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Abtract
The goal of register allocation is to assign the variables of a program to the regis-

ters or tospill them to memory whenever there are no register left. Since memory is
much slower than registers, it is best to minimize the spilling. However, the problem
is complicated because spilling is tightly bounded with the colorability of the program.
Chaitin et al. [1981] modeled register allocation as an interference graph coloring prob-
lem, which they proved NP-complete. So, there is no exact way in this model to tell
whether some spilling is necessary or not, and if it is, what to spill and where. In
Chaitin et al.'s algorithm, a spilled variable is removed everywhere in the program,
even at places where there is enough registers, which leads to unnecessary memory
transfers.

To address this problem, many authors remarked thatsplitting the live ranges of
variables by inserting copy instructions creates smaller live-ranges. Hence, only part
of live ranges can be spilled instead spilling “everywhere.” The di� culty is then to
choose the right places to split the live ranges. In practice, authors get better spill results
when splitting at many program points [Briggs, 1992; Appel and George, 2001], but
splitting introduces register-to-register moves to reconcile variables with sub-variables
in case they are colored di� erently.Coalescingis expected remove most of thesemove
instructions, but if it does not, the bene�t of a better spill can be canceled out. This led
Appel and George [2001] to introduce the “Coalescing Challenge.”

Recently (2004), three teams discover that the interference graph of a program
under Static Single Assignment (SSA) is chordal. Hence, coloring the graph becomes
easy with a simplicial elimination scheme and there has been hopes thatSSA would
simplify register allocation. Ours were that, as the coloring was, the spilling and the
coalescing might get easier to solve, as we now have a exact coloring test.

Our �rst goal was to better understand from where the complexity of register allo-
cation does come, and whySSA seems to simplify the problem. We came back to the
original proof of Chaitin et al. [1981], �nding that the di� culty comes from the pres-
ence of (critical) edges and the possibility to perform permutations of colors or not.
We studied the spill problem underSSA and several versions of the coalescing prob-
lem. The general cases were proven NP-complete but we hopefully found one polyno-
mial result: incremental coalescing for programs underSSA. We used it to design new
heuristics to better solve the coalescing problem, so that an aggressive splitting can be
used beforehand.

This led us to promote a better register allocation scheme. While previous tentatives
gave mitigated results, our better coalescing allowed us to cleanly separate register
allocation into two independent phases: First, spilling to reduce the register pressure
to the number of registers, possibly by splitting a lot; Then color the variables and
perform coalescing to remove most of the added copies.

This scheme is expected to perform well in an aggressive compiler. However, the
high number of splits and the increased compilation time required to perform the co-
alescing is prohibitive for just-in-time (JIT) compilation. So, we devised a heuristic,
called “permutation motion,” that is intended to be used withSSA-based splitting in
place of our more aggressive coalescing in aJIT context.

Keywords: Register allocation,SSA, spilling, coalescing, complexity.
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Résumé
Le but de l'allocation de registres est d'assigner les variables d'un programme

aux registres ou de les « spiller » en mémoire s'il n'y a plus de registre disponible. La
mémoire est bien plus lente, il est donc préférable de minimiser le spilling. Ce problème
est di� cile il est étroitement lié à la colorabilité du programme. Chaitin et al. [1981]
ont modélisé l'allocation de registres en le coloriage du graphe d'interférence, qu'ils
ont prouvé NP-complet, il n'y a donc pas dans ce modèle de test exact qui indique s'il
est nécessaire ou non de faire du spill, et si oui quoi spiller et où. Dans l'algorithme
de Chaitin et al., une variable spillée est supprimée dans tout le programme, ce qui est
ine� cace aux endroits où su� samment de registres sont encore disponibles.

Pour palier ce problème, de nombreux auteurs ont remarqué que l'on peut couper
les intervalles de vie des variables grâce à l'insertion d'instructions de copies, ce qui
crée des plus petits intervalles et permet de spiller les variables sur des domaines plus
réduits. La di� culté est alors de choisir les bons endroits où couper les intervalles. En
pratique, on obtient de meilleurs résultats si les intervalles sont coupés en de très nom-
breux points [Briggs, 1992; Appel and George, 2001], on attend alors ducoalescing
qu'il enlève la plupart de ces copies, mais s'il échoue, le béné�ce d'avoir un meilleur
spill peut être annulé. C'est pour cette raison que Appel and George [2001] ont créé
le « Coalescing Challenge ».

Récemment (2004), trois équipes ont découvert que le graphe d'interférence d'un
programme sous la forme Static Single Assignment (SSA) sont cordaux. Colorier le
graphe devient alors facile avec un schéma d'élimination simpliciel et la communauté
se demande siSSAsimpli�e l'allocation de registres. Nos espoirs étaient que, comme
l'était le coloriage, le spilling et le coalescing deviennent plus facilement résolubles
puisque nous avons à présent un test de coloriage exact.

Notre premier but a alors été de mieux comprendre d'où venait la complexité de
l'allocation de registres, et pourquoi leSSAsemble simpli�er le problème. Nous sommes
revenus à la preuve originelle de Chaitin et al. [1981] pour mettre en évidence que
la di� culté vient de la présence d'arcs critiques et de la possibilité d'e� ectuer des
permutations de couleurs ou non. Nous avons étudié le problème du spill sousSSAet
di� érentes versions du problème de coalescing : les cas généraux sont NP-complets
mais nous avons trouvé un résultat polynomial pour le coalescing incrémental sous
SSA. Nous nous en sommes servis pour élaborer de nouvelles heuristiques plus e� caces
pour le problème du coalescing, ce qui permet l'utilisation d'un découpage agressif des
intervalles de vie.

Ceci nous a conduit à recommander un meilleur schéma pour l'allocation de reg-
istres. Alors que les tentatives précédentes donnaient des résultats mitigés, notre coa-
lescing amélioré permet de séparer proprement l'allocation de registres en deux phases
indépendantes : premièrement, spiller pour réduire la pression registre, en coupant po-
tentiellement de nombreuses fois ; deuxièmement, colorier les variables et appliquer le
coalescing pour supprimer le plus de copies possible.

Ce schéma devrait être très e� cace dans un compilateur de type agressif, cepen-
dant, le grand nombre de coupes et l'augmentation du temps de compilation nécessaire
pour l'exécution du coalescing sont prohibitifs à l'utilisation dans un cadre de com-
pilation just-in-time (JIT). Nous avons donc créé une nouvelle heuristique appelée
« déplacement de permutation », faite pour être utilisée avec un découpage selonSSA,
qui puisse remplacer notre coalescing dans ce contexte.

Mots-clés: Allocation de registres,SSA, spilling, coalescing, complexité.
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Avant-propos

J'ai fait le choix de rédiger ma thèse en anglais. Ce n'était ni par facilité, ni par
vantardise, mais dans le but d'avoir un impact plus grand que si la langue de rédaction
avait été le français. C'est d'ailleurs ce qui m'a permis d'avoir deux rapporteurs
étrangers, ce qui est une bonne chose. Mais c'est peut-être dommage car il est sûrement
important que des travaux scienti�ques soient rédigés en français pour faciliter, en
France, la dissémination de la science. Je me sens donc un peu coupable de ce point
de vue et ai décidé que ma thèse comporterait un avant-propos en français, qui ne
serait pas juste une courte traduction de l'introduction mais un petit « bonus » pour
les chanceux qui connaissent la langue de Molière.

Ceux qui étaient présents lors de ma soutenance, et ceux qui en auront eu vent
depuis, le savent déjà : les ordinateurs, ça marche comme les Shadoks. Ou plutôt, ça
pompe comme les Shadoks puisque tout le monde sait que ces drôles de bêtes, inventées
par Jacques Rouxel et dont les histoires furent narrées par Claude Piéplu dans les
années soixante-dix, passent la majeure partie de leur temps à pomper, par exemple
pour regon�er la lune comme l'illustrent bien les petits dessins au bas des pages de
cette thèse, à côté des numéros de page. Ces Shadoks sont très intéressants car voici
ce que l'on apprend au début de la série « ZO » :

Les cerveaux des Shadoks [. . .] avaient une capacité tout à fait limitée.
Ils ne comportaient en tout que quatre cases. Et encore c'était pas toujours
vrai parce que bien souvent il y en avait de bouchées. Pour remplir les
cases, déjà c'était pas facile et cela prenait un certain temps. C'est alors
que commençait la di� culté parce que quand les cases était pleines, il n'y
avait plus de place, et le Shadok on ne pouvait plus rien lui apprendre. Si
on essayait quand même, alors obligatoirement il y avait une case qui se
vidait pour faire de la place. De sorte que quand un Shadok, avec une tête
pleine, voulait apprendre quelque chose, il fallait qu'il en oublie une autre.
Exemple : si un Shadok avait appris à marcher avec une case, et que plus
tard il ait appris trois mots avec les trois autres cases, et bien si en plus on
voulait lui apprendre à faire du vélo, le Shadok ne savait plus marcher.

Et bien les ordinateurs ont un comportement très similaire à celui des Shadoks.
Un ordinateur dispose également d'un nombre limité de cases que l'on appelle « reg-
istres », et qui lui servent à stocker les nombres avec lesquels il fait ses calculs. Par
exemple, dans la série des processeursX86 (dont le Pentium 4), chacun possède huit
registres. À la di� érence des Shadoks, les ordinateurs disposent de nos jours d'une
mémoire supplémentaire, beaucoup plus grande mais dont l'accès est aussi beaucoup
plus lent, appelée « cache ». Si un ordinateur n'a plus de place dans ses registres
mais a pourtant besoin d'une nouvelle valeur, il peut stocker temporairement une des
valeurs contenue dans un registre dans la mémoire pour libérer ce dernier. Il devra
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alors retourner chercher dans la mémoire la valeur évincée quand il en aura à nou-
veau besoin.

Dans le domaine de la compilation de programmes, où l'on cherche à traduire un
programme écrit dans un langage dit « de haut niveau » en instructions directement
compréhensibles par la machine, il nous faut allouer les variables du programme aux
registres, c'est-à-dire déterminer par avance où résidera chaque variable à tout instant
de l'exécution du programme. À l'instar des Shadoks, on ne peut garder en registre à
un instant donné qu'au plus autant de variables que de registres disponibles. Le reste
des variables doit être placé en mémoire, ce qu'on appelle le « spill ». L'inconvénient
est qu'il faut du temps supplémentaire pour exécuter les nouvelles instructions de copie
des variables vers ou depuis la mémoire. En général, le but de l'allocation de registres
est de trouver une allocation des variables en registres et mémoire qui minimisera le
temps perdu à échanger des données avec la mémoire.

Ma thèse s'inscrit dans la continuité de la recherche sur l'allocation de registres,
problème largement étudié par le passé mais qui est encore un domaine actif. J'espère
que ces travaux permettront aux Shadoks des générations futures1 d'être équipés d'un
système d'allocation de cases amélioré avec transformation parSSA, spill à volonté,
coalescing façon BU-GA, pompe à permutation et tout le confort actuel que pourront
bientôt proposer les compilateurs modernes. Professeur Shadoko, si vous lisez ces
lignes. . .

1Hélas, leurs auteur et narrateur sont décédés les 25 avril 2004 et 24 mai 2006.
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And the Lord came down to see the city and the tower, which the
children builded. And the Lord said, Behold, the people is one, and
they have all one language; and this they begin to do; and now noth-
ing will be restrained from them, which they have imagined to do. Go
to, let us go down, and there confound their language, that they may
not understand one another's speech.

Bible, Genesis 11:1-9 (KJV) 1
Introduction

1.1 Program compilation

The very �rst computers were programmed “by hand,” i.e., directly in the assembly
language corresponding to their instruction set. With the growing development of new
computer architectures in the 50's, machine-independent programming languages were
proposed, along with the need for a program capable of converting programs written
in “high-level” languages to the “low-level” language of the target machine. The �rst
program capable of performing this task, acompiler, was written by Grace Hopper
in 1952. Then came many others, capable of targeting multiple architectures, or ac-
cepting as input more evolved programming languages.

The most important property for a compiler is preserving the semantics of the orig-
inal program. This means that, whatever the compiler used, a program should produce
the same output.1 Usually, the output of a program is the result of some computations,
while other manifestations like the time required to compute the result, or the memory
used, are considered as side-e� ects. It is often tolerated that the behavior of a program
di� ers on the side-e� ects. Once it is assured that a compiler preserves the semantics of
the input programs, there is still work to do on the compiler, on the “side-e� ects” of the
compiled program. In that case, we are talking ofoptimizing compilers, i.e., compilers
that also try to optimize the resulting low-level program so as to gain for instance more
e� ciency in speed or memory consumption, or even speed of the compiler itself.

Although new languages continue to appear and research on how to compile them
is conducted, we will not study this problem in this thesis. Today, guaranteeing the
semantics is usually not an issue for widely used programming languages like C. For
them, there is a constant demand on optimizing compilation. The goals of an opti-
mization are multiple and strongly depends on the context. The most preferred one is
usually the speed of the compiled program, but there can also be strong needs in terms
of memory use, power consumption, heat generated, code size, etc. especially in the
growing context of embedded systems that have tight constraints of energy, computing
power and weight.

Compilation for embedded processors can be either aggressive or just-in-time (JIT).
Aggressive compilation is allowed to use a longer compile time to �nd better solutions.
The program is usually cross-compiled, then loaded in permanent memory (ROM, �ash,
etc.), and shipped with the product. The compilation time is not the main issue as
compilation happens only once. Furthermore, especially for embedded systems, code

1It should be noted that this is di� erent from the property “a program should behave as expected by the
programmer” since it generally does not. . .
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CHAPTER 1. INTRODUCTION

size and energy consumption usually have a critical impact on the cost and the quality
of the �nal product.JIT compilation is the compilation of code on the �y on the target
processor. Currently the most prominent languages forJIT compilation are Common
Language Infrastructure (CLI) (Microsoft) and Java (Sun). The code can be uploaded or
sold separately on a �ash memory, then compilation can be performed at load time or
even dynamically during execution. This allows for instance to ship only one code for
di� erent platforms, or even for a platform that has di� erent embedded architectures;
then the code can be compiled for one particular processor when required, which saves
a lot of space. The heuristics used forJIT compilation, constrained by time and limited
memory, are far from being aggressive. In this context, trade-o� s are made between
resource usage for compilation and quality of the resulting code.

1.2 Register allocation

One of the most important passes in a compiler, if not the most important one, is called
register allocation. The goal of register allocation is to map the variables of a program
to physical memory locations. The compiler must indeed decide, in advance, in which
locations will be held the values necessary for the computations of the program, and so
for each instruction of the program. Registers are a very fast memory, hence preferred
for holding these values, which are directly needed by theCPU. But there is a limited,
small number of registers available in a processor, for instance only 8 registers for
the IA-32 architecture (X86, 32 bits), or 64 for theST200, a Very Long Instruction
Word (VLIW ) processor developed bySTMicroelectronics. On the other hand, in the
initial program representation, and until very late in the compiler back-end, values are
stored invariablesor temporaries, which are unbounded in number (see �gure 1.1).

Initial C-like code Assembly-like register allocated code
a  18 R1  18
b  42 R2  42
c  a + b R3  add R1; R2

d  c � b R1  mult R3; R2

e  � d R1  neg R1

Figure 1.1: On the initial hand-written code, the programmer considers as many vari-
ables as needed. On the �nal machine level code, the number of physical memory
resources is limited. Register allocation aims at mapping virtual variables on physical
registers.

In practice, there are usually several di� erent types of registers capable of holding
di� erent types of values: integers, �oats, addresses, booleans, etc. All registers are
not equivalent nor equivalently considered. For instance it can be possible to store a
boolean value into an integer register but not the converse. There can be many register
constraints like register aliasing (for instance, some 32-bit registers can be accessed
by three aliases inX86, one for the whole register and two names emulating two 16-
bit registers), or register pairing (forcing two distinct variables to be allocated to two
consecutive registers).

In this thesis, we always consider only one kind of register and no
such constraints. However, we will discuss in conclusion, Chapter 8, how
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1.2. REGISTER ALLOCATION

to solve these practical issues that cannot be left aside when compiling for
actual architectures.

Since the number of variables authorized in a program is unbounded, it often happens
that, on some points of the program, there are more variables than the number of reg-
isters. Some of the variables must be then be held temporarily in another memory.
Usually, there is a hierarchy of memories, from the fastest and smallest to the biggest
and slowest: registers, cache memory (L1, L2,. . . ),RAM and �nally hard disks. Clas-
sically, when a memory is too small to hold some information, it is virtually increased
by using the next memory. This is called a “swap” if using the hard disks when there is
no more space in theRAM. For the smallest memory of the hierarchy, the registers, this
is aspill. Spilling a value in memory for future uses reduces the register pressure since
stored values do not need to be kept in registers, as shown by the example Figure 1.2.

Initial C-like code Assembly-like register allocated code
a  18 R1  18

store @a  R1

b  42 R1  42
c  75 R2  75
d  b + c R1  add R1;R2

R2  load @a
e  a + d R1  add R1;R2

Figure 1.2: The initialC-like code would need three registers to hold variablesa, b
andc. Spilling variablea allows to use only two registers (the @ sign symbolizes the
memory address of a variable, usually a static place computed at compile time).

When a variable is “spilled” from the registers to memory, there are additional
costs. The cost of thestore andload operations required for the transfers to and from
memory, or, if the architecture supports instructions operating with memory arguments,
the increased cost of such operations, which are usually slower than those working only
with registers. Hence it is usually considered that spills should be avoided as much as
possible, and many register allocation algorithms try to minimize the impact of spilling.

On the impact of scheduling on register allocation. Some phases in the compiler
canschedulethe code, i.e., modify the order in which instructions are executed. This
is a problem since scheduling constrains the register allocation, and conversely register
allocation constrains the scheduling. An example of such a situation is depicted on
Figure 1.3.

a  exp1
store a
b  exp2
store b

(a) Initial code

a  exp1
b  exp2
store a
store b

(b) Scheduling

R1  exp1
store R1

R1  exp2
store R1

(c) Allocation

Figure 1.3: Scheduling impacts register allocation andvice versa: (a) this code needs
only one register; (b) if re-scheduled, the code then needs two registers; (c) if the initial
code is register allocated with one register, it is not possible to re-schedule it as in (b).
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CHAPTER 1. INTRODUCTION

Studying the impact of scheduling on register allocation is di� cult, as is the prob-
lem of tuning register allocation for scheduling. People have been aware of this prob-
lem since they started to schedule code to improve software pipelining, and for in-
stance Goodman and Hsu [1988] or Bradlee et al. [1991] proposed schemes that mixes
scheduling and register allocation, or at least make the scheduling take decisions based
on how would register allocation perform afterwards. Many articles on this subject
have been written since then, notably the works of Ning and Gao [1993]; Eisenbeis
et al. [1995] or more recently Touati and Eisenbeis [2004], Rong et al. [2005], or Kim
and Lee [2006]. Kim and Moon [2007] use rotating register �les, and even integer lin-
ear programming (ILP) formulation have been proposed, for instance by Nagarakatte
and Govindarajan [2007]. Development in this area is mainly related to software
pipelining, which we did not investigate. Hence, our work does not take scheduling
into account, but focusses instead purely on register allocation. Hopefully, the results
of this thesis will help research in this domain by explaining better how the register
allocation works, which might gives new ideas on how to improve conditions on soft-
ware pipelining so that it works well along with register allocation. To make it clear
again:

In this thesis, we suppose a �xed schedule of the instructions.

1.3 Spilling & Coalescing

For a �xed schedule, the complexity of register allocation comes from two main opti-
mizations,spilling andcoalescing. Spilling decides which variables should be stored
in memory to make possible register assignment, i.e., allocating all the remaining vari-
ables to registers, while minimizing the overhead of stores and loads. Register coalesc-
ing aims at minimizing the overhead of moves of variables between registers.

The di� culty of the spilling problem is in choosing which variables will be stored
in memory, as well as when they will reside in memory, and where memory operations
to store and fetch those variables should be placed in the program. Such operations
are expensive, so it is usually advisable to minimize their number, which is a di� cult
problem known as the load-store optimisation problem.

Coalescing is used to reduce the number of register-to-register moves (movein-
structions). This is done either by assigning the two variables involved in a move to
the same register—hence producing a instruction [Rx  Rx] that has no e� ect and can
be removed—, or by renaming the two variables with a common name. Of course, it
is not always possible to coalesce two variables, for instance, if the two variables carry
di� erent values at the same time during execution (for a dynamic point of view), or
at the same place of a program (for a static point of view). Even if there is not that
much move instructions in high-level programs, a lot of them are introduced during
the compilation, for example when going out of a Static Single Assignment (SSA) form
(a property that some intermediate program representations have, which we will intro-
duce later, in Chapter 2), or because of register constraints on particular instructions,
like the procedurecall . Some spilling techniques involvesplitting variables, i.e., in-
serting move instructions to allow di� erent parts of variables to be assigned to di� erent
registers. This helps to spill less, but also results in the introduction of moremove
instructions in the code.
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1.4. TECHNIQUES FOR REGISTER ALLOCATION

1.4 Techniques for register allocation

Early register allocation. Over the years many register allocations schemes were
explored. While �rst approaches were local, the tendency was set towards global reg-
ister allocations schemes. The former considers register allocation at basic block level,
making the problem much more simpler and Horwitz et al. [1966] gives optimal al-
gorithms for spilling and coloring for some cases (however, the general optimal local
register allocation problem is NP-complete, as show by Farach-Colton and Liberatore
[2000]). The latter, global register allocation, takes control-�ow into account, is more
complex, and Chaitin et al. [1981] proved optimal register allocation is NP-complete.
But global register allocation has a larger picture to work on, which allows for better
results. People got very rapidly interested in global register allocation, and suggestions
for using graph coloring appeared early in the literature, for instance Yershov [1966]
did and also Allen and Cocke [1976].

Introducing graph coloring in register allocation. The �rst to introduce a frame-
work based on coloring of the interference graph of a program were Chaitin et al.
[1981], rediscovering a coloring scheme by Kempe [1879]. In their scheme, they spill
so that at mostk variables are alive at the same time. Initially,k = R, the number of
registers, and then they try to color the interference graph withR colors. If it does not
work, they start again the �rst phase withk = R � 1, thenk = R � 2, etc. until they
manage to color the graph withR colors. In the same article, they also give a method
to construct, for any graph, a program whose interference graph is as di� cult to color,
proving that this modeling of register allocation is NP-complete. Then, Chaitin [1982]
re�ned this scheme by working directly on the interference graph also for the spilling.
These two articles marked the beginning of using graph coloring based register alloca-
tors, and nearly no article on register allocation goes without citing this work since then.
This elegant solution to a di� cult problem is indeed appealing and led many people to
work on improving it, for instance Bernstein et al. [1989] and Briggs et al. [1989], who
improved the spilling and coloring. Briggs [1992] investigates the technique of live-
range splitting with mitigated results. Later, George and Appel [1996] introduced their
well-known Iterated Register Coalescing (IRC) scheme. Smith et al. [2004] extend the
standard graph coloring technique to cope with multiple register classes and register
aliasing.

Reintroducing program structure in register allocation. People also realized that,
although simple and elegant it was, register allocation based solely on graph coloring
lacks some insight on the structure of the program. To address this problem, Chow and
Hennessy [1990] proposed a global algorithm that gives priority to frequently executed
parts of the code. Other algorithms include program structure to guide graph color-
ing based allocators. This is for instance the choice of Callahan and Koblenz [1991]
and Norris and Pollock [1994] who use the program structure and apply graph color-
ing to highly executed parts �rst. Similarly, Knobe and Zadeck [1992] use a “control
tree” based on the program structure to split live-ranges between regions. Kannan and
Proebsting [1995] remarked that register allocation is easy on programs that have a par-
ticular “serie-parallel” structure and propose a scheme to transform programs so that
they have this property.

Even if not stated as is, the common underlying denominator of these approaches
is the use of live-range splitting, as a means to focus on particular regions on the code,
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as Bergner et al. [1997] do. Then, “repairing” must be performed at the boundaries,
which amounts to split the variables at these points so that regions become indepen-
dent. Splitting a variable means adding copies at some program points to separate its
live-range into more than one connected component. This allows to spill variables only
on some parts of the program and not everywhere as in the original scheme of Chaitin
et al. Cooper and Simpson [1998] experiment with a “passive” live-range splitting as
the aggressive splitting tentative by Briggs produced to many copies, which degraded
the �nal result. Their strategy splits variables on demand, favoring the addition of
copy instructions to the spill of a variable. Lueh et al. [2000] propose a “fusion-based”
technique of incremental growth of the interference graph, starting from an inner basic
block and adding the interference graphs of other regions, splitting live-ranges when-
ever to many variables exist.

Optimal ILP formulations. More recently, various optimal techniques usingILP have
been explored. To our knowledge, the �rst to perform optimal register allocation where
Goodwin and Wilken [1996], improved later by Fu and Wilken [2002]. This approach
is also experimented by Appel and George [2001] and Barik et al. [2007]. Grund and
Hack [2007] give anILP formulation for the coalescing subproblem of register alloca-
tion.In this context also, the work of Naik and Palsberg [2004] is worth to mention,
although their goal is di� erent since they optimize the code size of the resulting pro-
gram.

Linear scan allocation. With the growing proportion of embedded processor, di� er-
ent kinds of needs made their appearance. In particular, just-in-time (JIT) compilation
aims at compiling code on the �y, and is much more constrained in time and space than
aggressive, o� -line compilation. Global heuristics based on local register evaluation
are considered, and Poletto et al. [1997]; Traub et al. [1998]; Poletto and Sarkar [1999]
introduce a new type of register allocation algorithm, the “linear scan.” This one is not
based on graph coloring, but instead linearizes the entire program as a unique basic
block, on which local allocation is performed. This allows for a very fast algorithm,
and do not need to construct a memory consuming interference graph. Improvements
are made to the linear scan algorithm. Wimmer and Mössenböck [2005] introduce in it
a splitting method to reduce the problem that linear scan “�lls gap” of live-ranges when
linearizing the program, hence pessimistically increase register pressure. Approaches
still based on graph coloring are also explored forJIT compilation, for instance, Cooper
and Dasgupta [2006] tailor a Chaitin-like allocator to make it run faster. Recently,
Sarkar and Barik [2007] proposed an “extended” version of linear scan as a viable
alternate solution to graph coloring.

Introduction of SSA in register allocation. The Static Single Assignment (SSA) form
is an intermediate program representation introduced by Alpern et al. [1988] and Rosen
et al. [1988]. A most important step in the introduction ofSSA was made by Cytron
et al. [1991] who gave an e� cient method to transform a program intoSSA form. SSA is
appreciated in the compiler community for simplifying many compiler optimizations,
for instance, Wegman and Zadeck [1991] use it to have a faster and easier constant
propagation algorithm. Briggs et al. [1998] further improve the transformations into
and out ofSSA. A code is inSSA form when every scalar variable has only one textual
de�nition in the program code. Most compilers use a particularSSA form, theSSA form
with dominance property, which in short states that a variable must be de�ned before

6



1.4. TECHNIQUES FOR REGISTER ALLOCATION

being used. Up to now,SSA is not much related to register allocation, but we remarked
that the interference graph of a program underSSA from is chordal [Bouchez et al.,
2005]. Since coloring a chordal graph is polynomial, this lead to the design of new
heuristics for register allocation, using theSSA form, a fact exploited by Brisk et al.
[2005]; Pereira and Palsberg [2005], and Hack et al. [2006], who, independently, made
the same observation about theSSA interference graphs being chordal. Following the
idea of usingSSA for register allocation, Pereira and Palsberg [2008] introduce their
“puzzle-solving” technique, and Hack [2007] wrote his Ph.D. thesis.

A few words towards simplicity in register allocation. We presented here some
of what we believe to be the most important steps in register allocation, from its ear-
liest developments up to now. Many register allocation schemes were invented and
described in the literature during this time. However, it is quite hard, taking any two
schemes, to know precisely how well one performs compared to the other. Usually,
authors compare their algorithm to what they think as “classical” register allocation
algorithm that are known to work “quite well.” However, this is not always the case,
and among the many existing allocators or improvements of allocators, not so many are
implemented and used in practice. Cooper et al. [2005] remarked for instance that the
allocator proposed by Callahan and Koblenz [1991] was implemented only once and no
assessment were reported in the literature, so they did a thorough work of implemen-
tation and comparison with the Chaitin et al. algorithm with improvements by Briggs.
More recently, Cooper et al. [2008] did a similar work comparing the priority-based
algorithm of Chow and Hennessy [1990] with Chaitin-Briggs. We view this situation
as a clear example that the simpler and more elegant ideas are the ones that make their
way through all the others. Very smart but very complicated schemes are appreciated
by the community, but make life harder for others whenever they want to compare
their algorithms. Hence it is often seen that improvements on a particular scheme are
compared to the original scheme, but not against each other. In practice, someone who
wants to implement a compiler will then have trouble deciding whichever scheme is
the best, and will obviously choose the ones that are simpler, both from a conceptual
and an implementation point of view. It is our belief that any new scheme, idea, or
improvement of an existing scheme should be simple, or at least easy to understand.
We think that this is one of the reasons that theSSA form is getting more and more ap-
preciated today, since it simpli�es many compiler optimizations. This is also probably
the same reason why “linear scan” allocators are very popular nowadays. Some graph
coloring improvements are today so complicated that, by contrast, the simplicity of the
linear scan algorithms makes people have more faith in them. And it is not uncommon
to hear people say sentences like the following:

“Essentially, although graph coloring in register allocation was very popu-
lar in the 90's [. . . ] the existing graph coloring algorithms neither produce
faster code, nor have faster compilation time than the [linear scan] algo-
rithms already in use.2”

This is not a point of view that we share, as, conceptually, a linear scan allocator
has less access to global information than a graph coloring based allocator. Of course,
this is not true with original graph coloring schemes, but splitting techniques can make
interference graphs much more precise. However, our point here is that we do think

2Excerpt from a review of our article on coalescing [Bouchez et al., 2008] when in was rejected at CC'08.
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that simpler schemes are more popular, and are easier to modify and improve. Fol-
lowing this idea, we already pointed out that theSSA form simpli�es the shape of the
interference graph by making it chordal. We wanted to investigate this area, remarking
that, by usingSSA (for instance, but not only), the problem of register allocation can be
cleanly separated into two phases, hopefully making it simpler to deal with.

1.5 About this thesis

In this thesis, we restrict our interests in register allocation to graph coloring schemes
in the line of the original algorithm by Chaitin et al. [1981]. Since the NP-completeness
proof of Chaitin et al., people take for granted that register allocation is a di� cult prob-
lem. Most graph coloring schemes intermix all subproblems of register allocation in a
common phase: assign and allocate variables to registers while minimizing the spilling
overhead and coalescing unnecessary move instructions. Our discovery thatSSA in-
terference graphs are chordal shows that, in fact, the complexity does not come from
the “coloring,” which is a misinterpretation of Chaitin et al.'s proof. In fact, it shows
that registerassignmentis easy: if there are enough registers, splitting live-ranges as
doesSSA is su� cient and a greedy algorithm manages to color the interference graph.
This re-motivated the design of register allocation based on graph coloring as a scheme
in two parts: First, reduce the number of alive variables by spilling so that they �t in
the register available, this isregister allocation. Second, map variables to individual
registers, potentially by splitting variables, this isregister assignment.

This idea is not new, and was already explored by a few people in old articles,
for instance by Cytron and Ferrante [1987] and Knobe and Zadeck [1992], then more
recently by Appel and George [2001] or Hack [2007]. The original algorithm of Chaitin
[1982] is really simple and works well, so it is not surprising that the two phases were
performed in only one. But a lot of improvements to this original scheme did not make
their way to compilers. The algorithms get too intricate and complicated because the
two phases are not cleanly separated, and the same is true for other allocation schemes
as well. Still, traditionally, spilling and coalescing are done in a common phase. Why
is graph-based register allocation still nearly always performed in only one phase? We
think there are three main reasons for this:

ˆ Spilling is strongly dependent on the coloring property of the interference graph.
And the coloring is a di� cult problem, hence heuristics that give an actual col-
oring are used: spills are done until the coloration succeeds, i.e.,one knows the
allocation is correct whenever one has a working assignment of variables.

ˆ Coalescing changes the structure of the interference graph. Aggressive coalesc-
ing might induce more spilling, hence cannot be in a separate later phase. Con-
servative coalescing guarantees that no additional spilling will be necessary, but
it can help with the coloring, reducing the number of colors needed. This was re-
marked by George and Appel [1996] and used in a register allocation framework
by Vegdahl [1999]. Hence,coalescing can reduce the number of spills required.

ˆ Conservative coalescing is usually di� cult to perform e� ectively if there is a
high number ofmoveinstruction. So, algorithms were designed to make trade-
o� s between spilling and splitting. This is easier to balance if there is only one
phase in whichsplitting can be done on demand.
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These reasons are now obsolete because we now know that the interference graph
on anSSA program is chordal. A chordal graph needs as many colors as the size of
its biggest clique, i.e., its biggest complete sub-graph. For anSSA program, this cor-
responds to the maximum number of variables simultaneously alive. Moreover, no
coalescing can reduce this number since no two nodes of a complete graph can be
coalesced: they must reside in di� erent registers. We now have an exact test of the
number of registers required for the allocation, provided that the live-range structure is
�xed as the one generated by theSSA form. In general, givenRregisters and supposing
any splitting technique that gives, as doesSSA, the chordal property to the interference
graph, register allocation can be decomposed into two di� erent phases:

1. Spill variables so that there are at mostR simultaneously alive variables at each
point of the program.

2. Split, then color the interference graph while performing conservative coalescing
to preserve theR-colorability.

There remains the last reason why phases were not separated: known coalescing
techniques do not cope well with too many move instructions. This problem was al-
ready known to Briggs [1992] when he tried aggressive live-range splitting. Because of
this, Cooper and Simpson [1998] prefer to perform splitting on demand in order not to
create too many copies. More recently, this problem bothered Appel and George [2000]
so much that they launched the “Optimal Coalescing Challenge.” Hence, having good
coalescing strategies was the last missing piece of the puzzle of register allocation in
two phases. For this reason, we spent a lot of time working on di� erent variants of this
problem in this thesis, both on the complexity and heuristic points of view. Finally, we
found satisfying strategies that allow us to safely state that the �rst phase of register
allocation needs not to worry anymore about introducing too many copies. The insight
given by three years worth of research and this thesis statement is that:

A two-phase register allocator is simple and e� cient.

Outline of this thesis. In Chapter 2, we introduce the necessary de�nitions of the
concepts used in this thesis. We also give the proofs of two important results of this the-
sis: that the interference graph of a program underSSAform is chordal, and that chordal
graphs are greedy-colorable, i.e., colorable using a simple greedy scheme. This lead
us to ask the question whySSAprograms were not covered by the NP-completeness re-
duction of Chaitin et al. [1981], which reduces register allocation toGraph k-Coloring.
In Chapter 3, we come back to this proof and extend it to cover more cases, in partic-
ular involving live-range splitting. In this chapter, we outline the importance of crit-
ical edges for the complexity register allocation. We study in Chapter 4 whetherSSA

also simpli�es the spill “everywhere” problem, a simpli�cation of the more general
spill problem often used in register allocation schemes, and �nd most of the studied
problems NP-complete. In this chapter, we di� erentiate two situations depending on
whether spilled variables need to reside temporarily in registers when stored and loaded
from memory or not. We continue our study of the complexity of register allocation
in Chapter 5, which is devoted to the coalescing problem. This is the �rst thorough
complexity study of the di� erent coalescing strategies used in the literature. Using
this work, we improve existing coalescing techniques in Chapter 6, �nding surprising
results in which our advanced conservative strategy outperforms all strategies based
on aggressive schemes. Chapter 7 introduces a strategy di� erent from coalescing to
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CHAPTER 1. INTRODUCTION

remove the copies inconveniently placed on control-�ow edges when going out ofSSA

after register allocation has been performed. We introduce there our technique of “par-
allel copy motion,” a fast and e� cient method designed forJIT compilation. Finally, we
conclude in Chapter 8 after discussing practical considerations of actual architectures
that need to be taken into account in a register allocation algorithm.
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GROUND, n. Like mattresses, only harder.

2
Grounds

In this chapter, we de�ne the notations, vocabulary and basis for the next chapters.
First, we de�ne generalities about programs and their interference graphs. Then we
discuss the coloring of the interference graphs, along with some interesting structures
of interference graphs. We also see what is usually done in practice whenever there are
too few colors to perform register allocation. Finally, we introduce the Static Single
Assignment (SSA) form and its e� ects on interference graphs for register allocation; this
leads us to present two of our results: that interference graphs underSSA are chordal
and that chordal graphs are what we call “greedy-colorable.”

2.1 Basis for register allocation

Register allocation deals with programs, variables and registers. We designate by “pro-
gram” what is in fact usually called a “function” or “procedure” in the programmers'
minds. Indeed, we will not include inter-procedural analysis issues in our studies. The
variables are virtual value holders used in programs to perform computations, while
the registers are their equivalent physical counterparts. The goal of register allocation
is to allocate the virtual locations to either the physical ones or to the main memory, so
that the processor can actually perform the desired computations.

2.1.1 Programs and control-�ow graphs

De�nition 2.1. An instructionis an atomic operation which possibly uses some vari-
ables and possibly de�nes other variables.

Example.
Instruction de�nes uses e� ect
a  0 fag ; put the value 0 in variablea
a  b + c fag fb; cg put the sum ofb andc in a
print b ; f bg display the value insideb
a;b  load64 c fa;bg fcg load the 64-bits value at memory addressc

into 32-bits variablesa andb
test a , 0 ; f ag test if the value ina is null

Note that thetest instruction de�nes in fact a boolean value, but which is not in
the same register class asa hence it is not considered here.

By convention, in the examples given in this thesis, the notation “ ” means that:
if a variable is on the left-hand side, it is de�ned by the instruction; if a variable is on
the right-hand side, it is used by the instruction. The notation “: : :” inside instructions

11
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a  3425 ;
n  0 ;
while a , 1 do

n  n + 1 ;
if a eventhen

a  a=2 ;
else

a  a � 3 + 1 ;
end

end
print n ;

a  3425
n  0

a , 1 ?

n  n + 1
a even ?

a  a=2 a  3 � a + 1

print n

program point

basic block

Figure 2.1: Example of a program and the corresponding control-�ow graph.

means “something”; as an example, [a  : : :] means variablea is de�ned using some
value or calculation, and [: : :  a] meansa is used in some instruction (which does
not necessarily de�ne some another variable).

De�nition 2.2. A programis a set of instructions linked by �ow edges. An edge from
s to d means that instructiond can be executed afters. s is called thesourceandd the
destinationof the edge.

De�nition 2.3. A basic blockis a maximal sequence of instructions without branch:
there is no other leaving or entering path possible in the middle of a basic block. A
program can be represented by acontrol-�ow graph (CFG), which is a graph where
the vertices are the basic blocks and the oriented edges the possible paths during the
execution of the program.

We will now de�ne “program points,” i.e., points of the program where, hypothet-
ically, the program could be stopped and the state of the machine could be inspected.
Hence instructions are not considered as “program points” since the state of the ma-
chine is not well-de�ned—is the new variable already de�ned? are the arguments
already used?—, but points between two instructions are program points, entries and
exits of basic blocks also, and even points on control-�ow edges.

De�nition 2.4. A program pointis any point of theCFG which is not an instruction,
i.e., any point on a possible execution path before or after an instruction.

The �rst program point of a program—the one before the �rst instruction—is called
the entry or root of the program. A program point with more than one successor in-
struction is called abranch; a program point with more that one predecessor instruction
is called ajoin.
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if f lag

a  : : : b  : : :

if f lag

: : :  a : : :  b

: : :

a b

Figure 2.2: Non-strict program.

a

b
a  : : :

b  : : :

storea

a  : : :

storeb

storea
(a) Linear code

a  : : :
b  : : :

: : :  b : : :

c  : : :
: : :  a
: : :  c

b
a

(b) More generalCFG

Figure 2.3: Live-ranges of variables—thick lines—on two di� erent examples of code.

Figure 2.1 shows an example of a program with the correspondingCFG, basic
blocks, and program points. The point after [a , 1] is a branch and the one at the
beginning of the empty basic block (containing only a jump to the conditional branch)
is a join.

It is often assumed that, for each use of a variable, the variable has been de�ned
before the use. While this should bedynamicallythe case, i.e., during the execution of
the program, this property is hard to checkstatically, i.e., during compilation.

De�nition 2.5. A program isstrict if for each variable and each use of this variable,
there is a de�nition of this variable on any static control path—a path following the
control-�ow edges—from the start of the program to this use.

See Figure 2.2 for an example of a correct non strict program: dynamically, the
execution �ow only chooses the left paths or the right paths but cannot mix both. But
there existstaticpaths taking the left path then the right one or the converse.

Unless stated otherwise, we will always assume strict programs.

2.1.2 Live-ranges, interference graph

The goal of register allocation is to allocate variables to memory locations, in particular
registers. These are the fastest available on a processor and hence preferred over main
memory. However, they are in limited, small number, and each register can hold only
one value at a time. Some variables may be placed in the same register under certain
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conditions, for instance if they are not live at the same time. In practice, the converse
“interference” property is used:

De�nition 2.6. Two variablesinterfereif they cannot be stored in the same register.

From the de�nition of interference, we can deduce that two variables interfere if
and only if (i� ) they “exist” at the same time and carry di� erent values. However,
these notions are dynamic in essence while compilation is static. In practice, relaxed
de�nitions of the interference are being used instead of this “ultimate” one. We will
de�ne for the �rst condition the notion of “live-range,” the domain where a variable
exists statically. As for the second condition, it is in general di� cult to know whether
two variables carry the same value or not, so this condition is usually left aside, except
for very simple cases.

The life time of a variable is the set of points where this variable has been de�ned
previously and will be used in the future. Whenever a variable is not alive, it is dead.
Figure 2.3 represents live-ranges on two examples of code: a linear code—for instance
inside a basic block—and a more general code.

De�nition 2.7. On a strict program, a variable isaliveat a program pointp i� there is
a static path fromp to a use ofa which does not go through a de�nition ofa.

Thelive-rangeof a variablea, live(a), is the set of program points wherea is alive.
These are the points between the instructions de�ninga, def(a) and the instructions
usinga, use(a). It is a sub-graph of theCFG. A variable islive on any program point of
its live-range, anddeadotherwise.

Using the live-ranges, it is possible to calculate easily a relaxed notion of interfer-
ence.

De�nition 2.8 (Relaxed interference). Two variablesinterferei� their live-ranges in-
tersect.

This de�nition �nds more interferences than the “ultimate” interference de�nition,
as shown by the example Figure 2.2: on this non-strict program, the two live-ranges of
a andb intersect but they can nevertheless share the same register since they are never
dynamicallyalive at the same time;a andb donot interfere.

The relations of interference can be represented using a graph:

De�nition 2.9. Theinterference graph G= (V; E) of a program is an undirected graph
where each vertexv 2 V corresponds to a variable of the program. There is aninterfer-
ence(u; v) 2 E i� u andv interfere.

Chaitin et al. [1981] proved the following lemma so that the notion of interference
for strict programs gets very easily computable: one just needs to check it at de�nition
points.

Lemma 2.10. For a strict program, the live-ranges of two variables intersect i� the
live-range of one contains a de�nition of the other.

Chaitin et al. [1981] proposed to re�ne their use of the “relaxed” interference when
building the interference graph by saying that ifu is de�ned by the copy [u  v], then
no edge is added betweenu andv in the graph, since they obviously have the same
value.1 Hence it is possible to have a di� erent de�nition of interference:

1Note however thatu andv might still interfere, for example ifu is de�ned multiple times. In that case,
an edge betweenu andv will be added anyway sooner or later.
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b  c
c  a
a  b + c

d  1
a  d
c  0

� � �  a

d

b

a
c

a

b

c

d

Figure 2.4: Program with the live-ranges and the corresponding interference graph.
Interferences are represented with plain edges and a� nities with dashed ones.

