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Abtract

The goal of register allocation is to assign the variables of a program to the regis-
ters or tospill them to memory whenever there are no register left. Since memory is
much slower than registers, it is best to minimize the spilling. However, the problem
is complicated because spilling is tightly bounded with the colorability of the program.
Chaitin et al. [1981] modeled register allocation as an interference graph coloring prob-
lem, which they proved NP-complete. So, there is no exact way in this model to tell
whether some spilling is necessary or not, and if it is, what to spill and where. In
Chaitin et al''s algorithm, a spilled variable is removed everywhere in the program,
even at places where there is enough registers, which leads to unnecessary memory
transfers.

To address this problem, many authors remarked ghkiting the live ranges of
variables by inserting copy instructions creates smaller live-ranges. Hence, only part
of live ranges can be spilled instead spilling “everywhere.” Theadlilty is then to
choose the right places to split the live ranges. In practice, authors get better spill results
when splitting at many program points [Briggs, 1992; Appel and George, 2001], but
splitting introduces register-to-register moves to reconcile variables with sub-variables
in case they are colored dérently. Coalescings expected remove most of theseve
instructions, but if it does not, the bene t of a better spill can be canceled out. This led
Appel and George [2001] to introduce the “Coalescing Challenge.”

Recently (2004), three teams discover that the interference graph of a program
under Static Single Assignmerggp) is chordal. Hence, coloring the graph becomes
easy with a simplicial elimination scheme and there has been hopessthatould
simplify register allocation. Ours were that, as the coloring was, the spilling and the
coalescing might get easier to solve, as we now have a exact coloring test.

Our rst goal was to better understand from where the complexity of register allo-
cation does come, and wisgA seems to simplify the problem. We came back to the
original proof of Chaitin et al. [1981], nding that the diculty comes from the pres-
ence of (critical) edges and the possibility to perform permutations of colors or not.
We studied the spill problem undesA and several versions of the coalescing prob-
lem. The general cases were proven NP-complete but we hopefully found one polyno-
mial result: incremental coalescing for programs urgler We used it to design new
heuristics to better solve the coalescing problem, so that an aggressive splitting can be
used beforehand.

This led us to promote a better register allocation scheme. While previous tentatives
gave mitigated results, our better coalescing allowed us to cleanly separate register
allocation into two independent phases: First, spilling to reduce the register pressure
to the number of registers, possibly by splitting a lot; Then color the variables and
perform coalescing to remove most of the added copies.

This scheme is expected to perform well in an aggressive compiler. However, the
high number of splits and the increased compilation time required to perform the co-
alescing is prohibitive for just-in-timeJir) compilation. So, we devised a heuristic,
called “permutation motion,” that is intended to be used v&itia-based splitting in
place of our more aggressive coalescing mracontext.

Keywords: Register allocationssa, spilling, coalescing, complexity.







Résumé

Le but de l'allocation de registres est d'assigner les variables d'un programme
aux registres ou de les « spiller » en mémoire s'il n'y a plus de registre disponible. La
mémoire est bien plus lente, il est donc préférable de minimiser le spilling. Ce probléeme
estdi cile il est étroitement lié a la colorabilité du programme. Chaitin et al. [1981]
ont modélisé I'allocation de registres en le coloriage du graphe d'interférence, qu'ils
ont prouvé NP-complet, il n'y a donc pas dans ce modele de test exact qui indique s'il
est nécessaire ou non de faire du spill, et si oui quoi spiller et ou. Dans l'algorithme
de Chaitin et al., une variable spillée est supprimée dans tout le programme, ce qui est
ine cace aux endroits ou stsamment de registres sont encore disponibles.

Pour palier ce probléme, de nombreux auteurs ont remarqué que l'on peut couper
les intervalles de vie des variables grace a l'insertion d'instructions de copies, ce qui
crée des plus petits intervalles et permet de spiller les variables sur des domaines plus
réduits. La di culté est alors de choisir les bons endroits ou couper les intervalles. En
pratique, on obtient de meilleurs résultats si les intervalles sont coupés en de trés nom-
breux points [Briggs, 1992; Appel and George, 2001], on attend alorsahlescing
gu'il enléve la plupart de ces copies, mais s'il échoue, le béné ce d'avoir un meilleur
spill peut étre annulé. C'est pour cette raison que Appel and George [2001] ont créé
le « Coalescing Challenge ».

Récemment (2004), trois équipes ont découvert que le graphe d'interférence d'un
programme sous la forme Static Single Assignmesf (sont cordaux. Colorier le
graphe devient alors facile avec un schéma d'élimination simpliciel et la communauté
se demande sisasimpli e l'allocation de registres. Nos espoirs étaient que, comme
I'était le coloriage, le spilling et le coalescing deviennent plus facilement résolubles
puisque nous avons a présent un test de coloriage exact.

Notre premier but a alors été de mieux comprendre d'ou venait la complexité de
I'allocation de registres, et pourquoi kesasemble simpli er le probléme. Nous sommes
revenus a la preuve originelle de Chaitin et al. [1981] pour mettre en évidence que
la di culté vient de la présence d'arcs critiques et de la possibilité euer des
permutations de couleurs ou non. Nous avons étudié le probléeme du spibSeeis
di érentes versions du probléme de coalescing : les cas généraux sont NP-complets
mais nous avons trouvé un résultat polynomial pour le coalescing incrémental sous
ssA Nous nous en sommes servis pour élaborer de nouvelles heuristiques paces
pour le probléme du coalescing, ce qui permet I'utilisation d'un découpage agressif des
intervalles de vie.

Ceci nous a conduit a recommander un meilleur schéma pour l'allocation de reg-
istres. Alors que les tentatives précédentes donnaient des résultats mitigés, notre coa-
lescing amélioré permet de séparer proprement I'allocation de registres en deux phases
indépendantes : premiérement, spiller pour réduire la pression registre, en coupant po-
tentiellement de nombreuses fois ; deuxiemement, colorier les variables et appliquer le
coalescing pour supprimer le plus de copies possible.

Ce schéma devrait étre tres eace dans un compilateur de type agressif, cepen-
dant, le grand nombre de coupes et 'augmentation du temps de compilation nécessaire
pour l'exécution du coalescing sont prohibitifs & I'utilisation dans un cadre de com-
pilation just-in-time §iT). Nous avons donc créé une nouvelle heuristique appelée
« déplacement de permutation », faite pour étre utilisée avec un découpagesseglon
qui puisse remplacer notre coalescing dans ce contexte.

Mots-clés: Allocation de registresssa spilling, coalescing, complexité.
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Avant-propos

J'ai fait le choix de rédiger ma thése en anglais. Ce n'était ni par facilité, ni par
vantardise, mais dans le but d'avoir un impact plus grand que si la langue de rédaction
avait été le francais. C'est d'ailleurs ce qui m'a permis d'avoir deux rapporteurs
étrangers, ce qui est une bonne chose. Mais c'est peut-étre dommage car il est sGrement
important que des travaux scienti ques soient rédigés en francgais pour faciliter, en
France, la dissémination de la science. Je me sens donc un peu coupable de ce point
de vue et ai décidé que ma thése comporterait un avant-propos en francais, qui ne
serait pas juste une courte traduction de l'introduction mais un petit « bonus » pour
les chanceux qui connaissent la langue de Moliére.

Ceux qui étaient présents lors de ma soutenance, et ceux qui en auront eu vent
depuis, le savent déja : les ordinateurs, ¢ca marche comme les Shadoks. Ou plutét, ca
pompe comme les Shadoks puisque tout le monde sait que ces drbles de bétes, inventées
par Jacques Rouxel et dont les histoires furent narrées par Claude Piéplu dans les
années soixante-dix, passent la majeure partie de leur temps a pomper, par exemple
pour regon er la lune comme lillustrent bien les petits dessins au bas des pages de
cette thése, a c6té des numéros de page. Ces Shadoks sont trés intéressants car voici
ce que I'on apprend au début de la série « ZO » :

Les cerveaux des Shadoks [...] avaient une capacité tout a fait limitée.
lls ne comportaient en tout que quatre cases. Et encore c'était pas toujours
vrai parce que bien souvent il y en avait de bouchées. Pour remplir les
cases, déja c'était pas facile et cela prenait un certain temps. C'est alors
gue commencait la diculté parce que quand les cases était pleines, il n'y
avait plus de place, et le Shadok on ne pouvait plus rien lui apprendre. Si
on essayait quand méme, alors obligatoirement il y avait une case qui se
vidait pour faire de la place. De sorte que quand un Shadok, avec une téte
pleine, voulait apprendre quelque chose, il fallait qu'il en oublie une autre.
Exemple : si un Shadok avait appris a marcher avec une case, et que plus
tard il ait appris trois mots avec les trois autres cases, et bien si en plus on
voulait lui apprendre a faire du vélo, le Shadok ne savait plus marcher.

Et bien les ordinateurs ont un comportement trés similaire a celui des Shadoks.
Un ordinateur dispose également d'un nombre limité de cases que I'on appelle « reg-
istres », et qui lui servent a stocker les nombres avec lesquels il fait ses calculs. Par
exemple, dans la série des processe@®86 (dont le Pentium 4), chacun posséde huit
registres. A la diérence des Shadoks, les ordinateurs disposent de nos jours d'une
mémoire supplémentaire, beaucoup plus grande mais dont I'accés est aussi beaucoup
plus lent, appelée « cache ». Si un ordinateur n'a plus de place dans ses registres
mais a pourtant besoin d'une nouvelle valeur, il peut stocker temporairement une des
valeurs contenue dans un registre dans la mémoire pour libérer ce dernier. 1l devra

)




alors retourner chercher dans la mémoire la valeur évincée quand il en aura a nou-
veau besoin.

Dans le domaine de la compilation de programmes, ou |'on cherche a traduire un
programme écrit dans un langage dit « de haut niveau » en instructions directement
compréhensibles par la machine, il nous faut allouer les variables du programme aux
registres, c'est-a-dire déterminer par avance ou résidera chaque variable a tout instant
de I'exécution du programme. A l'instar des Shadoks, on ne peut garder en registre a
un instant donné qu'au plus autant de variables que de registres disponibles. Le reste
des variables doit étre placé en mémoire, ce qu'on appelle le « spill ». L'inconvénient
est qu'il faut du temps supplémentaire pour exécuter les nouvelles instructions de copie
des variables vers ou depuis la mémoire. En général, le but de I'allocation de registres
est de trouver une allocation des variables en registres et mémoire qui minimisera le
temps perdu a échanger des données avec la mémoire.

Ma thése s'inscrit dans la continuité de la recherche sur l'allocation de registres,
probléme largement étudié par le passé mais qui est encore un domaine actif. J'espére
que ces travaux permettront aux Shadoks des générations futliéé® équipés d'un
systeme d'allocation de cases amélioré avec transformatiorsparspill & volonté,
coalescing facon BU-GA, pompe a permutation et tout le confort actuel que pourront
bientbt proposer les compilateurs modernes. Professeur Shadoko, si vous lisez ces
lignes...

1Hélas, leurs auteur et narrateur sont décédés les 25 avril 2004 et 24 mai 2006.
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Nomenclature

(u;v) edge between andv, usually representing an interference, page 14
hu;vi  a nity between variables andv, page 15

chromatic number of a graph, page 18
col(x) color assigned to variable page 125

a variablea is used by some instruction, page 12

! cligue number, page 19

choice function inrssaprograms, page 26
A set of a nities, page 83
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And the Lord came down to see the city and the tower, which the
children builded. And the Lord said, Behold, the people is one, and
they have all one language; and this they begin to do; and now noth-
ing will be restrained from them, which they have imagined to do. Go
to, let us go down, and there confound their language, that they may
not understand one another's speech.

Bible, Genesis 11:1-9 (KJV)

Introduction

1.1 Program compilation

The very rst computers were programmed “by hand,” i.e., directly in the assembly
language corresponding to their instruction set. With the growing development of new
computer architectures in the 50's, machine-independent programming languages were
proposed, along with the need for a program capable of converting programs written
in “high-level” languages to the “low-level” language of the target machine. The rst
program capable of performing this taskcempiler, was written by Grace Hopper

in 1952. Then came many others, capable of targeting multiple architectures, or ac-
cepting as input more evolved programming languages.

The most important property for a compiler is preserving the semantics of the orig-
inal program. This means that, whatever the compiler used, a program should produce
the same outpuit.Usually, the output of a program is the result of some computations,
while other manifestations like the time required to compute the result, or the memory
used, are considered as sidesets. It is often tolerated that the behavior of a program
di ers on the side-eects. Once it is assured that a compiler preserves the semantics of
the input programs, there is still work to do on the compiler, on the “sidzets” of the
compiled program. In that case, we are talkingpfimizing compilersi.e., compilers
that also try to optimize the resulting low-level program so as to gain for instance more
e ciency in speed or memory consumption, or even speed of the compiler itself.

Although new languages continue to appear and research on how to compile them
is conducted, we will not study this problem in this thesis. Today, guaranteeing the
semantics is usually not an issue for widely used programming languages like C. For
them, there is a constant demand on optimizing compilation. The goals of an opti-
mization are multiple and strongly depends on the context. The most preferred one is
usually the speed of the compiled program, but there can also be strong needs in terms
of memory use, power consumption, heat generated, code size, etc. especially in the
growing context of embedded systems that have tight constraints of energy, computing
power and weight.

Compilation for embedded processors can be either aggressive or just-irstime (
Aggressive compilation is allowed to use a longer compile time to nd better solutions.
The program is usually cross-compiled, then loaded in permanent mermy @sh,
etc.), and shipped with the product. The compilation time is not the main issue as
compilation happens only once. Furthermore, especially for embedded systems, code

1it should be noted that this is dérent from the property “a program should behave as expected by the
programmer” since it generally does not. ..




CHAPTER 1. INTRODUCTION

size and energy consumption usually have a critical impact on the cost and the quality
of the nal product.J1T compilation is the compilation of code on the y on the target
processor. Currently the most prominent languagesifocompilation are Common
Language Infrastructure(l) (Microsoft) and Java (Sun). The code can be uploaded or
sold separately on a ash memory, then compilation can be performed at load time or
even dynamically during execution. This allows for instance to ship only one code for
di erent platforms, or even for a platform that hasetient embedded architectures;
then the code can be compiled for one particular processor when required, which saves
a lot of space. The heuristics used farcompilation, constrained by time and limited
memory, are far from being aggressive. In this context, tradeare made between
resource usage for compilation and quality of the resulting code.

1.2 Register allocation

One of the most important passes in a compiler, if not the most important one, is called
register allocation The goal of register allocation is to map the variables of a program
to physical memory locations. The compiler must indeed decide, in advance, in which
locations will be held the values necessary for the computations of the program, and so
for each instruction of the program. Registers are a very fast memory, hence preferred
for holding these values, which are directly needed bydime But there is a limited,

small number of registers available in a processor, for instance only 8 registers for
the 1A-32 architecturex86, 32 bits), or 64 for thest200, a Very Long Instruction
Word (vLiw) processor developed tgrmicroelectronics. On the other hand, in the
initial program representation, and until very late in the compiler back-end, values are
stored invariablesor temporarieswhich are unbounded in number (see gure 1.1).

Initial C-like code Assembly-like register allocated code

a 18 R, 18

b 42 R, 42

c a+b R add R, R
d cb R mult Rs; Ry
e d R neg Ry

Figure 1.1: On the initial hand-written code, the programmer considers as many vari-
ables as needed. On the nal machine level code, the number of physical memory
resources is limited. Register allocation aims at mapping virtual variables on physical
registers.

In practice, there are usually several éient types of registers capable of holding

di erent types of values: integers, oats, addresses, booleans, etc. All registers are
not equivalent nor equivalently considered. For instance it can be possible to store a
boolean value into an integer register but not the converse. There can be many register
constraints like register aliasing (for instance, some 32-bit registers can be accessed
by three aliases in86, one for the whole register and two names emulating two 16-
bit registers), or register pairing (forcing two distinct variables to be allocated to two
consecutive registers).

In this thesis, we always consider only one kind of register and no
such constraints. However, we will discuss in conclusion, Chapter 8, how




1.2. REGISTER ALLOCATION

to solve these practical issues that cannot be left aside when compiling for
actual architectures.

Since the number of variables authorized in a program is unbounded, it often happens
that, on some points of the program, there are more variables than the number of reg-
isters. Some of the variables must be then be held temporarily in another memory.
Usually, there is a hierarchy of memories, from the fastest and smallest to the biggest
and slowest: registers, cache memory (L1, L2,.RAv and nally hard disks. Clas-
sically, when a memory is too small to hold some information, it is virtually increased
by using the next memory. This is called a “swap” if using the hard disks when there is
no more space in theam. For the smallest memory of the hierarchy, the registers, this

is aspill. Spilling a value in memory for future uses reduces the register pressure since
stored values do not need to be kept in registers, as shown by the example Figure 1.2.

Initial C-like code Assembly-like register allocated code

a 18 R, 18
store @a R
b 42 R, 42
c 75 R, 75
d b+c R add R} Ry
R, load @a
e a+d R add R;;R,

Figure 1.2: The initialC-like code would need three registers to hold varialsleb
andc. Spilling variablea allows to use only two registers (the @ sign symbolizes the
memory address of a variable, usually a static place computed at compile time).

When a variable is “spilled” from the registers to memory, there are additional
costs. The cost of thetore andload operations required for the transfers to and from
memory, or, if the architecture supports instructions operating with memory arguments,
the increased cost of such operations, which are usually slower than those working only
with registers. Hence it is usually considered that spills should be avoided as much as
possible, and many register allocation algorithms try to minimize the impact of spilling.

