. Si, autres méthodes basées sur une analyse comparative, il convient de vérifier certaines propriétés sur les groupes de séquences. Notamment pour les méthodes qui s'appuient sur un alignement, il est nécessaire de s'assurer qu'il est possible de construire un alignement fiable. Dans cette optique, on propose d'´ epurer chaque groupe de séquences enéliminantenéliminant les séquences trop divergentes selon un procédé strictement analoguèanaloguè a celui mis en oeuvre dans Protea et caRNAc pour construire les méta-séquences (section 1.5.3) On proposé

F. Stephen, W. Altschul, W. Gish, E. W. Miller, D. J. Myers et al., Basic local alignment tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.

J. Allali and M. Sagot, A Multiple Graph Layers Model with Application to RNA Secondary Structures Comparison. String Processing and Information Retrieval, pp.348-359, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427699

E. Birney, T. D. Andrews, P. Bevan, M. Caccamo, Y. Chen et al., An Overview of Ensembl, Genome Research, vol.14, issue.5, pp.925-928, 2004.
DOI : 10.1101/gr.1860604

A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann et al., The Universal Protein Resource (UniProt), Nucleic Acids Research, vol.33, issue.Database issue, pp.154-159, 2005.
DOI : 10.1093/nar/gki070

[. Birney, M. Clamp, R. Durbin, . Genewise, and . Genome-wise, GeneWise and Genomewise, Genome Research, vol.14, issue.5, pp.988-995, 2004.
DOI : 10.1101/gr.1865504

[. Burset and R. Guigo, Evaluation of Gene Structure Prediction Programs, Genomics, vol.34, issue.3, pp.353-367, 1996.
DOI : 10.1006/geno.1996.0298

W. C. Barker, J. S. Garavelli, D. H. Haft, L. T. Hunt, C. R. Marzec et al., The PIR-International Protein Sequence Database, Nucleic Acids Research, vol.26, issue.1, pp.27-32, 1998.
DOI : 10.1093/nar/26.1.27

E. Robert, G. Bruccoleri, and . Heinrich, An improved algorithm for nucleic acid secondary structure display, Computational Applications in Biosciences, vol.4, issue.1, pp.167-173, 1988.

[. Bafna and D. H. Huson, The conserved exon method for gene finding, Proceedings of the 8th International Conference on Intellignet Systems for Molecular Biology ISMB, pp.3-12, 2000.

J. W. Brown, E. S. Haas, D. G. Gilbert, and N. R. Pace, The Ribonuclease P database, Nucleic Acids Research, vol.22, issue.17, pp.3660-3662, 1994.
DOI : 10.1093/nar/22.17.3660

B. Christopher, S. Burge, and . Karlin, Prediction of complete gene structures in human genomic DNA, Journal of Molecular Biology, vol.268, issue.1, pp.78-94, 1997.

[. Bharadwaj and A. L. Kolodkin, Descrambling DSCAM Diversity, Cell, vol.125, issue.3, pp.421-424, 2006.
DOI : 10.1016/j.cell.2006.04.012

URL : http://doi.org/10.1016/j.cell.2006.04.012

W. J. Mathieu-blanchette, C. Kent, L. Riemer, . Elnitski, F. A. Arian et al., Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner, Genome Research, vol.14, issue.4, pp.708-723, 2004.
DOI : 10.1101/gr.1933104

[. Bauer, G. W. Klau, and K. Reinert, Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization, BMC Bioinformatics, vol.8, issue.1, p.271, 2007.
DOI : 10.1186/1471-2105-8-271

[. Billoud, M. Kontic, and A. Viari, Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database, Nucleic Acids Research, vol.24, issue.8, pp.1395-1403, 1996.
DOI : 10.1093/nar/24.8.1395

S. Mark, T. M. Boguski, C. M. Lowe, and . Tolstoshev, dbEST ? database for " expressed sequence tags, Nature Genetics, vol.4, pp.332-33310, 1993.

. Lander, G. Human, and . Structure, Comparative Analysis and Application to Exon Prediction, Genome Research, vol.10, issue.7, pp.950-958, 2000.

. Lander, Human and mouse gene structure : comparative analysis and application to exon prediction, Proceedings of the 4th Annual International Conference on Computational Molecular Biology RECOMB, pp.46-53, 2000.

P. S. Michael and . Brown, RNA modeling using stochastic context-free grammars, 1999.

P. Blayo, P. Rouzé, and M. Sagot, Orphan gene finding???an exon assembly approach, Theoretical Computer Science, vol.290, issue.3, pp.1407-143110, 2003.
DOI : 10.1016/S0304-3975(02)00043-9

URL : https://hal.archives-ouvertes.fr/hal-00427367

G. Blin-andhéì-ene and . Touzet, How to Compare Arc-Annotated Sequences : The Alignment Hierarchy, In String Processing and Information Retrieval (SPIRE) Lecture Notes in Computer Science, vol.4209, pp.291-30310, 2006.

P. Wuyts, Y. Rouzé, and . Van-de-peer, Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics, vol.20, issue.17, pp.2911-2917, 2004.

[. Bafna and S. Zhang, FastR : fast database search tool for noncoding RNA, Proceedings of the IEEE Computer Society Bioinformatics Conference, pp.52-61, 2004.

B. Liu-changning, S. Baoyan, C. Geir, D. Lun, Z. Wei et al., NONCODE : an integrated knowledge database of non-coding RNAs, Nucleic Acids Research, vol.33, pp.112-115, 2005.

R. J. Carter, I. Dubchak, and S. R. Holbrook, A computational approach to identify genes for functional RNAs in genomic sequences, Nucleic Acids Research, vol.29, issue.19, pp.3928-3938, 2001.
DOI : 10.1093/nar/29.19.3928

F. Peter-clote, E. Ferré, D. Kranakis, and . Krizanc, Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency, RNA, vol.11, issue.5, pp.578-591, 2005.
DOI : 10.1261/rna.7220505

K. Y. David, T. Chiu, and . Kolodziejczak, Inferring consensus structure from nucleic acid sequences, Computational Applications in Biosciences, vol.7, issue.3, pp.347-352, 1991.

