F. [. Collings, Biosensors: recent advances, Reports on Progress in Physics, vol.60, issue.11, pp.1397-1445, 1997.
DOI : 10.1088/0034-4885/60/11/005

C. [. Davies, A. C. Roberts, J. Dawkes, J. C. Sefton, T. O. Edwards et al., Use of Scanning Probe Microscopy and Surface Plasmon Resonance as Analytical Tools in the Study of Antibody-Coated Microtiter Wells, Use of Scanning Probe Microscopy and Surface Plasmon Resonance as Analytical Tools in the Study of Antibody-Coated Microtiter Wells, pp.2654-2661, 1994.
DOI : 10.1021/la00020a026

C. [. Devaux and P. Jacq, Marc Les puces à ADN : vers une nouvelle biologie Pour la Science, Dossier n°46 « Génome humain et médecine, pp.22-27, 2005.

C. [. Dufour, Bergaud Capteurs à microstructures mobiles, dans « Microcapteurs chimiques : applications en milieu gazeux

M. [. Dupont-filliard, T. Billon, and S. Livache, Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film, Analytica Chimica Acta, vol.515, issue.2, pp.271-277, 2004.
DOI : 10.1016/j.aca.2004.03.072

A. [. Duschl, Sevin-Landais, H. Vogel Surface engineering: optimization of antigen presentation in self-assembled monolayers

J. [. Fabry, Fouletier Microcapteurs chimiques et biologiques : applications en milieu liquide, Ed. Hermès, Traité EGEM, Série Microsystèmes, 2003.

G. L. Graham, H. A. Ferreira, and P. P. , Freitas Revue : Magnetoresistive-based biosensors and biochips, genetic.ch 11, pp.9-455, 2004.
DOI : 10.1016/j.tibtech.2004.06.006

T. S. Joseph, M. D. Gronewold, C. Schlensog, E. Olbrich, M. Quandt et al., Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor, Biosensors and Bioelectronics, vol.20, issue.9, pp.1829-1835, 2005.
DOI : 10.1016/j.bios.2004.07.014

F. [. Länge, A. Bender, H. Voigt, and M. Gao, Rapp A Surface Acoustic Wave Biosensor Concept with Low Flow Cell Volumes for Label-Free Detection, Anal. Chem, pp.75-5561, 2003.

1. , R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. , Lockhart Review : High density synthetic oligonucleotide arrays, genetics.nature.com), Nature genetics supplement, pp.20-24, 1999.

M. [. Löfas, I. Malmqvist, E. Rönnberg, B. Stenberg, and I. Liedberg, Bioanalysis with surface plasmon resonance, Sensors and Actuators B: Chemical, vol.5, issue.1-4, pp.79-84, 1991.
DOI : 10.1016/0925-4005(91)80224-8

. B. Lu01-]-h, J. Lu, C. T. Homola, G. G. Campbell, S. S. Nenninger et al., Ratner Protein contact printing for a surface plasmon resonance biosensor with onchip referencing, Sensors and Actuators B, vol.74, pp.91-99, 2001.

M. [. Madou, Tierney Required technology breakthroughs to assume widely accepted biosensors, Appl. Biochem. Biotech, pp.41-109, 1993.
DOI : 10.1007/bf02918537

M. [. Marazuela and . Moreno-bondi-revue, Fiber-optic biosensors ??? an overview, Analytical and Bioanalytical Chemistry, vol.372, issue.5-6, pp.664-682, 2002.
DOI : 10.1007/s00216-002-1235-9

D. [. Monk and . Walt-revue, Optical fiber-based biosensors, Analytical and Bioanalytical Chemistry, vol.379, issue.7-8, pp.931-945, 2004.
DOI : 10.1007/s00216-004-2650-x

D. [. Morgan, A surface plasmon resonance immunosensor based on the streptavidin-biotin complex, Biosensors and Bioelectronics, vol.7, issue.6, pp.405-410, 1992.
DOI : 10.1016/0956-5663(92)85039-D

A. [. Ouerghi, N. Touhami, C. Jaffrezic-renault, H. B. Martelet, and S. Ouada, Cosnier Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors, IEEE Sensors Journal, vol.4, pp.5-559, 2004.

D. [. Peluso, D. Wilson, H. Do, M. Tran, D. Venkatasubbaiah et al., Nock Optimizing antibody immobilization strategies for the construction of protein microarrays, Analytical Biochemistry, pp.312-113, 2003.

H. [. Pyun, J. U. Beutel, and H. H. Meyer, Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer, Biosensors and Bioelectronics, vol.13, issue.7-8, pp.839-845, 1998.
DOI : 10.1016/S0956-5663(98)00050-5

I. [. Renberg, T. Shiroyama, P. A. Engfeldt, and A. Nygren, Affibody protein capture microarrays: Synthesis and evaluation of random and directed immobilization of affibody molecules, Analytical Biochemistry, vol.341, issue.2, pp.334-343, 2005.
DOI : 10.1016/j.ab.2005.03.039

H. [. Cazaubon, C. Lévi, D. Bordieu, and J. Rebière, Pistré Système multicapteurs de détection, portable, utilisant la technique du fenêtrage temporel. Revue d'Électricité et d'Électronique, n°3, pp.55-58, 1999.