De�nition 2.11 (Chaitin's interference). For a strict program, Two variablesu andv
interferei� the live-range ofu contains a de�nition ofv di� erent than [v  u], or the
live-range ofv contains a de�nition ofu di� erent than [u  v].

The interference graph will depend on the de�nition of interference chosen; the
more re�ned it is, the fewer “false” interferences there will be in the graph.

Note: In this thesis, some theorems or properties rely on the structure of the interference
graph. Hence, the notion of interference chosen can be important for the correctness of
some algorithms, and a de�nition of interference cannot always be traded for another without
checking that does not invalidates proofs. For instance, with De�nition 2.8, a variables alive
at one program point form a clique, while this is not true with De�nition 2.11.

In addition to interferences, usually represented with solid lines, each copy instruc-
tion [u  v] is represented by an a� nity, usually shown using a dashed line in the
interference graph. If both variables are assigned to the same register, the correspond-
ing assembly instruction [move u; v] can be removed from the program.

De�nition 2.12. An a� nity hu; vi between variablesu andv in the interference graph
expresses the preference for these variables to share the same color (register).

A� nities can also be weighted to represent a dynamic execution count of the copy
instructions. In that case, the weight of an a� nity betweenu andv is usually denoted
whu;vi .

Figure 2.4 gives an example of interference graphs of programs, with a� nities
between variables linked by a copy instruction. A� nities between adjacent vertices
are represented but cannot be coalesced: they are calledconstraineda� nities.

2.1.3 Maxlive

De�nition 2.13. Given a pointp of theCFG, Live is the number of variables simultane-
ously alive atp, represented by symbol
 (p). Maxlive, denoted by
 , is the maximum
of 
 (p) over all pointsp of theCFG.

Figure 2.5 illustrates the de�nition of Maxlive on the straight line code of Fig-
ure 2.3. Maxlive will be an important indicator to decide whether it is possible to
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a  : : :
b  : : :
storea
a  : : :
storeb
storea

a
b

0
1
2
1
2
1
0


 (p)


 = 2

Figure 2.5: Number of variables in Live at each point and Maxlive, the maximum over
all of them.

allocate all variables to registers or not. Here, we de�ned Maxlive with the relaxed
de�nition of interference in mind (De�nition 2.8): two variables interfere if they are
alive at the same time. With this de�nition, and for a strict program, Maxlive is a
lower bound on the number of registers required to store all variables of the program.2

Indeed, there is at least one program pointp where
 (p) = 
 ; On this point, every
variable is alive: they all interfere, meaning that one needs
 registers for this point.

If considering Chaitin's interference, in which copies of the same variable do not
count (De�nition 2.11), Maxlive is not a lower bound on the number of registers re-
quired anymore. If one still wants this property,
 (p) should be de�ned as “the number
of registers required to allocate all variables ofp,” which is more complicated than just
counting the variables alive atp.

2.2 Coloring the interference graph

In the graph coloring problem, the goal is to assign di� erent colors to adjacent vertices.
Given a valid coloring of an interference graph, it is possible to view the colors as
registers, meaning that two interfering variables are in di� erent registers. This gives a
valid register allocation for the program provided that less thatRcolors are used, where
R is the number of registers available.

De�nition 2.14. A coloring of the interference graph is a functioncol on the nodes
such thatcol(a) , col(b) whenevera andb interfere. col is a k-coloring if it uses at
mostk di� erent values. AnR-coloring of the interference graph gives a valid register
allocation for a program.

Notice that, in the interference graph model, each variable is traditionally consid-
ered as an atomic object, i.e., it has a single color, meaning that it will be placed in
the same register on all its live-range. In this context, the �rst problem considered is
logically the following:

How to know if there are enough registers to allocate all variables?

We will now present the traditional way to answer this question, then what can be
tried if the answer to this question is negative.

2This is false for a non-strict program: see Figure 2.2 again, the same register can hold botha andb since
they are neverdynamicallyalive at the same time.
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a  : : :
b  : : :

c  : : :
d  b
� � �  c

e  : : :
d  a
� � �  e

� � �  d

a

e

b

c

d

e

ab

c

d

Figure 2.6: A code with
 = 2 but nevertheless not 2-colorable because the interference
graph is a cycle of odd length.

2.2.1 Testing ifR registers are su� cient

2.2.1.1 Conditions on Maxlive

Since there is at least one point in the program where Live is equal to Maxlive, the
conditionR < 
 is su� cient to know it isimpossibleto allocate the program without
modifying it, i.e.,spilling some variables to memory is necessary as we will explain
later. What about the condition
 � R? Unfortunately, this condition is not su� cient
in the general case as shown by Figure 2.6. The program of Figure 2.4 needed also
three registers even if there were only two variables alive at the same time. Chaitin
et al. [1981] proved in fact that the interference graph of a program can be any graph,
hence the problem of allocating auniqueregister to each variable of a program reduces
to Graph k-Colorability, which is NP-complete. The proof is analyzed in details in
the next chapter, Section 3.1.1, and its validity is discussed whenever more freedom is
allowed, for instance whenever variables can reside in di� erent registers during their
lifetime.

2.2.1.2 A coloring heuristic: Chaitin et al.'s simpli�cation scheme

Since graph coloring is NP-complete, Chaitin et al. [1981] used a simple scheme in-
vented by Kempe [1879] to color the interference graph withk colors.The algorithm
rely on the following “simplify” rule to assign colors to variables:A node x with fewer
than k neighbors is always colorable no matter how Gn fxg is colored. It can thus
be removed (simpli�ed) from the graph and pushed on a stack. If thissimplify phase
removes all nodes, the graph isk-colorable. Indeed, in a second “select” phase, each
node can be popped from the stack and colored with one of the colors not used by its
neighbors previously popped, which are fewer thatk. An example of execution of this
algorithm fork = 3 is given on Figure 2.7: initially, only the nodef with degree 2 can
be simpli�ed because all other nodes have degree 3, but eventually, all of them can be
simpli�ed after the simpli�cation of some of their neighbors. However if at one point
of the simplify phase, the degree of every node in the remaining graph is at leastk, the
coloring fails. It does not mean that the graph is notk-colorable, only that we did not
�nd a k-coloration. This can be the case even for simple graphs such as a cycle of even
length, see Figure 2.8.

During this thesis, we remarked that this greedy heuristic de�nes without ambigu-
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Figure 2.7: Example of Chaitin et al.'s simpli�cation scheme with 3 colors.

d°2

d°2d°2

d°2

d°2 d°2

Figure 2.8: A 2-colorable graph, but the simpli�cation scheme of Chaitin et al. fails
since every node has degree equal to 2.

ity a class of graphs, to which we gave the name of greedy-k-colorable graphs, i.e.,
graphs colorable withk colors with this heuristic. We will de�ne cleanly these graphs
in Section 2.2.2.5, along with FunctionIs_kGreedy , a pseudo-code for the greedy
heuristic. Greedy-k-colorable graphs are not the only interesting class of graphs for
register allocation, and we will now introduce the graph structures which we found the
most interesting for interference graphs.

2.2.2 Interesting graph structures

In this section, we recall some particular graph structures that appear as interference
graphs under certain conditions. All these structures have some interesting properties
in our context of deciding whetherR registers are su� cient or not.

2.2.2.1 k-colorable graphs

This is the most general class of graphs. A graphG is k-colorable if it is possible to
color it with at mostk colors. In general, the minimum number of colors required to
colorG is thechromatic number, denoted by� (G). Hence, a graphG is k-colorable for
anyk greater or equal to� (G). For this class of graphs, it is NP-complete to decide, for
a given integerK, if � (G) � K [Garey and Johnson, 1979, Problem GT4].
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2.2.2.2 Cliques

De�nition 2.15. A cliqueis a complete graph, i.e., for each two nodesu andv there is
an edge (u; v).

Cliques are the most restrictive graphs in terms of coloring. Clearly, a clique of
sizek needs exactlyk colors. Hence, knowing that a graphG contains ak-clique is
an interesting fact since it shows that� (G) � k. A useful trait for the colorability of a
graph is itsclique number, ! (G), the size of its largest clique. In the literature,perfect
graphsare de�ned as graphs for which the coloring number equals the clique number,
i.e., � (G) = ! (G) Golumbic [1980].

2.2.2.3 Interval graphs

De�nition 2.16. An interval graphis the intersection graph of a family of intervals.

Theorem 2.17.The interference graph of a basic block with one de�nition per variable
is an interval graph.

Proof. In a basic block, each live-range of a variables is a connected component if there
is only one de�nition for that variable. Moreover, these live-ranges are sub-intervals
of the basic block, starting at the de�nition—or at the beginning of the basic block if
they are live-in—and ending at the last use—or the end of the basic block if they are
live-out. �

Interval graphs are perfect graphs: as explained before, their coloring number
equals the size of their largest clique. For basic blocks, this means it is possible to
compute the number of registers required by performing a “scan” from the top to the
bottom of the basic block while keeping a set of the live variables: the clique number
is the maximum size of the set.

2.2.2.4 Chordal graphs

De�nition 2.18. An undirected graph ischordalif every cycle of size at least four has
a chord (edge between two non adjacent vertices of the cycle).

Chordal graphs are sometimes called “triangulated graphs” because the chords in
cycles make a lot of small triangles, as shows the example on Figure 2.9. Like interval
graphs, chordal graphs are perfect. Another characterization of chordal graphs uses
“simplicial” vertex and “perfect elimination schemes.”

De�nition 2.19. A simplicial vertex is a vertex whose neighbors form a clique. A
perfect elimination schemeis an ordering� = fv1; v2; : : : ;vngof the nodes such that
eachvi is a simplicial vertex of the induced subgraphGjfvi ;:::;vng.

A graph is chordal i� it has a perfect elimination scheme, moreover, any simplicial
vertex can start a perfect scheme [Golumbic, 1980, Thm. 4.1]. This means that, ifG
is chordal, one can remove successively simplicial vertices until the graph is empty. It
is then easy to color the nodes in the reverse order of their simpli�cation [Fulkerson
and Gross, 1965], or, as we will see in Section 2.2.2.6, more simply with the greedy
simpli�cation scheme of Chaitin et al.

Another equivalent de�nition [see Golumbic, 1980, Thm. 4.8] uses the tree repre-
sentation:
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Figure 2.9: Example of chordal graph with its representation as subtrees of a tree.

De�nition 2.20. A chordal graphis the intersection graph of a family of subtrees of a
tree.

An example of chordal graph with its subtree representation is given on Figure 2.9.
Using the tree representation, is is easy to color the graph also using a “scan” as for
interval graphs, but in our case the scanning starts at the root and stops at the leaves of
the tree. To make it short, we say that ak-colorable chordal graph isk-chordal.

2.2.2.5 Greedy-k-colorable graphs

Another fundamental class of graphs for Chaitin-like register allocation is what we call
greedy-k-colorablegraphs. These are the graphsk-colorable using the greedy simpli-
�cation scheme of Chaitin et al. [1981] introduced in Section 2.2.1.2. For instance, the
graph given as example on Figure 2.7 was a greedy-3-colorable graph.

De�nition 2.21. A graphG is greedy-k-colorablei� there is no subgraphG0 of G such
that each node ofG0 has degree at leastk in G0, i.e.:

@G0 � G j 8x 2 G0; djG0(x) � k

The following theorem links the name of this class of graphs to the greedy col-
oration scheme of Chaitin et al. given by FunctionIs_kGreedy (page 21).

Theorem 2.22. A graph G isgreedy-k-colorablei� Function Is_kGreedy (G) suc-
ceeds.

We recall again the idea of the algorithm. While this is possible, remove a vertex
of degree strictly less thank in the current graph. Indeed, whatever the coloring of the
current graph, there will always be at least one color available for this vertex. Hence we
need to prove that a graph is greedy-k-colorable i� this elimination scheme removes all
vertices. This de�nition seems non-deterministic but, for a greedy-k-colorable graph,
the order in which vertices are removed is not important: removing a vertex with de-
gree< k is never a bad decision for coloring. Here is a formal proof of the theorem.

Proof. ( by contraposition: suppose there existsG0 subgraph ofG such that8x 2
G0; djG0(x) � k, then, none of the nodes ofG0 will ever be simpli�ed by the greedy
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Function Is_kGreedy( G)
Data: Undirected graphG = (V; E); 8v 2 V, degree[v] = #neighbors ofv in G, k number

of colors
stack= ; ; worklist = fv 2 V j degree[v] < kg;1

while worklist , ; do2

let v 2 worklist ;3

foreachw neighbor ofv do4

degree[w]  degree[w]-1 ;5

if degree[w] = k � 1 then worklist  worklist [ f wg6

pushv on stack ; worklist worklist n fvg; /* Remove v from G */7

if V = ; then return true else return false8

simpli�cation scheme. Indeed, the degree of a node can only decrease during simpli�-
cation, hence at best all nodes not inG0 can be simpli�ed.

) by induction on the number of nodes of the greedy-k-colorable graphG. If G
has onlyk nodes, they can all be simpli�ed since each node has at mostk� 1 neighbors.
Suppose that a greedy-k-colorable graph withn � 1 nodes can be simpli�ed. LetG be
a greedy-k-colorable graph withn > k nodes. Then there is at least one nodex 2 G
such thatd(x) < k by de�nition. By simplifying (removing) this node, one getsG0 that
is greedy-k-colorable and withn � 1 nodes, henceG can be simpli�ed.

Finally, a greedy-k-colorable graph isk-colorable because it is possible to color
its vertices in the opposite order of their removal, assigning to each vertex a color
not used by its already-colored neighbors: this is possible because there are at most
(k � 1) such neighbors. This scheme is exactly the coloring heuristic used in Chaitin-
like approaches. �

2.2.2.6 Orderings of graphs structures

k-colorable interval graphs( k-chordal( greedy-k-colorable( k-colorable

The last inclusion is trivial, the �rst also since an interval is a particular subtree with no
branch. Example for the inequalities can be found in �gures previously seen: the graph
on Figure 2.8 is 2-colorable but not greedy-2-colorable; the same graph is greedy-3-
colorable but not chordal (for anyk) since it is a chordless cycle of size 6; Figure 2.9
shows a chordal graph which cannot be represented as an interval graph. Finally, the
middle inclusion is proved by the following property ofk-chordal graphs.

Property 2.23. If G is a k-colorable chordal graph, it is greedy-k-colorable.

Proof. Any chordal graphG has at least one simplicial vertex3 [Golumbic, 1980], i.e.,
a vertexv whose neighbors form a clique:v and its neighbors also form a clique, and
if G is k-chordal, it has no clique of sizek + 1. Thus,v has at mostk � 1 neighbors and
can be removed (simpli�ed) from the graph. The remaining graph is stillk-chordal and
the same argument applies. Thus,G is greedy-k-colorable. �

This property is one of the early contributions of this thesis, and is of much interest
since it implies that Chaitin-like register allocators provide an solution whenever the
interference graph of the program isR-chordal. We will see in Section 2.3 a case where
this property is particularly interesting.

3Actually, it has at least two simplicial vertices.
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2.2.3 What to do ifR registers are not su� cient?

Chaitin et al.'s greedy heuristic can tell thatR registers are su� cient to color the in-
terference graph. If the heuristic fails, the goal is to modify the program so that the
interference graph becomes greedy-R-colorable. In most of the cases, some nodes
need to be removed from the graph. This is necessary if
 > R, for instance, since that
means there is a
 -clique in the graph, i.e., a complete sub-graph of
 nodes.4

Variable spilling: In order to remove nodes from the graph, some variables are
transferred—spilled—to memory. That way, they do not need any register to hold them
at times where they are in memory. There are two problem with spilling: �rst, opera-
tions working with operands in memory are slower that those working with operands
in registers; second, instructions to transfer values to and from memory (store and
load ) need to be inserted in the program, which degrades performance and uses new
variables which need to be allocated: this creates new nodes in the interference graph,
hopefully simpler to color that the ones spilled since their live-ranges are very short.

Variable splitting: Another technique to make the graph colorable, less powerful
that spilling but also cheaper, is variablesplitting. Let us give the intuition for a variable
a on a basic block.a can be split into two variablesa and a0 by inserting a copy
instruction [a0  a] somewhere in its live-range, on a program point. Then, subsequent
uses ofa are replaced bya0 in the code: on the basic block, all uses before [a0  a]
still referencea, but the ones below referencea0. Hence,a anda0 are not alive at the
same time and they might be placed in di� erent registers.

Splitting live-ranges is more complicated on a generalCFG since the consistency
must be kept at join points: suppose variablea is split in the “else” part of a conditional,
there is an ambiguity after the conditional: which ofa or a0 should be used? None of
them. Either way would break the semantic of the original code: if coming from the
“then” part, thea should be used, and if coming from the “else” part, it isa0 which
should be used. A possibility would be to restore backa0 in a before leaving the “else”
part, by inserting [a  a0]. More generally, to split a variablea into a0 on a subset of
its live-range, one has to insert [a0  a] at each program point where a path enters the
subset, and [a  a0] at each program point where a path leaves the subset.

Splitting variables allows them to be stored in di� erent registers at di� erent points
of their lives, which simpli�es the coloring: smaller live-ranges may have fewer inter-
ferences, hence are easier to simplify using Chaitin et al.'s scheme. For instance, we
used two examples of code where Maxlive equals two, but three colors are required
anyways in Section 2.2.1.1 (Figures 2.6 and 2.4). Figure 2.10 shows that splittingd at
the end of the conditional basic blocks makes the interference graph 2-colorable for the
�rst example. Figure 2.11 shows that splittingb andc in the middle of the loop also
make the interference graph 2-colorable for the second example, but one has to make
sure that the copies are done in parallel to perform a swap of their colors.5

The price of splitting variables is that, if the corresponding sub-variables are in-
deed allocated to di� erent registers, the inserted copies will actually have to be per-
formed withmoveinstructions, which degrades performance. But hopefully, this split-
ting helped to avoid a spill which is usually more expensive than moves.

The most famous example of live-range splitting in compilation is theSSA form,
which will be presented in Section 2.3. While splitting helps for coloring, one should

4This is of course true only with the relaxed De�nition 2.8 of interference.
5This is the same problem as sequentializing parallel copies when going out ofSSA, see Section 2.3.6.
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a  : : :
b  : : :

c  : : :
d0  b
� � �  c
d  d0

e  : : :
d00 a
� � �  e
d  d00

� � �  d

d00

e

ab

c

d0

d

Figure 2.10: Splittingd makes 2 registers enough for the program of Figure 2.6.

b  c
c0  a
(b0; c)  (b; c0)
a  b0 + c

a  1
c  0

� � �  a

a

bb0

c0

c

Figure 2.11: Splittingb andc in parallel makes it possible to swap their colors.
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a  : : :
b  : : :

c  : : :
� � �  c
a  b

e  : : :
� � �  e

� � �  a

e

a(d;d00)b(d0)

c

Figure 2.12: Coalescing in the example of Figure 2.10:b with d0, a with d, andd00.

keep in mind that whatever the splitting, it willnot lower Maxlive, hence it cannot
solve the problem if
 > R.

Variable coalescing: Finally, the converse of the splitting technique might help: the
coalescing. This corresponds to grouping two di� erent non-interfering variables into
one, by replacing every occurrence of the second by the �rst. The e� ect on the inter-
ference graph is that the corresponding nodes are merged, hence decreasing by one the
degree of the common neighbors and augmenting their chance to be simpli�ed. This
was remarked by George and Appel [1996], and actually used by Vegdahl [1999] to
improve the simpli�cation scheme of Chaitin et al.

Of course, the problem is that the node resulting from the merge may have more
neighbors. In general, it is hard to know if a particular coalescing will break the col-
orability of the graph; this will be discussed in Chapter 5. Global or local rules can
help deciding if a coalescing is “safe,” for instance Briggs's and George's rules use
neighborhood criteria to make sure the resulting node will still be simpli�able at some
point of Chaitin et al.'s algorithm. Hailperin [2005] does a nice formal model of the
power of these two rules. We will heavily discuss coalescing rules in Chapter 6.

In practice, coalescing is often performed only between nodes which have an a� n-
ity (see De�nition 2.12), so that the corresponding copies can be removed from the
program code. As an example, Figure 2.12 shows a possible coalescing of the program
in Figure 2.10: three of the four copies are removed by coalescingb with d0, a with d00,
andd with d00. The fact that common neighbors are more likely to be simpli�ed is then
more a nice side e� ect than the primary goal of the coalescing.

2.2.4 Iterated Register Coalescing (IRC)

Classical approaches for graph-based register allocation integrate in the same frame-
work spilling, coalescing, and coloring, the last one being the �nal assignment of
variables to registers. This is the case in the Iterated Register Coalescing approach
proposed by George and Appel [1996], a modi�ed version of the original allocation
scheme of Chaitin [1982] and of improvements due to Briggs et al. [1994]. The prob-
lem is also modeled with the interference graph of the program, on which the greedy
approach of Chaitin et al. is used to try to color the graph withRcolors. This involves a
combination of the following mechanisms. The execution �ow between them is shown
graphically on Figure 2.13:

a) build: the interference graph is built from the program;
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build simplify coalesce freeze pot. spill select act. spill

Figure 2.13: Flow diagram of the Iterated Register Coalescing scheme.

b) simplify: a vertex/variable with at most (R � 1) neighbors can be simpli�ed (re-
moved) from the graph since it will be easy to color afterwards (this is the same
mechanism as in FunctionIs_kGreedy , page 21). Vertices involved in copy in-
structions are not simpli�ed to get a chance to becoalesced;

c) coalescing: removing a copy instruction can be done by merging the two vertices
involved in the move; this is performed in aconservativeway, i.e., with simple rules
that guarantee that the graph remains greedy-k-colorable;

d) freeze: copy instructions are tested several times to improve they chance of being
coalesced by the conservative tests. When no more copy has a chance to be coa-
lesced, the algorithm “freezes” one copy, i.e., gives up on this one and will never
test it again;

e) potential spill: when all vertices have at leastRneighbors, some vertex is simpli�ed
and marked as a “potential” spill;

f) select: when the graph is empty, the vertices are colored in the reverse order of
their simpli�cation. Each vertex is given a color not used by its already-colored
neighbors;

g) actual spill: if no color is available for a vertex marked as a potential spill, an actual
spill is performed, i.e., loads and stores are inserted in the code;

h) rebuild: if there was a spill, the interference graph is rebuilt and the coloring proce-
dure is restarted.

Such an approach gives fairly good results. But the main reason for its success is
certainly its simplicity both from a conceptual and an implementation point of view.
Weights can be easily added to guide the spilling and the coalescing. This allows it
to take into account di� erent dynamic execution frequencies of basic blocks. Physical
registers can be added as speci�c “pre-colored” vertices. Register constraints are ex-
pressed by adding copies in the code, so that the coalescing elegantly deals with them.
“Smarter” coloring strategies for the select phase, such as biased coloring, can be used
to improve the coalescing. However, this approach has also several weaknesses for
both spilling and coalescing:

ˆ For spilling, once a vertex is actually spilled, there is no obvious method to
decide where to place loads and stores, except the simple but ine� cient “spill-
everywhere” approach, where astore is inserted after each de�nition, and a
load before each use of the spilled variable.6 Even worse, it can happen that
some spilling is done even if this actually does not help to make the graphk-
colorable.

6Re�nements can be done afterwards, for instance, Chaitin et al. [1981] states that unnecessary loads can
be removed using a pass of dead-code elimination.
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ˆ For coalescing, although simple and appealing, conservative coalescing is some-
times not aggressive enough and too many moves may remain in the code. Fi-
nally, even if live-range splitting is sometimes considered in such a framework,
it is very hard to control the interplay between spilling and splitting/coalescing.

In the initial scheme of Chaitin et al., the coalescing was aggressive, i.e., copies
were eliminated regardless of their e� ect on the colorability of the graph. But when
Briggs et al. [1994] introduced live-range splitting in this scheme, they moved to a
conservative coalescing that would not cancel the e� ects of the splitting. With the
growing di� erence in speed between accessing memory and accessing registers, this is
often better to have moremoveinstructions if this saves a spill. This settled conserva-
tive coalescing in theIRC scheme, delegating the coalescing of initial program moves
to an (optional) constant propagation phase, so that the less powerful coloring-aware
coalescing had only to deal with copies inserted by live-range splitting.

2.3 Static Single Assignment form

Static Single Assignment (SSA) form is a property for intermediate representations
widely used in modern compilers, usually because it enables or simpli�es well-known
optimizations. We will �rst give de�nitions and properties ofSSA form, then explain
why it is interesting for register allocation and the particularities of this form with re-
gard to program code.

2.3.1 De�nition of SSA

De�nition 2.24. SSAform: every variable is textually7 de�ned exactly once before
being used. Given a variablea, def(a) is the instruction that de�nesa and use(a) is the
setof the instructions that usea.

Then, underSSA, there is one uniquestaticde�nition, but it is possible to get mul-
tiple dynamicde�nitions—for example, if the de�nition occurs in a loop. This form is
illustrated in Figure 2.14. Usually,SSA is consideredwith dominance property, which
will be de�ned in the next section.

A program can be converted toSSA form by renaming multiple de�nitions of the
same variable into subscripted versions of this variable. At join points of theCFG,
multipleSSAvariables derived from the same original variable must be merged into one
SSA variable depending on where the execution path comes from. This is the purpose
of the so-called virtual� -functions.

De�nition 2.25. A � -function is a virtual operation which can be placed only at the
beginning of a basic block (at the program point before the �rst instruction). It takes as
many arguments as the number of incoming �ow edges, and return the value of itsnth

argument when the execution path comes from thenth incoming �ow edge.

An example of� -function is given on Figure 2.14:c is de�ned twice, hence is
replaced byc1 andc2. At the end of the “if. . . then. . . else” construct, there is a use of
c, whose value depends on which branch of the condition was taken. The� -function
inserted acts as a multiplexer by “choosing”c1 if the path comes from the left, andc2

if it comes from the right, de�ning a third variablec3 which is the one used afterwards.

7In the source code of the program.
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a  : : :
b  : : :

c  : : :
� � �  a

c  : : :

� � �  c
� � �  b

a  : : :
b  : : :

c1  : : :
� � �  a

c2  : : :

c3  � (c1; c2)
� � �  c3

� � �  b

Figure 2.14: A program converted toSSA

De�nition 2.26. A program is inconventionalSSA form (cSSA) if, for all � -functions,
all variables involved in the� -function (the arguments and results) can be renamed
with a common name.

This means that under cSSA, the arguments and results of a� -function must not
interfere. A program converted toSSA form using the method of Cytron et al. [1991] is
under cSSA. This property is useful, for instance, if the result of a� -function is spilled,
then it ensures that arguments can be spilled to the same memory location. Some
optimization can break the conventional property, like copy folding and code motion,
but Sreedhar et al. [1999] gave a method to convertSSAback to cSSA.

2.3.2 The dominance property

De�nition 2.27. An instructions—or a block of instructions—dominatesan other in-
structiont if every elementary path8 from the root of the program tot goes throughs.
The notation iss � t.

De�nition 2.28. SSA is said to bewith dominance propertyif, for every variablea,
def(a) dominates every element of use(a).

Lemma 2.29. If SSAis with dominance property, for every variable a,def(a) dominates
every element of Live(a).

Proof. Suppose thata is live at program pointp. Then, there exists a path fromp to
an instructionu that usesa which does not go through def(a). If p was not dominated
by def(a), there would exist a pathr  p from the root of the program top which
does not go through def(a), hence there would exist a pathr  p  u with the same
property, which contradicts the dominance property. �

The following theorem is well-known and we will need it for some later proofs, so
we recall it here for completeness.

Theorem 2.30. Dominance is a partial order: it is antisymmetric, re�exive and tran-
sitive.

Proof. Proof of the three properties:

8Path which contains at most one time any instruction.
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ˆ antisymmetric: we supposes � t andt � s. Let us consider an elementary path
r  t from r to t. This path goes throughs sinces � t: it can be split into
r  s  t. Again, sincet � s, the path from the root tos goes throught and
the initial path writesr  t  s  t. But the �rst path was an elementary path
hence the only possibility is thatt  s  t is of zero length, i.e.,s = t;

ˆ re�exive: s is the last element of any path from the root to itself, hence it domi-
nates itself;

ˆ transitive: if s � t andt � u. Let r  u be a path from the root tou. It contains
t and can be writtenr  t  u. But s � t so one can splitr  t in r  s  t
which means thatr  u containssands � u.

�

De�nition 2.31. Thedominance graphis the Hasse diagram9 of the graph where the
vertices are the instructions and the (directed) edges indicate dominance:

s ! t () s � t

Property 2.32. If s and t dominate u, then either s dominates t, or t dominates s.

Proof. Consider an elementary path from the rootr to u. This path containss andt by
de�nition. Without loss of generality, one can suppose thats appears beforet on this
path: r  s  t  u. Suppose there exists a pathr  � t from r to t which does not
go throughs, then one could extend this path tou, andr  � t  u would be a path
from the root tou not going throughs which contradicts the fact thats � u. Hence
every path fromr to t goes throughsands � t. �

Note on live-ranges underSSA. The dominance property seems to be contradictory
with the existence of� -functions. Indeed, when looking at the example of Figure 2.14,
the use ofc1 andc2 do not seem dominated by their de�nition. But in fact, the� -
function is not a normal instruction and its semantics is that assignments are performed
“somewhere” on the incoming edges. This means thatc1 andc2 are in fact notlive_in
of the basic block where the� -function is. The converse is true for the de�nition:c3

is not live_outof the preceding basic blocks. Hence, the live-range of a variable used
in a � -function underSSA endsat the end of the basic block preceding the� -function
(unless it is still used after the� -function), and the live-range of a variable de�ned by
a � -functionstartsat the beginning of the basic block where the� -function is.

The live-ranges are important for the shape of the interference graph. Indeed, it
is important thatc1 andc2 do not interfere (if the� -function is their last use) because
that is the purpose of splitting underSSA. Interferences exists whenever live-ranges
intersect, and in the following we prefer to stick to this de�nition and not take value
into account. This is in fact not a limitation underSSAsince variables are de�ned only
once, hence, if at its de�nition a variable is de�ned as [b  a], b will always have the
same value asa and can be renamed at every of its uses. This can be easily done with
a copy folding algorithm, a very common optimization in compilers.10

9Graph whith the transitive edges removed.
10However, this breaks the “conventional” property of cSSAcodes.
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2.3.3 Properties ofSSA

Property 2.33. Under SSA, if a interferes with b, then eitherdef(a) � def(b), or
def(b) � def(a).

Proof. Let p be a program point wherea and b are simultaneously alive. Using
Lemma 2.29, we know that def(a) � p and def(b) � p. The property 2.32 con-
cludes. �

Corollary 2.34. Under SSA, if a interferes with b anddef(a) � def(b), thendef(b) 2
live(a).

Proof. def(a) � def(b), and sincea andb interfere, by De�nition 2.8 of the interfer-
ence,a is alive at def(b), which means def(b) 2 live(a). �

Theorem 2.35. The dominance graph underSSAis a tree.

Proof. A vertex u has only one direct predecessor: ifs andt dominateu, then Prop-
erty 2.32 states that one of the two dominates the other. For instance,s � t, thens ! u
is a transitive edge and does not appear in the Hasse diagram. Moreover the graph is
connected since the root dominates every vertex. �

Corollary 2.36. UnderSSA, the live-ranges are subtrees of the dominance graph.

Proof. Let us consider a variablea and a pointp of its live-range. Let us consider the
shortest pathPdom from the de�nition ofa to p on the dominance tree. Sincea is alive
at p there is a pathPCFG, on theCFG, from p to a use ofa which does not go through
def(a).

For any pointp0 , def(a) of path Pdom, def(a) � p0 � p because def(a) � p.
Hence, there is also a pathP0

CFG, on theCFG, from p0 to p. Moreover, one can choose
P0

CFG so that it does not go through def(a), else this would meanp0 � def(a) which
is impossible because of the antisymmetric property of the dominance. Hence, the
concatenation ofP0

CFG with PCFG is a path, on theCFG, from p0 to a use ofa which
does not go through the de�nition ofa. This meansa is alive atp0.

Hence, every shortest pathPdom, on the dominance tree, from def(a) to a point
wherea is alive contains only points wherea is alive. They are sub-paths of the domi-
nance tree, and since have a point in common—the de�nition ofa—, the union of these
paths is connected: it is a subtree of the dominance graph. �

Figure 2.15 shows the live-ranges of the previousSSA example, Figure 2.14. The
conditional branches do not dominate the last basic block, so the dominance graph is a
tree and theSSA live-ranges are subtrees of this tree.

2.3.4 SSA interference graph is chordal

In 2005, we discovered that, underSSA, the interference graph of a program is chordal.
Independently, Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]
made the same observation. Note that the interference graph depends on the interfer-
ence notion. We use De�nition 2.8 for that purpose,11 and the shape of the live-ranges
underSSAare explained in the note page 28.

11Note that, underSSA, there is only one de�nition, hence, if variableb is de�ned as [b  a], it is possible
to replace every occurrence ofb by a since they will always be equal. Note that this is akin to aggressive
coalescing but is safe to do underSSA as it will not increase the coloring number. Constant propagation
can do this e� ciently in a �rst pass, then it is not worth considering the interference de�nition of Chaitin
(De�nition 2.11) as there is no remaining copy in the program.
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c3
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on the CFG

SSA
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c1
c2

c3

a
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Figure 2.15: Live-ranges of the program of Figure 2.14 and its version underSSA. c1

andc2 stop at the end of their de�nition blocks, whilec3 starts at the beginning of the
block with the� -function (see note page 28), hence they are subtrees of the dominance
tree.

Theorem 2.37. The interference graph G of a program underSSAwith dominance
property is chordal.

Short proof.Corollary 2.36 states that underSSA, live-ranges are subtrees of the dom-
inance graph. Hence the interference graph is the intersection graph of a family of
subtrees (the live-ranges) of a tree (the dominance tree), which is another characteriza-
tion of chordal graphs [Golumbic, 1980, Thm. 4.8]. �

It is possible to give a more direct proof, without using the characterization of
chordal graphs as the intersection graph of subtrees of a tree. It was by �nding this
proof that we �rst realized that the interference graph of a program underSSA is
chordal, which is the very �rst contribution of this thesis. Then, we �gured out that
the chordal representation as subtrees of a tree would perfectly match the live-ranges
underSSA.

Proof. Let G be an interference graph of a program underSSA. Let us de�ne the fol-
lowing orientation of the edges: if def(u) � def(v), thenu ! v. Property 2.33 states
that every edge is directed. Consider a cycleC of length at least 4 inG, if there is one.
From Theorem 2.30, the dominance relation is a partial order:C cannot form a directed
cycle, thus there are two edgesu ! v andv  w, directed fromu to v and fromw to v,
i.e., the de�nitions ofu and ofw dominate the de�nition ofv. Sinceu andv interfere,
andu ! v, u is alive at def(v) and the same is true forw. u andw are both alive at the
def(v), they interfere and there is an edge betweenu andw in the graph, i.e., a chord
in C.

�

As a chordal graph, the interference graph of a program underSSA is perfect, hence
� (G) = ! (G): the coloring number is equal to the size of the largest clique. We will
now see how to correlate� (G) with Maxlive, the maximum number of simultaneously
alive variables. Before seeing it, we need the following property which links together
the number of alive variables in the program and the cliques of the interference graph.
The size of these cliques �xes the number of colors required.
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Property 2.38. In an interference graph G under SSA:

ˆ for any program point, the set of live variables form a clique in G;

ˆ reciprocally, to every clique of G of size! corresponds a program point where
at least! variables are alive.

Proof. The �rst point is obvious since variables simultaneously alive form a clique
(remember we still use the relaxed De�nition 2.8 of interference). Now, consider a
clique in G with directed edges as in the proof of Theorem 2.37. Since there is no
directed cycle, there is a vertexu in the clique such that, for any other vertexv in
the clique, (u; v) is directed fromv to u, i.e., the de�nition ofu is dominated by the
de�nition of any other vertex. Thus all variables in the clique are live at the de�nition
of u, which proves the second point. �

Corollary 2.39. UnderSSA, the coloring number of the interference graph is Maxlive,
i.e., � (G) = 
 .

Proof. Chordal graphs are perfect graphs, hence their coloring number� (G) equals
their clique number! (G) [Golumbic, 1980]. From Property 2.38, the largest clique is
of size Maxlive, hence the interference graph of a program underSSA is 
 -colorable.

�

Back to register allocation. In Section 2.2.2.6, we proved Property 2.23, which
states that ak-chordal graph is also greedy-k-colorable. Now that we know that the
interference graph of a program underSSA is chordal, the consequence of this basic
property, to our knowledge not mentioned in the compiler literature before our work,
is particularly interesting for register allocation in the context ofSSA. In Property 2.23,
we just used the well-known proof that a simplicial elimination scheme leads to an op-
timal coloring for a chordal graph, as recalled by Pereira and Palsberg [2005]. But our
de�nition of greedy-k-colorability implies more. In register allocation, the number of
registersR is �xed and there is, in general, no point in trying to use as few registers as
possible: just fewer thanR is su� cient. In other words, it is possible to use an optimal
on-line coloring such as a simplicial scheme or a smallest last order, but, as the number
of registersR is known, it is also possible to simply use any Chaitin-like simpli�cation
scheme, i.e., to remove vertices with degree less thanR in any order.

Moreover, using Corollary 2.39, we know that, if
 � R, there is no need to spill
and the greedy coloring scheme of Chaitin et al. will manage to color the interference
graph withR colors. This implies that, underSSA we have an exact test to decide if
some spilling is required or not.

Finally, we mentioned in Section 2.2.2.4 that the representation of chordal graphs
as subtrees of a tree makes it possible to color them byscanningthe tree from the
root to the leave. In the context ofSSA form, this is directly applicable by scanning
the program from the root to the leaves of the dominance tree, assigning colors to the
live-ranges when encountered.

2.3.5 Why is coloring polynomial underSSA?

In the general case, it is NP-complete to decide ifR registers are enough, while un-
der SSA, the interference graph is chordal hence the same problem is polynomial.
Why? BecauseSSA splits variables by using� -functions. Indeed, we have seen in
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a2  � (a1; a3)
c2  � (c1; c3)
b  c2

c3  a2

a3  b + c3

a1  1
c1  0

� � �  a3

(a) Program of Fig. 2.4

a  : : :
b  : : :

c  : : :
d1  b
� � �  c

e  : : :
d2  a
� � �  e

d3  � (d1; d2)
� � �  d3

(b) Program of Fig. 2.6

Figure 2.16: Running examples underSSA

Section 2.2.3 that splitting variables helps. This was observed by Fabri [1979] who
explained that splitting variables can lower the clique number of the interference graph
to Maxlive. UnderSSA, variables are split atthe only necessary points, at the domi-
nance frontier, i.e., at points where there are cycles in the live-ranges on the dominance
tree:� -functions splits the live-ranges which spawn across branches without following
paths on the tree, so that they become disconnected subtrees.

Note that additional splitting pointscannot lowerthe clique number below Maxlive;
however, additional splitting can still be interesting if one looks for split points where
placingmoveinstructions is cheaper. For instance, an instruction inside a loop is usu-
ally dynamically more expensive than an instruction outside the loop. Hence, even if
more splitting is unnecessary in terms of coloring, it might still be interesting in terms
of coalescing, i.e., for minimizing the number of (weighted) copy instructions.

Finally, if SSA provides a tool for splitting variables e� ciently, it is certainly not
the unique way to split variables so that the remaining interference graph gets chordal.
For instance, one of the �rst examples of this chapter, Figure 2.4, was split bySSA

and presented in Figure 2.16a, but we �rst gave another example of splitting on Fig-
ure 2.11. Both splitting made the interference graph 2-colorable while the non-split
initial program needed 3 registers. Figure 2.16b also shows theSSA splitting of the
running example of the odd-length cycle (initial program on Figure 2.6).

We will see in the next chapter, Section 3.1.2, a more detailed explanation on the
e� ects of splitting on the complexity of register allocation.

2.3.6 SSA form is not machine code

SSAform is not machine code:� -functions are virtual instructions which do not exist in
hardware. Even though, a� -function represents a transfer of values between variables,
and whenever the source variables are di� erent from the destination variables—they
can be equal, for instance after some coalescing—,� -functions need to be material-
ized by addingmoveinstructions “on” the incoming edges. This problem in known as
“going out ofSSA” in the literature.

Two problems arise: First, an edge cannot contain any code. One possibility is to
place the copies at the end of the source basic block, but if this block has more than
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b  c2

c3  a2

a3  b + c3

a1  1
c1  0
a2  a1

c2  c1

� � �  a3

a2  a3

c2  c3

a3

c2a2

b

c3

a1 c1

(a) Sequential copies

b  c2

c3  a2

a3  b + c3

a1  1
c1  0
(a2; c2)  (a1; c1)

� � �  a3

(a2; c2)  (a3; c3)

a3

c2a2

b

c3

a1 c1

(b) Parallel copies

Figure 2.17: Sequentializing copies creates new interferences.
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one successor, the copies will still be executed even if another edge is chosen when the
program is run. Second, if multiple copies must be added to an edge, the order in which
they are sequentialized is important—for instance, if some variables are used both as
argument and as result of� -functions.

Critical edges: The �rst problem is related to the notion of critical edges.

De�nition 2.40. A critical edgeis an edge in theCFG which goes from a basic block
with more than one successor to a basic block with more that one predecessor.

For instance, the back edge of a loop can be a critical edge, depending on whether
in ends in a jump or a branch. Structured loop constructs tend to produce a branch at
the bottom of the loop, which produces a critical edge (see for instance Figure 2.16a).
If some code must be placed on a critical edge, it is dangerous to place it at the end of
the preceding basic block—the code will still be executed if one of the other leaving
edges is chosen—or at the beginning of the following basic block—the code will still
be executed if the path comes from one of the other incoming edges.

There are (at least) two solutions to this problem. One possibility is to still place
code at the borders of basic blocks, but to make sure it does not modify the semantic of
the program when other edges are chosen. For instance, this code should not re-de�ne
a variable used later on another execution path. Sreedhar et al. [1999] chose to add
copies to new variables for the arguments on the preceding blocks,and also a copy
for each variable de�ned by a� -function. This approach is explained in Chapter 7,
Section 7.1.

Another solution is tosplit the critical edge and add the code to the newly created
basic block.

De�nition 2.41. Splittingan edge going from a source basic blockBs to a destination
basic blockBd is done by creating a new basic blockBn, deleting the edge and creating
two new edges fromBs to Bn andBn to Bd.

Parallel � -functions: The second problem is related to the fact that the semantics
of multiple � -functions at the beginning of a basic block is that they are executed in
parallel. It is a mistake to consider them as sequential instructions, for two reasons:
First, if a variable is both used and de�ned in two� -functions, one might erase the
value before having used it. Here is an example:

a � (: : :)
: : :  � (a; : : :)

Second, if sequentialized, interferences which did not exist beforehand are created:
interferences between arguments and results of the� -functions. For instance, the two
codes of Figure 2.17 have been obtained from Figure 2.16a by replacing the� -functions
with moveinstructions: on the �rst basic block, and on a new basic block on the back
edge of the loop. On Figure (a), these instructions copies are sequentialized which
creates interferences betweenc1 anda2, and betweena2 andc3. The interference graph
is then 3-colorable. On Figure (b), parallel copies are used which keeps the graph
2-colorable as in the is the originalSSAcode.

