E. Alba and M. Tomassini, Parallelism and evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.6, issue.5, pp.443-462, 2002.
DOI : 10.1109/TEVC.2002.800880

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bachem, W. Hochstattler, and M. Malich, Simulated trading a new parallel approach for solving vehicle routing problems, International Conference on Parallel Computing : Trends and Applications, 1994.

T. Bäck, L. J. Eschelman, G. Rudolph, V. W. Porto, K. E. Kinnear et al., Handbook of evolutionary computation, chapter, Evolutionary algorithms and their standard instances, 1997.

R. Battiti, Modern Heuristic Search Methods, chapter Reactive Search : Toward Self-Tuning Heuristics, pp.61-83, 1996.

R. Battiti and M. Protasi, Reactive search, a history-based heuristic for max-sat, Workshop on Satisfiability, 1996.

R. Battiti and G. Tecchiolli, The Reactive Tabu Search, ORSA Journal on Computing, vol.6, issue.2, pp.126-140, 1994.
DOI : 10.1287/ijoc.6.2.126

J. E. Beasley, Lagrangean heuristics for location problems, European Journal of Operational Research, vol.65, issue.3, pp.383-399, 1993.
DOI : 10.1016/0377-2217(93)90118-7

M. Birattari, The Problem of Tuning Metaheuristics, 2005.

C. Blum and A. Roli, Metaheuristics in combinatorial optimization, ACM Computing Surveys, vol.35, issue.3, pp.268-308, 2003.
DOI : 10.1145/937503.937505

URL : https://hal.archives-ouvertes.fr/hal-01224683

J. Branke, M. Stein, and H. Schmeck, Handbook of Bioinspired Algorithms and Applications, chapter A unified view on metaheuristics and their hybridization, pp.147-156, 2005.

E. Burke, E. Hart, G. Kendall, J. Newall, E. Hart et al., Handbook of Meta-Heuristics, chapter Hyper-Heuristics : An Emerging Direction in Modern Search Technology, pp.457-474, 2003.

T. Bäck, G. Rudolph, and H. Schwefel, Evolutionary programming and evolution strategies : Similarities and differences, Conference on Evolutionary Programming, pp.11-22, 1993.

H. J. Bürckert, K. Fischer, and G. Vierke, Transportation scheduling with holonic mas -the teletruck approach, International Conference on Practical Applications of Intelligent Agents and Multiagents, (PAAM'98), pp.577-590, 1998.

S. Cahon, N. Melab, and E. Talbi, ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics, Journal of Heuristics, vol.10, issue.3, pp.357-380, 2004.
DOI : 10.1023/B:HEUR.0000026900.92269.ec

N. Christofides, A. Mingozzi, and P. Toth, Combinatorial Optimization, chapter The vehicle routing problem, pp.315-338, 1979.

G. Clair, E. Kaddoum, M. Gleizes, and G. Picard, Approches multi-agents auto-organisatrices pour un contrôle manufacturier intelligent et adaptatif, Cépaduès, editor, Journées Francophones sur les Systèmes Multi-Agents, pp.191-200, 2008.

M. Clerc, L'optimisation par essaims particulaires : versions paramétriques et adaptatives, 2005.

Y. Collette and P. Siarry, Optimisation multiobjectif, Eyrolles, 2002.

J. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J. Sormany, New Heuristics for the Vehicle Routing Problem, 2004.
DOI : 10.1007/0-387-24977-X_9

J. Cordeau, M. Gendreau, G. Laporte, J. Potvin, and F. Semet, A guide to vehicle routing heuristics, Journal of the Operational Research Society, vol.53, issue.5, pp.53512-522, 2002.
DOI : 10.1057/palgrave.jors.2601319

G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey, Discrete Location Theory, chapter The uncapacitated facility location problem, pp.199-171, 1990.

P. Cowling, G. Kendall, and E. Soubeiga, A parameter-free hyperheuristic for scheduling a sales summit, Metaheuristics International Conference, pp.127-131, 2001.

P. I. Cowling, G. Kendall, and E. Soubeiga, A Hyperheuristic Approach to Scheduling a Sales Summit, International Conference on Practice and Theory of Automated Timetabling III, volume 2079 of Lecture Notes In Computer Science, pp.176-190, 2000.
DOI : 10.1007/3-540-44629-X_11

T. Crainic and M. Toulouse, State-of-the-Art Handbook in Metaheuristics, chapter Parallel Strategies for Meta-heuristics, pp.475-513, 2003.

T. G. Crainic and F. Semet, Optimisation combinatoire 3 -applications, chapter Recherche opérationnelle et transport de marchandises, pp.47-115, 2006.