A. Coventry, D. J. Kleitman, and B. Berger, MSARI: Multiple sequence alignments for statistical detection of RNA secondary structure, Proceedings of the National Academy of Sciences of the United States of America, pp.12102-12107, 2004.
DOI : 10.1073/pnas.0404193101

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Research, vol.16, issue.22, pp.10881-10890, 1988.
DOI : 10.1093/nar/16.22.10881

[. Chatterji and L. Pachter, Reference based annotation with Gene- Mapper, Genome Biology, vol.7, issue.R29, pp.10-1186, 2006.

M. Ségoì-ene-caboche, . Pupin, A. Valérielecì-ere, P. Fontaine, G. Jacques et al., NORINE : a database of nonribosomal peptides, Nucleic Acids Research, 2007.

[. Crick, Central Dogma of Molecular Biology, Nature, vol.215, issue.5258, pp.561-563, 1970.
DOI : 10.1038/227561a0

J. F. Crow, The high spontaneous mutation rate: Is it a health risk?, Proceedings of the National Academy of Sciences, vol.94, issue.16, pp.8380-8386, 1997.
DOI : 10.1073/pnas.94.16.8380

[. Bibliographie, . Cole, . Wang, . Cardenas, . Fish et al., The Ribosomal Database Project : improved alignments and new tools for rRNA analysis, Nucleic Acids Research, vol.37, pp.141-145, 2009.

D. D. Bernardo, T. Down, and T. Hubbard, ddbRNA: detection of conserved secondary structures in multiple alignments, Bioinformatics, vol.19, issue.13, pp.1606-1611, 2003.
DOI : 10.1093/bioinformatics/btg229

L. Arthur, K. A. Delcher, E. C. Bratke, S. L. Powers, and . Salzberg, Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics, vol.23, issue.6, pp.673-679, 2007.

J. W. Drake, B. Charlesworth, D. Charlesworth, and J. F. Crow, Rates of Spontaneous Mutation, Genetics, vol.148, pp.1667-1686, 1998.

Y. Ding, C. Y. Chan, and C. E. Lawrence, Sfold web server for statistical folding and rational design of nucleic acids, Nucleic Acids Research, vol.32, issue.Web Server, pp.135-176, 2004.
DOI : 10.1093/nar/gkh449

D. De06-]-robin, S. R. Dowell, and . Eddy, Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints, BMC Bioinformatics, vol.7, issue.400, pp.10-1186, 2006.

[. Durbin, S. R. Eddy, A. Krogh, and G. Mitchinson, Biological Sequence Analysis : Probabilistic Models of Proteins and Nucleic Acids, 1999.
DOI : 10.1017/CBO9780511790492

. L. Dhk-+-99-]-a, D. Delcher, S. Harmon, O. Kasif, S. L. White et al., Improved microbial gene identification with GLIMMER, Nucleic Acids Research, vol.27, issue.23, pp.4636-4641, 1999.

Y. Ding and C. E. Lawrence, A Bayesian statistical algorithm for RNA secondary structure prediction, Computers & Chemistry, vol.23, issue.3-4, pp.387-400, 1999.
DOI : 10.1016/S0097-8485(99)00010-8

Y. Ding and C. E. Lawrence, Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond, Nucleic Acids Research, vol.29, issue.5, pp.1034-1046, 2001.
DOI : 10.1093/nar/29.5.1034

Y. Ding and C. E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.
DOI : 10.1093/nar/gkg938

[. Dsouza, N. Larsen, and R. Overbeek, Searching for patterns in genomic data, Trends in Genetics, vol.13, issue.12, pp.497-49810, 1997.
DOI : 10.1016/S0168-9525(97)01347-4

[. Dong and D. B. Searls, Gene Structure Prediction by Linguistic Methods, Genomics, vol.23, issue.3, pp.540-551, 1994.
DOI : 10.1006/geno.1994.1541

B. Chuong, D. A. Do, S. Woods, and . Batzoglou, CONTRAfold : RNA secondary structure prediction without physics-based models, Bioinformatics, vol.22, issue.14, pp.90-98, 2006.

D. Dalli, A. Wilm, I. Mainz, and G. Steger, STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time, Bioinformatics, vol.22, issue.13, pp.1593-1599, 2006.
DOI : 10.1093/bioinformatics/btl142

R. Sean, R. Eddy, and . Durbin, RNA sequence analysis using covariance models, Nucleic Acids Research, vol.22, issue.11, pp.2079-2088, 1994.

S. R. Eddy, Non???coding RNA genes and the modern RNA world, Nature Reviews Genetics, vol.10, issue.12, pp.919-92910, 2001.
DOI : 10.1038/35103511

[. Engelen, Algorithmes pour la prédiction de structures secondaires d'ARN, 2006.

S. Engelen and F. Tahi, Predicting RNA secondary structure by the comparative approach: how to select the homologous sequences, BMC Bioinformatics, vol.8, issue.1, p.464, 2007.
DOI : 10.1186/1471-2105-8-464

URL : https://hal.archives-ouvertes.fr/hal-00361249

K. Eva, J. P. Freyhult, P. P. Bollback, and . Gardner, Exploring genomic dark matter : a critical assessment of the performance of homology search methods on noncoding RNA, Genome Research, vol.17, issue.1, pp.117-125, 2007.

[. Fontaine and A. De-monte, MAGNOLIA: multiple alignment of protein-coding and structural RNA sequences, Nucleic Acids Research, vol.36, issue.Web Server, pp.14-18, 2008.
DOI : 10.1093/nar/gkn321

URL : https://hal.archives-ouvertes.fr/hal-00823594

G. Laurent-fousse, V. Hanrot, P. Lefèvre, P. Pélissier, and . Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, p.13, 2007.
DOI : 10.1145/1236463.1236468

[. Fekete, I. L. Hofacker, and P. F. Stadler, Prediction of RNA Base Pairing Probabilities on Massively Parallel Computers, Journal of Computational Biology, vol.7, issue.1-2, pp.171-18210, 2000.
DOI : 10.1089/10665270050081441

L. Florea, G. Hartzell, Z. Zhang, G. M. Rubin, and W. Miller, A computer program for aligning a cDNA sequence with a genomic DNA sequence, Genome Research, vol.8, issue.9, pp.967-974, 1998.

