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Chapter 1
Introduction and motivations

In low—energy nuclear physics there exist presently two major research projects which
are very intensively developed by a wide international collaboration: on one side these
are the investigations on the synthesis of heavy and super—heavy elements and, on the
other, the study of the lighter so—called exotic nuclei, far from the §—stability line and
rich in protons or neutrons.

My thesis work is related to both of these topics, in particular through the study
of fusion and fission reactions. This study which is based on the approach known
as the macroscopic-microscopic model is particularly concerned with the influence of
different proton and neutron density distributions on the synthesis and the stability
of heavy and super—heavy nuclei. We first examine the behaviour of the liquid—drop
energy with respect to different proton-—neutron deformations within the semiclassical
Extended Thomas—Fermi (ETF) framework and then, using the Yukawa—folding pre-
scription. We use effective nucleon—nucleon interactions of the Skyrme type together
with the previously mentioned semiclassical ETF approach to evaluate the energy—
density functional of the di—nuclear target—projectile system and thereby calculate
fusion barriers.

By selectively applying a slight variation to the ETF density radius and diffuse-
ness parameters relative to their variational values, we investigate the importance of
different proton-neutron densities on the heights of the fusion barriers.

After obtaining a simple analytical approximation of the nucleus—nucleus poten-
tial through the Skyrme ETF approach for reactions leading to super-heavy elements
with atomic numbers in the range Z=108-114, the fusion cross sections are determined
using the statistical Langevin formalism. The frictional force which is an essential in-
gredient of this approach was initially proposed by Kramer and later used by many
authors. This fusion cross section which is a measure of the probability of forming a
compact compound nucleus and which is depending on the height and width of the fu-
sion barrier can be nicely reproduced using the above mentioned analytical expression

for the ion—ion potential. This quantity is of crucial importance in the perspective of
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the choice of the best possible target—projectile combination to be used in the experi-
ments aiming at the synthesis of the new super-heavy or exotic elements.

Starting the investigations with the macroscopic-microscopic method we have to
determine from the beginning what kind of nuclear shapes are relevant and chose the
most appropriate deformation space. If one is interested in the ground—state deforma-
tions one can use an expression of the nuclear radius in terms of spherical harmonics.
If, however, one deals with phenomena leading to much larger deformations, as e.g.
encountered in the nuclear fission process, the previously mentioned shape description
is no more adequate (because of its very slow convergence). Then one has to allow
the nucleus to have more sophisticated shapes as a function of its elongation. In this
work we have described nuclear surfaces in cylindrical coordinates with the help of the
so—called Funny—Hills parametrization (or a slightly modified version thereof) defined
by three deformation parameters: ¢, h, a correspond respectively to the elongation of
the nucleus along the symmetry axis, the neck parameter and the reflection asymmetry
parameter.

In order to apply efficiently the macroscopic-microscopic method we should be
able to generate the single—particle levels for proton and neutrons which are solution of
the single—particle Schrodinger equation with the effective single—particle potential in
which each nucleon moves independently. We have chosen the folded—Yukawa potential
obtained through the folding the uniform, deformed nuclear density distribution with a
Yukawa-type function. It was shown that using this potential one is able to reproduce
the masses of atomic nuclei throughout the periodic table with a mean—square error of
less then 0.7 MeV. This folding procedure is particularly well suited to generate nuclear
potentials for nuclei far from equilibrium where shapes with a characteristic neck begin
to play an essential role.

During the last decades one could observe in parallel the development of selfconsis-
tent nuclear models based mainly on the Hartree-Fock and Hartree-Fock-Bogoliubov
approaches which contributed substantially to our understanding of nuclear structure.
The traditional, less complicated and conceptionally more transparent macroscopic—
microscopic approach continues nevertheless to provide a very powerful tool to estimate
with a good accuracy, a large variety of nuclear properties such as e.g. nuclear masses
and energies, fusion and fission barriers in multidimensional spaces, half-lives, cross
sections, etc. For these reasons the improvement of this method can be still quite
valuable bringing up the information about the nucleus in its equilibrium as well as in
excited states. In our research on the average fission barriers as the smooth part of
the total energy we use the Lublin—-Strasbourg Drop formula (LSD) the parameters of
which were fitted to the (at that moment) 2766 experimentally known binding energies.
At the present time, this treatment seems to be the most performant approach of the

average trends in atomic nuclei. The shell effects are described by means of the Struti-
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nsky smoothing procedure while the short-range pairing correlations are determined
within the BCS approximation with the so—called uniform gap method.

We do not only apply the macroscopic—microscopic model to analyse the fission
barriers themselves, but we also wish to discuss in detail the influence on these barriers
of different proton—neutron density distributions, an effect which has not been investi-
gated so far. This study is motivated by the results of the selfconsistent Hartree-Fock—
Bogoliubov calculations with an effective nucleon—nucleon interaction of the Gogny
type which showed that the deformations of protons and neutrons can differ from each
other by about 10% along the nuclear fission path of the four examined actinide nuclei:
232Th, 236U, 238U, 24°Pu. It turns out that such an effect can by no means be neglected
for the estimation of half-lives for spontaneous fission of actinide nuclei as well as for
the formation of super—heavy elements.

The last section of this work is devoted to the full four—-dimensional fission barriers
determined with the help of the macroscopic—microscopic approach. The previously
used three dimensional deformation space {c, h, @} has been extended by introducing
a parameter 7 describing the non-axiality of the nuclear drop. We concentrate our
attention here on the influence of broken reflection and axial symmetries on the barrier

shapes of actinide nuclei from %2Th to 230Cf as well as of some super—heavy elements

from 230Rf to 278 X.

This work is organized in the following way: After this introduction we present
in section 2 some short historical review of the evolution of the Liquid Drop model up
to its latest version given by the Lublin—Strasbourg Drop model. As an alternative for
the above, we introduce the Skyrme Extended Thomas—Fermi approach which is used
in section 3 to generalize the standard liquid-drop type formulas by adding a new term
corresponding to different proton-neutron deformations. The same ETF formalism is
also applied in section 4 to determine fusion potentials.

We also give a simple analytical approximation of the ETF fusion potential in
terms of the masses and charges of the colliding ions. Based on these calculations
we discuss the influence of different proton-—neutron density radii on the fusion barrier
heights. In section 5 the fusion cross sections are considered using the above mentioned
simple approximation of the ETF collision potential.

In order to describe adequately the large variety of shapes relevant for fission
barriers we introduce in section 6 two different new versions of the Funny—Hills nuclear
shape parametrization which turn out to be more suitable than its original version,
particularly around the ground state as well as for very elongated shapes of some ac-
tinide nuclei. We then give a detailed description of the procedure which is followed
here to construct a new numerical code for the diagonalization of the eigenstates of
an arbitrary triaxial single-particle potential in the basis of harmonic-oscillator wave

functions. Having established the basis to the microscopic calculations we give a short
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presentation of the selfconsistent mean-field approach in section 7 before explaining
in more detail how the microscopic shell and pairing corrections are included in the
macroscopic-microscopic approach through the Strutinsky shell-correction method and
the BCS pairing treatment. Section 8 is devoted to the application of the macroscopic—
microscopic model to the investigation of the influence of different proton—neutron de-
formations on the static fission barriers of eight actinide and super-heavy elements. In
section 9 we deal with the macroscopic—microscopic four-dimensional fission barriers,
taking into account the mass asymmetry and non—axiality of the nuclear surface. The
importance of these two additional degrees of freedom is particularly emphasised. Fi-
nally, in section 10, we draw the main conclusions of the present work and discuss its

possible improvements and extensions.



Chapter 2

Macroscopic approaches of liquid drop

type

2.1 History of the Liquid Drop model

Historically, the first macroscopic approach describing the average behaviour of the
nuclear energy as a function of the mass of the nucleus was the liquid drop model
postulated by Bethe and Weizsdcker already in 1935 [1] [2]. This simple approach
is based on two fundamental principles of nuclear physics, namely: the density of
the nuclear matter is approximately constant and does not depend on the number of
nucleons constituting a nucleus and the fact that average nuclear binding energy per
nucleon is almost the same for not to light nuclei. The consequence of the first feature is
that the nuclear radius is, in the first approximation, proportional to the number of the
nucleons. Both are a direct consequence of the saturation effect of nuclear interactions
keeping nucleons together as a strongly bound system. The atomic nucleus, therefore
resembles a charged liquid drop composed of nucleons bound by forces which have the

following properties:
e strong— the binding energy is given in megaelectronvolts (10%eV),
e attractive- inter-nucleon distance larger than the size of a nucleon (r > 1 fm),
e strongly repulsive- when nucleons start to overlap substantially,
e short range- vanishing for » > 2 fm,

e charge independent—apart from the Coulomb force the interaction is considered
to be the same for p—p, n-n, n—p,

e depending mainly on the relative distance of two nucleons (Vis = V (|712]) )-



CHAPTER 2. MACROSCOPIC APPROACHES OF LIQUID DROP TYPE 10

The first quantitative semi-empirical expression by Bethe and Weizsicker con-

tained three terms contributing to the binding energy
B = Ayol A— Qsurf A2/3 + ECouh (21)

which describes respectively the dominant effect of constant nuclear energy per nu-
cleon (=~ 8 MeV), the effect of lowering of the total energy, coming from the fact that
at the surface nucleons are less bound then in the nuclear interior (effect comparable
to the surface tension in a liquid drop) and the Coulomb repulsion between protons.
All these terms can be also considered as the contributions of the, so called, leptoder-
mous expansion of the total energy in a power series in AY/3. Term proportional to A
simulates the average bulk properties of the energy whereas the effect of diminishing
the energy due to the nuclear surface tension is proportional to the surface area of the
drop, namely to A%/3. A further modification of this simple approach was proposed by
Green and Bethe in 1953 by considering the effect of the isospin symmetry which has
its origin in the Fermi gas model [3] which assumes that, due to the Pauli principle and
the energy-momentum conservation, fermions can be treated as moving independently

from each other. An additional symmetry—energy term in eq. (2.1) would be propor-

N-—Z
N+Z>?

correction introduces the dependence of the energy on an unequal number of protons

tional to [ = a quantity which is usually called the nuclear reduced isospin. This
and neutrons in a nucleus. In 1967 Myers and Swiatecki enriched the discussed model
by such a dependence in the volume and the surface energy terms as well as by the
inclusion the surface diffuseness of the charge distribution which weakens slightly the
Coulomb interaction [4]. Their most important achievement is the fact that they first
incorporated the deformation dependence of the binding energy to this model. This
was done in such a way that each term in eq. (2.1) except for the volume contribution
was multiplied by a function By,,; and B¢, depending on the nuclear deformation.

