

Caractérisation des réservoirs pétroliers par les données sismiques, avec l'aide de la géomodélisation

Thèse de doctorat présentée par Audrey Neau

Directeurs de thèse: B. De Voogd (Pr., UPPA) & P. Thore (Ingénieur, Total)

14 mai 2009

Introduction

RESERVOIR CHARACTERIZATION :

The continuing process of integrating and interpreting geological, geophysical, petrophysical, fluid and performance data to form a unified, consistent description of a reservoir.

GEOMODELING :

Mathematical methods applied to the unified modeling of the topology, geometry, and physical properties of geological objects

14th May 2009 - PhD Thesis Defense - Audrey NEAU

Introduction

General scientific objectives : Reservoir characterization

-Problem : Different scales and types of data (reservoir, seismic , wells, ...)

Added-Value of this Thesis

-Traditionnal reservoir characterization schemes use the geological grid. -We developed methods directly based on the reservoir grid

NB: Seismic data are angle stacks in time domain

Introduction

Reservoir model validation

- Seismic modeling from reservoir grid
- Structural uncertainty impact on reservoir infilling

Reservoir characterization alternatives

- Gradual Deformation based Inversion
- Petrophysical inversion by neural supervised classification

Reservoir model validation

Seismic Modeling from Reservoir grids

Reservoir Simulations

Actual seismic

Reservoir model validation

Structural uncertainty impact on reservoir infilling

 Reservoir grid must be consistent with all available data

Errors due to

- Time to Depth conversion
- Picking uncertainty
- Seismic horizons transformation into a 3D grid

Reservoir characterization alternatives

 $Y(t) = Y_0 cos(t) + Y_1 sin(t)$

- Seismic data inversion at reservoir grid scale
- Geostatistical parameterization
- Traditionnal inversion methods : seismic scale is not compatible with reservoir scale
- This new method works directly in the reservoir grid, with a minimisation function

Reservoir characterization alternatives

Gradual deformation based Inversion - 2/2

Supervised Neural Classification – Methodology

- Kohonen Self Organizing Maps
- Data Preparation

The Massive Modeling Approach

Application on a clastic case study: Beta Field

- Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results

Application on a carbonate case study: Gamma Field

- Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results

Concluding Remarks & Perspectives

Supervised Neural Classification – Methodology

- Kohonen Self Organizing Maps
- Data Preparation
- **The Massive Modeling Approach**
- Application on a clastic case study: Beta Field
- Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results
- Application on a carbonate case study: Gamma Field
- Preliminary tests
- Petrophysical Training
- □ Seismic Training
- Validation of results
- **Concluding Remarks & Perspectives**

Kohonen Self Organizing Maps

- KSOM : unsupervised neural network
- Looks for regularities and characteristics in a N-dimensionnal dataset
- Comparison between neurons and samples based on trace correlation
- 2 phases :
 - learning and classification
- A sample is given to the network
 The winning neuron is determined, then updated for a better match with the sample
- The output of the KSOM is
 - A model trace repartition map
 - □ A fitness map

Supervised Neural Classification – Methodology

Problem : The training phase

-Well Logs do not provide a sufficient database to train the neural networks.

A training dataset is created from geostatistical simulation between wells.

Non Supervised Classification of the training set

Petro Physical Analysis

Relationships between seismic training traces and pseudo wells are known

Supervised Classification of the actual data

14th May 2009 - PhD Thesis Defense - Audrey NEAU

Procedure

Phase 1 : Data preparation

- Petroelastic logs for each well are blocked at geological scale while keeping coherency with actual seismic data
- These logs are used to generate pseudo-logs by geostatistical interpolation between wells

Phase 2 : Training the neural network

Unsupervised classification is applied on the pseudo-logs or on the actual seismic date
 Validation of the classification

Phase 3 : Classification with the results from training

- Classes obtained in phase 2 are used to classify the other set of data
- Validation of the classification

Procedure

Classical way: Petrophysical training

- Training the network on the Massive Modeling dataset
- Classifying the actual seismic data
- Validation through explanation rate i.e. how well the synthetics represent the data

Alternative: Seismic training

- Training the network on the actual seismic data
- Classifying the Massive Modeling dataset
- Are all classes represented in the synthetics? (surjection)
- Are there synthetics out of the seismic range? (injection)

Ideally we would like to have a bijection

Well Log Blocking & Optimization

Blocking :

Decreasing the number of petrophysics parameters Scale up to the stratigraphic resolution