J. Créput and A. Koukam, The memetic self-organizing map approach to the vehicle routing problem, Soft Computing, vol.15, issue.6, pp.189-205, 2008.
DOI : 10.1007/s00500-008-0281-4

J. Current, M. Daskin, and D. Schilling, Facility location : Application and theory, chapter Discrete network location models, pp.81-118, 2004.

G. B. Dantzig and J. H. Ramser, The Truck Dispatching Problem, Management Science, vol.6, issue.1, pp.80-91, 1959.
DOI : 10.1287/mnsc.6.1.80

I. Devarenne, Études en recherche locale adaptative pour l'optimisation combinatoire, 2007.

J. J. Dongarra, Performance of various computers using standard linear equations software, 2006.

M. Dorigo, G. D. Caro, and L. M. Gambardella, Ant Algorithms for Discrete Optimization, Artificial Life, vol.54, issue.1, pp.137-172, 1999.
DOI : 10.1007/BF01797237

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Dorigo and T. Stützle, The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances, 2000.
DOI : 10.1007/0-306-48056-5_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Dorne and C. Voudouris, Metaheuristics : computer decision-making, chapter HSF : the iOpt's framework to easily design metaheuristic methods, pp.237-256, 2004.

A. Drogoul, L'intelligence (Traité des Sciences cognitives), chapter Les systèmes multi-agents, Hermes Science, 2005.

J. Dréo, J. Aumasson, W. Tfaili, and P. Siarry, ADAPTIVE LEARNING SEARCH, A NEW TOOL TO HELP COMPREHENDING METAHEURISTICS, International Journal on Artificial Intelligence Tools, vol.16, issue.03, pp.483-505, 2007.
DOI : 10.1142/S0218213007003370

A. E. Eiben, R. Hinterding, and Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.3, issue.2, pp.124-141, 1999.
DOI : 10.1109/4235.771166

URL : https://hal.archives-ouvertes.fr/inria-00140549

A. E. Eiben and C. A. Schippers, On evolutionary exploration and exploitation, Fundamenta Informaticae, vol.35, pp.1-16, 1998.

E. Aydin, M. Fogary, T. , and C. , A Distributed Evolutionary Simulated Annealing Algorithm for Combinatorial Optimisation Problems, Journal of Heuristics, vol.10, issue.3, pp.269-292, 2004.
DOI : 10.1023/B:HEUR.0000026896.44360.f9

D. Erlenkotter, A Dual-Based Procedure for Uncapacitated Facility Location, Operations Research, vol.26, issue.6, pp.992-1009, 1978.
DOI : 10.1287/opre.26.6.992

L. J. Eshelman, Handbook of Evolutionary Computation, chapter Genetic algorithms, 1997.

J. Ferber, Les systèmes multi-agents, vers une intelligence collective, 1995.

J. Ferber and E. Jacopin, The framework of eco problem solving, Decentralized Artificial Intelligence, vol.2, 1991.

A. Fink and S. Voss, Optimization Software Class Libraries, chapter Hotframe : A Heuristic Optimization Framework, pp.81-154, 2002.

M. Förster, B. Bickel, H. Bernd, and G. Kókai, Self-adaptive ant colony optimisation applied to function allocation in vehicle networks, Proceedings of the 9th annual conference on Genetic and evolutionary computation , GECCO '07, 2007.
DOI : 10.1145/1276958.1277352

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Catalogue de modèles de conceptions réutilisables, 1999.

N. Gaud, Systèmes multi-agents holoniques : de l'analyse à l'implantation. Méta-modèle, méthodologie , et simulation multi-niveaux, 2007.

M. Gendreau, Handbook of Metaheuristics, chapter An introduction to tabu search, pp.37-54, 2003.

D. Ghosh, Neighborhood search heuristics for the uncapacitated facility location problem, European Journal of Operational Research, vol.150, issue.1, pp.150-162, 2003.
DOI : 10.1016/S0377-2217(02)00504-0

K. Ghédira, Distributed simulated re-annealing for dynamic constraint satisfaction problems, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94, pp.601-607, 1994.
DOI : 10.1109/TAI.1994.346437

F. Glover, Tabu search and adaptive memory programming : advances, applications and challenges Advances in metaheuristics, optimization and stochastic modeling technologies, pp.1-75, 1997.

F. Glover and G. A. Kochenberger, Handbook of Metaheuristics, 2003.
DOI : 10.1007/b101874

F. Glover, M. Laguna, M. , and R. , Handbook of Metaheuristics, chapter Scatter search and path relinking : advances and applications, pp.1-36, 2003.

