. Larrain, Solid oxide fuel cell stack simulation and optimization, including experimental validation and transient behaviour, thèse EPFL, pp.56-57, 2005.

. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, vol.45, issue.15-16, pp.2423-2435, 2000.
DOI : 10.1016/S0013-4686(00)00330-3

S. Isaacs, L. J. Olmer, E. J. Schouler, and C. Y. Yang, Electrode reactions at solid oxide electrodes, Solid State Ionics, pp.3-4, 1981.

I. C. Holtapels, L. G. Vinke, U. De-haart, and . Stimming, Reaction of Hydrogen/Water Mixtures on Nickel-Zirconia Cermet Electrodes: II. AC Polarization Characteristics, Journal of The Electrochemical Society, vol.146, issue.8, pp.2976-2982, 1999.
DOI : 10.1149/1.1392038

F. Simwonis, D. Tietz, and . Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells, Solid State Ionics, pp.241-251, 2000.

T. Aruna, M. Muthuraman, and K. C. , Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells, Solids State Ionics, pp.45-51, 1998.

B. Stiller, S. Thorud, Ø. Seljebø, H. Mathisen, O. Karoliessen et al., Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells, Journal of Power Sources, vol.141, issue.2, pp.227-240, 2005.
DOI : 10.1016/j.jpowsour.2004.09.019

S. Juhl, C. Primdahl, M. Manon, and . Mogensen, Performance/structure correlation for composite SOFC cathodes, Journal of Power Sources, vol.61, issue.1-2, pp.173-181, 1996.
DOI : 10.1016/S0378-7753(96)02361-0

. Kittel, Introduction to solid state physics, pp.389-392, 1971.

N. Mizusaki, H. Mori, Y. Takai, H. Yonemura, H. Minamiue et al., Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La 1-x Sr x MnO 3 , Solids State Ionics, pp.167-180, 2000.

W. Li, L. Schaefer, and M. K. Chyu, A Numerical Model Coupling the Heat and Gas Species??? Transport Processes in a Tubular SOFC, Journal of Heat Transfer, vol.126, issue.2, pp.219-229, 2004.
DOI : 10.1115/1.1667528

W. Kim, A. W. Virkar, K. Z. Fung, K. Metha, and S. C. Singhal, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.146, issue.1, pp.69-78, 1999.
DOI : 10.1149/1.1391566

F. Mougin and . Bruchon, Etude du comportement électrochimique en conditions sévères d'empilement SOFC 2 éme génération, 2007.

C. Tsang, J. B. Claridge, and M. L. Green, Recent advances in the conversion of methane to synthesis gas, Catalysis Today, vol.23, issue.1, pp.3-5, 1995.
DOI : 10.1016/0920-5861(94)00080-L

K. Ahmed and . Foger, Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells, Catalysis Today, vol.63, issue.2-4, pp.479-487, 2000.
DOI : 10.1016/S0920-5861(00)00494-6

J. Lehnert, F. Meusinger, and . Thom, Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

. Vulliet, Contribution à l'étude d'une pile à combustible SOFC alimentée en gaz naturel, 2004.

H. Koh, Y. S. Yoo, J. W. Park, and H. C. Lim, Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel, Proceedings of the Sixth European Solid Oxide Fuel Cell Forum, pp.157-166, 2002.
DOI : 10.1016/S0167-2738(02)00243-6

J. Vernoux, M. Guindet, and . Kleitz, Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells, Journal of The Electrochemical Society, vol.145, issue.10, pp.3487-3492, 1998.
DOI : 10.1149/1.1838832

R. Rostrup-nielsen, New aspects of syngas production and use, Catalysis today, pp.159-164, 2000.

S. A. Liu and . Barnett, Operation of anode supported solid oxide fuel cells on methane and natural gas, Solids State Ionics, pp.11-16, 2003.

L. Sauvet and J. Fouletier, Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature, Journal of Power Sources, vol.101, issue.2, pp.259-266, 2001.
DOI : 10.1016/S0378-7753(01)00763-7

P. Caillot, J. Gélin, G. Dailly, C. Gauthier, J. Cayron et al., Catalytic steam reforming of methane over La0.8Sr0.2CrO3 based Ru catalysts, Catalysis Today, vol.128, issue.3-4, pp.264-268, 2007.
DOI : 10.1016/j.cattod.2007.06.071

URL : https://hal.archives-ouvertes.fr/hal-00254912

G. Laurencin, C. Gauthier-du, . Drt, and . Liten, Etude de la chromite de lanthane dopée au strontium imprégnée d'un catalyseur de vapo-reformage, 2004.

J. C. Ovalle, J. Ruiz-morales, D. Canales-vázquez, J. T. Marrero-lopez, and . Irvine, Mn-substituted titanates as efficient anodes for direct methane SOFCs, Solid State Ionics, vol.177, issue.19-25, pp.1997-2003, 2006.
DOI : 10.1016/j.ssi.2006.06.014

J. M. Park, R. J. Vohs, and . Gorte, Direct oxidation of hydrocarbons in a solid oxide fuel cells, Nature, vol.404, pp.265-267, 2000.

J. T. Tao and . Irvine, Synthesis and Characterization of (La[sub 0.75]Sr[sub 0.25])Cr[sub 0.5]Mn[sub 0.5]O[sub 3?????], a Redox-Stable, Efficient Perovskite Anode for SOFCs, Journal of The Electrochemical Society, vol.151, issue.2, pp.252-259, 2004.
DOI : 10.1149/1.1639161

. Hagen, Solid oxide fuel cell development at Topsoe fuel cell A/S and Risø national laboratory, Proceedings of SOFC 10, pp.31-38, 2007.