Finally, the expression for the binding energy is of the form

B(A7 Za def) = avol(]- — Ryol 12) A - asurf(]- - Ksurf 12) A2/3 Bsurf
3 e2Z? C,7?
EW Coul — A ;

(2.2)

S(def)
4/37 R}

the spherical one of the same volume, while B¢, =

is the surface area of the deformed drop relative to the surface of

Booulde]) ig the ratio of deformed to
Ecoul (sph)

spherical Coulomb energy. The parameters a,oi, Kvol, Qsurf, Ksurfs To, Ca Were adjusted

where By, 5 =

to the about 1200 nuclear masses experimentally known at that time. We can thus see
that deformation—-dependent classical energy expressions can be considered as functions
of two groups of variables that describe, respectively, the nucleus itself (Z, N) and its
shape, represented by an ensemble of the deformation parameters, here denoted by

{Bsurf7 BCoul}-
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2.2 Droplet model

The Droplet Model (DM) gives a more sophisticated and accurate description of the
average nuclear binding energy then pure liquid drop approach introduced in the pre-
vious section. First of all, this model makes the attempt to include a surface curvature
term which, as shown in the subsequent section, improves substantialy the deforma-
tion behaviour of the macroscopic energy which has a direct influence on the shapes of
nuclear fission barriers. This model takes also into account the fact that the nuclear
density inside the nucleus is lowered when the deformation is increased because a cer-
tain part of nucleons in the nuclear interior migrate to the enlarging surface region.
In that context, the surface asymmetry term proportional to I2A%/? postulated in the
liquid drop model of eq. (2.2) obtains now a clearer interpretation, namely the increase
of the nuclear energy is also due to the neutron excess which appears in the nuclear
surface. This process is, however, weakened by the nuclear surface tension. As we
can conclude from the above, the Droplet Model rejects the assumption of uniform
densities and, moreover, distinguishes between proton and neutron distributions. It

was therefore necessary to introduce the following new quantities:
e {— thickness of the neutron skin,
e )— relative excess of the neutron density,
e c— relative deviation of the density from its nuclear matter value po,

e >— the effective nuclear surface situated between proton and neutron distribu-

tions.

The neutron skin is produced as a natural tendency of the nuclear matter to
remain symmetric with respect to proton and neutron numbers. It means that for
realistic nuclei for which N > Z there exists a force which pushes the excess of neu-
trons out from the bulk region into the surface. The Coulomb force associated with
proton distribution reduces this tendency by trying to increase the radius of the proton
distribution. This force faces with the resistance on the surface which also tends to the
symmetric conditions i.e. when the neutron skin does not exist. In this context the
neutron skin is understood as the distance ¢t between the locations of the proton and
neutron diffused surface profiles or in other words, as the shift which is necessary to
put one profile on top of the other. This leads to some enrichment of the surface layer
in neutrons but not to a pure neutron layer. The above considerations yield that the

force which is responsible for producing the surface neutron skin is given by

- groﬂ/g, (2.3)
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where 7y is the constant radius of nuclear matter, J the nuclear symmetry energy
coefficient, and () the effective surface stiffness coefficient The inclusion of the electro-
static energy for protons (equal to about ¢, Z2/AY? with ¢; = 3e?/5r¢ ~ 0.7322 MeV)

reduces this force JI and leads to

JI — e, ZA/3
- g'r’o 122 . (2.4)

Further considerations lead to the modification of the denominator of this expression

, 3, = peZAp

2T Q A

(2.5)

This equation correctly predicts that when for an uncharged nucleus () tends to zero
all the excess neutrons are pushed then into the surface (t — t,0. = 2/3RoI). For a
nucleus of arbitrary shape the equation for ¢ is of the form

t=t+1, (2.6)
where . =y
_ JI — 1 ZAY3(Byo/ Bour
F— §7“0 124 - (Bual/ f)’ (2.7)
2 Q+ ZJA*I/:&Bsqu
i= groé(ﬁs —B), (2.8)

where in the above ¥ is the deviation from the electrostatic potential v produced by a
uniformly distributed charge Ze while @, is the value of © on the surface and © is the
surface average of v5. The macroscopic binding energy in the Droplet Model is then
expressed in the following form [5]:

_ 1 1 _
B(A, Z,def) = (—a1+J52—§K§2+§ M) A
9 J? <2 2/3 1/3
+(a2+1 65 ) A Bsurf_'_a?;A Bcurv
+¢1 Z% A7V3 Bogw — ¢3 2% AV? B.(def) — ¢5 Z* By(def)
C3 Z2 _ Cy Z
A V2

where Booyi, Bsurf and Beyr, express respectively the deformation dependences of the

+ EWig7 (29)

Coulomb energy and the surface curvature energy. The functions B, (def) and B,,(def)
are responsible respectively for the non—homogeneous charge distribution inside and at

the surface the nucleus. The Wigner term Evy;, is of the form [6]

Bwig(A, Z) = —10MeV - exp(—42[1]/10). (2.10)
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The variables § and & are the average quantities , € over the effective surface ¥

and are equal to:

I+ 39 7A%8f(def)

5= 16 @ : (2.11)
1+ 9 2A-,,,;
1 _
£=— | = 20 A7 3 f(def) + Lo* + C1Z*A~g(def)], (2.12)
The coefficients ¢; can be expressed as follows:
3e?
Cl = ——
1 5 TO’
i <1 N 18)
===+ —=
27336 \J K/’
5 b
c3=—c1 | —
3 2 1 To 9
53\
C4 = 101 (% )
1 c?
Cs = acl (é) . (213)
and the coefficients entering the egs. (2.3) — (2.13) have the following values [5]:
ay = 20.69 MeV
K =240.0 MeV
L =100.0 MeV
ro = 1.18 fm
J =36.8 MeV
Q=170 MeV
e? = 1.440 MeV - fm
b=1.0fm

The Droplet model contains nine free parameters which were adjusted to experi-
mentally known in that time masses and fission barriers. The combination of the Liquid
Drop Model (see section 2) and the Droplet Model described above which preserves
only the most relevant features of both these two approaches is presented in the next

subsection.

2.3 Lublin—Strasbourg Drop (LSD) model

Since the idea of Bethe and Weizsécker, the inclusion of various new terms in the

average-energy expression has been proposed but the basic concept of a charged liquid
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drop remains valid. It is worth reminding at this point that already in 1953 Hill
and Wheeler concluded on the basis of the Fermi gas model, [3] that a curvature
dependent term proportional to A'/3 should exist in the liquid-drop energy functional.
The curvature term was later studied in [7], where its magnitude was adjusted to the
experimental fission—barrier heights known at that time.

Since the traditional liquid drop model without the explicit use of a curvature—
energy term performed already quite well, one may expect that the inclusion of such
a surface—curvature term play rather a role of correction. It turns out that such a
modification is obvious and yields to a significant improvement of the liquid—drop model
formula. In particular, the new r.m.s. deviation (6M) = 0.698 MeV as compared to
(0 M) = 0.732 MeV within the traditional approach, and the new fission-barrier r.m.s.
deviation for nuclei with Z > 70, (§Vz) = 0.88 MeV, compared to (§Vp) = 5.58 MeV
8]

A starting point for the analysis which leads to the inclusion of curvature terms is
the well known traditional liquid-drop nuclear mass expression of Myers and Swigtecki
(MS-LD) [4]. This expression was quite successful in reproducing the nuclear masses,
but it is known that in light nuclei it overestimates the fission-barrier heights by up
to about 10 MeV . The MS-LD barriers are also higher than those evaluated by Sierk
[9] within the Yukawa-folding macroscopic model. The Lublin Strasbourg Drop (LSD)
formula for the binding energy [8] has therefore the following form:

B(Z,N,def) = @y (1 — kyl?) A

+ asurf (1 - /fsurf[2> A2/3 Bsurf<d€f>
+ Aeyr (1 - chur[2> A1/3 Bcur<def)
3 e*z? 7?
+ EW Bcoul(def) — C4 Z — Econgm (214)

where By, r(def), Bewr(def), Boow(def) are explicitly calculated for the case of the
modified Funny—Hills parameters in Appendix. The LSD parameters listed below are
adjusted to all presently known 2766 experimental binding energies taken from the
tables [10] using the microscopic corrections from [11] and the congruence energy E.., g,
estimated in [12].

(yot = -15.4920 MeV | ko = 1.8601
gur = 16.9707 MeV | kgyr = 2.2938
eur = 3.8602 MoV | ki — -2.3764
réh — 121725 fm | C; = 0.9181 MeV

Tab. 2.1 Parameters of the LSD model
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2.4 The Skyrme ETF approach to nuclear structure

Mean—field calculations have been extremely successfull over the last 3 decades to de-
scribe the structure of stable as well as radioactive nuclei and this over a very wide
range of nuclear masses. Especially effective nucleon-nucleon interactions of the type
of Skyrme [13, 14] and Gogny forces [15] have been particularly efficient in this context.
Such phenomenological effective interactions can be understood as mathematically sim-
ple parametrisations of a density-dependent effective G-matrix (see [16] and [17] for a
review on such effective forces).

Together with the exact treatment of the mean—field problem in the Hartree—Fock
(HF) approach, semiclassical approximations thereof have proven very appropriate. Es-
pecially the approach known as the Extended Thomas-Fermi (ETF) method has been
shown [18] to describe very accurately average nuclear properties in the sense of the
Bethe—Weizsdcker mass formula [2, 1]. In their selfconsistent version the ETF calcu-
lations determine the semi—classical (liquid-drop type) structure of a given nucleus by
minimizing the total energy with respect to a variation of the neutron and proton den-
sities, as will be explained below. Such calculations require, however, only integrated

quantities as e.g. the total nuclear energy.

2.4.1 Skyrme interactions

For effective nucleon—nucleon interactions of the Skyrme type the total energy of a

nucleus is a functional

E = [ &0, 7). )] @'r (215)

of the local densities p,(7), the kinetic energy densities 7,(7) and the so called spin-orbit
densities J,(7) [14]

GEDEAGER

(1) = 3 [V (7,5,q)" nf

Jo(7) = (=0) 32 (7', )V e (7, 5,q) x ('|5]s) n, (2.16)
where the subscript g={n, p} denotes the nucleon charge state, (7, s, ¢) are the single-
particle wave functions with orbital and spin quantum numbers v and s respectively,
and n? being the corresponding occupation numbers (equal to 1 or 0 in the pure
Hartree-Fock case, or v? if pairing correlations are included).

