations-de-nanoparticules-de-zno, F. Chassaing, V. Demangeot, A. Paillard, N. Zwick et al., Quelques illustrations du rôle de la surface dans des nanoparticules de ZnO 102 LISTE DES TRAVAUX Remerciements Je remercie l'ensemble des membres de mon jury : tout d'abord Henri Mariette pour avoir accepté de présider le jury de thèse. Je suis reconnaissant à Bernard Jusserand pour avoir accepté de relire mon manuscrit de thèse, Je suis tout à fait disponible pour approfondir et éclaircir certains passages du manuscrit qui, 2008.

N. Je-remercie-Également and . Combe, elle est s'il ne s'était pas intéressé à ZnO Sa contribution à ce travail est gigantesque et dépasse de loin le cadre de ZnO En travaillant à ces côtés, j'ai pris une sacrée leçon de physique. Enn, je tiens à remercier François Demangeot. J'ai également énormément appris en travaillant sous son aile, et je tiens à lui exprimer ma gratitude pour m'avoir fait conance notamment en amenant ce sujet sur d'autres chemins que ceux qui étaient peut-être ceux d'il y a trois ans. J'en viens maintenant aux personnes que j'ai côtoyées pendant mes trois ans passées tout d'abord au LPST puis au CEMES. Trop nombreuses pour être toutes citées ici, j'ose espérer qu'elles se reconnaîtront en lisant ces lignes