Optimization with respect to seismic data:

Thickness and property perturbation "Log Inversion" from initial blocking

- Supervised Neural Classification Methodology Kohonen Self Organizing Maps
 - Data Preparation

The Massive Modeling Approach

- **Application on a clastic case study: Beta Field**
- Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results
- Application on a carbonate case study: Gamma Field
- Preliminary tests
- Petrophysical Training
- □ Seismic Training
- Validation of results
- **Concluding Remarks & Perspectives**

Massive Modeling principle

Perturbations are applied on layer thickness and properties to blocked (at the stratigraphic scale) wells in order to simulate the possible range of realizations of the reservoir geology/petrophysics.

The importance of prestack massive seismic modeling for AVO calibration and seismic reservoir characterization P. Julien, F. Pivot, A. Douillard, Y. El - Ouair, S. Toinet., SEG Expanded Abstracts 21, 1731(2002)

14th May 2009 - PhD Thesis Defense - Audrey NEAU

- 1D Sequential Gaussian Simulation
- Pseudo-spatial component
- 1D SGS for each parameter (layer 1 : thickness, Vp, Rho, ...)

Massive Modeling: pseudo log generation

Pseudo-logs are generated using geostatistical interpolation (SGS) conditioned by actual wells. Thicknesses, velocities and densities are interpolated in a gradual way.

Synthetics are computed on the pseudo-well population resulting in the training dataset.

Case studies

Beta Field :

- Clastic model
- Complex geology
- Sandy channels, shaly overburden
- Particularity : high petrophysical variability.

Gamma Field :

- Carbonate case
- « Layer-cake » geology
- Alternation limestone / dolomite / anhydrite
- Particularities: small petrophysical variability ; multiple just above the target reservoir.

- Supervised Neural Classification Methodology
 - Kohonen Self Organizing Maps
 - Data Preparation
 - **The Massive Modeling Approach**

Application on a clastic case study: Beta Field

- Well preparation & Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results
- Application on a carbonate case study: Gamma Field
- Preliminary tests
- Petrophysical Training
- □ Seismic Training
- Validation of results
- **Concluding Remarks & Perspectives**

Beta Field: Database

Beta Field :

□ 5 wells

□ Target reservoir = 100ms

Beta Field: Massive Modeling

Training set used more than 80000 traces

14th May 2009 – PhD Thesis Defense – Audrey NEAU

Beta Field : Preliminary tests

3 main parameters for the neural network:

Number of neurons constituting the map Underfitted: non identified signal Overfitted: explain noise in the data

<u>Neighborhood radius</u>
 Size of the active environment
 At each iteration, neurons are updated within this radius

Interval thickness (in time) Will affect the stability of the network Empirical determination

Beta Field : Test on interval thickness

Non supervised Classification Maps with interval thickness of 50ms and 180 ms

Beta Field: Petrophysical training

14th May 2009 - PhD Thesis Defense - Audrey NEAU

Beta Field: Petrophysical training

Parameter	Layer	T0 avg	T0 std dev	T1 avg	T1 std dev	T2 avg	T2 std dev
Thickness	1	5.625	3.586	5.408	3.635	5.589	3.637
Thickness	2	8.224	4.82	8.47	4.986	8.358	4.846
RHOB_resampled_blocked2_best	1	2.263	0.05	2.262	0.05	2.263	0.049
RHOB_resampled_blocked2_best	2	2.244	0.09	2.234	0.092	2.238	0.092
VP_resampled_blocked2_best	1	2,303.646	258.515	2,282.568	266.702	2,307.944	256.789
VP_resampled_blocked2_best	2	2,255.442	163.553	2,239.616	156.02	2,256.437	163.371

Trace 1 Trace 2 □ Trace 3 Trace 4 Trace 5 Trace 6 Trace 7 Trace 8 Trace 9 Trace 10 □ Trace 11 Trace 12 Trace 13 Trace 14 Trace 15 Trace 16 Trace 17 Trace 18 □ Trace 19 □ Trace 20 Trace 21 Trace 22 Trace 23 Trace 24 Trace 25 Trace 26 Trace 27 Trace 28 Trace 29 Trace 30 Trace 31 Trace 32 Trace 33 Trace 34 Trace 35