Hence the parallel semantics of� -functions is crucial and should be kept for as
long as possible. Of course, in the end, the �nal code will be sequential, but it is better
to use instructions with parallel semantics until the very last moment so that one does

34



2.3. Static Single Assignment FORM

not lose some information on the interference graph. In order not to forget the parallel
semantics of� -functions, Hack [2007] proposes to replace multiple� -functions by one
� -function using a matrix notation:

x  � (x1; x2; : : : ;xn)
y  � (y1; y2; : : : ;yn)

:::
z  � (z1; z2; : : : ;zn)

0
BBBBBBBBBBBBBBB@

x
y
:::
z

1
CCCCCCCCCCCCCCCA

 �

0
BBBBBBBBBBBBBBB@

x1 x2 : : : xn

y1 y2 : : : yn
:::

:::
:::

:::
z1 z2 : : : zn

1
CCCCCCCCCCCCCCCA

This means that if arriving, for instance, from the second incoming edge, all copies
[x  x2], [y  y2], . . . , [z  z2] need to be performedat the same time. Note however
that multiple� -functions at the beginning of the same basic block arenot the only cause
of parallel copies creation. Two� -functions in di� erent basic blocks can also create
copies that should be parallel. This is the case for instance if a basic blockB has two
successors that contains respectivelya  � (b; : : :) andb  (a; : : :). If, when going
out-of-SSA, the copies are added at the end ofB, the two moves [a  b] and [b  a]
must obviously be made parallel. The use of the matrix notation should not make us
forget that point.

In the end, it will usually be necessary to sequentialize the parallel copies. This
is possible without adding more code unless the copies represent a permutation of
the variables. In this case, swap instructions or temporary variables can be used for
example. We will not go deeper into details here since sequentializing copies will be
discussed Chapter 7, Section 7.3.4. We will nevertheless give here a classical example
of dead lock: the swap of two values.

 
a
b

!
 �

 
a b
b a

!

In this case, the swap between values ofa and b coming from the second edge
cannot be sequentialized as the �rst copy executed would overwrite the value needed
for the second. In the absence of swap instructions in the architecture,12 another free
register needs to be used as a temporary value holder and the instructions [t  a; a  
b; b  t; ] are performed. This is problematic if the register pressure at this point is
already equal toR, in which case a spill is needed.

To prevent the creation of arti�cial interferences too early, it is best to represent
copies due to� -functions using parallel copies—(a;b)  (b; a) in our example—which
we introduce in the next section.

2.3.7 Splitting and parallel copies

De�nition 2.42. A parallel copyis a virtual instruction takingn arguments and de�n-
ing n variables,simultaneously, from these arguments. The notation is

(v1; v2; : : : ;vn)  (a1; a2; : : : ;an)

This is a fundamental instruction when dealing with program splitting. To split all
variables at one program point, one needs to duplicate all variables alive at this point,
and insert a parallel copy between all the variables and their duplicates. Trying to split
by inserting normal, i.e., sequentialized copies, would create interferences between

12Or the possibility to emulate them, for instance by using threeXOR.
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some variables and the duplicates of others. Parallel copies can be seen as a way to
“reorganize” values in variables, and are sometimes referred to as “shu� e code.”

However, there is no such hardware instruction. At best, one can �nd instructions
to swap values in registers or perform up to a �xed number of copies in parallel, e.g.,
four copies on a 4-wayVLIW architecture, or emulate a swap by using three consecutive
XOR. In the end, parallel copies will need to be instantiated with actual machine code.
As said previously, these matters are discussed in Chapter 7.

2.4 Conclusion

In this chapter, we de�ned notations and objects that we will manipulate in the next
chapters. We provided background information on register allocation, de�ning pro-
grams, live-ranges and interference graphs. We discussed the colorability of the inter-
ference graph with regards to Maxlive, the maximum number of variables simultane-
ously alive, and introduced interesting graphs structures for interference graphs. Then,
we discussed possibilities of modifying the program wheneverR registers are not suf-
�cient to color the graph. Finally, we introduced theSSA form, which is concerned
by two results of ours: �rst, the interference graph of a program underSSA is chordal;
second, chordal graphs can be colored using the simple greedy algorithm of Chaitin
et al. [1981]: they are greedy-colorable, a property that we introduced in this chapter.

Please keep in mind that programs are always considered strict, andSSA programs
are considered with dominance property. Also, the notion of interference if very impor-
tant for the shape of the interference graph, in particular, for any program point there
is a clique in the graph only if variables alive at the same time interfereeven if they
have the same value. Finally, we will always consider that we have only one type of
registers during this thesis. In practice, di� erent classes exist, like integer and boolean
registers. For disjoint classes, they can be considered independently, but particularities
like register aliasing complicates the problem. These subtleties will be discussed in
conclusion, i.e., Chapter 8, along with more practical advices.

Using these grounds, we will build a new way of viewing register allocation in two
phases in the next chapters: �rst, spilling with some splitting, second, coloring with
some coalescing.
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PROOF, n. Evidence having a shade more of plausibility than of unlikelihood.
The testimony of two credible witnesses as opposed to that of only one.

Ambrose Bierce (1842 – 1914), The Devil's Dictionary 3
What does the NP-completeness proof of

Chaitin et al. really prove?

The goal of register allocation is to map the variables of a program into physical mem-
ory locations (main memory or machine registers). Accessing a register is usually faster
than accessing memory, thus one tries to use registers as much as possible. When this is
not possible, some variables must be transferred, “spilled,” to and from memory. This
has a cost, the cost of the load and store operations, which should be avoided as much
as possible. Solving this problem has been a necessity since the very �rst compilers.
And, although it is very simple to state, many e� orts have been made to �nd the best
possible solutions, as the problem is in practice quite complicated. We will continue the
introduction of this chapter with a long but hopefully meaningful explanation of why
people usually view register allocation as a di� cult problem, why this is not always
true, and why we propose to study, again, the complexity of this problem.

Classical approaches for register allocation are based on fast graph coloring algo-
rithms. A widely-used algorithm is the Iterated Register Coalescing (IRC) proposed
by George and Appel [1996], a modi�ed version of previous developments by Chaitin
et al. [1981]; Chaitin [1982], and Briggs et al. [1994]. In these heuristics,spilling, co-
alescing(i.e., removing register-to-register moves), andcoloring (i.e., assigning vari-
ables to registers) are done in the same framework. Priorities among these transfor-
mations are done implicitly with cost functions.Splitting (adding register-to-register
moves) can also be integrated in this framework. Such techniques are well-established
and used in optimizing compilers. However, there are several reasons to revisit these
approaches and register allocation in general. First, some algorithms not considered in
the past, because they were too time-consuming, can be good candidates today: proces-
sors used for compilation are now much faster and, for critical applications, industrial
compilers are also ready to accept longer compilation times. Second, the increasing
di� erence on most architectures between the cost of a memory access and the cost of a
register access suggests to focus on heuristics that give more importance to spilling cost
minimization, possibly at the price of additional register-to-register moves. Finally,
there are many pitfalls and folk theorems concerning the complexity of the register
allocation problem that are worth clarifying.

This last point is particularly interesting to note. Chaitin et al. [1981] modeled the
problem of allocating variables of a program toR registers as the problem of color-
ing, with Rcolors, the corresponding interference graph. By showing that any graph is
the interference graph of a program, and becauseGraph k-Colorability is NP-complete
[Garey and Johnson, 1979, Problem GT4], they proved that, in their model, deciding if
Rregisters are su� cient to perform register allocation without any spill is NP-complete.
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And from this date up to now, heuristics have been used for spilling, coalescing, split-
ting, coloring, etc. As a consequence, the argument “register allocationis graph col-
oring, therefore it is NP-complete” is one of the �rst statements of many papers on
register allocation. The following quote comes from the introduction of an article by
Konstantinos Sagonas and Erik Stenman [2003], but many others can be found:

“In this case [global register allocation], control-�ow enters the picture and
obtaining an optimal mapping becomes an NP-complete problem [. . . ]”

This isnot what Chaitin et al. proved. Actually, going from register allocation to
graph coloring is just a way of modeling the problem, not an equivalence. In particu-
lar, this model does not take into account the fact that a variable can be moved from a
register to another using live-range splitting. Our impression was that there is a mis-
understanding of the implications of Chaitin et al.'s proof in the community. While
it is true that most problems related to register allocation are NP-complete, identify-
ing register allocation to graph coloring can make us forget what Chaitin et al.'s proof
actually shows. In particular, it is commonly believed that, in absence of instruction
rescheduling, it is NP-complete to decide if the program variables can be allocated to
R registers with no spilling, even if live-range splitting is allowed.

Until very recently, only a few authors addressed the complexity of register alloca-
tion in more details. Maybe the most interesting complexity results are those of Liber-
atore et al. [1999]; Farach-Colton and Liberatore [2000], who analyze the reasons why
optimal spilling is hard for basic blocks. In this case, the coloring phase is of course
easy because, after some variable renaming, the interference graph is an interval graph,
but decidingwhichvariables to spill andwhereto spill them is in general di� cult. They
call this phase “allocation,” as it decides which variables are allocated in memory and
which are allocated in registers, and di� erentiate it from the second phase, called “reg-
ister assignment.” In this phase, variables are mapped to registers, possibly removing
move instructions by coalescing, or introducing move instructions by splitting. When
loads and stores are more expensive than moves, such an approach is worth exploring.
It was experimented by Appel and George [2001] and also advocated by Knobe and
Zadeck [1992]; Hack et al. [2006].

The last example clearly states that, for a basic block, the problem lies in the
spilling, not the coloring. More recently, we discovered that, under Static Single
Assignment (SSA) form, the interference graph of a program is chordal (see Theo-
rem 2.37). Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]
independently made the same observation. This theorems shows it iseasyto decide
if R registers are su� cient for a program underSSA. How come theSSA case is not
covered by Chaitin et al.'s proof? Combined with the idea of spilling before color-
ing so that Maxlive� R, this led Pereira and Palsberg [2006] to wonder where the
NP-completeness of Chaitin et al.'s proof (apparently) disappeared:

“Can we do polynomial-time register allocation by �rst transforming the
program toSSA form, then doing linear-time register allocation for theSSA

form, and �nally doing SSA elimination while maintaining the mapping
from temporaries to registers?”

All this needs to be done when Maxlive� R of course, otherwise some spilling is
necessary. They show that, if register swaps are not available, the answer is “no” unless
P=NP. The NP-completeness proof of Pereira and Palsberg is interesting, but we feel it
does not completely explain why register allocation is di� cult. Basically, it shows that
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if we decidea priori what the splitting points are, i.e., where register-to-register moves
can be placed (in their case, the splitting points are de�ned by the� -functions), then it
is NP-complete to choose the right colors.1 However, there is no reason to restrict to
splitting only at points given bySSA. Actually, we will show that, when we can choose
the splitting points, when we are free to add program blocks to remove critical edges
(the standardedge splittingtechnique), then it is easy, except for a few particular cases,
to decide if and how we can assign variables to registers without spilling.

Hence, to answer the question: “Where did the complexity disappear?” a good
lead would be that splitting variables simpli�es the problem. AndSSA splits variables
with multiple de�nitions (see Section 2.3.1). Fabri [1979] already observed, working
on allocation of arrays into memory, that splitting could reduce the chromatic number
down to Maxlive. Of course, splitting has a cost, but only the cost of a move instruction,
which is often better than a spill. So the introduction of splitting raises some questions:

ˆ When is Chaitin et al.'s proof applicable?

ˆ What are the limits of Chaitin et al.'s proof?

ˆ How far can Chaitin et al.'s proof be extended to cover other cases?

This chapter acts as a second introduction to this thesis. We will present here the
preliminary work that led us to revisit register allocation. In a �rst part, we will stress
Chaitin et al.'s proof on its weakest points, by successively patching the proof and
pointing to newly created weak spots. We tried to do it didactically, starting from the
original proof and acting as would act someone skeptical, constantly �nding new points
to argue.2 Then we will illustrate the limits of this proof by showing two con�gurations
under which the problem of knowing whetherR registers are su� cient or not becomes
easy—one of them being theSSA form. At this point, we will de�ne what we think is
responsible for the complexity of this problem: the “multiplexing regions.” Whenever
there is no critical edge in these multiplexing regions, we will promote the practical
way of doing register allocation in two phases in place of the classical graph-based
algorithm in one phase. First phase: spill variables so that Maxlive becomes less that
R, and split variables so that the graph becomesR-colorable. Second phase, color
while performing coalescing to reduce the e� ects of having split the program. Finally,
we will come back to the outline of this thesis and explain how the next chapters �ow
from this one.

3.1 NP-completeness proofs

In this section, we will present variations of the NP-completeness proof of Chaitin
et al. [1981], to show how much modi�cation of the problem it can endure, and what it
cannot.

3.1.1 Direct consequences of Chaitin et al.'s proof

Let us examine Chaitin et al.'s NP-completeness proof, a proof by reduction from
Graph k-Colorability [Garey and Johnson, 1979, Problem GT4].

1Note that their proof forbid the use of register swaps, while for instance Hack et al. [2006], who actually
perform register allocation underSSA, consider they do have them.

2For example: – Right,. . . butwhat if I am allowed to. . . ?
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a

b

d

c

(a)

x

a

b

d

c

(b)

switch
Broot

returna + x
Ba

returnb + x
Bb

returnc + x
Bc

returnd + x
Bd

a  0
b  1
x  a + b

Ba;b

a  3
c  4
x  a + c

Ba;c

b  6
d  7
x  b + d

Bb;d

c  9
d  10
x  c + d

Bc;d

(c)

Figure 3.1: Chaitin et al.'s reduction: program (c) built from a cycle of length 4 (a) and
its interference graph (b).

Problem: Graphk-Colorability
Instance.An undirected graphG = (V; E) and an integerk.
Question. Is it possible to color the graph withk colors, i.e., is there a colorc(v) in
f1; : : : ;kg, for each vertexv 2 V, such thatc(v) , c(u) for each edge (u; v) 2 E?

This problem is well-known to be NP-complete ifG is arbitrary, even for a �xed
k � 3.

For the reduction, Chaitin et al. [1981] build a program withjVj + 1 variables, one
for each vertexu 2 V and an additional variablex, as shown on Figure 3.1. For each
(u; v) in E, a blockBu;v de�nes u, v, andx. For eachu 2 V, a blockBu readsu and
x, and returns a new value. Each blockBu;v is a direct predecessor in the control-�ow
graph ofBu andBv. An entry block switches to all blocksBu;v. ForG cycle of length
4, on Figure 3.1a, the program is given on 3.1c, and its interference graph is on 3.1b.
This is the same graph asG plus a vertex for the variablex, connected to any other
vertex; thusx must use an extra color. As such,G is R-colorable if and only if (i� )
each variable can be assigned to a unique register for a total of at mostR+ 1 registers.
This is what Chaitin et al. proved: for such programs, deciding if one can assign the
variables,this way, to R � 4 registers is NP-complete.

What do we mean by “this way?” It means that assigning variables to registers as if
coloring the vertices of the interference graph is NP-complete. This is not the only way
of coloring variables, which are not atomic, localized objects as the vertices of a graph
are: a variable has a life that starts at its de�nition and can last for a long time. Why
should a variable be forced to reside in only one place all along its life? This introduces
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the problem of “splitting” variables, which we will explain in the next section.

3.1.2 Splitting variables in Chaitin et al.'s proof

We recalled in Chapter 2 the possibility ofsplitting the live-range of a variable. Basi-
cally, introducing a copy creates two new live-ranges in place of the �rst one, which can
be assigned to di� erent places. Chaitin et al.'s proof, at least in its original interpreta-
tion, does not address this possibility. Each vertex of the interference graph represents
the complete live-range as an atomic object that must always reside in the same regis-
ter. Furthermore, the fact that the register allocation problem is modeled through the
interference graph loses information on the program itself and the exact location of in-
terferences. This is a well-known fact, which led to the development of many di� erent
register allocation heuristics, with early development by Chow and Hennessy [1984]
and later by Callahan and Koblenz [1991]; Cooper and Simpson [1998], or Lueh et al.
[2000], but with no corresponding complexity study even though their situations are
not covered by the NP-completeness proof of Chaitin et al.

This raises the question: What if splitting live-ranges is allowed? We suppose that
it is possible to insert as many copies as we want, anywhere on any basic block. The
following theorem proves it does not make the problem any easier.

Theorem 3.1. It is still NP-complete to decide if R register are enough for a program
even if variable splitting is allowed (on basic blocks).

Proof. Let a be a node in the initial graph, i.e., a variable di� erent thanx in the pro-
gram. The key in Chaitin et al.'s proof was thata must reside in the same register in
blocksBa and all blocksBa;y for y neighbor ofa in the graph.

Let us consider one neighbory of a and suppose that the live-range ofa has been
split. Whatever the splitting, the value ofa resides in some variable on the edges going
to blockBa since this block needs the value ofa. Let us callay the variable holding the
value ofa on the edge fromBa;y to Ba. This means that, somewhere insideBa;y, there
is a copy [ay  a] or [ay  ai ] whereai is a split variable ofa (unlessay = a, i.e.,
a is not split on this block). Conversely, there should be a copy [a j  ay] somewhere
on Ba, before the use ofa. But supposea has another neighbory0,3 then there are two
copies [ai  ay] and [a j  ay0] acting concurrently onBa: the one executed last will
�nally sets the value ofa. Hence the resulting code is false, unless bothay anday0 share
the same register. This is possible, since they are never dynamically alive at the same
time: they do not interfere. But if two variables are restricted to be in the same register,
it is strictly equivalent to replace them with a common name: allay for y neighbor ofa
can be replaced by a common variable, saya0.

This reasoning, when applied to all variables of the program, shows that, for all
nodesv, and whatever the splitting, it the value of the corresponding variable must
reside on the same variablev0 on all edges going to basic blockBv. For the same
reason, variablex must also reside on the same variablex0 on all edges going to return
blocks.

Consider now all primed variables. Their interference graph is the same as the
original program without splitting, and is a subgraph of the interference graph of the
split program. Hence, �nding a coloring of the split interference graph would give a
solution to the initial problem, and conversely, a coloring of the initial program can be

3If every node in the graph has only one neighbor, there is no coloring problem.
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extended to a solution to the split program (give to all split variables ofv the same color
asv).

Therefore, the problem remains NP-complete and Chaitin et al.'s proof holds even
if live-range splitting is allowed. �

Why did splitting live-ranges not help here? This is because the control-�ow edges
from Bu;v to Bu arecritical edges, i.e., they go from a block with more than one succes-
sor to a block with more than one predecessor. Hence, placing code at the source of the
edge—at the end of aBu;v—con�icts with paths taking another edge, and placing code
at the destination of the edge—at the beginning of aBu—con�icts with paths arriving
from another edge. When critical edges are “connected” by their source or destination
basic blocks, this creates an “atomic” region (the edges) where code cannot be inserted.
On this region, values cannot be moved between registers, i.e., variables must be as-
signed to a unique register. Hence, splitting cannot help for register allocation in these
regions. We will de�ne later in Section 3.3 these regions asmultiplexing regionsthat
create atomic objects hard to color. An example of such a multiplexing region is the
one containing all the critical edges of Chaitin et al.'s proof: the edges from blocks of
typeBu;v to blocks of typeBu.

To conclude, Chaitin et al.'s original proof can be interpreted as fol-
lows. It is NP-complete to decide if the program variables can be assigned
to R registers, even if live-range splitting is allowed, but only when the
program has critical edges that cannot be split, i.e., when one can neither
change the control-�ow graph (CFG) structure nor add new basic blocks.

3.1.3 Split points on edges

Pereira and Palsberg [2006] pointed out that the construction of Chaitin et al.—as done
in Figure 3.1—is not enough to prove anything about register allocation throughSSA;
we will explain why in Section 3.2.1. In fact, Chaitin et al.'s proof does not hold
whenever it is possible to add basic blocks on edges, and split variables using copies
on these blocks. For instance, Figure 3.2 shows how to allocate the code of Figure 3.1c
with 3 registers. The variable de�nitions of each block of typeBu;v are arbitrarily put
in 3 registers—independently of other blocks, e.g.,r1 for u, r2 for v, andr3 for x. Then
it is decided that the variablesu and x in each block of typeBu are always expected
in registersr1 andr3. The coloring can then be “repaired” at each join point, when
needed, thanks to an adequate re-mapping of registers—here a move fromr2 to r1—in
a new block along the edge fromBu;v to Bv.

This implies that, whenever no coloration can be found for a graph, it may be possi-
ble to split some variables and some edges in order to be able to do register assignment.
This has a cost, the cost of the added copies and the jumps to the new basic blocks, but
which is possibly more interesting than spilling some variables to memory to make
some space in registers. This lead us to the following important question for practical
register allocation:

What if both live-range splitting and critical edge splitting is allowed?

A similar question is addressed by Pereira and Palsberg [2006], to which they an-
swer “no,” the problem is still NP-complete, using a reduction from thek-colorability
problem for circular-arc graphs, which is NP-complete ifk is a problem input [see
Garey et al., 1980, Problem GT4]. Basically, their idea is to start from a circular-arc
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switch
Broot

returnr1 + r3

Ba

returnr1 + r3

Bb

returnr1 + r3

Bc

returnr1 + r3

Bd

r1  r2 r1  r2 r1  r2

r1  r2

r1  0
r2  1
r3  r1 + r2

Ba;b

r1  3
r2  4
r3  r1 + r2

Ba;c

r1  6
r2  7
r3  r1 + r2

Bb;d

r1  9
r2  10
r3  r1 + r2

Bc;d

Figure 3.2: Splitting Chaitin's program makes it 3-colorable.

graph, to cut all arcs at some point to get an interval graph, to view this interval graph
as the interference graph of a basic block, to add a back edge to form a loop, and to
make sure thatk variables are live on the back edge. This ensures that variables cannot
be permuted on the back edge, supposing one needs a free register to perform permu-
tations. Then, coloring the basic block so that no permutation is needed on the back
edge is equivalent to coloring the original circular-arc graph. This is the same tech-
nique used in Garey et al. [1980] to reduce the coloring of circular-arc graphs from a
permutation problem. The proof of Pereira and Palsberg shows that if we restrict to the
split points de�ned bySSA, it is di� cult to choose the right coloring of theSSA repre-
sentation and thus decide ifk registers are enough. It is NP-complete even for a simple
loop and a single split point. However, the drawback of this proof is that, ifk is �xed,
this speci�c problem is polynomial as is thek-coloring problem of circular-arc graphs,
by propagating possible permutations. We now show that, with a simple variation of
Chaitin et al's proof, we can get a similar NP-completeness result, even for a �xedk,
but for an arbitrary program.

Theorem 3.2. If permutations need a free register, it is still NP-complete to decide if
R register are enough, even when critical edge splitting and variable splitting at the
entry or exit points of basic blocks are allowed, and even for a �xed R� 3.

Proof. Let us consider an arbitrary graphG = (V; E), and the corresponding program
built using Chaitin et al.'s construction. Let us split the critical edges and add instruc-
tions to the new basic blocks as shown on Figure 3.3c. The program has three variables
u, xu, yu for each vertexu 2 V and a variablexu;v for each edge (u; v) 2 E. For each
(u; v) 2 E, a blockBu;v de�nesu, v, andxu;v. For eachu 2 V, a blockBu readsu, yu, and
xu, and returns a new value. For each blockBu;v, there is a path to the blocksBu andBv.
Along the path fromBu;v to Bu, a block readsv andxu;v to de�ne yu, and then de�nes
xu. An entry block switches to all blocksBu;v. The interference graph is nowG plus
some triangles: for each nodev, there is a triangle consisting of (v; xv; yv), and for each
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a

c

d

b

(a)

c

xc

yc

a

xa

ya

b

xb

yb

d

xd

yd

xc;a

xa;b

xb;d

xd;c

(b)

switch
Broot

return xa + ya + a
Ba

return xb + yb + b
Bb

return xc + yc + c
Bc

return xd + yd + d
Bd

ya  b + xa;b
xa  2

yb  a + xa;b
xb  2

ya  c + xa;c
xa  6

yc  a + xa;c
xc  6

yb  d + xb;d
xb  10

yd  b + xb;d
xd  10

yc  d + xc;d
xc  14

yd  c + xc;d
xd  13

a  0
b  1
xa;b  a + b

Ba;b

a  4
c  5
xa;c  a + c

Ba;c

b  8
d  9
xb;d  b + d

Bb;d

c  12
d  13
xc;d  c + d

Bc;d

(c)

Figure 3.3: Chaitin-like construction with critical edge and variable splitting: from a
cycle of length 4 (a), program (c) is built, with interference graph is (b).
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edge (u; v), there is a triangle consisting of (u; v; xu;v). See an example on Figure 3.3.
Hence, the interference graph is 3-colorable i� G itself is 3-colorable.

This program does not have any critical edge, so placing permutations along the
edges is equivalent to placing them on entry or exit of the intermediate blocks, between
blocks of typeBu;v and blocks of typeBu. We claim that the program can be assigned
to 3 registers i� G is 3-colorable. The point is that one needs a free temporary register
to perform a permutation, indeed, swappinga andb for instance requires the following
instructions to be executed: [t  a; a  b; b  t]. Since, for eachu andv, exactly 3
variables are live on exit ofBu;v and on entry ofBu andBv, no permutation—except the
identity—can be done if only 3 registers are available. Thus the live-range of any vari-
ableu 2 V cannot be split, i.e., each variable must be assigned to a unique color. Using
the same color for the corresponding vertex inG gives a 3-coloring ofG. Conversely,
if G is 3-colorable, assign to each variableu the same color as the vertexu. It remains
to colorxu;v, xu, andyu. This is easy: in blockBu;v, only two colors are used so far: the
colors foru andv, so xu;v can be assigned the remaining color. Finally,xu andyu are
assigned the two colors not used byu (see Figure 3.3b again to visualize the cliques of
size 3). This gives a valid register assignment. �

To conclude, this slight variation of Chaitin et al.'s proof shows that, if the splitting
of live-ranges is allowed on edges—andonly on edges4—, it is still NP-complete to
decide ifR registers are enough. This is true even for a �xedR � 3 and even for a
program without any critical edge. The proof is based on the fact that it is not possible
to split at points where Live equalsR.

However, we made two important assumptions in our proof: First, we allowed
the splitting of variables to take place only on edges—or, equivalently, only at the
entries and exits of blocks while splitting critical edges—while we forbade it inside
basic blocks. This is what a traditional out-of-SSA translation does (see Section 3.2.1).
Second, we assumed that one needs a free register in order to perform a swap or per-
mutation. We argue in the next sections that these hypotheses may not be very realistic.

3.1.4 Split points anywhere

The study of Section 3.1.3 does not completely answer the question. Indeed, who said
that split points need to be on entry and exit of blocks exclusively? Why not allow reg-
isters to be shu� ed at any program point, for example in the middle of a basic block, if
this helps performing a permutation? Consider Figure 3.3c again. The register pressure
is 3 on any control-�ow edge; this was the key for the proof of Section 3.1.3. But it
is not 3 everywhere: it drops to 2 between the de�nitions of eachyu and eachxu. At
this point, some register-to-register moves can be inserted to permute two colors and,
thanks to this, 3 registers are always enough for such a program. One can color inde-
pendently the top (including the variablesyu) and the bottom (including the variables
xv), then place adequate permutations between the de�nitions ofyu andxu. This opens
the way to the following question:

Is it really NP-complete to decide ifR registers are enough when splitting
can be done anywhere and swaps are not available?

None of the previous proofs answers this question, and certainly not the initial proof
of Chaitin et al. The problem with the previous construction is that there is no way, with

4Splitting at the borders of basic blocks is equivalent: it consists of splitting on every entering or leaving
edge.
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u v xu;v

yu xu

(a)

u v xu;v

yu xu

(b)

u v xu;v

yu xu

(c)

Figure 3.4: Three cases: register pressure drops to 2 (a) or is constant to 3 (b), (c).

simple statements, to avoid a program point with a low register pressure while keeping
the reduction with graph 3-coloring. This is illustrated in Figure 3.4: (a) illustrates
the previous situation where the register pressure drops to 2, and (b) a situation with a
constant register pressure equal to 3, but that does not keep the equivalence with graph
3-coloring—xu;v would interfere withyu andyv. The only way is depicted in (c): one
needs an instruction that can de�ne more than one value. It is then easy to modify the
proof and the following theorem holds.

Theorem 3.3. If there exists instructions that can de�ne more that one value at a time,
but swaps of variables are not allowed, it is NP-complete to decide if R registers are
enough, even when critical edge splitting is allowed and variable splitting is allowed
anywhere.

Proof. In the proof of Theorem 3.2, for each variableu, the variables of typexu and
yu can be de�ned by a statement (xu; yu) = f (v; xu;v) that consumesv and xu;v and
producesyu and xu, simultaneously, as depicted by Figure 3.4c. Now, the register
pressure is 3 everywhere in the program and thusG is 3-colorable i� the program can
be mapped to 3 registers. Thus, it is NP-complete to decide ifR registers are enough
if two variables can be created simultaneouslyby a machine instruction and swaps are
not available. �

In this proof, we used an instructionf capable of producing at least two values.
Such a function should consume and produce the same number of values—at least 2—
otherwise the register pressure would be lower just before or after it and a permutation
could be inserted there. Notice the similarity with circular-arc graphs: as mentioned by
Garey et al. [1980], coloring circular-arc graphs remains NP-complete even if at most
2 circular arcs start at any point, but not if only one can start.

However, it should be noticed that if such a machine instructionf exists, it is likely
that a register swap is also provided in the architecture. We will discuss such archi-
tectural subtleties in Chapter 8, Section 8.1.2.1. The case where a swap instruction
exists is easy since any permutation can be done. In that case,R registers are enough
i� 
 � R.

We will see later the remaining case, where register swaps are not available but
at most onevariable can be created at a given time—as it is in traditional sequential
assembly-level code representation. This case does not belong to this section since it is
not an NP-complete case.
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Proof
Edge splitti

ng

Variable splitti
ng

Swap instru
ction

2 simult. def.

NP-complete

Chaitin et al. – –

Thm. 3.1 – –

Thm. 3.2 on edges only –

Sec. 3.2.1 (SSA) on edges only –

Thm. 3.3 anywhere

Thm. 3.4 (Col. prop.) anywhere

Forbidden Allowed/Yes – Unimportant Mandatory

Table 3.1: Summary of complexity proofs using Chaitin-like reductions from Sec-
tion 3.1, with also polynomial results of Section 3.2.

3.1.5 Summary and discussion of complexity proofs

In the previous sections, we tried to give a pedagogic introduction to the complexity of
register allocation. Starting with the original NP-completeness proof of Chaitin et al.
[1981], the �rst step was to argue that register allocation has more freedom that graph
coloring, in the sense that variables can be assigned to di� erent registers at di� erent
points of their lives—at the cost of additional register-to-register copies. And the orig-
inal proof, often cited wrongly, does not say anything regarding this view of register
allocation.

Theorem 3.1 proves that even with live-range splitting, the problem remains NP-
complete because code cannot be placed on critical edges. The next step was to state
that code can be placed on critical edges by splitting them and adding basic blocks,5

but Theorem 3.2 states this will not help in the absence of swap instruction since the
register pressure can be increased on all edges to prevent permutations to take place.
This proof did not hold if permutations could be placed anywhere and not restricted to
be only on edges. But this more realistic case is not easier if it possible to de�ne two
variables at the same time, and one still does not have any swap instruction. Table 3.1
recall these results visually, along with the two polynomial results that will be described
in the next section.

At this point, it seems that whatever is ingeniously included in register allocation
to break the complexity piteously fails. But astute readers would have already guessed
that the more freedom there is in register allocation, the more constraints there are on
the architecture to keep the problem NP-complete. In particular, the last constraint is
probably not very realistic (a machine capable of de�nes multiple values at a time, but
which cannot perform a swap). We would not be o� ended if people started to say that,
in the last theorem, we where not only splitting variables and edges, but also hairs.
That is true.

But now, in the next section, we will see what can be done if wedo have a swap
instruction, or ifno instruction can de�ne two variables simultaneously, or when the
register pressure provides a free register to perform a swap. In practice, this is nearly

5Discussions on whether this is possible or not will take place in Chapter 8.

47



CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

switch
Broot

a3  � (a1; a2)
returna3 + x

Ba

b3  � (b1; b2)
returnb3 + x

Bb

c3  � (c1; c2)
returnc3 + x

Bc

d3  � (d1; d2)
returnd3 + x

Bd

a1  0
b1  1
x  a1 + b1

Ba;b

a2  3
c1  4
x  a2 + c1

Ba;c

b2  6
d1  7
x  b2 + d1

Bb;d

c2  9
d2  10
x  c2 + d2

Bc;d

Figure 3.5: Original program of Chaitin et al.'s proof underSSA.

always the case, and under these “standard” conditions, we completely leave in fact the
NP-completeness.

3.2 Polynomial solutions

In this section, we give some polynomial instances for register allocation. We also try
to explain where these solutions manage to “escape” the NP-completeness of Chaitin
et al.

3.2.1 Static Single Assignment

SSA was the motivation of this study, because of the recent discovery that underSSA

form, the interference graph of a program is chordal, hence easy to color. We will now
explain why, underSSA, we do not fall into one of the four cases of NP-completeness
depicted in Table 3.1.

The easiest way to understand why is by trying to transform the program of Chaitin
et al.'s original proof intoSSA. This would result in the program shown on Figure 3.5,
where� -functions are inserted at join points of the program. The semantics of� -
functions, as explained in Section 2.3.6, is that copies are placed on the incoming
edges. For instance, the� -function [a3  � (a1; a2)] corresponds to adding the copy
[a3  a1] on the edge fromBa;b to Ba and [a3  a2] on the edge fromBa;c to Ba.
Moreover, we explained in Section 2.3.6 that the semantics of multiple� -functions is
that they are executed in parallel, meaning that permutation are available.

In other words,SSAimplicitly considers that critical edges can be split and that
permutations can be performed on them. UnderSSA, the variable splitting only occurs
on edges, but unlike the third line of Table 3.1 (Theorem 3.2), swap instructions are
considered to be available. In fact, if one adds actual (parallel) copies to the program
at the same place as a classical out-of-SSA conversion, the interference graph of the
program becomes chordal, as is the interference graph underSSA. Because it is easy
to test ifk colors are su� cient to color a chordal graph (see Section 2.2.2.4), it is then
easy to test ifR registers are su� cient for a program underSSA. Moreover, as chordal
graphs are perfect graphs, the condition is simply that Maxlive must be lower thanR,
i.e., 
 � R.
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3.2.2 Color propagation

Another interesting lead where to look for polynomiality comes from the fourth line of
Table 3.1, i.e., Theorem 3.3. It is stated there that if swap instructions are not available,
but some instructions can de�ne multiple variables at the same time, the problem is
still NP-complete. We have seen that having swap instructions makes the problem
polynomial, which is whatSSAassumes. We will now study the case where there is no
swap instruction, but all instructions de�ne at most one variable at a time. We believe
this case is more realistic that the requirements of Theorem 3.3, but we prefer to delay
these discussions until Chapter 8 in order not to lose our focus, which is trying to be as
complete as possible when evaluating the possible conditions for Chaitin et al.'s proof.
The next theorem states this case is polynomial.6

Theorem 3.4. If blocks can be introduced to split critical edges, if live-range split-
ting can be done anywhere and if instructions can de�ne at most one variable, it is
polynomial to decide if R registers are enough, in the case of a strict program.

The idea is that permutations can always be performed whenever there is a free
register; and if there is none, there is no choice for coloring as explained by Figure 3.4b.

More precisely, if
 > R, it is not possible to assign the variables of a strict pro-
gram toR registers without spilling, as two simultaneously live variables interfere.7 If

 < R, it is always possible to assign variables toR registers by splitting live-ranges
and performing adequate permutations. When
 � R, the same occurs for a point
with register pressure strictly less thatR: a color mismatch can always be repaired by
an adequate permutation, thanks to an available register. Thus, for a strict program,
the only problem may come from the sequences of program points where the register
pressure remains equal toR. But, unlike Section 3.1.4 where the degree of freedom
in choosing colors—at least 2—leads to NP-completeness, the fact that, here, at most
onevariable can be de�ned at a time simpli�es the problem—the newly created vari-
able has no choice but being assigned to the same color as the dying one the example
showed previously on Figure 3.4b). This doesnot mean thatR registers are always
enough, but it is easy to decide if this is the case. To prove this fact precisely, we need
to de�ne formally what we mean bycolor propagation. In the following proof, we will
exhibit an algorithm that answers in polynomial time the question whetherR registers
are su� cient or not. In should be noted that this algorithm is not intended to be used
for practical register allocation: it would perform poorly as there is no mechanism to
minimize the number of permutations inserted. The way colors are chosen in di� erent
connected components (randomly) would produce a lot of shu� e code between them,
without any coalescing e� ort to remove them.

De�nition 3.5 (Color propagation). Liveness analysis de�nes, for each instruction
s, live_in(s) and live_out(s), the set of variables alive just befores and just after
s. These sets can be colored locally, propagating the colors from instruction to in-
struction, i.e., coloring variables in neighbor sets with the same color, following the
control-�ow forwards or backwards, i.e., considering the control-�ow as undirected.
More formally, coloring a statements means de�ning two injective mapscol_in(s)

6Actually, it is also polynomial if instructions like [(a; b)  f (c)] exist. Indeed, only one variable is used
and two are de�ned, which means that beforef , there was one free register. This is a case for instance with
a load64 that load a 64-bits value into two 32-bits registers.

7 Notice that it is only true for astrict program (we leave the non-strict case open), and with the relaxed
De�nition 2.8 of interference where two variables having the same value interfere.
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(resp. col_out(s)) from live_in(s) (resp. live_out(s)) to [1: : :k]. When colors prop-
agate from a statements1 to a statements2, forwards,col_in(s2) is de�ned so that
col_in(s2)(x) = col_out(s1)(x) for all x 2 live_in(s2) \ live_out(s1) and di� erent colors
are arbitrarily picked for the other variables. The same is done to de�necol_out(s2)
from col_in(s2). When propagating backwards, the situation is symmetric;col_out(s2)
is de�ned fromcol_in(s1), thencol_in(s2) from col_out(s2).

Below, when explaining the e� ect of propagation, we will assume a forward prop-
agation; for the backward one, exchange the su� xes “in” and “out.” Of course, both
forward and backward propagation can appear during the execution of the algorithm.

Proof of Theorem 3.4.Let us consider only the subgraph of the control �ow graph de-
�ned by the program points where the register pressure is equal toR, i.e., the propa-
gation takes place between two instructionss1 ands2 such that bothlive_out(s1) and
live_in(s2) haveR elements. We claim that, ifR registers are enough for each con-
nected component of this graph, there is a unique solution, up to permutations of the
colors, except possibly for the setslive_out(s2) where the propagation stops (live_in(s1)
for backwards propagation). Indeed, for each connected component, start from an ar-
bitrary program point and an arbitrary coloring of theR variables alive at this point.
Propagate this coloring, as de�ned above, backwards and forwards along the control
�ow until all points of the component are reached. In this process, there is no ambigu-
ity to choose a color: First, there is no choice for de�ningcol_in(s2) from col_out(s1)
sincelive_out(s1) = live_in(s2) (in general,live_in(s2) � live_out(s1) becauses1 can
have more than one successor, but since both sets haveR elements, they are equal);
Second, iflive_out(s2) hasR elements, then eitherlive_out(s2) = live_in(s2) or, as
s2 de�nes at most one variable, there is a unique variable inlive_out(s2) n live_in(s2)
and a unique variable inlive_in(s2) n live_out(s2): these two variables must have the
same color, and there is no choice when de�ningcol_out(s2) from col_in(s2) either.
Therefore, for each connected component, going backwards and forwards de�nes, if it
exists, auniquesolution up to the initial permutation of the colors. In other words, if
there exists a solution, it can be de�ned by propagation for each connected component.
Moreover, if propagation reaches a program point already assigned and if the colors do
not match, this proves thatR registers arenot enough.

Finally, if the color propagation on each connected component provided a solution,
thenR registers are enough for the whole program. Indeed, the rest of the program—
where register pressure is less thanR—can be colored in a greedy (but not unique)
fashion. Upon reaching a point already assigned, a possible color mismatch is easily
repaired: an adequate permutation of colors betweens1 ands2 is inserted: in the same
basic block ass1, if s2 is the only successor ofs1 (resp. predecessor for backward
propagation), or in the same basic block ass2, if s1 is the only predecessor ofs2 (resp.
successor). This is always possible because there is no critical edge and there are at
mostR� 1 alive variables at this point. �

Summary of the algorithm. How to decide ifR registers su� ce when
 � R, and
color when possible? First propagate colors, following the control �ow along program
pointswhere the register pressure is exactly R. If a program point is already colored
and the colors do not match, more spilling needs to be done. Otherwise, perform a
second propagation phase along all remaining program points: if a program point is
already colored and the colors do not match, a permutation of at mostR � 1 registers
solves the problem, using an extra available register.
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3.3 Explanation of complexity

The two previous sections gave us some good insights on the conditions under which it
is di� cult or easy to decide ifR registers are enough or not for register allocation. The
last NP-completeness result, Theorem 3.3, makes us think that this problem is di� cult
only for very speci�c architectures. Such architecture should provide instructions that
de�ne more than one variable at a time, but should not allow the swapping of variables.
We believe that this is not realistic at all, and discussions on this will take place in
Chapter 8. On the other hand, the two polynomial instances rely on the fact that critical
edges can be split so that shu� e code can be added to them. The questions are then:

“Why is it di� cult when edges cannot be split?”
“Where does the complexity go when edges are split?”

A clue to answer the second question is that splitting inserts basic blocks and
copies, which has a cost: the additional instructions—jumps and moves that cannot
be scheduled with the rest of the code—impact the performance of the program. Try-
ing to minimize this cost is the goal of the coalescing, which aims at removing the
copies between variables in a program. Knowing if it is possible to remove all the
copies is di� cult since, by doing so, one would get back to the original problem again.
So, the goal is to �nd the best trade-o� , removing most of the copies while still having
the bene�t of the splitting, i.e, easily answering the question whetherR registers are
su� cient or not. By splitting, the complexity of answering this question is transferred
to the register coalescing problem. Its complexity will be discussed in Chapter 5.

As for the �rst question, we already pointed out this has to do with having multiple
critical edges “connected” either by their source or their destination. We will now
de�ne more clearly what we call the “multiplexing regions.”

De�nition 3.6. A multiplexing regionis a maximal connected set of �ow edges, where
two edges are said connected i� they come from the same basic block or they go to
the same basic block. Exits and entries of these basic blocks are respectively theentry
pointsandexit pointsof the multiplexing region, hence de�ning thebordersof this
region.

It is more interesting to restrict multiplexing regions to contain only edges that
cannot be split—or that one does not want to split. In that case, it can be viewed as a
solid part of the program, wherein no modi�cation can be done, instead of a collection
of multiple independent program points being placed on di� erent edges. Then, the
notion of “atomic” region can be de�ned, which is a maximal connected set ofnon-
splittableedges. From now on, we will always suppose that multiplexing regions are
atomic. Otherwise, it is always possible to add empty basic blocks to edges that can be
split in order to have only regions that cannot be split.

Variables of multiplexing regions must be colored, which means the interference
between variables must be known on these regions, which depends directly on the
notion ofliveness. There are two kinds of variables alive on multiplexing regions:

ˆ Variables that go through the region, i.e., which are live-in of any of the exit
blocks of the multiplexing region. These variables are of course live-out of all
the entry blocks that have edges going to these exits blocks since we consider
only strict programs. Inside the multiplexing region, these variables are said to
be alive on the edges going from the entry blocks where they are live-out to the
exit blocks where they are live-in. They are calledlive-through variables.
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ˆ Under SSA, additional variables are alive on multiplexing regions: the vari-
ables de�ned by� -functions on exit points of the multiplexing region, called
� -variables. Since the region is atomic, these variables cannot be de�ned on the
incoming edges since that would be “inside” the multiplexing region. Hence,
in the future, such a variable will have to be de�nedbeforeentering the region
and should then be considered alive on the multiplexing region, i.e., live-in of
the exit block de�ning it, but, more importantly, also live-out of the entry blocks
predecessors of the� -function.8

It is now easy to know which variables interfere in a multiplexing region, using a
de�nition of interference from Chapter 2. For instance, with the relaxed De�nition 2.8,
a andb interfere on a multiplexing region if there is a point inside the region where
they are both alive, for instance on an edge, on an entry point or on an exit point. Re-
�nements using the values of variables can be used, but this is not the point. The point
is that on an atomic multiplexing region, there exists an interference graph that must
be colored. A consequence of Theorem 3.1, which states that splitting variables does
not help if no edge splitting is allowed, is that any graph can be the interference graph
of a multiplexing region. Indeed, we will show it by re-writing more conceptually the
proof of this theorem.