D. E. Goldberg, Algorithmes génétiques, 1994.

B. L. Golden, E. A. Wasil, J. P. Kelly, and I. Chao, Fleet management and logistics, chapter The impact of metaheuristics on solving the vehicle routing problem : algorithms, problem sets, and computational results, pp.33-56, 1998.

P. Gruer, V. Hilaire, A. Koukam, C. , and K. , A formal framework for multi-agent systems analysis and design, Expert Systems with Applications, vol.23, issue.4, pp.349-355, 2002.
DOI : 10.1016/S0957-4174(02)00070-2

A. R. Guner and M. Sevkli, A Discrete Particle Swarm Optimization Algorithm for Uncapacitated Facility Location Problem, Journal of Artificial Evolution and Applications, vol.34, issue.10, p.9, 2008.
DOI : 10.1016/j.cor.2006.12.030

H. W. Hamacher, S. Nickel, and A. Schneider, Classification of location problems, 1996.

P. Hansen and N. Mladenovi´cmladenovi´c, Handbook of Metaheuristics, chapter Variable Neighborhood Search, pp.145-184, 2003.

D. Henderson, S. H. Jacobson, J. , and A. W. , Handbook of Metaheuristics, chapter The theory and practice of simulated annealing, pp.287-320, 2003.

V. Hilaire, Vers une approche de spécification, de prototypage et de vérification de systèmes multiagents, 2000.

R. Hinterding, Z. Michalewicz, and A. E. Eiben, Adaptation in evolutionary computation: a survey, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp.65-69, 1997.
DOI : 10.1109/ICEC.1997.592270

R. Hinterding, Z. Michalewicz, and T. C. Peachey, Self-adaptive genetic algorithm for numeric functions, Parallel Problem Solving from Nature, PPSN IV, Lecture Notes in Computer Science, 1996.
DOI : 10.1007/3-540-61723-X_1006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Hoffmeister and T. Bäck, Genetic Algorithms and evolution strategies: Similarities and differences, Parallel Problem Solving from Nature, pp.455-469, 1991.
DOI : 10.1007/BFb0029787

J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Goldberg et al., What Is a Learning Classifier System?, Lecture Notes in Computer Science, vol.1813, pp.3-32, 2000.
DOI : 10.1007/3-540-45027-0_1

B. Horling and V. Lesser, A survey of multi-agent organizational paradigms, The Knowledge Engineering Review, vol.19, issue.04, pp.281-316, 2005.
DOI : 10.1017/S0269888905000317

B. Hu and G. R. Raidl, Variable neighborhood descent with self-adaptive neighborhood-ordering, 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics, 2006.

L. Ingber, Adaptive simulated annealing (asa) : Lessons learned, Journal of Control and Cybernetics, vol.25, issue.1, pp.33-54, 1996.

N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of agent research and development, Autonomous Agents and Multi-Agent Systems, vol.1, issue.1, pp.7-38, 1998.
DOI : 10.1023/A:1010090405266

J. Kennedy and R. C. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, pp.1942-1948, 1995.
DOI : 10.1109/ICNN.1995.488968

J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, pp.4104-4108, 1997.
DOI : 10.1109/ICSMC.1997.637339

S. Kirkpatrick, G. Jr, C. D. Vecchi, and M. P. , Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

T. Kohonen, Self-Organizing Maps, 2001.

M. Körkel, On the exact solution of large-scale simple plant location problems, European Journal of Operational Research, vol.39, issue.2, pp.157-173, 1989.
DOI : 10.1016/0377-2217(89)90189-6

J. Kozlak, J. Créput, V. Hilaire, and A. Koukam, Multi-agent Environment for Dynamic Transport Planning and Scheduling, In Lecture Notes in Computer Science, vol.3038, pp.638-645, 2004.
DOI : 10.1007/978-3-540-24688-6_83

N. Krasnogor and J. Smith, A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues, IEEE Transactions on Evolutionary Computation, vol.9, issue.5, pp.474-488, 2005.
DOI : 10.1109/TEVC.2005.850260

A. A. Kuehn and M. J. Hamburger, A Heuristic Program for Locating Warehouses, Management Science, vol.9, issue.4, pp.643-666, 1963.
DOI : 10.1287/mnsc.9.4.643

G. Laporte, M. Gendreau, J. Potvin, and F. Semet, Classical and modern heuristics for the vehicle routing problem, International Transactions in Operational Research, vol.21, issue.4-5, pp.285-300, 2000.
DOI : 10.2307/2584478

J. Lenstra, R. Kan, and A. , Complexity of vehicle routing and scheduling problems, Networks, vol.12, issue.2, pp.221-227, 1981.
DOI : 10.1002/net.3230110211

S. Lin, Computer Solutions of the Traveling Salesman Problem, Bell System Technical Journal, vol.44, issue.10, pp.2245-2269, 1965.
DOI : 10.1002/j.1538-7305.1965.tb04146.x

H. R. Lourenço, O. C. Martin, and T. Stützle, Handbook of Metaheuristics, chapter Iterated Local Search, pp.321-353, 2003.