On the impact of scheduling on register allocation. Some phases in the compiler
canschedulghe code, i.e., modify the order in which instructions are executed. This

is a problem since scheduling constrains the register allocation, and conversely register
allocation constrains the scheduling. An example of such a situation is depicted on
Figure 1.3.

a exp a exp Ri  exp
store a b exp store Ry
b exp store a Ri exp
store b store b store Ry

(a) Initial code (b) Scheduling (c) Allocation

Figure 1.3: Scheduling impacts register allocation wice versa (a) this code needs
only one register; (b) if re-scheduled, the code then needs two registers; (c) if the initial
code is register allocated with one register, it is not possible to re-schedule it as in (b).
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CHAPTER 1. INTRODUCTION

Studying the impact of scheduling on register allocation isdlilt, as is the prob-
lem of tuning register allocation for scheduling. People have been aware of this prob-
lem since they started to schedule code to improve software pipelining, and for in-
stance Goodman and Hsu [1988] or Bradlee et al. [1991] proposed schemes that mixes
scheduling and register allocation, or at least make the scheduling take decisions based
on how would register allocation perform afterwards. Many articles on this subject
have been written since then, notably the works of Ning and Gao [1993]; Eisenbeis
et al. [1995] or more recently Touati and Eisenbeis [2004], Rong et al. [2005], or Kim
and Lee [2006]. Kim and Moon [2007] use rotating register les, and even integer lin-
ear programmingli(P) formulation have been proposed, for instance by Nagarakatte
and Govindarajan [2007]. Development in this area is mainly related to software
pipelining, which we did not investigate. Hence, our work does not take scheduling
into account, but focusses instead purely on register allocation. Hopefully, the results
of this thesis will help research in this domain by explaining better how the register
allocation works, which might gives new ideas on how to improve conditions on soft-
ware pipelining so that it works well along with register allocation. To make it clear
again:

In this thesis, we suppose a xed schedule of the instructions.

1.3 Spilling & Coalescing

For a xed schedule, the complexity of register allocation comes from two main opti-
mizations,spilling and coalescing Spilling decides which variables should be stored

in memory to make possible register assignment, i.e., allocating all the remaining vari-
ables to registers, while minimizing the overhead of stores and loads. Register coalesc-
ing aims at minimizing the overhead of moves of variables between registers.

The di culty of the spilling problem is in choosing which variables will be stored
in memory, as well as when they will reside in memory, and where memory operations
to store and fetch those variables should be placed in the program. Such operations
are expensive, so it is usually advisable to minimize their number, which is eutti
problem known as the load-store optimisation problem.

Coalescing is used to reduce the number of register-to-register moeeif-
structions). This is done either by assigning the two variables involved in a move to
the same register—hence producing a instructiyn [ R,] that has no eect and can
be removed—, or by renaming the two variables with a common name. Of course, it
is not always possible to coalesce two variables, for instance, if the two variables carry
di erent values at the same time during execution (for a dynamic point of view), or
at the same place of a program (for a static point of view). Even if there is not that
much move instructions in high-level programs, a lot of them are introduced during
the compilation, for example when going out of a Static Single Assignnssaj form
(a property that some intermediate program representations have, which we will intro-
duce later, in Chapter 2), or because of register constraints on particular instructions,
like the procedureall . Some spilling techniques invohaplitting variables, i.e., in-
serting move instructions to allow dérent parts of variables to be assigned tcedéent
registers. This helps to spill less, but also results in the introduction of more
instructions in the code.

’



1.4. TECHNIQUES FOR REGISTER ALLOCATION

1.4 Techniques for register allocation

Early register allocation. Over the years many register allocations schemes were
explored. While rst approaches were local, the tendency was set towards global reg-
ister allocations schemes. The former considers register allocation at basic block level,
making the problem much more simpler and Horwitz et al. [1966] gives optimal al-
gorithms for spilling and coloring for some cases (however, the general optimal local
register allocation problem is NP-complete, as show by Farach-Colton and Liberatore
[2000]). The latter, global register allocation, takes control- ow into account, is more
complex, and Chaitin et al. [1981] proved optimal register allocation is NP-complete.
But global register allocation has a larger picture to work on, which allows for better
results. People got very rapidly interested in global register allocation, and suggestions
for using graph coloring appeared early in the literature, for instance Yershov [1966]
did and also Allen and Cocke [1976].

Introducing graph coloring in register allocation. The rst to introduce a frame-
work based on coloring of the interference graph of a program were Chaitin et al.
[1981], rediscovering a coloring scheme by Kempe [1879]. In their scheme, they spill
so that at mosk variables are alive at the same time. Initiaky= R, the number of
registers, and then they try to color the interference graphRitblors. If it does not

work, they start again the rst phase wikh= R 1, thenk = R 2, etc. until they
manage to color the graph witRcolors. In the same article, they also give a method

to construct, for any graph, a program whose interference graph is asitlto color,
proving that this modeling of register allocation is NP-complete. Then, Chaitin [1982]
re ned this scheme by working directly on the interference graph also for the spilling.
These two articles marked the beginning of using graph coloring based register alloca-
tors, and nearly no article on register allocation goes without citing this work since then.
This elegant solution to a dicult problem is indeed appealing and led many people to
work on improving it, for instance Bernstein et al. [1989] and Briggs et al. [1989], who
improved the spilling and coloring. Briggs [1992] investigates the technique of live-
range splitting with mitigated results. Later, George and Appel [1996] introduced their
well-known Iterated Register Coalescingd) scheme. Smith et al. [2004] extend the
standard graph coloring technique to cope with multiple register classes and register
aliasing.

Reintroducing program structure in register allocation. People also realized that,
although simple and elegant it was, register allocation based solely on graph coloring
lacks some insight on the structure of the program. To address this problem, Chow and
Hennessy [1990] proposed a global algorithm that gives priority to frequently executed
parts of the code. Other algorithms include program structure to guide graph color-
ing based allocators. This is for instance the choice of Callahan and Koblenz [1991]
and Norris and Pollock [1994] who use the program structure and apply graph color-
ing to highly executed parts rst. Similarly, Knobe and Zadeck [1992] use a “control
tree” based on the program structure to split live-ranges between regions. Kannan and
Proebsting [1995] remarked that register allocation is easy on programs that have a par-
ticular “serie-parallel” structure and propose a scheme to transform programs so that
they have this property.

Even if not stated as is, the common underlying denominator of these approaches
is the use of live-range splitting, as a means to focus on particular regions on the code,
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CHAPTER 1. INTRODUCTION

as Bergner et al. [1997] do. Then, “repairing” must be performed at the boundaries,
which amounts to split the variables at these points so that regions become indepen-
dent. Splitting a variable means adding copies at some program points to separate its
live-range into more than one connected component. This allows to spill variables only
on some parts of the program and not everywhere as in the original scheme of Chaitin
et al. Cooper and Simpson [1998] experiment with a “passive” live-range splitting as
the aggressive splitting tentative by Briggs produced to many copies, which degraded
the nal result. Their strategy splits variables on demand, favoring the addition of
copy instructions to the spill of a variable. Lueh et al. [2000] propose a “fusion-based”
technique of incremental growth of the interference graph, starting from an inner basic
block and adding the interference graphs of other regions, splitting live-ranges when-
ever to many variables exist.

Optimal ILPp formulations. More recently, various optimal techniques usitghave

been explored. To our knowledge, the rstto perform optimal register allocation where
Goodwin and Wilken [1996], improved later by Fu and Wilken [2002]. This approach
is also experimented by Appel and George [2001] and Barik et al. [2007]. Grund and
Hack [2007] give anLp formulation for the coalescing subproblem of register alloca-
tion.In this context also, the work of Naik and Palsberg [2004] is worth to mention,
although their goal is dierent since they optimize the code size of the resulting pro-
gram.

Linear scan allocation. With the growing proportion of embedded processorgdi

ent kinds of needs made their appearance. In particular, just-in-ime¢mpilation

aims at compiling code on the y, and is much more constrained in time and space than
aggressive, o-line compilation. Global heuristics based on local register evaluation
are considered, and Poletto et al. [1997]; Traub et al. [1998]; Poletto and Sarkar [1999]
introduce a new type of register allocation algorithm, the “linear scan.” This one is not
based on graph coloring, but instead linearizes the entire program as a unique basic
block, on which local allocation is performed. This allows for a very fast algorithm,
and do not need to construct a memory consuming interference graph. Improvements
are made to the linear scan algorithm. Wimmer and Mdssenbock [2005] introduce in it
a splitting method to reduce the problem that linear scan “ lls gap” of live-ranges when
linearizing the program, hence pessimistically increase register pressure. Approaches
still based on graph coloring are also exploredsfoicompilation, for instance, Cooper

and Dasgupta [2006] tailor a Chaitin-like allocator to make it run faster. Recently,
Sarkar and Barik [2007] proposed an “extended” version of linear scan as a viable
alternate solution to graph coloring.

Introduction of ssAin register allocation. The Static Single Assignmeraga) form

is an intermediate program representation introduced by Alpern et al. [1988] and Rosen
et al. [1988]. A most important step in the introductionssa was made by Cytron

et al. [1991] who gave an ecient method to transform a program ir®aform. ssais
appreciated in the compiler community for simplifying many compiler optimizations,
for instance, Wegman and Zadeck [1991] use it to have a faster and easier constant
propagation algorithm. Briggs et al. [1998] further improve the transformations into
and out ofssa A code is inssaform when every scalar variable has only one textual

de nition in the program code. Most compilers use a particaaxform, thessaform

with dominance property, which in short states that a variable must be de ned before

’



1.4. TECHNIQUES FOR REGISTER ALLOCATION

being used. Up to novgsAis not much related to register allocation, but we remarked
that the interference graph of a program unges from is chordal [Bouchez et al.,
2005]. Since coloring a chordal graph is polynomial, this lead to the design of new
heuristics for register allocation, using teea form, a fact exploited by Brisk et al.
[2005]; Pereira and Palsberg [2005], and Hack et al. [2006], who, independently, made
the same observation about tbga interference graphs being chordal. Following the
idea of usingssa for register allocation, Pereira and Palsberg [2008] introduce their
“puzzle-solving” technique, and Hack [2007] wrote his Ph.D. thesis.

A few words towards simplicity in register allocation. We presented here some

of what we believe to be the most important steps in register allocation, from its ear-
liest developments up to now. Many register allocation schemes were invented and
described in the literature during this time. However, it is quite hard, taking any two
schemes, to know precisely how well one performs compared to the other. Usually,
authors compare their algorithm to what they think as “classical” register allocation
algorithm that are known to work “quite well.” However, this is not always the case,
and among the many existing allocators or improvements of allocators, not so many are
implemented and used in practice. Cooper et al. [2005] remarked for instance that the
allocator proposed by Callahan and Koblenz [1991] was implemented only once and no
assessment were reported in the literature, so they did a thorough work of implemen-
tation and comparison with the Chaitin et al. algorithm with improvements by Briggs.
More recently, Cooper et al. [2008] did a similar work comparing the priority-based
algorithm of Chow and Hennessy [1990] with Chaitin-Briggs. We view this situation
as a clear example that the simpler and more elegant ideas are the ones that make their
way through all the others. Very smart but very complicated schemes are appreciated
by the community, but make life harder for others whenever they want to compare
their algorithms. Hence it is often seen that improvements on a particular scheme are
compared to the original scheme, but not against each other. In practice, someone who
wants to implement a compiler will then have trouble deciding whichever scheme is
the best, and will obviously choose the ones that are simpler, both from a conceptual
and an implementation point of view. It is our belief that any new scheme, idea, or
improvement of an existing scheme should be simple, or at least easy to understand.
We think that this is one of the reasons that $isa form is getting more and more ap-
preciated today, since it simpli es many compiler optimizations. This is also probably
the same reason why “linear scan” allocators are very popular nowadays. Some graph
coloring improvements are today so complicated that, by contrast, the simplicity of the
linear scan algorithms makes people have more faith in them. And it is not uncommon
to hear people say sentences like the following:

“Essentially, although graph coloring in register allocation was very popu-

lar in the 90's [. . .] the existing graph coloring algorithms neither produce

faster code, nor have faster compilation time than the [linear scan] algo-
rithms already in usé&.

This is not a point of view that we sharas, conceptually, a linear scan allocator
has less access to global information than a graph coloring based allocator. Of course,
this is not true with original graph coloring schemes, but splitting techniques can make
interference graphs much more precise. However, our point here is that we do think

2Excerpt from a review of our article on coalescing [Bouchez et al., 2008] when in was rejected at CC'08.

$

]



CHAPTER 1. INTRODUCTION

that simpler schemes are more popular, and are easier to modify and improve. Fol-
lowing this idea, we already pointed out that e form simpli es the shape of the
interference graph by making it chordal. We wanted to investigate this area, remarking
that, by usingssA (for instance, but not only), the problem of register allocation can be
cleanly separated into two phases, hopefully making it simpler to deal with.

1.5 About this thesis

In this thesis, we restrict our interests in register allocation to graph coloring schemes
in the line of the original algorithm by Chaitin et al. [1981]. Since the NP-completeness
proof of Chaitin et al., people take for granted that register allocation is eudi prob-
lem. Most graph coloring schemes intermix all subproblems of register allocation in a
common phase: assign and allocate variables to registers while minimizing the spilling
overhead and coalescing unnecessary move instructions. Our discovesghat
terference graphs are chordal shows that, in fact, the complexity does not come from
the “coloring,” which is a misinterpretation of Chaitin et al.'s proof. In fact, it shows
that registelassignments easy: if there are enough registers, splitting live-ranges as
doesssais su cient and a greedy algorithm manages to color the interference graph.
This re-motivated the design of register allocation based on graph coloring as a scheme
in two parts: First, reduce the number of alive variables by spilling so that they tin
the register available, this iegister allocation Second, map variables to individual
registers, potentially by splitting variables, thigégister assignment

This idea is not new, and was already explored by a few people in old articles,
for instance by Cytron and Ferrante [1987] and Knobe and Zadeck [1992], then more
recently by Appel and George [2001] or Hack [2007]. The original algorithm of Chaitin
[1982] is really simple and works well, so it is not surprising that the two phases were
performed in only one. But a lot of improvements to this original scheme did not make
their way to compilers. The algorithms get too intricate and complicated because the
two phases are not cleanly separated, and the same is true for other allocation schemes
as well. Still, traditionally, spilling and coalescing are done in a common phase. Why
is graph-based register allocation still nearly always performed in only one phase? We
think there are three main reasons for this:

~ Spilling is strongly dependent on the coloring property of the interference graph.
And the coloring is a di cult problem, hence heuristics that give an actual col-
oring are used: spills are done until the coloration succeedspmne.knows the
allocation is correct whenever one has a working assignment of variables.

Coalescing changes the structure of the interference graph. Aggressive coalesc-
ing might induce more spilling, hence cannot be in a separate later phase. Con-
servative coalescing guarantees that no additional spilling will be necessary, but
it can help with the coloring, reducing the number of colors needed. This was re-
marked by George and Appel [1996] and used in a register allocation framework
by Vegdahl [1999]. Henceoalescing can reduce the number of spills required.

Conservative coalescing is usually diult to perform e ectively if there is a
high number ofmoveinstruction. So, algorithms were designed to make trade-
0 s between spilling and splitting. This is easier to balance if there is only one
phase in whictsplitting can be done on demand.
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These reasons are now obsolete because we now know that the interference graph
on anssA program is chordal. A chordal graph needs as many colors as the size of
its biggest clique, i.e., its biggest complete sub-graph. Fasarprogram, this cor-
responds to the maximum number of variables simultaneously alive. Moreover, no
coalescing can reduce this number since no two nodes of a complete graph can be
coalesced: they must reside in drent registers. We now have an exact test of the
number of registers required for the allocation, provided that the live-range structure is
xed as the one generated by theaform. In general, giveiR registers and supposing
any splitting technique that gives, as d@ss, the chordal property to the interference
graph, register allocation can be decomposed into tweréint phases:

1. Spill variables so that there are at mBstimultaneously alive variables at each
point of the program.

2. Split, then color the interference graph while performing conservative coalescing
to preserve th&-colorability.

There remains the last reason why phases were not separated: known coalescing
techniques do not cope well with too many move instructions. This problem was al-
ready known to Briggs [1992] when he tried aggressive live-range splitting. Because of
this, Cooper and Simpson [1998] prefer to perform splitting on demand in order not to
create too many copies. More recently, this problem bothered Appel and George [2000]
so much that they launched the “Optimal Coalescing Challenge.” Hence, having good
coalescing strategies was the last missing piece of the puzzle of register allocation in
two phases. For this reason, we spent a lot of time working oerdnt variants of this
problem in this thesis, both on the complexity and heuristic points of view. Finally, we
found satisfying strategies that allow us to safely state that the rst phase of register
allocation needs not to worry anymore about introducing too many copies. The insight
given by three years worth of research and this thesis statement is that:

A two-phase register allocator is simple and@ent.

Outline of this thesis. In Chapter 2, we introduce the necessary de nitions of the
concepts used in this thesis. We also give the proofs of two important results of this the-
sis: that the interference graph of a program ursdaiform is chordal, and that chordal
graphs are greedy-colorable, i.e., colorable using a simple greedy scheme. This lead
us to ask the question wigsA programs were not covered by the NP-completeness re-
duction of Chaitin et al. [1981], which reduces register allocatio@raph k-Coloring.

In Chapter 3, we come back to this proof and extend it to cover more cases, in partic-
ular involving live-range splitting. In this chapter, we outline the importance of crit-
ical edges for the complexity register allocation. We study in Chapter 4 whether

also simpli es the spill “everywhere” problem, a simpli cation of the more general
spill problem often used in register allocation schemes, and nd most of the studied
problems NP-complete. In this chapter, we elientiate two situations depending on
whether spilled variables need to reside temporarily in registers when stored and loaded
from memory or not. We continue our study of the complexity of register allocation

in Chapter 5, which is devoted to the coalescing problem. This is the rst thorough
complexity study of the dierent coalescing strategies used in the literature. Using
this work, we improve existing coalescing techniques in Chapter 6, nding surprising
results in which our advanced conservative strategy outperforms all strategies based
on aggressive schemes. Chapter 7 introduces a strategyedt from coalescing to
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CHAPTER 1. INTRODUCTION

remove the copies inconveniently placed on control- ow edges when going asrof
afterregister allocation has been performed. We introduce there our technique of “par-
allel copy motion,” a fast and ecient method designed forr compilation. Finally, we
conclude in Chapter 8 after discussing practical considerations of actual architectures
that need to be taken into account in a register allocation algorithm.