Proof of Theorem 3.1 using multiplexing regions.In Chaitin et al.'s proof, the critical
edges going from blocks of typeBu;v to blocks of typeBu form a multiplexing region.9

These edges are considered non-splittable, hence the multiplexing region is atomic.
Let H be the interference graph of the program (i.e.,G plus fxg). Consider a splitting
of the variables, andH0 the corresponding interference graph. Splitting a variable can
occur only outside the multiplexing region. Hence, for any variablea in H, there exists
a duplicatea0 of a—which can bea if it is not split in H0—such that the live-range
of a0 restricted to the multiplexing regionis exactly the same as the live-range ofa
in the non-split program (also restricted to the region). These “micro live-ranges,” the
live-ranges of the duplicates restricted to the multiplexing region, arenon-splittable,
hence must be colored with auniquecolor.

In Chaitin et al.'s construction, for an edge (u; v) of G, there is a blockBu;v with
de�nes the two variables: they are both alive at the end of this block. This is an
entry point of the multiplexing region, henceu andv interfere inside the region. So,
the duplicatesu0 andv0 of u andv alive in the multiplexing region also interfere, and
H � H0. Hence a coloring ofH0 provides a coloring forH. Reciprocally, a coloring
of H can be easily extended to a coloring ofH0 since all variables inH0 � H form
independent cliques of size two or three (their live-ranges are restricted to the basic
blocks). �

What are the consequences of this proof? Multiplexing regions de�ne parts of the
program that are not modi�able and their interference graph can be any graph. In
atomic multiplexing regions, the variables cannot be split hence performing register al-
location on these regions is NP-complete. In general, a program can be viewed as many
atomic regions. Atomic regions cannot be split, and shu� e code can only be placed be-
tween them. Multiplexing regions are atomic regions, and if swaps are allowed, atomic
regions inside a basic block are the instructions (no code can be added “in the middle”

8This view is equivalent as going out ofSSA like Sreedhar et al. [1999] do, by adding copies of arguments
and de�nition and renaming copies with a common name. The� -variable would then be this common
variable.

9That is, ifG is a connected graph, which can be considered without loss of generality.
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of an instruction). Else, they are contiguous program points where Live equalsR.10

Each atomic region has its “chromatic number,” i.e., the minimum number of colors
required to perform register assignment on the region. For a basic atomic region like
an instruction, the chromatic number is simply the maximum of the size of the live-in
set and the size of the live-out set. But for arbitrarily complicated multiplexing regions,
it is NP-complete to compute this number.

3.4 Register allocation in two phases

This study showed two important facts. First, the di� culty comes from the presence
of non-splittable critical edges. Second, if critical edges can be split, deciding ifR
registers are enough is easy unless under strong architectural constraints. This is not
what Pereira and Palsberg [2006] proved in their article “Register allocation after clas-
sical SSA elimination is NP-complete.” For their proof, they use a reduction from the
k-colorability problem for circular-arc graphs, by increasing the register pressure on
the back-edge of a loop so that no permutation resulting from a� -function at the begin-
ning of the loop can be performed on the back-edge. Although similar to the result of
Theorem 3.1, there are two main di� erences with our results: First, circular-arc graph
k-coloring is polynomial ifk is �xed [Garey et al., 1980], while our result holds even
for a �xed k � 3; Second, and more importantly, they only considered splitting at the
points de�ned bySSA, but, as said before, we could split elsewhere.

On the contrary, our study shows that, in most cases, it is easy to decide ifR reg-
isters are enough. We will see in Chapter 7 that what can be done if there are edges
that cannot be split. What does this imply for register allocation? In Chapter 2, Sec-
tion 2.2 was devoted to the coloring of the interference graph. We explained that, since
�nding if R colors are su� cient to color a graph is NP-complete, a heuristic was used:
Chaitin's simpli�cation scheme (see Section 2.2.1.2). Our study shows that, by using
live-range and edge splitting, it is now possible to know in polynomial time if there is
su� ciently many registers. This motivates the need for revisiting register allocation us-
ing graph coloring. Traditionally, spilling and coloring were intertwined because “how
much you need to spill” was dependent on “how good you can color” the interference
graph. Having a polynomial test now allows us to use algorithms with two distinct
phases:

First phase. Spill variables untilR registers are su� cient;

Second phase.Color variables while minimizing the number of remaining splits.

We think that separating register allocation into two independent parts gives a �ner
control over the problems of spilling and coalescing. We can put more e� ort to solve
them separately, instead of having to deal with the both of them together.

A practical register allocation scheme using two phases.Critical edges can often
be split. Of course this has a cost, usually the cost of an indirection—one morejump
instruction compared to the original edge—and the cost that the code on the edge can-
not be scheduled with code on other basic blocks. In that case, we present here an
example of register allocation in two phases:

10 If 
 > R, we already know thatR registers are not su� cient, so we consider the case where
 � R.
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Pre-phase.GothroughSSA—or any representation of live-ranges as subtrees of a tree.
That is, consider that di� erent variable de�nitions belong to di� erent live-ranges.

First phase. Spill somevariableif necessary. At this stage, it is easy to decide ifR
registers are enough: this is possible i� Maxlive11 is less thanR (because of
Corollary 2.39). IfR registers are not enough, additional splitting will not help
as this leaves Maxlive unchanged, so spilling some variables is necessary.

Second phase.Color the variables with some coalescing to remove as many copies
inserted bySSAas possible.

Post-phase.Inserttheremainingcopies either on new basic blocks—from split critical
edges—or at the end of predecessor basic blocks for normal edges.

The �rst and fourth points, are called “pre-” and “post-” phases since they are
not algorithmically di� cult: going toSSA is a well-known exercise and adding the
necessary copies is . . . , well, necessary (but still requires some attention, for instance
when sequentializing copies, see Section 2.3.6).A contrario, the phases labeled “First”
and “Second” are the important and di� cult ones: spilling is generally considered as
a di� cult problem, and the coalescing tries to minimize the number of copies that will
be inserted by the post-phase.

Remaining questions. This view of coloring through permutations insertion is the
base of any approach that optimizes spilling �rst. This approach is, for example, advo-
cated by Knobe and Zadeck [1992]; Appel and George [2001] and Hack et al. [2006]:
some spilling and splitting are done to reduce Maxlive to at mostR beforehand. This
approach is performed in its most extreme form by Appel and George [2001]: live-
ranges are split ateveryprogram point in order to solve spilling optimally, hence there
is a potential permutation between any two program points. But schemes in two phases
like these ones—and the one we propose—leave open three questions. This thesis aims
to answer these questions, at least partially:

ˆ What (and where) to spill ifR registers are not su� cient?

ˆ How to minimize the cost of the splitting of variables and edges?
(coalescing problem)

ˆ What can be done if critical edges cannot be split?

3.5 Conclusion

In this chapter, we tried to clarify where the complexity of register allocation comes
from. Our goal was to recall what Chaitin et al.'s original proof really proves and to
extend this result. The main question addressed by Chaitin et al. is of the following
type:

Can we decide ifR registers are enough for a given program or if some
spilling is necessary?

11Using De�nition 2.8 of interference, where values are not taken into account. One can assume a copy
folding pass was done underSSA to rename equal variables with a common name.
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3.5.1 Summary of Results

The original proof of Chaitin et al. [1981] proves that the register allocation problem
is NP-complete when live-range splitting is not allowed, i.e., if each variable can be
assigned to only one register. We showed that the same construction proves more: the
problem remains NP-complete when live-range splitting is allowed but not (critical)
edge splitting.

Recently, Pereira and Palsberg [2006] proved that, if the program is a simple loop,
the problem is NP-complete if live-range splitting is allowed but only on a block on
the back edge, and only if register swaps are not available. This is a particular form of
register allocation throughSSA. The problem is NP-complete ifR is a problem input.
We showed that Chaitin et al.'s proof can be extended to show a bit more. When register
swaps are not available, the problem is NP-complete for a �xedR � 3 (but for a general
CFG), even if the program has no critical edge and if live-range splitting can be done on
any control-�ow edge, i.e., on entry and exit of blocks, but not inside basic blocks.

These results do not address the general case where live-range splitting can be done
anywhere, includinginsidebasic blocks. We showed that the problem remains NP-
complete only if some instructions can de�ne two variables at the same time but register
swaps are not available. Such a situation might not be so common in practice. For a
strict program, we can answer the remaining cases in polynomial time. If Maxlive= R
and register swaps are available, or if Maxlive< R, thenR registers are enough. If
register swaps are not available and at most one variable can be de�ned at a given
program point, then a simple greedy approach can be used to decide ifR registers are
enough.

This study shows that the NP-completeness of register allocation isnot due to the
coloring phase, as may suggest a misinterpretation of the reduction of Chaitin et al.
from Graph k-Coloring. If live-range splitting is taken into account, deciding ifR
registers are enough or if some spilling is necessary is not as hard as one might think.
The NP-completeness of register allocation is due to three factors: the presence of
critical edges which create multiplexing regions where variables are hard to color if
they are non-splittable, the optimization of spill costs (ifRregisters are not enough) and
of coalescing costs, i.e., choosing which live-ranges should be merged while keeping
the graphR-colorable.

3.5.2 Organization of the thesis

In this thesis, we defend the idea of performing register allocation in two phases—�rst
spilling then coloring using coalescing—instead of the classical scheme that intermixes
everything in a unique phase. While the classical scheme has the advantage of being
very simple in its original form (by Chaitin [1982]), or in the improved Iterated Register
Coalescing (IRC) version by George and Appel [1996], it was designed this way mainly
because:

ˆ Spilling depends on whether the coloring heuristic will work or not.

ˆ Coalescing can help Chaitin et al.'s coloring heuristic.

But one disadvantage is that changes in the scheme are di� cult to implement as the
whole allocator needs to be compliant: phases must be iterated (spilling introduces new
variables at stores and loads), coloring depends on spilling which depends on coloring,
etc.
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The discovery that the interference graph of a program underSSA is chordal opened
new doors for the study of splitting techniques that simplify the coloring test: “AreR
registers su� cient for allocation?” With such techniques, spilling does not depend on
the result of a coloring heuristic anymore: we know exactlywhenit is required or not,
which breaks the �rst reason why register allocation is classically performed in only
one complex phase. Advantages for register allocation in two phases are multiple: bet-
ter control over each of the phases, no interplay between these phases—hence an easier
implementation since improvements on one phase are easier to try and to evaluate.

The rest of the thesis will be organized as follows. As the spill problem is di� cult
for a general program, we will study its complexity forSSAprograms in Chapter 4. We
have indeed seen thatSSA is a useful splitting technique, and we �gured it would be
pertinent to know better the complexity of the spill problem for programs underSSA

form. Then we will study the complexity of the coalescing problem in Chapter 5, which
is the important optimization of the second phase in register allocation in two phases.
In Chapter 6, we will present advanced techniques for coalescing. Finally, Chapter 7
discusses the problem of non-splittable edges and permutation motion—a technique to
move added copies away from critical edges. In Chapter 8, the conclusion, we will
discuss practical subtleties for “real-world” register allocation in two phases.
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Fear to let fall a drop and you will spill a lot.

Malayan proverb

Des petits trous, des petits trous, toujours des petits trous. . .

Serge Gainsbourg 4
On the complexity of spill everywhere

underSSAForm

Preliminary note: this chapter is very technical but we felt it was more logical to place it
there, before the coalescing chapters, so as to keep the same order as in register allocation in
two phases: �rst, spilling, then, coalescing. This chapter is a purely theoretical study on the
complexity of the spilling problem. We will not propose any practical solution, while we do
so for the coalescing problem. As a consequence, it is possible to skip it at �rst reading.

The dominance property of Static Single Assignment (SSA) form suggests promis-
ing directions for the design of new register allocation heuristics, in particular, it is pos-
sible to cleanly separate register allocation in two phases. This was already mentioned
in Chapter 2, and the study of Chaitin et al.'s NP-completeness proof in Chapter 3 ex-
plained that theSSA form simpli�es the problem of knowing whetherR registers are
su� cient or not for the register allocation problem because it splits variables (explic-
itly) and edges (implicitly with� -functions). However, the problem of what to do when
there is not enough registers is not answered. Wedo know that, in that case, spilling
some variables to memory is necessary, but not yethowto do it.

In this chapter, we will study the spill problem for programs underSSA form. The
motivation of this study is driven by the hope of designing both fast and e� cient reg-
ister allocation in two phases—�rst spilling, then coloring—based onSSA form. As
explained in the previous chapters, underSSA form, the test that tells whether some
spilling is required or not is simply that Maxlive must be at most the number of regis-
ters: 
 � R (see Corollary 2.39).1 Answering whether spilling is necessary or not is
easywhile minimizing the amount ofload andstore instructions is the real issue. In
other words, if the search space is now cleanly delimited, the objective function that
corresponds to minimizing the spill cost has still some open issues. The question is:

“Is the spilling problem easier to solve underSSA?"

The spilling problem can be considered at di� erent granularity levels: at the high-
est, the so-calledspill everywhereconsiders the live-range of a variable as an atomic
object, i.e., a variable is either entirely spilled or entirely not spilled. This simpli�ca-
tion consists in answering the question “what to spill,” but not “where to spill.” This is
the same approximation made by Chaitin et al. [1981] in their NP-completeness proof
and coloring algorithm. With spill everywhere, a spilled variable will stay so on its
entire life, but for thestore after the de�nition and theload before each use.2 The

1Unless for very particular cases, for instance if there is no swap instruction. See Chapter 3 for details.
2Although, in Chaitin et al.'s algorithm, they have a mechanism to avoid reloading variablesa posteriori,

i.e., after the spill everywhere decision.
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�ner granularity, known as load-store optimization, optimizes eachload andstore
separately, and in particular the placement of these instructions. The latter problem
is also known as “paging with write back” and was proven NP-complete by Farach-
Colton and Liberatore [2000] for a basic block, even underSSA form, when the number
R of registers is an input of the problem. The former problem is much simpler, and a
well-known polynomial instance by Belady [1966] exists underSSA form on a basic
block. To develop new spilling heuristics, studying the complexity of spilling every-
where is very important for the design of either aggressive or just-in-time (JIT) register
allocators because of the two following reasons:

1. First, the complexity of the load-store optimization problem comes from the
asymmetry betweenload s andstore s [Farach-Colton and Liberatore, 2000].
The main di� erence between the load-store optimization problem and the spill
everywhere problem comes from this asymmetry. We measured in practice that
mostSSAvariables have only one or two uses, so it is natural to wonder whether
this singularity makes the load-store optimization problem simpler or not: for in-
stance, in the most extreme case, with only one use per variable, this problem is
equivalent to the spill everywhere problem.3 More generally, even in the context
of a traditional compiler, the spill everywhere problem can be seen as an oracle
for the load-store optimization problem to answer whether a variable should be
stored or not. Then, one could imagine a pass that tries to optimize the placement
of loads and stores for variables chosen to be spilled. In the context of aggres-
sive compilation using integer linear programming (ILP), [David W. Goodwin
and Kent D. Wilken, 1996; Fu and Wilken, 2002; Barik et al., 2007], a way to
decrease the complexity is to restore the symmetry between loads and stores as
done by Appel and George [2001].4

2. Second, we think that the spill everywhere is a good candidate for designing
simple and fast heuristics forJIT compilation on embedded systems. Again, in
this context, the complexity and the footprint of the compiler is an issue. Spilling
only parts of the live-ranges, as opposed to spilling everywhere, leads to irregular
live-range splitting and the insertion of shu� e code to repair inconsistencies, in
addition to maintaining liveness information for coalescing purpose. All of this
is probably too costly for some embedded compilers.

To our knowledge, this is the �rst exhaustive study of thecomplexityof the spill every-
where problem in the context ofSSA form in the literature.

The rest of the chapter is organized as follows. For our study, we consider di� erent
variants of the spilling problem, Section 4.1 provides the terminology and notation that
describe the di� erent cases we considered. Section 4.2 considers the simpli�ed spill
model where a spilled variable frees a register for its whole live-range; we provide an
exhaustive study of its complexity underSSA form. Section 4.3 deals with the problem
where a spilled variable might still need to reside in a register at its points of de�nition
and uses; the study is there restricted to basic blocks as it is already NP-complete for
this simple case. Section 4.4 summarizes our results and concludes the chapter.

3Supposing the frequencies of execution of basic blocks are the same.
4In their formulation, a variable might be either in a memory location or in a register, but cannot reside

in both.
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4.1 Terminology and Notation

In our study, we (almost) only consider the “everywhere” approximation of the spill
problem. In this approach, the goal is to decrease the register pressure below the num-
ber of register at every program point, while minimizing the cost of the spilling, i.e., the
sum of the weights of the spilled variables. For the purpose of our study, we consider
three di� erent varying parameters.

Global vs. local: Live-ranges can belocal (i.e., only on basic blocks) orglobal. On a
basic block, the interference graph is an interval graph, while it is chordal for a
general control-�ow graph (CFG) underSSA form with dominance property.

Memory instructions vs. store/reload: The use of an evicted (spilled) variable in an
instruction may requires a register (RISC-like architecture) or not (CISC-like archi-
tecture). If it does not, spilling a variable decreases by one the register pressure
on every point of the corresponding live-range. Otherwise, spilling a variable
decreases the register pressure only on program points that donot use or de�ne
it. In the �rst case, spilling a variable has the e� ect of removing the entire live-
range; in the second case, it has the e� ect of removing a version of the live-range
with “holes” at the use and de�nition points (see Section 4.3). We denote these
two problems respectively as spillingwithout holesor spilling with holes.

Weighted vs. unweighted:Finally, w(v) denote the weight of variablev, i.e., the cost
of spilling v. We distinguish the cases where the cost of spilling is the same for
all variables or not. We denote these two problems respectively asunweighted,
denoted byw = 1 (meaningw(v) = 1 for all v), or weighted, denoted byw , 1.

In this study, we play with these parameters, trying to make the problem more
complex to see if a polynomial algorithm can still apply, or the converse, trying to
simplify an NP-complete problem to see if it stays so. We always tried to give the
proof that is the most constraining for the result. For instance, if a problem is NP-
complete in the two casesw = 1 andw , 1, the proof will consider the unweighted
case. Conversely, if a problem is polynomial in the two casesw = 1 andw , 1, the
algorithm will explain how to deal with the weighted case. Remember that stronger
results imply the weaker ones. This is the reason why, on tables summarizing the
complexity results (namely, Tables 4.1 and 4.2, which will be introduced later), many
cells are empty but nevertheless stated as “polynomial” or “NP-complete.” Their status
is subsumed by a stronger result, which is the one given in the colored area.

As mentioned earlier, the goal of the spilling problem is simply the problem of
lowering the register pressure so that register allocation gets feasible. UnderSSA form,
it is necessary and su� cient to lower the register pressure so that, at every program
point, it becomes less that the number of registersR. The corresponding optimization
problem is tominimize the spilling cost. Maxlive, the maximum over all program
points, will be denoted by
 . Hence formally, the goal is to decrease
 by spilling
some variables. If we denote by
 0 the register pressure after this spilling phase, we
distinguished four di� erent problems.

Decreasing Maxlive: spill so that:

ˆ 
 0 � 
 � 1: “incremental spilling;”

ˆ 
 0 � 
 � C whereC is a constant: spill with “many registers;”
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ˆ 
 0 � C whereC is a constant: spill with “few registers;”

ˆ and the general problem,
 0 � Rwhere there is no constraint on the number
of registersR.

A graph problem: The spill everywhere problem without holes can be expressed as a
node deletion problem [Yannakakis, 1978]. The general node deletion problem can be
stated as follows: “Given a graph or digraphG, �nd a set of nodes of minimum cardinal
whose deletion results in a subgraph or subdigraph satisfying the property� .” Hence,
the results of the �rst section have a domain of application not only on register allo-
cation but also on graph theory. For this reason, we formalize the results using graphs
(i.e., properties of the interference graphs) instead of programs (i.e., register pressure
on theCFG) while the algorithmic behind is actually based on theCFG representation.

4.2 Spill Everywhere without Holes

On a basic block, the unweighted spill everywhere problem without holes is polyno-
mial: this is the greedy “furthest use” algorithm described by Belady [1966]. It is less
known that the weighted version, which cannot be solved using this last technique, is
also polynomial [Yannakakis and Gavril, 1987; Farach-Colton and Liberatore, 2000].
The interference graph is an intersection graph for which the incidence matrix is totally
unimodular and theILP formulation can be solved in polynomial time, for example us-
ing �ow algorithms. This property holds also for a path graph, which is a class of
intersection graphs between interval graphs and chordal graphs. We recall these results
here for completeness. We also recalled earlier that, underSSA form, once the regis-
ter pressure has been lowered toR at every program point, the coloring “everywhere”
problem (each variable is assigned to auniqueregister) is polynomial.

The natural question raised by these remarks is whether the spill everywhere prob-
lem without holes is polynomial or not underSSA form. In other words, does theSSA

form make this problem simpler? The answer is “no.” A graph theory result of Yan-
nakakis and Gavril [1987] shows it is NP-complete, even in its unweighted version: for
an arbitrarily large number of registersR, a program with
 arbitrarily larger thanR,
spilling everywhere a minimum number of variables such that
 0 (i.e., 
 after spilling)
is at mostR is NP-complete. The main result of this section shows more: this prob-
lem remains NP-complete even if one only requires Maxlive to be lowered by one,
i.e., 
 0 � 
 � 1. The practical implication of this result is that for a heuristic that
would lower
 one by one iteratively, even the optimization of each separate step is an
NP-complete problem.5

4.2.1 Complexity results

Table 4.1 summarizes the complexity results of spilling everywhere (without holes).
We will now recall classical results and prove new results, more accurate. Let us start
with the decision problem related to the most general case of spill everywhere without
holes.

5Note that providing an optimal solution for each intermediate step (going from
 to 
 � 1, then from

 � 1 to 
 � 2, and so on, until
 0 = R) does not always give an optimal solution for the problem of going
from 
 to R.
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Chordal graph
= generalSSAcase

Interval graph
= basic block

weighted

no

yes

no

yes


 0 � C

dyn. prog. 4.4


 0 � R

(4.3)

furthest use 4.1

ILP 4.2


 0 � 
 � 1

X3C 4.6

dyn. prog. 4.5

polynomial NP-complete new result

Table 4.1: Spill everywhere without holes. References to theorems are given in gray.
All cases of a colored area are subsumed by the proof given in this area.

Problem: Spill everywhere for perfect graphs
Instance. A perfect graphG = (V; E) with clique number
 = ! (G), a weight
functionw(v) > 0 for each vertexv, an integerR, an integerK.
Question. Is there a set of verticesVS � V with overall weight

P
v2Vs

w(v) � K such
that the clique number
 0 of the induced subgraphG0 with verticesV nVS is at most
R?

Theorem 4.1(Furthest First). The spill everywhere problem for an interval graph is
polynomially solvable with a greedy algorithm if w(v) = 1 for all v even if R is not �xed
(i.e., is an input of the problem).

The algorithm behind this theorem is the well-known “furthest use” strategy de-
scribed by Belady [1966], since interference graph of variables on a basic block is an
interval graph. This strategy is very interesting for designing spilling heuristics on the
dominance tree (see for example Hack et al. [2005]). We give here a constructive proof
for completeness.

Proof. An interval graph is the intersection graph of a family of intervals (on a straight
line). For convenience, we denote byB (for “basic block”) the union of all intervals.
The set of intervals is denoted byV (for “variables”). B is composed ofm successive
“points.” p1, . . . , pm, so that intervals start and end between successive points. Once
variables are removed (spilled), the set of remaining variables is calledV0. The goal is
to remove the minimum number of intervals so that for each pointp of B, the number
of intervals inV0 intersectingp is at mostR.

The greedy algorithm can be described as follows:

Step 0 (init) Let V0
0 = V andi = 1;

Step 1 (�nd �rst) Let p(i) be the �rst point from the beginning ofB such that more
thanR variables ofV0

i� 1 intersectp(i); Stop if there is no suchp(i);

Step 2 (remove furthest) Select a variablevi that intersectsp and ends the furthest
and remove it:V0

i = V0
i� 1 n fvig;

Step 3 (iterate) Incrementi by 1 and go to Step 1.

Let us prove that the solution obtained by the greedy algorithm is optimal. Consider
an optimal solutionS (described by a setVS of spilled variables) such thatVS contains
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CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

the maximum number of variablesvi selected by the greedy algorithm. Suppose thatS
does not spill all of them and denote byvi0 the variable with smallest index such that
vi0 < VS. By de�nition of pi0 in the greedy algorithm, there are at leastR+ 1 variables
not in fv1; : : : ;vi0� 1gintersectingp(i0). As S is a solution, there is a variablev in VS

(thusv , vi0) that intersectsp(i0). We claim that spillingW = (VS n fvg) [ f vi0g, i.e.,
spilling vi0 instead ofv, is an optimal solution too. Indeed, for all points beforep(i0)
(excluded), the number of variables inV0

i0� 1 = V n fv1; : : : ;vi0� 1gis at mostR. Since
fv1; : : : ;vi0g � W, this is true forV n W too. Furthermore, each pointp after p(i0)
(included) that is intersected byv is also intersected byvi0 by de�nition of vi0. Since at
mostRvariables ofV nVS intersect any suchp, the same is true forV nW. Finally, this
optimal solution spills more variablesvi selected by the greedy algorithm thanS, which
is not possible by de�nition ofS. ThusVS contains all variablesvi and, by optimality,
only these. This proves that the greedy algorithm gives an optimal solution. �

Theorem 4.2(poly. ILP). The spill everywhere problem for an interval graph is poly-
nomially solvable even if w, 1 and R is not �xed.

This result was pointed out by Yannakakis and Gavril [1987] and used in a slightly
di� erent context by Farach-Colton and Liberatore [2000]. The idea is to formulate
the problem usingILP and to remark that the matrix de�ning the constraints is totally
unimodular. For the sake of completeness, we provide the formulation here.6

Proof. We use the same notations as for Theorem 4.1 except that, now,v1, . . . , vn

denote all variables and not only those selected by the greedy algorithm. Letwi be
the cost of removing (spilling) variablevi . We de�ne the clique matrix as the matrix
M =

�
cp;v

�
wherecp;v = 1 if v intersects the pointp andcp;v = 0 otherwise. Such

a matrix is called the incidence matrix of the interval hyper-graph and is totally uni-
modular [Berge, 1973]. In our case,M is of polynomial size. This is not the case for
all graphs since the number of maximal cliques, hence the number of lines of M, can
be exponential, but this is not the case for interval and chordal graphs. The optimiza-
tion problem can be solved using the following integer linear program, where~x is a
vector with components (xi)1� i� n, ~w is a vector with components (wi)1� i� n, ~R is a vec-
tor whose components are all equal toR, and vector inequalities are to be understood
component-wise:

max
n
~w:~x j M � ~x � ~R; ~0 � ~x � ~1

o

Of course,xi = 0 means thatvi should be removed whilexi = 1 means it should be
kept. The matrix of the system isM with some additional identity matrices, which
keeps the total unimodularity. �

The next theorem is from Yannakakis and Gavril [1987]. While their formulation
of the problem is di� erent—they search fork-colorable subgraphs in chordal graphs—,
they deal in fact with the same problem as us. We refer to their paper for the proof as
we will improve this result in Theorem 4.6.

Theorem 4.3(Yannakakis). The spill everywhere problem for a chordal graph is NP-
complete even if w(v) = 1 for each v2 V.

Another important result of Yannakakis and Gavril [1987] is that the spill every-
where problem is polynomially solvable whenR is �xed. Of course, there is a power
of R in the complexity of their algorithm, but it means that ifR is small, the problem is

6 Note that Farach-Colton and Liberatore [2000] also have a �ow formulation for this problem.
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4.2. SPILL EVERYWHERE WITHOUT HOLES

simpler. Because of this, we call the problem whenR is �xed “spill everywherewith
few registers”.

Problem: Spill everywhere with few registers (C)
Instance. A perfect graphG = (V; E) with clique number
 , a weightw(v) > 0
for each vertex, an integerK, R = C is �xed (i.e., a constant, not an input of the
problem).
Question. Is there a subsetVS of verticesV with overall weight

P
v2Vs

w(v) � K
such that the clique number of the subgraphG0 induced byV nVS is 
 0 � R?

Theorem 4.4(Dynamic programming on non-spilled variables). The spill everywhere
problem with few registers (R= C) is polynomially solvable if G is chordal even if
w , 1.

When we proved our results, we were actually not aware of Gavril and Yannakakis
paper. Since Theorem 4.4 is very intuitive, we logically ended with the same kind of
construction. For completeness, we provide it here, with our own notations. This proof
is constructive and the algorithm (dynamic programming on program points) is based
on a tree traversal. The idea is that at each point, the number of variablesnot spilledis
at mostC, hence there are at most
 C possibilities at every program point. Of course,
this works only because the underlying structure is a tree: solutions of children are
independent and can be “glued” together during the dynamic programming. This could
not be done if there was cycles of program points. The algorithm performsO

�
m
 C

�

steps of dynamic programming, wherem is the number of program points.

Proof. A chordal graph is the intersection graph of a familyV of subtrees of a treeT
[Golumbic, 1980, Thm 4.8]. We callpointsthe vertices of the treeT, and for each point
p, Tp the maximal subtree ofT rooted atp (the root isr, andTr = T). To distinguish
the subtreesTp from the subtrees of the familyV, we call the lattervariables. Given
a point p and a subsetW � V of variables, letW(p) be the set of variablesv 2 W
intersectingp, i.e., such thatp belongs to the subtreev. If jW(p)j � C, we say thatW
�ts p or thatW(p) is a �tting set for p. We say thatW �ts a set of points if it �ts each of
these points. A solution to the spill everywhere problem withC registers is thus a subset
W of V such thatW �ts T. It is an optimal solution if

P
v2W w(v) is maximal. With these

notations,W corresponds toV nVS in the spill everywhere problem formulation, and
maximizing the cost ofW is equivalent to minimizing the weight ofVS.

Given a subset of variablesW, we consider itsrestriction, denoted byWp, to a sub-
treeTp: it is de�ned as the set of variablesv 2 W that have a non-empty intersection
with Tp. Note that ifW �ts T, then its restrictionWp to a subtreeTp �ts Tp. Fur-
thermore, ifp1 and p2 are children ofp in T then, because of the tree structure, all
variables that belong to bothWp1 andWp2 intersectp. Also, for i 2 f1; 2g, all variables
in Wpi intersectingp intersect alsopi , i.e., Wpi (p) = Wp(pi). These remarks ensure
the following. LetW be a �tting set forTp and letW0 be a �tting set forTpi such that
W0

pi
(p) = Wpi (p) (i.e., they coincide betweenp and pi). Then, replacingWpi by W0

pi

in W leads to another �tting set ofTp. This is the key to get an optimal solution thanks
to dynamic programming.

The �nal proof is an induction on the pointsp of T—from the leaves to the root—
and on the �tting setsFp 2 Fp = fW � V(p); jWj � Cgof these points. Let us denote
by Wmax(p; Fp) a subsetW of V that contains only variables intersectingTp, such that
W(p) = Fp, and with maximal cost. The goal is to calculate, for all pointsp and all
�tting set Fp 2 Fp, Wmax(p; Fp). Then, the cost of the best solution for the whole tree
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CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

will be the maximum ofWmax(r; Fr ), which de�nes a �tting setFrmax. The best spill
solution is then easily found by a tree traversal starting atr with solutionFrmax, going
down to the leaves, using the previous dynamic programming computations.

The hard part is to compute, for a given pointp and one of its �tting setsFp 2 Fp,
Wmax(p; Fp). If p is a leaf, it is easy since there is no much choice but counting the
number of variables inFp. If p is not a leaf, it has at least one child. The solutions
for each child ofp are independent but for the variables they have in common. Since
this is a tree, these variables intersectp, hence their status (spilled or non-spilled) is
governed by the �tting setFp. Then, for each childpi of p, we only need to consider
the �tting setsFpi that matchFp, i.e., such thatFpi \ V(p) = Fp \ V(pi). From the
remark above (withW andW0), any of such sets can be plugged onFp, and this can
be done independently for each child. Now, we need to �nd, for all combinations of
�tting sets Fpi for each children, which one gives the greatest cost. For a combination,
the cost is easy to compute: it is the cost ofFp plus, for each child, the cost ofWpi

minus the variables in common betweenFp andFpi , i.e.:

cost ofWp =
X

v2Fp

w(v) +
X

pi

0
BBBBBBB@

X

v2Wpi nFp

w(v)

1
CCCCCCCA

=
X

v2Fp

w(v) +
X

pi

0
BBBBBBB@cost ofWpi �

X

v2Fpi \ Fp

w(v)

1
CCCCCCCA

One should note that, in the cost ofWp, the cost of the solution brought by one child
in independent from the solutions brought by other children. Hence, we can optimize
independently the solution of each child. For a childpi , and for a setFpi that matches
Fp, the cost of the variables in common betweenFp andFpi (the part after the minus
sign in the equation above) is a constant, hence it is best to maximize the part “cost
of Wpi .” For that, we just need knowWmax(pi ; Fpi ), which is ensured by the dynamic
programming. So, we pick theFpi such thatWmax(pi ; Fpi ) is maximal. From these
selected subsets, one for eachpi , we constructWmax(p; Fp).

This construction is done for eachFp 2 Fp. As there are at mostV(p)C � 
 C such
�tting sets for p, these successive locally optimal solutions can be built in polynomial
time. �

We have just seen that, whenever the number of register is �xed, the spill problem
can be solved polynomially. However, the complexity grows exponentially withRso it
works best with a very small number of registers. This might be a clue to explain why
aggressive techniques likeILP for spilling appeared to work during the last decade for
instance forX86. Appel and George [2001] were probably well aware of this fact when
they entitled their article “Optimal spilling forCISC machineswith few registers.” We
now address the following problem, which is a particular case of the more general spill
everywhere problem.

Problem: Incremental spill everywhere
Instance. A perfect graphG = (V; E) with clique number
 = ! (G), a weight
w(v) > 0 for each vertex, an integerK.
Question. Is it possible to remove verticesVS � V from G with overall weightP

v2Vs
w(v) � K such that the induced subgraphG0 has clique number
 0 � 
 � 1?
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The following theorem can be seen as a particular case of Theorem 4.2. The proof
is interesting since it provides an alternative solution to theILP formulation for this
simpler case.

Theorem 4.5(Dynamic programming on spilled variables). If G is an interval graph,
the incremental spill everywhere problem is polynomially solvable, even if w, 1.

Proof. Let B = fp1; : : : ;pmg be a linear sequence of points,pi < p j if i < j, and
V = fv1; : : : ;vngbe a set of weighted variables, where each variablevi corresponds to
an interval [s(vi); e(vi)]. We assume that the variables are sorted by increasing starts,
i.e., s(vi) � s(v j) if i < j. Without loss of generality, the problem can be restricted to the
case where any pointp belongs to exactly
 variables (any other point can be deleted
from the instance). So for each point, one needs to spill at least one of the intersecting
variables. What we seek is thus a minimum weighted cover ofB by the variables ofV,
which can be done thanks to dynamic programming as follows.

Let W(pi) be the minimum cost of a cover ofp1, . . . , pi . Knowing all W(p j<i), it
is possible to computeW(pi). Indeed, atpi , one must choose a variablev 2 V(pi), i.e.,
intersecting the pointpi . As v already covers the interval between its starts(v) andpi ,
we get:

W(pi) = min
v2V(pi )

(w(v) + W(pred[s(v)])) where pred[pi ] = pi� 1

with the conventionW(p) = 0 for p < p1. W(pm) is the minimum cost of an incremen-
tal spilling over the whole basic blockB. The setV(pi) can be computed fromV(pi� 1)
in O(
 ) operations because the variables are sorted by increasing starts. The overall
complexity is thusO(
 m). �

We will now show you a stronger theorem than the Theorem 4.3 of Yannakakis
and Gavril [1987]. We discovered it while following our �rst (false) intuition, which
was that choosing which variables to remove so as to go from
 to 
 � C was exactly
the symmetric of choosing which variables to keep so as to get down toC (with C
being a constant). At �rst sight, it seemed that dynamic programming could be used,
as for Theorem 4.4, to solve the incremental spill everywhere problem. For interval
graphs, both problems can indeed be solved with dynamic programming as we previ-
ously showed. The incremental approach would have then provided a heuristic for the
main spill everywhere problem, as an alternative to an exact solution as in Appel and
George [2001], which is too expensive whenR is large. Unfortunately, Theorem 4.6
contradicts this intuition.

Theorem 4.6(From 3-exact cover (X3C)). The incremental spill everywhere problem
is NP-complete for a chordal graph even if w(v) = 1 for each v2 V.

Proof. As for Theorem 4.4 we use the characterization of a chordal graph as an inter-
section graph of a family of subtrees of a tree. We use the same notations. The proof
is a reduction fromExact Cover by 3-Sets (X3C) [Garey and Johnson, 1979, Problem
SP2]: letP be a set of 3n elementsfp1; p2; : : : ;p3ng, andV = fv1; v2; : : : ;vmga set of
subsets ofP where each subset contains exactly three elements ofP. DoesV contains
an exact cover ofP, i.e., a sub-collectionS � V such that every element ofP occurs
in exactly one member ofS?

Let us consider an instance ofX3C and de�ne the following family of subtrees of
a tree (see Figure 4.1): the main treeT is of height 2 with one root point labeledp0

and 3n leaves labeledp1; p2; : : : ;p3n. For eachvi = fp� ; p� ; p g there is a subtree
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Figure 4.1: Reduction to3-exact cover: (a) an instance ofX3C with n = 2 andm = 4;
(b) corresponding subtrees in the reduction; (c) correspondingSSAcode.
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(variable) made of the rootp0 and the three pointsp� ; p� ; p . The number of variables
intersectingp0 is m, so
 = m. Let us create as many additional variables as necessary
(we call them non-labeled variables) so that the number of intersecting variables is
exactly
 for each point ofT. In other words, for a leafp j that belongs tok subtrees
vi , we createm� k variables, each containing onlyp j . Given this family of subtrees of
a tree, consider the corresponding intersection graph (which is chordal). We now show
that this instance ofX3C has a solution if and only if it is possible to remove (spill) at
mostn = K variables such that, for each pointp, the number of remaining intersecting
variables is at most
 � 1. Notice that the reduction is polynomial: the whole number
of variables is at most 3n � m.

Suppose there is a solution to the incremental spill everywhere problem and letVS

be the set of removed variables withjVSj � n. There is no non-labeled variable inVS

because
 must be decreased in the 3n leaves and only a labeled variable goes over
three leaves. HenceVS contains only labeled variables,jVSj = n, and the corresponding
set of subsetsS is a covering ofP. Conversely, suppose that theX3C instance has a
solution S and letVS be the set of corresponding subtrees. SinceS is a covering
of P, jSj = n and there is exactly one intersecting set inVS for each leaf. So the
number of remaining intersecting variables is
 � 1 for each leaf. As for the rootp0, all
variables intersect it, so there is at least one (labeled) variable removed and the number
of remaining intersecting variables is at most
 � 1. In other words,VS is a solution,
with jVSj � n, to the incremental spill everywhere problem.

This proves that the incremental spill everywhere problem is NP-complete (the fact
it belongs to NP is straightforward). �

Why is there a di� erence between this last theorem and Theorem 4.4? In fact, the
two problems are not perfectly symmetric: to make a graphk-colorable, the number
of kept variables alive at any point should beat most k, while to make a graph
 � k
colorable, the number of removed variables alive at any point must beat least k, hence
can be arbitrarily large as for the pointp0 in the proof of Theorem 4.6. This is where
the combinatorial complexity comes from.

4.2.2 Extension to the spill non-everywhere problem

The spill everywhere problem considers a �xed cost for a live-range. If one want to
optimizeload s andstore s, i.e., to spill variables only onparts of their live-ranges,
the cost is not �xed in advance. It is possible to extend the dynamic programming
algorithm of Theorem 4.4 to the spill non-everywhere problem. At each point, the cost
of spilling a variable now depends on whether it has already been chosen to be spilled
by the dynamic algorithm (starting from the leaves)—the cost of thestore has already
been counted—or not, in which case astore will be inserted. We will explain our
ideas for a basic block, then the dynamic algorithm for a tree, i.e., underSSA, works as
in the proof of Theorem 4.4.

The idea for the dynamic programming to work is to separate at each point the
variables in three sets:

ˆ the variables not spilled (previously notedW);

ˆ the variables spilled and not in a register (previously notedVS);

ˆ the variables spilled but still in a register (notedVr
S).
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Indeed, a spilled variable may still reside in a register between two uses, to save one
load . This complicates the task of calculating the cost of a �tting set. Let us consider
a basic block where one tries to calculate the cost of a solution for pointp, depending
on the solutions for the next pointp0.

ˆ If v 2 W(p), the only possibility isv 2 W(p0), with no cost.

ˆ If v 2 VS(p): three cases,v 2 VS(p0) with no cost; orv 2 Vr
S(p0), which costs a

load (inserted betweenp andp0); or v 2 W(p0), which costs astore (inserted
at the de�nition ofv) and aload (inserted betweenp andp0).

ˆ If v 2 Vr
S(p): three cases,v 2 Vr

S(p0) with no cost; orv 2 VS(p0) with no cost (v
just ceases to reside in a register); orv 2 W(p0), which costs astore (inserted
at the de�nition ofv)7 but noload sincev is already in a register.

So we just need to be sure that, at each step, there is a polynomial number of�
W(p);VS(p);Vr

S(p)
�

that �t p. Indeed, ifC is the number of registers, one needs to
choose between
 (p) variables those that are in a register (spilled or not): less than

 (p)C possibilities. Then, of all the variables in registers at this point, one needs to
choose how many also reside in memory: at most 2C possibilities. Hence for a �xed
C, the number of possibilities is polynomially bounded by (2
 )C and it is easy to use
dynamic programming to solve this problem on a basic block.

UnderSSA, the dynamic programming is tree-based instead of being linear-based.
It works as in the proof of Theorem 4.4. Ifp has more that one child, a solution for
p should match the solutions for all of them, and a special care should be taken when
calculating the cost of a solution—ifv is spilled inp1 andp2, it costs onestore less
since both children have already included astore for v in their solution cost. Again,
it only works because the solutions of children are independent but for some variables
that intersectp. Whenp �xes a “pattern,” the choice for children is then independent
from other children, and taking the maximum cost gives the best solution.

4.3 Spill Everywhere with Holes

The previous section dealt with the spill everywhere problem without holes. To sum-
marize, by looking again at Table 4.1, this problem is polynomial for a basic block even
in its weighted version, whereas it is NP-complete for a generalCFGunderSSA, unless
for a �xed (small) number of registers.

As mentioned earlier, the model without holes does not re�ect the reality of most
architectures: it corresponds to theCISC-like models while many architectures are in
factRISC-like. The goal of this section is to tackle the problem of spill everywhere “with
holes,” on a basic block. We restricted the study to the cases where it was polynomial
without holes. Indeed, the problem with holes is intuitively “harder” than the problem
without holes. Whenever the problem was already NP-complete, chances were that it
would stay so.8

7This is a restriction of the model, where the cost of thestore is the same everywhere. In practice
however, it is better to add it on a place not often executed. It is not trivial to insert this cost in the dynamic
programming but it might work.