V. Maniezzo and A. Carbonaro, Essays and Surveys in Metaheuristics, chapter Ant Colony Optimization : an Overview, pp.21-44, 2001.

D. Meignan, J. Créput, and A. Koukam, A Coalition-Based Metaheuristic for the vehicle routing problem, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp.1176-1182, 2008.
DOI : 10.1109/CEC.2008.4630945

D. Meignan, J. Créput, and A. Koukam, An organizational view of metaheuristics, First International Workshop on Optimisation in Multi-Agent Systems, AAMAS'08, pp.77-85, 2008.

D. Meignan, J. Créput, and A. Koukam, Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism, Workshop on Hyper-heuristics, International Conference on Parallel Problem Solving from Nature (PPSN), 2008.
DOI : 10.1007/s10732-009-9121-7

P. Merz, Memetic Algorithms for Combinatorial Optimization Problems : Fitness Landscapes and Effective Search Strategies, 2000.

D. Mester and O. Bräysy, Active guided evolution strategies for large-scale vehicle routing problems with time windows, Computers & Operations Research, vol.32, issue.6, pp.1593-1314, 2005.
DOI : 10.1016/j.cor.2003.11.017

D. Mester and O. Bräysy, Active-guided evolution strategies for large-scale capacitated vehicle routing problems, Computers & Operations Research, vol.34, issue.10, pp.2964-2975, 2007.
DOI : 10.1016/j.cor.2005.11.006

M. Milano and A. Roli, MAGMA: A Multiagent Architecture for Metaheuristics, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.34, issue.2, pp.925-941, 2004.
DOI : 10.1109/TSMCB.2003.818432

P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts : Towards memetic algorithms, 1989.

S. Moujahed, Approche multi-agents auto-organisée pour la résolution de contraintes spaciales dans les problèmes de positionnement mono et multi-niveaux, 2007.

S. Moujahed, N. Gaud, and D. Meignan, A Self-Organizing and Holonic Model for Optimization in Multi-Level Location Problems, 2007 5th IEEE International Conference on Industrial Informatics, 2007.
DOI : 10.1109/INDIN.2007.4384921

S. Moujahed, O. Simonin, A. Koukam, and K. Ghédira, Self-organizing multiagent approach to optimization in positioning problems, European Conference on Artificial Intelligence, pp.275-279, 2006.

D. Naddef and G. Rinaldi, The Vehicle Routing Problem, chapter Branch-and-cut algorithms for the capacitated VRP, pp.53-84, 2001.

I. M. Oliver, D. J. Smith, and J. R. Holland, A study of permutation crossover operators on the traveling salesman problem, International Conference on Genetic Algorithms, pp.224-230, 1987.

Y. Ong, M. Lim, N. Zhu, and K. Wong, Classification of adaptive memetic algorithms : a comparative study, IEEE Transactions on Systems, Man and Cybernetics Part B, vol.36, issue.1, pp.141-152, 2006.

E. Özcan, B. Bilgin, and E. E. Korkmaz, Hill climbers and mutational heuristics in hyperheuristics, Parallel Problem Solving from Nature, PPSN IX, pp.202-211, 2006.

E. Özcan, B. Bilgin, and E. E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intelligent Data Analysis, pp.3-23, 2008.

H. V. Parunak, S. Brueckner, M. Fleischer, and J. Odell, A design taxonomy of multi-agent interactions, Lecture Notes in Computer Science, issue.4, pp.2935123-137, 2003.

G. Picard, M. Gleizes, and P. Glize, Distributed frequency assignment using cooperative selforganization, International Conference on Self-Adaptive and Self-Organizing Systems, pp.183-192, 2007.
DOI : 10.1109/saso.2007.18

URL : https://hal.archives-ouvertes.fr/hal-01205874

S. Piechowiak and Y. Hamadi, Organisation et applications des SMA, chapter Problèmes de satisfaction de contraintes et systèmes multi-agents, pp.169-205, 2002.