J. W. Fickett, ORFs and Genes: How Strong a Connection?, Journal of Computational Biology, vol.2, issue.1, pp.117-123, 1995.
DOI : 10.1089/cmb.1995.2.117

R. D. Finn, J. Mistry, B. Schuster-bockler, S. Griffiths-jones, V. Hollich et al., Pfam: clans, web tools and services, Nucleic Acids Research, vol.34, issue.90001, pp.247-251, 2006.
DOI : 10.1093/nar/gkj149

H. Fukunishi, M. Suzuki, H. Yoshino, Y. Konno, and . Hayashizaki, Prediction of human cDNA from its homologous mouse full-length cDNA and human shotgun database, FEBS Letters, vol.6, issue.3, pp.129-132, 1999.
DOI : 10.1016/S0014-5793(99)01696-8

W. James, C. Fickett, and . Tung, Assessment of protein coding measures, Nucleic Acids Research, vol.20, issue.24, pp.6441-6450, 1992.

[. Fontaine-andhéì-ene and . Touzet, Computational identification of protein-coding sequences by comparative analysis, Proceedings of the 1st IEEE, pp.95-102, 2007.

A. Fontaine-andhéì-ene and . Touzet, Computational identification of proteincoding sequences by comparative analysis, International Journal of Data Mining and Bioinformatics, 2009.

R. D. Gesteland and J. F. Atkins, Recoding: Dynamic Reprogramming of Translation, Annual Review of Biochemistry, vol.65, issue.1, pp.741-768, 1996.
DOI : 10.1146/annurev.bi.65.070196.003521

S. Samuel, . Gross, R. Michael, and . Brent, Using multiple alignments to improve gene prediction, Journal of Computational Biology, vol.13, issue.2, pp.379-393, 2006.

[. Gremme, V. Brendel, M. E. Sparks, and S. Kurtz, Engineering a software tool for gene structure prediction in higher organisms . Information and Software Technology, pp.47965-978, 2005.

S. Mikhail and . Gelfand, Prediction of function in DNA sequence analysis, Journal of Computational Biology, vol.2, issue.1, pp.87-115, 1995.

M. Gouy and C. Gautier, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids Research, vol.10, issue.22, pp.7055-7074, 1982.
DOI : 10.1093/nar/10.22.7055

URL : https://hal.archives-ouvertes.fr/hal-00697906

P. Paul, R. Gardner, and . Giegerich, A comprehensive comparison of comparative RNA structure prediction approaches, BMC Bioinformatics, vol.5, issue.140, 2004.

[. Grantham, C. Gautier, and M. Gouy, Codon frequencies in 119 individual genes confirm corsistent choices of degenerate bases according to genome type, Nucleic Acids Research, vol.8, issue.9, pp.1893-1912, 1980.
DOI : 10.1093/nar/8.9.1893

M. Leslie-grate, R. Herbster, D. Hughey, I. Haussler, H. Saira-mian et al., RNA modeling using Gibbs sampling and stochastic context free grammars, Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology ISMB, pp.138-146, 1994.

H. Gaston, M. T. Gonnet, C. Hallett, L. Korostensky, and . Bernardin, Darwin v. 2.0 : an interpreted computer language for the biosciences, Bioinformatics, vol.16, issue.2, pp.101-103, 2000.

S. Griffiths-jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy, Rfam: an RNA family database, Nucleic Acids Research, vol.31, issue.1, pp.439-441, 2003.
DOI : 10.1093/nar/gkg006

S. Griffiths-jones, R. J. Grocock, A. Stijn-van-dongen, A. J. Bateman, and . Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Research, vol.34, issue.90001, pp.140-144, 2006.
DOI : 10.1093/nar/gkj112

S. Griffiths-jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy et al., Rfam, Nucleic Acids Research Journal of Molecular Biology, vol.25, issue.5, pp.121-124, 2001.
DOI : 10.1002/9780471650126.dob1069

G. Grillo, F. Licciulli, S. Liuni, E. Sbisa, and G. Pesole, PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences, Nucleic Acids Research, vol.31, issue.13, pp.313608-3612, 2003.
DOI : 10.1093/nar/gkg548

[. Gautheret, F. Major, and R. Cedergren, Pattern searching/alignment with RNA primary and secondary structures: an effective descriptor for tRNA, Bioinformatics, vol.6, issue.4, pp.325-331, 1990.
DOI : 10.1093/bioinformatics/6.4.325

S. Mikhail, A. A. Gelfand, P. A. Mironov, and . Pevzner, Gene recognition via spliced sequence alignment, Proceedings of the National Academy of Sciences of the United States of America, pp.9061-9066, 1996.

A. P. Galvani and M. Slatkin, Evaluating plague and smallpox as historical selective pressures for the CCR5-??32 HIV-resistance allele, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.15276-15279, 2003.
DOI : 10.1073/pnas.2435085100

R. Guigo, Assembling Genes from Predicted Exons in Linear Time with Dynamic Programming, Journal of Computational Biology, vol.5, issue.4, pp.681-702, 1998.
DOI : 10.1089/cmb.1998.5.681

E. J. Gumbel, Statistics of extremes, 1958.

T. Gesell and S. Washietl, Dinucleotide controlled null models for comparative RNA gene prediction, BMC Bioinformatics, vol.9, issue.1, pp.24810-1186, 2008.
DOI : 10.1186/1471-2105-9-248

URL : http://doi.org/10.1186/1471-2105-9-248

P. Paul, A. Gardner, S. Wilm, and . Washietl, A benchmark of multiple sequence alignment programs upon structural RNAs, Nucleic Acids Research, vol.33, issue.8, pp.2433-2439, 2005.

[. Huang, M. D. Adams, H. Zhou, and A. R. Kerlavage, A Tool for Analyzing and Annotating Genomic Sequences, Genomics, vol.46, issue.1, pp.37-45, 1997.
DOI : 10.1006/geno.1997.4984

I. Vastrik and M. Clamp, The Ensembl genome database project, Nucleic Acids Research, vol.30, issue.1, pp.38-41, 2002.

L. Ivo, S. H. Hofacker, P. F. Bernhart, and . Stadler, Alignment of RNA base pairing probability matrices, Bioinformatics, vol.20, issue.14, pp.2222-2227, 2004.

L. Ivo, W. Hofacker, P. F. Fontana, S. Stadler, M. Bonhoeffer et al., Fast folding and comparison of RNA secondary structures, Monatshefte für Chemie, vol.125, pp.167-188, 1994.

