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Introduction

RESERVOIR CHARACTERIZATION :

The continuing process of integrating and interpreting geological, geophysical,
petrophysical, fluid and performance data to form a unified, consistent description of

a reservoir.

GEOMODELING :

Mathematical methods applied to the unified modeling of the topology, geometry,
and physical properties of geological objects
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" Introduction

General scientific objectives : Reservoir characterization

-Problem : Different scales and types of data (reservoir, seismic , wells, ...)

Added-Value of this Thesis

-Traditionnal reservoir characterization schemes use the geological grid.
-We developed methods directly based on the reservoir grid

o - - -
- et o T,

NB: Seismic data are
angle stacks in time domain

______
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" A Introduction

MODEL < —~ DATA
*Grid *Seismic ]
*Hydrocarbon [ *Wells
Reservoir

m Reservoir model validation

Seismic modeling from reservoir grid
Structural uncertainty impact on reservoir infilling

m Reservoir characterization alternatives

Gradual Deformation based Inversion
Petrophysical inversion by neural supervised classification
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= A Reservoir model validation
Seismic Modeling from Reservoir grids

Reservoir
Simulations [

. — E
. . et
Analysis and updating: “Hypothesis 1 =
Reservoir Simulations L s
and seismic response N . Seismic
vs. actual seismic —Hypothesis 2 = |+ \odeling ell
Validation
5
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" B Reservoir model validation

Structural uncertainty impact on reservoir infilling

m Reservoir grid must be
consistent with all available
data

m Errors due to Lol
Time to Depth conversion
Picking uncertainty

Seismic horizons
transformation into a 3D grid

e — "
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- — Reservoir characterization alternatives
Gradual deformation based Inversion - 1/2

Y(t) = Y,cos(t) + Y sin(t)

m Seismic data inversion at reservoir grid
scale

0 Y,

Initial realization Secondary realization

m (Geostatistical parameterization Ve

Random realization Yes

l Y(t) becomes Y,

- . . New Y,
m  Traditionnal inversion methods : Yo o
seismic scale is not compatible with Gonditionned reellzation

reservoir scale
Q]"OCGSS
m  This new method works directly in the
reservoir grid, with a minimisation Fitness reached ? w CONVERGENCE? [~

function i

STOP

»
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" S Reservoir characterization alternatives
[ ]
Gradual deformation based Inversion - 212

Initial Realization Final Realization Actual Realization
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" J Content

m Supervised Neural Classification — Methodology
Kohonen Self Organizing Maps
Data Preparation
m The Massive Modeling Approach
m Application on a clastic case study: Beta Field
Preliminary tests
Petrophysical Training
Seismic Training
Validation of results
m  Application on a carbonate case study: Gamma Field
Preliminary tests
Petrophysical Training
Seismic Training
Validation of results
m Concluding Remarks & Perspectives
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" J Content

m Supervised Neural Classification — Methodology
Kohonen Self Organizing Maps
Data Preparation
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0000 Kohonen Self Organizing Maps

m KSOM : unsupervised neural network
Looks for regularities and characteristics in a N-dimensionnal dataset
m  Comparison between neurons and samples based on trace correlation

X, @
AL 1D ma
m 2 phases: = v Pl
learning and classification : .
m A sample is given to the network | @
m The winning neuron is determined,| /
then updated for a better match with | | . | Winning
| g |
the sample &= heuron
Ly Wy |
|
Input | Output

m The output of the KSOM is
A model trace repartition map |
A fithess map

11
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" -«INNSipervised Neural Classification — Methodology

Problem : The training phase

-Well Logs do not provide a sufficient database to train the neural networks.

A training dataset is created from geostatistical simulation between wells.

PCA!

~F ik
Vraisemblance des traces classees aux traces synthetiques des puits

i

Well 3

Petrophysical . Geologlcal and |
discrimination petrophysical |
interpretation
fw’;f!'{’ﬁf

12
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Training set from Gradual 5 RREE
Simulations Constrained to RS -
Neural Network | A l‘“ ) DA
Wells . ‘ o e 1 ( 1
S i Analysis 1) ;5,:;:»‘\;{i

Classes determlnej by Neural Net

"'H|||I|I||I

|

Cumuated  |_Traces in ‘natural il WI\II\HIII\HI Il
Histogram of H Il
Correlation

13
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Petro Physical Analysis

Training set from Gradual

Simulations Constrained to {1
Neural Network |«

Analysis

Are model traces related to the
petrophysical parameters ?