¢
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GROUND, n. Like mattresses, only harder.

Grounds

In this chapter, we de ne the notations, vocabulary and basis for the next chapters.
First, we de ne generalities about programs and their interference graphs. Then we
discuss the coloring of the interference graphs, along with some interesting structures
of interference graphs. We also see what is usually done in practice whenever there are
too few colors to perform register allocation. Finally, we introduce the Static Single
Assignment$sa) form and its e ects on interference graphs for register allocation; this
leads us to present two of our results: that interference graphs aadare chordal

and that chordal graphs are what we call “greedy-colorable.”

2.1 Basis for register allocation

Register allocation deals with programs, variables and registers. We designate by “pro-
gram” what is in fact usually called a “function” or “procedure” in the programmers'
minds. Indeed, we will not include inter-procedural analysis issues in our studies. The
variables are virtual value holders used in programs to perform computations, while
the registers are their equivalent physical counterparts. The goal of register allocation
is to allocate the virtual locations to either the physical ones or to the main memory, so
that the processor can actually perform the desired computations.

2.1.1 Programs and control- ow graphs

De nition 2.1. An instructionis an atomic operation which possibly uses some vari-
ables and possibly de nes other variables.

Example.
Instruction denes uses ect
a o0 fag ; put the value 0 in variable

a b+c fag b;cg putthe sum obandcina

print b ; fbg display the value inside

a;b load64 c¢ fa;bg g load the 64-bits value at memory address
into 32-bits variables. andb

test a, O ; fag testif the value irais null

Note that thelest instruction de nes in fact a boolean value, but which is not in
the same register classabence it is not considered here.

By convention, in the examples given in this thesis, the notatiof fheans that:
if a variable is on the left-hand side, it is de ned by the instruction; if a variable is on
the right-hand side, it is used by the instruction. The notatiori thside instructions
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a 34.125
n O
0\;
?
a 3425 g:a’ 1:3
n 0 [ )
while a, 1do n n:l
n n+1; aeven ?

if a eventhen

e @ &2 )@ 3 a1 |
a a 3+1; /

end
end

e program point

() basic block

Figure 2.1: Example of a program and the corresponding control- ow graph.

means “something”; as an exampla, [ :::] means variabla is de ned using some
value or calculation, and {:  a] meansa is used in some instruction (which does
not necessarily de ne some another variable).

De nition 2.2. A programis a set of instructions linked by ow edges. An edge from
sto d means that instructiod can be executed aftar sis called thesourceandd the
destinationof the edge.

De nition 2.3. A basic blockis a maximal sequence of instructions without branch:
there is no other leaving or entering path possible in the middle of a basic block. A
program can be represented bygantrol- ow graph (CFG), which is a graph where

the vertices are the basic blocks and the oriented edges the possible paths during the
execution of the program.

We will now de ne “program points,” i.e., points of the program where, hypothet-
ically, the program could be stopped and the state of the machine could be inspected.
Hence instructions are not considered as “program points” since the state of the ma-
chine is not well-de ned—is the new variable already de ned? are the arguments
already used?—, but points between two instructions are program points, entries and
exits of basic blocks also, and even points on control- ow edges.

De nition 2.4. A program pointis any point of thecFG which is not an instruction,
i.e., any point on a possible execution path before or after an instruction.

The rst program point of a program—the one before the rstinstruction—is called
the entry or root of the program. A program point with more than one successor in-
struction is called &ranch a program point with more that one predecessor instruction
is called goin.

’
¢
’
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if flag

a
D
>

S

Figure 2.2: Non-strict program.

i

b

a
b
storea

(on

a
storeb

storea

(a) Linear code (b) More generaCFG

Figure 2.3: Live-ranges of variables—thick lines—on twoetient examples of code.

Figure 2.1 shows an example of a program with the correspontieg basic
blocks, and program points. The point aftar,[ 1] is a branch and the one at the
beginning of the empty basic block (containing only a jump to the conditional branch)
is a join.

It is often assumed that, for each use of a variable, the variable has been de ned
before the use. While this should dgnamicallythe case, i.e., during the execution of
the program, this property is hard to chestitically, i.e., during compilation.

De nition 2.5. A program isstrict if for each variable and each use of this variable,
there is a de nition of this variable on any static control path—a path following the
control- ow edges—from the start of the program to this use.

See Figure 2.2 for an example of a correct non strict program: dynamically, the
execution ow only chooses the left paths or the right paths but cannot mix both. But
there exisstaticpaths taking the left path then the right one or the converse.

Unless stated otherwise, we will always assume strict programs.

2.1.2 Live-ranges, interference graph

The goal of register allocation is to allocate variables to memory locations, in particular
registers. These are the fastest available on a processor and hence preferred over main
memory. However, they are in limited, small number, and each register can hold only
one value at a time. Some variables may be placed in the same register under certain

)



CHAPTER 2. GROUNDS

conditions, for instance if they are not live at the same time. In practice, the converse
“interference” property is used:

De nition 2.6. Two variablednterfereif they cannot be stored in the same register.

From the de nition of interference, we can deduce that two variables interfere if
and only if (i ) they “exist” at the same time and carry érent values. However,
these notions are dynamic in essence while compilation is static. In practice, relaxed
de nitions of the interference are being used instead of this “ultimate” one. We will
de ne for the rst condition the notion of “live-range,” the domain where a variable
exists statically. As for the second condition, it is in generaldalilt to know whether
two variables carry the same value or not, so this condition is usually left aside, except
for very simple cases.

The life time of a variable is the set of points where this variable has been de ned
previously and will be used in the future. Whenever a variable is not alive, it is dead.
Figure 2.3 represents live-ranges on two examples of code: a linear code—for instance
inside a basic block—and a more general code.

De nition 2.7. On a strict program, a variable &ive at a program poinpi there is
a static path fronp to a use ofa which does not go through a de nition af

Thelive-rangeof a variableg, live(a), is the set of program points whegiés alive.
These are the points between the instructions de rangef@) and the instructions
usinga, usef). It is a sub-graph of therc. A variable islive on any program point of
its live-range, andleadotherwise.

Using the live-ranges, it is possible to calculate easily a relaxed notion of interfer-
ence.

De nition 2.8 (Relaxed interference)Two variablesnterferei their live-ranges in-
tersect.

This de nition nds more interferences than the “ultimate” interference de nition,
as shown by the example Figure 2.2: on this non-strict program, the two live-ranges of
a andb intersect but they can nevertheless share the same register since they are never
dynamicallyalive at the same time; andb do notinterfere.

The relations of interference can be represented using a graph:

De nition 2.9. Theinterference graph G (V. E) of a program is an undirected graph
where each vertex 2 V corresponds to a variable of the program. There imsaifer-
ence(u;Vv) 2 Ei uandvinterfere.

Chaitin et al. [1981] proved the following lemma so that the notion of interference
for strict programs gets very easily computable: one just needs to check it at de nition
points.

Lemma 2.10. For a strict program, the live-ranges of two variables intersecttie
live-range of one contains a de nition of the other.

Chaitin et al. [1981] proposed to re ne their use of the “relaxed” interference when
building the interference graph by saying that it de ned by the copyd V], then
no edge is added betweenandv in the graph, since they obviously have the same
valuel Hence it is possible to have a @irent de nition of interference:

INote however than andv might still interfere, for example ifi is de ned multiple times. In that case,
an edge betweemandv will be added anyway sooner or later.

’
’
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d 1 d
a d | @
c

c O d
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b ¢ b >
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a b+c b e
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Figure 2.4: Program with the live-ranges and the corresponding interference graph.
Interferences are represented with plain edges andties with dashed ones.

De nition 2.11 (Chaitin's interference) For a strict program, Two variablesandv
interferei the live-range ofi contains a de nition ofv di erent thany  u], or the
live-range ofv contains a de nition olu di erentthangi V).

The interference graph will depend on the de nition of interference chosen; the
more re ned it is, the fewer “false” interferences there will be in the graph.

Note: In this thesis, some theorems or properties rely on the structure of the interference
graph. Hence, the notion of interference chosen can be important for the correctness of
some algorithms, and a de nition of interference cannot always be traded for another without
checking that does not invalidates proofs. For instance, with De nition 2.8, a variables alive
at one program point form a clique, while this is not true with De nition 2.11.

In addition to interferences, usually represented with solid lines, each copy instruc-
tion [u V] is represented by an anity, usually shown using a dashed line in the
interference graph. If both variables are assigned to the same register, the correspond-
ing assembly instructiomjove u; v] can be removed from the program.

De nition 2.12. An a nity hu;vi between variables andv in the interference graph
expresses the preference for these variables to share the same color (register).

A nities can also be weighted to represent a dynamic execution count of the copy
instructions. In that case, the weight of anridty betweeru andv is usually denoted
whu; vi .

Figure 2.4 gives an example of interference graphs of programs, witlitias
between variables linked by a copy instruction. Aities between adjacent vertices
are represented but cannot be coalesced: they are caltesttaineda nities.

2.1.3 Maxlive

De nition 2.13. Given a pointp of thecFg, Liveis the number of variables simultane-
ously alive atp, represented by symbol(p). Maxlive, denoted by , is the maximum
of (p) over all pointsp of thecFa.

Figure 2.5 illustrates the de nition of Maxlive on the straight line code of Fig-
ure 2.3. Maxlive will be an important indicator to decide whether it is possible to
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(p)
a 0
a
b i ‘ b1
storea 2
a 1 =2
storeb ‘ 2
storea 1
0

Figure 2.5: Number of variables in Live at each point and Maxlive, the maximum over
all of them.

allocate all variables to registers or not. Here, we de ned Maxlive with the relaxed
de nition of interference in mind (De nition 2.8): two variables interfere if they are
alive at the same time. With this de nition, and for a strict program, Maxlive is a
lower bound on the number of registers required to store all variables of the prégram.
Indeed, there is at least one program pginvhere (p) = ; On this point, every
variable is alive: they all interfere, meaning that one needsgisters for this point.

If considering Chaitin's interference, in which copies of the same variable do not
count (De nition 2.11), Maxlive is not a lower bound on the number of registers re-
quired anymore. If one still wants this property(p) should be de ned as “the number
of registers required to allocate all variablegdfwhich is more complicated than just
counting the variables alive at

2.2 Coloring the interference graph

In the graph coloring problem, the goal is to assignedéent colors to adjacent vertices.
Given a valid coloring of an interference graph, it is possible to view the colors as
registers, meaning that two interfering variables are iredént registers. This gives a
valid register allocation for the program provided that lessEhailors are used, where
Ris the number of registers available.

De nition 2.14. A coloring of the interference graph is a functi@ol on the nodes
such thatcol(a) , col(b) whenevera andb interfere. col is ak-coloring if it uses at
mostk di erent values. ArR-coloring of the interference graph gives a valid register
allocation for a program.

Notice that, in the interference graph model, each variable is traditionally consid-
ered as an atomic object, i.e., it has a single color, meaning that it will be placed in
the same register on all its live-range. In this context, the rst problem considered is
logically the following:

How to know if there are enough registers to allocate all variables?

We will now present the traditional way to answer this question, then what can be
tried if the answer to this question is negative.

2This is false for a non-strict program: see Figure 2.2 again, the same register can h@@bdtrsince
they are nevedynamicallyalive at the same time.

¢
’
’

16



2.2. COLORING THE INTERFERENCE GRAPH

Figure 2.6: Acode with= 2 but nevertheless not 2-colorable because the interference
graph is a cycle of odd length.

2.2.1 Testing ifRregisters are su cient
2.2.1.1 Conditions on Maxlive

Since there is at least one point in the program where Live is equal to Maxlive, the
conditionR < is su cient to know it isimpossibleto allocate the program without
modifying it, i.e., spilling some variables to memory is necessary as we will explain
later. What about the condition R? Unfortunately, this condition is not sicient

in the general case as shown by Figure 2.6. The program of Figure 2.4 needed also
three registers even if there were only two variables alive at the same time. Chaitin
et al. [1981] proved in fact that the interference graph of a program can be any graph,
hence the problem of allocatinguaiqueregister to each variable of a program reduces

to Graph k-Colorability, which is NP-complete. The proof is analyzed in details in
the next chapter, Section 3.1.1, and its validity is discussed whenever more freedom is
allowed, for instance whenever variables can reside iemint registers during their
lifetime.

2.2.1.2 Acoloring heuristic: Chaitin et al.'s simpli cation scheme

Since graph coloring is NP-complete, Chaitin et al. [1981] used a simple scheme in-
vented by Kempe [1879] to color the interference graph Wittolors.The algorithm
rely on the following “simplify” rule to assign colors to variablesnode x with fewer
than k neighbors is always colorable no matter hown®gis colored It can thus
be removed (simpli ed) from the graph and pushed on a stack. Ifsiniplify phase
removes all nodes, the graphkisolorable. Indeed, in a second “select” phase, each
node can be popped from the stack and colored with one of the colors not used by its
neighbors previously popped, which are fewer thaAn example of execution of this
algorithm fork = 3 is given on Figure 2.7: initially, only the nodewith degree 2 can
be simpli ed because all other nodes have degree 3, but eventually, all of them can be
simpli ed after the simpli cation of some of their neighbors. However if at one point
of the simplify phase, the degree of every node in the remaining graph is ak|¢ast
coloring fails. It does not mean that the graph is kablorable, only that we did not
nd a k-coloration. This can be the case even for simple graphs such as a cycle of even
length, see Figure 2.8.

During this thesis, we remarked that this greedy heuristic de nes without ambigu-
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Figure 2.7: Example of Chaitin et al.'s simpli cation scheme with 3 colors.

d°2 d°2
d°2 d°2

d°2 d°2

Figure 2.8: A 2-colorable graph, but the simpli cation scheme of Chaitin et al. fails
since every node has degree equal to 2.

ity a class of graphs, to which we gave the name of grdedglorable graphs, i.e.,
graphs colorable witk colors with this heuristic. We will de ne cleanly these graphs

in Section 2.2.2.5, along with Functida_kGreedy, a pseudo-code for the greedy
heuristic. Greedy-colorable graphs are not the only interesting class of graphs for
register allocation, and we will now introduce the graph structures which we found the
most interesting for interference graphs.

2.2.2 Interesting graph structures

In this section, we recall some particular graph structures that appear as interference
graphs under certain conditions. All these structures have some interesting properties
in our context of deciding wheth@ registers are sucient or not.

2.2.2.1 k-colorable graphs

This is the most general class of graphs. A gr&pis k-colorable if it is possible to
color it with at mostk colors. In general, the minimum number of colors required to
colorG is thechromatic numberdenoted by (G). Hence, a grapt is k-colorable for
anyk greater or equal to(G). For this class of graphs, it is NP-complete to decide, for
a given integeK, if (G) K [Garey and Johnson, 1979, Problem GT4].

’
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2.2. COLORING THE INTERFERENCE GRAPH

2.2.2.2 Cliques

De nition 2.15. A cliqueis a complete graph, i.e., for each two nodemdyv there is
an edge; v).

Cligues are the most restrictive graphs in terms of coloring. Clearly, a clique of
sizek needs exactlk colors. Hence, knowing that a grafcontains ak-clique is
an interesting fact since it shows thdts) k. A useful trait for the colorability of a
graph is itsclique number! (G), the size of its largest clique. In the literatuperfect
graphsare de ned as graphs for which the coloring number equals the clique number,
i.e., (G)=" (G)Golumbic [1980].

2.2.2.3 Interval graphs

De nition 2.16. An interval graphis the intersection graph of a family of intervals.

Theorem 2.17.The interference graph of a basic block with one de nition per variable
is an interval graph.

Proof. In a basic block, each live-range of a variables is a connected component if there
is only one de nition for that variable. Moreover, these live-ranges are sub-intervals
of the basic block, starting at the de nition—or at the beginning of the basic block if
they are live-in—and ending at the last use—or the end of the basic block if they are
live-out.

Interval graphs are perfect graphs: as explained before, their coloring number
equals the size of their largest clique. For basic blocks, this means it is possible to
compute the number of registers required by performing a “scan” from the top to the
bottom of the basic block while keeping a set of the live variables: the clique number
is the maximum size of the set.

2.2.2.4 Chordal graphs

De nition 2.18. An undirected graph ishordalif every cycle of size at least four has
a chord (edge between two non adjacent vertices of the cycle).

Chordal graphs are sometimes called “triangulated graphs” because the chords in
cycles make a lot of small triangles, as shows the example on Figure 2.9. Like interval
graphs, chordal graphs are perfect. Another characterization of chordal graphs uses
“simplicial” vertex and “perfect elimination schemes.”

De nition 2.19. A simplicial vertex is a vertex whose neighbors form a clique. A
perfect elimination schemie an ordering = fvi;V,;:::;vygof the nodes such that

A graphis chordal i it has a perfect elimination scheme, moreover, any simplicial
vertex can start a perfect scheme [Golumbic, 1980, Thm. 4.1]. This means tGat, if
is chordal, one can remove successively simplicial vertices until the graph is empty. It
is then easy to color the nodes in the reverse order of their simpli cation [Fulkerson
and Gross, 1965], or, as we will see in Section 2.2.2.6, more simply with the greedy
simpli cation scheme of Chaitin et al.

Another equivalent de nition [see Golumbic, 1980, Thm. 4.8] uses the tree repre-

sentation:
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Figure 2.9: Example of chordal graph with its representation as subtrees of a tree.

De nition 2.20. A chordal graphis the intersection graph of a family of subtrees of a
tree.