M. Rosenberg, P. Zahid, and . Holtappels, Real-SOFC : A joint European effort in understanding SOFC degradation, Proceedings of SOFC X, ECS transaction, pp.67-76, 2007.

U. Tu and . Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells, Journal of Power Sources, vol.127, issue.1-2, pp.284-293, 2004.
DOI : 10.1016/j.jpowsour.2003.09.025

J. Larrain, D. Van-herle, and . Favrat, Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk, Journal of Power Sources, vol.161, issue.1, pp.392-403, 2006.
DOI : 10.1016/j.jpowsour.2006.04.151

N. Yokokawa, T. Sakai, M. Kawada, and . Dokiya, Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte, Solids State Ionics, pp.40-41, 1990.

C. Hsiao and J. R. Selman, The degradation of SOFC electrodes, Solids State Ionics, pp.33-38, 1997.

M. Taniguchi, H. Kadowaki, T. Kawamura, Y. Yasuo, Y. Akiyama et al., Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator, Journal of Power Sources, vol.55, issue.1, pp.73-79, 1995.
DOI : 10.1016/0378-7753(94)02172-Y

D. Hilpert, M. Das, D. H. Miller, R. Peck, and . Wei?, Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes, Journal of The Electrochemical Society, vol.143, issue.11, pp.3642-3647, 1996.
DOI : 10.1149/1.1837264

H. Menzler, L. G. Bert-de-haart, and D. Sebold, Charaterization of cathode chromium incorporation under various operationnal conditions, Proceedings of SOFC X, ECS transaction, pp.245-254, 2007.

I. Matsuzaki and . Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration, Solid State Ionics, vol.132, issue.3-4, pp.261-269, 2000.
DOI : 10.1016/S0167-2738(00)00653-6

S. Mougin, E. Ravel, M. De-vito, and . Petitjean, Influence of Fuel Contaminants on SOFC Operation: Effect on Performance and Degradation Mechanisms, ECS Transactions, pp.459-468, 2007.
DOI : 10.1149/1.2729124

Y. Yakabe, T. Baba, M. Sakurai, I. Satoh, Y. Hirosawa et al., Evaluation of residual stresses in a SOFC stack, Journal of Power Sources, vol.131, issue.1-2, pp.278-284, 2004.
DOI : 10.1016/j.jpowsour.2003.12.057

J. Fisher, G. Malzbender, R. W. Blass, and . Steinbrech, Residual stresses in planar solid oxide fuel cells, Journal of Power Sources, vol.150, pp.73-77, 2005.
DOI : 10.1016/j.jpowsour.2005.02.014

G. Selçuk, A. Merere, and . Atkinson, The influence of electrodes on the strength of planar zirconia solid oxide fuel cells, Journal of Materials Science, vol.36, issue.5, pp.1173-1182, 2001.
DOI : 10.1023/A:1004833909780

M. Selimovic, T. Kemm, M. Torisson, and . Assadi, Steady state and transient thermal stress analysis in planar solid oxide fuel cells, Journal of Power Sources, vol.145, issue.2, pp.463-469, 2005.
DOI : 10.1016/j.jpowsour.2004.11.073

C. Nakajo, G. Stiller, O. Härkegard, and . Bolland, Modeling of thermal stresses and probability of survival of tubular SOFC, Journal of Power Sources, vol.158, issue.1, pp.287-294, 2006.
DOI : 10.1016/j.jpowsour.2005.09.004

J. Becker, H. M. Wenck, A. Wigger, and . Müller, On the mechanical demands of an SOFC stack under service, Proceedings of the Sixth European Solid Oxide Fuel Cell Forum, pp.609-616, 2004.

M. Apfel, H. Rzepka, U. Tu, and . Stimming, Thermal start-up behaviour and thermal management of SOFC's, J. of Power Sources, pp.370-378, 2006.

S. Dueck, C. Benhaddad, O. Brown, J. Grande, T. Kelsall et al., Stack Testing Summary - Versa Power Systems, ECS Transactions, pp.95-104, 2007.
DOI : 10.1149/1.2729078

C. Klemenso, P. H. Chung, M. Larsen, and . Mogensen, The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs, Journal of The Electrochemical Society, vol.152, issue.11, pp.2186-2192, 2005.
DOI : 10.1149/1.2048228

A. Waldbillig, D. G. Wood, and . Ivey, Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes, Solids State Ionics, pp.847-859, 2005.

G. Cassidy, K. Lindsay, and . Kendall, The reduction of nickel???zirconia cermet anodes and the effects on supported thin electrolytes, Journal of Power Sources, vol.61, issue.1-2, pp.189-192, 1996.
DOI : 10.1016/S0378-7753(96)02359-2

A. Waldbillig, D. G. Wood, and . Ivey, Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes, Journal of Power Sources, vol.145, issue.2, pp.206-215, 2005.
DOI : 10.1016/j.jpowsour.2004.12.071

Y. Liu, B. Zhang, Y. Tu, M. Don, and . Cheng, Electrochemical impedance investigation of the redox behaviour of a Ni???YSZ anode, Journal of Power Sources, vol.165, issue.1, pp.114-119, 2007.
DOI : 10.1016/j.jpowsour.2006.11.052

R. A. Sarantaridis, A. Rudkin, . Atkinson, E. Leguillon, and . Sanchez-palencia, On the redox cycling of anode supported SOFCs : mechanical properties and damage mechanisms Computation of singular solutions in elliptic problems and elasticity, Proceedings of SOFC X, ECS transaction, pp.1491-1499, 1987.