Well 3

Well 4

Relationships between seismic training traces and pseudo wells are known

14
14th May 2009 — PhD Thesis Defense — Audrey NEAU



Training set from Gradual
Simulations Constrained to
Wells

Neural Network |5
Analysis |

aux races syr qu

g _ o e —
Ay i S
I " w
B L " .H-”."” - i .
- o e A '. ”
Al v Ery “ﬁl,ﬁph‘"m‘- i
s M § m.“,.*“"-\l' ™ 5 -

Fiy _,”"‘-hq."’i\.lqﬁ i,
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~ classification & T
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" Procedure

m Petroelastic logs for each well are blocked at geological scale while keeping
coherency with actual seismic data

m These logs are used to generate pseudo-logs by geostatistical interpolation between
wells

m Unsupervised classification is applied on the pseudo-logs or on the actual seismic date
m Validation of the classification

m Classes obtained in phase 2 are used to classify the other set of data
m Validation of the classification

16
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" J Procedure

m Classical way: Petrophysical training
Training the network on the Massive Modeling dataset
Classifying the actual seismic data

Validation through explanation rate i.e. how well the synthetics
represent the data

s Alternative: Seismic training
Training the network on the actual seismic data
Classifying the Massive Modeling dataset
Are all classes represented in the synthetics? (surjection)
Are there synthetics out of the seismic range? (injection)

Ideally we would like to have a bijection

17
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" ST Well Log Blocking & Optimization

Blocking : Optimization with respect to seismic data:
Decreasing the number of petrophysics parameters Thickness and property perturbation
Scale up to the stratigraphic resolution “Log Inversion” from initial blocking

s | Density P velocity Synthetic

R ]}

|AN_2734]
| R11gG-AlpMase |

| R1180-130 base | | | |

R1180-140_top
| Bhisgs| | |

| R1L8D-A50_tog |
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m The Massive Modeling Approach
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“Petro & Structural
perturbations

Input :

model Perturbed blocky

p,Vp,Vs models
(p,Vp,Vs)

Seismic CMP
gathers

Perturbations are applied on layer thickness and properties to blocked (at the
stratigraphic scale) wells in order to simulate the possible range of realizations of the

reservoir geology/petrophysics.

The importance of prestack massive seismic modeling for AVO calibration and seismic reservoir characterization P.
Julien, F. Pivot, A. Douillard, Y. El - Ouair, S. Toinet., SEG Expanded Abstracts 21, 1731(2002)
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- _ Massive Modeling: Sequential Gaussian Simulation

m 1D Sequential Gaussian Simulation
m Pseudo-spatial component
m 1D SGS for each parameter (layer 1 : thickness, Vp, Rho, ...)

Original Data _NormaI Scores Data

2502 T A20 M &
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" T Massive Modeling: pseudo log generation

Pseudo-logs are generated using geostatistical interpolation (SGS) conditioned by

actual wells. Thicknesses, velocities and densities are interpolated in a gradual way.

""WT #M W

Well 2

Synthetics are computed on the pseudo-well
population resulting in the training dataset.
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';IIIIIIIIIIIIII
mBeta Field :

~1Clastic model

“1IComplex geology

~1Sandy channels, shaly overburden

CIParticularity : high petrophysical
variability.

mGamma Field :

ICarbonate case
T« Layer-cake » geology

CJAlternation limestone / dolomite /
anhydrite

CIParticularities: small petrophysical
variability ; multiple just above the targeti:
reservoir.