An example of chordal graph with its subtree representation is given on Figure 2.9.
Using the tree representation, is is easy to color the graph also using a “scan” as for
interval graphs, but in our case the scanning starts at the root and stops at the leaves of
the tree. To make it short, we say thdt-aolorable chordal graph lschordal.

2.2.2.5 Greedyk-colorable graphs

Another fundamental class of graphs for Chaitin-like register allocation is what we call
greedy-k-colorablegraphs. These are the grapfisolorable using the greedy simpli-
cation scheme of Chaitin et al. [1981] introduced in Section 2.2.1.2. For instance, the
graph given as example on Figure 2.7 was a greedy-3-colorable graph.

De nition 2.21. A graphG is greedy-k-colorablé there is no subgrap®®of G such
that each node @& has degree at leakin G°, i.e.:

@G° Gj8x2G% deo(x) k

The following theorem links the name of this class of graphs to the greedy col-
oration scheme of Chaitin et al. given by FunctlenkGreedy (page 21).

Theorem 2.22. A graph G isgreedyk-colorablei Functionls_kGreedy (G) suc-
ceeds.

We recall again the idea of the algorithm. While this is possible, remove a vertex
of degree strictly less thanin the current graph. Indeed, whatever the coloring of the
current graph, there will always be at least one color available for this vertex. Hence we
need to prove that a graph is greddgolorable i this elimination scheme removes all
vertices. This de nition seems non-deterministic but, for a greledplorable graph,
the order in which vertices are removed is not important: removing a vertex with de-
gree< kis never a bad decision for coloring. Here is a formal proof of the theorem.

Proof. ( by contraposition: suppose there exi§&$subgraph ofG such that8x 2
G% deo(X)  k, then, none of the nodes &P will ever be simpli ed by the greedy

©—©
o—@
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2.2. COLORING THE INTERFERENCE GRAPH

Function Is_kGreedy( G)
Data: Undirected grapls = (V. E); 8v 2 V, degreey] = #neighbors of/ in G, k number
of colors
1 stack=; ; worklist=fv 2V j degreef] < kg;
2 while worklist, ; do
3 let v 2 worklist ;
foreach w neighbor ofv do
degreefy] degree[w]-1;
L if degreefv] = k 1thenworklist worklist[f wg

o g A~

~

pushv on stack ; worklist  worklist n fvg; ¥ Remove v from G/
8 if V = ; then return true else returnfalse

simpli cation scheme. Indeed, the degree of a node can only decrease during simpli -
cation, hence at best all nodes noGhcan be simpli ed.

) by induction on the number of nodes of the gredédypelorable graplG. If G
has onlyk nodes, they can all be simpli ed since each node has at knostneighbors.
Suppose that a greedyeolorable graph wittn 1 nodes can be simpli ed. L&b be
a greedyk-colorable graph witm > k nodes. Then there is at least one noed2 G
such thatl(x) < k by de nition. By simplifying (removing) this node, one ge®d that
is greedyk-colorable and witm 1 nodes, henc& can be simpli ed.

Finally, a greedyk-colorable graph ik-colorable because it is possible to color
its vertices in the opposite order of their removal, assigning to each vertex a color
not used by its already-colored neighbors: this is possible because there are at most
(k 1) such neighbors. This scheme is exactly the coloring heuristic used in Chaitin-
like approaches.

2.2.2.6 Orderings of graphs structures

k-colorable interval graphs k-chordal( greedyk-colorable( k-colorable

The last inclusion is trivial, the rst also since an interval is a particular subtree with no
branch. Example for the inequalities can be found in gures previously seen: the graph
on Figure 2.8 is 2-colorable but not greedy-2-colorable; the same graph is greedy-3-
colorable but not chordal (for ark) since it is a chordless cycle of size 6; Figure 2.9
shows a chordal graph which cannot be represented as an interval graph. Finally, the
middle inclusion is proved by the following property lothordal graphs.

Property 2.23. If G is a k-colorable chordal graph, it is greedy-k-colorable.

Proof. Any chordal graplG has at least one simplicial vertejfGolumbic, 1980], i.e.,

a vertexv whose neighbors form a cliqus:and its neighbors also form a clique, and
if G is k-chordal, it has no clique of sizet+ 1. Thus,y has at mosk 1 neighbors and
can be removed (simpli ed) from the graph. The remaining graph iskstliordal and
the same argument applies. ThGsis greedyk-colorable.

This property is one of the early contributions of this thesis, and is of much interest
since it implies that Chaitin-like register allocators provide an solution whenever the
interference graph of the programRschordal. We will see in Section 2.3 a case where
this property is particularly interesting.

3Actually, it has at least two simplicial vertices.
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2.2.3 What to do ifRregisters are not su cient?

Chaitin et al.'s greedy heuristic can tell thHRtregisters are sucient to color the in-
terference graph. If the heuristic fails, the goal is to modify the program so that the
interference graph becomes gredgigolorable. In most of the cases, some nodes
need to be removed from the graph. This is necessaryifR, for instance, since that
means there is a-clique in the graph, i.e., a complete sub-graph afodes?

Variable spilling: In order to remove nodes from the graph, some variables are
transferred—spilled—to memory. That way, they do not need any register to hold them

at times where they are in memory. There are two problem with spilling: rst, opera-
tions working with operands in memory are slower that those working with operands
in registers; second, instructions to transfer values to and from merstome ( and

load ) need to be inserted in the program, which degrades performance and uses new
variables which need to be allocated: this creates new nodes in the interference graph,
hopefully simpler to color that the ones spilled since their live-ranges are very short.

Variable splitting:  Another technique to make the graph colorable, less powerful
that spilling but also cheaper, is variallditting. Let us give the intuition for a variable

a on a basic block.a can be split into two variablea and a° by inserting a copy
instruction pB°  a] somewhere in its live-range, on a program point. Then, subsequent
uses ofa are replaced by in the code: on the basic block, all uses befa@® [ a]

still referencea, but the ones below referene Hence,a anda’ are not alive at the
same time and they might be placed in elient registers.

Splitting live-ranges is more complicated on a generat since the consistency
must be kept at join points: suppose variadie splitin the “else” part of a conditional,
there is an ambiguity after the conditional: whichaobr a° should be used? None of
them. Either way would break the semantic of the original code: if coming from the
“then” part, thea should be used, and if coming from the “else” part, iafswhich
should be used. A possibility would be to restore bati a before leaving the “else”
part, by insertingd  a“. More generally, to split a variabkeinto a° on a subset of
its live-range, one has to insed?[ a] at each program point where a path enters the
subset, andd  a“ at each program point where a path leaves the subset.

Splitting variables allows them to be stored in dient registers at derent points
of their lives, which simpli es the coloring: smaller live-ranges may have fewer inter-
ferences, hence are easier to simplify using Chaitin et al.'s scheme. For instance, we
used two examples of code where Maxlive equals two, but three colors are required
anyways in Section 2.2.1.1 (Figures 2.6 and 2.4). Figure 2.10 shows that splitiing
the end of the conditional basic blocks makes the interference graph 2-colorable for the
rst example. Figure 2.11 shows that splittifigandc in the middle of the loop also
make the interference graph 2-colorable for the second example, but one has to make
sure that the copies are done in parallel to perform a swap of their colors.

The price of splitting variables is that, if the corresponding sub-variables are in-
deed allocated to derent registers, the inserted copies will actually have to be per-
formed withmoveinstructions, which degrades performance. But hopefully, this split-
ting helped to avoid a spill which is usually more expensive than moves.

The most famous example of live-range splitting in compilation issheform,
which will be presented in Section 2.3. While splitting helps for coloring, one should

4This is of course true only with the relaxed De nition 2.8 of interference.
5This is the same problem as sequentializing parallel copies when going 8anaee Section 2.3.6.

’
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Figure 2.10: Splittingl makes 2 registers enough for the program of Figure 2.6.
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Figure 2.11: Splittind andc in parallel makes it possible to swap their colors.
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Figure 2.12: Coalescing in the example of Figure 2 @&ith d° a with d, andd®®

keep in mind that whatever the splitting, it willot lower Maxlive, hence it cannot
solve the problem if > R.

Variable coalescing: Finally, the converse of the splitting technique might help: the
coalescing This corresponds to grouping two dirent non-interfering variables into

one, by replacing every occurrence of the second by the rst. Theeteon the inter-
ference graph is that the corresponding nodes are merged, hence decreasing by one the
degree of the common neighbors and augmenting their chance to be simpli ed. This
was remarked by George and Appel [1996], and actually used by Vegdahl [1999] to
improve the simpli cation scheme of Chaitin et al.

Of course, the problem is that the node resulting from the merge may have more
neighbors. In general, it is hard to know if a particular coalescing will break the col-
orability of the graph; this will be discussed in Chapter 5. Global or local rules can
help deciding if a coalescing is “safe,” for instance Briggs's and George's rules use
neighborhood criteria to make sure the resulting node will still be simpli able at some
point of Chaitin et al.'s algorithm. Hailperin [2005] does a nice formal model of the
power of these two rules. We will heavily discuss coalescing rules in Chapter 6.

In practice, coalescing is often performed only between nodes which haveran a
ity (see De nition 2.12), so that the corresponding copies can be removed from the
program code. As an example, Figure 2.12 shows a possible coalescing of the program
in Figure 2.10: three of the four copies are removed by coalesowith d°, a with d®
andd with d° The fact that common neighbors are more likely to be simpli ed is then
more a nice side eect than the primary goal of the coalescing.

2.2.4 lterated Register CoalescingIRC)

Classical approaches for graph-based register allocation integrate in the same frame-
work spilling, coalescing, and coloring, the last one being the nal assignment of
variables to registers. This is the case in the Iterated Register Coalescing approach
proposed by George and Appel [1996], a modi ed version of the original allocation
scheme of Chaitin [1982] and of improvements due to Briggs et al. [1994]. The prob-
lem is also modeled with the interference graph of the program, on which the greedy
approach of Chaitin et al. is used to try to color the graph Witiolors. This involves a
combination of the following mechanisms. The execution ow between them is shown
graphically on Figure 2.13:

a) build: the interference graph is built from the program;
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l» build |x>| simplify}—>| coalesce—>| freeze—| pot. spill|;>| select—>| act. spill l
— ] ] ] Q

<

Figure 2.13: Flow diagram of the Iterated Register Coalescing scheme.

b) simplify: a vertexvariable with at mostR 1) neighbors can be simpli ed (re-
moved) from the graph since it will be easy to color afterwards (this is the same
mechanism as in Functidis_kGreedy, page 21). Vertices involved in copy in-
structions are not simpli ed to get a chance todmalesced

c) coalescing: removing a copy instruction can be done by merging the two vertices
involved in the move; this is performed ircanservativavay, i.e., with simple rules
that guarantee that the graph remains greedgiorable;

d) freeze: copy instructions are tested several times to improve they chance of being
coalesced by the conservative tests. When no more copy has a chance to be coa-
lesced, the algorithm “freezes” one copy, i.e., gives up on this one and will never
test it again;

e) potential spill: when all vertices have at leRsteighbors, some vertex is simpli ed
and marked as a “potential” spill;

f) select: when the graph is empty, the vertices are colored in the reverse order of
their simpli cation. Each vertex is given a color not used by its already-colored
neighbors;

g) actual spill: if no color is available for a vertex marked as a potential spill, an actual
spill is performed, i.e., loads and stores are inserted in the code;

h) rebuild: if there was a spill, the interference graph is rebuilt and the coloring proce-
dure is restarted.

Such an approach gives fairly good results. But the main reason for its success is
certainly its simplicity both from a conceptual and an implementation point of view.
Weights can be easily added to guide the spilling and the coalescing. This allows it
to take into account dierent dynamic execution frequencies of basic blocks. Physical
registers can be added as speci ¢ “pre-colored” vertices. Register constraints are ex-
pressed by adding copies in the code, so that the coalescing elegantly deals with them.
“Smarter” coloring strategies for the select phase, such as biased coloring, can be used
to improve the coalescing. However, this approach has also several weaknesses for
both spilling and coalescing:

" For spilling, once a vertex is actually spilled, there is no obvious method to
decide where to place loads and stores, except the simple butier “spill-
everywhere” approach, wherestore is inserted after each de nition, and a
load before each use of the spilled variabl€ven worse, it can happen that
some spilling is done even if this actually does not help to make the deaph
colorable.

6Re nements can be done afterwards, for instance, Chaitin et al. [1981] states that unnecessary loads can

be removed using a pass of dead-code elimination.
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~ For coalescing, although simple and appealing, conservative coalescing is some-
times not aggressive enough and too many moves may remain in the code. Fi-
nally, even if live-range splitting is sometimes considered in such a framework,
it is very hard to control the interplay between spilling and splititoglescing.

In the initial scheme of Chaitin et al., the coalescing was aggressive, i.e., copies
were eliminated regardless of theirext on the colorability of the graph. But when
Briggs et al. [1994] introduced live-range splitting in this scheme, they moved to a
conservative coalescing that would not cancel theots of the splitting. With the
growing di erence in speed between accessing memory and accessing registers, this is
often better to have momoveinstructions if this saves a spill. This settled conserva-
tive coalescing in therc scheme, delegating the coalescing of initial program moves
to an (optional) constant propagation phase, so that the less powerful coloring-aware
coalescing had only to deal with copies inserted by live-range splitting.

2.3 Static Single Assignment form

Static Single Assignmentséa) form is a property for intermediate representations
widely used in modern compilers, usually because it enables or simpli es well-known
optimizations. We will rst give de nitions and properties &fSA form, then explain
why it is interesting for register allocation and the particularities of this form with re-
gard to program code.

2.3.1 De nition of SSA

De nition 2.24. ssaform: every variable is textuallyde ned exactly once before
being used. Given a variabée def@) is the instruction that de nea and used) is the
setof the instructions that use

Then, undessa, there is one uniqustaticde nition, but it is possible to get mul-
tiple dynamicde nitions—for example, if the de nition occurs in a loop. This form is
illustrated in Figure 2.14. UsuallgsAis consideredvith dominance propertywhich
will be de ned in the next section.

A program can be converted gsA form by renaming multiple de nitions of the
same variable into subscripted versions of this variable. At join points ottee
multiple ssavariables derived from the same original variable must be merged into one
ssAvariable depending on where the execution path comes from. This is the purpose
of the so-called virtual -functions.

De nition 2.25. A -function is a virtual operation which can be placed only at the
beginning of a basic block (at the program point before the rstinstruction). It takes as
many arguments as the number of incoming ow edges, and return the valuenbf its
argument when the execution path comes fronmihécoming ow edge.

An example of -function is given on Figure 2.14c is de ned twice, hence is
replaced byc; andc,. At the end of the “if...then...else” construct, there is a use of
¢, whose value depends on which branch of the condition was taken. -Tungction
inserted acts as a multiplexer by “choosirg”if the path comes from the left, ard
if it comes from the right, de ning a third variable which is the one used afterwards.

“In the source code of the program.
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s

Figure 2.14: A program converted $sA

De nition 2.26. A program is inconventionaksaform (cssa) if, for all -functions,
all variables involved in the -function (the arguments and results) can be renamed
with a common name.

This means that undeissA the arguments and results of eunction must not
interfere. A program converted 8sAform using the method of Cytron et al. [1991] is
under ssA This property is useful, for instance, if the result of-function is spilled,
then it ensures that arguments can be spilled to the same memory location. Some
optimization can break the conventional property, like copy folding and code motion,
but Sreedhar et al. [1999] gave a method to corseatback to ssSA

2.3.2 The dominance property

De nition 2.27. An instructions—or a block of instructions-dominatesan other in-
structiont if every elementary pafhfrom the root of the program tbgoes througts.
The notation iss  t.

De nition 2.28. ssAis said to bewith dominance propertyf, for every variablea,
def(@) dominates every element of uak(

Lemma 2.29. If ssaAis with dominance property, for every variabledef(@) dominates
every element of Liga).

Proof. Suppose tha is live at program poinp. Then, there exists a path fromto
an instructioru that uses which does not go through dei( If p was not dominated
by def@), there would exist a path p from the root of the program tp which
does not go through def), hence there would exist a path p  uwith the same
property, which contradicts the dominance property.

The following theorem is well-known and we will need it for some later proofs, so
we recall it here for completeness.

Theorem 2.30. Dominance is a partial order: it is antisymmetric, re exive and tran-
sitive.

Proof. Proof of the three properties:

8path which contains at most one time any instruction.
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antisymmetric: we suppose tandt s. Letus consider an elementary path
r t fromr to t. This path goes throughsinces t: it can be split into

r s t. Again, sinca s, the path from the root te goes through and
the initial path writeg  t s t. Butthe rst path was an elementary path
hence the only possibility isthat s tis of zero length, i.es=t;

re exive: sis the last element of any path from the root to itself, hence it domi-
nates itself;

transitive: ifs tandt wu. Letr  ube a path from the root to. It contains
tandcanbewritten 't u Buts tsoonecansplit tinr s t
which means that  ucontainssands u.

De nition 2.31. Thedominance graplis the Hasse diagrahof the graph where the
vertices are the instructions and the (directed) edges indicate dominance:

s! t s t
Property 2.32. If s and t dominate u, then either s dominates t, or t dominates s.

Proof. Consider an elementary path from the rodd u. This path contains andt by

de nition. Without loss of generality, one can suppose thappears beforeon this

path:r S t u. Suppose there exists a path t fromr tot which does not
go throughs, then one could extend this pathupandr t u would be a path
from the root tou not going throughs which contradicts the fact tha u. Hence
every path fronr to t goes througlsands t.

Note on live-ranges underssa The dominance property seems to be contradictory
with the existence of-functions. Indeed, when looking at the example of Figure 2.14,
the use ofc; andc, do not seem dominated by their de nition. But in fact, the
function is not a normal instruction and its semantics is that assignments are performed
“somewhere” on the incoming edges. This means thaindc, are in fact notive_in

of the basic block where the-function is. The converse is true for the de nitiong

is notlive_outof the preceding basic blocks. Hence, the live-range of a variable used
in a -function underssA endsat the end of the basic block preceding thé&unction
(unless it is still used after the-function), and the live-range of a variable de ned by

a -functionstartsat the beginning of the basic block where théunction is.