8Actually, this is not straightforward to prove. To patch the proof of Theorem 4.6, other variables must
be added to “counter-act” the e� ects of holes. This is the same technique which will be used to patch the
“ � -variables” in the proof of Theorem 4.11.
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Where do the holes come from? For an architecture where operations are allowed
only between registers, whenever a variable is spilled, one needs to insert astore in-
struction after its de�nition andload instructions before the every use of this variable.9

Thus, new variables appear, with very short live-ranges, but which nonetheless need to
be assigned to registers. In other words, when a variable is spilled, the number of si-
multaneously alive variables decreases by one at every point of the live-range,except
where the variable is de�ned or used. Thus spilling everywhere a variable does not
remove the complete interval, but only parts of it, since there is still some tiny sub-
intervals left. This is why, for instance, in the algorithm of Chaitin et al. [1981], the
register allocation must re-build the interference graph and iterate if some variables are
spilled.10

Holes and chads: The notion of holes can be formalized as follows. AnSSAprogram
on a basic block, orlinear SSAcode, is a pair (B;V) where B = fp1; : : : ;pmg is a
sequence ofm program points, andV the set of variables that appear in the code.
Between two consecutive program points, there is an instruction.

Each variable ofV is de�ned at most once and, if it is not de�ned in the code, is
considered live-in of the sequenceB, i.e., alive on pointp1. Similarly, each variable
either has a “last use” (last instruction that uses it) or is live-out of the sequenceB.
A variable is represented by a simple interval of the sequenceB, startingduring the
instruction that de�nes it (or atp1 for a live-in), and endingduring the instruction
that last uses it (or atpm for a live-out). Spilling a variablev 2 V decreases by one
the register pressure at each of its points but not at its de�nition and uses points, i.e.,
the program point just after the instruction that de�nes it, and the program points just
before the instructions that use it. Some tiny sub-intervals of the live-range remain at
these places. They represent temporary variables that must contain the value in register
before storing it or after having reloaded it. Hence, the set of points that is actually
“removed” is the intervalv with “holes” on it. We call it apunched interval. The
remaining pointsc 2 v that are not removed are calledchads, as if, when spilling the
variablev, one �rst had punched the corresponding interval, leaving small intervals in
place.

It is important to place precisely where are the holes in live-ranges, since they rep-
resent the locations where chads will remain, i.e., where problems will arise. We will
do so while referring to Figure 4.2 for a graphical explanation. Note that an instruc-
tion �rst uses simultaneously some variables andthenpossibly de�nes some other new
variables. Hence, the holes for the de�nitions come a bitlater than the holes for the
arguments. This the expected behavior since for instance for [d  a+ b], if a andd are
spilled, the same register can be used to loada and to holdd before its store. Similarly,
at a program point, the holes for the de�nitions of the preceding instruction should not
overlap with the holes for the uses of the next instruction. For instance, between the
de�nition of c and the one ofd, if c anda are spilled, the same register can be used to
storec, then to loada. So, holes for de�nitions start “in the middle” of the de�ning
instruction and end at the next program point, while holes for uses start at the previous
program point and end “in the middle” of the instruction which uses the variables.

9We are still in the “spill everywhere” model. For the load/store optimization, not all loads might be
required.

10Actually, the reason why re-building the interference graph is necessary is more clear in the version of
Chaitin [1982]. In the previous version, they reduced the register pressure tok, then tried to color. If it did
not work, they would reduce Maxlive tok � 1, k � 2,. . . until it worked. The interference graph must then be
built each time before testing if they can color it.
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Figure 4.2: Example of punched intervals. When spilled, they leave small intervals
(chads) at their de�nition and uses points. The chads count in the register pressure
hence spillinga is not equivalent as spillingc: Maxlive stays at 4 with the former, but
drops to 3 with the latter.

Simultaneous holes: Now that we know precisely where are the holes, we can dis-
tinguish di� erent cases depending on thenumber of simultaneous holes, written h.
This number corresponds to the maximum number of registers that can be used—as
arguments—by the same instruction or de�ned—as results—by the same instruction.
It is dependent on the instruction set of the architecture; for instance,h = 2 in the three
operand additionadd %reg1, %reg2 ! %reg3: it uses two variables at a time,then
de�nes one variable.

Live variables: Once some variablesVS have been spilled, the induced code can be
characterized as follows. The set of spilled variables alive atp is VS(p) = VS \ Live(p);
the set of non-spilled alive variables is Live0(p) = Live(p)nVS(p). The register pressure
after spilling is denoted by
 0(p). Notice that Live0(p) does not contain any chad,
whereas of course
 0(p) needs to take remaining chads into account. Hence
 0(p) is
not necessarily equal tojLive0(p)j; more generally,jLive0(p)j � 
 0(p) � j Live0(p)j + h.

All previous notions can be generalized to a generalSSA program. The sequence
B (linear code) becomes a treeT (dominance tree) and punched intervals become
punched subtrees. Now, the (general) problem can be stated as follows.

Problem: Spill everywhere with holes
Instance. A program (T;V) with Maxlive 
 , a weightw(v) > 0 for each variable,
integersR andK.
Question. Is it possible to spill a set of variablesVS � V with overall weightP

v2Vs
w(v) � K such that the induced code has Maxlive
 0 � R?

Other instances.The spill everywhereon a basic blockdenotes the case whereT is
a sequenceB (linear code). The spill everywherewith few registers(C) denotes the
case whereR is �xed equal toC. The spill everywherewith many registers(
 � C)
denotes the case whereR is �xed equal to
 � C. Theincrementalspill everywhere
denotes the case whereR equals
 � 1.

As explained by Farach-Colton and Liberatore [2000], the hardness of load-store
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h = 1

h � 2

h not
bounded

weight

no

yes

no

yes

no

yes


 0 � C

dyn. prog. 4.7


 0 � R

?

stable set 4.11

stable set 4.10


 0 � 
 � C

dyn. prog. 4.8


 0 � 
 � 1

set cover 4.9

polynomial NP-complete new result

Table 4.2: Spill on interval graphs (basic blocks) with holes. References to theorems
are given in gray. All cases of a colored area are subsumed by the proof given in this
area.

optimization for a basic block comes from asymmetry between the cost of the store,
which appears only once—when a variable is chosen to be evicted—and the cost of the
loads, which is not �xed since it depends on how many times the variable is evicted.
Neglecting the cost of the store would lead to a polynomial problem where each sub-
intervals of the punched interval could be considered independently for spilling. But we
feel that this approximation is not satisfactory in practice because the average number
of uses for each variable can be small. Indeed, we measured on our compiler tool-
chain, using small kernels representative of embedded applications, that most spilled
variables have at most two uses. Hence, minimizing the number of spilled variables is
nearly as important as minimizing the number of uses that need a load.

Consider for example a “furthest �rst”-like strategy on sub-intervals (see Figure 4.2
for an illustration of sub-intervals). To design such a heuristic, a spill everywhere
solution might be considered to drive decisions: between several candidates that end
the furthest, which one is the most suitable to be evicted in the future? Unfortunately,
as summarized by Table 4.2, most instances of spill everywhere with holes are NP-
complete for a basic block.

Let us start with a result similar to Theorem 4.4: even with holes, the spill every-
where problem with few registers is polynomial.

Theorem 4.7(Dynamic programming on non-spilled variables). The spill everywhere
problem with holes and few registers (R= C) is polynomially solvable if G is chordal,
even in its unweighted version (w, 1).

Proof. The proof is similar to the proof of Theorem 4.4. The only point is to adapt
the notations to take chads into account. The word “removed” has to be replaced by
“spilled” since variables are not removed entirely. Furthermore, the de�nition of “�t-
ting set” needs to be modi�ed. A setFp of variables is a �tting set forp if, when all
variables not inFp are spilled, the new register pressure
 0(p) is at mostC. In other
words, the set of �tting sets becomesFp =

n
Live0(p); 
 0(p) � C

o
. Hence, it is “harder”

for a set to be a �tting set than for the problem without holes. Therefore, the number
of �tting sets is smaller and is still at most Live(p)C � 
 C.
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As in Theorem 4.4, the proof is an induction on pointsp of T (from the leaves
to the root) and on �tting live setsFp 2 Fp. Wmax(p; Fp) is built, for eachFp 2 Fp,
thanks to dynamic programming, by “concatenating” some well chosenWmax( f ; F f ).
Given a child f of p, we select a �tting setF f 2 F f that matchesFp, i.e., such that
F f \ Live(p) = Fp \ Live( f ), and that maximizes the cost ofWmax(p; Fp). This is done
for each child ofp, and because by construction they match onp, they can be expanded
to a solutionWmax(p; Fp) that �ts Tp. The arguments are the same as for Theorem 4.4
and are not repeated here. �

We have seen that, without holes, the spill everywhere problem on anSSAprogram,
with few registers, is polynomial whereas the instance with many registers (R = 
 � C)
is NP-complete (Theorem 4.6): the number of spilled variables alive at a given point
can be arbitrarily large (up to
 ). For a basic block, this was not the case and we have
seen a dynamic algorithm (Theorem 4.5). Now we will see that, ifh is �xed, this is still
the case. The number of spilled variables is bounded by 2(h+ C), leading to a dynamic
programming algorithm withO(jBj
 2(h+C)) steps.

Theorem 4.8(Dynamic programming on spilled variables). The problem of spill ev-
erywhere with holes and many registers (R= 
 � C) can be solved in polynomial time,
for a basic block, if h is �xed and even if w, 1.

Proof. The key point is �rst to prove that, for an optimal solution, for each pointp,
jVS(p)j � 2(h + C). Let us consider a pointp such thatjVS(p)j � h + C + 1, and
extend this point to a maximal intervalI such that on any pointp of this interval,
jVS(p)j � h + C + 1. We claim that there is no spilled variablev 2 VS completely
included inI . Indeed, otherwise, ifv were restored (un-spilled) in the �nal solution,
then, at each pointp of v, at least (h+ C+ 1)� 1 = h+ C variables would still be spilled,
so the register pressure
 0(p) � j Live0(p)j + h � (
 � (h + C)) + h = 
 � C would still
be small enough. This would contradict the optimality of the initial solution. Hence,
no variable ofVS is completely included inI : either it starts before the beginning ofI ,
or it ends after the end ofI . But I is of maximal size, hence on both extremities, there
are at mosth + C live spilled variables. Since there is no variable completely included
in I , for any pointp of I , all variables alive atp goes beyondI either at its start or at its
end. This means that there is at most 2(h + C) spilled variables alive in any point ofI .

The rest of the proof is similar to the proofs of Theorems 4.4 and 4.7. The only
di� erence is that spilled variables are considered instead of kept variables. For a point
p, anextralive setEp is a set of variables of cardinal at most 2(h + C) and such that, if
Ep is spilled, the new register pressure
 0(p) becomes lower thanR. Let Ep be the set
of extra sets forp. It has at most Live(p)2(h+C) � 
 2(h+C) elements.

The proof is an induction on pointsp of B = fp1; : : : ;pmgand on extra live sets
Ep 2 Ep. Let Bpi = fp1; : : : ;pig. A set of variables is said to �tBp if, for all points in
Bp, the register pressure obtained if all other variables are spilled is at mostR = 
 � C.
The induction hypothesis is that a solutionWmax(p; Ep) of maximum cost, that �tsBp,
and withVS(p) = Ep, can be built in polynomial time. Letp be a point ofB andq its
predecessor. ConsiderEp 2 Ep, and an extra live setEq that matchesEp, i.e., such that
Eq \ Live(p) = Ep \ Live(q), and that maximizes the cost ofWmax(q; Eq). As noticed
earlier,

���Eq

��� � 
 2(h+C) and it can be built, by induction hypothesis, in polynomial time.
BecauseEp andEq match,Wmax(q; Eq) can be expanded to a solutionWmax(p; Ep) that
�ts Bp. The arguments are the same as those used for Theorems 4.4 and 4.7.

The proof is constructive and provides an algorithm based on dynamic program-
ming with O(jBj
 2(h+C)) steps. �
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Figure 4.3: Reduction toSet Cover: (a) instance ofSet Cover and (b) corresponding
punched intervals.

At this point, one might wonder why the dynamic programming of the previous
proof might not work for a tree, for instance if the number of children at each branch
is bounded. The problem is that the number of leaves of the tree would still not be
bounded, and the reduction to3-exact cover of Theorem 4.6 would still work. The next
two theorems show that, as one would expect from the number of steps in the dynamic
programming, the complexity does depend onh andC. If C = 1, i.e.,R = 
 � 1, but
h is not �xed, the incremental problem is NP-complete (Theorem 4.9). Ifh is �xed but
there is no constraint onR, most instances are NP-complete (Theorems 4.10 and 4.11).

Theorem 4.9(FromSet Cover). The incremental spill everywhere with holes is NP-
complete if h can be arbitrary, even if w(v) = 1 for each v2 V and even on a basic
block.

Proof. The proof is a straightforward reduction fromSet Cover [Garey and Johnson,
1979,Minimum Cover, Problem SP5]. LetV be subsets of a �nite setB andK � jVj
be a positive integer. DoesV contain a cover forB of sizeK or less, i.e., a subset
V 0 � V such that every element ofB belongs to at least one member ofV 0? Punched
intervals can be seen as subsets ofB, they contain all the interval points, except chads.

Consider an instance ofMinimum Cover. To each element ofB corresponds a point
of B. To each element� of V corresponds a punched intervalv that traverses entirely
B and that only contains points corresponding to elements of� (see Figure 4.3). In
other words, there is a chad for each pointnot in v. Note that to obtain a code with
instructions, it is possible to group two consecutive points into one instruction (which
uses every variable that has a chad on the �rst point, and de�nes every variable that has
a chad on the second point), or to utilize instructions that only use variables without
de�ning any or the converse.

At each pointp of B, the number of punched intervals and chads that containp
(live variables) is exactly
 = jVj. A spilling that lowers by at least one the register
pressure
 provides a cover ofB and conversely. So, settingK = K andR = 
 � 1
proves the theorem. �
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Figure 4.4: Reduction toIndependent Set for h = 2: (a) instance of Independent Set;
(b) corresponding punched intervals.

Notice that the previous proof is very similar to the proof given by Farach-Colton
and Liberatore [2000, Lemma 3.1]. Their lemma proves the NP-completeness of the
load-store optimization problem, which is harder than our spill everywhere problem.
Still, their reduction is similar to ours since they used a trick to force the overall load
cost to be the same for all spilled variables, independently from the number of times a
variable is evicted. Hence, the optimal solution to their load-store optimization problem
just behaves like a spill everywhere solution.

The main limitation of the reduction used for Theorem 4.9 is that the proof needs
the number of simultaneous chadsh to be arbitrary large, as large asjVj. This is of
course not realistic for real architectures. Usually,h = 2 in practice, and evenh = 1
for paging problems. Similarly to ours, the reduction of Farach-Colton and Liberatore
[2000] use a large amount of simultaneous uses (in their article, aread corresponds to
a use here and their� corresponds to ourh). Their Theorem 3.2 extends their lemma
to the case� = 1 but, again, it deals with load-store optimization problem, which is
harder than spill everywhere. Unfortunately, their trick cannot be applied to prove the
NP-completeness of our “simpler” problem and we need to use a di� erent reduction as
shown below.

Theorem 4.10(At most 2 simultaneous chads). The problem of spill everywhere with
holes is NP-complete even if w(v) = 1 for all v 2 V, even with at most2 simultaneous
chads, and even on a basic block.

Proof. The proof is a straightforward reduction fromIndependent Set (also called
Stable Set) [Garey and Johnson, 1979, Problem GT20]. LetG = (V ; E) be a graph
andK � jVj be a positive integer. DoesG contain an independent set (stable)V S of
sizeK or more, i.e., a subsetV S � V such thatjV Sj � K and no two vertices inV S

are joined by an edge (adjacent) inE?
Consider an instance of Independent Set. To each vertex� 2 V of G corresponds a

variablev 2 V that is alive from the entry ofB to its exit. To each edge (�; � ) 2 E of G
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Figure 4.5: Reduction fromIndependent Set for h = 1: (a) region for an edge (u; v);
(b) actual code must have holes at extremities of� variables.

corresponds a pointpu;v of B that contains a use of the corresponding variablesu and
v (see Figure 4.4). In other words, there are two chads for each point ofB. The key
point is to notice that spillingK variables inVS lowers
 to jVj � K + 1 if and only if
the corresponding set of verticesV S is an independent set. Indeed, ifV S contains two
adjacent verticesu andv, then at pointpu;v, the register pressure would bejVj � K + 2.
Hence, by settingK = K andR = jVj � K + 1, we get the desired reduction. Indeed,
if there existk � K variables that, when spilled, lead to a register pressure at most
R = jVj � K + 1 then: �rst, k must be equal toK, second, the corresponding vertices
form an independent set of sizeK. Conversely, if there is an independent set of size
at leastK, then spilling the corresponding variables leads to a register pressure at most
jVj � K + 1. �

Now that we have seen the case whenh = 2, the reader should be mature enough to
enter the caseh = 1. The reduction is similar to the one in the above proof, fromInde-
pendent Set. But in this proof we strongly used that two chads might be simultaneous.
In the proof of the following theorem, we will use the same structure, but slightly “dis-
place” the chads so that they are not simultaneous anymore. The trick is then to add
many other small variables, and we will see that it “all �t together.” However, we now
need to use weights to distinguish the small variables from the main ones.

Theorem 4.11(No simultaneous chads). The spill everywhere problem with holes is
NP-complete even if h= 1 and for a basic block, in its weighted version (w, 1).

Proof. As for Theorem 4.10, the proof is a reduction fromIndependent Set. Consider
an instance of Independent Set. To each vertex� 2 V of G corresponds a variablev 2 V
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(called vertex variables), which is alive from the entry ofB to its exit. To each edge
(�; � ) 2 E of G corresponds a region inB whereu andv are consecutively used. For our
needs, as depicted in Figure 4.5a, we add two overlapping local variables,� u and� v,
called� variables. In real codes, every live-range must contain a chad at the beginning
and a chad at the end. For our proof, we need to be able to remove the complete live-
range of a� variable, which is of course not possible because of the presence of chads
for such variables. To avoid this problem, we will introduce later new “fi” variables to
increase the register pressure by one everywhere except where� variables have chads.
But now, for the sake of clarity, we will still consider that� live-ranges contain no
chads and delay the appropriate corrections to the end of the proof.

Let us chooseK = K andR = jVj � K + 1. The cost for spilling a vertex variable
will be � while the cost for spilling a� variable will be 1. As for� , the trick is
to make sure that an optimal solution of our spilling problem spills exactlyK vertex
variables andjEj of the � variables (i.e., at least one per region, and exactly one is
su� cient), for a cost equal to� K + jEj. This is ensured by setting� = 2jEj + 1.11

Indeed: �rst, spillingK � 1 vertex variables even with all the� variables is not enough:
on a chad of any of the spilled variables,12 the register pressure would be lowered to
jVj � (K � 1) + 1 = jVj � K + 2 > R. Second, spillingK vertex variables requires
to spill at least one� variable per region and spilling all� variables is enough. Hence,
the minimum cost of a spilling with exactlyK vertex variables is betweenK� + E and
K� + 2E. Finally, spillingK + 1 vertex variables—and no� variable—has a cost equal
to (K + 1)� = K� + 2jEj + 1.

Now, it remains to show that the cost of an optimal spilling isK� + E if and only
if (i � ) the spilled variables de�ne an independent set forG. All situations for an edge
(u; v) are depicted in Figure 4.6. If bothu andv are spilled—in which caseV is not
a stable set—then both� u and � v must be spilled and the cost cannot beK� + E.
Otherwise, spilling either� u (if u is spilled) or� v (if v is spilled) is enough.

To �nish this proof, we need to get back to the problem that, in fact, the� variables
have two chads: one for their de�nition at the beginning of their live-range, and one
at the end for their last use. We patch the proof by adding �ve new variables (fi)1� i� 5

for every edge (u; v) in G as depicted on Figure 4.5b. In fact, thef5 for an edge can be
the f1 of the next edge in the reduction. The goal is that the union of the live-ranges
of fi variables covers exactly all points ofB, except the points that correspond to the
chad of a� variable. This makes a total of 4jEj + 1 new fi variables. The costw( fi)
of spilling a variablefi is then chosen large enough so that nofi variable will ever be
spilled in an optimal solution, and one more register is provided for these variables in
the reduction. �

Finally, only one problem remains. What about the spill everywhere problem with
holes whenh = 1 in its unweighted version? We did not came up with arguments to-
ward the polynomial or NP-completeness direction, so this is still an open problem.
This problem is nevertheless even farther from architectural realities than previous
problems—one should have an architecture that can read or write only one register
at a timeand a mechanism such that no matter how many times you reload a value,
it still costs the same (to getw = 1). We thought that there is already plenty of clues
that the spilling problem is a di� cult one, even underSSA or for basic blocks, in its

11� = jEj + 1 would be enough but would complicate the proof.
12We can safely suppose there is no isolated node inG, otherwise, such nodes can always be in a stable

set, hence they can be removed fromG andK decreased by their number.
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Figure 4.6: Di� erent con�gurations for the reduction withh = 1: (a) onlyu is spilled,
(b) bothu andv are spilled, (c) none of them are spilled. Non-spilled variables are in
bold andR = jVj � K + 1 registers.
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simpliest “spill everywhere” version. So, answering this last problem would probably
not help in the design of spilling heuristics.

4.4 Conclusion

The recent result that, under theSSA form, the interference graph of a program is
chordal opened promising directions for the design of register allocation heuristics, by
having an exact test to decide whenever spilling is necessary, and a polynomial algo-
rithm to assign registers to variables when no spilling is necessary anymore. Studying
the complexity of the spill “everywhere” problem—where variables are spilled on their
entire live-range—was important in this context. Even if it is a restriction of the more
general load-store optimization problem, the “everywhere” simpli�cation is used by
many register allocators (e.g. Iterated Register Coalescing (IRC)), and might either give
clues for the load-store optimization problem, or work as an oracle where the spill
everywhere approximation is su� cient, inJIT compilation for instance.

Our results can provide insights for the design of aggressive register allocators that
trade compile time for provably “optimal” results. But, unfortunately, the main impli-
cation of our work is thatSSA does not simplify the spill problem like it does for the
assignment (coloring) problem. Our study considers di� erent singular variants of the
spill everywhere problem:

1. We distinguish the problem without or with holes depending on whether use
operands of instructions can reside in memory slots or not. Live-ranges are then
contiguous or with holes, which leaves chads when spilled.

2. For the variant with chads, we study the in�uence of the number of simultane-
ous chads—maximum number of use operands of an instruction and maximum
number of de�nition operands of an instruction.

3. We distinguish the case of a basic block (linear sequence) and of a generalSSA

program (tree).

4. Our model uses a cost function for spilling a variable. We distinguish whether
this cost function is uniform (unweighted) or arbitrary (weighted).

5. Finally, in addition to the general case, we consider the singular case of spilling
with few registers and the case of an incremental spilling that would lower the
register pressure one by one.

The classical furthest-�rst greedy algorithm is optimal only for the unweighted version
without holes on a basic block. The weighted version can be solved in polynomial
time, but unfortunately only for a basic block and not for a generalSSA program. The
positive result of our study for architectures with few registers is that the spill every-
where problem with a bounded number of registers is polynomial even with holes. Of
course, the complexity is exponential in the number of registers, but for architectures
like X86, it points that algorithms based on dynamic programming might be considered
in an aggressive compilation context. In particular, it may be a possible alternative to
commercial solvers required byILP formulations of the same problem, even for mod-
els more general than spill everywhere as the one used by Appel and George [2001].
However,ILP is often faster than dynamic programming.
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4.4. CONCLUSION

For architectures with a large number of registers, we studied thea priori symmet-
ric problem where one needs to decrease the register pressure by a constant number;
our hope was to design a heuristic that would incrementally lower one by one the reg-
ister pressure to meet the number of registers. Unfortunately, it is NP-complete to
decrement the register pressure even by one.

Our study also shows that the complexity also comes from the presence of chads.
The problem of spill everywhere with chads is NP-complete even on a basic block. On
the other hand, the incremental spilling problem is still polynomial on a basic block
provided that the number of simultaneous chads is bounded. Fortunately, this number
is very low on most architectures.

To conclude, our results for the spill problem do not match our expectations. While
we hoped to �nd thatSSA simpli�es the problem, we were in fact confronted mainly
by NP-complete problems. What good might we take out of this theoretical study?
Although we did not dig up any useful or stunning concept, we hope that our proofs
correctly point to where the complexity really is. For instance, we created trees with an
enormous amount of leaves in Theorem 4.6, or used many times the same variables in
instructions in Theorem 4.10. Maybe these clues can be exploited to improve the most
promising spilling heuristics, for instance a Belady-like algorithm as do Hack [2007].

More importantly, the discovery that the interference graph of a program underSSA

form is chordal led to the writing of many articles with sometimes misleading titles.
For instance, Hack and Goos [2006] published “Optimal register allocation forSSA-
form programs in polynomial time,” and Brisk et al. [2005] “Polynomial time graph
coloring register allocation.” Our study does not invalidate these articles; it is true
that SSA simpli�es the problem of coloring the interference graph to the point where
an optimal coloring is found in polynomial time. We will also see in Chapter 5 that
some coalescing problems are simpler on chordal graphs. However, the titles of these
articles ignore the simple fact that coloring isnot allocation, and our study shows that
we must not forget where the complexity of register allocation really comes from: the
spilling problem. In this context, it was mandatory to do a thorough study of the spilling
problem underSSA form to see if that would simplify the problem. Unfortunately, it
does not.
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Do not mistake coalescing for koalescing (main activity of koalas).

5
On the complexity of register coalescing

The complexity of register allocation for a �xed schedule comes from two main op-
timizations,spilling andcoalescing, as we explained in Chapter 3. Spilling decides
which variables should be stored in memory so as to make register assignment possible
while minimizing the cost of stores and loads. Its complexity for programs under Static
Single Assignment (SSA) form was studied in Chapter 4. Register coalescing reduces
register-to-register moves by allocating preferably two variables involved in a move in-
struction to the same register. This chapter and the next one are devoted to the study of
coalescing problems. In this chapter, we study the complexity of coalescing problems,
while, in Chapter 6, we will propose practical coalescing schemes and compare them
to existing strategies.

We presented in Chapter 2, Section 2.2.4, the Iterated Register Coalescing (IRC)
scheme introduced by George and Appel [1996]. This graph-based register alloca-
tion scheme is now very popular due to its clean and reproducible design. But, with the
increasing need for optimizing memory transfers, either for performance or power con-
sumption, it is important today to �nd heuristics that spill less, possibly at the price of
additional register-to-register moves. Several variants have been proposed to avoid, as
much as possible, these additional moves.Aggressive coalescing, or “reckless coalesc-
ing,” was in fact already present in the �rst algorithm of Chaitin et al. [1981]. It made
more sense at this time because the machine they were working with (an IBM 801) had
a zero-wait-state memory, so moves and spill instructions had equal cost. Aggressive
coalescing e� ectively removed many copies but was abandoned in later improvements
because it produced too many spills. It then reappeared later as the �rst phase of the
optimistic coalescingof Park and Moon [1998, 2004]. Their idea is to perform �rst
an aggressive coalescing, optimistically, i.e., hoping not to generate too many nodes
hard to color. Then, during the “select” (coloring) phase, instead of spilling right away
nodes that cannot be colored, they split them back into their initial components, i.e.,
de-coalescethem.

New coalescing problems have also appeared due to recent developments onSSA

form. Today, most compilers go through this intermediate code representation that
makes many code optimizations simpler. UnderSSA, each variable is de�ned textu-
ally only once, but the� -functions used to emulate the transfer of values at join points
of the control-�ow graph (CFG) are not machine code. When going back to ordinary
code, an out-of-SSA phase is necessary, which typically introduces many register-to-
register moves. Several techniques are available to go out ofSSA [Cytron et al., 1991;
Briggs et al., 1998; Leung and George, 1999a; Sreedhar et al., 1999; Budimlić et al.,
2002; Rastello et al., 2004], some with the objective of reducing the number of moves.
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CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

This problem is a form of aggressive coalescing as no register constraint is taken into
account in this phase, which is donebeforeregister allocation. With an adequate inter-
pretation of� -functions, this is an aggressive coalescing problem performed on special
graphs as interference graphs ofSSAprograms are chordal.

Our experiments with classical out-of-SSAapproaches revealed many bad situations
where a too aggressive coalescing can increase the number of spills in the subsequent
register allocation phase. Some splitting is then needed to undo the coalescing, but this
is di� cult to control. Also, a standard conservative coalescing approach is sometimes
not enough to coalesce most copies that arise in the out-of-SSA phase, in particular
copies corresponding to permutations. Thus, the interplay between register allocation,
out-of-SSAapproaches, and register coalescing needs to be clari�ed.

Finally, the fact that the interference graph of a program underSSA is chordal, and
therefore easy to color, has also led to the developments of new heuristics for register
allocation, based on two separate phases, one for spilling and one for coalescing, which
is what we advocate in this thesis. The �rst phase of spilling decides which values are
spilled and where, so as to get a code with Maxlive� R, the number of registers.
The second phase of coloring, the register assignment, maps variables to registers with
no additional spill, although we have seen in Chapter 3 that this is more subtle than
this quick explanation. When possible, it also removes copy instructions—also called
“shu� e code” by Lueh et al. [2000]—thanks to coalescing. Other people advocate this
approach, for instance Appel and George [2001] and, more recently, Brisk et al. [2005]
and Hack et al. [2006]. The coalescing phase of such an approach seemsa priori
simpler than for Chaitin-like register allocators because we already know how to color
the initial graph withR colors. One just wants to coalesce as many moves as possible
so that the graph remainsR-colorable or, more precisely, easy to color withR colors.
However, the fact that the �rst phase of spilling can be much more aggressive makes
the coalescing more di� cult. After spilling just the necessary variables, the code may
have a very high register pressure, possibly equal to Maxlive at many program points,
and many moves corresponding to permutations ofR colors. To coalesce such moves,
standard conservative coalescing approaches are not e� ective enough. This led Appel
and George [2000] to de�ne a “coalescing challenge.”

We believe that these new developments and variants of the coalescing problem
motivate the need for a better study of its complexity, which has not been addressed
in details so far. Indeed, since the NP-completeness proof of Chaitin et al. [1981], the
impression was that all the register allocation process was NP-complete, hence nobody
was actually interested in studying the NP-completeness of its subproblems. In this
chapter, we distinguish the following di� erent coalescing optimizations:

a) aggressive coalescingremoves as many copies as possible, regardless of the col-
orability of the resulting interference graph;

b) conservative coalescingremoves as many copies as possible while keeping the col-
orability of the graph;

c) incremental conservative coalescingremoves one particular copy while keeping the
colorability of the graph;

d) optimistic coalescingcoalesces all copies aggressively, then gives up on as few
copies as possible so that the graph becomes colorable again.

We (almost) completely classify the complexity of these problems, considering
also the structure of the interference graph: arbitrary, chordal, or greedy-k-colorable
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(see de�nitions in Chapter 2, Section 2.2.2). We view this study as a necessary step
for designing new coalescing strategies, which would better exploit the structure of the
graphs.

5.1 De�nitions & properties for NP-completeness

We introduced the notion of coalescing in Chapter 2, Section 2.2.3, as a way to help
the coloring scheme of Chaitin et al. In practice the main advantage of coalescing is to
remove unnecessary copies in the program, by merging the corresponding nodes. This
de�nes a notion of “preference” between edges, in which two variables are linked by an
a� nity if assigning the same color to both of them would save some copy instructions
during the execution of the program (see De�nition 2.12). A� nities can be weighted,
in which case the weight represents the gain obtained by coalescing the two variables.
For our purpose, we need to de�ne properly the term “coalescing.”

De�nition 5.1. A coalescingof G = (V; E) with a� nitiesA is a functionf such that
f (u) , f (v) whenever (u; v) 2 E; an a� nity hu; vi 2 A is coalescedif f (u) = f (v).

The function f in this de�nition looks very much like thecol function of De�ni-
tion 2.14, i.e., a coloring of the interference graph. Indeed, both share the property
that they must assign a di� erent value—i.e., color—to adjacent nodes in the graph.
The di� erences are that the “goal” ofcol is to take at mostk di� erent colors to be a
k-coloring, while the “goal” off is to give the same value to a� nity neighbors as much
as possible. In particular, anyk-coloring de�nes a coalescing—all nodes with the same
color are coalesced together—but the converse is false since a coalescing does not have
any constraint on the number of colors.

De�nition 5.2. Thecoalesced graph Gf = (Vf ; E f ) is the graph obtained fromG by
merging all vertices with the same image underf . More formally, if f takesn values,
f de�nes a partition ofV into n subsets (Si)1� i� n whereu andv are in the same subset
if and only if (i� ) f (u) = f (v). The vertices inVf are the subsets (Si)1� i� n and there is
an edge (Si ;S j) 2 E f i� (u; v) 2 E for someu 2 Si andv 2 S j . Sincef is a coloring, it
is guaranteed thatG f has no self-edge (Si ;Si).

In the next sections, we prove the NP-completeness of di� erent coalescing prob-
lems for particularinterference graphs and a� nities. To prove that the corresponding
coalescing problems forprogramsare also NP-complete, we need a way to build, for
each graph and set of a� nities we consider, a program with interferences and move in-
structions that is as hard to coalesce. The following property gives such a construction;
this will allow us to forget about programs in the next sections and deal with graphs
and a� nities only.

Property 5.3 (Graph and program equivalence). Let G be a graph andA a set of
a� nities. There is a program whose interference graph G0 and set of movesA 0 is as
hard to coalesce. Furthermore, if G is chordal, the program can be chosen inSSAform
with dominance property.

Proof. We will construct two programs, one wheneverG is arbitrary and wheneverG is
chordal. For the arbitrary graphG, the construction of Chaitin et al. [1981] can be used
to build a program whose interference graph is as di� cult to color asG (see details in
Chapter 3). Then, for each a� nity hu; vi 2 A , a blockBhu;vi is created, with a move
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Figure 5.1: Chaitin-like reduction with a� nities: for any graph and set of a� nities (a),
there exists a program (b).
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instruction [v  u] and a control-�ow edge from a block whereu is live to a block that
usesv as shown on Figure 5.1.

For the case whenG = (V; E) is chordal (see Figure 5.2a), there is a set of subtrees
(tv)v2V of a treeT whose intersection graph isG [Golumbic, 1980, Thm. 4.8]. One can
also assume that only one subtree starts at a time. De�ne an orientation onT to get
a directed tree and letr be its root (see Figure 5.2c). By a depth-�rst traversal ofT
from r, a strictSSAprogram is deduced (see Figure 5.2d).T is viewed as theCFGof the
program1 and the start (resp. the end) of a subtreeTv is viewed as a de�nition (resp. a
use) of a variablev. The live-ranges of the variables are exactly the subtrees and their
intersection graph isG.
It remains to de�ne some move or� instructions corresponding to the a� nities. For
each a� nity hu; vi , de�ne a new basic blockBhu;vi and two control-�ow edges lead-
ing to Bhu;vi , one from the basic block whereu is de�ned, one from the basic block
wherev is de�ned. Since these new edges should not extend the live-ranges ofu and
v inside their de�nition basic block, it is safer to split the basic blocks just after the
de�nition of u andv so that the new control-�ow edges are not added at the end of
the blocks. Finally,Bhu;vi contains the� -function au;v = � (u; v) whereau;v is a new
variable. Figure 5.2d show an example of such anSSA code. The complexity of coa-
lescing these� -functions is the same as coalescing the a� nities A with the graphG
(see Figure 5.2b). Indeed, for any a� nity hu; vi , one can always coalesce one of the two
a� nitieshu;au;vi or hv;au;vi de�ned by the� -function. Then, coalescing the remaining
a� nities is exactly coalescing the a� nitiesA in the graphG. �

In the next sections, we show several NP-completeness results, for a �xedk, which
is stronger than assuming thatk is an input of the problem. However, one could wonder
if the problem remains NP-complete for another �xedk0 � k. The following property
(with p = k0 � k) will extend our NP-completeness results fromk to k0.

Property 5.4 (NP-complete problems are not easier with more registers). Let G be a
graph. De�ne G0 by adding to G a clique of p new vertices and edges between each
vertex of the clique and each vertex of G. Then G is k-colorable i� G0 is (k + p)-
colorable, G is chordal i� G0 is chordal, and G is greedy-k-colorable i� G0 is greedy-
(k + p)-colorable.

Proof. The �rst property is obvious: by construction, the additional clique must usep
other colors. For the second property, ifG0 is chordal,G is also chordal as a subgraph
of G0. Conversely, ifG is chordal, consider a cycle ofG0 of length at least 4. If it is
a cycle ofG, it has a chord. Otherwise, it has a vertexv in the clique and two edges
(v;u) and (u;w) with w , v. Sincev is connected to any other vertex inG0, (v;w) is
a chord. For the third property, suppose thatG is greedy-k-colorable, i.e., vertices can
be removed in some order, with degree< k in the remaining graph. InG0, one can
�rst remove the vertices ofG in the same order, as their degree is at most (k � 1 + p).
Then one can remove the vertices of the clique, whose degree is< p, and thusG0 is
greedy-(p + k)-colorable. Finally, ifG is not greedy-k-colorable, it has a subgraphH
such that all vertices have degree (inH) at leastk. Adding the cliqueC of sizep to H
shows thatG0 is not greedy-(p + k)-colorable, because, inH, all vertices have degree
� k + p and inC, they have degree� p � 1 + jHj � p � 1 + k + 1. �

1In our construction, the dominance tree follows theCFG but this is not the case for an arbitrarySSA
program.
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Figure 5.2: Chordal reduction with a� nities: for any chordal graph and set of a� nities
there exists anSSAprogram.
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Figure 5.3: Aggressive coalescing: reduction fromMultiway Cut.

5.2 Complexity of aggressive coalescing

The goal of theaggressive coalescingis to remove as many move instructions as pos-
sible, with no constraint on the number of registers. Only interferences can prevent
coalescing. In Chaitin et al.'s original algorithm, coalescing was done aggressively be-
fore coloring. Also, the �rst phase of “optimistic” algorithms, like the one of Park and
Moon [2004], is an aggressive phase. The problem can be formulated as follows:

Problem: Aggressive coalescing
Instance.GraphG = (V; E), a� nitiesA � V2, integerK.
Question. Is there a coalescing ofG, i.e., a functionf with f (u) , f (v) whenever
(u; v) 2 E, such that at mostK a� nities hu; vi 2 A are not coalesced, i.e., satisfy
f (u) , f (v)?

Our reduction is fromMultiway Cut [Dahlhaus et al., 1992]: given a graphG =
(V; E), a subsetS = fs1; : : : ;skgof V with k speci�ed vertices orterminals, an integer
K, the problem is to decide if one can remove at mostK edges fromE so that each
terminal is in a di� erent connected component. In the generalMultiway Cut problem,
edges are weighted but it is NP-complete even for the previous version where all edges
have equal weight, and even with only three terminals (k = 3).2

Theorem 5.5. The aggressive coalescing problem is NP-complete even if there are
only3 interferences.

Proof. Our reduction is as follows. LetH = (V; E), S, K, be an instance ofMultiway
Cut. Let us construct the interference graphG = (V;S � S), i.e., thek terminals
(nodes inS) form a clique, and all other nodes have degree zero, i.e., allv 2 V nS are
isolated vertices. For each original edge (u; v) 2 E, let us create an a� nity hu; vi in our
interference graph, i.e.,A = E. Then, any maximal coalescing de�nes ank-partition
of the nodes. Indeed, any node not inS can be coalesced with one of the terminals,
but no two terminals can be coalesced since they are neighbors. Moreover, for each
a� nity hu; vi , if u andv are coalesced to di� erent terminals, the a� nity is constrained
and cannot be coalesced. So the set of a� nities not coalesced de�nes ak-partition ofG,
and the corresponding set of edges inE de�nes ak-cut of H. The converse is also true.
Figure 5.3 gives an example of this reduction. To conclude, there is a coalescing ofG
in which at mostK a� nities are not coalesced i� at mostK edges must be removed
from E to disconnect the terminals inH. �

2UnlessG is planar, but this is not of our concern here.
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Going out ofSSA while minimizing the number of moves is a form of aggressive
coalescing. Other proofs related to aggressive coalescing and out-of-SSAtranslation are
available in Rastello et al. [2005]; Hack et al. [2005]. From a complexity point of view,
Theorem 5.5 shows that aggressive coalescing is di� cult even if the interference graph
is very simple, in particular even if it is chordal or greedy-k-colorable. These properties
do not make the problem simpler, as, as shown by our reduction, the complexity comes
from thestructure of the a� nitiesand not the one of the interferences. From a practical
point of view, aggressive coalescing can degrade register allocation. Indeed, coalescing
means fusing live-ranges and merging, in the interference graphG, the corresponding
vertices. After these merges, the coalesced graphG f may not bek-colorable. In this
case, three alternatives are available:

ˆ One can remove some vertices from the graph and spill the corresponding vari-
ables; this is the strategy proposed by Chaitin [1982] in its register allocator;

ˆ One can give up on some coalesced moves and de-coalesce them so that the
graph gets greedy-k-colorable again; this is the strategy of optimistic coalescing
[Park and Moon, 1998, 2004] that we analyze in Section 5.4;

ˆ One can prefer to not use aggressive coalescing but to coalesce moves only if the
graph is proved to remain greedy-k-colorable; this is conservative coalescing,
introduced by Briggs [1992], a technique we analyze in Section 5.3.

5.3 Complexity of conservative coalescing

Theconservative coalescingproblem, for ak-colorable graph, is to coalesce as many
moves as possible so that the interference graph remainsk-colorable after the coalesc-
ing. Another possible formulation by Appel and George [2001] is to ask directly for a
coalescingf that is ak-coloring ofG. We prefer the �rst formulation as given below:
it is closer in spirit to what heuristics do and it allows us to discuss more precisely
the complexity of the problem in terms of the structure ofG andG f . Indeed, with no
constraints onG andG f , the problem is obviously NP-complete: forA = ; andK = 0,
this is nothing butGraph k-Colorability [Garey and Johnson, 1979, Problem GT4].
However, the problem may seem simpler in practice, when working on some graphG
with a particular structure or colorability, or if one is allowed to merge only vertices
connected by an a� nity, or if one requires the graphG f to be not onlyk-colorable, but
also greedy-k-colorable. We will study in details these di� erent cases, as they might
give some leads to polynomial algorithms or heuristics likely to work.

Problem: Conservative coalescing
Instance.GraphG = (V; E), a� nitiesA , integersK andk.
Question. Is there a coalescingf of G such that the coalesced graphG f is k-
colorable and at mostK a� nities are not coalesced?

Theorem 5.6 addresses the complexity of conservative coalescing. Although Appel
and George [2001] already proposed a reduction fromGraph k-Colorability, they did
not give the proof. Here, we will give this reduction to show how to extend their remark
into a more accurate complexity result. For a quicker way to show Theorem 5.6 without
the accuracy onG andG f , it is possible to use the proof of Theorem 5.5, since the graph
used in this proof is a triangle plus some isolated vertices. It keeps such a structure after
any coalescing, thus it is chordal and greedy-3-colorable. Because we wanted a better
result in terms ofG andG f , we provide a longer proof.
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Figure 5.4: Reduction for Thm. 5.6 (�rst part).

Theorem 5.6. Conservative coalescing is NP-complete, even for k= 3, even if Gf is
required to be also chordal or greedy-3-colorable, even if Gf needs to be obtained by
merging only vertices connected by a� nities, and even if G is greedy-2-colorable.

Proof. As noticed by Appel and George [2001], a reduction fromGraph k-Colorability
[Garey and Johnson, 1979, Problem GT4] shows that, even forK = 0, the conservative
coalescing problem is NP-complete. Indeed, letH = (V; E) be an instance ofGraph
k-Colorability. De�ne an instance (G; A; K) of conservative coalescing as follows. The
vertices of the interference graphG are the vertices ofH plus some new vertices, two
verticesxe andye for each edge (u; v) 2 E. The interferences inG are the pairs (xe; ye)
and the a� nities inA the pairshu; xei andhv; yei (see Figure 5.4). All moves can be
aggressively coalesced and the coalesced graphG f is thusH. In other words, we just
de�ned a positive instance of conservative coalescing forK = 0 i� H is k-colorable.
Furthermore, the initial graphG is greedy-2-colorable.