In the case of broken time-reversal symmetry, particularly encountered in the case
of rotating nuclei the energy density depends, in addition, on other local quantities
[19, 20], such as the current density j(7) and the spin-vector density §(7). In the
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following we will restrict ourselves to time-reversal symmetric systems leaving the case
of broken time-reversal symmetry. The total energy determined in this way is exact
within the HF formalism.

A semiclassical approximation is obtained when instead of using the exact quantum-—
mechanical densities of eq. (2.16) a semiclassical approximation for these quantities is
used.

In the so called Extended Thomas—Fermi model [18] semiclassical densities 7,(7)
and J,(7) are obtained as functions of the local density p(7) and of its derivatives.
Thomas-Fermi approximation for the functional of the kinetic energy density which is

the direct result of the Fermi gas model is of the form:
3
7 Oloal = £ BP0} L a={n.p} (2.17)

Once these functional expressions are given, the total energy of the nuclear system
is then uniquely determined by the knowledge of the local densities of protons and
neutrons. That such a functional dependence of the total energy on the local densities
pq(7) should exist is guaranteed by the famous theorem by Hohenberg and Kohn |21].
In the most general quantum mechanical case this functional is, however, perfectly
unknown. The great advantage of the semiclassical approach used here, consists in the
fact that, in connection with effective interactions of the Skyrme type such an energy
functional £ can be derived explicitly. In addition, it is to be noted that the semiclassi-
cal functionals obtained in the ETF formalism such as 7[p] are completely general and
valid for any local interaction and any nucleus, and can therefore be determined once
and forever.

Once the functional of the total energy is known, one is able, due to the Hohenberg—
Kohn theorem, to perform density variational calculations, where the local densities
pq(7) are the variational quantities. One should, however, keep in mind that, as the
ETF functionals are of semiclassical nature, the density functions p,() obtained as
a result of the variational procedure can only be semiclassical in nature, i.e. of the
liquid-drop type. Taking into account that in such a process the particle numbers N
and Z should be conserved, one can formulate the variational principle in the form

5o A0 = Do) = o} P = (2.18)

with the Lagrange multipliers )\, and A, to ensure the conservation of neutron and
proton number.

This density variational problem has been solved in two different ways in the past:
either by resolving the Euler-Lagrange equation |22, 23] resulting from eq. (2.18) or by
carrying out the variational calculation in an restricted subspace of functions adapted

to the problem, i.e. being of semiclassical nature, free of shell oscillations in the nuclear
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ZOSPb
SkM*

pn (fm~)

r (fm) r (fm)

Figure 2.1: Comparison of selfconsistent neutron and proton HF (solid line) and ETF
densities (dashed line) for ?®®Pb calculated with the SkM* Skyrme force

interior and falling off exponentially in the nuclear surface. It has been shown [18, 22]

that modified Fermi functions which for spherical symmetry take the form [18|

Pq(T) = po, [1 + exp (T — fo ﬂ B . ¢={n,p} (2.19)

q
are particularly well suited in this context and that the semiclassical energies obtained
are, indeed, very close to those resulting from the exact variation [22, 23].

As an example of the quality of the semiclassical density obtained by such a
restricted variation in the subspace of modified Fermi functions, eq. (2.19), we show in
Fig. 2.1 a comparison of the neutron and proton densities obtained in this way within
the ETF approach with the corresponding Hartree-Fock densities for the nucleus 2°*Pb
calculated with the Skyrme interaction SkM* |24]. It should be emphasised here that
a similarly good agreement as the one shown in Fig. 2.1 is obtained for other nuclei
(see Fig. 2.2), or using other effective interactions such as the Skyrme forces SIII [25]
and SLy4 [26].

The energy density £ appearing in egs. (2.15) and (2.18) can be written for a
Skyrme interaction as defined in ref. [27] in the compact form [28]

h2
E(F) = 57+ Bip® + Balp}, + py) + Bap T + Balpu 7 + 0p75)

—Bs5(Vp)® = Bs [(Vpa)? + (Vpp)?]| + p°[Brp® + Bs(p? + p})]
—By [J-Vp+JuVpu+ Iy V| + Ecou(r) | (2.20)
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Figure 2.2: Charge densities through 4" —order ETF + SkM* approach vs the experi-

mental ones for 5 nuclei from different mass regions

given in terms of the coefficients B; — By (see Tab. 2.2) instead of the usual Skyrme

force parameters tg, t1, ta, t3, xg, 1, Lo, x3, Wy :

B Lto(1 4 20) DBs & [Bta(a1+3) + ta(wa+3)]
By —5(3 + ) B wsts(14+5)

Bs L +9) + (1 + 2)] Bs —Ltg(L + )

By —1 (i@ +3) — talm2+3)] By —iw,

By —& B+ %) — (1 +2)]

Tab. 2.2 Correspondence between the coefficients B; used in the text and the usual

Skyrme force parameters.

In eq. (2.20) non-indexed quantities like p correspond to the sum of neutron and proton
densities as p=p,, +p, and oy is the Coulomb energy density which can be written as

the sum of the direct and an exchange contribution, the latter being taken into account



CHAPTER 2. MACROSCOPIC APPROACHES OF LIQUID DROP TYPE 19

in the Slater approximation [29]

Eeon(®) = po() [t LU 32BN s oy (2.21)
Coul /)p | = 7” | 1 . pp . .

The HF equation is obtained through the variational principle which states that
the total energy of eq. (2.15) should be stationary with respect to any variation of the

single-particle wave functions go(q) :

~ =d hz - - —
(@ _ N = = (9) ( ) (@)
H, cqu = <_VWV + V(1) — W, (7) - (V x 0)) gojq 1 cp] ) (2.22)
Here appear different form factors such as the central one-body potential V,(7), the
effective mass m; (7) and the spin—orbit potential Wq(F) which are all defined as func-

tional derivatives of the total energy density. One obtains from eq. (2.20) :

0E(r) _
V(7
G
= 2(Byp + Bapy) + BsT + Byty + 2(BsAp + BsApy) + (2 + o) Byp*t
+Bs |ap®™ 'Y p2 4 2p%pg | + Bo(div + div,) + Veou (7) 6, (2.23)
q
. m__ 2m 0E(r) 2m
=1+— [B B 2.24
1) = i = 3 g = U B+ B (22)
and 5E(7)
= T =
W, (F) = —=—==—=By V(p+p,) 2.25
4(7) 5T(7) 9 V(p+pq) ( )
The Coulomb potential in eq. (2.23) is easily obtained from eq. (2.21) as
o 1/3
Voou?) = ¢ [ L0 ant - () pyory (2.26)
IR

It is noteworthy in this connection that for such an effective mass (2.24) and the spin—
orbit potential (2.25) the energy density (2.20) takes the simple form

hZ 5 _ —
E(F) = 5,2 FaTa+ Bip* + Balo + p}) = Bs(Vp)* — By [(Vpa)* + (V)]
q

+0°[Bep® + Bs(ph + p)) + 2 Jg - Wy + Ecou(F)  (2:27)
q

which simplifies somewhat the calculation.

All the expressions derived so far (egs. (2.21) — (2.27)) are exact and when used

(9)

(), solutions of

with densities constructed from the single-particle wave functions
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the HF equation (2.22) these quantities contain all the quantum effects of the system.
If one is interested in the semiclassical approximation of these form factors one can
immediately conclude, from the analytical form of egs. (2.24) and (2.25) and the smooth
behaviour of the semiclassical densities, as demonstrated e.g. in Fig. 2.2, on the smooth
behaviour of the semiclassical effective mass and spin-orbit form factors. As the nuclear
quantal density is well reproduced on the average by the ETF densities it appears
evident that the same is going to be the case for the effective mass and the spin-orbit
potential, when semiclassical, i.e. liquid-drop type densities are used in egs. (2.24) and
(2.25).

Things are, however, less evident for the central nuclear potentials. Not only
is the functional expression, eq. (2.23), much more complicated than those for the
effective mass and spin-orbit potential, but the central potential is also the only of
the three functional derivatives that depends not only on the local densities p, (i) and
their derivatives but also on the kinetic energy density 7,() and the spin-orbit density
J;(F) which are the quantities for which the Extended Thomas—Fermi approach has
written down functional expressions. We therefore choose to study the convergence of
the semiclassical series corresponding to these functional expressions of 7,[p,] and J, [p,]
before investigating the quality of the agreement between the HF central potential and

the one obtained when using these semiclassical ETF functionals.

2.4.2 Convergence of ETF functionals

The semiclassical expansions of kinetic energy density 7, and spin-orbit density fq as
functions of the local density p, are functional expressions with & as order parameter.
These expressions can be obtained for instance through the semiclassical 4 expansions
developed by Wigner [30] and Kirkwood [31] or through the semiclassical method
of Baraff and Borowitz [32]. In either of the two approaches one obtains functional
expressions like

0o = 7T lpd] + 77 log) + 730 o] (2:28)

written here for the kinetic energy density 7,(r) Where 7T p,] is the well known
Thomas—Fermi expression already given in eq. (2.17), T [pq] the semiclassical correc-
tion of second order and 7' Y[p,] is of fourth order in h The ETF expressions up to

order 1i* such as T{FTF)[

pq], q. (2.28), are to be understood as the converging part of
an asymptotic series.
The second order term 7\?[p,] has already been derived for a Hamiltonian,

eq. (2.22), with an effective mass m; = m/f, and a spin-orbit potential Wq

p - —+t _ __ 4

1 (Vp,)? 1 1Vp,-Vf, 1 Af, 1 (Vf
@y 1= L ZA A a q
Tl =gg T, T gt g 6’77, 12"\ 7,
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) S\ 2
% (Qh—?) 24 (%) (2.29)
the first term of which is known as the Weizsécker correction [1| while the last one
contributes to the spin—orbit kinetic energy. The Weizsicker correction was sometimes
used in the past with an adjustable parameter (instead of %) in order to mock up the
absence of the other second order and all of the fourth order terms. It has, however,
been shown (see e.g. Ref. [18]) that such a procedure is unable to correctly describe
both the slope of the surface of the nuclear mass or charge density and, at the same
time, the height of nuclear fission barriers in the actinide region. From this analysis
we conclude that the inclusion of 4"— order terms (expressed in eqs. A.34, A.36 in
Appendix) in the semiclassical functionals is, in fact, without credible alternatives.
Let us now investigate the spin-orbit density J. It is given in Ref. [33] in the
form of second rank tensor which is related to the components of the vector J by the
relation