J. Morel, Y. Laurencin, F. Bultel, and . Lefebvre-joud, Anode-Supported SOFC Model Centered on the Direct Internal Reforming, Journal of The Electrochemical Society, vol.152, issue.7, pp.1382-1389, 2005.
DOI : 10.1149/1.1922909

URL : https://hal.archives-ouvertes.fr/hal-00386435

F. Laurencin, G. Lefebvre-joud, and . Delette, Impact of cell design and operating conditions on the performances of SOFC fuelled with methane, Journal of Power Sources, vol.177, issue.2, pp.355-368, 2008.
DOI : 10.1016/j.jpowsour.2007.11.099

B. Laurencin, Y. Morel, F. Bultel, and . Lefebvre-joud, Thermo-Mechanical Model of Solid Oxide Fuel Cell Fed with Methane, Fuel Cells, vol.22, issue.1, pp.64-70, 2006.
DOI : 10.1002/fuce.200500096

URL : https://hal.archives-ouvertes.fr/hal-00333536

. Vulliet, Contribution à l'étude d'une pile à combustible SOFC alimentée en gaz naturel, 2004.

. Morel, Mesure de perméation et de diffusion à l'hélium sur des électrolytes céramiques pour SOFC, 2008.

B. Adler, Mechanism and kinetics of oxygen reduction on porous La 1-x Sr x CoO 3-? electrodes, Solids State Ionics, pp.125-134, 1998.

P. Costamagna, V. Costa, and . Antonucci, Micro-modelling of solid oxide fuel cell electrodes, Electrochimica Acta, vol.43, issue.3-4, pp.375-394, 1998.
DOI : 10.1016/S0013-4686(97)00063-7

L. J. Mitterdorfer and . Gauckler, Identification of the reaction mechanism of the Pt, O 2 (g)/yttria stabilized zirconia system Part I: General framework, modelling and structural investigation, Solids State Ionics, pp.187-202, 1999.

L. J. Mitterdorfer and . Gauckler, Identification of the reaction mechanism of the Pt, O 2 (g)/yttria stabilized zirconia system Part II: Model implementation, parameter estimation and validation, Solids State Ionics, pp.203-217, 1999.

Y. Deseure, L. Bultel, E. Dessemond, and . Siebert, Modelling of dc and ac responses of planar mixed conducting oxygen electrode, Solids State Ionics, pp.235-244, 2005.

Y. Deseure, L. Bultel, E. Dessemond, and . Siebert, Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta, vol.50, issue.10, pp.2037-2046, 2005.
DOI : 10.1016/j.electacta.2004.09.012

URL : https://hal.archives-ouvertes.fr/hal-00417212

L. J. Bieberle and . Gauckler, Reaction mechanism of Ni pattern anodes for solid oxide fuel cells, Solids State Ionics, pp.337-345, 2000.

W. G. Bessler, S. Gewies, and M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta, vol.53, issue.4, pp.1782-1800, 2007.
DOI : 10.1016/j.electacta.2007.08.030

A. Nagata, T. Momma, Y. Kato, and . Kasuga, Numerical analysis of output characteristics of tubular SOFC with internal reformer, Journal of Power Sources, vol.101, issue.1, pp.60-71, 2001.
DOI : 10.1016/S0378-7753(01)00547-X

M. K. Li and . Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources, vol.124, issue.2, pp.487-498, 2003.
DOI : 10.1016/j.jpowsour.2003.06.001

P. Campanari and . Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry, Journal of Power Sources, vol.132, issue.1-2, pp.113-126, 2004.
DOI : 10.1016/j.jpowsour.2004.01.043

B. Stiller, S. Thorud, Ø. Seljebø, H. Mathisen, O. Karoliessen et al., Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells, Journal of Power Sources, vol.141, issue.2, pp.227-240, 2005.
DOI : 10.1016/j.jpowsour.2004.09.019

R. Sánchez, A. Chacarteguei, T. Muñoz, and . Sánchez, Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry, Journal of Power Sources, vol.160, issue.2, pp.1074-1087, 2006.
DOI : 10.1016/j.jpowsour.2006.02.098

M. Klein, Y. Bultel, S. Georges, and M. Pons, Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming, Chemical Engineering Science, vol.62, issue.6, pp.1636-1649, 2007.
DOI : 10.1016/j.ces.2006.11.034

URL : https://hal.archives-ouvertes.fr/hal-00196340

J. Lehnert, F. Meusinger, and . Thom, Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

L. G. Ackmann, W. De-haart, and D. Lehnert, Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs, Journal of The Electrochemical Society, vol.150, issue.6, pp.783-789, 2003.
DOI : 10.1149/1.1574029

C. S. Aguiar, N. P. Adjiman, and . Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance, Journal of Power Sources, vol.138, issue.1-2, pp.120-136, 2004.
DOI : 10.1016/j.jpowsour.2004.06.040

J. Morel, Y. Laurencin, F. Bultel, and . Lefebvre-joud, Anode-Supported SOFC Model Centered on the Direct Internal Reforming, Journal of The Electrochemical Society, vol.152, issue.7, pp.1382-1389, 2005.
DOI : 10.1149/1.1922909

URL : https://hal.archives-ouvertes.fr/hal-00386435

-. Chyou, T. Chung, J. Chen, and R. Shie, Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell, Journal of Power Sources, vol.139, issue.1-2, pp.126-140, 2005.
DOI : 10.1016/j.jpowsour.2004.07.001

J. Larrain, F. Van-herle, D. Maréchal, and . Favrat, Thermal modeling of a small anode supported solid oxide fuel cell, Journal of Power Sources, vol.118, issue.1-2, pp.367-374, 2003.
DOI : 10.1016/S0378-7753(03)00102-2

J. Larrain, F. Van-herle, D. Maréchal, and . Favrat, Generalized model of planar SOFC repeat element for design optimization, Journal of Power Sources, vol.131, issue.1-2, pp.304-312, 2004.
DOI : 10.1016/j.jpowsour.2003.11.088

T. and J. B. Young, Thermodynamic and transport properties of gases for use in solid oxide fuel cells, J. Power Sources, vol.110, pp.186-200, 2002.