L. Ivo, M. Hofacker, P. F. Fekete, and . Stadler, Secondary structure prediction for aligned RNA sequences, Journal of Molecular Biology, vol.319, issue.502, pp.1059-106610, 2002.

[. Huynen, R. R. Gutell, and D. Konings, Assessing the reliability of RNA folding using statistical mechanics, Journal of Molecular Biology, vol.267, issue.5, pp.1104-1112, 1997.
DOI : 10.1006/jmbi.1997.0889

S. Henikoff, J. G. Henikoff, W. Kent, and H. Clawson, Amino acid substitution matrices from protein blocks., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.10915-109191036, 1992.
DOI : 10.1073/pnas.89.22.10915

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/pdf

J. H. Havgaard, R. B. Lyngsø, and J. Gorodkin, The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search, Nucleic Acids Research, vol.33, issue.Web Server, pp.650-653, 2005.
DOI : 10.1093/nar/gki473

I. Holmes, Accelerated probabilistic inference of RNA structure evolution, BMC Bioinformatics, vol.6, pp.7310-1186, 2005.

G. Arif-ozgun-harmanci, . Sharma, H. David, and . Mathews, Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign, BMC Bioinformatics, vol.8, issue.1, p.130, 2007.
DOI : 10.1186/1471-2105-8-130

[. Hüttenhofer, P. Schattner, and N. Polacek, Non-coding RNAs: hope or hype?, Trends in Genetics, vol.21, issue.5, pp.289-297, 2005.
DOI : 10.1016/j.tig.2005.03.007

H. Jakob, E. Havgaard, J. G. Torarinsson, R. Giegerich, and S. Kurtz, Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix Local similarity in RNA secondary structures, Proceedings of the IEEE Computer Society Bioinformatics Conference, pp.1896-1908159, 2003.

[. Hochsmann, B. Voss, and R. Giegerich, Pure multiple RNA secondary structure alignments: a progressive profile approach, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.1, issue.1, pp.53-62, 2004.
DOI : 10.1109/TCBB.2004.11

T. Ikemura, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes, Journal of Molecular Biology, vol.146, issue.1, pp.1-21, 1981.
DOI : 10.1016/0022-2836(81)90363-6

T. Ikemura, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system, Journal of Molecular Biology, vol.151, issue.3, pp.389-409, 1981.
DOI : 10.1016/0022-2836(81)90003-6

T. Ikemura, Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes, Journal of Molecular Biology, vol.158, issue.4, pp.573-597, 1982.
DOI : 10.1016/0022-2836(82)90250-9

E. Tyler and . Jacks, Ribosomal frameshifting in retroviral gene expression, 1988.

J. Jiang and H. J. Jacob, EbEST: An Automated Tool Using Expressed Sequence Tags to Delineate Gene???Structure, Genome Research, vol.8, issue.3, pp.268-275, 1998.
DOI : 10.1101/gr.8.3.268

[. Jiang, G. Lin, B. Ma, and K. Zhang, A General Edit Distance between RNA Structures, Journal of Computational Biology, vol.9, issue.2, pp.371-38810, 2002.
DOI : 10.1089/10665270252935511

J. A. Jaeger, D. H. Turner, and M. Zuker, Improved predictions of secondary structures for RNA., Proceedings of the National Academy of Sciences of the United States of America, pp.7706-7710, 1989.
DOI : 10.1073/pnas.86.20.7706

J. A. Jaeger, D. H. Turner, and M. Zuker, [17] Predicting optimal and suboptimal secondary structure for RNA, Methods in Enzymology, vol.183, pp.281-306, 1990.
DOI : 10.1016/0076-6879(90)83019-6

S. Karlin and S. F. , Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes., Proceedings of the National Academy of Sciences, vol.87, issue.6, pp.2264-2268, 1990.
DOI : 10.1073/pnas.87.6.2264

S. Karlin and V. Brendel, Chance and statistical significance in protein and DNA sequence analysis, Science, vol.257, issue.5066, pp.39-49, 1992.
DOI : 10.1126/science.1621093

D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs et al., The UCSC Genome Browser Database, Nucleic Acids Research, vol.31, issue.1, pp.51-54, 2003.
DOI : 10.1093/nar/gkg129

[. Knapp and Y. Chen, An evaluation of contemporary hidden Markov model genefinders with a predicted exon taxonomy, Nucleic Acids Research, vol.35, issue.1, pp.317-324, 2007.
DOI : 10.1093/nar/gkl1026

J. Robert, S. R. Klein, and . Eddy, RSEARCH : Finding homologs of single structured RNA sequences, BMC Bioinformatics, vol.4, issue.1, p.44, 2003.

[. Bibliographie, P. Korf, D. Flicek, M. R. Duan, and . Brent, Integrating genomic homology into gene structure prediction, Bioinformatics, vol.17, issue.1, pp.140-148, 2001.

F. Ben, L. Koop, and . Hood, Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA, Nature Genetics, vol.7, issue.1, pp.48-5310, 1994.

B. Knudsen and J. Hein, RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Bioinformatics, vol.15, issue.6, pp.446-454, 1999.
DOI : 10.1093/bioinformatics/15.6.446

B. Knudsen and J. Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, vol.31, issue.13, pp.3423-3428, 2003.
DOI : 10.1093/nar/gkg614

D. Karolchik, A. S. Hinrichs, T. S. Furey, K. M. Roskin, C. W. Sugnet et al., The UCSC Table Browser data retrieval tool, Nucleic Acids Research, vol.32, issue.90001, pp.493-496, 2004.
DOI : 10.1093/nar/gkh103

[. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman, A generalized hidden Markov model for the recognition of human genes in DNA, Proceedings of the 4th International Conference on Intellignet Systems for Molecular Biology ISMB, pp.134-142, 1996.