The live-ranges are important for the shape of the interference graph. Indeed, it
is important that; andc;, do not interfere (if the -function is their last use) because
that is the purpose of splitting undsesaA. Interferences exists whenever live-ranges
intersect, and in the following we prefer to stick to this de nition and not take value
into account. This is in fact not a limitation undesA since variables are de ned only
once, hence, if at its de nition a variable is de ned ds [ a], b will always have the
same value aa and can be renamed at every of its uses. This can be easily done with
a copy folding algorithm, a very common optimization in compiférs.

9Graph whith the transitive edges removed.
OHowever, this breaks the “conventional” property 66a codes.
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2.3.3 Properties ofssA

Property 2.33. Under ssa if a interferes with b, then eithedef(a)  def(b), or
def(p) def(@).

Proof. Let p be a program point whera and b are simultaneously alive. Using
Lemma 2.29, we know that def p and defb) p. The property 2.32 con-
cludes.

Corollary 2.34. Underssa if a interferes with b andlef@ def(), thendef(p) 2
live(a).

Proof. def@  def(b), and sincea andb interfere, by De nition 2.8 of the interfer-
ence.a s alive at def), which means deb) 2 live(a).

Theorem 2.35. The dominance graph undesais a tree.

Proof. A vertexu has only one direct predecessorssiandt dominateu, then Prop-

erty 2.32 states that one of the two dominates the other. For instandgethens! u

is a transitive edge and does not appear in the Hasse diagram. Moreover the graph is
connected since the root dominates every vertex.

Corollary 2.36. Underssa the live-ranges are subtrees of the dominance graph.

Proof. Let us consider a variabkeand a pointp of its live-range. Let us consider the
shortest patiPyom from the de nition ofato p on the dominance tree. Sinags alive
at p there is a pattPcrg, on thecrg, from p to a use ofa which does not go through
def(@).

For any pointp® , def(a) of path Pgom, def@ p° p because de&) p.
Hence, there is also a pal -, on thecrg, from p°to p. Moreover, one can choose
PgFG so that it does not go through dajf( else this would meap® def(@) which
is impossible because of the antisymmetric property of the dominance. Hence, the
concatenation oP‘éFG with Pceg is a path, on therg, from pPto a use ofa which
does not go through the de nition @ This meansis alive atp®.

Hence, every shortest pafy.m, on the dominance tree, from daf(to a point
wherea is alive contains only points wheeeis alive. They are sub-paths of the domi-
nance tree, and since have a point in common—the de nitiaa-ef the union of these
paths is connected: it is a subtree of the dominance graph.

Figure 2.15 shows the live-ranges of the previeas example, Figure 2.14. The
conditional branches do not dominate the last basic block, so the dominance graphis a
tree and thesalive-ranges are subtrees of this tree.

2.3.4 ssainterference graph is chordal

In 2005, we discovered that, undesa, the interference graph of a program is chordal.
Independently, Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]
made the same observation. Note that the interference graph depends on the interfer-
ence notion. We use De nition 2.8 for that purpdsend the shape of the live-ranges
underssAare explained in the note page 28.

1INote that, undesSA there is only one de nition, hence, if variattds de ned asp 4], itis possible
to replace every occurrence by a since they will always be equal. Note that this is akin to aggressive
coalescing but is safe to do und&sA as it will not increase the coloring number. Constant propagation
can do this e ciently in a rst pass, then it is not worth considering the interference de nition of Chaitin

(De nition 2.11) as there is no remaining copy in the program.
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a a a
b b b
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on the CFG on the dominance tree

Figure 2.15: Live-ranges of the program of Figure 2.14 and its version wsdeic;

andc; stop at the end of their de nition blocks, whitg starts at the beginning of the
block with the -function (see note page 28), hence they are subtrees of the dominance
tree.

Theorem 2.37. The interference graph G of a program undesAawith dominance
property is chordal.

Short proof. Corollary 2.36 states that undgsa, live-ranges are subtrees of the dom-
inance graph. Hence the interference graph is the intersection graph of a family of
subtrees (the live-ranges) of a tree (the dominance tree), which is another characteriza-
tion of chordal graphs [Golumbic, 1980, Thm. 4.8].

It is possible to give a more direct proof, without using the characterization of
chordal graphs as the intersection graph of subtrees of a tree. It was by nding this
proof that we rst realized that the interference graph of a program usderis
chordal, which is the very rst contribution of this thesis. Then, we gured out that
the chordal representation as subtrees of a tree would perfectly match the live-ranges
underssa

Proof. Let G be an interference graph of a program ungles Let us de ne the fol-
lowing orientation of the edges: if def{ def(v), thenu! v. Property 2.33 states
that every edge is directed. Consider a cyelef length at least 4 i, if there is one.
From Theorem 2.30, the dominance relation is a partial odeannot form a directed
cycle, thus there are two edge$s vandv w, directed fromutovand fromwtov,
i.e., the de nitions ofu and ofw dominate the de nition ofs. Sinceu andv interfere,
andu! v, uis alive at def¢) and the same is true fov. u andw are both alive at the
def(v), they interfere and there is an edge betwaemdw in the graph, i.e., a chord
inC.

As a chordal graph, the interference graph of a program wsglds perfect, hence
(G) = ! (G): the coloring number is equal to the size of the largest clique. We will
now see how to correlatgG) with Maxlive, the maximum number of simultaneously
alive variables. Before seeing it, we need the following property which links together
the number of alive variables in the program and the cliques of the interference graph.
The size of these cliques xes the number of colors required.
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Property 2.38. In an interference graph G under SSA:

"~ for any program point, the set of live variables form a clique in G;

reciprocally, to every clique of G of size corresponds a program point where
at least! variables are alive.

Proof. The rst point is obvious since variables simultaneously alive form a clique
(remember we still use the relaxed De nition 2.8 of interference). Now, consider a
cligue in G with directed edges as in the proof of Theorem 2.37. Since there is no
directed cycle, there is a vertexin the clique such that, for any other verte3n

the clique, @; V) is directed fromv to u, i.e., the de nition ofu is dominated by the

de nition of any other vertex. Thus all variables in the clique are live at the de nition
of u, which proves the second point.

Corollary 2.39. Underssa the coloring number of the interference graph is Maxlive,
ie., (G)=

Proof. Chordal graphs are perfect graphs, hence their coloring num(@requals
their cligue numbel (G) [Golumbic, 1980]. From Property 2.38, the largest clique is
of size Maxlive, hence the interference graph of a program usslers -colorable.

Back to register allocation. In Section 2.2.2.6, we proved Property 2.23, which
states that &-chordal graph is also greedyeolorable. Now that we know that the
interference graph of a program unds=a is chordal, the consequence of this basic
property, to our knowledge not mentioned in the compiler literature before our work,
is particularly interesting for register allocation in the contexs®4 In Property 2.23,
we just used the well-known proof that a simplicial elimination scheme leads to an op-
timal coloring for a chordal graph, as recalled by Pereira and Palsberg [2005]. But our
de nition of greedyk-colorability implies more. In register allocation, the number of
registersRis xed and there is, in general, no point in trying to use as few registers as
possible: just fewer thaRis su cient. In other words, it is possible to use an optimal
on-line coloring such as a simplicial scheme or a smallest last order, but, as the number
of registerR is known, it is also possible to simply use any Chaitin-like simpli cation
scheme, i.e., to remove vertices with degree less Bareny order.

Moreover, using Corollary 2.39, we know that, if R, there is no need to spill
and the greedy coloring scheme of Chaitin et al. will manage to color the interference
graph withR colors. This implies that, undessa we have an exact test to decide if
some spilling is required or not.

Finally, we mentioned in Section 2.2.2.4 that the representation of chordal graphs
as subtrees of a tree makes it possible to color thersdayningthe tree from the
root to the leave. In the context ebAform, this is directly applicable by scanning
the program from the root to the leaves of the dominance tree, assigning colors to the
live-ranges when encountered.

2.3.5 Why is coloring polynomial underssa?

In the general case, it is NP-complete to decidR iegisters are enough, while un-
der ssa the interference graph is chordal hence the same problem is polynomial.
Why? BecausessA splits variables by using -functions. Indeed, we have seen in
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ai 1
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C2 (c1;¢3)
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{ds (di; db)
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ds
(a) Program of Fig. 2.4 (b) Program of Fig. 2.6

Figure 2.16: Running examples undsa

Section 2.2.3 that splitting variables helps. This was observed by Fabri [1979] who
explained that splitting variables can lower the clique number of the interference graph
to Maxlive. Underssa, variables are split ahe only necessary pointat the domi-
nance frontier, i.e., at points where there are cycles in the live-ranges on the dominance
tree: -functions splits the live-ranges which spawn across branches without following
paths on the tree, so that they become disconnected subtrees.

Note that additional splitting pointsannot lowetthe clique number below Maxlive;
however, additional splitting can still be interesting if one looks for split points where
placingmoveinstructions is cheaper. For instance, an instruction inside a loop is usu-
ally dynamically more expensive than an instruction outside the loop. Hence, even if
more splitting is unnecessary in terms of coloring, it might still be interesting in terms
of coalescing, i.e., for minimizing the number of (weighted) copy instructions.

Finally, if ssA provides a tool for splitting variables eiently, it is certainly not
the unique way to split variables so that the remaining interference graph gets chordal.
For instance, one of the rst examples of this chapter, Figure 2.4, was spishy
and presented in Figure 2.16a, but we rst gave another example of splitting on Fig-
ure 2.11. Both splitting made the interference graph 2-colorable while the non-split
initial program needed 3 registers. Figure 2.16b also showsdhesplitting of the
running example of the odd-length cycle (initial program on Figure 2.6).

We will see in the next chapter, Section 3.1.2, a more detailed explanation on the
e ects of splitting on the complexity of register allocation.

2.3.6 ssAform is not machine code

ssaform is not machine code:-functions are virtual instructions which do not exist in
hardware. Even though, afunction represents a transfer of values between variables,
and whenever the source variables areedént from the destination variables—they
can be equal, for instance after some coalescing-fanctions need to be material-
ized by addingnoveinstructions “on” the incoming edges. This problem in known as
“going out of SSA” in the literature.

Two problems arise: First, an edge cannot contain any code. One possibility is to
place the copies at the end of the source basic block, but if this block has more than
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a 1
C1 0
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[(az; C2) (as;Ca) ]

(a) Sequential copies (b) Parallel copies

Figure 2.17: Sequentializing copies creates new interferences.
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one successor, the copies will still be executed even if another edge is chosen when the
program is run. Second, if multiple copies must be added to an edge, the order in which
they are sequentialized is important—for instance, if some variables are used both as
argument and as result offunctions.

Critical edges: The rst problem is related to the notion of critical edges.

De nition 2.40. A critical edgeis an edge in therG which goes from a basic block
with more than one successor to a basic block with more that one predecessor.

For instance, the back edge of a loop can be a critical edge, depending on whether
in ends in a jump or a branch. Structured loop constructs tend to produce a branch at
the bottom of the loop, which produces a critical edge (see for instance Figure 2.16a).
If some code must be placed on a critical edge, it is dangerous to place it at the end of
the preceding basic block—the code will still be executed if one of the other leaving
edges is chosen—or at the beginning of the following basic block—the code will still
be executed if the path comes from one of the other incoming edges.

There are (at least) two solutions to this problem. One possibility is to still place
code at the borders of basic blocks, but to make sure it does not modify the semantic of
the program when other edges are chosen. For instance, this code should not re-de ne
a variable used later on another execution path. Sreedhar et al. [1999] chose to add
copies to new variables for the arguments on the preceding blackisalso a copy
for each variable de ned by a-function. This approach is explained in Chapter 7,
Section 7.1.

Another solution is tesplit the critical edge and add the code to the newly created
basic block.

De nition 2.41. Splittingan edge going from a source basic bldkto a destination
basic blockBy is done by creating a new basic bloBk, deleting the edge and creating
two new edges fronBs to B, andB,, to By.

Parallel -functions: The second problem is related to the fact that the semantics
of multiple -functions at the beginning of a basic block is that they are executed in
parallel. It is a mistake to consider them as sequential instructions, for two reasons:
First, if a variable is both used and de ned in twefunctions, one might erase the
value before having used it. Here is an example:

Second, if sequentialized, interferences which did not exist beforehand are created:
interferences between arguments and results of thections. For instance, the two
codes of Figure 2.17 have been obtained from Figure 2.16a by replacinguhetions
with moveinstructions: on the rst basic block, and on a new basic block on the back
edge of the loop. On Figure (a), these instructions copies are sequentialized which
creates interferences betwegranda,, and between, andcs. The interference graph
is then 3-colorable. On Figure (b), parallel copies are used which keeps the graph
2-colorable as in the is the origina$A code.

Hence the parallel semantics offunctions is crucial and should be kept for as
long as possible. Of course, in the end, the nal code will be sequential, but it is better
to use instructions with parallel semantics until the very last moment so that one does
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not lose some information on the interference graph. In order not to forget the parallel
semantics of -functions, Hack [2007] proposes to replace multipiinctions by one
-function using a matrix notation:

X (X X232 225 %) 1 X2 il X
y (Y1, Y2175 5Yn) 1 Yo il Yn

: A> oL
z (21,2500 0320) Z 721 2l Zp

This means that if arriving, for instance, from the second incoming edge, all copies
[Xx I, [y VYal...,[z 2z]needto be performestthe same timeNote however
that multiple -functions at the beginning of the same basic blockat¢he only cause
of parallel copies creation. Two-functions in di erent basic blocks can also create
copies that should be parallel. This is the case for instance if a basic Blbak two
successors that contains respectively (b;::) andb  (a;::). If, when going
out-of-ssa the copies are added at the endBpthe two movesd bjand b  a]
must obviously be made parallel. The use of the matrix notation should not make us
forget that point.

In the end, it will usually be necessary to sequentialize the parallel copies. This
is possible without adding more code unless the copies represent a permutation of
the variables. In this case, swap instructions or temporary variables can be used for
example. We will not go deeper into details here since sequentializing copies will be
discussed Chapter 7, Section 7.3.4. We will nevertheless give here a classical example
of dead lock: the swap of two values.

! !
a a b

b b a

In this case, the swap between valuesaaind b coming from the second edge
cannot be sequentialized as the rst copy executed would overwrite the value needed
for the second. In the absence of swap instructions in the architéétarmther free
register needs to be used as a temporary value holder and the instructiors &

b;b t;] are performed. This is problematic if the register pressure at this point is
already equal t&, in which case a spill is needed.

To prevent the creation of arti cial interferences too early, it is best to represent
copies due to-functions using parallel copiesta;:b)  (b; a) in our example—which
we introduce in the next section.

2.3.7 Splitting and parallel copies

De nition 2.42. A parallel copyis a virtual instruction takingn arguments and de n-
ing n variables simultaneouslyfrom these arguments. The notation is

This is a fundamental instruction when dealing with program splitting. To split all
variables at one program point, one needs to duplicate all variables alive at this point,
and insert a parallel copy between all the variables and their duplicates. Trying to split
by inserting normal, i.e., sequentialized copies, would create interferences between

120r the possibility to emulate them, for instance by using tixeg.
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some variables and the duplicates of others. Parallel copies can be seen as a way to
“reorganize” values in variables, and are sometimes referred to as &sbade.”

However, there is no such hardware instruction. At best, one can nd instructions
to swap values in registers or perform up to a xed number of copies in parallel, e.g.,
four copies on a 4-wayLIw architecture, or emulate a swap by using three consecutive
XOR. In the end, parallel copies will need to be instantiated with actual machine code.
As said previously, these matters are discussed in Chapter 7.

2.4 Conclusion

In this chapter, we de ned notations and objects that we will manipulate in the next
chapters. We provided background information on register allocation, de ning pro-
grams, live-ranges and interference graphs. We discussed the colorability of the inter-
ference graph with regards to Maxlive, the maximum number of variables simultane-
ously alive, and introduced interesting graphs structures for interference graphs. Then,
we discussed possibilities of modifying the program when&aagisters are not suf-
cient to color the graph. Finally, we introduced tlesA form, which is concerned
by two results of ours: rst, the interference graph of a program usdeiis chordal
second, chordal graphs can be colored using the simple greedy algorithm of Chaitin
et al. [1981]: they are greedy-colorable, a property that we introduced in this chapter.
Please keep in mind that programs are always considered stricssanmdograms
are considered with dominance property. Also, the notion of interference if very impor-
tant for the shape of the interference graph, in particular, for any program point there
is a clique in the graph only if variables alive at the same time intedeen if they
have the same value. Finally, we will always consider that we have only one type of
registers during this thesis. In practice, dient classes exist, like integer and boolean
registers. For disjoint classes, they can be considered independently, but particularities
like register aliasing complicates the problem. These subtleties will be discussed in
conclusion, i.e., Chapter 8, along with more practical advices.
Using these grounds, we will build a new way of viewing register allocation in two
phases in the next chapters: rst, spilling with some splitting, second, coloring with
some coalescing.
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PROOF, n. Evidence having a shade more of plausibility than of unlikelihood.
The testimony of two credible witnesses as opposed to that of only one.

Ambrose Bierce (1842 — 1914), The Devil's Dictionary

What does the NP-completeness proof of
Chaitin et al. really prove?

The goal of register allocation is to map the variables of a program into physical mem-
ory locations (main memory or machine registers). Accessing a register is usually faster
than accessing memory, thus one tries to use registers as much as possible. When this is
not possible, some variables must be transferred, “spilled,” to and from memory. This
has a cost, the cost of the load and store operations, which should be avoided as much
as possible. Solving this problem has been a necessity since the very rst compilers.
And, although it is very simple to state, manycgts have been made to nd the best
possible solutions, as the problem is in practice quite complicated. We will continue the
introduction of this chapter with a long but hopefully meaningful explanation of why
people usually view register allocation as a dult problem, why this is not always

true, and why we propose to study, again, the complexity of this problem.