Beta Field: Petrophysical training

Neural Map

Fitness

Beta Field: Seismic training

Neural Map

Fitness

Trace 35

14th May 2009 – PhD Thesis Defense – Audrey NEA

Beta Field: Map interpretation

Supervised map interpretation for the petrophysical training

Sedimentary shape recognition

Structural content recognition

Beta Field: Map interpretation

Supervised map interpretation for the seismic training

Sedimentary shape recognition

Structural content recognition

Content

- Supervised Neural Classification Methodology
 - Kohonen Self Organizing Maps
 - Data Preparation
 - The Massive Modeling Approach
 - Application on a clastic case study: Beta Field
 - Preliminary tests
 - Petrophysical Training
 - □ Seismic Training
 - Validation of results

Application on a carbonate case study: Gamma Field

- Preliminary tests
- Petrophysical Training
- Seismic Training
- Validation of results

Concluding Remarks & Perspectives

Gamma Field :

12 wells

14th May 2009 - Pl

□ Target reservoir = 70ms

Gamma Field: Massive Modeling

Training set used more than 80000 traces

14th May 2009 – PhD Thesis Defense – Audrey NEAU

Gamma Field : Test on interval thickness

Non supervised Classification Maps with interval thickness of 50ms and 100 ms

Gamma Field: Petrophysical training

14th May 2009 - PhD Thesis Defense - Audrey NEAU

Gamma Field: Petrophysical training

Parameter	Layer	T0 avg	T0 std dev	T1 avg	T1 std dev	T2 avg	T2 std dev	T3 avg	T3 std dev
Thickness	1	7.887	6.887	6.024	4.2	14.395	9.276	6.612	5.503
Thickness	2	4.755	4.848	2.906	2.453	6.218	5.675	1.953	2.519
RHO_resam	1	2.765	0.082	2.756	0.05	2.755	0.078	2.738	0.076
RHO_resam	2	2.682	0.073	2.653	0.041	2.683	0.06	2.645	0.064
Vp_resampl	1	5,700.421	245.757	5,687.309	150.244	5,586.66	262.739	5,385.271	248.571
Vp_resampl	2	5,847.324	322.966	5,901.429	197.275	5,994.325	293.835	5,808.403	297.603

■ Série2 ■ Série3 ■ Série4

Sório5

Série6

Série7

■Série8

Série9

Série10

Série12

Série13

Sóric14
 Série15

Série16

Série17

■Série18
■Série19

□ Série20 □ Série21

■Sóric22 ■Série23

Série24

Série25 Série26

Série27

Série29

Série30

Gamma Field: Petrophysical training

Neural Map

Fitness

Gamma Field: Seismic training

Neural Map

Fitness

Gamma Field: Seismic training

Gamma Field: Map interpretation

Supervised map interpretation for the petrophysical training

Sedimentary shape recognition

Structural content recognition

Gamma Field: Map interpretation

Supervised map interpretation for the seismic training

Sedimentary shape recognition Structural content recognition

Content

- Supervised Neural Classification Methodology
 - Kohonen Self Organizing Maps
 - Data Preparation
 - The Massive Modeling Approach
 - Application on a clastic case study: Beta Field
 - Preliminary tests
 - Petrophysical Training
 - Seismic Training
 - Validation of results
 - Application on a carbonate case study: Gamma field
 - Preliminary tests
 - Petrophysical Training
 - Seismic Training
 - Validation of results

Conclusion on Neural Network Inversion

Conclusion on Neural Network Inversion

Methodology:

- We have described a new approach for supervised classification of seismic data for reservoir characterization
- Main difficulty of supervised classification : sparseness of the training population:
- Solution: massive synthetic data created by geostatistical interpolation of well log data.
- Choice of parameters is data-dependent
- Tools are available to guide the user

Case studies:

- Clastic case : success in petrophysical training to delineate geological bodies
- Carbonate case : success in seismic training to delinate main facies

Perspectives:

- Better representation of the geology in the training set
- Automatic discrimination of classes according to reservoir properties
- Working with seismic attributes instead of seismic amplitudes

Main contributions :

Reconcile the Reservoir grid with the Seismic data

Evaluation of the reservoir grid

- Compatibility Reservoir grid / seismic data
- Impact of reservoir uncertainties

Inversion of seismic data

- Inversion based on Gradual Deformation
 - □ Need more work, a lot of improvement are possible
 - Slow, works on a part of the reservoir, one composant variogram
 - + No upscaling of the attributes is required
- Conditional waveform recognition
 - □ Integrate the reservoir grid in the process
 - Last step still missing (assigning petrophysical models to seismic traces)
 - + Get the seismic information at the reservoir scale