A. [. Jakoby and M. J. Venema, Vellekoop Design of Love wave sensor devices for the operation in liquid environments, IEEE Ultrasonic Symposium, pp.375-379, 1997.

M. [. Jakoby, Viscosity sensing using a Love-wave device, Sensors and Actuators A: Physical, vol.68, issue.1-3, pp.275-281, 1998.
DOI : 10.1016/S0924-4247(98)00017-X

A. [. Martin, T. M. Ricco, and G. C. Niemczyk, Characterization of SH acoustic plate mode liquid sensors, Sensors and Actuators, vol.20, issue.3, pp.253-268, 1989.
DOI : 10.1016/0250-6874(89)80124-6

C. [. Moll, D. Déjous, J. Rebière, and R. Pistré, Planade An improved Love-wave oscillator for low concentration chemical sensing application, DCIS, pp.276-280, 2004.

T. [. Akerstrom, K. Brodin, and L. Reis, Bjorck Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies, The Journal of Immunology, vol.135, pp.4-2589, 1985.

]. B. Ben01a, J. Bennetau, and F. Bousbaa, Choplin Composés Organosiliciés : Leur Procédé de Préparation et Leurs Utilisations, Brevet WO0153523, 2001.

S. [. Branch, Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36??YX LiTaO3, Biosensors and Bioelectronics, vol.19, issue.8, pp.849-859, 2004.
DOI : 10.1016/j.bios.2003.08.020

S. [. Chan, P. M. Horner, and B. L. Fauchet, Miller Identification of Gram negative bacteria using nanoscale silicon microcavities

K. [. Darder, F. Takada, F. Pariente, and H. D. Lorenzo, Biosensor, Analytical Chemistry, vol.71, issue.24, pp.5530-5537, 1999.
DOI : 10.1021/ac990759x

M. 9. Deisingh and . Thompson, Biosensors for the detection of bacteria, Canadian Journal of Microbiology, vol.50, issue.2, pp.69-77, 2004.
DOI : 10.1139/w03-095

V. [. Deobagkar, S. Limaye, and R. D. Sinha, Acoustic wave immunosensing of Escherichia coli in water, Sensors and Actuators B: Chemical, vol.104, issue.1, pp.85-89, 2005.
DOI : 10.1016/j.snb.2004.04.106

G. J. Du, A multilayer structure for Love-mode acoustic sensors, Sensors and Actuators A: Physical, vol.65, issue.2-3, pp.152-159, 1998.
DOI : 10.1016/S0924-4247(97)01698-1

M. [. Epstein and D. R. Lee, Walt High-density fibre-optic genosensor microsphere array capable of zeptomole detection limits, Anal. Chem, pp.74-1836, 2002.

T. [. Fratamico, M. B. Strobaugh, and A. G. Medina, Gehring Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor, Biotechnology Techniques, vol.12, pp.7-571, 1998.

F. E. Gizeli, A. Bender, K. Rasmusson, F. Saha, and R. Josse, Cernosek Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties, Biosensors and Bioelectronics, pp.18-1399, 2003.

T. [. Glass, M. Gronewold, D. Schlensog, M. Pfeifle, M. Tewes et al., Quandt Influence of viscosity on real-time studies during the formation of biological layers on SAW sensors Biosensors, pp.24-26, 2004.

J. [. Harding, Design and properties of quartz-based Love wave acoustic sensors incorporating silicon dioxide and PMMA guiding layers, Smart Materials and Structures, vol.6, issue.6, pp.716-720, 1997.
DOI : 10.1088/0964-1726/6/6/008

J. [. Homola, S. Dostálek, A. Chen, S. Rasooly, and S. Jiang, Yee Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in mil

G. [. Howe, A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor, Biosensors and Bioelectronics, vol.15, issue.11-12, pp.641-649, 2000.
DOI : 10.1016/S0956-5663(00)00116-0

F. [. Josse and R. W. Bender, Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids, Analytical Chemistry, vol.73, issue.24, pp.5937-5944, 2001.
DOI : 10.1021/ac010859e

T. [. Joseph, M. D. Gronewold, C. Schlensog, E. Olbrich, M. Quandt et al., Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor, Biosensors and Bioelectronics, vol.20, issue.9, pp.1829-1835, 2005.
DOI : 10.1016/j.bios.2004.07.014

. Kun-]-d, I. Kunkel-microscopy, . Kus03-]-w, A. Kusnezow, A. Jacob et al., Hoheisel Antibody microarrays: An evaluation of production parameters, Proteomics, pp.3-254, 2003.

F. [. Länge, A. Bender, H. Voigt, and M. Gao, Rapp A Surface Acoustic Wave Biosensor Concept with Low Flow Cell Volumes for Label-Free Detection, Anal. Chem, pp.75-5561, 2003.

2. , P. T. Leung, D. Pollard-knight, G. P. Malan, and M. F. , Finlan Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor, Sensors and Actuators B22, pp.175-180, 1994.