Classical approaches for register allocation are based on fast graph coloring algo-
rithms. A widely-used algorithm is the Iterated Register Coalesairg) proposed
by George and Appel [1996], a modi ed version of previous developments by Chaitin
et al. [1981]; Chaitin [1982], and Briggs et al. [1994]. In these heurissig#ling, co-
alescing(i.e., removing register-to-register moves), amdoring (i.e., assigning vari-
ables to registers) are done in the same framework. Priorities among these transfor-
mations are done implicitly with cost function§plitting (adding register-to-register
moves) can also be integrated in this framework. Such techniques are well-established
and used in optimizing compilers. However, there are several reasons to revisit these
approaches and register allocation in general. First, some algorithms not considered in
the past, because they were too time-consuming, can be good candidates today: proces-
sors used for compilation are now much faster and, for critical applications, industrial
compilers are also ready to accept longer compilation times. Second, the increasing
di erence on most architectures between the cost of a memory access and the cost of a
register access suggests to focus on heuristics that give more importance to spilling cost
minimization, possibly at the price of additional register-to-register moves. Finally,
there are many pitfalls and folk theorems concerning the complexity of the register
allocation problem that are worth clarifying.

This last point is particularly interesting to note. Chaitin et al. [1981] modeled the
problem of allocating variables of a programRoregisters as the problem of color-
ing, with R colors, the corresponding interference graph. By showing that any graph is
the interference graph of a program, and bec&@rsgh k-Colorability is NP-complete
[Garey and Johnson, 1979, Problem GT4], they proved that, in their model, deciding if
Rregisters are sucient to perform register allocation without any spill is NP-complete.
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And from this date up to now, heuristics have been used for spilling, coalescing, split-
ting, coloring, etc. As a consequence, the argument “register allodatgnaph col-
oring, therefore it is NP-complete” is one of the rst statements of many papers on
register allocation. The following quote comes from the introduction of an article by
Konstantinos Sagonas and Erik Stenman [2003], but many others can be found:

“In this case [global register allocation], control- ow enters the picture and
obtaining an optimal mapping becomes an NP-complete problem[...]"

This isnot what Chaitin et al. proved. Actually, going from register allocation to
graph coloring is just a way of modeling the problem, not an equivalence. In particu-
lar, this model does not take into account the fact that a variable can be moved from a
register to another using live-range splitting. Our impression was that there is a mis-
understanding of the implications of Chaitin et al.'s proof in the community. While
it is true that most problems related to register allocation are NP-complete, identify-
ing register allocation to graph coloring can make us forget what Chaitin et al.'s proof
actually shows. In particular, it is commonly believed that, in absence of instruction
rescheduling, it is NP-complete to decide if the program variables can be allocated to
R registers with no spilling, even if live-range splitting is allowed.

Until very recently, only a few authors addressed the complexity of register alloca-
tion in more details. Maybe the most interesting complexity results are those of Liber-
atore et al. [1999]; Farach-Colton and Liberatore [2000], who analyze the reasons why
optimal spilling is hard for basic blocks. In this case, the coloring phase is of course
easy because, after some variable renaming, the interference graph is an interval graph,
but decidingwvhichvariables to spill anavhereto spill them is in general dicult. They
call this phase “allocation,” as it decides which variables are allocated in memory and
which are allocated in registers, and drentiate it from the second phase, called “reg-
ister assignment.” In this phase, variables are mapped to registers, possibly removing
move instructions by coalescing, or introducing move instructions by splitting. When
loads and stores are more expensive than moves, such an approach is worth exploring.
It was experimented by Appel and George [2001] and also advocated by Knobe and
Zadeck [1992]; Hack et al. [2006].

The last example clearly states that, for a basic block, the problem lies in the
spilling, not the coloring. More recently, we discovered that, under Static Single
Assignment $sa) form, the interference graph of a program is chordal (see Theo-
rem 2.37). Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]
independently made the same observation. This theorems showsagyto decide
if R registers are sucient for a program undessA How come thessa case is not
covered by Chaitin et al's proof? Combined with the idea of spilling before color-
ing so that Maxlive R, this led Pereira and Palsberg [2006] to wonder where the
NP-completeness of Chaitin et al.'s proof (apparently) disappeared:

“Can we do polynomial-time register allocation by rst transforming the
program tassAaform, then doing linear-time register allocation for then
form, and nally doing ssaA elimination while maintaining the mapping
from temporaries to registers?”

All this needs to be done when Maxlive R of course, otherwise some spilling is
necessary. They show that, if register swaps are not available, the answer is “no” unless
P=NP. The NP-completeness proof of Pereira and Palsberg is interesting, but we feel it
does not completely explain why register allocation is dilt. Basically, it shows that
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if we decidea priori what the splitting points are, i.e., where register-to-register moves
can be placed (in their case, the splitting points are de ned by thunctions), then it
is NP-complete to choose the right coldréiowever, there is no reason to restrict to
splitting only at points given bgsA Actually, we will show that, when we can choose
the splitting points, when we are free to add program blocks to remove critical edges
(the standar@édge splittingechnique), then it is easy, except for a few particular cases,
to decide if and how we can assign variables to registers without spilling.

Hence, to answer the question: “Where did the complexity disappear?” a good
lead would be that splitting variables simpli es the problem. As®h splits variables
with multiple de nitions (see Section 2.3.1). Fabri [1979] already observed, working
on allocation of arrays into memory, that splitting could reduce the chromatic number
down to Maxlive. Of course, splitting has a cost, but only the cost of a move instruction,
which is often better than a spill. So the introduction of splitting raises some questions:

" When is Chaitin et al.'s proof applicable?

" What are the limits of Chaitin et al.'s proof?

How far can Chaitin et al.'s proof be extended to cover other cases?

This chapter acts as a second introduction to this thesis. We will present here the
preliminary work that led us to revisit register allocation. In a rst part, we will stress
Chaitin et al.'s proof on its weakest points, by successively patching the proof and
pointing to newly created weak spots. We tried to do it didactically, starting from the
original proof and acting as would act someone skeptical, constantly nding new points
to argue? Then we will illustrate the limits of this proof by showing two con gurations
under which the problem of knowing whetHeregisters are sucient or not becomes
easy—one of them being thlesAform. At this point, we will de ne what we think is
responsible for the complexity of this problem: the “multiplexing regions.” Whenever
there is no critical edge in these multiplexing regions, we will promote the practical
way of doing register allocation in two phases in place of the classical graph-based
algorithm in one phase. First phase: spill variables so that Maxlive becomes less that
R, and split variables so that the graph becorRexlorable. Second phase, color
while performing coalescing to reduce theeets of having split the program. Finally,
we will come back to the outline of this thesis and explain how the next chapters ow
from this one.

3.1 NP-completeness proofs

In this section, we will present variations of the NP-completeness proof of Chaitin
et al. [1981], to show how much modi cation of the problem it can endure, and what it
cannot.

3.1.1 Direct consequences of Chaitin et al.'s proof

Let us examine Chaitin et al.'s NP-completeness proof, a proof by reduction from
Graph k-Colorability [Garey and Johnson, 1979, Problem GT4].

INote that their proof forbid the use of register swaps, while for instance Hack et al. [2006], who actually

2For example: — Right,. .. buthat if | am allowed to...?

perform register allocation undesA consider they do have them.
3?
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returna+ X return b+ x returnc + X returnd + X

(©

Figure 3.1: Chaitin et al.'s reduction: program (c) built from a cycle of length 4 (a) and
its interference graph (b).

Problem: Graphk-Colorability

Instance. An undirected grapls = (V: E) and an integek.

Question Is it possible to color the graph withcolors, i.e., is there a cola(V) in
f1;:::;kg for each vertex 2 V, such that(v) , c(u) for each edgeu v) 2 E?

This problem is well-known to be NP-completeGfis arbitrary, even for a xed
k 3.

For the reduction, Chaitin et al. [1981] build a program with+ 1 variables, one
for each vertexu 2 V and an additional variable, as shown on Figure 3.1. For each
(u;v) in E, a blockB,,, de nesu, v, andx. For eachu 2 V, a blockB, readsu and
X, and returns a new value. Each bldgk, is a direct predecessor in the control- ow
graph ofB, andB,. An entry block switches to all block8,,. ForG cycle of length
4, on Figure 3.1a, the program is given on 3.1c, and its interference graph is on 3.1b.
This is the same graph & plus a vertex for the variablg, connected to any other
vertex; thusx must use an extra color. As sudh,is R-colorable if and only if (i)
each variable can be assigned to a unique register for a total of aRmoktregisters.

This is what Chaitin et al. proved: for such programs, deciding if one can assign the
variablesthis way toR 4 registers is NP-complete.

What do we mean by “this way?” It means that assigning variables to registers as if
coloring the vertices of the interference graph is NP-complete. This is not the only way
of coloring variables, which are not atomic, localized objects as the vertices of a graph
are: a variable has a life that starts at its de nition and can last for a long time. Why
should a variable be forced to reside in only one place all along its life? This introduces
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the problem of “splitting” variables, which we will explain in the next section.

3.1.2 Splitting variables in Chaitin et al.'s proof

We recalled in Chapter 2 the possibility giblitting the live-range of a variable. Basi-
cally, introducing a copy creates two new live-ranges in place of the rst one, which can
be assigned to dierent places. Chaitin et al.'s proof, at least in its original interpreta-
tion, does not address this possibility. Each vertex of the interference graph represents
the complete live-range as an atomic object that must always reside in the same regis-
ter. Furthermore, the fact that the register allocation problem is modeled through the
interference graph loses information on the program itself and the exact location of in-
terferences. This is a well-known fact, which led to the development of margyefit
register allocation heuristics, with early development by Chow and Hennessy [1984]
and later by Callahan and Koblenz [1991]; Cooper and Simpson [1998], or Lueh et al.
[2000], but with no corresponding complexity study even though their situations are
not covered by the NP-completeness proof of Chaitin et al.

This raises the question: What if splitting live-ranges is allowed? We suppose that
it is possible to insert as many copies as we want, anywhere on any basic block. The
following theorem proves it does not make the problem any easier.

Theorem 3.1. It is still NP-complete to decide if R register are enough for a program
even if variable splitting is allowed (on basic blocks).

Proof. Let a be a node in the initial graph, i.e., a variable elient thanx in the pro-
gram. The key in Chaitin et al.'s proof was themust reside in the same register in
blocksB, and all blocksB,, for y neighbor ofa in the graph.

Let us consider one neighbgiof a and suppose that the live-rangeaofias been
split. Whatever the splitting, the value afesides in some variable on the edges going
to block B, since this block needs the valueafLet us calla, the variable holding the
value ofa on the edge fronB,, to B,. This means that, somewhere insiglg, there
isacopy by alor[ay, @] whereg; is a split variable of (unlessa, = a, i.e.,
ais not split on this block). Conversely, there should be a capy [ a,] somewhere
on By, before the use ai. But supposa has another neighbgf,® then there are two
copieshy ajandfa;  ap] acting concurrently orB,: the one executed last will
nally sets the value o&. Hence the resulting code is false, unless lathnday share
the same register. This is possible, since they are never dynamically alive at the same
time: they do not interfere. But if two variables are restricted to be in the same register,
it is strictly equivalent to replace them with a common nameaglbr y neighbor ofa
can be replaced by a common variable, gy

This reasoning, when applied to all variables of the program, shows that, for all
nodesv, and whatever the splitting, it the value of the corresponding variable must
reside on the same variabl@ on all edges going to basic blodk,. For the same
reason, variabl@ must also reside on the same variaxflen all edges going to return
blocks.

Consider now all primed variables. Their interference graph is the same as the
original program without splitting, and is a subgraph of the interference graph of the
split program. Hence, nding a coloring of the split interference graph would give a
solution to the initial problem, and conversely, a coloring of the initial program can be

3If every node in the graph has only one neighbor, there is no coloring problem.

L
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extended to a solution to the split program (give to all split variableglodé same color
asv).

Therefore, the problem remains NP-complete and Chaitin et al.'s proof holds even
if live-range splitting is allowed.

Why did splitting live-ranges not help here? This is because the control- ow edges
from By, to B, arecritical edges, i.e., they go from a block with more than one succes-
sor to a block with more than one predecessor. Hence, placing code at the source of the
edge—at the end of B,,—con icts with paths taking another edge, and placing code
at the destination of the edge—at the beginning 8fa-con icts with paths arriving
from another edge. When critical edges are “connected” by their source or destination
basic blocks, this creates an “atomic” region (the edges) where code cannot be inserted.
On this region, values cannot be moved between registers, i.e., variables must be as-
signed to a unique register. Hence, splitting cannot help for register allocation in these
regions. We will de ne later in Section 3.3 these regionsrastiplexing regionghat
create atomic objects hard to color. An example of such a multiplexing region is the
one containing all the critical edges of Chaitin et al.'s proof: the edges from blocks of
type By, to blocks of typeB,,.

To conclude, Chaitin et al's original proof can be interpreted as fol-
lows. Itis NP-complete to decide if the program variables can be assigned
to R registers, even if live-range splitting is allowed, but only when the
program has critical edges that cannot be split, i.e., when one can neither
change the control- ow graphdfG) structure nor add new basic blocks.

3.1.3 Split points on edges

Pereira and Palsberg [2006] pointed out that the construction of Chaitin et al.—as done
in Figure 3.1—is not enough to prove anything about register allocation thresigh

we will explain why in Section 3.2.1. In fact, Chaitin et al.'s proof does not hold
whenever it is possible to add basic blocks on edges, and split variables using copies
on these blocks. For instance, Figure 3.2 shows how to allocate the code of Figure 3.1c
with 3 registers. The variable de nitions of each block of typg, are arbitrarily put

in 3 registers—independently of other blocks, ergfor u, r, for v, andrs for x. Then

it is decided that the variablasand x in each block of typeB, are always expected

in registersr; andrs. The coloring can then be “repaired” at each join point, when
needed, thanks to an adequate re-mapping of registers—here a mowve foom—in

a new block along the edge froBy,y to B,.

This implies that, whenever no coloration can be found for a graph, it may be possi-
ble to split some variables and some edges in order to be able to do register assignment.
This has a cost, the cost of the added copies and the jumps to the new basic blocks, but
which is possibly more interesting than spilling some variables to memory to make
some space in registers. This lead us to the following important question for practical
register allocation:

What if both live-range splitting and critical edge splitting is allowed?

A similar question is addressed by Pereira and Palsberg [2006], to which they an-
swer “no,” the problem is still NP-complete, using a reduction fromkteelorability
problem for circular-arc graphs, which is NP-completé ifs a problem input [see
Garey et al., 1980, Problem GT4]. Basically, their idea is to start from a circular-arc

42



3.1. NP-COMPLETENESS PROOFS
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Figure 3.2: Splitting Chaitin's program makes it 3-colorable.

graph, to cut all arcs at some point to get an interval graph, to view this interval graph
as the interference graph of a basic block, to add a back edge to form a loop, and to
make sure thdt variables are live on the back edge. This ensures that variables cannot
be permuted on the back edge, supposing one needs a free register to perform permu-
tations. Then, coloring the basic block so that no permutation is needed on the back
edge is equivalent to coloring the original circular-arc graph. This is the same tech-
nigue used in Garey et al. [1980] to reduce the coloring of circular-arc graphs from a
permutation problem. The proof of Pereira and Palsberg shows that if we restrict to the
split points de ned byssa itis di cult to choose the right coloring of tresArepre-
sentation and thus decidekifegisters are enough. It is NP-complete even for a simple
loop and a single split point. However, the drawback of this proof is thétisif xed,

this speci ¢ problem is polynomial as is thkecoloring problem of circular-arc graphs,

by propagating possible permutations. We now show that, with a simple variation of
Chaitin et al's proof, we can get a similar NP-completeness result, even for akxed

but for an arbitrary program.

Theorem 3.2. If permutations need a free register, it is still NP-complete to decide if
R register are enough, even when critical edge splitting and variable splitting at the
entry or exit points of basic blocks are allowed, and even for a xed R

Proof. Let us consider an arbitrary gragh= (V. E), and the corresponding program

built using Chaitin et al.'s construction. Let us split the critical edges and add instruc-
tions to the new basic blocks as shown on Figure 3.3c. The program has three variables
U, Xy, Yu for each vertexu 2 V and a variablex,, for each edgel(v) 2 E. For each

(u;v) 2 E, a blockB,,, de nesu, v, andx,.. For eachu 2 V, a blockB, reads, y,, and

Xy, and returns a new value. For each bl&l, there is a path to the bloclg, andB,.

Along the path fromBy,, to B,, a block readsy andx,,, to de ney,, and then de nes

Xu- An entry block switches to all blockB,.,. The interference graph is no& plus

some triangles: for each nodgthere is a triangle consisting of; i,; y), and for each

’
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Xd:c

Yd

() (b)

Ba Bp Be By
returnx, + ya + a returnxp + yp + b returnxe +yc + ¢ returnxg +yq + d
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Figure 3.3: Chaitin-like construction with critical edge and variable splitting: from a
cycle of length 4 (a), program (c) is built, with interference graph is (b).
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edge (1;Vv), there is a triangle consisting af;{; ). See an example on Figure 3.3.
Hence, the interference graph is 3-colorabl&iitself is 3-colorable.

This program does not have any critical edge, so placing permutations along the
edges is equivalent to placing them on entry or exit of the intermediate blocks, between
blocks of typeB,., and blocks of typé3,. We claim that the program can be assigned
to 3 registers i G is 3-colorable. The point is that one needs a free temporary register
to perform a permutation, indeed, swappagndb for instance requires the following
instructions to be executedt [ a;a  b;b  t]. Since, for eaclu andv, exactly 3
variables are live on exit d,., and on entry o8B, andB,, no permutation—except the
identity—can be done if only 3 registers are available. Thus the live-range of any vari-
ableu 2 V cannot be spljti.e., each variable must be assigned to a unique color. Using
the same color for the corresponding vertexaigives a 3-coloring 06. Conversely,
if G is 3-colorable, assign to each variabléhe same color as the vertexIt remains
to color X, Xu, andyy. This is easy: in blocIB,.,, only two colors are used so far: the
colors foru andv, sox,, can be assigned the remaining color. Finakyandy, are
assigned the two colors not usedibfsee Figure 3.3b again to visualize the cliques of
size 3). This gives a valid register assignment.