R. J. Klein, Z. Misulovin, and S. R. Eddy, Noncoding RNA genes identified in AT-rich hyperthermophiles, Proceedings of the National Academy of Sciences, vol.99, issue.11, pp.7542-7547, 2002.
DOI : 10.1073/pnas.112063799

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124278

A. Krogh, I. Saira-mian, and D. Haussler, DNA, Nucleic Acids Research, vol.22, issue.22, pp.4768-4778, 1994.
DOI : 10.1093/nar/22.22.4768

S. Karlin and F. Ost, Counts of long aligned word matches among random letter sequences, Advances in Applied Probability, vol.26, issue.02, pp.293-351, 1987.
DOI : 10.1073/pnas.80.18.5660

S. Karlin and F. Ost, Maximal Length of Common Words Among Random Letter Sequences, The Annals of Probability, vol.16, issue.2, pp.535-563, 1988.
DOI : 10.1214/aop/1176991772

M. Kittivoravitkul and . Sergot, PAGAN : Predict and Annotate Genes in genomic sequence based on ANalysis of EST Clusters, International Conference on Intellignet Systems for Molecular Biology ISMB, 2001.

S. Peter, M. Klosterman, S. R. Tamura, S. E. Holbrook, and . Brenner, SCOR : a structural classification of RNA database, Nucleic Acids Research, vol.30, issue.1, pp.392-394, 2002.

H. Kiryu, Y. Tabei, T. Kin, and K. Asai, Murlet: a practical multiple alignment tool for structural RNA sequences, Bioinformatics, vol.23, issue.13, pp.1588-1598, 2007.
DOI : 10.1093/bioinformatics/btm146

. Asai, fRNAdb : a platform for mining/annotating functional RNA candidates from non-coding RNA sequences, Database issue) :D145?D148, 2007.

V. Alexander, M. Lukashin, . Borodovsky, and . Genemark, hmm : new solution for gene finding, Nucleic Acids Research, vol.26, issue.4, pp.1107-1115, 1998.

A. Lambert, J. Fontaine, M. Legendre, F. Leclerc, E. Permal et al., The ERPIN server: an interface to profile-based RNA motif identification, Nucleic Acids Research, vol.32, issue.Web Server, pp.160-165, 2004.
DOI : 10.1093/nar/gkh418

A. Laferriere, D. Gautheret, and R. Cedergren, An RNA pattern matching program with enhanced performance and portability, Bioinformatics, vol.10, issue.2, pp.211-212, 1994.
DOI : 10.1093/bioinformatics/10.2.211

A. Lambert, M. Legendre, J. Fontaine, and D. Gautheret, Computing expectation values for RNA motifs using discrete convolutions, BMC Bioinformatics, vol.6, pp.11810-1186, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00090525

J. E. Lamerdin, M. A. Montgomery, S. A. Stilwagen, L. K. Scheidecker, R. S. Tebbs et al., Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions, Genomics, vol.25, issue.2, pp.547-554, 1995.
DOI : 10.1016/0888-7543(95)80056-R

J. V. Shu-yun-le, K. Maizel, and . Zhang, An algorithm for detecting homologues of known structured rnas in genomes, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004., pp.300-310, 2004.
DOI : 10.1109/CSB.2004.1332443

J. David, W. R. Lipman, and . Pearson, Rapid and sensitive protein similarity searches, Science, vol.227, issue.4693, pp.1435-1441, 1985.

R. Michael, J. A. Lerner, and . Steitz, Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus, Proceedings of the National Academy of Sciences of the United States of America, issue.11, pp.765495-5499, 1979.

A. Lomsadze, V. Ter-hovhannisyan, Y. O. Chernoff, and M. Borodovsky, Gene identification in novel eukaryotic genomes by self-training algorithm, Nucleic Acids Research, vol.33, issue.20, pp.6494-6506, 2005.
DOI : 10.1093/nar/gki937

B. Neocles, E. Leontis, and . Westhof, Geometric nomenclature and classification of RNA base pairs, RNA, vol.7, issue.4, pp.499-512, 2001.

J. Liu, J. T. Wang, J. Hu, and B. Tian, A method for aligning RNA secondary structures and its application to RNA motif detection, BMC Bioinformatics, vol.6, pp.8910-1186, 2005.

B. Rune, M. Lyngsø, C. N. Zuker, and . Pedersen, Fast evaluation of internal loops in RNA secondary structure prediction, Bioinformatics, vol.15, issue.6, pp.440-445, 1999.

. Bibliographie, H. Elliott, and . Margulies, Confidence in comparative genomics, Genome Research, vol.18, issue.2, pp.199-200, 2008.

W. Makalowski and M. S. Boguski, Evolutionary parameters of the transcribed mammalian genome: An analysis of 2,820 orthologous rodent and human sequences, Proceedings of the National Academy of Sciences of the United States of America, pp.959407-9412, 1998.
DOI : 10.1073/pnas.95.16.9407

J. S. Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, vol.24, issue.6-7, pp.6-71105, 1990.
DOI : 10.1002/bip.360290621

M. Irmtraud, R. Meyer, and . Durbin, Gene structure conservation aids similarity based gene prediction, Nucleic Acids Research, vol.32, issue.2, pp.776-783, 2004.

D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proceedings of the National Academy of Sciences, vol.101, issue.19, pp.7287-7292, 2004.
DOI : 10.1073/pnas.0401799101

T. J. Macke, D. J. Ecker, R. R. Gutell, D. Gautheret, D. A. Case et al., RNAMotif, an RNA secondary structure definition and search algorithm, Nucleic Acids Research, vol.29, issue.22, pp.4724-4735, 2001.
DOI : 10.1093/nar/29.22.4724

H. [. Edward, J. M. Maden, and . Hughes, Eukaryotic ribosomal RNA : the recent excitement in the nucleotide modification problem, Chromosoma, vol.105, issue.78, pp.391-400, 1997.

[. Morgenstern, DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment, Bioinformatics, vol.15, issue.3, pp.211-218, 1999.
DOI : 10.1093/bioinformatics/15.3.211

[. Mathe, M. Sagot, T. Schiex, and P. Rouze, Current methods of gene prediction, their strengths and weaknesses, Nucleic Acids Research, vol.30, issue.19, pp.4103-4117, 2002.
DOI : 10.1093/nar/gkf543

URL : https://hal.archives-ouvertes.fr/hal-00427288

D. H. Matthews, J. Sabina, M. Zuker, and D. H. Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, Journal of Molecular Biology, vol.288, issue.5, pp.911-940, 1999.
DOI : 10.1006/jmbi.1999.2700

H. David, D. H. Mathews, and . Turner, Dynalign : an algorithm for finding the secondary structure common to two RNA sequences, Journal of Molecular Biology, vol.317, issue.2, pp.191-203, 2002.