J)\ = Z Expv J;uza (230)
uv

where €, is the Levi-Civita symbol. The spin being a purely quantal property with
no classical analogon, there is no contribution to the semiclassical functional of J in
lowest order, i.e. at the level of the Thomas—Fermi approach, whereas one obtains for

the 2"? and 4*"—order contributions to the semiclassical expansion of the spin-orbit

density
2m p, =
W=7 W (2.31)
and
74) _ (9. 2\-2/3 2m py/* YARTIR AR Ty L 1aRvaLy,
Jy) = (37) IR [AWq + v(dIVWq)} + I {Wq Afq+ (We-V)Vf,
q q
B, ; N N U Mo =
(T x0t,) + 2, W] = 5 | (VW + (V1 W)V, = 2 (55 P W
q
[P (S
_§ [(VPq'v)Wq + diviVy Vp, — I ((qu'qu)Wq + (qu'Wq)VPq)l } - (2.32)
q q

The total spin—orbit density functional entering eqgs. (2.20 — 2.27) is then, similarly to
eq. (2.28) given as

Jo=J& +JW (2.33)

until now we have not taken into account the spin—orbit contribution to the kinetic
energy. Its influence on the semiclassical ETF functionals is treated in Ref. [33] and
its contribution Tq(4)so given by eq. (A.36) in Appendix, constitutes simply an additive

term to the spin—orbit independent part of the kinetic energy density.
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Finally, let us demonstrate the importance of the 4*—order ETF corrections in

the series (2.28) and (2.33) by giving the contributions to the total energy obtained for
the different terms at the different orders of the ETF functionals (TF, 2, 4" order)
for the nucleus 2*® Pb calculated with the SkM* force (see table below)

Efin MeV) | Bt (MeV) | Ey,, (MeV) | Ejp (MeV)
TF 3822.97 - - 3822.97
2m_order ETF |  63.37 48.74 - 97.48 14.63
4" —order ETF |  18.11 - 8.74 16.85 26.22

Tab. 2.3 Second and fourth order energy contributions to the total energy of 2°°Pb

obtained with the SkM* force.

The convergence of the kinetic energy density functional is also demonstrated

in Fig. 2.3, where the spatial behaviour of kinetic—energy density is investigated for

different orders of the semiclassical expansion.

(@

0.05 —

T, (fm™)

ZOBPb
SkM”

r (1‘6m)

12

Figure 2.3: Contributions from the different orders in the semiclassical expansion to the

kinetic energy density 7[p| for the selfconsistent density distribution shown in Fig. 2.1
for 2% Pb (TF (solid line), 2"¢ order (dashed line), 4" —order multiplied (dotted line))

are compared with corresponding HF density (dashed-dotted line)
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2.4.3 Asymptotic behaviour of the ETF nuclear density

Using the ETF approximation up to 4"—order we obtain asymptotic fall-off of the
nuclear density [18] as

p(r) — % where r — o0

"
h? 13 13/2

— | = (323 2 ) 2.34

¢ 2 BT e (2.34)

This result at first seems rather disappointing since it does not give the exponential
behaviour we would like to expect from the density. However, we do not know at
which distance from the nuclear surface this 7—° behaviour is really assumed. In order
to investigate this, let us take a typical value of A\ = —7MeV. We then find that
¢ = 0.03 fm3. If the asymptotic form of eq. (2.34) is assumed at a distance of r = 10 fm
in 2 Py then the density at this point is 3 x 1078 fm3.

The asymptotic behaviour obtained in Ref. [23] for the nucleus **Pb with the
Skyrme SkM* force and shown in Fig. 2.4 demonstrates that in order to reproduce this
asymptotic behaviour of the density correctly, the full 4*—order ETF terms have to
be included in the selfconsistent semiclassical calculations. The asymptotic behaviour
obtained in 2"! order ETF shows a too rapid fall-off, whereas the analytically wrong
asymptotic behaviour, eq. (2.34), of the 4'® order ETF approach turns out to produce

an excellent reproduction of the exact quantal behaviour in the physical relevant region.

Figure 2.4: Asymptotic behaviour of the nuclear proton density obtained for the nucleus
208Ph with the Skyrme SkM* force at different orders of the ETF approach. The results
of the 2" (dash—dotted line) and full 4" order (solid line) ETF expansions are compared
with the corresponding Skyrme HF calculations (dashed line)
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Figure 2.4 taken from Ref. 23] demonstrates that the ETF approach gives, indeed,
an excellent reproduction of the asymptotic fall-off of the nuclear density when the full
4" _order contributions are included-and that, in spite of inappropriate fall-off of
eq. (2.34), whereas the asymptotic behaviour in 2"—order ETF turns out wrong.



Chapter 3

ETF model for different density

deformations

As it was mentioned in the introduction, in most nuclei, neutrons and protons have
slightly different mean—square radii This is mainly due to the Coulomb repulsion be-
tween protons and unequal numbers of neutrons and protons.

In deformed nuclei, neutron and proton density distributions are expected to have
not only different radii, but also exhibit different shapes, i.e. different quadrupole and
higher multipole deformations. An analysis of theoretical densities based on a surface
multipole moment expansion shows that significant differences between neutron and
proton deformations often occur both in the ground state |34] as well as along the whole
path to fission [35]. The Hartree-Fock-Bogolubov (HFB) calculation performed in
Ref. [35] with the Gogny effective force for 23 Th, 23U, ?**U and ?*°Pu have shown that
the multipole deformations of the proton and neutron density distributions of fissioning
nuclei are far from being equal. The relative difference between them exceeds often
10 % and undergoes large variations which means that the thickness of the neutron skin
does not remain constant as the fissioning nucleus elongates. The effect on the nuclear
binding energy of these deformation differences was found to reach approximately 1.5
MeV, with fluctuations of the order of 1 MeV. These variations are clearly not negligible
as compared to typical fission barrier heights.

The aim of the present investigation is to develop a new term in the liquid drop
type mass formula which will approximate the average variation of the binding energy
when protons and neutrons deform in a different way. It seems to us that the most
suitable approach to this goal is the Extended Thomas-Fermi (ETF) approximation
introduced in section 2.4 above in connection with the Skyrme energy functional. We
present results of our calculations for a large sample of nuclei and derive a simple
approximate expression which nicely reproduces the effect of the proton and neutron
deformation difference in a macroscopic model [36].

25
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3.1 Description of the applied model

In order to determine the nuclear binding energies we use effective nucleon—nucleon
interactions of the Skyrme type which describes quite accurately nuclear ground—state
properties as well as the low-lying collective excitations [17]. For such an interaction
the total energy density £(7) is an algebraic function of the neutron and proton densities
prn and p,, of the kinetic energy densities 7,, and 7, and the spin-orbit densities J,, and
J, (see section2.4 above).

In a first approximation the nuclear energy (without Coulomb term) could be
calculated by using the Skyrme functional (2.20) and the Thomas-Fermi (TF) approx-

imation to the kinetic-energy density, eq. (2.17).

3.1.1 The model with sharp—surface distribution

If only ellipsoidal deformations are considered, we can describe the surfaces of nuclei
by a very simple parametrization, using a single deformation parameter o. In this
approach the lengths of the axis of the axially symmetric ellipsoids are then given by
[37] :

a=0b= RO(Q) exp {—%aq} ,

=1n, 3.1
c— Ro(q) explo,] q={n,p} (3.1)

where R{"” and R are the radii of the neutron and proton distributions respectively.

Obviously o > 0 correspond to prolate and o < 0 to oblate deformations. Introducing

the isospin parameter / = #=Z the following dependence on A and I was obtained in
the Relativistic Mean Field calculation of Ref. [38]
.646
RY =1.237 (1 —0.1571 — OT> AY3 fm | (3.2)
n 2.806
R = 1.176 <1 +0.250 T + T> AY3 fim (3.3)

For ellipsoidal deformations it can be easily shown that the nuclear surface is given by

ac
\/a2 cos?(6) + ¢ sin*(0) .

It is obvious that in the case of different deformations and sharp distributions of protons

R,(0) = (34)

and neutrons there will appear regions in which there exist only protons or neutrons
and other regions where both types of particles coexist. In order to evaluate the nuclear
energy in such a case, the Skyrme functional depending on the nucleon densities in the
form given in Ref. [14]| (neglecting the spin-orbit contribution), can be separated in
three terms depending only on the proton density, only on the neutron density and an
interaction term depending on the densities of both type of particles, namely :

1

1 3
V= Zto(l - xo)ﬂz + g(h + 3ta)py Ty + 3_2(t2 —t1)pg V2pq (3-5)
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where ¢ = {n, p}, and

T 1
Vin = to(1+ 20)pppn + = (t1 + o) (ppTo + puTp)

2 4
1 1
= 1530 =)V + puV0p) + ts(0h0p + pn) (3.6)
Finally, £ can be written as
2
52%(7n+7p)+‘/;,+vn+‘/;;n ) (3.7)

The total nuclear energy E,..(N,Z) is then given as the volume integral of £(7).
Ee( N, Z) = / £ dr . (3.8)

In the case of a sharp surface distribution the changes of the nuclear part of the energy
AFE,,. as a function of deformation can be just expressed as the product of the volume
(2,,, where protons and neutrons coexist and the term of the energy density connected

with the interaction of these two types of particles :
AE . (Ac) =V, Qpr (3.9)

where (see Ref. [36])

A » (%) exp(Ao) — 1
Q,, = = PHh3 L] — 20 -1 3.10
b 37T<R0 ) exp(3Ac) — 1 (310)

[ R\ 2

(ﬁ) exp(—Ao) — 1
1 _ 0
1 — exp(—3A0)