To conclude, this slight variation of Chaitin et al.'s proof shows that, if the splitting
of live-ranges is allowed on edges—aanly on edge$—, it is still NP-complete to
decide ifR registers are enough. This is true even for a ¥@d 3 and even for a
program without any critical edge. The proof is based on the fact that it is not possible
to split at points where Live equal®

However, we made two important assumptions in our proof: First, we allowed
the splitting of variables to take place only on edges—or, equivalently, only at the
entries and exits of blocks while splitting critical edges—while we forbade it inside
basic blocks. This is what a traditional out-e$A translation does (see Section 3.2.1).
Second, we assumed that one needs a free register in order to perform a swap or per-
mutation. We argue in the next sections that these hypotheses may not be very realistic.

3.1.4 Split points anywhere

The study of Section 3.1.3 does not completely answer the question. Indeed, who said
that split points need to be on entry and exit of blocks exclusively? Why not allow reg-
isters to be shued at any program point, for example in the middle of a basic block, if
this helps performing a permutation? Consider Figure 3.3c again. The register pressure
is 3 on any control- ow edge; this was the key for the proof of Section 3.1.3. But it

is not 3 everywhere: it drops to 2 between the de nitions of eacand eachx,. At

this point, some register-to-register moves can be inserted to permute two colors and,
thanks to this, 3 registers are always enough for such a program. One can color inde-
pendently the top (including the variablgg and the bottom (including the variables

Xv), then place adequate permutations between the de nitioggafidx,. This opens

the way to the following question:

Is it really NP-complete to decide R registers are enough when splitting
can be done anywhere and swaps are not available?

None of the previous proofs answers this question, and certainly not the initial proof
of Chaitin et al. The problem with the previous construction is that there is no way, with

4Splitting at the borders of basic blocks is equivalent: it consists of splitting on every entering or leaving

¢

edge.
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Yu Xu Yu Xu Yu Xu
(@) (b) (©

Figure 3.4: Three cases: register pressure drops to 2 (a) or is constant to 3 (b), (c).

simple statements, to avoid a program point with a low register pressure while keeping
the reduction with graph 3-coloring. This is illustrated in Figure 3.4: (a) illustrates
the previous situation where the register pressure drops to 2, and (b) a situation with a
constant register pressure equal to 3, but that does not keep the equivalence with graph
3-coloring—x,y would interfere withy, andy,. The only way is depicted in (c): one
needs an instruction that can de ne more than one value. It is then easy to modify the
proof and the following theorem holds.

Theorem 3.3. If there exists instructions that can de ne more that one value at a time,

but swaps of variables are not allowed, it is NP-complete to decide if R registers are
enough, even when critical edge splitting is allowed and variable splitting is allowed

anywhere.

Proof. In the proof of Theorem 3.2, for each variahlethe variables of type, and

yu can be de ned by a statement,(y,) = f(v; Xyv) that consumes and x,, and
producesy, and x,, simultaneouslyas depicted by Figure 3.4c. Now, the register
pressure is 3 everywhere in the program and thus 3-colorable i the program can
be mapped to 3 registers. Thus, it is NP-complete to deciBeéhisters are enough
if two variables can be created simultaneousjya machine instruction and swaps are
notavailable.

In this proof, we used an instructioh capable of producing at least two values.
Such a function should consume and produce the same number of values—at least 2—
otherwise the register pressure would be lower just before or after it and a permutation
could be inserted there. Notice the similarity with circular-arc graphs: as mentioned by
Garey et al. [1980], coloring circular-arc graphs remains NP-complete even if at most
2 circular arcs start at any point, but not if only one can start.

However, it should be noticed that if such a machine instructierists, it is likely
that a register swap is also provided in the architecture. We will discuss such archi-
tectural subtleties in Chapter 8, Section 8.1.2.1. The case where a swap instruction
exists is easy since any permutation can be done. In thatRasgjsters are enough
i R.

We will see later the remaining case, where register swaps are not available but
at most onevariable can be created at a given time—as it is in traditional sequential
assembly-level code representation. This case does not belong to this section since it is
notan NP-complete case.
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Chaitin et al. - -

Thm. 3.1 - -

Thm. 3.2 on edges only -

Sec. 3.2.1%sA on edges only -

Thm. 3.3 anywhere

Thm. 3.4 (Col. prop.) anywhere

Forbidden Allowed/Yes - Unimportant Mandatory

Table 3.1: Summary of complexity proofs using Chaitin-like reductions from Sec-
tion 3.1, with also polynomial results of Section 3.2.

3.1.5 Summary and discussion of complexity proofs

In the previous sections, we tried to give a pedagogic introduction to the complexity of
register allocation. Starting with the original NP-completeness proof of Chaitin et al.
[1981], the rst step was to argue that register allocation has more freedom that graph
coloring, in the sense that variables can be assigned trelit registers at derent
points of their lives—at the cost of additional register-to-register copies. And the orig-
inal proof, often cited wrongly, does not say anything regarding this view of register
allocation.

Theorem 3.1 proves that even with live-range splitting, the problem remains NP-
complete because code cannot be placed on critical edges. The next step was to state
that code can be placed on critical edges by splitting them and adding basic blocks,
but Theorem 3.2 states this will not help in the absence of swap instruction since the
register pressure can be increased on all edges to prevent permutations to take place.
This proof did not hold if permutations could be placed anywhere and not restricted to
be only on edges. But this more realistic case is not easier if it possible to de ne two
variables at the same time, and one still does not have any swap instruction. Table 3.1
recall these results visually, along with the two polynomial results that will be described
in the next section.

At this point, it seems that whatever is ingeniously included in register allocation
to break the complexity piteously fails. But astute readers would have already guessed
that the more freedom there is in register allocation, the more constraints there are on
the architecture to keep the problem NP-complete. In particular, the last constraint is
probably not very realistic (a machine capable of de nes multiple values at a time, but
which cannot perform a swap). We would not beeaded if people started to say that,
in the last theorem, we where not only splitting variables and edges, but also hairs.
That is true.

But now, in the next section, we will see what can be done ifdwdave a swap
instruction, or ifno instruction can de ne two variables simultaneously, or when the
register pressure provides a free register to perform a swap. In practice, this is nearly

SDiscussions on whether this is possible or not will take place in Chapter 8.
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CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

BI‘OOt

as (ar;@2) ||bs (b1;b2) |[c3 (ci;c2) |[d3 (d1;d2)
returnaz + X returnbs + x returncz + X returnds + x

Figure 3.5: Original program of Chaitin et al.'s proof uncsn

always the case, and under these “standard” conditions, we completely leave in fact the
NP-completeness.

3.2 Polynomial solutions

In this section, we give some polynomial instances for register allocation. We also try
to explain where these solutions manage to “escape” the NP-completeness of Chaitin
etal.

3.2.1 Static Single Assignment

ssawas the motivation of this study, because of the recent discovery that aader
form, the interference graph of a program is chordal, hence easy to color. We will now
explain why, undessa we do not fall into one of the four cases of NP-completeness
depicted in Table 3.1.

The easiest way to understand why is by trying to transform the program of Chaitin
et al.'s original proof intassA This would result in the program shown on Figure 3.5,
where -functions are inserted at join points of the program. The semantics of
functions, as explained in Section 2.3.6, is that copies are placed on the incoming
edges. For instance, thefunction [as (a1; @2)] corresponds to adding the copy
[as a;] on the edge fronBy,, to B, and fag ay] on the edge fronB,, to Ba.
Moreover, we explained in Section 2.3.6 that the semantics of multifilmctions is
that they are executed in parallel, meaning that permutation are available.

In other words,ssaimplicitly considers that critical edges can be split and that
permutations can be performed on thednderssa, the variable splitting only occurs
on edges, but unlike the third line of Table 3.1 (Theorem 3.2), swap instructions are
considered to be available. In fact, if one adds actual (parallel) copies to the program
at the same place as a classical oussi-conversion, the interference graph of the
program becomes chordal, as is the interference graph wsdeBecause it is easy
to test ifk colors are su cient to color a chordal graph (see Section 2.2.2.4), it is then
easy to test iR registers are sucient for a program undessa Moreover, as chordal
graphs are perfect graphs, the condition is simply that Maxlive must be loweRthan
ie., R.
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3.2. POLYNOMIAL SOLUTIONS

3.2.2 Color propagation

Another interesting lead where to look for polynomiality comes from the fourth line of
Table 3.1, i.e., Theorem 3.3. It is stated there that if swap instructions are not available,
but some instructions can de ne multiple variables at the same time, the problem is
still NP-complete. We have seen that having swap instructions makes the problem
polynomial, which is whassaassumes. We will now study the case where there is no
swap instruction, but all instructions de ne at most one variable at a time. We believe
this case is more realistic that the requirements of Theorem 3.3, but we prefer to delay
these discussions until Chapter 8 in order not to lose our focus, which is trying to be as
complete as possible when evaluating the possible conditions for Chaitin et al.'s proof.
The next theorem states this case is polynofhial.

Theorem 3.4. If blocks can be introduced to split critical edges, if live-range split-
ting can be done anywhere and if instructions can de ne at most one variable, it is
polynomial to decide if R registers are enough, in the case of a strict program.

The idea is that permutations can always be performed whenever there is a free
register; and if there is none, there is no choice for coloring as explained by Figure 3.4b.
More precisely, if > R, it is not possible to assign the variables of a strict pro-

gram toR registers without spilling, as two simultaneously live variables interfdfe.

< R, it is always possible to assign variablesRoegisters by splitting live-ranges
and performing adequate permutations. When R, the same occurs for a point
with register pressure strictly less tHata color mismatch can always be repaired by
an adequate permutation, thanks to an available register. Thus, for a strict program,
the only problem may come from the sequences of program points where the register
pressure remains equal B But, unlike Section 3.1.4 where the degree of freedom
in choosing colors—at least 2—leads to NP-completeness, the fact that, here, at most
onevariable can be de ned at a time simpli es the problem—the newly created vari-
able has no choice but being assigned to the same color as the dying one the example
showed previously on Figure 3.4b). This doest mean thaRR registers are always
enough, but it is easy to decide if this is the case. To prove this fact precisely, we need
to de ne formally what we mean byolor propagation In the following proof, we will
exhibit an algorithm that answers in polynomial time the question whé&hegisters
are su cient or not. In should be noted that this algorithm is not intended to be used
for practical register allocation: it would perform poorly as there is no mechanism to
minimize the number of permutations inserted. The way colors are chosenrgredt
connected components (randomly) would produce a lot of ghtode between them,
without any coalescing ert to remove them.

De nition 3.5 (Color propagation) Liveness analysis de nes, for each instruction

s, live_in(s) and live_ou(s), the set of variables alive just befoseand just after

s. These sets can be colored locally, propagating the colors from instruction to in-
struction, i.e., coloring variables in neighbor sets with the same color, following the
control- ow forwards or backwards, i.e., considering the control- ow as undirected.
More formally, coloring a statemer#t means de ning two injective mapsol_in(s)

6Actually, it is also polynomial if instructions like&b)  f(c)] exist. Indeed, only one variable is used
and two are de ned, which means that befdrehere was one free register. This is a case for instance with
aload64 that load a 64-bits value into two 32-bits registers.

7 Notice that it is only true for atrict program (we leave the non-strict case open), and with the relaxed

¢

De nition 2.8 of interference where two variables having the same value interfere.
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CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

(resp. col_outs)) from live_in(s) (resp. live_ou(s)) to [1:::k]. When colors prop-
agate from a statemeist to a statemens,, forwards,col_in(s;) is de ned so that
col_in(sy)(X) = col_ou(s;)(x) for all x 2 live_in(sy)\ live_outs;) and di erent colors
are arbitrarily picked for the other variables. The same is done to deoheou(s,)
from col_in(s;). When propagating backwards, the situation is symmaetak;ou(s;)
is de ned fromcol_in(s;), thencol_in(s;) from col_outs,).

Below, when explaining the ect of propagation, we will assume a forward prop-
agation; for the backward one, exchange the xes “in” and “out.” Of course, both
forward and backward propagation can appear during the execution of the algorithm.

Proof of Theorem 3.4Let us consider only the subgraph of the control ow graph de-
ned by the program points where the register pressure is equd| i@., the propa-
gation takes place between two instructiga@nd s, such that bottive_ou(s;) and
live_in(sy) haveR elements. We claim that, R registers are enough for each con-
nected component of this graph, there is a unique solution, up to permutations of the
colors, except possibly for the séitee_ou(s,) where the propagation stodivé_in(s;)

for backwards propagation). Indeed, for each connected component, start from an ar-
bitrary program point and an arbitrary coloring of tRevariables alive at this point.
Propagate this coloring, as de ned above, backwards and forwards along the control
ow until all points of the component are reached. In this process, there is no ambigu-
ity to choose a color: First, there is no choice for de nieg_in(s;) from col_ou(s;)
sincelive_ou(s;) = live_in(s,) (in generallive_in(s;)  live_ou(s;) becauses; can

have more than one successor, but since both setshhalements, they are equal);
Second, iflive_ou(s,) hasR elements, then eithdive_ou(s,) = live_in(s,) or, as

s, de nes at most one variable, there is a unique variabliévan ou(s;) nlive_in(s;)

and a unique variable ilive_in(s;) nlive_ou(s,): these two variables must have the
same color, and there is no choice when de nowl_ou(s,) from col_in(s,) either.
Therefore, for each connected component, going backwards and forwards de nes, if it
exists, auniquesolution up to the initial permutation of the colors. In other words, if
there exists a solution, it can be de ned by propagation for each connected component.
Moreover, if propagation reaches a program point already assigned and if the colors do
not match, this proves th&registers ar@ot enough.

Finally, if the color propagation on each connected component provided a solution,
thenR registers are enough for the whole program. Indeed, the rest of the program—
where register pressure is less tiHnr-can be colored in a greedy (but not unique)
fashion. Upon reaching a point already assigned, a possible color mismatch is easily
repaired: an adequate permutation of colors betvgg@mds, is inserted: in the same
basic block ass,, if s, is the only successor of (resp. predecessor for backward
propagation), or in the same basic blocksasf s, is the only predecessor sf (resp.
successor). This is always possible because there is no critical edge and there are at
mostR 1 alive variables at this point.

Summary of the algorithm. How to decide ifR registers su ce when R, and

color when possible? First propagate colors, following the control ow along program
pointswhere the register pressure is exactly K a program point is already colored

and the colors do not match, more spilling needs to be done. Otherwise, perform a
second propagation phase along all remaining program points: if a program point is
already colored and the colors do not match, a permutation of atRodt registers
solves the problem, using an extra available register.
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3.3 Explanation of complexity

The two previous sections gave us some good insights on the conditions under which it
isdi cult or easy to decide Rregisters are enough or not for register allocation. The
last NP-completeness result, Theorem 3.3, makes us think that this problencigdtdi

only for very speci c architectures. Such architecture should provide instructions that
de ne more than one variable at a time, but should not allow the swapping of variables.
We believe that this is not realistic at all, and discussions on this will take place in
Chapter 8. On the other hand, the two polynomial instances rely on the fact that critical
edges can be split so that she code can be added to them. The questions are then:

“Why isitdi cult when edges cannot be split?”
“Where does the complexity go when edges are split?”

A clue to answer the second question is that splitting inserts basic blocks and
copies, which has a cost: the additional instructions—jumps and moves that cannot
be scheduled with the rest of the code—impact the performance of the program. Try-
ing to minimize this cost is the goal of the coalescing, which aims at removing the
copies between variables in a program. Knowing if it is possible to remove all the
copies is di cult since, by doing so, one would get back to the original problem again.
So, the goal is to nd the best trade-premoving most of the copies while still having
the bene t of the splitting, i.e, easily answering the question whefhergisters are
su cient or not. By splitting, the complexity of answering this question is transferred
to the register coalescing problem. Its complexity will be discussed in Chapter 5.

As for the rst question, we already pointed out this has to do with having multiple
critical edges “connected” either by their source or their destination. We will now
de ne more clearly what we call the “multiplexing regions.”

De nition 3.6. A multiplexing regioris a maximal connected set of ow edges, where
two edges are said connectedthey come from the same basic block or they go to
the same basic block. Exits and entries of these basic blocks are respectivatyrihe
points and exit pointsof the multiplexing region, hence de ning thHeordersof this
region.

It is more interesting to restrict multiplexing regions to contain only edges that
cannot be split—or that one does not want to split. In that case, it can be viewed as a
solid part of the program, wherein no modi cation can be done, instead of a collection
of multiple independent program points being placed oreént edges. Then, the
notion of “atomic” region can be de ned, which is a maximal connected seiof
splittableedges. From now on, we will always suppose that multiplexing regions are
atomic. Otherwise, it is always possible to add empty basic blocks to edges that can be
splitin order to have only regions that cannot be split.