[. Ma, J. Tromp, and M. Li, PatternHunter: faster and more sensitive homology search, Bioinformatics, vol.18, issue.3, pp.440-445, 2002.
DOI : 10.1093/bioinformatics/18.3.440

S. Moretti, A. Wilm, G. Desmond, I. Higgins, C. Xenarios et al., R-Coffee: a web server for accurately aligning noncoding RNA sequences, Nucleic Acids Research, vol.36, issue.Web Server, pp.10-13, 2008.
DOI : 10.1093/nar/gkn278

K. Toutai-mituyama, E. Yamada, H. Hattori, Y. Okida, G. Ono et al., The Functional RNA Database 3.0 : databases to support mining and annotation of functional RNAs Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences, Nucleic Acids Research Genome Research, vol.6, issue.9, pp.846-857, 1996.

P. Eric, S. R. Nawrocki, and . Eddy, Query-dependent banding (QDB) for faster RNA similarity searches, PLoS Computational Biology, vol.3, issue.3, p.56, 2007.

P. S. Novichkov, M. S. Gelfand, and A. A. Mironov, Gene recognition in eukaryotic DNA by comparison of genomic sequences, Bioinformatics, vol.17, issue.11, pp.1011-1018, 2001.
DOI : 10.1093/bioinformatics/17.11.1011

[. Notredame, D. G. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA., Proceedings of the National Academy of Sciences of the United States of America, pp.6309-6313, 1980.
DOI : 10.1073/pnas.77.11.6309

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Research, vol.33, issue.Web Server, pp.540-543, 2005.
DOI : 10.1093/nar/gki478

[. Nussinov, G. Piecznik, J. R. Grigg, and D. J. Kleitman, Algorithms for Loop Matchings, SIAM Journal on Applied Mathematics, vol.35, issue.1, pp.68-82, 1978.
DOI : 10.1137/0135006

B. Saul, C. D. Needleman, and . Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, Journal of Molecular Biology, vol.48, issue.3, pp.443-453, 1970.

Y. Aleksey, S. A. Ogurtsov, A. S. Shabalina, M. A. Kondrashov, and . Roytberg, Analysis of internal loops within the RNA secondary structure in almost quadratic time, Bioinformatics, vol.22, issue.11, pp.1317-1324, 2006.

J. Skou-pedersen, G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-toh et al., Identification and Classification of Conserved RNA Secondary Structures in the Human Genome, PLoS Computational Biology, vol.100, issue.4, p.33, 2006.
DOI : 10.1371/journal.pcbi.0020033.st004

O. Perriquet, Approche algorithmique de la prédiction de structures secondaires, 2003.

J. Skou-pedersen and J. Hein, Gene finding with a hidden Markov model of genome structure and evolution, Bioinformatics, vol.19, issue.2, pp.219-227, 2003.
DOI : 10.1093/bioinformatics/19.2.219

[. Pesole, S. Liuni, and M. Dsouza, PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance, Bioinformatics, vol.16, issue.5, pp.439-450, 2000.
DOI : 10.1093/bioinformatics/16.5.439

M. Parisien and F. Major, The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature, vol.349, issue.7183, pp.45251-55, 2008.
DOI : 10.1038/nature06684

K. C. Pang, S. Stephen, M. E. Dinger, G. Par, B. Engstrom et al., RNAdb 2.0--an expanded database of mammalian non-coding RNAs, Nucleic Acids Research, vol.35, issue.Database, pp.178-82, 2007.
DOI : 10.1093/nar/gkl926

K. C. Pang, S. Stephen, P. G. Engstrom, K. Tajul-arifin, W. Chen et al., RNAdb--a comprehensive mammalian noncoding RNA database, Nucleic Acids Research, vol.33, issue.Database issue, pp.125-155, 2005.
DOI : 10.1093/nar/gki089

[. Perriquet, M. Héì-ene-touzet, and . Dauchet, Finding the common structure shared by two homologous RNAs, Bioinformatics, vol.19, issue.1, pp.108-116, 2003.
DOI : 10.1093/bioinformatics/19.1.108

A. Mikhail, T. V. Roytberg, M. S. Astakhova, and . Gelfand, Combinatorial approaches to gene recognition, Computers and Chemistry, vol.21, issue.4, pp.229-235, 1997.

I. B. Rogozin, D. D. Angelo, and L. Milanesi, Protein-coding regions prediction combining similarity searches and conservative evolutionary properties of protein-coding sequences, Gene, vol.226, issue.1, pp.126-137, 1999.
DOI : 10.1016/S0378-1119(98)00509-5

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots11Edited by I. Tinoco, Journal of Molecular Biology, vol.285, issue.5, pp.2053-2068, 1999.
DOI : 10.1006/jmbi.1998.2436

E. Rivas and S. R. Eddy, Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs, Bioinformatics, vol.16, issue.7, pp.583-605, 2000.
DOI : 10.1093/bioinformatics/16.7.583

E. Rivas and S. R. Eddy, Noncoding RNA gene detection using comparative sequence analysis, BMC Bioinformatics, issue.2, 2001.

J. Reeder and R. Giegerich, Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction, Bioinformatics, vol.21, issue.17, pp.3516-3523, 2005.
DOI : 10.1093/bioinformatics/bti577

E. Rivas, R. J. Klein, T. A. Jones, and S. R. Eddy, Computational identification of noncoding RNAs in E. coli by comparative genomics, Current Biology, vol.11, issue.17, pp.1369-1373, 2001.
DOI : 10.1016/S0960-9822(01)00401-8

I. B. Rogozin, L. Milanesi, and N. A. Kolchanov, Gene structure prediction using information on homologous protein sequence, Bioinformatics, vol.12, issue.3, pp.161-170, 1996.
DOI : 10.1093/bioinformatics/12.3.161

[. Rogic, A. K. Mackworth, and F. B. Ouellette, Evaluation of Gene-Finding Programs on Mammalian Sequences, Genome Research, vol.11, issue.5, pp.817-832, 2001.
DOI : 10.1101/gr.147901

[. Reeder, P. Steffen, and R. Giegerich, pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows, Nucleic Acids Research, vol.35, issue.Web Server, pp.320-324, 2007.
DOI : 10.1093/nar/gkm258