Notice that, if there is a coalescingf with at mostK a� nities not coalesced and
such thatG f is k-colorable, there exists also a coalescingf 0 for which G f 0 is a k0-
clique, with k0 � k, thus a graph chordal and greedy-k-colorable. Indeed, to getf 0

from f , merge the vertices ofG f with the same color to getk vertices, then keep
merging vertices not connected by an edge to get ak0-clique withk0 � k. This proves
that the problem is still NP-complete if we askG f to be not justk-colorable, but also
greedy-k-colorable ork-chordal, two properties that ak-clique has. However, it is not
NP-complete for a �xedK (number of non coalesced a� nities) because, then, there is
a polynomial number of solutions and the problem consists in repeatedly checking if
the graph of a solutionk-chordal or greedy-k-colorable, which is polynomial.

Previously, to obtain thek0-clique, we may have merged vertices not connected by
a� nities. To ensure thatG f can be obtained by merging only vertices connected by
a� nities, the proof must be modi�ed as follows. Ak-clique is added toG along with
many a� nities: one between each vertex of the clique and each vertex inV (but not with
the xe andye nodes). The instance of conservative coalescing built fromH = (V; E)
is now an interference graph withjVj + 2jEj + k vertices,jEj + k(k � 1)=2 edges, and
2jEj+ kjVj a� nities.k � j Vj—otherwiseH would always be triviallyk-colorable—thus
the reduction is polynomial. For each of the vertices inV, at most one a� nity among
thek towards the clique can be merged. So,H is k-colorable i� there is a coalescingf
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with at most (actually, exactly) (k � 1)jVj a� nities not coalesced. Furthermore, in
this case,G f is a k-clique and can be obtained by merging only vertices connected
by a� nities. Therefore, the problem remains NP-complete even if one asksG f to be
greedy-k-colorable or chordal and one asksG f to be obtained by merging only vertices
connected by a� nities.

The only remaining detail is that the interference graphG we used in the last re-
duction is not greedy-2-colorable anymore because it contains ak-clique. To complete
the proof with all restrictions, each edge (u; v) of the clique is replaced byp edges
(ui ; v) andp a� nitieshui ; ui , where (ui)1� i� p are new vertices andp > jVj. As before,
if H is k-colorable, there is a coalescing with at most (k � 1)jVj a� nities not coalesced.
Conversely, consider such a coalescingf . Suppose that two verticesu andv from the
previous clique are merged byf , i.e., have the same color, then none of the correspond-
ing hui ; ui can be coalesced byf . Now, de-coalesceu from v, coalesce allp a� nities
hui ; ui , and give up coalescing the other a� nities associated withu: these are the ones
with nodes ofV, thus at mostjVj < p. By doing this for all pairs (u; v) that are merged
in f , one gets astrictly better coalescing for which all vertices of the previous clique
have a di� erent color. Thus it has a cost greater or equal to (k � 1)jVj, which is not
possible because this the cost off . Thus, in f , all a� nitieshui ; ui are merged as well
as all a� nitieshxe; yei andH is k-colorable. �

In practice, conservative coalescing heuristics do not consider all a� nities at the
same time, instead, they consider them one by one, according to some priority—for
instance, a higher priority is given to a� nities corresponding to copies in nested loops.
We call this strategyincremental conservative coalescing. Two incremental conserva-
tive tests exist, by Briggs et al. [1994] and George and Appel [1996], called respectively
Briggs's and George's rules by Appel [1998].

Briggs Merging u and v is conservative if the resulting vertex has at most (k � 1)
neighbors of degree at leastk.

George Mergingu andv is conservative if all neighbors ofu with degree at leastk are
also neighbors ofv.

These tests guarantee that the greedy-k-colorability property of the graph is maintained.
Indeed, consider the elimination process that de�nes the greedy-k-colorability, i.e.,
the simpli�cation scheme of Chaitin et al. [1981], described in Chapter 2 by Func-
tion Is_kGreedy , page 21. We recall that the principle is to remove nodes with< k
neighbors from the graph.

A vertex merged by Briggs's test can always be removed from the graph once its
neighbors of degree< k are removed, thus such a coalescing is always safe. The
situation is slightly di� erent for George's test: once the neighbors of degree< k are
removed, one ends up with a subgraph of the original graph, thus not harder to color.
But if v cannot be removed from the original graph, the same is true for the merged
vertex and the cost of spilling the two merged live-ranges is possibly larger. Thus, if
George's test is used in a Chaitin-like allocator where spilling and coalescing are done
in the same framework, the interaction with spilling is unclear. This is the reason why
George's rule is used by George and Appel [1996] to merge a vertexu with v onlyif v
is aprecoloredvertex (machine register), since these are never spilled.3

3To ensure this, in the original simpli�cation scheme, they are not allowed to be simpli�ed from the
graph, and the algorithm stops whenever there remains only thisk-clique.
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u1 u2 u3 u4

v1 v2 v3 v4

(a)

u2 u3 u4

v2 v3 v4

u1v1

(b)

Figure 5.5: Local tests are not enough for coalescing: (a) permutation of size 4; (b)
coalescinghu1; v1i increases the degree to 6.

We point out however that, if spilling is done �rst, as done by Appel and George
[2001] or Hack et al. [2006] for instance, to get a greedy-k-colorable interference graph,
no spill will be done, hence George's rule can be used foranytwo vertices, resulting in
more coalesced moves. The same applies for the last phase of Chaitin-like approaches,
i.e., when no spill is introduced anymore.4 We will see in Chapter 6 experiments that
show this is indeed useful in practice.

When the register pressure is high, such local tests are not powerful enough, in
particular if trying to coalesce parallel copies when Maxlive is close to the number of
registers, as the experiments by Appel and George [2001] show. The problem is that the
test is local and, even worse, it is done before the removal of “move-related” vertices
of small degree from the graph. Figure 5.5a shows a permutation of 4 values. Assume
k = 6. If a� nities are coalesced one at a time and a local rule is used, the �rst merged
vertex would become of degree 6 (Figure 5.5b); if its neighbors also have degree 6—
due to other vertices not shown and not removed yet—a local rule will decide to not
coalesce it.

Another deeper reason is due to the incremental nature of this form of coalescing.
If G is a greedy-k-colorable graph and ifS is a set of a� nities that can be coalesced
simultaneously to get a greedy-k-colorable graph, it may happen that coalescing any
a� nity in S leads to a graph that is not greedy-k-colorable. This is illustrated in Fig-
ure 5.6. The graph remains greedy-k-colorable if the two a� nitiesha;bi andha; ci are
coalesced, but not if only one is coalesced. To get a sequence of coalescing that is con-
servative at each step, one would need to consider a� nities “obtained by transitivity”
such as the pairhb; ci in Figure 5.6. This example shows that,by essence, a coalescing
strategy that coalesces only one a� nity at a time, conservatively,cannot always reach
the optimal conservative coalescing.

One can try to improve these local conservative tests. As mentioned by George and
Appel [1996], George's rule can be extended by considering that only the neighbors
of u with at most (k � 1) neighbors of degree� k need to be neighbors ofv, but they
state that “it would be more expensive to implement” hence did not use it. More gen-
erally, one can simply coalesce the move aggressively—i.e., merge the corresponding
vertices if interferences allow it—and check, in linear time, whether the resulting graph
is greedy-k-colorable or not. This is useful to get a much more e� cient coalescing, as
shown in Chapter 6. The same is true for a given set of moves. One can try to merge

4Although one does not know it is the last phase until the end of the phase. To exploit this, the last phase
could be done twice.
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ab c
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(b)

ab c
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Figure 5.6: “Diamond” counter example for incremental coalescing: (a) remains
greedy-3-colorable if bothha;bi andha; ci are coalesced (b), but not just one (c).

all corresponding vertices and check if the graph is greedy-k-colorable. This lead to
the idea of “incremental” coalescing, where one would like to know, for a given subset
of a� nities (possibly only one), if it is possible to coalesce all of them while staying
k-colorable.

For instance, ifG is k-colorable with ak-coloring f such thatf (x) = f (y), then there
is of course a set of pairs of vertices, including the pair (x; y), that, once merged, lead
to a greedy-k-colorable coalesced graph: simply merge all vertices with same color to
get ak-clique. But, in general, one does not want to merge any two vertices, but to
give more priority to vertices linked by a� nities. In that case, which vertices should
be merged? The dumb heuristic that coalesces all nodes colored equally does not an-
swer this problem, neither do Briggs's and George's rules. This raises the question
of the complexity of incremental conservative coalescing, which is the conservative
coalescing problem for asinglea� nity.

Problem: Incremental conservative coalescing
Instance.GraphG = (V; E), one given a� nity a = hx; yi , an integerk.
Question. Cana be coalesced to get ak-colorable graph, i.e., is there ak-coloring
f of G such thatf (x) = f (y)?

Theorem 5.7 shows that this problem is NP-complete ifG can be anyk-colorable
graph, i.e., knowing thatG is k-colorable does not help to decide if it remainsk-
colorable after a single coalescing! However, as Theorem 5.8 states, the problem
is polynomial if G is k-chordal. The complexity of the practical intermediate case,
whenG is greedy-k-colorable, would be of most interest, but is however still open.

Theorem 5.7. Incremental conservative coalescing is NP-complete if G is an arbitrary
k-colorable graph, even for k= 3.

Proof. We use a reduction similar to the proof ofGraph 3-colorability, i.e., with a
reduction from3SAT [Garey and Johnson, 1979, Problem LO1]. However, here, we
will make a small detour through 4SAT. First, we show how to build, from an instance
of 4SAT, a graphG that is 3-colorable i� there is an truth assignment for the 4SAT
formula. Consider an instance of 4SAT, i.e., a setU of n variablesx1, . . . , xn, and a
setC of m clausesc1, . . . , cm, each with 4 literalsyi;1, . . . , yi;4. Eachyi; j is a xk or
its negation. A graphG = (V; E) is built as follows. It has three verticesT for true,
F for false, and a third one,R, to form a triangle. For each variablexi 2 U, there
are two vertices, denotedxi andxi , which form a triangle withR. With 3 colors, this
will force xi and xi to have the colors ofT andF, or the converse. For each clause
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Figure 5.7: Reduction of incremental coalescing to 4-SAT.

ci 2 C, there are four verticesai; j , two verticesbi; j , and two verticesci; j , connected as
depicted in Figure 5.7. As for the original proof of graphk-coloring [Cormen et al.,
1989, Page 962], it is easy to see thatG is 3-colorable i� there is a truth assignment for
the clauses. Indeed, ifG is 3-colorable, then the four literalsyi; j cannot be all colored
asF, otherwise the twobi; j must be colored asF, and one of the twoci; j cannot be
colored. Thus interpreting the colors of eachxi gives a truth assignment. Conversely,
if there is a truth assignment, color eachxi asT i� it is true in the 4SAT formula. Then,
colorbi;1 asT (resp.F) if yi;1 or yi;2 is true (resp. both are false), the same forbi;2. The
rest of the 3-coloring follows.

Now consider an instance (U;C) of 3SAT. Add a new variablex0 and de�ne an
instance (U0;C0) of 4SAT, whereU0 = U [ f x0gand each clausec0

i 2 C0 is de�ned from
ci 2 C, by c0

i = yi;1 _ yi;2 _ yi;3 _ x0 if ci = yi;1 _ yi;2 _ yi;3. Notice that there is a truth
assignment forC0 by simply settingx0 to true. Moreover, there is a truth assignment
for C i� there is one forC0 for which x0 is false. Finally, de�ne a graphG from C0

as before and consider the a� nity hx0; Fi . From the previous study,G is 3-colorable,
by coloringx0 asT. Furthermore, there is a 3-coloring ofG such that the verticesx0

andF have the same color—i.e., are coalesced—i� there is truth assignment forC0 for
which x0 is false. �

This theorem is not encouraging, as it proves we cannot guarantee the optimality of
a single step of an incremental heuristic which coalesces a� nities one by one. Hope-
fully, there follows a less depressing result whenever the initial graphG is chordal.

Theorem 5.8. Incremental conservative coalescing can be solved in polynomial time
if G is chordal.

Proof. Let G = (V; E) be a chordal graph andhx; yi be the a� nity to coalesce. A
fundamental property [Golumbic, 1980, Thm. 4.8] is thatG can be represented as the
intersection graph of a family of subtrees (Tv)v2V of a treeT. We use the word nodes
for the vertices ofT to distinguish them from the vertices ofG. The nodes ofT are the
maximal cliques ofG (for inclusion), each vertexv 2 V corresponds to a subtreeTv,
and (u; v) 2 E i� Tu andTv intersect. A chordal graph with the tree representation can
be easily colored with anyk � ! (G) colors, starting from any noden of T. Orient the
treeT to get a directed tree with rootn and color the subtrees that containn. Then, go

93



CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

Iy
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(a)

Iy
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Figure 5.8: Incremental coalescing for chordal graphs, using covering by intervals: (a)
Ix andIy cannot have the same color; (b) they can.

down the branches of the tree and, at each new node, color the subtrees that start at this
node with the available colors. This coloring is always possible because, at each node,
at most! (G) subtrees intersect. Furthermore, there is no cycle inT so no coloring
decision can lead to a con�ict.

Now the question is: Is it possible to colorG with k colors so thatx andy have
the same color? This question can be answered in polynomial time as follows. We
assume thatTx andTy do not intersect andk � ! (G), otherwise the answer is trivially
“no.” Let P be the shortest path onT betweenTx andTy. It starts at a nodenx of Tx,
and ends at a nodeny of Ty, and none of the intermediate nodes ofP are inTx or Ty.
The intersection of the subtrees (Tv)v2V with P areintervals(Iv)v2V. We add new short
“dummy” intervals, containing a single node, so that all nodes ofP are contained in
exactly! (G) intervals. We claim thatTx andTy can have the same color i� there is
a set of disjoint intervals, includingIx and Iy, that covers all nodes inP. Indeed, if
G has ak-coloring such thatx andy have the same color, then the intervals with the
same color thanx andy, in addition to some dummy intervals, provide such a covering.
Conversely, if such intervals exist, one can merge all the subtrees with the same color
asx andy, including the dummy intervals, to get the representation of a new chordal
graphG0 with ! (G0) = ! (G) � k; it can thus be colored withk colors and this coloring
corresponds inG to ak-coloring wherex andy have the same color.

It remains to show how to �nd such a set of intervals in polynomial time. This can
be done as follows: represent the intervals horizontally on! (G) lines, all full because
of the dummy intervals added. There is a cover ofP with disjoint intervals, including
Ix andIy, i� there is a path from the line ofIx to the line ofIy, following intervals and
possibly changing line only from the end of an interval to the beginning of another (i.e.,
contiguous intervals). This can be checked inO(V! (G)) = O(V2) by a simple marking
process from left to right. See Figure 5.8 for an illustration where dotted lines represent
the possible changes of line. �

Theorem 5.8 shows that one could design an incremental conservative coalescing
strategy for chordal graphs. IfG is chordal andhx; yi is an a� nity that one absolutely
wants to coalesce because the corresponding move is expensive, it can be decided if this
is possible. But then, if the a� nity is coalesced, the graph may not be chordal anymore.
However, it is still possible to make it chordal by an appropriate merge of vertices as
done in the proof of the theorem. But, these merges will arti�cially create long live-
ranges (subtrees) and increase locally the register pressure if merging with dummy
intervals. This may forbid the coalescing of more important a� nities afterwards. A
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better strategy would be to stay in the class of greedy-k-colorable graphs that is larger
than the class of chordal graphs. Unfortunately, we do not know the complexity of this
problem yet. However we will see in Chapter 6 a heuristic for this problem that uses
the algorithm we just described.

5.4 Complexity of optimistic coalescing

If G is greedy-k-colorable, coalescing as many moves as possible so that the coalesced
graph isk-colorable, or even greedy-k-colorable, is NP-complete as stated by Theo-
rem 5.6. To approximate this problem, incremental conservative coalescing coalesces
moves one by one, so that the graph remains greedy-k-colorable but, of course, with
no guarantee that the chosen moves are the right ones. Even worse, as shown in Sec-
tion 5.3, it may happen that no such conservative sequence exists. Park and Moon
[1998, 2004] proposed a “dual” approach,optimistic coalescing. A �rst phase of ag-
gressive coalescing coalesces moves regardless of thek-colorability of the graph. Then,
a second phase gives up on some moves, i.e., “de-coalesces” them so that the graph be-
comes greedy-k-colorable again.

If most moves can be coalesced, this approach can be more e� ective than using a
too-conservative local test such as the tests of Briggs or George. However, in practice, it
is not clear which moves should be coalesced aggressively in the �rst phase: remember
that, by Theorem 5.5, aggressive coalescing is NP-complete too. Moreover, even if
all moves can be aggressively coalesced, it is not clear which moves should be de-
coalesced in the second phase. The goal of this section is to address the complexity of
this second problem. If one requires the de-coalesced graph to be justk-colorable, it
is of course NP-complete as the �rst part of the proof of Theorem 5.6 shows: after all
a� nities are coalesced, it is hard to decide if the resulting graph isk-colorable or not,
i.e., if some de-coalescing needs to be done. In practice however, the graph should be
more than justk-colorable, it should be easy to color, for example greedy-k-colorable.
So, the interesting instance of optimistic coalescing can be formulated as follows.

Problem: Optimistic coalescing
Instance. GraphG = (V; E) greedy-k-colorable, a� nities A that can all be co-
alesced aggressively (i.e., there is a coalescingf of G such that8hu; vi 2 A ,
f (u) = f (v)), integersk andK.
Question. Is there a de-coalescing ofG f (i.e., a coalescingg of G such that
g(u) = g(v) implies f (u) = f (v)), such that at mostK a� nities hu; vi are not co-
alesced (i.e., satisfyg(u) , g(v)) and such thatGg is greedy-k-colorable?

Theorem 5.9. The optimistic coalescing problem is NP-complete, even for k= 4, and
even if G is chordal.

Proof. The proof is by reduction fromVertex Cover [Garey and Johnson, 1979, Prob-
lem GT1], which is NP-complete even if all vertices have degree at most three [Garey
et al., 1976]. LetH = (V; E) be a graph such that all vertices have degree at most 3.
The instance of optimistic coalescing is built as follows. For each nodev 2 V, there
is a structure as shown on Figure 5.9. Each of the three “hexagons” in this structure is
a widget as shown on the right part of the �gure. The central vertexcv is in fact two
verticescv andc0

v linked by an a� nity. cv belongs to the inner 4-clique, whilec0
v has

neighboursv1, v2 andv3, hence they are both of degree 3. On this structure, each of the
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Figure 5.9: Reduction for optimistic coalescing: vertex structure and ad-hoc widget.c0
v

is connected tov1, v2 andv3 but cv is not.

three vertices (vi)1� i� 3, can be used to connectv to one of its neighbors. Sincev has at
most three neighbors, the whole graphH can be transformed into this format, creating
a new graphG. G is not chordal, but we will show later how to make it chordal. It can
be completely coalesced, formingG f . Our �rst goal is to de-coalesce some of the pairs
hcv; c0

vi so as to get a graphGg that is greedy-4-colorable.
The important point is to understand how the greedy-4-coloring algorithm can “eat”

a structure. It can only works if there is at least one node of degree< 4. All the vertices
of the hexagonal widgets have degree� 4 so the structure cannot be eaten from these.
If the structure forv 2 V has no neighbor, either becausev has no neighbor inH or
because the neighbor structures have already been eaten, then eachvi has degree 3:
they can be eaten, then the hexagonal widgets and the inner structure can be eliminated
too. Finally, notice that the structure cannot be completely eaten from just two of its
branches: even if only one of thevi remains, the inner 4-clique—represented in bold—
cannot be removed. Hence the only remaining possibility is to attack the structure from
cv andc0

v, which is possible only if they are not coalesced. This shows that there are
only two ways for the greedy algorithm to eat the structure corresponding to a vertexv
of H: either after having eaten all the structures corresponding to the neighbors ofv, or
by de-coalescingcv andc0

v and attacking the structure from the heart.
The previous study shows thatG f after de-coalescing is greedy-4-colorable i� , for

each (u; v) 2 E, a de-coalescing occurred in at least one of the structures correspond-
ing to u andv, i.e., i� the set of verticesu such that a de-coalescing occurred in the
corresponding structure inG is a vertex cover forH. Hence, we have proved that
de-coalescing to obtain a greedy-k-colorable graph is NP-complete.

Finally, for what we want to prove,G is not enough. We need to build a greedy-4-
colorable graphG0 (even chordal if possible) and a� nities such that all a� nities can be
aggressively coalesced intoG f and such that these new a� nities will not be chosen to
de-coalesce optimallyG f into a greedy-4-colorable graph. InG, there are three kinds
of chordless cycles: in the hexagonal widgets, inside each structure because there is a
chordless cycle including (c0

v; vi ; v j), and between structures ifH itself is not chordal.
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Figure 5.10: Optimistic reduction: adding a� nities to obtain a chordal graph.

These cycles are broken by introducing some a� nities as shown on Figure 5.10. The
reduction is still correct because it is always better to choose to de-coalesce an a� n-
ity hcv; c0

vi instead of any other a� nity in the structure: this allows to eat the whole
structure with a single de-coalescing.

To conclude,G0 is chordal, greedy-4-colorable, and all a� nities can be aggressively
coalesced. Furthermore, one can de-coalesce at mostK a� nities to get a greedy-4-
colorable graph i� H has a vertex cover of size at mostK. Using Property 5.4, this
proves that optimistic coalescing is NP-complete for any �xedk � 4.

�

5.5 Summary and conclusion

Our complexity study addresses all variants of register coalescing introduced in the lit-
erature: aggressive coalescing, conservative coalescing, incremental conservative co-
alescing, and de-coalescing. Due to the spilling phase and coloring mechanism, the
coalescing phase may have to deal with particular graphs only, for examplek-colorable
after enough spill, greedy-k-colorable for Chaitin-like coloring, ork-chordal forSSA-
like splitting. The goal was to check whether, when restricted to such graphs, coalesc-
ing remains hard or if some polynomial instances exist. Such a complexity study has
never been done before. We now summarize our results, discussing the link between
the di� erent coalescing variants.

The aggressive coalescing problem is to remove as many moves as possible re-
gardless of the colorability of the resulting graph. This optimization, used by Sreedhar
et al. [1999]; Budimlíc et al. [2002], and Rastello et al. [2004], arises for instance when
translating out ofSSA, independently of register allocation, in an earlier phase. It is
also the �rst phase of optimistic coalescing, which �rst coalesces in a non-conservative
way. Rastello et al. [2005] proved that, in the context ofSSA, this problem is NP-
complete when the size of the largest� -function is unbounded. For completeness, we
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re�ned this result: Theorem 5.5 shows that it is NP-complete even if� -functions have a
�xed size—at least two arguments—and the program contains only three interferences.
It thus shows that coalescing is hard, even without any constraints on the number of
registers.

The conservative coalescing problem is to remove as many moves as possible while
keeping the graphk-colorable. While the motivation of aggressive coalescing is to let
the register allocator �nd adequate split points later, by some de-coalescing, the idea
of conservative coalescing is to consider initial split points as good points for coloring.
To prove the NP-completeness of conservative coalescing, we could have used our
reduction for aggressive coalescing (Theorem 5.5): in this particular case, requiring
that the coalesced graph isk-colorable is actually not a constraint since it is a 3-clique.
Another reduction is given by Hack et al. [2005]. We preferred to re�ne the reduction
mentioned by Appel and George [2001], maybe more natural because directly related
to graph coloring. We showed it is NP-complete even if the initial graph is greedy-2-
colorable and one requires the coalesced graph to be chordal or greedy-3-colorable.

The incremental conservative coalescing problem corresponds to a pragmatic ap-
proach to address the conservative coalescing problem. The idea is to incrementally
coalesce variables, one by one, for example choosing the more expensive �rst, while
keeping the graphk-colorable. This approach corresponds to Chaitin-like register al-
location heuristics for which the conservative tests used by Briggs [1992] and George
and Appel [1996] are not exact. Testing if a given coalescing maintains the greedy-k-
colorable (resp.k-chordal) property of the resulting graph is of course polynomial. If
the answer is in the a� rmative, then the process can continue; if not, the natural ques-
tions behind this study are: “is the resulting graph stillk-colorable?” and “would more
coalescing make it greedy-k-colorable (resp.k-chordal) again?” The pessimistic result
given by Theorem 5.7 is that this problem is still NP-complete if the initial graph is
k-colorable. Even coalescing a single move is hard for an arbitrary graph. On the con-
trary, Theorem 5.8 provides a polynomial solution if the initial graph is chordal. The
similar problem for a greedy-k-colorable graph is still open. But the result on chordal
graphs provides openings to the design of new heuristic solutions: from ak-colorable
graph obtained after a single coalescing, we are able to slightly modify the program to
obtain ak-chordal graph again, or a greedy-k-colorable graph. We did derive a heuristic
from this result which we will explain in Chapter 6.

The last problem addressed in this paper, the optimistic coalescing problem, is
about coalescing aggressively, then giving up as few moves as possible so that the re-
sulting graph becomesk-colorable again. This dual approach proposed by Park and
Moon [2004] provides a more e� cient heuristic in practice than the classical conserva-
tive approach, as shown by Appel and George [2001]. However we will see in Chap-
ter 6 that the e� ectiveness of optimistic coalescing over conservative coalescing is not
to be taken for sure, and that more involved conservative strategies can outperform op-
timistic ones. The conservative approach coalesces from a non-coalesced graph as long
as the colorability test is satis�ed whereas the optimistic approach de-coalesces from an
aggressively coalesced graph as long as the colorability test is unsatis�ed. Our initial
intuition was that, if for a given graph, greedy-k-colorable ork-chordal, there exists a
setof coalescings such that the resulting graph has the same property, then there exists
a sequenceof single coalescings such that each intermediate graph has the same prop-
erty. Unfortunately, this intuition is false as illustrated by Figure 5.6 and this could give
good reasons to think that, in practice, an optimistic approach will behave better than a
conservative approach. But our experiments in Chapter 6 show that a good conservative
coalescing provides better results, apparently because the aggressive part of optimistic
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coalescing can make some “bad choices”—good for the aggressive, but bad for the
conservative because hard to undo. Since aggressive coalescing is NP-complete, the
interesting statement for the optimistic coalescing problem is then: given an aggres-
sively coalesced graph, how to de-coalesce a minimum number of moves such that
the resulting graph becomes greedy-k-colorable (resp.k-chordal) again? Theorem 5.9
shows that this problem is NP-complete even fork = 4.

To conclude, our study shows that most variants of the coalescing problem are
NP-complete—which is certainly not a surprise but was never really proven before
formally and in such details—and con�rms the practical importance of chordal and
greedy-colorable graphs. We believe that their properties were maybe not yet com-
pletely exploited for the design of good conservative coalescing heuristics and good
de-coalescing heuristics, so we developed new heuristics based on these properties.
There was indeed space for improvements, which we will present in the next chapter.
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Maier's Law:
If the facts do not conform to the theory, they must be disposed of.
Corollaries:

1. The bigger the theory, the better.

2. The experiment may be considered a success if no more than 50% of the
observed measurements must be discarded to obtain a correspondence with
the theory. 6

Advanced coalescing: improving
the coloring

This chapter is the experimental counterpart of the previous chapter. While Chapter 5
studied the complexity of the coalescing problems, this chapter is devoted to the study of
practical coalescing solutions. As such, we will not re-introduce the whole coalescing
problem again, but will instead focus on the important points from an experimental
point of view.

Coalescing plays an important role during register allocation, since it allows to
diminish the number of register-to-register moves executed by a program. Since the
�rst graph-based register allocator by Chaitin et al. [1981], coalescing has been part
of the register allocation optimizations. Where do the register copies come from in a
program? High-level source codes contain few copy (move) instructions, and a pass of
copy folding under Static Single Assignment (SSA) can easily remove the unnecessary
ones. But many optimizations phases in a compiler insert copies rather than more
aggressively rewriting the code. Since Chaitin et al., the assumption has been that
the moves can be removed relatively easily. For example, Cooper et al. [2001] leave
scads of copies, relying on a Chaitin-Briggs allocator to perform copy coalescing. The
SSA form also introduces virtual “� -functions” at join points of the control-�ow graph
(CFG), which semantically correspond to parallel copy instructions placed in blocks on
the incoming control-�ow edges. When going out ofSSA, these copies must be either
carefully removed [Sreedhar et al., 1999; Rastello et al., 2004], or eliminated by a later
register allocation phase. Copies between registers can also be added to handle, in a
simple way, register constraints or calling conventions (see Chapter 8, Section 8.1.1.2).
A later phase is supposed to remove these additional copies. Our �nal example is live-
range splitting, which is used to improve spilling (see Chapter 2, Section 2.2.3, and the
discussions in Chapter 3).

In the context of register allocation in two phases—which we advocate since Chap-
ter 3—, the �rst “spilling” phase should be free to use as many splits as required
to get the best solution in terms of costs of theload andstore instructions added.
This is only e� ective if the second “coalescing” phase is powerful enough to remove
most of the unnecessary copies. The extreme situation is when live-ranges are split
at eachprogram point so as to formulate the spilling problem as an integer linear
programming (ILP) problem, as proposed by Appel and George [2001]. Loads and
stores are then nicely optimized but many copies are created that need to be removed.
This shows there are many reasons to try to get rid of copy instructions at the assembly-
code level. This is the goal of register coalescing, which does this during register al-
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location and thus is tightly connected to spill optimization and register assignment.
However, we have seen in Chapter 5 that most problem related to coalescing are NP-
complete, except for one particular case (incremental coalescing on a chordal graph),
hence heuristics are used.

As explained in the previous chapter, the initial proposal of Chaitin et al. [1981]
was to coalesce moves, before the simplify phase, in anaggressivefashion, i.e., re-
gardless of the colorability of the resulting graph. The e� ect is that many moves are
indeed deleted but the number of potential and actual spills almost always increases.
Chaitin et al. worked on a machine where loads, stores, and moves had the same cost,
so their approach was justi�ed. Briggs [1992] explored what he called “aggressive live-
range splitting” in his thesis, which he uses before attempting to color the interference
graph, so that the allocator does not spill entire live-ranges. Obviously, he could not
use the same aggressive coalescing as Chaitin et al. since it would cancel the splitting.
So, he introducedconservative coalescing, which consists in coalescing a move only
when one can ensure that, if the initial graph wasR-colorable, the resulting graph is
still R-colorable. In Briggs's test, a move is coalesced only if the resulting node has at
most (R � 1) neighbors with of high degree, i.e.,� R. George and Appel [1996] then
proposed Iterated Register Coalescing (IRC), a fully-conservative approach where con-
servative coalescing is intermixed with the simplify phase and no aggressive coalescing
is performed.1 We described the general mechanism ofIRC in Chapter 2, Section 2.2.4.
As the coalescing test inIRC is fast but not exact (the test can fail even if the move
can be conservatively coalesced), better results are obtained if moves are tested several
times while simplifying nodes. For that, worklists of potentially coalescable moves
are created and updated during the simplify phase. This increases the running time of
the complete register allocator, even if the smart implementation strategies de�ned by
Leung and George [1999b] can reduce this overhead.

IRC is a very popular graph-based register allocator, mainly because it manages to
stay simple in its design while still giving a correct quality of resulting code. However,
in terms of moves optimization, its authors where not satis�ed when they investigate
their ILP based “optimal spill” [Appel and George, 2001]. Indeed, we already told they
needed to perform an “extreme” aggressive splitting, which split variables at every
program point. Faced with this intense need for coalescing, theIRC performed poorly
and Appel and George [2000] launched in August 2000 the “Optimal Coalescing Chal-
lenge,” a database of 474 graphs obtained after a phase of extreme splitting followed
by optimal spilling. The goal was to �nd the best coalescing solutions for all graphs,
or, at least, to come up with better solutions than the ones obtained with theirIRC.

By December 2000, they already obtained satisfying results. They found a heuristic
based on work by Park and Moon [1998, 2004], who had proposed an allocator in
which the coalescing was “optimistic.”Optimistic coalescingrelies on the fact that,
although coalescing can increase the degree of the merged nodes, it can also decrease
the degree of common neighbors, which is a positive e� ect. Thus, it seems better to
perform aggressive coalescing �rst and then to decide, during the select phase, to undo
some coalescings to avoid spilling. In the Park and Moon algorithm, when a coalesced
node is to be spilled, it is split back (de-coalesced) into separate nodes. Some of them
are colored with a common color if possible, the others are either colored at the very
end of the select phase or spilled if no colors are available for them. Appel and George
adapted the optimistic heuristic of Park and Moon because, in their case, spilling was

1But for an optional constant propagation phase underSSA, performed beforehand and not included in
the scheme.
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already decided. Despite its naïve de-coalescing phase, the optimistic coalescing takes
bene�t from the aggressive phase and outperformsIRC.

In this thesis, we advocate that register allocation should be performed in two
phases, following recent work from Appel and George [2001]; Brisk et al. [2005] and
Hack and Goos [2006]: a �rst spilling phase, with live-range splitting, that inserts
loads, stores, and moves so that the resulting interference graph is greedy-R-colorable;
and a second phase that coalesces moves and assigns colors to variables. In this context,
register coalescing is crucial to reduce the cost of moves added blindly by live-range
splitting. Unlike classical graph-based approaches, it is a pure coalescing problem,
with no additional spill: how to coalesce moves in a greedy-R-colorable graph so that
it remainsR-colorable? The same problem arises in the last iteration of Chaitin-like
register allocators, i.e., when no potential spill is needed. This pure coalescing phase
looks the same as in the context of the Coalescing Challenge, for which Appel and
George [2000] adapted the optimistic coalescing of Park and Moon [2004]. But there
are reasons to revisit this problem: First, we believe the results can be improved; Sec-
ond, the live-range splitting of Appel and George is extreme, and the graphs obtained
are very particular: all nodes in the interference graph have degree at most (R� 1), but
for at mostR nodes that represent the machine registers and form anR-clique. Hence,
their approach does not work for general greedy-R-colorable graphs. In this chapter,
our goal is to address the following questions:

ˆ Can we take advantage of the fact that the initial graph is greedy-R-colorable,
i.e., that no spill more spill is needed, to improve coalescing?

ˆ Can we derive more involved conservative tests?

ˆ Can we avoid testing each copy several times as inIRC?

ˆ Can we adapt Park and Moon optimistic coalescing to greedy-R-colorable graphs
and improve the de-coalescing phase?

ˆ Is incremental conservative coalescing really worse than optimistic coalescing?
(i.e., is it really worse to coalesce moves one by one, while keeping the graph
R-colorable, than to coalesce moves aggressively, then possibly de-coalesce to
get anR-colorable graph?)

We developed advanced conservative and optimistic coalescing algorithms that allow
us to give a� rmative answers to the �rst four questions. Then, the evaluation of these
new strategies let us think that the answer to the last question might well beno, for
greedy-R-colorable graphs. Section 6.1 recalls some necessary de�nitions and elemen-
tary properties linked to register coalescing. Section 6.2 presents our more involved
conservative tests to decide if the graph remainsR-colorable after a given move is co-
alesced. These tests are used in an incremental approach whose results outperform, by
roughly 15%, state-of-the-art optimistic algorithms, even though it is conservative! In
Section 6.3, we improve optimistic coalescing by developing advanced de-coalescing
mechanisms. Section 6.4 presents optimal coalescing rules that can be used to reduce
by about 75% the size of the graphs, and improve the results as well. Section 6.5 is an
analysis of our results on the collection of interference graphs provided by Appel and
George [2000], the “Coalescing Challenge,” which is now considered as the benchmark
suite for evaluating coalescing algorithms. We evaluate variants and trade-o� s between
running times and quality of results, comparing also with optimal solutions provided by
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Grund and Hack [2007] (found usingILP). Section 6.6 concludes, discussing possible
improvements and open problems.

6.1 Recalling the coalescing problems

We will �rst recall the background information that will be extensively used in this
chapter. These de�nitions can also be found in Chapter 2 but we prefer to repeat them
here for the sake of clarity.

The interference graph G= (V; E) is an undirected graph where each nodev 2 V
corresponds to a live-range of the program. There is aninterference e= (u; v) 2 E if
and only if (i� ) u andv cannot share the same register. In addition to interferences, each
copy instruction, also calledmove, is represented by ana� nity a = hu; vi . In general,
an a� nity has a weightw(a) that gives an evaluation of how often the corresponding
copy instruction would be executed. Acoloring of G is a function f : V ! N such
that f (u) , f (v) whenever (u; v) 2 E. When f (V) containsk di� erent values, it is a
k-coloring. Given a set of a� nities A , a coalescingis de�ned by a coloringf with
no constraint on the number of colors. An a� nity a = hu; vi 2 A is coalesced if
f (u) = f (v). Thecoalesced graph Gf is obtained fromG by merging any two nodes
linked by a coalesced a� nity.

Section 2.2.2.5 de�nes asgreedy-k-colorablea graph such that removing succes-
sively all nodes of degree< k leads to the empty graph, i.e., if FunctionIs_kGreedy (G)
returnstrue . The pseudo-code of this function was given in Chapter 2, page 21, but
we prefer to include it also here for completeness.

Function Is_kGreedy( G)
Data: Undirected graphG = (V; E); 8v 2 V, degree[v] = #neighbors ofv in G, k number

of colors
stack= ; ; worklist = fv 2 V j degree[v] < kg;1

while worklist , ; do2

let v 2 worklist ;3

foreachw neighbor ofv do4

degree[w]  degree[w]-1 ;5

if degree[w] = k � 1 then worklist  worklist [ f wg6

pushv on stack ; worklist worklist n fvg; /* Remove v from G */7

if V = ; then return true else return false8

After the graph is emptied, nodes can be popped from the stack and colored if
needed, picking for each node a color not used by its< k already-colored neighbors.
Because underSSA the interference graph of a program is chordal, chordal graphs will
have their importance there. Remember that Property 2.23 states thata k-colorable
chordal graph is greedy-k-colorable. In other words, the simplify/select phases of
graph coloring register allocators always succeed to color a chordal graph withk colors
if it is k-colorable.

In the next sections we will consider several coalescing problems that arise in the
heuristics used in register coalescing or register allocation. The complexity of these
problems has been studied previously in Chapter 5; we recall here their formulation
in a more informal way, with links to their corresponding formal de�nitions from the
previous chapter. We recall that coalescing problems can be unweighted—optimization
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of the number of static moves—or weighted—optimization biased by an approximate
dynamic execution count.

Aggressive coalescing (page 87) consists in �nding a coloringf (with no restriction
on the number of colors) such that the cost of a� nities not coalesced is minimized, i.e.,

minimize
X

a2U

w(a) with U = fhu; vi 2 A j f (u) , f (v)g

A simple heuristic for this NP-complete problem is to sort a� nities by decreasing
weights and to coalesce each a� nity, one after the other, if no interference prevents it.
Some heuristics for out-of-SSAconversion [Sreedhar et al., 1999; Rastello et al., 2004]
try to exploit the structure of� -functions and consider simultaneously several a� nities
corresponding to the moves of one� -function, but they have never been integrated into
a uni�ed “coloring-coalescing” scheme.

Conservative coalescing (page 88) consists in �nding ak-coloring f such that the
cost of a� nities not coalesced is minimized. It is NP-complete even if one asks the
graphG f to be greedy-k-colorable. A traditional heuristic is to consider a� nities, one
after the other, so that, after each coalescing, the graph remainsk-colorable. (We are
not aware of any heuristic that can consider several a� nities simultaneously.) Such
approaches are calledincremental.

Incremental conservative coalescing (page 92) considers a� nities one after the
other. In such an approach, one has to answer, for each considered a� nity a = hu; vi ,
the following question: is there ak-coloring f such thatf (u) = f (v)? This problem
is NP-complete for a general graph and polynomially solvable for a chordal graph.
We indeed gave a conceptual algorithm for this result in the proof of Theorem 5.8.
Here, in Section 6.2, we give a linear-time algorithm, which can be used as a heuris-
tic for greedy-k-colorable graphs—as for these graphs, the problem complexity re-
mains open. Note however that askingG f to be not onlyk-colorable but also greedy-k-
colorable is easy since this property can be checked in polynomial time using Function
Is_kGreedy after coalescinga. We study thisbrute-force coalescingin Section 6.2.1.

De-coalescing is linked tooptimistic coalescing(page 95): how to undo an aggres-
sive coalescingf to go back to ak-colorable graph. In other words,de-coalescing
consists in �nding ak-coloring g, whereg(u) = g(v) implies f (u) = f (v), that min-
imizes the cost of a� nities not coalesced. It is NP-complete even if the aggressive
phase succeeded to coalesce all a� nities; the di� erence with the optimistic problem
of Chapter 5 is that we do not consider here that the aggressive phase can coalesce all
a� nities as in practice this is often not true. Also, one usually seeks a de-coalescingg
such thatGg is not onlyk-colorable but also greedy-k-colorable.

In the next sections, we will explain existing coalescing heuristics, develop ad-
vanced heuristics and compare them to the �rst ones.
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6.2 Conservative coalescing

We are aware of two existing conservative tests: the Briggs's rule by Briggs et al.
[1994] and George's rule by George and Appel [1996]. Let us examine why they are
conservative when applied on a greedy-k-colorable graph.

Briggs mergesu andv if the resulting node has less thank neighbors of high degree,
i.e., � k. This node can always be simpli�ed after its neighbors of degree< k are
simpli�ed, thus the graph remains greedy-k-colorable.

George mergesu andv if all neighbors ofu with high degree are also neighbors ofv.
After coalescing and once all neighbors of degree less thatk are simpli�ed, one
gets a subgraph of the original graph, thus greedy-k-colorable too.

Originally, these rules were used for any graph, not necessarily greedy-k-colorable,
and with an additional clique of pre-colored nodes—the physical machine registers. In
this context, the rules have two restrictions. Since pre-colored nodes should never be
spilled, they are never simpli�ed, hence Briggs's rule does not apply to pre-colored
nodes. And George's rule applies only ifv is pre-colored, otherwise, if the graph is
not greedy-k-colorable, there is a risk of spillingu andv instead of onlyu; this cannot
happen with pre-colored nodes since they are never spilled. We �rst make a simple but
important remark:for greedy-k-colorable graphs, both rules can be used for any two
nodes. For George's rule, this is obvious as there is no spill for a greedy-k-colorable
graph. For Briggs's rule, we can also decide to simplify pre-colored nodes, when
possible, as any other node. Indeed, they form a clique and will thus be given di� erent
colors in any coloring. To get back to the original colors of thesepre-colored nodes,
a simple permutation of colors does the trick. Hence Briggs's rule also applies to pre-
colored nodes.

Surprisingly, extending Briggs's and George's rules to any two nodes already leads
to signi�cant improvements (see Section 6.5). However, they still give insu� cient
results to coalesce the many moves introduced, for example, by a basic out-of-SSA

conversion. The reasons are twofold. First, both rules are local decisions: they depend
on the degree of neighbors only. But these neighbors may have a high degree just
because their neighbors are not simpli�ed yet, i.e., the test may be applied too early
in the simplify phase. This is the reason why George and Appel [1996] proposed
the IteratedRegister Coalescing (IRC): instead of giving up coalescing when the test
fails, the a� nity is placed in a sleeping list and “awakened” when the degree of one
of the nodes implied in the rule changes. Thus, a� nities are in general tested several
times, and move-related nodes—nodes linked by a� nities with other nodes—should
not be simpli�ed too early to ensure the a� nities get tested. The second reason is that
these two tests are used to coalesce a� nities in a sequential way, requiring that the
graph stays greedy-k-colorable at each step. This is a limitation, as we explained in
Chapter 5, Figure 5.6. In the following sections, we will try to overcome these two
limitations.