J. Girona, B. Laurencin, M. Morel, Y. Petitjean, F. Bultel et al., Solid oxide fuel cell operated under bio-gas: simulation and experimentation, Proceedings of the Seventh European Solid Oxide Fuel Cell Forum

M. Primdhal and . Mogensen, Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes, Journal of The Electrochemical Society, vol.144, issue.10, pp.3439-3418, 1997.
DOI : 10.1149/1.1838026

W. Kim, A. W. Virkar, K. Z. Fung, K. Metha, and S. C. Singhal, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.146, issue.1, pp.69-78, 1999.
DOI : 10.1149/1.1391566

L. Damn and A. Fedorov, Radiation heat transfer in SOFC materials and components, J. Power Sources, vol.143, pp.158-165, 2005.

A. Greene, C. C. Finfrock, and T. F. Irvine, Total hemispherical emissivity of oxidized Inconel 718 in the temperature range 300-1000°C, Experimental Thermal and Fluid Science, pp.145-153, 2000.

E. Leguillon and . Sanchez-palencia, Computation of singular solutions in elliptic problems and elasticity, 1987.

A. Atkinson and . Selçuk, Residual stress and fracture of laminated ceramic membranes, Acta Materialia, vol.47, issue.3, pp.867-874, 1999.
DOI : 10.1016/S1359-6454(98)00412-1

G. Selçuk, A. Merere, and . Atkinson, The influence of electrodes on the strength of planar zirconia solid oxide fuel cells, Journal of Materials Science, vol.36, issue.5, pp.1173-1182, 2001.
DOI : 10.1023/A:1004833909780

A. Sarantaridis and . Atkinson, Mechanical modeling of redox cycling damage in solid oxide fuel cells, In the 7 th European Fuel Cell Forum, p.728, 2006.

C. Nakajo, G. Stiller, O. Härkegard, and . Bolland, Modeling of thermal stresses and probability of survival of tubular SOFC, Journal of Power Sources, vol.158, issue.1, pp.287-294, 2006.
DOI : 10.1016/j.jpowsour.2005.09.004

M. Selimovic, T. Kemm, M. Torisson, and . Assadi, Steady state and transient thermal stress analysis in planar solid oxide fuel cells, Journal of Power Sources, vol.145, issue.2, pp.463-469, 2005.
DOI : 10.1016/j.jpowsour.2004.11.073

J. Fisher, G. Malzbender, R. W. Blass, and . Steinbrech, Residual stresses in planar solid oxide fuel cells, Journal of Power Sources, vol.150, pp.73-77, 2005.
DOI : 10.1016/j.jpowsour.2005.02.014

T. Yokokawa, Horita in High temperatures solid oxide fuel cells, p.142, 2003.

J. Jorgensen and M. Mogensen, Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes, Journal of The Electrochemical Society, vol.148, issue.5, pp.433-442, 2001.
DOI : 10.1149/1.1360203

C. Klemenso, P. H. Chung, M. Larsen, and . Mogensen, The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs, Journal of The Electrochemical Society, vol.152, issue.11, pp.2186-2192, 2005.
DOI : 10.1149/1.2048228

A. Waldbillig, D. G. Wood, and . Ivey, Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes, Solids State Ionics, pp.847-859, 2005.

G. Cassidy, K. Lindsay, and . Kendall, The reduction of nickel???zirconia cermet anodes and the effects on supported thin electrolytes, Journal of Power Sources, vol.61, issue.1-2, pp.189-192, 1996.
DOI : 10.1016/S0378-7753(96)02359-2

D. Stathis, F. Simwonis, A. Tietz, and . Moropoulou, Oxidation and Resulting Mechanical Properties of Ni/8Y2O3-stabilized Zirconia Anode Substrate for Solid-oxide Fuel Cells, Journal of Materials Research, vol.17, issue.05, pp.951-958, 2002.
DOI : 10.1039/tf9524800916

. Weibull, A statistical distribution function for wide applicability, J. Appl. Mech, vol.18, issue.3, pp.293-297, 1951.

K. D. Towse, M. R. Potter, R. D. Wisnom, and . Adams, The sensitivity of a Weibull failure criterion to singularity strength and local geometry variations, International Journal of Adhesion and Adhesives, vol.19, issue.1, pp.71-87, 1999.
DOI : 10.1016/S0143-7496(98)00058-X

E. Evans, Stress effects in high temperature oxidation of metals, International Materials Reviews, vol.40, issue.1, pp.1-40, 1995.
DOI : 10.1179/imr.1995.40.1.1

G. Charalambides, J. Lund, A. G. Evans, and R. M. Mcmeeking, A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces, Journal of Applied Mechanics, vol.56, issue.1, pp.77-82, 1989.
DOI : 10.1115/1.3176069

M. Hofinger, H. A. Oechsner, M. V. Bahr, and . Swain, Modified four-point bending specimen for determining the interface fracture energy for thin, britlle layers, International Journal of Fracture, vol.92, issue.3, pp.213-220, 1998.
DOI : 10.1023/A:1007530932726

G. Delette, J. Huchet, and . Laurencin, Etude des sollicitations aux interfaces d'un empilement de couches minces -Application à la mesure d'adhérence par la technique de flexion 4 points, 18 éme Congrès Français de Mécanique, 2007.