[. Ruan, G. D. Stormo, and W. Zhang, An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots, Bioinformatics, vol.20, issue.1, pp.58-66, 2004.
DOI : 10.1093/bioinformatics/btg373

[. Ruan, G. D. Stormo, and W. Zhang, ILM: a web server for predicting RNA secondary structures with pseudoknots, Nucleic Acids Research, vol.32, issue.Web Server, pp.146-155, 2004.
DOI : 10.1093/nar/gkh444

J. Peter and . Russell, Fundamentals of Genetics and the Biology Place. Pearson Education, Limited, 1993.

[. Ruvkun, MOLECULAR BIOLOGY: Glimpses of a Tiny RNA World, Science, vol.294, issue.5543, pp.797-799, 2001.
DOI : 10.1126/science.1066315

D. Sankoff, Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems, SIAM Journal on Applied Mathematics, vol.45, issue.5, pp.810-82510, 1985.
DOI : 10.1137/0145048

S. Siebert and R. Backofen, MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons, Bioinformatics, vol.21, issue.16, pp.3352-3359, 2005.
DOI : 10.1093/bioinformatics/bti550

[. Schmucker and B. Chen, Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes, Genes & Development, vol.23, issue.2, pp.147-156, 2009.
DOI : 10.1101/gad.1752909

L. Steven, A. L. Salzberg, S. Delcher, O. Kasif, and . White, Microbial gene identification using interpolated Markov models, Nucleic Acids Research, vol.26, issue.2, pp.544-548, 1998.

D. B. Searls, The Linguistics of DNA, American Scientist, vol.80, pp.579-591, 1992.

J. David, W. States, and . Gish, Combined use of sequence similarity and codon bias for coding region identification, Journal of Computational Biology, vol.1, issue.1, pp.39-50, 1994.

A. Siepel and D. Haussler, Computational identification of evolutionarily conserved exons, Proceedings of the eighth annual international conference on Computational molecular biology , RECOMB '04, pp.177-186, 2004.
DOI : 10.1145/974614.974638

A. Siepel and D. Haussler, Phylogenetic Hidden Markov Models, Statistical Methods in Molecular Evolution, pp.325-351
DOI : 10.1007/0-387-27733-1_12

R. Staden and A. D. Mclachlan, Codon preference and its use in identifying protein coding regions in long DNA sequences, Nucleic Acids Research, vol.10, issue.1, pp.141-156, 1982.
DOI : 10.1093/nar/10.1.141

[. Schiex, A. Moisan, and P. Rouzé, Eug??ne: An Eukaryotic Gene Finder That Combines Several Sources of Evidence, Computational Biology, pp.111-125, 2001.
DOI : 10.1007/3-540-45727-5_10

L. Steven, M. Salzberg, A. L. Pertea, M. J. Delcher, H. Gardner et al., Interpolated Markov models for eukaryotic gene finding, Genomics, vol.59, issue.1, pp.24-31, 1999.

E. Eric, G. D. Snyder, and . Stormo, Identification of protein coding regions in genomic DNA, Journal of Molecular Biology, vol.248, issue.1, pp.1-18, 1995.

A. Asaf, V. V. Salamov, and . Solovyev, Ab initio Gene Finding in Drosophila Genomic DNA, Genome Research, vol.10, issue.4, pp.516-522, 2000.

M. Stanke, Gene Prediction with a Hidden Markov Model, 2003.

D. Gary and . Stormo, Consensus patterns in DNA, Methods in Enzymology, vol.183, pp.211-221, 1990.

B. Peter-steffen, M. Voss, J. Rehmsmeier, R. Reeder, and . Giegerich, RNAshapes: an integrated RNA analysis package based on abstract shapes, Bioinformatics, vol.22, issue.4, pp.500-503, 2006.
DOI : 10.1093/bioinformatics/btk010

M. Stanke and S. Waack, Gene prediction with a hidden Markov model and a new intron submodel, Bioinformatics, vol.19, issue.Suppl 2, pp.215-225, 2003.
DOI : 10.1093/bioinformatics/btg1080

F. Tahi, S. Engelen, and M. Régnier, A fast algorithm for RNA secondary structure prediction including pseudoknots, Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings., pp.11-17, 2003.
DOI : 10.1109/BIBE.2003.1188924

[. Tahi, S. Engelen, and M. Régnier, P-DCFOLD OR HOW TO PREDICT ALL KINDS OF PSEUDOKNOTS IN RNA SECONDARY STRUCTURES, International Journal on Artificial Intelligence Tools, vol.14, issue.05, pp.703-71610, 2005.
DOI : 10.1142/S021821300500234X

URL : https://hal.archives-ouvertes.fr/hal-00343084

[. Tahi, M. Gouy, and M. Régnier, Automatic RNA secondary structure prediction with a comparative approach, Computers & Chemistry, vol.26, issue.5, pp.521-530, 2002.
DOI : 10.1016/S0097-8485(02)00012-8

URL : https://hal.archives-ouvertes.fr/hal-00427303

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

[. Torarinsson, J. H. Havgaard, and J. Gorodkin, Multiple structural alignment and clustering of RNA sequences, Bioinformatics, vol.23, issue.8, pp.926-932, 2007.
DOI : 10.1093/bioinformatics/btm049

[. Tabei, H. Kiryu, T. Kin, and K. Asai, A fast structural multiple alignment method for long RNA sequences, BMC Bioinformatics, vol.9, issue.1, pp.3310-1186, 2008.
DOI : 10.1186/1471-2105-9-33

[. Taher, P. Meinicke, and B. Morgenstern, On splice site prediction using weight array models: a comparison of smoothing techniques, Journal of Physics: Conference Series, vol.90, issue.8pp, p.12004, 2007.
DOI : 10.1088/1742-6596/90/1/012004

T. Héì-ene, Comparative analysis of RNA genes : the caRNAc software, Methods in Molecular Biology, vol.395, pp.465-474, 2007.

T. Héì-ene and O. Perriquet, CARNAC : folding families of related RNAs, Nucleic Acids Research, vol.32, pp.142-147, 2004.