6.2.1 Brute-force conservative coalescing

To address the limitation that current coalescing rules are too “local,” we developed
a more expensive test based on the fact that greedy-k-colorability is easy to check.
The goal was to have a starting “brute-force” algorithm that could give an idea of how
far the existing rules are from the “best” conservative rule. As in any incremental
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approach, we consider a� nities one by one in decreasing order of weights. To test
an a� nity, instead of using an overly-conservative local rule, the two corresponding
nodes are merged aggressively, then, ignoring the other a� nities, a complete simplify
phase is done—using FunctionIs_kGreedy , page 104—to test if the resulting graph
is greedy-k-colorable. If this brute-force test fails, the coalescing is not conservative
and the two nodes are de-coalesced, i.e., kept separate as they were. The pseudo-code
for this test is FunctionBrute_Test .

Function Brute_Test( G, u, v)
Data: GraphG = (V; E), nodesu andv
Output : true if u andv can be conservatively coalesced,false otherwise.
Result: u andv are merged inG if it stays greedy-k-colorable.
mergeu andv into uv in G ;1

if Is_kGreedy (G) = false then2

un-mergeu andv in G ;3

return false4

else return true5

We modi�ed IRC so that, instead of using Briggs's and George's rules for conserva-
tive coalescing, it used FunctionBrute_Test . And it was clear that this test is much
more powerful than these local rules. This means that, if the classic rules of Briggs
and George are certainly not good enough, it isnot because conservative rules are in-
trinsically bad, but because these ones are too local. Hence it seems possible to devise
better conservative rules. Of course, theBrute_Test comes to mind, but it is more
costly than a local rule such as Briggs's and George's tests, as its complexity is linear
in the graph size. Thus the overall complexity for testing each a� nity once would be
O

�
jAj (jEj + jVj)

�
.

IRC may seem to be a linear algorithm. However, as mentioned earlier, there is an
overhead due to the fact that a� nities are evaluated several times. The algorithm gives
up coalescing only when the worklist of a� nities is empty: a node is chosen and its
a� nities are removed. It can then be simpli�ed and the process continues with the
remaining nodes and a� nities. Leung and George [1999b] propose a counting mech-
anism to reduce the number of useless evaluations but, still, the overall complexity is
not linear. Here, whenBrute_Test returnsfalse, we have two choices, either keep the
a� nity in some sleeping list for a possible re-evaluation, as inIRC, or immediately give
up coalescing this a� nity. We observed that, becauseBrute_Test is more powerful,
testing each a� nity only once degrades only marginally the quality of the result. On
the contrary, keeping a� nities and reconsidering them each time the graph changes is
far too costly. In other words, we get an acceptable trade-o� between execution time
and performance by spending more time in the test but avoiding the re-evaluation of
a� nities.

With little e� ort, we improved the idea of theBrute_Test into a full coalescing al-
gorithm, whose pseudo-code is given in FunctionBrute_Force_Improved , page 108.
Its functioning resembles the one ofIRC, but without the need for a spilling process, nor
for a “freeze” process since a� nities are only tested once now. To make it competitive
in terms of speed, we used quite a number of tricks that we will mention during the
following explanation of the algorithm:

1. Lines up to 13 initialize the data structures. We can consider for now that the
“simpli�ed” argument is the empty set.
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Function Brute_Force_Improved( G, A , simpli�ed, degree)
Data: GraphG = (V; E), a� nitiesA with weight functionw : A ! N, subset of nodes

already simpli�ed, array containing the degree of each node,k number of colors.
Output : true if G is greedy-k-colorable,false otherwise.
Result: GraphG is conservatively coalesced.
stack simpli�ed ;1

move_related_worklist ; ;2

simplify_worklist  ; ;3

hi_degree_worklist ; ;4

A� s  A ;5

Function update_worklist( x) ; /* Function to move x to the right worklist. */6

begin7

removex from the worklist it belongs to;8

if 9hu; vi 2 A� s,u = x or v = x then move_related_worklist 9

move_related_worklist[ f xg;
else if degree[x] < k then simplify_worklist  simplify_worklist [ f xg;10

else hi_degree_worklist hi_degree_worklist[ f xg;11

end12

foreach x 2 Vnsimpli�ed do update_worklist( x)13

while true do14

if simplify_worklist , ; /* Now, simplify the graph */ then15

let x 2 simplify_worklist;16

simplify_worklist  simplify_worklistn fxg;17

foreachw neighbor ofx do18

degree[w]  degree[w]-1 ;19

if degree[w] = k-1 then update_worklist( w)20

pushx on stack ;21

else ifA� s , ; /* All nodes are move-related or not simpli�able, try to coalesce */22

then
let hx; yi 2 A� s ;23

A� s  A� sn fhx; yig;24

if x andy are neighbors/* cannot be coalesced */ then25

update_worklist( x) ;26

update_worklist( y) ;27

else ifBriggs_George_Coalescing (x,y) then28

mergex andy into xy in G ;29

else30

mergex andy into xy in G ;31

degree' copy of degree ;32

if Brute_Force_Improved (G, ; , stack, degree')= false then33

un-mergex andy in G ;34

update_worklist( x) ;35

update_worklist( y) ;36

if nodexyexists/* i.e., x and y have been merged */ then37

removex andy from any worklist ;38

update_worklist( xy) ;39

else if hi_degree_worklist, ; then return false else return true40
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build simplify coalesce freeze pot. spill select act. spill

(a)

build simplify

coalesce

Briggs George

Brute

simplify select

(b)

Figure 6.1: Comparison of: (a) theIRCscheme with (b) our “brute force improved”
scheme.

2. The simpli�cation of the graph is done from Line 15 to Line 21. This is the same
as the “simplify” box ofIRC.

3. Whenever no more node is simpli�able (usually because low-degree nodes are
move-related), we enter the “coalesce” box, Line 22. We use local rules �rst: if
Briggs's or George's rule applies at Line 28, there is no need to check an a� nity
with a brute-force test.

4. If Briggs's and George's rules fail, we could call theBrute_Test at Line 30,
but this function is just a wrapper around FunctionIs_kGreedy , which in turn
is just made of the “simplify” box ofIRC. Since we already coded the simpli�ca-
tion algorithm inBrute_Force_Improved , we preferred to do a recursive call,
which appropriate parameters:

ˆ A , the set of a� nities passed, is empty. Hence, the recursively called
function will never enter the “coalesce” box at Line 22: it is restricted
to the “simplify” part and will then only check that the graph is greedy-k-
colorable;

ˆ the stack of already simpli�ed nodes is used as pre-simpli�ed nodes to
speed up the greedy test;

ˆ a copy of the array of degrees is passed to avoid recomputing them;

ˆ worklists of nodes are local to each function, hence they do not need to be
updated after the recursive call returns (however, they need to be updated
at the beginning of the recursive call, Line 13, because in that case no node
is move-related anymore).

5. Finally, Line 40 tests whether the graph is completely simpli�ed or not. If it is
not, it means that either coalescingx andy leads to a non greedy-k-colorable
graph (case of the recursive call), or that the initial graphG is not greedy-k-
colorable (which should not happen).

Even if this algorithm seems a bit long and complicated, it is in fact simpler than
IRC. We put the two algorithms one next to the other on Figure 6.1. Notice that in the
IRC scheme, the “coalesce” box also contains Briggs's and George's rules. In our case,
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we do not need to spill anymore, so the spill related boxes disappeared, and also do the
last back edge, which is needed to rebuild the interference graph and start again if there
was any spill. Also, the last coalescing test, the “brute” box, is only a duplication of
the second leftmost box, i.e., the same simple simplify scheme.

We would like to stress out a few more points that are not directly apparent in the
pseudo-code, but important in terms of speed of the resulting code, or easiness in the
implementation.

ˆ We always work with the original graphG, and not duplicates. It saves precious
time at every recursive call. FunctionBrute_Force_Improved makes it pos-
sible by being not destructive: it is implemented in anIRC-like fashion using
worklists, hence not requiring an actual removal of nodes in the graph.2

ˆ When testing an a� nity hu; vi using the recursive call, instead of actually merg-
ing u andv Line 31 before checking if the graph is still greedy-k-colorable, we
use a trick on the degree ofu, v and their neighbors to simulate the merge. In-
deed, we found it was painful to perform an “un-merge” in the graph, and thought
easier to decrease by one the degree of the common neighbors ofu andv, and to
increase the degree ofu andv to be the degree that nodeuvwould have.

ˆ Finally, in the recursive call, it is possible to stop wheneveruv (or, actually,u
or v since they are not really merged) becomes a low-degree node. Indeed, if
the graph was greedy-k-colorable, mergingu and v only increases the degree
of resulting nodeuv: the degree of all other nodes either decreases or stays the
same. Hence, ifuvbecomes simpli�able, the whole graph is simpli�able.

These optimizations lead to a improved version of theBrute_Test , tuned for speed
but with the same quality results.Brute_Force_Improved outperforms all previous
conservative approaches with acceptable running times. It uses the same framework
as theIRC, but with recursive calls, and is thus easy to plug inIRC, and not more
complicated to implement standalone. It is approximately 2� slower than the basicIRC

presented by Appel and George [2001] (without the speed improvements of Leung and
George [1999b]) but reduces by a factor of 2 the cost of remaining a� nities for the suite
of graphs from the Coalescing Challenge [Appel and George, 2000]. Surprisingly, at
the price of a 3� slow down (roughly), it is even a lot better by 15% than state-of-the-
art optimistic coalescing, which contradicts the common belief. The details of these
experiments will be explained is Section 6.5.

Brute-force coalescing is still an incremental strategy, meaning that the graph re-
mains greedy-k-colorable after the coalescing of each particular a� nity. We try to go
even further in Section 6.2.2 with our “chordal-based” coalescing.

6.2.2 Chordal-based incremental coalescing

As previously mentioned, it is a limitation to require the graph to be greedy-k-colorable
after each coalescing. Indeed, to get a greedy-k-colorable graph after coalescing an
a� nity, it may be needed to coalesce other a� nities or even merge nodes not linked
by any a� nity. This fact was already known to George and Appel [1996] and used by
Vegdahl [1999] in an actual framework. It is also used in the “optimistic+” algorithm
(extended optimistic coalescing) of Park and Moon [2004]. However, these additional

2Note that, in the book by Appel [1998], the “move_related_worklist” is called “freeze_worklist.” We
�nd this appellation misleading and preferred using the �rst one.
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merges are done blindly, without any guarantee that a coalescing is indeed enabled.
Actually, for a given a� nity, the real conservative coalescing problem is as formulated
in Section 6.1: deciding if, after one particular coalescing, the graph is stillk-colorable.
This amounts to know if the resulting graph can become greedy-k-colorable thanks to
some additional node merges.3 Such a test can coalesce a� nities beyond traditional
conservative coalescing, and even nodes not linked by a� nities. But this is best not to
coalesce too many nodes so as to keep the maximum liberty for coalescing the rest of
the a� nities.

Such a conservative test can be checked in polynomial-time for a chordal graph,
i.e., given ak-chordal graph and an a� nity hu; vi , we know in polynomial time ifu and
v can be merged whileG staysk-colorable. If they can, we also know in polynomial
time a k-coloring of G. We proved this fact in Chapter 5, but the proof was only
conceptual. A limitation is that we do not know a good way to keep the graph chordal
as we will explain later. In this section, we develop a linear-time algorithm based on the
following ideas. In the proof of Theorem 5.8, the key is to consider the representation
of a chordal graph as a family of subtrees of a tree. Then, checking if an a� nity
hu; vi can be coalesced works by searching for a “path” of subtrees betweenu andv
on the tree. If it exists, such a path follow the smallest pathon the treelinking u and
v, denotedPu;v. On Pu;v, the subtrees of the tree are intervals, hence we search for a
“path” of intervalsbetweenu andv. There follows the three main ideas to �nd the set
of intervals betweenu andv, and then search for a path in them:

First: it is easy to �nd the subtrees that are sub-intervals ofPu;v by applying Chaitin et
al.'s simpli�cation scheme but forbiddingu andv to be simpli�ed. This has the
e� ect of “pruning” the useless subtrees for �nding a path betweenu andv.

Second: once only the “interesting” subtrees remain, a perfect elimination scheme
gives an interval representation. It is then easy to search for a path betweenu
andv in this interval graph.

Third: simplifying the nodes with minimum degree �rst, in this interval, de�nes a
perfect elimination scheme.

Of course, the last point is not true in the general case, but in our particular case
while working on an interval, it is true, as we will prove it in the next section.

6.2.2.1 Two lemmas for chordal-based coalescing

Before explaining the complete algorithm based on the exposed ideas, we will �rst give
two lemmas that will prove their correctness. They are based on a characterization of
chordal graphs as graphs having a perfect elimination scheme (see De�nition 2.19).

Lemma 6.1. A chordal graph with only two simplicial nodes is an interval graph.
Furthermore, any perfect elimination scheme gives an interval representation.

Lemma 6.2. Let G, with nodes v1, . . . , vn, be a k-colorable chordal graph. If for all i,
1 < i < n, the degree of vi in G is at least k and is minimum in Gn fv1; : : : ;vi� 1g, then
v1; : : : ;vn de�ne a perfect elimination scheme for G.

3If G is k-colorable, this is always possible since merging all nodes with the same color leads to ak-clique,
which is greedy-k-colorable.
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Lemma 6.1 will be used to validate the �rst two ideas, since onlyu andv can be
simplicial vertices after the phase of prunning. Lemma 6.2 validates the third idea. We
now prove these lemmas.

Proof of Lemma 6.1.Let G = (V; E) be a chordal graph with only two simplicial nodes
u andv. (We recall that a node is simplicial if its neighbors form a clique, see De�ni-
tion 2.19.) A graph is chordal i� it has a perfect elimination scheme [Golumbic, 1980,
Theorem 4.1], i.e., a particular order of nodesv1, . . . , vn, such that the neighbors ofvi

in G n fv1; : : : ;vi� 1gform a clique. Furthermore, there is such a scheme withv1 = u
andvn = v. Indeed, a chordal graph has always at least two simplicial nodes and a
subgraph of a chordal graph is chordal, therefore, we can �rst pickv1 = u and then
always select a simplicial nodevi , v to de�ne a perfect elimination scheme starting
with u and ending withv.

In this elimination scheme, for alli > 1, there existsj < i such that (vi ; v j) 2 E.
Indeed, if this is not the case, the neighbors ofvi in G n fv1; : : : ;vi� 1gare the neighbors
of vi in G. Thus,vi is simplicial inG, which is not possible unlessi = n, asG has only
two simplicial nodes,v1 andvn. For i = n, all neighborsv j of vn are of course such that
j < n, unlessv(n) has no neighbor. But, in this case,Gn fvng, which is chordal, has two
other simplicial nodes, thusG has at least 3 simplicial nodes.

Each node is thus neighbor inG of a node eliminated (simpli�ed) before. We can
prove more: ifvi andv j , with j < i, are neighbors inG thenvi is also neighbor ofvk for
all j � k < i. Indeed, suppose this is not the case. Leti be the smallest for which this
property does not hold and letj be the largest such thatj + 1 < i, with v j neighbor of
vi but v j+1 is not. Also,v j+1 is a neighbor ofv j , otherwisei is not the smallest. But the
neighbors ofv j in G n fv1; : : : ;v j� 1g, which includev j+1 andvi , form a clique. Thusvi

is neighbor ofv j+1. Impossible.
With the last property, we can view the nodesvi as points on a line, drawn from left

to right by increasingi, andG can be interpreted as the interference graph ofn intervals.
Eachvi corresponds to an interval that ends atvi and starts atv j , for the smallestj such
that v j is neighbor ofvi . Indeed, for all j � k < i, the interval corresponding tovk

intersects the interval corresponding tovi .
We can prove more formally thatG is an interval graph. A chordal graph is an

interval graph if its complement is a comparability graph [Golumbic, 1980], i.e., if
there is an order� on the nodes with the following property: for any three nodesx, y,
z such thatx � y � z, if ( x; y) < E and (y; z) < E, (i.e., they are both in the complement
of G), then (x; z) < E (it is also in the complement). This is true if� is the perfect
elimination scheme order, because ifx � y � z and (x; z) 2 E, then (y; z) 2 E, i.e.,y is
neighbor ofz (as previously shown in the third paragraph of the proof). �

Proof of Lemma 6.2.As G is k-colorable, the size of any clique is at mostk. Thus,
only v1 andvn can be simplicial since all other nodes have degree� k, which would
form a clique of size at leastk+ 1. Furthermore, asG is chordal, Lemma 6.1 shows that
it is actually an interval graph and any perfect elimination scheme that starts fromv1

and ends atvn gives a representation of intervals. We now show thatv1; : : : ;vn de�ne a
perfect elimination scheme, i.e., selecting vertices with minimum degree provides such
a scheme. If not, leti be the smallest such thatvi is not simplicial inG n fv1; : : : ;vi� 1g.
Thus, for allk < i, vk is simplicial inG n fv1; : : : ;vk� 1g. AsG n fv1; : : : ;vi� 1gis chordal,
one can completev1; : : : ;vn into a perfect elimination schemew1; : : : ;wn, such that
wn = vn and, for allk < i, wk = vk. Following Lemma 6.1, this elimination scheme
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gives an interval representation, where thewk are points on a line, drawn from left to
right by increasingk, and where eachwk is the right end of an interval.

Consider the subgraphH = G n fw1; : : : ;wi� 1g= G n fv1; : : : ;vi� 1g. There are two
cases, depending ifvi intersectswi or not. If vi is not a neighbor ofwi , it cannot be
a neighbor of any node already simpli�ed becausew1; : : : ;wn gives an interval repre-
sentation. Therefore the degree ofvi in H is the degree ofvi in G, it is thus at leastk,
which is not minimum inH as the degree ofwi is at mostk � 1. Impossible. Ifvi is a
neighbor ofwi , any neighbor ofwi in H is a neighbor ofvi in H becausewi is simplicial
in H hence its neighbors form a clique. Therefore, the degree ofvi in H is at least the
degree ofwi in H and it cannot be minimum unless the degrees are equal. But, then,vi

has exactly the same neighbors aswi in H hence is also simplicial. Impossible.
This proves thatv1; : : : ;vn is a perfect elimination scheme. �

6.2.2.2 Explaining the chordal-based algorithm

Using the two previous lemmas, we now explain the main idea on how ourchordal-
based coalescingworks. Suppose one wants to coalesceu andv, two non-interfering
nodes of a chordal graphG. First,G is simpli�ed maximally (i.e., nodes with degree
< k are removed) without simplifyingu andv. If no other node remains,u andv can be
given the same color and coalescing them keeps the graph greedy-k-colorable (but not
necessarilyk-chordal). Otherwise, the two lemmas show that the remaining graph is an
interval graph, for which one can easily compute a representation by removing nodes
of smallest degree �rst. The rest of the algorithm looks for a “path” of non-interfering
nodes betweenu andv in the interval graph, so that all these nodes can have the same
color, as suggested in the proof of Theorem 5.8 in the previous chapter. The existence
of such a path proves thatu andv can be coalesced, along with all the nodes of the
path, andG remains greedy-k-colorable. The non-existence of such a path proves that
no matter howG is colored,u andv will always have a di� erent color, hence the graph
would not bek-colorable anymore if they are merged.

A pseudo-code for the “path searching” part of the chordal coalescing is given in
FunctionChordal_Coalescing , page 114. The whole algorithm is quite sophisti-
cated, so we explain it in di� erent steps. First we explain the general ideas that make
it works. Then, we prove thatChordal_Coalescing returnstrue i� u andv can be
coalesced whileG staysk-colorable. We then prove that in that case, the function �nds
a set of nodes to coalesce withu andv so that the interval graph on which it works
stays ak-colorable interval graph. Finally, we will see how it can be integrated in
FunctionBrute_Force_Improved .

General functioning of Chordal_Coalescing . Despite its name, this function ex-
pects in fact a more constrained graph than a chordal graph: an interval graph. We
will use Lemma 6.1 later to prove that, from a chordal graph, one can get an interval
representation by simplifying nodes of low degree �rst. Before explaining Function
Chordal_Coalescing in details, we �rst give the general scheme of how it works
when trying to coalesce two nodesx andy in an interval graphG:

1. Get an interval representation ofG by simplifying nodes with smallest degree
�rst.

2. Using this representation, propagate fromx the information “this interval can/-
cannot have the same color asx.”
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Function Chordal_Coalescing( G, hx; yi )
Data: k-colorableinterval graphG = (V; E), a� nity hx; yi , all nodes other thanx andy

have degree> k.
Output : true if coalescinghx; yi is conservative.
Result: If returningtrue , x andy are merged, possibly with other nodes, so thatG stays

an interval graph.
if degree[x] > degree[y] then x; y  y; x ; /* start with the smallest degree */1

/* Traverse the set of intervals from x to y. */
like_x[x]  true ; alive  f xg; dummy_like_x false;2

just_removed ; ; like_x[just_removed] false; ; /* just for initialization */3

nodes nodesn fxg;4

repeat5

let v 2 nodesn fygwith smallest degree ;6

dummy_like_x dummy_like_x_ like_x[just_removed];7

foreachw 2 nodes neighbor ofv do8

degree[w]  degree[w]-1 ;9

if w < alive then10

alive  alive [ f wg;11

like_x[w]  dummy_like_x ; /* w can have the same color as dummy */12

if #alive= k then dummy_like_x false ; /* no dummy interval */13

if #alive> k then return false ; /* cannot happen for interval graphs */14

pushv on stack ;15

nodes nodesn fvg; alive  aliven fvg; just_removed v ;16

until nodes= fyg;17

if like_x[y] = false then return false;18

/* Else, construct the path linking x and y. */
path f yg;19

current y ;20

while v  pop stack,v , x do21

if v not a neighbor of currentthen22

if like_x[v] then23

path path[ f vg;24

current v ;25

merge allv 2 path into a single node inG ; /* G stays an interval graph */26

returntrue27
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vi� 1

vi
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Figure 6.2: Position of relative intervals at iterationi.

3. Upon reachingy, there are two possibilities:

ˆ If “ y cannot have the same color asx,” it is impossible to coalescex andy
while stayingk-colorable.

ˆ If “ y can have the same color asx,” then there is a path of intervals that can
have the same color asx betweenx andy. One can be found by starting
from y and choosing intervals in reverse order of simpli�cation. Then, all
nodes of this path can be merged withx andy and the �nal graph is greedy-
k-colorable.

In Chordal_Coalescing , the �rst two steps are actually performed in only one
pass, and “dummy” intervals are considered where there are less thank intervals at
one point. The next two theorems are devoted to proving that the function works as
expected by proving formally the steps described above.

Theorem 6.3. Let G be a k-colorable graph andhx; yi an a� nity. If G is an interval
graph, then FunctionChordal_Coalescing returnstrue i� merging x and y leads to
a k-colorable graph (not necessarily an interval graph).

Note: Line 14 is not needed for the correctness of the algorithm ifG is ak-colorable interval
graph. It is just needed for the extension to greedy-k-colorable graphs.

Proof. Let us concentrate on the decision part, from the �rst line up to Line 18.
Every node other thanx andy has a degree� k. G is k-chordal hencex andy are

simplicial vertices and their degree is at mostk � 1. Line 1 rede�nesx to be the one
of smallest degree, hence, according to Lemma 6.2, an interval representation forG is
obtained by simplifyingx �rst, then each node, y with minimum degree.

In the repeat loop, at thei-th iteration,v is the nodevi in Lemma 6.2, just_removed
is vi� 1 before being updated at Line 16 for the next iteration, and alive (updated at
Line 11) contains all intervals alive at pointvi . Indeed, alive is completed by all neigh-
bors w of vi not already in alive. The corresponding intervals thus start just after
vi� 1 ends. Also, if at most (k � 1) intervals are alive at pointvi , one considers that
a dummy interval is alive at this point. This situation is depicted in Figure 6.2, and
in the algorithm, the presence of a dummy interval is emulated by using the variable
dummy_like_x, which is set totrue or false depending on whether the dummy interval
could have the same color asx or not. If k intervals are alive at this point, there is no
dummy interval and it is equivalent to say that the dummy cannot have the same color
asx: dummy_like_x is set tofalse (Line 13).

It is easy to see thatG has a coloring such thatx andy have the same color i�
there is sequence of intervals, possibly including dummies, such that each interval

115



CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

ends just before the next one starts, and the �rst interval isx, the last isy. Therefore,
it is su� cient to propagate a �ag, starting fromx, from ends of intervals to starts of
intervals and see ify can be reached. This is what the propagation of the variables
like_x[w] and dummy_like_x does. If there is a coloring in whichx andy have the
same color, then the propagation from like_x[x] = true reachesy. We now see the
converse more formally.

Let us prove that, if like_x[w] is set totrue at iterationi (Line 12), the following
holds: if there is ak-coloring ofw and of all nodes simpli�edlater (thus coloredbefore
in the select phase) and such thatw andy have the same color, then one can build a
coloring ofG such thaty andx have the same color. A similar property holds for the
dummy interval atvi as like_x[w] and dummy_like_x have the same value. Let us prove
this property by induction oni, the implicit loop counter of the repeat loop. This is true
for x = v1 due to the initialization (before the repeat loop). Assume the property is true
for all j < i. Let w be a node added in alive at iterationi and such that like_x[w] = true
(the same argument can be used for the dummy interval atvi). Consider a coloring of
all nodes simpli�ed afterw such thatw andy have the same color. AsG is greedy-
k-colorable, this coloring can be extended, popping nodes from the stack, to all nodes
from w down tovi , without using the color ofw because all these nodes interfere with
w. If like_x[w] is true because like_x[vi� 1] (resp. dummy_like_x) istrue , one can
color vi� 1 (resp. the dummy interval atvi� 1) with the color ofw. Finally, by induction
hypothesis at iterationi � 1, we can extend the coloring toG such thatx andy have the
same color. �

We have proved that FunctionChordal_Coalescing , up to Line 18, correctly
answers whetherG staysk-colorable if x andy are merged. The proof shows even
more: it shows that we know, in the interval representation, all the nodes that can be
colored with the same color asx andy.

It remains to prove that, with additional node merges, we can obtain a interval graph
again. This is done by following a path fromy to x when popping nodes from the stack
in the while loop, Line 21, and we prove it now.

Theorem 6.4. If x and y can be merged while G stays k-colorable, then Function
Chordal_Coalescing correctly choses a set of nodes to merge with x and y so that
the graph stays an interval graph.

Proof. Since we already know which intervals can be colored with the same color asx
andy. We need to prove that the while loop at Line 21 �nds a path betweenx andy in
these intervals. Indeed, at each step, the variable current de�nes the last interval of the
path under construction, starting aty. Initially, it is true since it is set toy. When a node
v is popped, if it is a neighbor of current, it cannot have the same color asy (current
has the same color asy) hence cannot be part of the path. The �rst node not a neighbor
of current, and that can have the same color asy is indeed set to the same color asy: it
is added to the path. Finally, whenx is popped, it cannot be a neighbor of current since
the �rst part of the algorithm stated it can be colored with the same color asy, hence
the same color as current.

But, where are the dummy intervals? In fact they are not needed in the path. If there
is a gap between two consecutive nodesv andw in the path, there was at mostk � 1
intervals alive at each point of the gap, hence it was “�lled” with dummies during the
propagation phase. Sincew can be colored likey, it means that all these dummies can
also be colored likey, hence it is also true forv. So, dummy intervals are not required
in the path betweenx andy.
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Now, we say that merging all the nodes of the path amounts to form a complete
interval from x to y, thus transforming the graph into another interval graph, with at
most k live intervals, hencek-colorable. There is a subtlety since, to get an actual
interval, one should have included dummies in the path and merged with them. But
since the merge is immediate, this just means that the merged node would interfere
also with all the neighbors of the dummy intervals, i.e., the other intervals alive at these
points. But, these interferences already exist after the merging of the path without
dummies, otherwise, one of these other intervals, sayw, would be fully included in a
portion covered by dummy intervals, which would all be colorable with the same color
asx andy. Thusw would have been added to the path at Line 24. �

Up to now, we have proven that FunctionChordal_Coalescing , when given as
input an interval graph where onlyx andy can be simpli�ed, can decide in linear time
whetherx andy can be coalesced while stayingk-colorable, and, if they can, merges a
set of nodes so thatG stays an interval graph. There are two interesting questiors.

First, how do we apply the algorithm tok-chordal graphs?

Second, does this algorithm also work with greedy-k-colorable graphs?

To answer the �rst question, it is tempting to use Lemma 6.1 to say that, afterG
as been maximally simpli�ed intoG0 without simplifying x andy, G0 can be fed to
Chordal_Coalescing . Then, if x andy can be merged, the function merges nodes in
G0 along withx andy so that it stays an interval graph. Up to now, this reasoning is
correct, but it would be false to say that adding back the simpli�ed nodes toG0 gives a
chordal graph. Indeed, during the simpli�cation, it can happen than nodes with a low
degree “branch out” ofG0, i.e., are neighbors of nodes inG0 but can nevertheless be
simpli�ed. If such a node has inG0only neighbors that arenot in the pathfrom x to y, it
will not become a neighbor of the merged nodexy, which can break the representation
of G as subtrees of a tree, hence its chordality. We do not have a satisfying answer to
the problem of staying in thek-chordal class with additional merges. So, the answer to
the �rst question is:

By simplifying maximally a k-chordal graph, without simplifying x and
y, and feeding the result toChordal_Coalescing , we know whether x
and y can be coalesced while G stays k-colorable but there is no guarantee
that G stays k-chordal.

Extension to greedy-k-colorable graphs. We now answer the second question, i.e.,
doesChordal_Coalescing work with greedy-k-colorable graphs? In fact, it does not
provide an exact test as for chordal or interval graphs, but we can certify that, if the
function does not returnfalse at Line 18, it is possible to colorx andy with the same
color. However, the converse is not true, i.e., even if there exists a coloring ofG in
which x andy have the same color, the function can returnfalse.

Proof. Suppose thatG was �rst maximally simpli�ed, before being given to Function
Chordal_Coalescing . If G is only greedy-k-colorable, but not necessarily chordal,
nodes are simpli�ed in some orderv1; : : : ;vn, and the repeat loop behaves as ifG was an
interval graphG0where each interval goes fromv j (supposing it is added in the set alive
at iterationj) to vi (supposing it is simpli�ed at iterationi). This amounts to assume that
all nodes in the set alive form a clique, even if some of them do not interfere. However,
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there is no need to add these edges explicitly. The result ofChordal_Coalescing
is then given with respect to this interval graphG0, for which G is a subgraph. It
is possible thatG0 is not k-colorable (Line 14) but ifChordal_Coalescing returns
true , it is safe to mergex andy. The additional merging of the nodes on the path then
transformsG0 into another interval graph andG into a subgraph of it, it is therefore
greedy-k-colorable. Taking into account all nodes previously simpli�ed before entering
the function, the graph is still greedy-k-colorable. �

In this case, even if the test is less powerful than fork-chordal graphs, we at least
have a guarantee that the �nal graph will stay greedy-k-colorable. This makes the
chordal coalescing approach interesting in an incremental-like coalescing algorithm,
where the graph needs to stay greedy-k-colorable at each step.

However, this is just a heuristic for greedy-k-colorable graphs that amounts to add
interferences on the �y so that the graph “looks” chordal. Variants are certainly pos-
sible, with strategies to adding interferences, merge nodes, or maybe both, but we did
not try to go further in this direction. However, what can easily be done is to select
a path that, if possible, coalesces additional a� nities and avoids merging nodes not
related by a� nities so as not to constrain too much the resulting graph. For the same
reason, “dummy” intervals should be chosen when the path betweenx andy is built
to avoid putting the constraints on actual intervals. It was not possible when working
with interval graphs, as some interferences are required to stay in the interval graph
class. However, greedy-k-colorable graphs stays greedy-k-colorable even if they have
less interferences. In order to put the preference on dummy intervals, one should check,
before addingv to the path at Line 24, if there was< k variables in the alive set at this
point (i.e., there was a dummy). This means the size of alive set at each step must be
kept in memory, for instance in an array (of size at mostn).

Using Chordal_Coalescing in Brute_Force_Improved . We have seen that the
chordal-based coalescing can be used as a heuristic for greedy-k-colorable graphs. We
now explain how to insert it in our existing “brute-force” scheme. Before giving the
graph toChordal_Coalescing , it is still possible to check if the coalescing can be
done using Briggs's and George's rules, or the brute rule. Moreover, the graph must
�rst be maximally simpli�ed before the chordal coalescing can be applied. We will use
the fact that, when the brute test returnsfalse and we would like to perform a “chordal
test,” the brute algorithm almost did a maximal simpli�cation on the graph: the only
di� erence is thatx andy where already merged in the graph during the simpli�cation.

In fact, this is not a problem. Maybe more nodes are simpli�ed (since common
neighbors ofx andy have a smaller degree), but when the simpli�cation is blocked in
the brute test, all remaining nodes have degree� k. If we de-coalescex andy, the de-
gree of every node butx andy increases by one or stays the same; but the graph is then
still subgraphG0 of the originalG. If G was chordal,G0 also is, and it has at least two
simplicial vertices. These can only byx andy, and their degree is then< k. Lemma 6.1
states this graph is an interval graph, and since every node butx andy have degree
� k, the graph is maximally simpli�ed which is what FunctionChordal_Coalescing
expects. IfG was only greedy-k-colorable. It is of course still not a problem since the
condition was that it must be maximally simpli�ed. The same argument on the degree
of nodes when de-coalescingx andy applies.

We just showed that the chordal-based coalescing can be easily integrated in our
brute framework as follows: at Line 40 of FunctionBrute_Force_Improved instead

118



6.3. DE-COALESCING AFTER AGGRESSIVE COALESCING

of returningfalse, call instead Function Chordal_Coalescing.

6.2.2.3 Complexity and quality of chordal-based

In terms of complexity, chordal-based coalescing is similar to a complete simpli�cation
(with a return phase such as the classical “select” coloring phase). Thus, its complexity
is similar, in order of magnitude, to brute-force coalescing. Also, used in complement
to brute-force coalescing, its use does not increase the running time too much as most
simpli�cations are already done. This algorithm can even be applied if the graph ob-
tained after the �rst phase of simpli�cation is not chordal, but only greedy-k-colorable.

In terms of quality of results, our experiments show that chordal-based coalescing
does improve brute-force coalescing, but only slightly for the graphs of the Coalescing
Challenge [Appel and George, 2000]. Section 6.5 discusses how far it is from optimal-
ity, thanks to an optimalILP approach. In practice, because it is more complicated to
implement, with only a marginal improvement, we believe it is maybe not worthwhile.
However, this is the most advanced conservative algorithm proposed so far, and is also
interesting from a graph theory point of view. There remain two questions. First, how
to keep a chordal graphk-chordal? We explained previously that the problems comes
from simpli�ed nodes that “branch out” of the interval representation. Merging the
path fromx to y with these nodes would keep the representation as subtrees of a tree,
but this seems di� cult to modify the algorithm as it is now. Second, the remaining
challenge would be to have an exact test on greedy-k-colorable graphs, as we left this
problem open in the complexity study of Chapter 5.

The next section aims at developing more advancedoptimisticcoalescing strategies.

6.3 De-coalescing after aggressive coalescing

Merging two nodes can transform a graph that is not greedy-k-colorable into a greedy-
k-colorable graph, as was explained on Figure 5.6 in the previous chapter. This observa-
tion is the main motivation for aggressive coalescing: it may be more bene�cial to �rst
coalesce aggressively as many a� nities as possible, then to try to undo, “de-coalesce”
some coalescings if the graph is not greedy-k-colorable. But how to de-coalesce, i.e.,
split back a� nities?

6.3.1 The existing strategy

We explained in the introduction of this chapter that, after an aggressive coalescing
phase, Park and Moon [2004] proceed with the standard simplify and select phases. In
the select phase, if the result of a merge cannot be colored—i.e., it was a “potential
spill” and no color remains—it is split back into its original nodes. It is not safe to
color all of them right away, even when it is possible, because this could prevent the
coloring of nodes that are still on the stack, hence not colored yet. This is the case
for common neighbors of the de-coalesced nodes, for which the degree is now bigger
than when they were coalesced and simpli�ed. However, if some de-coalesced nodes
are colored with a unique color and the others discarded for now, the rest of the select
phase can continue safely: hence Park and Moon choose heuristically: which nodes to
color (by testing every possible con�guration, assuming pessimistically that the other
nodes will be spilled), which are spilled right away (those that, even completely de-
coalesced, still have no color available), and the others, which are put at the bottom of
the simplify stack, hence will be colored last during the rest of the select phase.
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Appel and George [2001] pointed out that, if all nodes (except pre-colored nodes)
have degree< k initially, they can always be colored whatever the other colors. Based
on this observation, they modi�ed Park and Moon's de-coalescing algorithm,4 but it is
not clear from their explanations whether: (a) they some nodes with the same color,
and the other nodes at the very end, as Park and Moon do, but with the guarantee
that no spill occurs; or (b) they color all of them immediately, even if this can create
subsequent de-coalescing, even of nodes that were not marked as potential spills. We
tried to recreate their results, which were provided for a large collection of graphs in
the Coalescing Challenge web page [Appel and George, 2000]; hence we developed
several split strategies during the select phase. The common initial step is that when no
color is found for a node, we split it back into its primitive nodes and compute some
information as follows: letP be the set of such primitive nodes, we �rst compute the
colors available for each of them and consider the setAP of a� nities hx; yi such that
either bothx andy belong toP, or one is inP and the other is already colored. Then
we tried the three following strategies:5

1. Appel-George type:Consider all a� nities hx; yi in AP in decreasing order of
weights and mergex andy if there exists a color suitable for bothx andy.

2. Park-Moon type: Select a colorc that maximizes the sum of the weights of
the a� nities hx; yi 2 AP such thatx andy can be colored withc. Merge the
corresponding nodes, color the resulting node withc, and put all other nodes
aside and color them at the end of the select phase, using a biased6 coloring.

3. Iterated Park-Moon:Select a colorc and merge nodes as in the second strategy.
Repeat the color selection for the remaining a� nities inAP until AP = ; .

Surprisingly, none of these approaches give results close to the optimistic version
of Appel and George. Also, even though it seemed to us that Strategy 1 approaches the
most their strategy, it is the worst of all three versions, certainly because it does not have
a global view on the a� nities within the split node. Nevertheless, we point out that the
three of them are guaranteed to be spill-free only if all initial nodes have degree< k,
and it is not clear how to adapt these heuristics to general greedy-k-colorable graphs.
Furthermore, even if the initial degrees are< k, except pre-colored nodes, a problem
may occur with Strategies 1 and 3 if pre-colored nodes can be simpli�ed as normal
nodes can (as we do). As several colors are given right away to the di� erent primitive
nodes, a simpli�ed node might become not colorable. The node can then be split into
its primitive nodes, all of degree< k, unlessone of them is pre-colored in which case
the algorithm would fail! Luckily, this potential problem never occurred in any of the
474 graphs of the Coalescing Challenge. In addition to these applicability limitations,
a weakness of these three approaches in terms of quality of results is that, instead of de-
coalescing a� nities, possibly one by one, many a� nities are de-coalesced, even if not
needed, when one node is split back. As this process is done in the coloring phase, only
a form of biased coloring can help re-coalescing these useless de-coalesced a� nities
and it is not clear how to use classical conservative coalescing techniques.

For these reasons, we prefer to de-coalesce based on the graph structure itself, not
on the particular order of nodes in the stack. An interesting side-e� ect of this approach

4The �rst non-journal version of Park and Moon [1998] was published six years before the journal one.
5Note that both Strategy 1 and 3 can lead to de-coalescing nodes which were not marked as “potential

spill,” possibly provoking a cascade e� ect.
6When coloring a node, choose the color that maximizes the coalescing with its neighbors.
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is that the �nal graph is then greedy-k-colorable and that we can use conservative tech-
niques afterwards to improve our de-coalescing phase.

6.3.2 Our approach

As in Park and Moon optimistic coalescing, we start with a naïve aggressive phase.
This phase consists only in considering a� nities one by one and coalescing them if
the two extremities do not interfere. After this phase, we use the de-coalescing phase
described in FunctionDe-coalescing , page 123. It applies to any greedy-k-colorable
graph and produces a greedy-k-colorable graph. After aggressive coalescing, some
a� nities are de-coalesced as long as the graph is not greedy-k-colorable. These a� ni-
ties are selected as follows. During the check for greedy-k-colorability (using Func-
tion Is_kGreedy , see page 21), if all nodes of the current subgraph have degree� k,
the cheapest node to de-coalesce is chosen and split into two nodes. It may be neces-
sary to de-coalesce several a� nities to get two separated nodes. And, if considering
a coalesced node and the graph of the a� nities coalesced inside this node, there isa
priori no restriction on the shape of the graph. Such a graph is presented on Figure 6.3.
To �nd the cheapest set of a� nities to de-coalesce, we need to �nd the cheapest set of
a� nities that disconnect the coalesced node. We use a min-cut algorithm on the a� ni-
ties coalesced in the node, but simpler approaches are possible. To choose quickly
which node to de-coalesce, each node is given a lower bound of the cost of its de-
coalescing, i.e., the min-cut cost. Currently, this bound is set to the smallest a� nity
weight coalesced in the node. After de-coalescing, the simplify phase continues until
the graph becomes empty or another de-coalescing is necessary. This way, �rst we
avoid de-coalescing an a� nity in the area where it does not help, i.e., among the nodes
already simpli�ed; second, we give up coalescing the cheapest a� nities �rst. However,
as in the Park and Moon approach, de-coalescing an a� nity can increase the degree of
nodes already simpli�ed, thus, in general, we need to perform several passes—at most
3 in practice for Appel and George's graphs—until no de-coalescing is done, which
ensures the graph is greedy-k-colorable.

As we will show in Section 6.5, our de-coalescing scheme alone is as good as the
state-of-the-art optimistic coalescing algorithm. This is of course only true in terms of
coalesced a� nities as we compare algorithms that do not spill at all, while the original
Park and Moon's algorithm also include a spilling strategy. However, it has two strong
advantages. First, it can be applied to any greedy-k-colorable graph, without requiring
any spill. Second, as it is not intermixed with coloring (the select phase), it can be
followed by some conservative coalescing to clean up possible useless de-coalescings:
then, even a simple conservative coalescing such as Briggs's and George's rules im-
proves the results by 8%. To our surprise, however, it does not equal the quality of our
“chordal-based” coalescing, not even the quality of the “brute-force” coalescing. The
problem may come from our way to choose nodes to de-coalesce. But it is hard to de-
�ne a good indicator of the bene�t and cost of a de-coalescing, so as to guide the node
selection. Also, it is very likely that some bad decisions are made even earlier, i.e.,
by the aggressive phase—for example, coalescing an expensive a� nity that prevents
the coalescing of many cheap ones—which are then di� cult to repair by a greedy de-
coalescing. Such considerations will be discussed heavily in the experimental section.
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Figure 6.3: A graph of a� nities coalesced in a coalesced node.
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Function De-coalescing( G, A )
Data: GraphG = (V; E), set of a� nitiesA with weight functionw : A ! N
repeat1

nodes V ; stack= ; ;2

some_de-coalescing false;3

while nodes, ; do4

if 9v 2 nodesj degree[v] < k then5

nodes nodesn fvg; pushv on stack ; /* Simplify v */6

foreachw neighbor ofv do degree[w]  degree[w]-1 ;7

else8

v  get_min_cost(nodes) ;/* coalesced non-simpli�ed node, with smallest9

cost to de-coalesce */
hx; yi  a� nity in v with smallest weight ;10

G  de-coalesce_min_cut(G, hx; yi ) ; /* de-coalesce x and y using a11

min_cut on the a� nities of v */
nodes (nodesn fvg) [ f x; yg;12

foreachw 2 fx; y; neighbors ofx andygdo update degree[w];13

some_de-coalescing true ;14

until some_de-coalescing= false ;15

6.4 Optimal rules for aggressive and conservative
coalescing

The graphs from the Coalescing Challenge of Appel and George [2000] are very par-
ticular. In order to perform their optimal spill, the authors needed to insert a lot of
splitting points, i.e., everywhere they could: between every two instructions. An ex-
ample of such a graph is given on Figure 6.4: because of the splitting, it is composed
of only cliques of size six or less, but for the pre-colored nodes (machine registers),
which have more neighbors. These cliques correspond to instructions of the program.7

A� nities link the nodes that correspond to the same variable split into hundreds of tiny
live-ranges. Hence there are a lot of nodes with exactly two a� nities: one towards the
“next” clique, and one towards the “previous” one. The structure of the initial program
can be visually guessed from the shape of the graph, with “chains” of cliques cor-
responding to instructions in a basic block, or branches corresponding to conditional
statements, as in the zoomed part of the �gure.