14th May 2009 — PhD Thesis Defense — Audrey NEAU



" Content

m Application on a clastic case study: Beta Field
Well preparation & Preliminary tests
Petrophysical Training
Seismic Training
Validation of results
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'_ Beta Field: Database
m Beta Field : W-Betal ~ W-Beta5 ~W-Betaz ~W-Betad  W-Betad

1 5 wells
1 Target reservoir = 100ms _ S

N
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" «Beta Field: Well log blocking & optimization

TWT a b C d C f
3,287 I — . )
: e S j g Initial Blocking K Synthetic
—_— ] [ I
3,300 = [ aﬂ_q‘: Ej““~ h Optimal Blocking L
i = T = "ij?
== =T Wai _ Seismic data
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T = —t—
— _d.ﬁ
T I i
- 3,350 == |Lh — \
| g i
{;ﬂ;f— E;:k C::
g1 2| T
B4 ] L ) q )
-1 = :
3,400 ‘__ [ 'f
F | |
{:.;3__ i
3,426 P

26
14th May 2009 — PhD Thesis Defense — Audrey NEAU



" -=INNNN Beta Field: Massive Modeling

Training set used more than 80000 traces

Synthetics

™
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" A Beta Field : Preliminary tests

3 main parameters for the neural network:

mNumber of neurons constituting the map
Underfitted: non identified signal
Overfitted: explain noise in the data

m Neighborhood radius
Size of the active environment
At each iteration, neurons are updated within this radius

minterval thickness (in time)
Will affect the stability of the network
Empirical determination

28
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" R Beta Field : Test on interval thickness

Non supervised Classification Maps with interval thickness of 50ms and 180 ms

29
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" =N Beta Field: Petrophysical training

5,010 5,020 5,030 5,040
3,030 49,05
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% of traces matching fitness
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eta Field: Petrophysical training

Model trace likehood with the well synthetics
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Beta Field: Petrophysical training

iy

Neural Map Fithess

32
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Beta Field: Seismic training

2 2.5 km

15

2 2.5 km

1.5

Fithess

Neural Map
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"
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Beta Field: Seismic training
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" =B Beta Field: Map interpretation

Supervised map interpretation for the petrophysical training

Sedimentary shape recognition Structural content recognition
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" A Beta Field: Map interpretation

Supervised map interpretation for the seismic training

Sedimentary shape recognition Structural content recognition
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" J Content

m  Application on a carbonate case study: Gamma Field
Preliminary tests
Petrophysical Training
Seismic Training
Validation of results
|

37
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m Gamma Field :

112 wells
1 Target reservoir = 70ms
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" NNGamma Field: Well log blocking & optimization
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" =N Gamma Field: Massive Modeling

Training set used more than 80000 traces

Synthetics
P
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" T Gamma Field : Test on interval thickness

Non supervised Classification Maps with interval thickness of 50ms and 100 ms

41
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" -«EEEEN Gamma Field: Petrophysmal training
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' ma Field: Petrophysical training

Model trace likehood with the well synthetics - Se“:e'l
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Gamma Field: Petrophysical training

Neural Map Fithess

44
14th May 2009 — PhD Thesis Defense — Audrey NEAU



Gamma Field: Seismic training

4] 2 4 5 8 10 km
P e g —

Neural Map Fithess
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% of traces matching fitness
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Gamma Field: Seismic training
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" S Gamma Field: Map interpretation

Supervised map interpretation for the petrophysical training

Sedimentary shape recognition Structural content recognition

47
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" A Gamma Field: Map interpretation

Supervised map interpretation for the seismic training

Sedimentary shape recognition Structural content recognition

48
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" Content

m Conclusion on Neural Network Inversion
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= S Conclusion on Neural Network Inversion
Methodology:

= We have described a new approach for supervised classification of seismic
data for reservoir characterization

= Main difficulty of supervised classification : sparseness of the training
population:

m Solution: massive synthetic data created by geostatistical interpolation of well
log data.

m Choice of parameters is data-dependent
m Tools are available to guide the user

Case studies:
m Clastic case : success in petrophysical training to delineate geological bodies
m Carbonate case : success in seismic training to delinate main facies

Perspectives:

m Better representation of the geology in the training set

m  Automatic discrimination of classes according to reservoir properties
m  Working with seismic attributes instead of seismic amplitudes

50
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" A General conclusions
m Main contributions :

Reconcile the Reservoir grid with the Seismic data

Evaluation of the reservoir grid
s Compatibility Reservoir grid / seismic data
= Impact of reservoir uncertainties

Inversion of seismic data

m Inversion based on Gradual Deformation
Need more work, a lot of improvement are possible
- Slow, works on a part of the reservoir, one composant variogram
+ No upscaling of the attributes is required

= Conditional waveform recognition
Integrate the reservoir grid in the process
- Last step still missing (assigning petrophysical models to seismic traces)
+ Get the seismic information at the reservoir scale
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