A. Yamasaki, A. Schmidt, and . Scholz, The determination of delamination resistance in thermal barrier coating system by four-point bending tests, Surface and coatings Tech, pp.744-754, 2006.

X. Xie, M. Zhang, R. Robertson, D. Maric, and . Ghosh, Measurement of the interface adhesion of solid oxide fuel cells by indentation, Journal of Power Sources, vol.162, issue.1, pp.436-443, 2006.
DOI : 10.1016/j.jpowsour.2006.07.034

D. Nishikawa, S. Ogawa, H. Honda, and . Awaji, Mechanical and Electrical Properties of Porous Lanthanum Strontium Manganite at Operating Temperature, Journal of the Society of Materials Science, Japan, vol.52, issue.6, pp.587-591, 2003.
DOI : 10.2472/jsms.52.587

S. Fehringer, M. Janes, R. Wildersohn, and . Clasen, Proton???conducting ceramics as electrode/electrolyte???materials for SOFCs: Preparation, mechanical and thermal-mechanical properties of thermal sprayed coatings, material combination and stacks, Journal of the European Ceramic Society, vol.24, issue.5, pp.705-715, 2004.
DOI : 10.1016/S0955-2219(03)00262-0

A. Selçuk and . Atkinson, Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC), Journal of the European Ceramic Society, vol.17, issue.12
DOI : 10.1016/S0955-2219(96)00247-6

B. Doyer, Caractérisation de l'endommagement des matériaux constitutifs d'une pile à combustible à oxydes solides (SOFC), Stage 2 éme année ENSEEG, 2007.

C. Cao and A. G. Evans, An experimental study of the fracture resistance of bimaterial interfaces, Mechanics of Materials, vol.7, issue.4, pp.295-304, 1989.
DOI : 10.1016/0167-6636(89)90020-3

S. Wang and Z. Suo, Experimental determination of interfacial toughness curves using brazil-nutsandwiches , Acta metallurgica mater, pp.1279-1290, 1990.

M. Liechti and Y. S. Chai, Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear, Journal of Applied Mechanics, vol.59, issue.2, pp.295-304, 1992.
DOI : 10.1115/1.2899520

P. O. Dowd, M. G. Stout, and C. F. Shih, Fracture toughness of alumina-niobium interfaces: experiments and analyses, Philosophical magazine A, pp.1037-1064, 1992.

. Laurencin, Amorçage et propagation d'une fissure à l'interface d'un bi-matériau, 2002.

P. L. Matos, R. M. Mc-meeking, P. G. Charalambides, and M. D. Drory, A method for calculating stress intensities in bimaterial fracture, International Journal of Fracture, vol.56, issue.4, pp.235-254, 1989.
DOI : 10.1007/BF00963659

F. Laurencin, G. Lefebvre-joud, and . Delette, Impact of cell design and operating conditions on the performances of SOFC fuelled with methane, Journal of Power Sources, vol.177, issue.2, pp.355-368, 2008.
DOI : 10.1016/j.jpowsour.2007.11.099

Y. Yamamoto, R. Takeda, M. Kanno, and . Noda, Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells, Solid State Ionics, pp.241-246, 1987.

W. Kim, A. W. Virkar, K. Z. Fung, K. Metha, and S. C. Singhal, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.146, issue.1, pp.69-78, 1999.
DOI : 10.1149/1.1391566

M. K. Li and . Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources, vol.124, issue.2, pp.487-498, 2003.
DOI : 10.1016/j.jpowsour.2003.06.001

C. S. Aguiar, N. P. Adjiman, and . Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance, Journal of Power Sources, vol.138, issue.1-2, pp.120-136, 2004.
DOI : 10.1016/j.jpowsour.2004.06.040

M. D. Hernàndez-pacheco, P. N. Mann, D. Hutton, K. E. Singh, and . Martin, A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process, International Journal of Hydrogen Energy, vol.30, issue.11, pp.1221-1223, 2005.
DOI : 10.1016/j.ijhydene.2005.04.056

W. Fergus, Metallic interconnects for solid oxide fuel cells, Materials Science and Engineering: A, vol.397, issue.1-2, pp.271-283, 2005.
DOI : 10.1016/j.msea.2005.02.047

J. Lehnert, F. Meusinger, and . Thom, Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

. Vulliet, Contribution à l'étude d'une pile à combustible SOFC alimentée en gaz naturel, 2004.

W. Drescher, J. Lehnert, and . Meusinger, Structural properties of SOFC anodes and reactivity, Electrochimica Acta, vol.43, issue.19-20, pp.3059-3068, 1998.
DOI : 10.1016/S0013-4686(98)00046-2

J. Lehnert, E. Meusinger, U. Riensche, and . Stimming, Time dependence of methane steam reforming on nickel cermet anodes, Proceedings of the Second European Solid Oxide Fuel Cell Forum, pp.143-152, 1996.

F. Mougin and . Bruchon, Etude du comportement électrochimique en conditions sévères d'empilement SOFC 2 éme génération, 2007.

F. Fourmigué, Simulation du comportement thermique de chaudière? Eléments de dimensionnement des échangeurs, Note Technique CEA/DTS N°009, 14 Combustibles gazeux et principes de la combustion, 1992.