3/2

4
§7r<Rg )3 —1

with Ao = 0, — 0, and where the term in curly brackets ensures the volume conserva-
tion in the case of ellipsoidal deformations which are considered here (see Ref. [36]).
One should notice that for this type of nucleon densities, the terms of £(7) in V?p
vanish, so that the nuclear energy does not change during the deformation process as
long as the proton and neutron distribution do not cross each other, since the volumes
between the sharp surfaces is kept constant. After the surfaces intersect the energy
rapidly decrease because there the region in which protons and neutrons coexist €2,,
changes its volume as a function of the deformation. This fact leads to the changes of
the term V,,,,, while terms V,, and V,, are constant. A typical behaviour of the binding
energy with growing proton-neutron deformation difference is presented in Fig. 3.1.
The model with the uniform density distribution is, of course, too rough to make

realistic estimates but nevertheless it should give some idea about the main effect.
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Figure 3.1: Typical behaviour of the binding energy with growing neutron-proton
deformation difference for the nucleus ?°*Pb and the sharp proton and neutron density

distributions

3.1.2 The model with the Fermi—type density distribution

More accurate estimates of the change of the binding energy when the protons and
neutrons deform differently can be made with diffuse density profiles. In the following
we have chosen for our analysis the density distributions in the form of Fermi functions

Po,

1+ exp(’";i“g()e)) ’

pu(r.6) (3.11)

where po, are the saturation density parameters obtained from the normalization con-
ditions :

/pp(r)d37’ =7 , /pn(r)d37’ =N (3.12)
and where R,(0) is given by eq. (3.4). The surface width parameters a,, are #—dependent
and equal to

a,(0) = \/sin4(9) + cost(6) + sin*(6) cos?(6) [exp(30,) + exp(—30,)] ao,.  (3.13)

This definition guarantees that the surface diffuseness is constant along the direction
perpendicular to the surfaces of the ellipsoids. The parameters {Ry,, ao,, Ro,, o, }
characterizing the spherical Fermi density distribution of neutrons and protons are
obtained by the variational calculations of the energy functional (2.18) within the
second order ETF approximation (2.29) and (2.31) using the Skyrme SIII force [25].

3.2 A simple analytical deformation dependence

The calculation were performed for 28 even—even nuclei involving several isotopic chains

from Ni to Th. We suppose that the deformation of these nuclei can be characterized
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by a single global deformation parameter « identical for protons and neutrons plus a
quadrupole type deformation parameter AB measuring the difference in the proton
versus neutron deformation. The global deformation « of the nucleon distribution can
be e.g. defined as the parameter o introduced by Myers and Swiatecki [37] through

T [R(6) — Ry’
o? — 2n de[7] | 3,14
0/ e (3.14)

where R(f) is the half-density radius of the nucleon distribution of the deformed nu-
cleus and Ry, the radius of the corresponding spherical distribution. For an ellipsoidal
deformation as characterized by eq. (3.1) « can be easily expressed in terms of the
parameter o by [39]

1
o = 0?1 — -0 + O(a?)] . (3.15)
In order to be able to express the total energy as a function of the difference A between
the proton versus neutron deformation we need to find a way to express this difference

in a way which is independent of the specific choice of the deformation parameters like
e.g. in eq. (3.1). We have chosen to define the parameters /3, as :

B_Q%
qQ T )
QL

where the Q) are the monopole and Q%) the quadrupole moments of the proton and

(3.16)

neutron distribution with
@ = [ ) P (3.17)

and where

= Q + Qi

AP _ ot Z

00 00 "4

~(n Y N

W =Qw - - (3.18)

are the so—called average monopole moments for protons and neutrons respectively.

We have found that contrary to the rapid change (Fig. 3.1) of the binding energy
in case of the uniform density distribution the nuclear part of the energy varies almost
parabolically with the proton and neutron deformation difference A3, when the smooth
density profile (3.11) is assumed for protons and neutrons.

The binding energy can then be parametrized in the following form
B(Aa -[7 «, Bna Bp) = BavT(A7 Ia O-/) + CL(Aa ]7 O{) . (Bn - /810)2 ) (319)

where B,,, is the part of the energy that is generated for equal deformations for protons

and neutrons and which can be obtained e.g. from the standard liquid drop or droplet
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model as described in section 2. In order to determine the stiffness parameter a of the
parabolic form in AB we proceed in the following way:
For various nuclei with different values of the mass parameter A and isospin parameter

I and for o # 0 we find that this parameter a(A, I, «) can be expressed in the form
a(A, 1) =ag(A ) [1 —caa(l+e3)] (3.20)

where the deformation independent coefficient ag(A, I) can be parametrized as

n
ao(A,T) = ¢y (AV3)" (3.21)
The values found by our fitting procedure for the parameters ¢y, ¢o, c3 and n are the
following
c1 = 1.21 MeV | cp =30 , c3 =30, n=4.
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Figure 3.2: The mass number (Lh.s. figure) and the deformation (r.h.s. figure) depen-
dence (crosses) of the stiffness parameter a(A, I, «) (eq. 3.19) and its approximation
by the formula (3.20) (solid lines).

The stiffness parameter a(A, I, «) evaluated for all considered isotopic chains is
compared in the Fig. 3.2 at a=0 deformation with the parameter ao(A, I), eq. (3.21).
The a deformation dependence of the parameter a(A, I, «) is illustrated for the nucleus
9Zr in Fig. 3.2. We have also compared the above estimate of a(A, I, «) with the re-
sults obtained using two other Skyrme interactions. We have found that the estimates
obtained with the Skyrme SII and SVII forces are identical within 10% to those pre-
sented above for SIII. The quality of the fit of the binding energy as function of the
deformation difference is demonstrated on Fig. 3.3 for three nuclei from different mass
regions, namely: (%Zr, °Nd and ?°Pb) and for three different values of the global
deformation parameter a.

In order to test the predictive power of equation (3.19) we have performed an

additional calculation for three dysprosium isotopes (neutron deficient, S—stable and
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Figure 3.3: Change of binding energies due to different neutron—proton deforma-
tions obtained in the ETF approach is compared with the approximate expression
of eq. (3.20).
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Figure 3.4: The approximation (3.19) of the binding energy (solid line) made for three
Dy isotopes and at three deformations is compared with the ETF results (crosses) as

function of the neutron-proton deformation difference.



CHAPTER 3. ETF MODEL FOR DIFFERENT DENSITY DEFORMATIONS 32

neutron rich) and compare their ETF energies (see Fig. 3.4) with the approximation
given by (3.19).

As can be seen in Fig. 3.4 the agreement of both results is rather satisfactory in
all cases, except for the very deformed neutron deficient 1*°Dy isotope.

When a # 0 and (Bn — Bp) = 0, the energy B,,, can be reproduced by any
macroscopic approximation like the liquid drop or droplet model.

The correction (3.19) in the nuclear mass formula which describes the effect of
different proton—neutron deformations turns out to be, as seen from eqs. (3.20) and
(3.21) proportional to the square of the deformation difference of both distributions and
increases as A*®. It is clear that one deformation parameter Bq used to parameterize the
discussed effect is not sufficient when one needs to consider larger global deformations,
« far beyond the equilibrium state. Then, on the nuclear way to fission, as we know,
higher order multipole deformations begin to play an essential role. until now, in
any type of macroscopic approach based on the leptodermous expansion, the term
proportional to A%/ was considered as negligible small as compared to the other terms
in the series (see section 2 for details). The A%/®—dependence of the correction (3.19)
corresponding to different proton-neutron deformations can therefore not be absorbed
in actually existing macroscopic liquid drop approaches by a simple readjusting of their
parameters and must be treated rather as the additional additive term. More advanced
study of this effect is presented in section 6.4.6 within the framework of the Yukawa—
folding procedure, where, apart from the where, apart from the deformation connected
with the elongation of a nucleus also the possibility of forming the neck in the nuclear

surface is considered.



Chapter 4

Enterance channel of heavy—ion

collisions

4.1 Short historical review

The knowledge of the collective potentials between two colliding ions is absolutely
crucial for the synthesis of new isotopes. This problem has been the subject of a very
active research over the last decade and remains one of the most intensively studied
subjects in low—energy nuclear physics in particular in the perspective of the synthesis
of super-heavy elements as well as of exotic nuclei far away from the F—stability line.
It has in particular been shown that models based on a macroscopic approach such as
the liquid drop model or of semi—classical type like the extended Thomas-Fermi (ETF)
method together with the Skyrme energy-density functional are able to reproduces
quite accurately experimental data on fission and fusion barriers.

The research concerning the interaction potential between colliding ions goes back
to the work of R. Bass (for a review see Ref. [40], |[41]) who parameterized the total ion—
ion potential Vi5(r, ) (including the centrifugal term) as function of the inter—nuclear
distance r by a very simple formula:

AV r— Ry

d n*1?
g AR AL (_ )
Qsurf Ay Ag R exp P + 2
where ag,, s is the surface parameter of the Liquid-Drop Model introduced in chapter
2, Ris = R + Ry = TO(A}/ . Aé/ 3) the center—of-mass distance between the two

spherical nuclei, [ the angular momentum of the system and p its reduced mass. The

Via(r, 1) = (4.1)

variables d, ry are the adjustable parameters of this model.

A few years later, Krappe, Nix and Sierk proposed a folding procedure with the
phenomenological Yukawa—plus—exponential interaction [42] to determine the interac-
tion potential through the optical potential obtained within the Feshbach’s theory [43]

1
Uspi = <c1>0x1:0 oV <I>0\I!0>, (4.2)

VHVes oot

33
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where V' and H are the potential and Hamiltonian of the entire system ¢ is the aver-
aging energy interval in the optical model and () = 1 — P, with P being the projection
operator on the elastic channel. The ground-state wave-functions ®, and ¥, of the
target and projectile respectively are assumed to depend only on their internal coordi-
nates. Since only the real part of the optical potential ($oW,|V'|Po W) can be identified
with the Yukawa—plus—exponential double—folding potential, the following expression
is used:

v——v+BL+C<L)2 (4.3)
" TRy Rip '

with Ris = R; + Ry, B and C' are determined by requiring that the value of the
potential and its first derivative must be continuous at the touching configuration of
target and projectile. That yields

B:Q%—D[(@+3)F— @], (4.4)
a a
=i )] 5

where D, F' and Vj are defined within the Yukawa-plus—exponential model.

Since the appearance of the idea of a proximity potential of W. J. Swiatecki and
coworkers in the late 1970’s [44], many improvements have been proposed to make
this phenomenological approach more realistic and general, in particular by taking
into account the local curvature of the surfaces of target and projectile [45, 46]. One
of the main challenges was, as already mentioned, to give a reliable guideline for the
formation and stability of super—heavy elements.