M. L. Pilat and T. White, Using Genetic Algorithms to Optimize ACS-TSP, Ant Algorithms, pp.101-172, 2002.
DOI : 10.1007/3-540-45724-0_28

C. Prins, A simple and effective evolutionary algorithm for the vehicle routing problem, Computers & Operations Research, vol.31, issue.12, pp.1985-2002, 2004.
DOI : 10.1016/S0305-0548(03)00158-8

M. Randall, Near Parameter Free Ant Colony Optimisation, In Ant Colony, Optimization and Swarm Intelligence Lecture Notes in Computer Science, vol.3172, pp.374-381, 2004.
DOI : 10.1007/978-3-540-28646-2_37

A. S. Rao and M. P. Georgeff, Bdi agents : From theory to practice, Australian Artificial Intelligence Institute, 1995.

M. G. Resende and R. F. Werneck, A hybrid multistart heuristic for the uncapacitated facility location problem, European Journal of Operational Research, vol.174, issue.1, 2003.
DOI : 10.1016/j.ejor.2005.02.046

A. Roli and M. Milano, Magma : A multiagent architecture for metaheuristics, 2002.

S. Ropke and D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Transportation Science, vol.40, issue.4, 2005.
DOI : 10.1287/trsc.1050.0135

S. Ropke and D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Transportation Science, vol.40, issue.4, pp.421-438, 2006.
DOI : 10.1287/trsc.1050.0135

M. Sakarovitch, Optimisation combinatoire, Méthodes mathématiques et algorithmiques -Programmation discrète. Hermann, pp.2-7056, 1984.

M. Sevkli and A. R. Guner, A Continuous Particle Swarm Optimization Algorithm for Uncapacitated Facility Location Problem, Ant colony optimization and swarm intelligence, 2006.
DOI : 10.1007/11839088_28

C. G. Shaefer, The argot strategy : adaptive representation genetic optimizer technique, Second International Conference on Genetic Algorithms and their application, 1987.

Z. Skolicki, An analysis of island models in evolutionary computation, Proceedings of the 2005 workshops on Genetic and evolutionary computation , GECCO '05, pp.386-389, 2005.
DOI : 10.1145/1102256.1102343

R. G. Smith, The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver, IEEE Transactions on Computers, vol.29, issue.12, pp.1104-1113, 1980.
DOI : 10.1109/TC.1980.1675516

M. Sun, Solving the uncapacitated facility location problem using tabu search, Computers & Operations Research, vol.33, issue.9, pp.2563-2589, 2006.
DOI : 10.1016/j.cor.2005.07.014

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Potvin, Adaptive memory programming: A unified view of metaheuristics, European Journal of Operational Research, vol.135, issue.1, pp.1-16, 2001.
DOI : 10.1016/S0377-2217(00)00268-X

E. Talbi and V. Bachelet, Cosearch : A parallel co-evolutionary metaheuristic, Int. workshop on hybrid metaheuritics, pp.127-140, 2004.

R. Tanese, Distributed genetic algorithms, International Conference on Genetic Algorithms, pp.434-439, 1989.

P. Toth and D. Vigo, The Vehicle Routing Problem, chapter Branch-and-bound algorithms for the capacitated VRP, pp.29-51, 2001.

P. Toth and D. Vigo, The Granular Tabu Search and Its Application to the Vehicle-Routing Problem, INFORMS Journal on Computing, vol.15, issue.4, pp.333-348, 2003.
DOI : 10.1287/ijoc.15.4.333.24890

E. P. Tsang, Foundations of Constraint Satisfaction, 1993.

C. Voudouris and E. P. Tsang, Handbook of Metaheuristics, chapter Guided local search, pp.185-218, 2003.

M. Wooldridge, The logical modelling of computational multi-agent systems, 1992.

M. Wooldridge and N. Jennings, Intelligent agents: theory and practice, The Knowledge Engineering Review, vol.10, issue.02, 1995.
DOI : 10.1017/S0269888900008122

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Wren and A. Holliday, Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Points, Journal of the Operational Research Society, vol.23, issue.3, pp.333-344, 1972.
DOI : 10.1057/jors.1972.53

T. Yamaguchi, Y. Tanaka, Y. , and M. , Speed up reinforcement learning between two agents with adaptive mimetism, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97, pp.594-600, 1997.
DOI : 10.1109/IROS.1997.655072

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, The distributed constraint satisfaction problem: formalization and algorithms, IEEE Transactions on Knowledge and Data Engineering, vol.10, issue.5, pp.673-685, 1998.
DOI : 10.1109/69.729707

M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, Model-Based Search for Combinatorial Optimization: A Critical Survey, Annals of Operations Research, vol.131, issue.1-4, pp.373-395, 2004.
DOI : 10.1023/B:ANOR.0000039526.52305.af