J. Larrain, D. Van-herle, and . Favrat, Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk, Journal of Power Sources, vol.161, issue.1, pp.392-403, 2006.
DOI : 10.1016/j.jpowsour.2006.04.151

A. V. Jiang and . Virkar, Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs, Journal of The Electrochemical Society, vol.150, issue.7, pp.942-951, 2003.
DOI : 10.1149/1.1579480

. Vernoux, Reformage interne progressif du méthane dans les piles à combustible à oxyde électrolyte solide, thèse INPG, pp.49-50, 1998.

J. Lehnert, F. Meusinger, and . Thom, Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

C. S. Aguiar, N. P. Adjiman, and . Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance, Journal of Power Sources, vol.138, issue.1-2, pp.120-136, 2004.
DOI : 10.1016/j.jpowsour.2004.06.040

M. Klein, Y. Bultel, S. Georges, and M. Pons, Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming, Chemical Engineering Science, vol.62, issue.6, pp.1636-1649, 2007.
DOI : 10.1016/j.ces.2006.11.034

URL : https://hal.archives-ouvertes.fr/hal-00196340

J. Larrain, D. Van-herle, and . Favrat, Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk, Journal of Power Sources, vol.161, issue.1, pp.392-403, 2006.
DOI : 10.1016/j.jpowsour.2006.04.151

C. Klemenso, P. H. Chung, M. Larsen, and . Mogensen, The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs, Journal of The Electrochemical Society, vol.152, issue.11, pp.2186-2192, 2005.
DOI : 10.1149/1.2048228

M. Smeacetto, M. Salvo, V. Ferraris, P. Casalegno, and . Asinari, Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells, Journal of the European Ceramic Society, vol.28, issue.3, pp.611-616, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.07.008

S. Müller, W. Goswami, D. Becker, L. G. Stolten, R. W. Bert-de-haart et al., Critical cracks in the vicinity of sealing joints, Proceedings of the Sixth European Solid Oxide Fuel Cell Forum, pp.339-352, 2004.

R. W. Steinberger-wilckens and . Steinbrech, Overview of the Development of Solid Oxide Fuel Cells at Forschungszentrum Juelich, Proceedings of SOFC IX, pp.39-47, 2005.
DOI : 10.1111/j.1744-7402.2006.02102.x

C. M. Buljalski and K. Dikwal, Cycling of three solid oxide fuel cell types, Journal of Power Sources, vol.171, issue.1, pp.96-100, 2007.
DOI : 10.1016/j.jpowsour.2007.01.029

J. T. Tao and . Irvine, Synthesis and Characterization of (La[sub 0.75]Sr[sub 0.25])Cr[sub 0.5]Mn[sub 0.5]O[sub 3?????], a Redox-Stable, Efficient Perovskite Anode for SOFCs, Journal of The Electrochemical Society, vol.151, issue.2, pp.252-259, 2004.
DOI : 10.1149/1.1639161

G. Delette, H. Giraud, and C. Lev, Investigation of the electrolyte robustness, p.35, 2008.

D. El-koury, M. Haigh, C. Harrington, R. Kidd, G. Leah et al., Stacks and system based around metal supported SOFCs operating at 500-600°C, Proceedings of SOFC IX, the Electrochemical Soc, pp.113-122, 2005.

B. Matus, L. C. De-jonghe, C. P. Jacobson, and S. J. Visco, Metal-supported solid oxide fuel cell membranes for rapid thermal cycling, Solid State Ionics, vol.176, issue.5-6, pp.443-449, 2005.
DOI : 10.1016/j.ssi.2004.09.056

D. Aguiar, L. Chadwick, and . Kershenbaum, Modelling of an indirect internal reforming solid oxide fuel cell, Chemical Engineering Science, vol.57, issue.10, pp.1665-1667, 2002.
DOI : 10.1016/S0009-2509(02)00058-1

R. Damani, R. Gstrein, and . Danzer, Critical notch-root radius effect in SENB-S fracture toughness testing, Journal of the European Ceramic Society, vol.16, issue.7, pp.695-702, 1996.
DOI : 10.1016/0955-2219(95)00197-2

E. Kübler and . Tc6, Round robin on fracture toughness of ceramics using the SEVNB method, Vamas report No. 37, ESIS Document D2-99, sept, 1999.

T. Hertel, D. Fett, and . Munz, Strength predictions for notched alumina specimens, Journal of the European Ceramic Society, vol.18, issue.4, pp.329-338, 1998.
DOI : 10.1016/S0955-2219(97)00137-4

K. D. Towse, M. R. Potter, R. D. Wisnom, and . Adams, The sensitivity of a Weibull failure criterion to singularity strength and local geometry variations, International Journal of Adhesion and Adhesives, vol.19, issue.1, pp.71-87, 1999.
DOI : 10.1016/S0143-7496(98)00058-X

M. Afferante, E. Ciavarella, and . Valenza, Is Weibull???s modulus really a material constant? Example case with interacting collinear cracks, International Journal of Solids and Structures, vol.43, issue.17, pp.5147-5157, 2006.
DOI : 10.1016/j.ijsolstr.2005.08.002

P. O. Dowd, Y. Lei, and E. P. Busso, Prediction of cleavage failure probabilities using the Weibull stress, Engineering Fracture Mechanics, vol.67, issue.2, pp.87-100, 2000.
DOI : 10.1016/S0013-7944(00)00051-5

. Lamon, Statistical Approaches to Failure for Ceramic Reliability Assessment, Journal of the American Ceramic Society, vol.60, issue.3, pp.106-112, 1988.
DOI : 10.1111/j.1151-2916.1988.tb05825.x

G. Evans, A General Approach for the Statistical Analysis of Multiaxial Fracture, Journal of the American Ceramic Society, vol.381, issue.3, pp.302-308, 1977.
DOI : 10.1016/0079-6425(76)90006-2

. Matsuo, A Probabilistic Analysis of the Brittle Fracture Loci under Bi-axial Stress State : 1st Report, in the case of tension being dominant, Bulletin of JSME, vol.24, issue.188, pp.290-294, 1981.
DOI : 10.1299/jsme1958.24.290

G. Laurencin, M. Delette, and . Dupeux, An estimation of ceramic fracture at singularities by a statistical approach, Journal of the European Ceramic Society, vol.28, issue.1, pp.1-13, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.06.003

URL : https://hal.archives-ouvertes.fr/hal-00141083

. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech, vol.18, issue.3, pp.293-297, 1951.