The parameters of the proximity function are usually fitted to experimentally
known fusion barriers heights. The basic idea of all proximity models is to determine
the potential between the two colliding nuclei as function of the minimal distance s of
their surfaces and their so—called reduced radius defined in the case of spherical nuclei
as R = R, Ry/(Ry+ Rs), where the indices 1 and 2 refer to the target and projectile
nucleus respectively.

Experimental data confirm the existence of a local minimum (pocket) in the
shape of the nuclear part of the potential near the touching configuration of target
and projectile which forms as the result of the competition of the short range nuclear
interaction of colliding nuclei and long range Coulomb repulsion between them. This
feature plays an essential role for the formation probability but also for the stability
of the compound nucleus in the fusion experiments and is the first decisive step for
fusion. Indeed, if the potential pocket is deep and wide, several quasi-bound states
might be populated and the probability of forming that specific compound nucleus is
large. If, on the other hand, this minimum is shallow and narrow no such states will
exist. The pocket depth decreases with increasing size of the projectile. For example,

in the case of 2*Pb target there exists practically no pocket for the “°Zr+2Pb system
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and for heavier projectiles. The mentioned potential pocket is also much shallower for
reactions leading to super—heavy elements then for these with lighter colliding systems.
It would therefore be of great importance to have at hand a simple, yet sufficiently
accurate phenomenological expression for the determination of fusion barriers in order
to evaluate the most favourable reaction for the formation of a given compound nucleus.

The aim of the investigations presented below is to show that the shape of the
proximity potential can be, indeed, quite accurately determined through selfconsistent
semiclassical calculations. We proceed in a way similar to that suggested in Ref. [47]
and recently used in Ref. [48]. For the calculation of the interaction potential between
the two nuclei we need an energy-density functional which has proven its capacity to
correctly describe nuclear ground-state properties. As we are interested in the potential
energy resulting from the interaction of the tails of the density distributions of target
and projectile, a very precise description of the nuclear surface seems crucial. The
Skyrme effective interaction, in particular in the parametrizations known as SkM*,
SIII, SLy4 have been one of the most successful effective nucleon—nucleon interactions
over the last two decades |24, 25, 49|.

4.2 Entrance channel dynamics

The fusion process is considered to be a part of the quantum-mechanical scattering
process between two nuclei. In such a formulation one has to consider all kinds of
possible scattering channels which are coupled to the entrance channel of the colliding
nuclei. Thus we face the problem of the description of the coupling of large number
of such partial channels which include the inelastic excitations and nucleon—transfers,
quasi—fission, compound—nucleus formation and fission. To be able to deal with the
complexity of this problem we have to formulate the static scattering problem in an
appropriate way. It is obvious, however, that the energy dependence of the entrance—
channel wave—function strongly affects the cross sections for all mentioned processes
including those which lead to the compact-shape configurations. We will evaluate
below the interaction potential in the entrance channel in a semiclassical approach
keeping the densities of the colliding nuclei fixed.

Since the elastic channel of the ion—ion collision is uniquely defined outside the
range of nucleus-nucleus interactions, there is considerable freedom inside. In principle,
any model, which asymptotically describes two nuclei in their ground states, is possible
if all relevant inelastic channels are included in the solution of the scattering problem.
However, from a physical point of view a reasonable theoretical description should
account for the essential collective dynamics in the region of the overlap. A crucial
quantity, which characterizes the collective dynamics in the entrance channel during

the capture process, is the nuclear interaction time 7., (collision time) as compared
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to the characteristic time 7, for the relaxation of the intrinsic nuclear state due to

the nucleon—nucleon interactions. The collision time 7.,; can be estimated [50] by

o :W e A, (46)
colt Wpocket (Al + A2>V”Rpocket ’ .

where wpocker denotes the oscillator frequency of the interaction potential pocket V(r),
Rpocker 1s the distance between the centers of mass of both ions corresponding to the
minimum of the interaction energy, while m, A; and A, are the bare nucleon mass and
the respective numbers of nucleons of the colliding nuclei.

A typical value for wy,cke; in reactions leading to super-heavy elements is given by
hwpoeket = 4MeV . Therefore, typical collision times for such cases are 7., ~ 5x 10~?%s.
This value has to be compared to typical times for the relaxation of the intrinsic nuclear
structure due to the nucleon—nucleon interactions. This time is approximately equal
to [50]

€F 2 x 1072
3.200ppoe* ~ e*/MeV *

where e€r and vp denote respectively the Fermi energy and velocity, o the averaged

(4.7)

~o
Trelax =~

nucleon—nucleon cross section, py the saturation density of nuclear matter and ¢* the
excitation energy per nucleon. For reactions leading to super—heavy nuclei the excita-
tion energy is very small and we have at the touching configuration ¢* < (5MeV') /250 ~
0.02 MeV, and hence Tycjq; > 1072%s, i.e. more than one order of magnitude larger than
the collision time 7.,;. Thus, we conclude that the entrance channel in the region of
nucleus—nucleus overlap is well defined by the fixed configuration of the colliding nuclei.
This means that the interaction energy of two overlapping nuclei with frozen densities
is a good approximation. This frozen—density approach should, however, not be ap-
plied to very large overlaps of the density distributions of a target and projectile. A
suitable extension into regions of compact shapes would be the diabatic approach of
the entrance—channel configuration [51, 52| which is not going to be discussed in this
work. Furthermore, the mentioned adiabatic potential should be regarded as a suitable

reference for more realistic diabatic potentials and barriers.

4.3 The ETF fusion potential

Since our aim is to evaluate fusion barriers, a quantity which is essentially determined
by the radii and tails of the density distributions of target and projectile, we have
chosen the semiclassical Extended Thomas—Fermi (ETF) method discussed in section
2.4 to determine in a selfconsistent way the structure of projectile and target nuclei.
We have carried out the 4" —order ETF calculations, to determine the structure

of target and projectile nucleus. The density profiles of protons and neutrons in the
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form of modified Fermi functions, given by eq. (2.19), obtained in this way are then
used to determine the fusion potential between the two nuclei.

For evaluating the fusion potential we will use the frozen—density approrimation,
i.e. keeping the densities of the colliding ions fixed and neglecting all possible rearrange-
ment effects, an approach already explained in the previous section. Thus, the total
density profile of the dinuclear system is simply the sum of the densities of target and
projectile (p = prar + Pproj) as showed in Fig. 4.1. The limits of this simple approxima-
tion were already discussed in the previous section. Notice, that in the case of negative
intersurface distances, the total density of the target—projectile system in the overlap
region exceeds the average saturation density of the nuclear matter. For low—energy
nuclear collisions the Pauli principle will come fully into play, which as a consequence
causes that the repulsion between nucleons violently increases as a function of their
mutual distance.

For a fusion reaction the beam energy per nucleon is, indeed, quite small as
compared to the Fermi energy and a kind of adiabatic treatment would be appropriate.
One has, however, to keep in mind that the essential characteristics of the fusion barrier,
as its structure around the above mentioned pocket, are determined at distances larger
and close to the touching configuration. Defining the minimal distance s between
the equivalent sharp surfaces of the liquid drops identifying the two nuclei we see
that the essential features of the fusion barrier or cross sections are determined at
the distances (s > 0), where the frozen—density approximation seems to be a very
reasonable approach.

We can then evaluate the nuclear part of the interaction potential V,,,. of two

spherical colliding ions as function of the distance d between theirs centers of mass as :
Viue(d) = / {gnuc[p(l)(F) + p(2) (7 — J)] _5nu0[p(1)(F)] - 5nu0[p(2)(F_ J)]} d’r (4.8)

where &, is the nuclear part of the energy-density, eq. (2.27), and p®(7) denotes
the density distribution of nucleus i alone ((1) labelling e.g. the target and (2) the
projectile). If the distance d between the two nuclei is much larger than the sum of
the half density radii (d > R, + R,) then the nuclear part of the interaction should

vanish because of the short range of the nuclear forces
lim Ee | p M (7) + pP (7 = d ﬂ = e [/J“)('F ﬂ + & [0(2) (7 ﬂ : (4.9)

Thus, the nuclear part of the interaction potential (4.8) between the nuclei is non
negligible only when the distance s between the nuclear surfaces of both nuclei is
smaller then a few fm. The Coulomb interaction between the two ions is given as usual

in the form

VCoul(d) _ / pch| _’1) /)c_;} 2) dng d37“2, (410)
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Figure 4.1: Parts (a) and (b) present the density of the dinuclear system *Ti +23 U
(continuous line) versus non—interacting densities of ions of T and U (thin dashed
lines) for two different center-of-mass distances d. Part (c) of the figure gives the
shape of fusion barrier as a function of the inter-nuclear distance s (top scale) and
center-of-mass distance d (bottom scale). The thin solid line on the right represents
the corresponding Coulomb barrier of the point charges

Figure 4.2: Definition of target and projectile coordinates: inter-nuclear (center—of-

mass distance) d and inter-surface distance s between the equivalent sharp distributions



CHAPTER 4. ENTERANCE CHANNEL OF HEAVY-ION COLLISIONS 39

where we simply assume that the charge density is given in terms of the proton density
by pSh) ~ epl) where in the ETF approach the latter is of the form of eq. (2.19).