[. Thompson, O. Plewniak, and . Poch, BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs, Bioinformatics, vol.15, issue.1, pp.87-88, 1999.
DOI : 10.1093/bioinformatics/15.1.87

L. Taher, O. Rinner, S. Garg, A. Sczyrba, M. Brudno et al., AGenDA: homology-based gene prediction, Bioinformatics, vol.19, issue.12, pp.1575-1577, 2003.
DOI : 10.1093/bioinformatics/btg181

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.672.6411

D. H. Turner, N. Sugimoto, and S. M. Freier, RNA Structure Prediction, Annual Review of Biophysics and Biophysical Chemistry, vol.17, issue.1, pp.167-192, 1988.
DOI : 10.1146/annurev.bb.17.060188.001123

[. Tabei, K. Tsuda, T. Kin, and K. Asai, SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments, Bioinformatics, vol.22, issue.14, pp.1723-1729, 2006.
DOI : 10.1093/bioinformatics/btl177

H. Herbert, K. C. Tsang, and . Wiese, SARNA-Predict : A Simulated Annealing Algorithm for RNA Secondary Structure Prediction CIBCB '06, IEEE Symposium on, pp.1-10, 2006.

H. Herbert, K. C. Tsang, and . Wiese, SARNA-Predict : A Study of RNA Secondary Structure Prediction Using Different Annealing Schedules, Computational Intelligence and Bioinformatics and Computational Biology CIBCB '07. IEEE Symposium on, pp.239-246, 2007.

J. V. Uspensky, Introduction to Mathematical Probability, pp.23-24, 1937.

A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory, vol.13, issue.2, pp.260-269, 1967.
DOI : 10.1109/TIT.1967.1054010

B. Voss, Structural analysis of aligned RNAs, Nucleic Acids Research, vol.34, issue.19, pp.5471-5481, 2006.
DOI : 10.1093/nar/gkl692

G. D. Pruitt, M. Schuler, E. Shumway, S. T. Sequeira, K. Sherry et al., Database resources of the National Center for Biotechnology Information PANDIT : an evolution-centric database of protein and associated nucleotide domains with inferred trees Complete suboptimal folding of RNA and the stability of secondary structures, Database issue D327?331, pp.13-21145, 1999.

M. Woj, J. J. Wojtowicz, S. S. Flanagan, S. L. Millard, J. C. Zipursky et al., Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding SGP-1 : Prediction and Validation of Homologous Genes Based on Sequence Alignments Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics, Cell Genome Research Journal of Molecular Biology, vol.118, issue.3421, pp.619-6331574, 2001.

A. Wilm, D. G. Higgins, and C. Notredame, R-Coffee: a method for multiple alignment of non-coding RNA, Nucleic Acids Research, vol.36, issue.9, p.52, 2008.
DOI : 10.1093/nar/gkn174

[. Washietl, I. L. Hofacker, and P. F. Stadler, From The Cover: Fast and reliable prediction of noncoding RNAs, Proceedings of the National Academy of Sciences of the United States of America, pp.2454-2459, 2005.
DOI : 10.1073/pnas.0409169102

[. Wilm, I. Mainz, and G. Steger, An enhanced RNA alignment benchmark for sequence alignment programs, Algorithms for Molecular Biology, vol.1, pp.191748-7188, 2006.

S. Washietl, J. S. Pedersen, J. O. Korbel, C. Stocsits, A. R. Gruber et al., Structured RNAs in the ENCODE selected regions of the human genome, Genome Research, vol.17, issue.6, pp.852-864, 2007.
DOI : 10.1101/gr.5650707

J. Wuyts, G. Perriere, and Y. Van-de-peer, The European ribosomal RNA database, Nucleic Acids Research, vol.32, issue.90001, pp.101-103, 2004.
DOI : 10.1093/nar/gkh065

URL : https://hal.archives-ouvertes.fr/hal-00427639

[. Weinberg and W. L. Ruzzo, Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy, Bioinformatics, vol.20, issue.Suppl 1, pp.334-375, 2004.
DOI : 10.1093/bioinformatics/bth925

[. Weinberg and W. L. Ruzzo, Sequence-based heuristics for faster annotation of non-coding RNA families, Bioinformatics, vol.22, issue.1, pp.35-39, 2006.
DOI : 10.1093/bioinformatics/bti743

S. Will, K. Reiche, L. Ivo, . Hofacker, F. Peter et al., Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering, PLoS Computational Biology, vol.22, issue.4, p.65, 2007.
DOI : 10.1371/journal.pcbi.0030065.sd001

[. Xu, R. J. Mural, and E. C. Uberbacher, Constructing gene models from accurately predicted exons: an application of dynamic programming, Bioinformatics, vol.10, issue.6, pp.613-623, 1994.
DOI : 10.1093/bioinformatics/10.6.613

[. Yeh, L. P. Lim, and C. B. Burge, Computational Inference of Homologous Gene Structures in the Human Genome, Genome Research, vol.11, issue.5, pp.803-816, 2001.
DOI : 10.1101/gr.175701

X. Ying, H. Luo, J. Luo, and W. Li, RDfolder: a web server for prediction of RNA secondary structure, Nucleic Acids Research, vol.32, issue.Web Server, pp.150-153, 2004.
DOI : 10.1093/nar/gkh445

[. Yao, Z. Weinberg, L. Walter, and . Ruzzo, CMfinder--a covariance model based RNA motif finding algorithm, Bioinformatics, vol.22, issue.4, pp.445-452, 2006.
DOI : 10.1093/bioinformatics/btk008

URL : http://bio.cs.washington.edu/yzizhen/CMfinder/appendix.pdf

[. Zytnicki, C. Gaspin, and T. Schiex, DARN! A Weighted Constraint Solver for RNA Motif Localization, Constraints, vol.312, issue.2???3, pp.91-10910, 2008.
DOI : 10.1007/s10601-007-9033-9

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-148, 1981.
DOI : 10.1093/nar/9.1.133

M. Zuker and D. Sankoff, RNA secondary structures and their prediction, Bulletin of Mathematical Biology, vol.9, issue.Suppl. 2, pp.591-621, 1984.
DOI : 10.1007/BF02459506

M. Zuker, On finding all suboptimal foldings of an RNA molecule, Science, vol.244, issue.4900, pp.48-52, 1989.
DOI : 10.1126/science.2468181

[. Zytnicki, Localisation d'ARN non-codants par réseaux de contraintes pondérées, 2007.