J. B. Wachtman, Mechanical properties of ceramics, pp.89-115, 1996.
DOI : 10.1002/9780470451519

B. Batdorf and J. G. Crose, A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses, Journal of Applied Mechanics, vol.41, issue.2, pp.459-465, 1974.
DOI : 10.1115/1.3423310

K. Kassir and G. C. Sih, Three-Dimensional Stress Distribution Around an Elliptical Crack Under Arbitrary Loadings, Journal of Applied Mechanics, vol.33, issue.3, pp.33-601, 1966.
DOI : 10.1115/1.3625127

A. Thiemeier, H. Brückner-foit, and . Kölker, Influence of the Fracture Criterion on the Failure Prediction of Ceramics Loaded in Biaxial Flexure, Journal of the American Ceramic Society, vol.11, issue.2, pp.74-122, 1991.
DOI : 10.1016/0013-7944(81)90116-8

T. Brückner-foit, K. Fett, D. Schirmer, . Munz, E. Leguillon et al., Discrimination of multiaxiality criteria using brittle fracture loci, Journal of the European Ceramic Society, vol.16, issue.11, pp.1201-1207, 1987.
DOI : 10.1016/0955-2219(96)00055-6

L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in tension, J. Appl. Mech, vol.19, pp.526-528, 1952.

N. P. Lei, E. P. O-'dowd, G. A. Busso, and . Webster, Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials, International Journal of Fracture, vol.89, issue.3, pp.245-268, 1998.
DOI : 10.1023/A:1007435927306

P. Filippi, R. Lazzarin, and . Tovo, Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, International Journal of Solids and Structures, vol.39, issue.17, pp.4543-4565, 2002.
DOI : 10.1016/S0020-7683(02)00342-6

P. Atzori, S. Lazzarin, and . Filippi, Cracks and notches: analogies and differences of the relevant stress distributions and practical consequences in fatigue limit predictions, International Journal of Fatigue, vol.23, issue.4, pp.355-362, 2001.
DOI : 10.1016/S0142-1123(00)00107-9

A. Atkinson and . Selçuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes, Solid State Ionics, pp.59-66, 2000.

A. Selçuk and . Atkinson, Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia, Journal of the American Ceramic Society, vol.15, issue.1-2, pp.2029-2035, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01507.x

D. Picard, C. Leguillon, and . Putot, A method to estimate the influence of the notch-root radius on the fracture toughness measurement of ceramics, Journal of the European Ceramic Society, vol.26, issue.8, pp.1421-1427, 2006.
DOI : 10.1016/j.jeurceramsoc.2005.02.016

A. Fischer, R. Waindich, and . Telle, Influence of preparation of ceramic SEVNB specimens on fracture toughness testing results, Dental Materials, vol.24, issue.5, pp.618-622, 2008.
DOI : 10.1016/j.dental.2007.06.021

V. Rocha, C. Albano, and C. , Effect of Notch-Root Radius on the Fracture Toughness of Composite Si<SUB>3</SUB>N<SUB>4</SUB> Ceramics, Journal of Materials Engineering and Performance, vol.15, issue.5, pp.591-595, 2006.
DOI : 10.1361/105994906X136106

D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, Seconde édition, pp.783-785, 1976.

L. Anderson, Fracture Mechanics, fundamentals and applications, pp.38-41, 1995.

A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1920.
DOI : 10.1098/rsta.1921.0006

. Leguillon, Strength or toughness? A criterion for crack onset at a notch, Euro. J. of Mechanics A/solids reforming solid oxide fuel. Model-based steady state performance, J. Power Sources, vol.21, issue.138, pp.61-72, 2002.

M. D. Hernàndez-pacheco, P. N. Mann, D. Hutton, K. E. Singh, and . Martin, A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process, International Journal of Hydrogen Energy, vol.30, issue.11, pp.1221-1223, 2005.
DOI : 10.1016/j.ijhydene.2005.04.056

. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, vol.45, issue.15-16, pp.2423-2435, 2000.
DOI : 10.1016/S0013-4686(00)00330-3

J. Lehnert, F. Meusinger, and . Thom, Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

J. Girona, B. Laurencin, M. Morel, Y. Petitjean, F. Bultel et al., Solid oxide fuel cell operated under bio-gas: simulation and experimentation, Proceedings of the Seventh European Solid Oxide Fuel Cell Forum

M. Klein, Y. Bultel, S. Georges, and M. Pons, Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming, Chemical Engineering Science, vol.62, issue.6, pp.1636-1649, 2007.
DOI : 10.1016/j.ces.2006.11.034

URL : https://hal.archives-ouvertes.fr/hal-00196340

J. Larrain, F. Van-herle, D. Maréchal, and . Favrat, Generalized model of planar SOFC repeat element for design optimization, Journal of Power Sources, vol.131, issue.1-2, pp.304-312, 2004.
DOI : 10.1016/j.jpowsour.2003.11.088