«. Document, ». L-'origine-de-la-vie, and V. Les-parasites-de-cellules, Maillart Développement d'un système optique d'imagerie en résonance de plasmons de surface pour l'analyse simultanée de multiples interactions biomoléculaires en temps réel

S. [. Martin, L. Marsaudon, B. Thomas, J. P. Desbat, and B. Aime, Bennetau Liquid Mechanical behaviour of Mixed Monolayers of Amino-and Alkyl Silanes for DNA Deposition, Langmuir, 2005.

E. [. Moll, C. Pascal, J. P. Déjous, B. Pillot, D. H. Bennetau et al., Pistré Comparison of different methods to bind antibodies for biological detection using Love Wave sensors sept, Eurosensors XIX, pp.11-14, 2005.

F. [. Navarre, J. Choplin, B. Bousbaa, L. Bennetau, and J. P. Nony, Structural Characterization of Self-Assembled Monolayers of Organosilanes Chemically Bonded onto Silica Wafers by Dynamical Force Microscopy, Langmuir, vol.17, issue.16, p.4844, 2001.
DOI : 10.1021/la001358b

J. [. Dutta, P. G. Sanseverino, and M. J. Datskos, Sepaniak Detection of Cytokine Using a Microcantilever Biosensor

D. [. Perkins, Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance, Biosensors and Bioelectronics, vol.14, issue.10-11, pp.853-859, 2000.
DOI : 10.1016/S0956-5663(99)00069-X

H. [. Pyun, J. U. Beutel, and H. H. Meyer, Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer, Biosensors and Bioelectronics, vol.13, issue.7-8, pp.839-845, 1998.
DOI : 10.1016/S0956-5663(98)00050-5

R. [. Severs, Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles, Biosensors and Bioelectronics, vol.8, issue.7-8, pp.365-370, 1993.
DOI : 10.1016/0956-5663(93)80075-Z

K. [. Tätte, I. Saal, A. Kink, R. Kurg, U. Lõmus et al., Lõmus Preparation of Smooth Siloxane Surfaces for AFM Visualization of immobilized Biomolecules, Surf. Sci, pp.532-5351085, 2003.

M. [. Uttenthaler, J. Schräml, and S. Mandel, Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids, Biosensors and Bioelectronics, vol.16, issue.9-12, pp.735-743, 2001.
DOI : 10.1016/S0956-5663(01)00220-2

Y. L. Wang, C. Liu, S. T. Chang, M. S. Tsai, M. S. Feng et al., Tseng Chemical-Mechanical Polishing of Low-Dielectric-Constant Spin-on-Glasses: Film Chemistries, Slurry Formulation and polish Selectivity, BVHomePage.html 42. [WAN97, pp.308-309, 1997.

Y. [. Wei, D. Mu, X. Song, X. Fang, L. Liu et al., A novel sandwich immunosensing method for measuring cardiac troponin I in sera, Analytical Biochemistry, vol.321, issue.2, pp.209-216, 2003.
DOI : 10.1016/S0003-2697(03)00407-X

4. T. Wu and E. A. , AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY, Journal of Experimental Medicine, vol.132, issue.2, pp.211-250, 1970.
DOI : 10.1084/jem.132.2.211

K. [. Koolman, Röhm Atlas de Biochimie. 3ème édition, Flammarion, 2004.

A. [. Rouessac, Rouessac Analyse chimique : Méthodes et techniques instrumentales modernes 3 e édition, 1997.

. Ou-aminoacide, Molécule organique portant un groupement chimique carboné COOH (fonction acide) et un groupement chimique azoté NH2 (fonction amine)

A. Substance-organique-protéique, eau, coagulable par la chaleur, contenue dans le blanc d'oeuf, le plasma sanguin et le lait Dans les analyses immunochimiques, l'albumine de sérum bovin (BSA) est utilisée à concentration élevée pour adhérer à tous les sites libres de la surface (saturation)

. Anticorps, Substance protéique (immunoglobuline) synthétisée par les cellules du système immunitaire en réaction à l'introduction d'une substance étrangère, antigène, sur lequel elle se fixe spécifiquement pour en neutraliser l'effet toxique

B. Vitamine, B. , and H. , Grâce à sa chaîne latérale lysine, la biotine est liée dans l'organisme de façon covalente aux résidus lysines d'enzymes qui catalysent des réactions de carboxylation. La biotine est associée avec une affinité élevée (K d = 10 -15 M) et une grande spécificité à l'avidine

. Dalton, soit 1,6605.10 -27 kg. Le dalton est utilisé pour exprimer la masse des molécules protéiques. La masse molaire de l'élément est calculée en multipliant sa masse en daltons par la constante d'Avogadro

(. Densité-optique and . Do-)-la-densité-optique, correspond à une mesure d'absorption d'un milieu coloré à l'aide d'un spectrophotomètre émettant un faisceau d'ondes monochromatiques, qui permet de déterminer la concentration d'une substance grâce à la loi de Beer-Lambert : DO = L C , avec l'absorbance (m -1 ), L l'épaisseur du milieu coloré (m) et C la concentration (%), ou bien le coefficient d'extinction molaire caractéristique de la substance étudiée à la longueur d'onde utilisée