4.4 Fusion barriers for super—heavy elements

The fusion barrier appears as the result of the competition between the long-range
repulsive Coulomb interaction V¢, and the short-range attractive nuclear forces V.
as is illustrated on Fig. 4.3, where the total fusion barrier is plotted as function of the
internuclear distance d as well as of the inter-surface distance s. We notice that for
distances s > 3 fm the attractive nuclear part of the fusion potential almost vanishes
and the barrier is just determined by the repulsive Coulomb potential. Taking the
diffuseness of the charge-density distribution into account reduces, for this distance
the height of the Coulomb barrier (and as a consequence the total fusion barrier) only
by about 1 MeV as compared to the barrier obtained with point charge distributions
of target and projectile. It is evident that when the overlap of the densities of the
d[fm]

65 75 85 95 105
250 ‘ ‘ —

50Ti + 238U

240

230 r

220 r -

V [MeV]

210

200
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Figure 4.3: Shapes of total (nuclear + Coulomb) fusion barriers V' (full line) as function

of the center—of-mass distance d (top) and the distance between the equivalent sharp

surfaces s (bottom) for the reaction °°Ti + 3%U leading to the super-heavy element

28X, Also shown are the exact Coulomb barrier (thin line) and the one corresponding

to two point charges (dashed line).

colliding nuclei becomes large, as e.g. when s < 0 (dotted line in Fig. 4.3) the sudden
approximation used here becomes more and more questionable. Our aim, however,
is not to give a precise description of the entire fusion potential, i.e. also for large
negative s values, but rather to obtain some reasonable estimates of the height Ep
of the fusion barrier. Fig. 4.4 shows Ep obtained in the sudden approximation and
neglecting deformation effects of the colliding ions for 269 different reactions (with
3—stable targets ranging from '®®Er to 2**U) leading to different isotopes of the super-

heavy elements with even charge numbers between Z =108 and Z=114. The barriers
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Figure 4.4: Height of fusion barriers corresponding to the different reactions leading to
different isotopes of the super-heavy elements with Z=108,110, 112, 114, evaluated in
our ETF approach (thick line) and in the proximity model of Ref. [53] (thin lines), as
function of the projectile neutron number.

shown are the ones obtained with the Skyrme forces SkM* [24] (barriers corresponding

to the Skyrme SLy4 interaction [49] are identical to within 1 MeV). The thin lines

illustrate the heights of the fusion barriers obtained in the Myers-Swiatecki proximity

model [53]. This collision potential between spherical ions of the form

AV
d

is obtained on the basis of the droplet model [54], [55] with the newest set of parameters

V= + KW(s), (4.11)

where the function U(s) is parameterized by means of the following equations:

5
U(s) = —0.1353 + X ;%5 (2.5 — )", for  0<s <25 fm,
=l (4.12)

U(s) = —0.1331 exp (2'755), for s> 2.5 fm.

0.7176

Here s denotes the inter—surface distance of both ions while the values of the coefficients
¢, are given by: ¢y = —0.1886, c¢; = —0.2628, co = —0.15216, c3 = —0.04562,
¢y = 0.069136, c¢5 = —0.011454. The parameter K in eq. (4.11) defined as

RiR,
K = dgy—112 4.13
R T R (4.13)

expresses the strength of the nucleon—nucleon interaction. The quantities R; and R, de-
note effective nuclear radii of target and projectile nuclei, the fraction (R Rs)/(R1+ R2)
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corresponds to the reduced curvature of the spherical surfaces of target and projectile
and 7 is the mean surface tension coefficient appropriate for the two nuclei given in
the droplet model.

Fusion barrier heights evaluated using the prescription of Ref. [56] are very close
to the former differing by not more than 2 MeV for all the reactions considered here.

4.5 A simple analytical fusion potential

The nuclear part of the potential between two colliding ions (see Fig. 4.5) can be quite

accurately reproduced by the following approximate form [57]

Vo (d) =V, (d)=V, e @) (4.14)

nuc nuc

The distance dy, the depth V; and the fall-off a of the potential are a direct result
of our selfconsistent, semiclassical calculation. The detailed study of the behaviour of
these three quantities as functions of the masses A;, As and the reduced isospins I; =
(A; —27;)/A; of target and projectile nuclei lead us to the following parametrization
(see Fig. 4.6)

do(Ay, As) = ro(AVP+AY?) + b (4.15)
A}/?’ . A;/?’

Vo(Ar, Ag, I1, L) = vy |1 + k([ + )| ———
0(Ar, Az, I, 1) 0 (11 2) A}/3—|—A§/3

(4.16)

a = (]1+IQ)+O[1. (417)

s [fm]

Viue [MeV]

-80

o 10 11 12 13 14 15 16
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Figure 4.5: Pure nuclear part of the collision potential for **Ti+23U given by eq. (4.14)
as a function of internuclear distance d (lower axes) and intersurface distance (upper
axes)
Carrying out the least-square fit of the ETF nuclear potential with respect to
three 3 quantities dy, Vj and « to the ETF nuclear potential we came to the conviction
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Figure 4.6: Mass and isospin dependences of the parameters entering eqs. (4.14-4.17).

In the figure legend the subscript [V is the projectile neutron number
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that since the mean square error changes only insignificantly when giving up the isospin
dependence for the fall-off parameter o we can safely admit its value to be constant
which leads to the following set of parameters:

ro [fm] | b [fm] | v, [MeV] K a [fm~2]
1.183 -2.400 -46.07 -0.4734 0.173

Tab. 4.1 Values of parameters entering the fit of the fusion potential given by eq. (4.19)

To obtain the potential that the system of two colliding nuclei experiences we
have to add the Coulomb potential, eq. (4.10), to the nuclear part. For distances large
compared to the sum of the equivalent—sharp—surface radii, this Coulomb potential is
very well approximated by the Coulomb potential between two point charges, but as
soon as the densities of the two nuclei interpenetrate this approximation will no longer

give reliable results and it turns out that the difference

Z, Zy€?

AVCoul<d) = VCoul(d> d

(4.18)

will be, in the case of the super—heavy elements considered here, of the order of 3 MeV
already in the vicinity of the contact configuration (s = 0).

Instead of calculating the diffuse-surface Coulomb energy explicitly for each re-
action under consideration, the idea is to come up with an easy—to—use expression to
approximate in a reliable way the ETF fusion potential between two nuclei developed
above, including the full Coulomb potential. That is why we propose to write this

potential in the form
Z, 7, €*
d Y

where the term V, (d), which now contains the Coulomb-energy difference AV,

V(d) = Vyeld) +

(4.19)

eq. (4.18), in addition to the nuclear potential (4.8), is approximated by eq. (4.14)
with the parameters dy and V being given by eqgs. (4.15) and (4.16). It is clear in
this context that these new parameters can turn out to take values that could be quite
different as compared to those describing the nuclear part alone.

To determine these quantities we perform a simultaneous fit of the 5 free param-
eters: ro, b, vy, Kk, o to the fusion potentials of the 269 reactions obtained in the above
described ETF approach (see Fig.4.4). We proceed in the following way: What we are
and the height
V. ... Of the total fusion barrier, and we therefore attach a maximum weight in our fit-

interested in is primarily the precise description of the location d,,,,
ting procedure to their best possible reproduction. When going to smaller distances, i.e.
towards negative values of s, the Coulomb—energy difference AV, eq. (4.18), grows

larger, but also the nuclear potential obtained in our sudden approximation becomes



CHAPTER 4. ENTERANCE CHANNEL OF HEAVY-ION COLLISIONS 44

less and less reliable. That is why we attach a decreasing importance to the reproduc-
tion of the fusion barriers for smaller and smaller distances. For increasing distances
d>d

correction AV, go rapidly to zero and our approximation form (4.19) becomes bet-

maz, OD the other hand, both the nuclear potential V,,_ as well as the Coulomb
ter and better. We therefore attach again less weight to its precise reproduction for
large positive values of s. We have thus imagined a least—square—fit procedure with
a normalized weight function of Gaussian form with a width of 1 fm and centered at
d=d,,,.. The values of the parameters obtained in this way are listed in Tab. 4.1

The final criterion of the accuracy of our approach consists in its ability to repro-
duce the height and shape of the fusion barriers for all 269 reactions obtained within
the ETF approach with the SkM* Skyrme interaction. The r.m.s. deviation of the
exact ETF fusion potential and its approximation by eq. (4.19) is only of 0.27 MeV at
the top of the barrier and of 0.37 MeV for the touching configuration (s = 0).

Such a fusion barrier is shown in Fig. 4.7 for the reaction **Ca+232Th. As one
can see, the ETF barrier is almost perfectly reproduced by our analytical expression,
eq. (4.19) with (4.14). The barrier height is also almost the same as the one obtained
in the proximity model of Ref. [53].

s [fm]
0
205 :
48 232 i
Ca+ “>“Th A —
200 | prox. 1
> 195
=3
2
<2 190
185 [
180 : :
11 12 13 14

d [fm]

Figure 4.7: Fusion barrier for the reaction **Ca + 23?Th obtained within the ETF
approach (full line), its approximate analytical form, eq. (4.19) (dashed line) and the
proximity potential of Ref. [53] (thin line)

It is obvious from Fig. 4.4 that the agreement between our ETF approach and
the proximity model is not always going to be that close. If one considers e.g. the
reaction 19Cd + 1°'Sm one already concludes from Fig. 4.4 that the barrier heights of
the two approaches are going to be different by some 7 MeV (or 2%). We also notice
there that the minimum obtained in our ETF approach is quite shallow, whereas the
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Figure 4.8: Location s,,,, of the top of the fusion barrier as function of the product

T

Z, Z, of the charge numbers of target and projectile.

proximity potential does not make any predictions about the region s < 0. One could
now speculate about the validity of our approach close to and inside the touching
configuration. The enhancement of the height of the fusion barriers related to the
sudden approximation is obviously related to the concept of the diabatic fusion barriers
advocated by W. Norenberg and co—workers [52].

The agreement of the ETF fusion barrier heights with those obtained in the
proximity approach for very asymmetric reactions (A; > As) seems to be related
to the value s, .. (corresponding to d,,..) of the distance s of the equivalent sharp
surfaces of the two colliding nuclei at the top of fusion barrier, as this is demonstrated
on Fig. 4.9. Comparing Figs. 4.4 and 4.9 one can, indeed, observe that the enhancement
of the ETF barrier height relative to prediction of the proximity model is larger, as the
distance s,,,, gets smaller, which is the case for the nearly symmetric reactions.

Since we have only considered fusion reactions leading to super-heavy elements
with even values of Z between Z = 108 — 114 one might doubt about the utility of
the analysis presented so far for the description of fusion barriers in other regions of
the atomic chart. We have therefore applied our phenomenological expression to the
reactions 160162166y 4 46=50Tj a5 well as to the very light system “*Ca + 4®Ca. To our
great surprise the predictions based uniquely on our knowledge of the ETF barriers
of the super-heavy system gave astonishingly good results for these lighter systems
with a deviation between ETF results and those of the simple analytical expression,
eq. (4.19), of less than 0.7 MeV for the former and of about 1 —3 MeV for the latter
system.

In the above description we have presented a model allowing for a systematic
investigation of fusion barriers between spherical nuclei. One might speculate imme-

diately about the importance of deformation on the barrier heights obtained in our
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Figure 4.9: Comparison of the fusion thresholds obtained through the variational
Skyrme-+ETF method (thick solid line) and its approximation (4.19) (thin solid) with
the results of Swigtecki proximity model (eq. 4.11) (dashed line) for the very light
system %Ca + 4°Ca

approach. It seems evident that taking into account deformation as an additional de-
gree of freedom of the system target-projectile could often lead to a decrease of the
fusion barrier [58]. One knows, indeed, that e.g. the Coulomb barrier is substantially
lower for two nuclei with ellipsoidal deformation and tip—to—tip orientation as com-
pared to a different orientation or in the absence of deformation. It is obvious that
for a system like 1'°Cd + '**Sm, which we briefly discussed above, where at least, the
target nucleus exhibit a substantial deformation, such an effect plays a non negligible
role which implies that taking deformation into account in our ETF approach might
lead to much lower fusion barriers for those systems.