E. Radovic and . Lara-curzio, Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen, Acta Materialia, vol.52, issue.20, pp.5747-5756, 2004.
DOI : 10.1016/j.actamat.2004.08.023

E. Radovic and . Lara-curzio, Elastic Properties of Nickel-Based Anodes for Solid Oxide Fuel Cells as a Function of the Fraction of Reduced NiO, Journal of the American Ceramic Society, vol.29, issue.12, pp.2242-2246, 2004.
DOI : 10.1111/j.1151-2916.2004.tb07499.x

. Tietz, Thermal expansion of SOFC materials, Ionics, vol.106, issue.115, pp.129-139, 1999.
DOI : 10.1007/BF02375916

A. Atkinson and . Selçuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes, Solids State Ionics, pp.59-66, 2000.

T. Aruna, M. Muthuraman, and K. C. , Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells, Solids State Ionics, pp.45-51, 1998.

D. Nishikawa, S. Ogawa, H. Honda, and . Awaji, Mechanical and Electrical Properties of Porous Lanthanum Strontium Manganite at Operating Temperature, Journal of the Society of Materials Science, Japan, vol.52, issue.6, pp.587-591, 2003.
DOI : 10.2472/jsms.52.587

S. Fehringer, M. Janes, R. Wildersohn, and . Clasen, Proton???conducting ceramics as electrode/electrolyte???materials for SOFCs: Preparation, mechanical and thermal-mechanical properties of thermal sprayed coatings, material combination and stacks, Journal of the European Ceramic Society, vol.24, issue.5, pp.705-715, 2004.
DOI : 10.1016/S0955-2219(03)00262-0

C. Nakajo, G. Stiller, O. Härkegard, and . Bolland, Modeling of thermal stresses and probability of survival of tubular SOFC, Journal of Power Sources, vol.158, issue.1, pp.287-294, 2006.
DOI : 10.1016/j.jpowsour.2005.09.004

A. Atkinson and . Selçuk, Mechanical properties of ceramic materials for solid oxide fuel cells, Proceedings of the 5 th International Symposium on SOFC (SOFC V), pp.97-115, 1997.

A. Selçuk and . Atkinson, Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia, Journal of the American Ceramic Society, vol.15, issue.1-2, pp.2029-2035, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01507.x

A. Sarantaridis and . Atkinson, Mechanical modeling of redox cycling damage in solid oxide fuel cells, In the 7 th European Fuel Cell Forum, p.728, 2006.

J. Delette, M. Laurencin, J. B. Dupeux, and . Doyer, Measurement of the fracture energy at the interface between porous cathode layer and electrolyte in planar solid oxide fuel cells, Scripta Materialia, vol.59, issue.1, pp.31-34, 2008.
DOI : 10.1016/j.scriptamat.2008.02.018

URL : https://hal.archives-ouvertes.fr/hal-00345520

A. Tableau, 1 : Facteurs d'intensité de contrainte complexe Facteur d'intensité de contrainte K (MPa, p.2

. Dundurs, Discussion: ???Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading??? (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460???466), Journal of Applied Mechanics, vol.36, issue.3, pp.650-652, 1969.
DOI : 10.1115/1.3564739

L. Williams, The stresses around a fault or crack in dissimilar media, Bulletin of the seismological society of America, vol.49, pp.199-204, 1959.

. Erdogan, Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks, Journal of Applied Mechanics, vol.30, issue.2, pp.232-236, 1963.
DOI : 10.1115/1.3636517

R. Rice and G. C. Sih, Plane Problems of Cracks in Dissimilar Media, Journal of Applied Mechanics, vol.32, issue.2, pp.418-423, 1965.
DOI : 10.1115/1.3625816

W. Hutchinson, M. E. Mear, and J. R. Rice, Crack Paralleling an Interface Between Dissimilar Materials, Journal of Applied Mechanics, vol.54, issue.4, pp.828-832, 1987.
DOI : 10.1115/1.3173124

R. Rice, Elastic Fracture Mechanics Concepts for Interfacial Cracks, Journal of Applied Mechanics, vol.55, issue.1, pp.98-103, 1988.
DOI : 10.1115/1.3173668

R. Rice, Z. Suo, and J. S. Wang, Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems Metal-Ceramic Interfaces, pp.161-179, 1990.

. Laurencin, Amorçage et propagation d'une fissure à l'interface d'un bi-matériau, 2002.

J. Leguillon, M. Laurencin, and . Dupeux, Failure initiation in an epoxy joint between two steel plates, European Journal of Mechanics - A/Solids, vol.22, issue.4, pp.509-524, 2003.
DOI : 10.1016/S0997-7538(03)00066-4

W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials Advances in applied mechanics, pp.63-191, 1992.

P. L. Matos, R. M. Mc-meeking, P. G. Charalambides, and M. D. Drory, A method for calculating stress intensities in bimaterial fracture, International Journal of Fracture, vol.56, issue.4, pp.235-254, 1989.
DOI : 10.1007/BF00963659

F. Shih, Cracks on bimaterial interfaces: elasticity and plasticity aspects, Materials science and engineering, A143, pp.77-90, 1990.

M. Parks, A stiffness derivative finite element technique for determination of crack tip stress intensity factors, International Journal of Fracture, vol.187, issue.4, pp.487-502, 1974.
DOI : 10.1007/BF00155252

E. W. Labossiere and M. L. Dunn, Stress intensities at interface corners in anisotropic bimaterials, Engineering Fracture Mechanics, vol.62, issue.6, pp.555-575, 1999.
DOI : 10.1016/S0013-7944(99)00005-3