A set of a� nities between two cliques corresponds to a program point, i.e., a place
where shu� e code can be inserted if the colors do not match. Among these points,
some are obviously not useful in the context of coalescing. A point is said to be “un-
necessary” if there exists an optimal coalescing solution in which all the a� nities of
this point are coalesced. We wanted a way to �nd, in Appel and George's graphs,
the maximum number of unnecessary split points so that we could coalesce the corre-
sponding a� nities right away. This would decrease the size of the graph and guide the

7We are still a bit puzzled by this fact. We were expecting the instructions to be represented by two
intersecting cliques: the variableslive_in of the instruction and the oneslive_out. In their article, Appel and
George [2001] do sometimes have structures like these, because of register constraints imposing an argument
and result to reside in the same register. However, they still claim that, in the general case, there are only
cliques, maybe because they consider it is always possible to repair the coloring around instructions without
register constraints.
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Figure 6.4: Graph #001 of the Coalescing Challenge.
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Figure 6.5: Optimal “clique” rule.

coalescing heuristics.
There is an easy condition under which it is safe—from an optimal point of view—

to coalesce an a� nity: the idea is that, given an a� nity hu; vi , if its cost is greater than
the sum of all other a� nities involvingu, and if every neighbor ofu is also neighbor of
v, it is always safe to choose to coalescehu; vi in terms of cost of the coalescing. This
idea is close to George's rule, but the condition on the weights guarantees optimality.
We will explain more formally this idea and extend it so that, in particular, it can cope
with a� nities of unnecessary split points in the graphs from the Coalescing Challenge.

6.4.1 The optimal “clique” rule

George's rule says that if all neighbors ofx of signi�cant degree—i.e.,� k—are also
neighbors ofy, one can coalesce safelyx andy—i.e., the graph will remain greedy-
k-colorable. It is easy to modify the rule as follows: if all neighbors ofx are also
neighbors ofy (not just the high-degree ones), and the weight ofhx; yi is greater that
the sum of the weights of all the other a� nities involvingx, it is safe to coalescehx; yi ,
i.e., there exists an optimal solution in whichx andy are coalesced. Indeed, suppose
that x andy have a di� erent color incol, an optimal solution:col(x) , col(y). It is
possible to changecol(x) so that it is the same asy, and the overall cost of a� nities not
coalesced decreases. We will not prove this more formally here as we will provide a
similar demonstration for the more general “clique” rule.

This “optimal” version of George's rule does not allow the coalescing of unneces-
sary split points. Indeed, for such points, there are two cliques corresponding to the
instructions before and after the point:X containing variablesx1; : : : ;xn andY contain-
ing y1; : : : ;yn, and an a� nity hxi ; yi i for 1 � i � n. The rule cannot coalesce any of
these a� nities because everyxi has neighbors that are not neighbors ofyi : all the x j

with j , i! So, unlessn = 1, this optimal rule is useless.
However, we point out that coalescing allhxi ; yi i at the same timeis possible. The

conditions would then be the following. Consider two cliquesX andY such that all
neighbors ofX are also neighbors ofY. If, for each a� nity hxi ; yi i , the weight of this
a� nity is greater that the sum of the weights of all the other a� nities involvingxi , it
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is safe to coalesce at the same time all the a� nities hxi ; yi i , i.e., there is an optimal
solution in which allhxi ; yi i are coalesced.

In fact, the conditions can be relaxed, so thatX andY do not need to be cliques:X
being structurally a subgraph ofY is su� cient (see the second point in the de�nition).

De�nition: Let us de�ne two sets of nodesX andY as follows. LetX = fx1; x2 : : : xng
andY = fy1; y2; : : :yngsuch that:

ˆ There is an a� nity between eachxi andyi : 8i, 9hxi ; yi i 2 A (and (xi ; yi) < E)

ˆ X is structurally a sub-graph ofY: 8i; j, (xi ; x j) 2 E =) (yi ; y j) 2 E

ˆ Every neighbor ofX is neighbor ofY: 8i, (xi ; z) 2 E with z < X =) (yi ; z) 2 E

Theorem 6.5(“Clique” rule). Given two sets X and Y as de�ned above, there exists
a conservative coalescing in which every a� nity of typehxi ; yi i is coalesced, i.e., there
exists a coloring col in which81 � i � n, col(xi) = col(yi).

Moreover, there exists one such coalescing that is optimal if:

8xi 2 X; whxi ; yi i �
X

hxi ;zi ; z, yi

whxi ; zi

We will �rst prove that it is feasible to coalesce allhxi ; yi i , then we will prove that
the constraint on the weights of the a� nities is su� cient to make it safe to coalesce
them.

Proof of feasibility. Let us de�neGcoal, the graph obtained fromG by merging every
nodexi with the nodeyi . Since the greedy-k-colorable property depends only on the
interference structure of the graph, let us prove thatGcoal is a subgraph ofG.8 It is
su� cient to prove that any merge does not create any new interference between nodes
of G n X. Any such new interference would be created by merging an a� nity hxi ; yi i
with (xi ; z) 2 E. Let us examine the di� erent cases:

ˆ if z 2 X, thenz = x j and by de�nition (yi ; y j) already exists;

ˆ if z 2 Y, z = y j , and j , i, hence (yi ; y j) already exists;

ˆ else, (yi ; z) already exists by de�nition ofX andY.

Hence the coalesced graph is a subgraph of the initial graph, which proves it is greedy-
k-colorable ifG was greedy-k-colorable �

Now we will prove that the constraint given on the weights of thehxi ; yi i guarantee
that there exists an optimal solution in which these a� nities are coalesced.

Proof of optimality.The cost function of a coloringcol is de�ned as :

ĉ(col) =
X

hx;yi2A

8
>><
>>:
0 if col(x) = col(y)
whx; yi otherwise

Hence, we will be looking for a coalescing of minimum cost. Letcol be an optimal
coloring—a coalescing of smallest cost—ofG andX � X such that:8xi 2 X; col(xi) ,

8In fact,Gcoal = G nX
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col(yi) and8xi 2 X n X; col(xi) = col(yi). Let col0 be the coloring such that8xi 2
X; col0(xi) = col(yi) and8z < X; col0(z) = col(z).9 col0 is a valid coloring: ifxi 2 X
andz is a neighbor ofxi , eitherz < X hencez is neighbor ofyi , or z 2 X hencez = x j

andcol0(x j) = col(y j) , col(yi) = col0(xi). The cost ofcol0 is the following:

ĉ(col0) = ĉ(col) + a� nities de-coalesced� a� nities coalesced

= ĉ(col) + D � C

We want a condition that ensures ˆc(col0) � ĉ(col), hence a condition under which
D � C. Sincefhxi ; yi i j xi 2 X is a subset of the newly coalesced a� nities,

X

xi2X

whxi ; yi i � weight of newly coalesced a� nities

which gives us a lower bound:lb(C) � C.
As for D, we will consider the worst case. Letfriends(z) be the set of a� nity-

neighbors ofz, i.e., 8z0 2 friends(z); hz; z0i 2 A . For a givenxi , the worst case hap-
pens whenxi was optimally coalesced with the biggest subset (in terms of weight) of
friends(xi) n fyig, and is now de-coalesced from all of them. The best coalescing ofxi is
the biggest weighted interference-independent set offriends(xi) n fyig, denotedIS(xi),
where the weight ofz in this set iswhxi ; zi .

D � worst-case de-coalescing of allxi 2 X �
X

xi2X

IS(xi)

which gives usub(D), an upper bound onD. Hencelb(C) � ub(D) is a su� cient
condition since:

C � lb(C) � ub(D) � D

So the condition writes:
X

xi2X

whxi ; yi i �
X

xi2X

IS(xi)

This is ensured by the following condition:

8xi 2 X; whxi ; yi i � IS(xi)

SinceX is de�ned only for a given optimal coloring solution, and can be any subset of
X, this condition must be ensured for allxi 2 X. An easier condition is found by using
an upper bound ofIS(xi) such as:

8xi 2 X; whxi ; yi i �
X

z2 friends(xi )nfyig

w(xi ; z)

Since an independent set contains at most all the elements of the initial set, andX
contains all elements ofX, this last condition clearly implies the previous one. �

9The colors of thexi that do not match those of theyi are changed so that they do.
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It is easy to improve this naïve condition with a simple condition such as, ifz; z0 2
friends(xi) and (z; z0) 2 E, then add only max

�
whxi ; zi ;whxi ; z0i

�
to the sum instead of

the two weights.
We now give a pseudo-code for the clique rule, FunctionClique_rule , page 129.

The idea is to build incrementally theX andY sets, while checking if a� nities ful�ll
the conditions. We start from an a� nity hx; yi , while we still do not know the setsX and
Y. We know from the clique rule thatX must contain every neighbor ofx not neighbor
of y. These must have an a� nity with neighbors ofy (that are not already “chosen” by
another node ofX), else the clique rule cannot apply (Line 15). These neighbors must
also ful�ll the clique rule, so they are added to the “to_test” set. Finally, the check on
the weight ofhx; yi is performed and, if satis�ed, thex node is declared “OK” and the
process can be iterated with the remaining a� nities of the test list. If every a� nity
ful�ll the weight condition, the “X_OK” list after the loop contains exactly theX set
of the clique rule (and the “Y_set” list containsY), and a� nities of the “to_coalesce”
list can be safely coalesced.

6.4.2 The “terminal” rules

We will now present another case of optimality. The idea is that whenever there are
two a� nities hx; yi andhx; zi and an interference (y; z) 2 E, it will never be possible
to coalesce both a� nities. Then, if eithery or z is what we call a “terminal” node,
i.e., it has only one interference and only one a� nity, then it will always be possible to
coalesce one of the two a� nities, hence it is possible to “simplify” the a� nity. Indeed,
the idea is that, for instance ifz is terminal, as in Figure 6.6, the choice whetherhx; zi
will be coalesced or not can bepostponeduntil we know if hx; yi is. To do that, the
weight of hx; yi can be changed to re�ect the fact that coalescing it will prevent the
coalescing ofhx; zi . As such, a� nities can become ofnegative weight, meaning it is
betternot to coalescethese a� nities.

x

x0

y

z

y'

w
0

w simpli�cation of hx; zi
x

x0

y

z

y'

w� w0

Figure 6.6: Simplify a� nity hx; zi if z is terminal.

De�nition 6.6. We call a nodez terminali� it has exactly one a� nity hx; zi and one
interference (y; z) 2 E, with x , y.

It should be noted that nodes with only one a� nity (and no interference) can be
coalesced right away, and nodes with only one interference (and no a� nity) are not of
much interest in terms of coalescing.

Theorem 6.7(“Terminal” rule). Let x, y and z be such that y and z interfere, x has two
a� nities with y and z:hx; yi andhx; zi of weights w and w0 in G. If z is terminal, let
G0 be the graph obtained by removinghx; zi in G and changing the weight ofhx; yi to
w � w0. If w0 > 0 and col0 is an optimal conservative coalescing solution for G0 then:

ˆ if col0(x) = col0(y), then the coloring col= col0 is an optimal coalescing solution
for G.

128



6.4. OPTIMAL RULES FOR COALESCING

Function Clique_rule( G, hu; vi )
Data: Interference graphG = (V; E), a� nity hu; vi .
Output : true if coalescinghu; vi can be done by the clique rule.
Result: If returningtrue , all a� nities of the clique rule are merged inG.
/* Initialize data. */
X_OK  ; ;1

Y_set ; ;2

to_coalesce ; ;3

to_test fh u; vig ;4

while to_test, ; do5

let hx; yi  pop to_test;6

check neighbors ofx nneighbors ofy;7

check checknX_OK;8

while check, ; do9

let v  pop check;10

if 9w 2 fneighbors ofyg nY_set such thathv;wi existsthen11

/* A� nities between neighbors of x and neighbors of y must be tested. */
to_test to_test[ fh v;wig;12

Y_set Y_set[ f wg;13

else14

/* One neighbor of x has no a� nity with a neighbor of y. */
return false;15

/* Check the a� nity has a larger cost than the sum of all other a� nities of x. */
sum 0;16

foreachhx; y0i j y0 , y do17

sum sum+ abs(weighthx; y0i );18

if sum> weighthx; yi then19

return false20

else21

X_OK  X_OK [ f xg;22

to_coalesce to_coalesce[ h x; yi ;23

foreachhx; yi 2 to_coalescedo24

mergex andy in G ;25

return true26
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ˆ if col0(x) , col0(y), then the coloring col such that col(z) = col0(x) and col(u) =
col0(u) for u , z is an optimal coalescing solution for G.

Note that we impose the constraint thatw0must be strictly greater than zero. Indeed,
if w0 � 0, it is best not to coalescex andz. Sincez has only one coloring constraint,
it is always possible not to coalescehx; zi if there is at least three colors. In this case,
hx; zi can be replaced by an interference in the graph. This protects us from a perverse
e� ect where bothw andw0 would be negative andw� w0 becomes positive: this would
trick the coalescing algorithm into thinking it is good to coalescehx; yi while it is of
course better not to do it (if possible).

Proof. Sincez is terminal, the only coloring constraint ofz is having a color di� erent
that the one ofy. In the �rst casecol0(z) , col0(y) sincecol0 is a valid coloring ofG0,
hence it is also a valid coloring ofG. In the second case,col(z) = col0(x) , col0(y)
hencecol is a valid coloring ofG.

Now, for the optimality. Let us compute the cost of the solutioncol onG, ĉ(col)(G),
depending on ˆc(col0)(G0). In the �rst case, wherecol0(x) = col0(y), ĉ(col)(G) =
ĉ(col0)(G) = ĉ(col0)(G0)+w0since every a� nity in G is in the same state as inG0except
hx; zi , which is not coalesced. In the second case, ˆc(col)(G) = ĉ(col0)(G0)� (w� w0)+w =
ĉ(col0)(G0) + w0 since the a� nity hx; zi is coalesced hence does not modify the cost, but
the a� nity hx; yi which is not coalesced has a di� erent cost inG0 than inG. Hence, in
both cases,

ĉ(col)(G) = ĉ(col0)(G0) + w0

Considercolopt an optimal solution. There are two cases depending on whether
colopt chooses to coalescehx; yi or hx; zi . In both cases,colopt is obviously valid forG0.
Let us compute its cost forG0 depending on its cost onG:

ˆ if colopt(x) = colopt(y), thenhx; zi is not coalesced, but does not exist inG0:

ĉ(colopt)(G0) = ĉ(colopt)(G) � w0

ˆ if colopt(x) , colopt(y), thenhx; yi is not coalesced:

ĉ(colopt)(G0) = ĉ(colopt)(G) � w + (w � w0)

= ĉ(colopt)(G) � w0

Suppose now thatcol is not optimal forG, then

ĉ(col)(G) > ĉ(colopt)(G)

ĉ(col0)(G0) + w0 > ĉ(colopt)(G0) + w0

ĉ(col0)(G0) > ĉ(colopt)(G0)

This contradicts the optimality ofcol0 in G0. Hencecol is an optimal coalescing for
G. �

When looking as particular graphs, we observed another case involving terminal
nodes. This is the case where bothy andzare terminal nodes:
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Corollary 6.8 (“Double terminal” rule). If y and z are adjacent and both terminal
edges, with a� nitieshy; xi andhz; x0i , it is optimal to coalesce the a� nity of greatest
cost if it is greater than zero.

Note: of course, if the two a� nities have negative weights, none of them will be coalesced in
an optimal solution (if there is at least three colors).

Proof. Sincey andz are terminal, they are disconnected from the rest of the graph in
terms of interferences. Hence, whatever the coloring of the rest of the graph, the only
restriction on these nodes is that they must have a di� erent color, hence at least one of
the two nodes can have the same color as its a� nity-neighbor (in fact, both of them
can unlesscol(x) = col(x0)). Hence, in any coalescing solution, at least one of the two
a� nities can be coalesced. Moreover, if only one can be in the optimal solution, it is
best to choose the biggest one. �

In a sense, the “terminal” rule is not actually an optimal rule since it does not
optimally coalesce an a� nity, but it still provides a way to simplify the problem without
giving up the optimality of the �nal solution. Using Theorem 6.7, one can devise a
strategy where a� nities involved with a terminal node are simpli�ed from the graph,
i.e., removed but placed on a stack. If the remaining graph can be optimally coalesced,
possibly using the “clique” or the “terminal” and “double terminal” rules again, the
simpli�ed a� nities are then popped from the stack (i.e., in the reverse order of their
simpli�cation) and coalesced if possible. Then the �nal solution is also optimal. It
that case one should take care that the terminal rule can create a� nities with negative
weights. Hence the condition on the weights for the clique rule should sum theabsolute
weightsof the other a� nities.10 If, during this strategy, the remaining graph cannot
be optimally coalesced, it can still be interesting to use then a heuristic, and pop the
a� nities simpli�ed by the terminal rule at the end.

However, as shown by the experiments in Section 6.5, while the “clique” rule is
really helpful, the conditions for the the “terminal” and “double terminal” rules to ap-
ply were never met in any of the 474 graphs of the Coalescing Challenge during our
conservative coalescing tests. Indeed, the condition that a node should have only one
interfering neighbor is very strong, and maybe the terminal rules should be tested after
some simpli�cations of nodes. Still, they are of some use in a purely aggressive strat-
egy, as explained in the next section and shown by our experiments, Section 6.5.5.2.

6.4.3 Using the optimal rules for aggressive coalescing

The optimal “clique” and “terminal” rules explained in the previous sections can be
applied for conservative coalescing as well as for aggressive coalescing. But for ag-
gressive coalescing, they can be relaxed as in this case there is no constraint on the
number of colors to be used. This means that the graph can be partitioned in di� erent
“webs,” i.e., components connected by a� nities. We use the term “web” as, inSSA

terminology, awebis a set of variables linked by� -functions.11 Figure 6.7 shows a dif-
ferent way of representing Appel and George's graphs which emphasizes a� nity webs
instead of cliques.

10The best possible coalescing for a node is then to be coalesced with all its a� nity-neighbors of positive
weight, and with none of its a� nity-neighbors of negative weight. The worst case is the contrary.

11For instance, under conventionalSSA(cSSA), all variables of a web can be renamed with the same name,
i.e, coalesced. But we are not under cSSA in our case.
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Figure 6.7: Graph #337 with apparent a� nity webs. For more visibility, a� nity edges
are drawn in solid black lines and interferences in grayed lines.
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Figure 6.8: Graph #105 after applying the optimal “clique” rule. There remains cliques
that “miss” one a� nity to be coalesced by this rule.

Indeed, in aggressive coalescing, there is no reason to coalescex andy if they be-
long to di� erent webs: there will be no gain in terms of a� nities, and it could constrain
further coalescings. Hence, before applying optimal rules, a graph can be partitioned
into maximal connected component (a� nity-wise), and independent work can be done
on each di� erent connected component. Hence only interferences between two nodes
of the same web constrain the aggressive coalescing.

Moreover, the “terminal” rule has now the ability todisconnectconnected compo-
nents. This can indeed happen if the cost of the simpli�ed a� nity is larger than the
cost of the a� nity that remains. In that case, the new a� nity has either cost zero (i.e.,
useless to coalesce) or a negative cost (better not to coalesce it). If this a� nity is an
isthmus (or “cut-edge,” i.e., an edge that disconnects a component if it is removed),
it will never be bene�cial to coalesce such an a� nity so it can be removed from the
graph. Beware that if the a� nity is not an isthmus, it is wrong to remove it from the
graph even if it has a negative cost. Indeed, there could be a path of a� nities that would
still “want” to coalescex andy, its two extremities. In this case, the information that
by coalescing them one will “lose” something must be present: indeed, this means that
it will not be possible to coalesce the simpli�ed a� nity too.

To conclude, the terminal rules did not work for conservative coalescing because
the conditions were too strong. In the context of aggressive coalescing where clique and
terminal rules are alternated, the separation of connected components in webs makes
the conditions for terminal rules much more probable.

6.4.4 Disclaimer

We recently found a technical report by Blazy and Robillard [2008] presenting a rule
very similar to our “clique” rule. They also use their rule in the context of the Coalesc-
ing Challenge, to optimize theILP formulation of Grund and Hack [2007]. It is not very
surprising that by looking at the shape of the graphs, they developed a similar rule, as
it is visually clear that many a� nities between cliques are unnecessary. They managed
to treat one more case by remarking that, on some graphs, not all nodes of two consec-
utive cliques are linked by a� nities in a one-to-one manner: sometimes, there is one
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node on each consecutive clique that does not have any a� nity, as shown on Figure 6.8.
With our current rule, we will not allow to merge to such consecutive cliques, while it
is still optimal. In fact, this can be done in our formulation: it is possible to consider
that these nodes are linked by a� nities of null weight, and then our clique rule would
�nd them. This would require modifying FunctionClique_rule at Line 15.

Another di� erence is that, in their algorithm, they restrict themselves to cliques
while we included in our rule the possibility that the components we want to coalesce
together are not cliques. In our formulation, the restriction is just that one component
should be structurally a subgraph of the other, plus, they are allowed to have neigh-
bors, provided they are common to the two components. This could be useful if the
components of the split graphs were each constituted of a union of two cliques, as we
would have expected the graphs to be, or to coalesce two cliques that have common
pre-colored neighbors.

6.5 Experiments and evaluation

6.5.1 Methodology

Coalescing is challenging for graphs with many a� nities and high register pressure.
In particular, a graph-based spill-everywhere algorithm leads to a too simple coalesc-
ing problem. It this thus di� cult to �nd a good set of benchmarks, hard enough to
solve, large enough, to experiment and evaluate various strategies in detail. The Coa-
lescing Challenge of Appel and George [2000] provides such an interesting collection
of graphs on which state-of-the-art coalescing algorithms were tested. Also, Grund
and Hack [2007] managed to give optimal solutions for all but three graphs usingILP,
probably thanks to the low number of registers (six). We use them to compare the dif-
ferent heuristics, either optimistic or conservative. We point out that, to measure the
quality of coalescing algorithms, it is more fair to work on such a collection of graphs
than to measure execution time of codes for some platform: the latter gives results that
are biased by many factors and are not reproducible, and anything can be claimed. Of
course better execution time is the goal of coalescing, and here we measure the number
(or weight) of coalesced a� nities, i.e., of copies that are removed, which is always,
in general, a bene�t for the generated code. However, we will also see in Chapter 8,
Section 8.2.2.2, preliminary experiments of how our algorithms perform under real
conditions.

Benchmarks suite. In their spill algorithm, Appel and George performed live-range
splitting at every program point. Hence the corresponding control �ow graphs can be
easily rebuilt. There are 474 graphs that correspond to regions (maybe procedures?)
of the Standard ML of New Jersey benchmark suite, compiled for a Pentium with 6
general-purpose registers. On average, there are� 26:7 basic blocks per region, with a
maximum of� 1090, and� 231 instructions, with a maximum of� 8300. Notice also
that the architecture has many instructions with register constraints, which constrains
the graph coloring—without necessarily simplifying it. This collection of graphs is
thus interesting and representative.

Implementation. For our experimentations, we used a standalone program specially
developed to coalesce Appel and George's graphs. It is implemented in Objective
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Caml,12 compiled with version 3.10.2. It consist of more that �ve thousand lines of
code (and two thousand of comments). Experiments were done on an Intel Xeon run-
ning at 2.40GHz. Time measurements would probably be better if our algorithms were
written in C, so the important time measure is therelativespeed of execution between
di� erent algorithms.

Performance criterion. As the graphs correspond to live-ranges that are split at each
program point, there are a large number of a� nities in the graphs (compared to stan-
dard graphs where a� nities usually correspond to original a� nities, application binary
interface (ABI) constraints, or possibly splits bySSA). Most of those are straightforward
to coalesce, in particular, all those coalesced by the optimal “clique” rule. Therefore,
it does not make sense to evaluate the quality of heuristics using a ratio with the total
weight of initial a� nities; it is more signi�cant to focus on the a� nities that are hard
to coalesce, i.e., to use a ratio with the a� nities that arenot coalesced.

For that, to evaluate the quality of an heuristich, we compute, for each graph, the
costĉ(h) of the coalescing given byh, i.e., the sum of the weights of the a� nitiesnot
coalesced (remaining a� nities):

ĉ(h) =
X

a2Nc

w(a) where Nc = fa = hx; yi 2 A j a is not coalesced byhg

This cost in compared to the cost ˆc(opt) of the optimal solutionopt (provided by Grund
and Hack).

q(h) =
ĉ(opt)
ĉ(h)

ĉ(opt) = cost of optimal coalescing

This gives us a performance ratioq(h) � 1 that measures the quality of a heuristic,
i.e., the percentage (in weight) of the remaining a� nities with h that could still be
coalesced.

For example, if a heuristich reaches 0:8, it means that, in the optimal solution
opt, there are 20% (in weight) less a� nities than for the heuristich. The traditional
performance ratio when evaluating algorithms is ˆc(h)=ĉ(opt). The inverse,q, gives us
a quick way to compare two heuristicsh1 andh2 usingq(h1) � q(h2). For instance, if
q(h1) � q(h2) = 0:1, we say thath1 improvesh2 by 10%.

Note: actually, to get an exact percentage whenq(h1) � q(h2), we should compute 1�
ĉ(h1)=ĉ(h2), but 1� ĉ(h1)=ĉ(h2) = 1 � q(h2)=q(h1) = (q(h1) � q(h2))=q(h1) � q(h1) � q(h2)
and 1� ĉ(h1)=ĉ(h2) � q(h1) � q(h2) whenq(h1) � 1. Thus,q(h1) � q(h2) is a conservative
estimation,h1 actually improvesh2 by a bit more than 10% in our example.

Figures 6.9 and 6.10 give the average value ofq(h) for each heuristic. We also give
a “weighted” ratio where graphs are weighted by their number of instructions so that
bigger graphs (such as #139), usually more di� cult to coalesce, get more importance
than very small ones (such as #098). As we will see, both average ratios lead to the
same conclusion, i.e., ifh1 improvesh2 with one ratio, it also improves it with the other
ratio. For this reason, and because we believe the weighted ratio is a better indicator of
the quality of a heuristic, we refer to the weighted version when giving any numbers
(percentages) in the discussions.

Note on a� nity ordering. The order in which a� nities are considered for coalescing
is crucial, and it is a good idea, though not optimal, to consider them in decreasing order

12http://caml.inria.fr/ocaml
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Figure 6.9: Comparison of conservative heuristics.

of their weight, so that bigger a� nities get coalesced �rst. However, many a� nities
have the same weight, and some total ordering must be chosen. This is never tackled in
the coalescing literature, although it is a known fact that tie breaking is important when
solving heuristically NP-complete problems. For instance, Gibbons and Muchnick
[1986] spend much of their article on how to choose instruction scheduling when given
the choice, and Briggs et al. [1994] remarked that simple things like node ordering and
how ties are broken lead to sometime “anomalous” behaviour they call “NP-noise.” As
we will see, the ordering choice for coalescing has a strong impact on the quality of the
results.

It seems reasonable to guide the ordering using, for example, the knowledge of
the program structure or some graph properties (e.g., node degrees). We will discuss
several orderings in Section 6.5.4. Before, to provide reproducible results, we chose
a deterministic ordering: in case of equal weight, we use the order in which a� nities
appear in the graph description �le (“�rst seen, �rst taken”). This ordering is not arbi-
trary since it exactly follows theCFGof the original program. Notice that using another
ordering doesnot change the overallrelative comparisons of the di� erent schemes,
except for the external results—given by Appel and George [2000] on the Coalescing
Challenge web page—for which we do not know the ordering that was used. Never-
theless, we also give the results for our implementation of these schemes.

6.5.2 Conservative heuristics

Figure 6.9 shows the quality of the conservative heuristics for the criterionq(h). The
optimal has value 1, hence the higher a heuristic, the better. Each heuristic is evaluated
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by the average on all graphs—left column, blue and labeled “Cost”—, the weighted
average on all graphs—right column, red and labeled “Weighted cost”—, and, when
available, i.e., for our implementations, the overall time (middle bar, yellow and labeled
“Time”) spent by the heuristic on all 474 graphs.

The �rst results are the performance of Iterated Register Coalescing as given on
the Coalescing Challenge web page [Appel and George, 2000]. The second heuristic
is our implementation ofIRC, which gives 10% better results, although it is the same
algorithm. Note that it may be due to the use of a di� erent a� nities ordering, an
information that was not provided by the authors. The third heuristic,BG, uses the
rules of Briggs and of George, extended to any type of nodes (pre-colored or not) as
explained in Section 6.2. This simple change improves by 15% the quality of our
IRC implementation, but at the price of a (roughly) 3� slowdown. Finally, the last
heuristics,Brute andChordal , implement both FunctionBrute_Force_Improved
(page 108), with an additional call to FunctionChordal_Coalescing (page 114) for
the second, as described in Section 6.2. TheBrute heuristic improvesBGby 5%, hence
it is 20% better that standardIRC—30% if compared to the results provided by Appel
and George [2000]—while being only 1:7� slower.

For our developments, we started with an implementation ofIRC and experienced
that the e� ort to extend it into an implementation ofBrute was small, making this
improvement worthwhile. Also, we measured that, without the improvements proposed
in Section 6.2.1, i.e., with a naïve use of FunctionIs_kGreedy (page 104) for each
tested a� nity, the heuristicBrute processes all graphs in more than one hour instead
of 135 seconds: it is actually 10� slower on average and more than 30� slower on
the biggest graphs, which are responsible for about three quarters of the time spent.
Finally, the chordal rule added inChordal only improvesBrute by around 1%, while
being more complicated to implement. However, the execution time overhead is not
signi�cant, so it is a “free” percent for whoever needs it and is ready to implement it.

6.5.3 Optimistic heuristics

Figure 6.10 shows the quality of the aggressive heuristics. The �rst heuristic is the
variant of Park&Moon optimistic coalescing developed by Appel and George [2001]
and whose results are, again, provided on the Coalescing Challenge web page. The
next three heuristics are our (unsuccessful) attempts to reproduce these results: these
are the heuristics 1, 2 and 3 of Section 6.3, i.e., Appel&George type, Park&Moon
type, and our “iterated” version of Park&Moon. Strangely, they give results worse by
10% to 25%. The �fth heuristic,De-coalescing , uses our de-coalescing scheme,
after an aggressive part, as explained in Section 6.3. It alone gives results of the same
quality as the optimistic provided by Appel and George, but requires more time than
our implementation of optimistic coalescing. However, our scheme produces a greedy-
k-colorable graph and was designed to enable a conservative coalescing post-pass. So,
we tried, afterDe-coalescing , two conservative techniques, the cheapest and less
aggressive one, i.e., Briggs's and George's rules (BG), and the most aggressive one, our
chordal rule (Chordal ). These rules use a little more time and improve the results by
2.5%. This is not much compared to Appel&George version of optimistic coalescing
(�rst column), but it is 13% better than our implementations of optimistic coalescing,
with a 2� slowdown. According to these results, it appears that, after our de-coalescing,
Briggs's and George's rules are enough to eliminate many useless de-coalescings.

Compared to the conservative heuristics, the best optimistic coalescing scheme
equals the best conservative one (the unweighted average is 2% better with optimistic
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Figure 6.10: Comparison of aggressive heuristics.

coalescing) and it is about 30% faster. Also, the results are just slightly better than
Appel&George version of optimistic coalescing. However, the next section shows that
far better results can be obtained, especially with conservative coalescing, thanks to
di� erent (so, better) a� nities orderings.

6.5.4 Ordering the a� nities

In Section 6.5.1, we mentioned that the ordering of a� nities of equal weight has a
strong impact on the quality of the results. The results of Sections 6.5.2 and 6.5.3
correspond to a particular canonical ordering (order of the program, basically). We
now show that, with an adequate ordering of the a� nities, our algorithms can perform
better. All the orderings we tried consider a� nities by decreasing order of weights,
since it is usually better, though of course not optimal, to �rst coalesce a� nities that
cost more. The tie-breakers we tried in case of equal weights are the following:

1. Program: the a� nity appearing�rst in the program, i.e., in the graph description
�le, gets the priority.

2. Reverse: the a� nity appearinglast in the program, i.e., in the graph description
�le, gets the priority.

3. Lexico: �rst, let us de�ne an ordering on the nodes. For initial nodes,x < y i�
x appears beforey in the graph description �le—i.e., the identi�er ofx in this
�le (an integer) is smaller than the identi�er ofy. For a coalesced nodex, its
identi�er is set to be the one of the smallest node coalesced withx. In that case,
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Figure 6.11: Motivation for biased a� nity weights.

let xs andys be the smallest of the nodes coalesced respectively withx andy,
thenx < y i� xs < ys.

Note: this de�nes a total ordering since every node has initially di� erent identi�er in
the graph description �le, which is an integer hence< de�nes a total ordering. Then,
any coalesced node has a unique identi�er since a node cannot be coalesced with two
di� erent nodes.

The a� nity hx; yi then gets priority overhx0; y0i i� (x; y) < (x0; y0) using the
lexicographic ordering based on the node ordering, i.e., i� x < x0 or x = x0 and
y < y0.

While using custom ordering, it is important to update carefully the a� nities when
the graph changes to keep the bene�t of using a good ordering. Ifhx; zi andhy; zi are
two a� nities, andx is merged withy to form the nodexy, the two a� nities are replaced
by hxy; zi with weightwhx; zi + why; zi . In that case, the ordering must be updated: for
Program(resp.Reverse), the order ofhxy; zi is the minimum (resp. maximum) order
of hx; zi andhy; zi ; andLexicoalready de�nes the behavior for coalesced nodes.

Biased a� nity weights. We also modi�ed the global ordering of a� nities because
of the following remark. Supposehx; yi andhx; zi are two a� nities such thaty andz
interfere (see Figure 6.11). Coalescing both a� nities is not possible as coalescing one
constrains the other. When coalescinghx; yi , whx; yi is saved andwhx; zi is lost. This
becomes a problem if there is another a� nity hx;ui wherez andu interfere. Ifhx; zi
has a weight even slightly greater (say 101 versus 100), it will be chosen �rst, and this
will prevent coalescing the two others. Here, the �nal cost will be 200 while choosing
to coalescehx; yi andhx;ui leaves a cost of 101. To avoid this situation, we devised
a strategy called “bias.” When applied, our algorithm works with modi�ed weights,
computed from the initial weights. Of course, the �nal cost of the remaining a� nities
is still computed using the initial weights. For each a� nity a, we initializewbias(a) to
w(a). Then, whenever there is a trianglex; y; z such as in Figure 6.11—i.e., wherey
andz interfere and the two a� nities hx; yi andhx; zi exist—we subtract� � w(x; z) to
wbiashx; yi and� � whx; yi to wbiashx; zi . We �xed � = 1

10, arbitrarily, which gives the
desired behavior.

Results. Figure 6.12 shows the results of our best optimistic and conservative al-
gorithms with di� erent a� nities orderings. The �rst two columns are two optimistic
versions based on the algorithm of Park and Moon [2004]: the one provided by Appel
and George, and the best we managed to reproduce (a “Park&Moon type” (see Sec-
tion 6.3), using theLexicoordering andbias), which is still not as good. The next
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three columns show the conservative results. We displayed only results forChordal ,
which performs best, but the e� ects of ordering are similar on the other conservative
techniques (in particularBrute , which has equivalent results). Here, using theRe-
verseorder instead of the normal program order greatly improves (by 10%) the quality.
When usingbias, bothLexicoandReverseorderings give the best overall results. This
means that the optimal solution can improve the result only by 12%, and this is more
than 15% better that Appel and George's version of optimistic coalescing, but for a 3�
slow-down. Finally, the last three columns show the e� ects of ordering on our best op-
timistic technique,De-coalescing followed byBG. So far, we point out that it is not
clear which ordering works best (in particularReverse) and why. This is an important
open question.

To conclude, for the optimistic strategies based on Park and Moon's algorithm and
for the optimistic strategies based on our de-coalescing technique, the a� nity ordering
plays a role, but de�nitively not as important as for our conservative techniques. The
same holds forbias. Our interpretation is that the aggressive part of optimistic-like
schemes may coalesce the wrong a� nities, and since it is aggressive, it will coalesce
them whatever the ordering is. The current de-coalescing phase is then unable to decide
to de-coalesce the “bad” nodes created. To con�rm these doubts, we ran the following
simple experiments: on the one side,Brute only, and on the other side,Brute followed
by aggressive coalescing, then de-coalescing, thenBrute again. The second strategy
is more that 5% worse than the �rst one. This means that, among the a� nities not
coalesced byBrute , the aggressive part chooses to coalesce some that are not de-
coalesced later: instead, some nodes created by mergesin the �rst phaseof Brute are
de-coalesced. This shows it is quite di� cult in an optimistic strategy to undo properly
the bad e� ects of aggressive coalescing, i.e., the fact that it does not take colorability
into account.

6.5.5 Using the optimal “clique” and “terminal” rules

6.5.5.1 Use of the “clique” rule

As explained in Section 6.4.1, the “clique” rule is able to coalesce a� nities of trivially
unnecessary split points in the program. By applying this rule (in its conservative
version) repeatedly on a graph from the Coalescing Challenge, one gets an idea of how
many split points were interesting for coalescing in the program. We did it on all the
474 graphs, and compared the number of nodes and a� nities in the resulting graphs to
these numbers in the original graphs. Figure 6.13 shows the distribution of the ratios
for a� nities and nodes using a box plot. For most of the graphs, there is about three to
four times fewer nodes and between three to �ve times fewer a� nities after applying
the “clique” rule. This means that no more than about one third of every possible split
point in a program is potentially interesting for inserting shu� e code. This is still a lot,
and makes us think thatSSAsplit points, which are in a far fewer number, are probably
not enough for a coloring heuristic that needs to insert permutations of colors at split
points to avoid spilling. Better split points might be found inside basic blocks, and not
just on the incoming edges of basic blocks.

What are the e� ect of using the clique rule during coalescing? There are two kinds
of improvements, both for the incremental conservative coalescing approaches. First,
the clique rule improves the speed of coalescing. For theChordal scheme, we man-
aged to lower the time for coalescing all graphs from 135 seconds down to only 57
seconds, making it more competitive in time to optimistic-like strategies. Indeed, the
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Figure 6.13: Graph size reduction after using “clique” rule: the y-axis is the ratio
between the �nal and the initial number of a� nities or nodes.

aggressive pre-pass of such strategies greatly speed up the process, while incremental-
like strategies su� er from a really high number of a� nities. The clique rule manages
to �nd rapidly sets of a� nities to coalesce, more quickly than the local rules of Briggs
and George since, at about the same price, it can coalesce more than one a� nity at a
time.13 Moreover, if the clique rule is used to create a smaller graph description �le
beforehand, the memory print of the interference graph is much smaller when doing
coalescing, which reduces signi�cantly the processing time for very big graphs. For
instance, it takes 14 seconds to coalesce #139 using the clique rule followed by the
Chordal scheme, and only 10 seconds if using the clique rule, writing to a new �le,
then applyingChordal to the new (smaller) graph (1:4� faster).

Second, the clique rule improves the quality of the resulting coalescing: the best
Chordal scheme on the orderings tried is now 2% better than the previous one. This
is a good news and means that our brute force algorithm will not �nd necessarily �nd
the “unnecessary” splitting points. On worse orderings, the clique rule can improve
by up to 7% the results of theChordal scheme. Thus, it seems that coalescing �rst
a� nities that are safe from a cost point of view reduces later errors when our heuristic
tries a� nities in a not-so-good order.

As for the optimistic approaches, the clique rule does not improve them as it did for
the conservative ones. All a� nities coalesced by the clique rules can also be coalesced
by the aggressive phase, only faster since it does not have to perform the check on
the weights of a� nities. Hence using the clique rule makes our optimistic algorithm
run more than 2� slower. We did not observe such a slowdown when creating new
graph description �les: in this latter case, the whole coalescing is faster than before,
taking also about 55 seconds instead of the initial hundred of seconds. This makes
us think that the de-coalescing phase of the former experiment probably takes a lot of
time de-coalescing a� nities coalesced by the clique rule (these can be cheaper than the
others which are coalesced in decreasing order of weights), which is obviously useless.
Concerning the quality of the coalescing, it does not help whenever the ordering was
already the best. However, as in the conservative case, it also helps whenever the

13For an a� nity hx; yi between two 6-cliques, Briggs and George check the degree of 12 nodes. The clique
rule also traverses 12 nodes but in the end, manages to coalesce 6 a� nities at a time, making it about 6 times
more e� ective.
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a� nity ordering is not very good. This con�rms our thought that the clique rule helps
reducing the disadvantages of having a bad ordering of a� nities with equal weight.

6.5.5.2 Use of optimal rules in aggressive coalescing

In the context of conservative coalescing, the “terminal” and “double terminal” rules
were never used. This is not a big surprise since it would require one variable (the
terminal node) to be simultaneously alive with at most only one other variable. But
originally, we thought of this rule while working on aggressive coalescing, in which
case it is possible to separate the graph in “webs,” as explained in Section 6.4.3, and
then candidates to be terminal nodes must have at most one neighborto which there
exists a path of a� nities(because they are in the same connected component in terms
of a� nities). In this aggressive context, the terminal rules are used and the following
table shows the statistics:

263 coalesced by “double terminal”
1,230 simpli�ed by “terminal”

954 simpli�ed and coalesced by “terminal”
91 coalesced by “clique” thanks to “terminal” rules

3:57� 105 coalesced by “clique”

As expected—because the requirements are stronger—the “double terminal” rule
is less used that the “terminal” rule. Since 1,230 a� nities were simpli�ed by the “ter-
minal” rule, 2,460 a� nities were in fact concerned (counting the a� nities that remains
in the graph), and in about 3=4 of the cases, the simpli�ed a� nity is the one that is
coalesced in the end. But keep in mind that the bias was set towards such results since,
with a� nities of equal weight, the remaining a� nity has cost zero and hence has few
chances of being coalesced (the only possibility being that another path of a� nities
is completely coalesced). The last line serves as a comparison and shows that the
“clique” rule is much more used than the terminal rules. Another experiment shows on
the previous line that using the terminal rules “activates” some more possibilities for
the clique rule, however, they are in very few number.

In terms of quality, we do not have the optimal solutions available for comparison.
We present the total cost of the a� nities not coalesced summed over all 474 graphs
on the table below. One can see that separating a� nities in webs is important for
aggressive coalescing, but, as expected, the terminal rules are not very useful. The
naïve strategy is the one used in our optimistic strategies. It coalesces a� nities one by
one as long as the two extremities do not interfere.

Cost Aggressive strategy
100.0% 30717277 Naïve
97.0% 29793964 Clique+ naïve
90.4% 27769320 Clique with webs+ naïve
90.35% 27754404 Clique and terminals with webs+ naïve

6.5.6 Quality conclusion of the experiments

In conclusion, without a better ordering for aggressive coalescing, or a better de-
coalescing part, our optimistic techniques do not reach the quality of our conservative
heuristics,Brute or Chordal . They indeed work better than the other techniques, in
other words, the non-conservative decisions taken by aggressive coalescing are hard
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