Variables of multiplexing regions must be colored, which means the interference
between variables must be known on these regions, which depends directly on the
notion ofliveness There are two kinds of variables alive on multiplexing regions:

"~ Variables that go through the region, i.e., which are live-in of any of the exit
blocks of the multiplexing region. These variables are of course live-out of all
the entry blocks that have edges going to these exits blocks since we consider
only strict programs. Inside the multiplexing region, these variables are said to
be alive on the edges going from the entry blocks where they are live-out to the

¢

exit blocks where they are live-in. They are calle@-through variables
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~ Under ssa additional variables are alive on multiplexing regions: the vari-

ables de ned by -functions on exit points of the multiplexing region, called
-variables Since the region is atomic, these variables cannot be de ned on the

incoming edges since that would be “inside” the multiplexing region. Hence,
in the future, such a variable will have to be de nbdforeentering the region
and should then be considered alive on the multiplexing region, i.e., live-in of
the exit block de ning it, but, more importantly, also live-out of the entry blocks
predecessors of thefunction®

It is now easy to know which variables interfere in a multiplexing region, using a
de nition of interference from Chapter 2. For instance, with the relaxed De nition 2.8,
a andb interfere on a multiplexing region if there is a point inside the region where
they are both alive, for instance on an edge, on an entry point or on an exit point. Re-
nements using the values of variables can be used, but this is not the point. The point
is that on an atomic multiplexing region, there exists an interference graph that must
be colored. A consequence of Theorem 3.1, which states that splitting variables does
not help if no edge splitting is allowed, is that any graph can be the interference graph
of a multiplexing region. Indeed, we will show it by re-writing more conceptually the
proof of this theorem.

Proof of Theorem 3.1 using multiplexing regioria. Chaitin et al.'s proof, the critical
edges going from blocks of ty#,, to blocks of typeB, form a multiplexing regior.
These edges are considered non-splittable, hence the multiplexing region is atomic.
Let H be the interference graph of the program (i&plusfxg. Consider a splitting
of the variables, an#i® the corresponding interference graph. Splitting a variable can
occur only outside the multiplexing region. Hence, for any variabiteH, there exists
a duplicatea’ of a—which can bea if it is not split in H%—such that the live-range
of a° restricted to the multiplexing regioris exactly the same as the live-rangeaof
in the non-split program (also restricted to the region). These “micro live-ranges,” the
live-ranges of the duplicates restricted to the multiplexing regionnaresplittable
hence must be colored withumiquecolor.

In Chaitin et al.'s construction, for an edge; {) of G, there is a blockB,,, with
de nes the two variables: they are both alive at the end of this block. This is an
entry point of the multiplexing region, henceandv interfere inside the region. So,
the duplicates® andV° of u andv alive in the multiplexing region also interfere, and
H HC% Hence a coloring oH° provides a coloring foH. Reciprocally, a coloring
of H can be easily extended to a coloringtéf since all variables itH® H form
independent cliques of size two or three (their live-ranges are restricted to the basic
blocks).

What are the consequences of this proof? Multiplexing regions de ne parts of the
program that are not modi able and their interference graph can be any graph. In
atomic multiplexing regions, the variables cannot be split hence performing register al-
location on these regions is NP-complete. In general, a program can be viewed as many
atomic regions. Atomic regions cannot be split, and seeode can only be placed be-
tween them. Multiplexing regions are atomic regions, and if swaps are allowed, atomic
regions inside a basic block are the instructions (no code can be added “in the middle”

8This view is equivalent as going out 88Alike Sreedhar et al. [1999] do, by adding copies of arguments
and de nition and renaming copies with a common name. Thariable would then be this common
variable.

9That is, ifG is a connected graph, which can be considered without loss of generality.
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of an instruction). Else, they are contiguous program points where Live eBdéls
Each atomic region has its “chromatic number,” i.e., the minimum number of colors
required to perform register assignment on the region. For a basic atomic region like
an instruction, the chromatic number is simply the maximum of the size of the live-in
set and the size of the live-out set. But for arbitrarily complicated multiplexing regions,
it is NP-complete to compute this number.

3.4 Register allocation in two phases

This study showed two important facts. First, the dulty comes from the presence
of non-splittable critical edges. Second, if critical edges can be split, decidirRg if
registers are enough is easy unless under strong architectural constraints. This is not
what Pereira and Palsberg [2006] proved in their article “Register allocation after clas-
sical ssA elimination is NP-complete.” For their proof, they use a reduction from the
k-colorability problem for circular-arc graphs, by increasing the register pressure on
the back-edge of a loop so that no permutation resulting fronfumction at the begin-
ning of the loop can be performed on the back-edge. Although similar to the result of
Theorem 3.1, there are two main @rences with our results: First, circular-arc graph
k-coloring is polynomial ifk is xed [Garey et al., 1980], while our result holds even
fora xed k 3; Second, and more importantly, they only considered splitting at the
points de ned byssa but, as said before, we could split elsewhere.

On the contrary, our study shows that, in most cases, it is easy to de&dedf
isters are enough. We will see in Chapter 7 that what can be done if there are edges
that cannot be split. What does this imply for register allocation? In Chapter 2, Sec-
tion 2.2 was devoted to the coloring of the interference graph. We explained that, since
nding if R colors are su cient to color a graph is NP-complete, a heuristic was used:
Chaitin's simpli cation scheme (see Section 2.2.1.2). Our study shows that, by using
live-range and edge splitting, it is now possible to know in polynomial time if there is
su ciently many registers. This motivates the need for revisiting register allocation us-
ing graph coloring. Traditionally, spilling and coloring were intertwined because “how
much you need to spill” was dependent on “how good you can color” the interference
graph. Having a polynomial test now allows us to use algorithms with two distinct
phases:

First phase. Spill variables untiR registers are sucient;
Second phase Color variables while minimizing the number of remaining splits.

We think that separating register allocation into two independent parts gives a ner
control over the problems of spilling and coalescing. We can put mooet ¢o solve
them separately, instead of having to deal with the both of them together.

A practical register allocation scheme using two phases. Critical edges can often

be split. Of course this has a cost, usually the cost of an indirection—onejumpe
instruction compared to the original edge—and the cost that the code on the edge can-
not be scheduled with code on other basic blocks. In that case, we present here an
example of register allocation in two phases:

101f > R, we already know thaR registers are not sucient, so we consider the case where R.
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Pre-phase. Gothroughssa—or any representation of live-ranges as subtrees of a tree.
That s, consider that derent variable de nitions belong to derent live-ranges.

First phase. Spill somevariableif necessary. At this stage, it is easy to decidR if
registers are enough: this is possibleNaxlivel! is less tharR (because of
Corollary 2.39). IfR registers are not enough, additional splitting will not help
as this leaves Maxlive unchanged, so spilling some variables is necessary.

Second phase Color the variables with some coalescing to remove as many copies
inserted byssaas possible.

Post-phase.Inserttheremainingcopies either on new basic blocks—from split critical
edges—or at the end of predecessor basic blocks for normal edges.

The rst and fourth points, are called “pre-" and “post-" phases since they are
not algorithmically di cult: going tossais a well-known exercise and adding the
necessary copies is ..., well, necessary (but still requires some attention, for instance
when sequentializing copies, see Section 2. A&ontrario, the phases labeled “First”
and “Second” are the important and diult ones: spilling is generally considered as
adi cult problem, and the coalescing tries to minimize the number of copies that will
be inserted by the post-phase.

Remaining questions. This view of coloring through permutations insertion is the
base of any approach that optimizes spilling rst. This approach is, for example, advo-
cated by Knobe and Zadeck [1992]; Appel and George [2001] and Hack et al. [2006]:
some spilling and splitting are done to reduce Maxlive to at rRaseforehand. This
approach is performed in its most extreme form by Appel and George [2001]: live-
ranges are split averyprogram point in order to solve spilling optimally, hence there

is a potential permutation between any two program points. But schemes in two phases
like these ones—and the one we propose—Ileave open three questions. This thesis aims
to answer these questions, at least partially:

" What (and where) to spill iR registers are not sucient?

~ How to minimize the cost of the splitting of variables and edges?
(coalescing problem)

" What can be done if critical edges cannot be split?

3.5 Conclusion

In this chapter, we tried to clarify where the complexity of register allocation comes
from. Our goal was to recall what Chaitin et al.'s original proof really proves and to
extend this result. The main gquestion addressed by Chaitin et al. is of the following

type:

Can we decide iR registers are enough for a given program or if some
spilling is necessary?

Hysing De nition 2.8 of interference, where values are not taken into account. One can assume a copy
folding pass was done undgsAto rename equal variables with a common name.
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3.5. CONCLUSION

3.5.1 Summary of Results

The original proof of Chaitin et al. [1981] proves that the register allocation problem
is NP-complete when live-range splitting is not allowed, i.e., if each variable can be
assigned to only one register. We showed that the same construction proves more: the
problem remains NP-complete when live-range splitting is allowed but not (critical)
edge splitting.

Recently, Pereira and Palsberg [2006] proved that, if the program is a simple loop,
the problem is NP-complete if live-range splitting is allowed but only on a block on
the back edge, and only if register swaps are not available. This is a particular form of
register allocation throughsa The problem is NP-complete R is a problem input.

We showed that Chaitin et al.'s proof can be extended to show a bit more. When register
swaps are not available, the problem is NP-complete for a Red3 (but for a general

CFG), even if the program has no critical edge and if live-range splitting can be done on
any control- ow edge, i.e., on entry and exit of blocks, but not inside basic blocks.

These results do not address the general case where live-range splitting can be done
anywhere, includingnside basic blocks. We showed that the problem remains NP-
complete only if some instructions can de ne two variables at the same time but register
swaps are not available. Such a situation might not be so common in practice. For a
strict program, we can answer the remaining cases in polynomial time. If MaxIRe
and register swaps are available, or if MaxliweR, thenR registers are enough. If
register swaps are not available and at most one variable can be de ned at a given
program point, then a simple greedy approach can be used to deEidegfsters are
enough.

This study shows that the NP-completeness of register allocatioot ttue to the
coloring phase, as may suggest a misinterpretation of the reduction of Chaitin et al.
from Graph k-Coloring. If live-range splitting is taken into account, decidingRf
registers are enough or if some spilling is necessary is not as hard as one might think.
The NP-completeness of register allocation is due to three factors: the presence of
critical edges which create multiplexing regions where variables are hard to color if
they are non-splittable, the optimization of spill costR(ikgisters are not enough) and
of coalescing costs, i.e., choosing which live-ranges should be merged while keeping
the graphR-colorable.

3.5.2 Organization of the thesis

In this thesis, we defend the idea of performing register allocation in two phases— rst
spilling then coloring using coalescing—instead of the classical scheme that intermixes
everything in a unique phase. While the classical scheme has the advantage of being
very simple in its original form (by Chaitin [1982]), or in the improved Iterated Register
CoalescingIRc) version by George and Appel [1996], it was designed this way mainly
because:

" Spilling depends on whether the coloring heuristic will work or not.
" Coalescing can help Chaitin et al.'s coloring heuristic.

But one disadvantage is that changes in the scheme amliito implement as the
whole allocator needs to be compliant: phases must be iterated (spilling introduces new
variables at stores and loads), coloring depends on spilling which depends on coloring,

etc.
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The discovery that the interference graph of a program ussleis chordal opened
new doors for the study of splitting techniques that simplify the coloring test: FRAre
registers su cient for allocation?” With such techniques, spilling does not depend on
the result of a coloring heuristic anymore: we know exaathenit is required or not,
which breaks the rst reason why register allocation is classically performed in only
one complex phase. Advantages for register allocation in two phases are multiple: bet-
ter control over each of the phases, no interplay between these phases—hence an easier
implementation since improvements on one phase are easier to try and to evaluate.

The rest of the thesis will be organized as follows. As the spill problem i€ it
for a general program, we will study its complexity f&sAprograms in Chapter 4. We
have indeed seen thasAis a useful splitting technique, and we gured it would be
pertinent to know better the complexity of the spill problem for programs uasger
form. Then we will study the complexity of the coalescing problem in Chapter 5, which
is the important optimization of the second phase in register allocation in two phases.
In Chapter 6, we will present advanced techniques for coalescing. Finally, Chapter 7
discusses the problem of non-splittable edges and permutation motion—a technique to
move added copies away from critical edges. In Chapter 8, the conclusion, we will
discuss practical subtleties for “real-world” register allocation in two phases.

¢
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Fear to let fall a drop and you will spill a lot.
Malayan proverb

Des petits trous, des petits trous, toujours des petits trous. . .
Serge Gainsbourg

On the complexity of spill everywhere
underssAForm

Preliminary note: this chapter is very technical but we felt it was more logical to place it
there, before the coalescing chapters, so as to keep the same order as in register allocation in
two phases: rst, spilling, then, coalescing. This chapter is a purely theoretical study on the
complexity of the spilling problem. We will not propose any practical solution, while we do

so for the coalescing problem. As a consequence, it is possible to skip it at rst reading.

The dominance property of Static Single Assignmesstyf form suggests promis-
ing directions for the design of new register allocation heuristics, in particular, it is pos-
sible to cleanly separate register allocation in two phases. This was already mentioned
in Chapter 2, and the study of Chaitin et al.'s NP-completeness proof in Chapter 3 ex-
plained that thessa form simpli es the problem of knowing whethdR registers are
su cient or not for the register allocation problem because it splits variables (explic-
itly) and edges (implicitly with -functions). However, the problem of what to do when
there is not enough registers is not answered.dé/know that, in that case, spilling
some variables to memory is necessary, but nohgetto do it.

In this chapter, we will study the spill problem for programs urgexform. The
motivation of this study is driven by the hope of designing both fast ancient reg-
ister allocation in two phases— rst spilling, then coloring—basedssa form. As
explained in the previous chapters, unden form, the test that tells whether some
spilling is required or not is simply that Maxlive must be at most the number of regis-
ters: R (see Corollary 2.39). Answering whether spilling is necessary or not is
easywhile minimizing the amount oioad andstore instructions is the real issue. In
other words, if the search space is now cleanly delimited, the objective function that
corresponds to minimizing the spill cost has still some open issues. The question is:

“Is the spilling problem easier to solve undssa?"

The spilling problem can be considered atelient granularity levels: at the high-
est, the so-calledpill everywhereconsiders the live-range of a variable as an atomic
object, i.e., a variable is either entirely spilled or entirely not spilled. This simpli ca-
tion consists in answering the question “what to spill,” but not “where to spill.” This is
the same approximation made by Chaitin et al. [1981] in their NP-completeness proof
and coloring algorithm. With spill everywhere, a spilled variable will stay so on its
entire life, but for thestore after the de nition and théoad before each use.The

1Unless for very particular cases, for instance if there is no swap instruction. See Chapter 3 for details.
2Although, in Chaitin et al.'s algorithm, they have a mechanism to avoid reloading variplesteriorj

i.e., after the spill everywhere decision.
51



CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER ssA

ner granularity, known as load-store optimization, optimizes eled andstore
separately, and in particular the placement of these instructions. The latter problem
is also known as “paging with write back” and was proven NP-complete by Farach-
Colton and Liberatore [2000] for a basic block, even ursseyform, when the number

R of registers is an input of the problem. The former problem is much simpler, and a
well-known polynomial instance by Belady [1966] exists undsa form on a basic
block. To develop new spilling heuristics, studying the complexity of spilling every-
where is very important for the design of either aggressive or just-in-timerégister
allocators because of the two following reasons:

1. First, the complexity of the load-store optimization problem comes from the
asymmetry betweelvad s andstore s [Farach-Colton and Liberatore, 2000].
The main di erence between the load-store optimization problem and the spill
everywhere problem comes from this asymmetry. We measured in practice that
mostssAvariables have only one or two uses, so it is hatural to wonder whether
this singularity makes the load-store optimization problem simpler or not: for in-
stance, in the most extreme case, with only one use per variable, this problem is
equivalent to the spill everywhere problénMore generally, even in the context
of a traditional compiler, the spill everywhere problem can be seen as an oracle
for the load-store optimization problem to answer whether a variable should be
stored or not. Then, one could imagine a pass that tries to optimize the placement
of loads and stores for variables chosen to be spilled. In the context of aggres-
sive compilation using integer linear programmingry, [David W. Goodwin
and Kent D. Wilken, 1996; Fu and Wilken, 2002; Barik et al., 2007], a way to
decrease the complexity is to restore the symmetry between loads and stores as
done by Appel and George [2004].

2. Second, we think that the spill everywhere is a good candidate for designing
simple and fast heuristics farr compilation on embedded systems. Again, in
this context, the complexity and the footprint of the compiler is an issue. Spilling
only parts of the live-ranges, as opposed to spilling everywhere, leads to irregular
live-range splitting and the insertion of she code to repair inconsistencies, in
addition to maintaining liveness information for coalescing purpose. All of this
is probably too costly for some embedded compilers.

To our knowledge, this is the rst exhaustive study of teamplexityof the spill every-
where problem in the context eBaform in the literature.

The rest of the chapter is organized as follows. For our study, we consicenedit
variants of the spilling problem, Section 4.1 provides the terminology and notation that
describe the dierent cases we considered. Section 4.2 considers the simpli ed spill
model where a spilled variable frees a register for its whole live-range; we provide an
exhaustive study of its complexity undesAform. Section 4.3 deals with the problem
where a spilled variable might still need to reside in a register at its points of de nition
and uses; the study is there restricted to basic blocks as it is already NP-complete for
this simple case. Section 4.4 summarizes our results and concludes the chapter.

3Supposing the frequencies of execution of basic blocks are the same.
“4In their formulation, a variable might be either in a memory location or in a register, but cannot reside
in both.

’
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4.1. TERMINOLOGY AND NOTATION

4.1 Terminology and Notation

In our study, we (almost) only consider the “everywhere” approximation of the spill
problem. In this approach, the goal is to decrease the register pressure below the num-
ber of register at every program point, while minimizing the cost of the spilling, i.e., the
sum of the weights of the spilled variables. For the purpose of our study, we consider
three di erent varying parameters.

Global vs. local: Live-ranges can bical (i.e., only on basic blocks) aglobal. On a
basic block, the interference graph is an interval graph, while it is chordal for a
general control- ow graphdrFG) underssaform with dominance property.

Memory instructions vs. stordreload: The use of an evicted (spilled) variable in an
instruction may requires a registengc-like architecture) or notfisc-like archi-
tecture). If it does not, spilling a variable decreases by one the register pressure
on every point of the corresponding live-range. Otherwise, spilling a variable
decreases the register pressure o