Notice, however, that according to the idea of the proximity approach we can eas-
ily switch on the deformation into our consideration of the nuclear collisions within the
here presented model by the inclusion in the multiplicative function K (see eq. (4.13))
which depends only on the geometry of the surface of the dinuclear system. In addition,
we would like to strongly emphasise that our approach which is based on a selfconsis-
tent, semiclassical description of the projectile and target liquid—drop structure has no
adjustable parameter and, as one can convince oneself by looking at Fig. 4.4, predicts
fusion thresholds that are quite close to the ones obtained with the phenomenological
proximity approach of Ref. [53]. We have given, in addition, an analytical form allow-
ing for a simple approximation of the ETF fusion barriers, thus providing a very simple
evaluation of fusion potentials for reactions throughout the periodic table. We believe
that such an approach could serve as a guideline for the experimental researches on

the synthesis of super—heavy elements. As mentioned above, we also tested the ability
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of the expression (4.14) to reproduce the barrier heights for the very light systems as
e.g. “°Ca + %°Ca. What is quite astonishing is, that our simple phenomenological
ansatz, eq. (4.14), adjusted to the reactions leading to super—heavy elements is able to
reproduce even those fusion barriers in a quite satisfactory way with a relative error of
2% at most.

4.6 Influence of different proton and neutron density

radii on the collision potential

The analysis of the experimental data on electron and a-—particle scattering, pionic
atoms, and annihilation of antiprotons shows that, in most nuclei, neutrons and protons
have slightly different r.m.s. radii [59]. The main reasons for this difference are the
Coulomb repulsion between protons and unequal numbers of neutrons and protons.

Fully microscopic approaches of the Hartree-Fock type using the effective nucleon—
nucleon interactions of the Skyrme or Gogny type [14, 15|, as well as the relativistic
mean field theory [60] reproduce in a rather satisfactory way the experimental proton
and neutron r.m.s. radii and their isotopic shifts [34, 38, 60].

Using the ETF ion-ion potential which was successfully parameterized by the
simple analytical formula, eq. (4.14), we can now describe the relative change of the
fusion barrier heights as a function of nuclear proton or neutron radii for reactions
where the target as well as the projectile nucleus in the equilibrium state are spherical
or very close to sphericity [61].

It is commonly known that neutron, contrary to proton r.m.s. radii, are de-
termined experimentally with relatively poor accuracy and for only a rather limited
number of nuclei situated in different mass regions. On the other hand, on can easily
show in a simple and straightforward calculation that the r.m.s radius given by

(r?) = M (4.20)

I p(r) d®r
is the combination of all four density parameters entering eq. (2.19) when such a Fermi-
function type density is used. The parameters obtained with the SkM* Skyrme force
which was used in this study have proven to give an excellent estimate of nuclear radii
(see e.g. Fig. 2.1). Since neither R, nor a, are observables we are allowed to vary to
some extend these values conserving, of course, the nuclear volume. When looking at
Figures 4.10 and 4.11 one can easily notice that by the change of the neutron radius
in one of the colliding ion by 1 fm we are able to shift the maximum of the fusion
barrier by 1 — 3 MeV, i.e. by the order of the discrepancy between the ETF and
the experimental values. When instead of the neutron we vary the proton radius we

observe that this change becomes even more rapid because in such a case we affect
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Figure 4.10: Difference between theoretical and experimental fusion barrier heights
(Bett — Bexp) for asymmetric reaction °0 +2% Pb as function of neutron radius R,
(upper-left), the neutron skin width (defined as the difference between neutron and
proton radius R,, — R,) (upper-right), neutron surface diffuseness parameter a,, (lower-
left) and proton radius R, (lower-right). Labels {1,2} in parenthesis indicate the
colliding ions. Exact variational values of the radii and surface diffuseness parameters
are located at the centers of the axes. The experimental value of the barrier height is
taken from Ref. [62]
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Figure 4.11: Same study as in Fig. 4.10 but for the very light system *°Ca +%° Ca

simultaneously the nuclear and the Coulomb interaction which depend to some extend
also on the charge density distribution of both ions, particularly when the proton
distributions of both colliding nuclei come to overlap (see Fig. 4.1). The same effect,
but with a somewhat smaller sensitivity, we can achieve varying the surface diffuseness
parameter a, in target and projectile.

The effect of the difference of proton versus neutron density radii gives us some
orientation on how much the fusion barrier height, which, as we have already men-
tioned, is the quantity of capital importance for heavy—ion collisions, can depend on
the macroscopic features of the nuclear densities. Finally, we would like to recall that
the deformation and mutual orientation in space of both colliding ions plays even more
essential role for fusion barriers as compared to the differences in proton—neutron den-
sity distributions discussed here (see Ref. [58]).



Chapter 5

Dynamics of the fusion reactions

5.1 Introduction

In this section we discuss, in a qualitative way, the physical processes which we are
going to describe in later sections quantitatively by applying Langevin techniques de-
scribed widely in Ref. [45]. In this review we restrict ourselves to low—energy heavy—ion
collisions, with a center of mass energy per nucleon of less than 5 MeV. In a first ap-
proximation these collisions can be described in terms of classical trajectories. In such
a framework each impact parameter determines a unique trajectory, and therefore the
different reaction mechanisms can be classified by typical impact parameters, (as ex-

plained in Fig. 5.1)

projectile

fission
evoporation
-residues

® ®

deep inelastic
bel

distant collisions
(elastic scattering and
Coulomb-excitation}

b-electrons

Figure 5.1: Classification of heavy—ion reactions by impact parameters [45]

Very large impact parameters b.; correspond to distant collisions and are asso-
ciated with elastic scattering or, at most Coulomb ezcitations. Grazing collisions are

characterized by smaller impact parameters b,, and are classified as direct reactions, in

a0
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which only few degrees of freedom are involved. For these processes the name quasi—
elastic collisions is also in use. At even smaller impact parameters bp;c the collisions
become more violent. The collision partners keep their identity up to a net exchange of
a few nucleons, but, nevertheless, a large amount of energy and angular momentum is
transferred from the relative motion to intrinsic excitations of the colliding ions. The
corresponding reactions are therefore called deep—inelastic collisions (DIC). For not
too heavy systems the colliding nuclei form a compound system below a still smaller
impact parameter br, the compound nucleus, i.e. the heavy ions fuse, one speaks
about a fusion reaction. This compound nucleus is hot, i.e. it is highly excited and
carries a large amount of angular momentum. Therefore, it does not live for ever but
decays by fission and/or evaporation of light particles. The classification of heavy—ion
collisions by relating a unique impact parameter to a classical trajectory of each type
of reaction is only valid if one neglects the action of a fluctuating forces. The latter,
however, play an important role in a classical description of heavy—ion collisions and
are connected with the frictional forces via the fluctuation—dissipation theorem. Due
to the action of the fluctuating forces each impact parameter contributes only with a
certain probability to the different types of reactions. This is schematically illustrated
in Fig. 5.2.

In that figure trajectories are approaching the potential barrier between two col-
liding heavy ions. Let us first consider the case with no fluctuating forces [45].

A trajectory (1) is shown which just reaches the top of the static fusion barrier
if no friction between the heavy ions is acting. If friction plays a role, a trajectory (2)
with this initial energy would not be able to overcome the barrier because it would
lose energy on the way in. Therefore, a trajectory (3) needs an extra energy, the
so—called extra push, to reach the top of the static barrier. The energy necessary to
reach the static barrier when friction is involved corresponds to the dynamical barrier
Bgy,. Because fluctuating forces are acting besides conservative and frictional forces
there exists for each impact parameter not a single trajectory but a whole bundle
of trajectories, as indicated schematically in the figure. The distribution function
which is created by this bundle of trajectories will be calculated in the quantitative
description of the collisions by Monte-Carlo sampling of Langevin trajectories. The
bundle of trajectories hits the interaction barrier. Part of the trajectories overcome
the barrier, while the others are reflected. The distribution function thus bifurcates
into a fusion branch and a branch for inelastic collisions. The latter is subdivided
into quasi—elastic collisions (trajectories with small energy losses) and deep—inelastic
collisions (trajectories with large energy losses).

The subdivision of the various reaction processes is often characterized by the
corresponding differential cross section with respect to the angular momentum ¢ (or
impact parameter b = ¢/k), the so—called spin distribution do/d¢. This is shown in
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Figure 5.2: Trajectories with fluctuating forces [45]

Fig. 5.3, where also the overlap of the different reaction types with respect to contri-
butions of the impact parameter is indicated. The areas below the different curves
correspond to the total cross sections for fusion op, deep—inelastic op;c and quasi—
elastic o, collisions.
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Figure 5.3: The spin distribution of a heavy-ion reaction. The regions for quasi-elastic

collisions (o), deep-inelastic collisions (o), and for fusion (or) are indicated [45]

Now let us discuss the further evolution of the compound nucleus, which has
been formed in a heavy—ion fusion reaction. The decay of the compound nucleus is
schematically illustrated in Fig. 5.4. The decay can be essentially of two types. In
the first one the nucleus fissions, i.e. predominantly separates into two heavy frag-
ments of approximately equal size. One speaks about a fusion—fission process. In the
course of the fission process the intermediate system can evaporate light particles (n,
p, @) and y—quanta until scission when the neck is shrinking to zero. These are called
pre—scission particles. After scission the heavy fragments can still carry substantial

excitation and continue to evaporate light particles and y—quanta. These are called
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post-scission particles. 1t is possible (yet quite difficult) to distinguish experimentally
between pre— and post—scission particles. Also, in the formation process some light par-
ticles can be emitted, which are of increasing importance with increasing bombarding

energy. These particles are called pre-compound or pre—equilibrium particles.

fission

D D

compound s D evaparation
nucleus residue
3

evaporation

Figure 5.4: Possible decay channels of compound nucleus [45]

If the intermediate complex formed in the collision compound system is not fully
equilibrated one speaks about a fast—fission or quasi—fission process. The second type
of decay channel is given by a process where the excitation of the compound nucleus is
not removed by fission but solely by the evaporation of light particles and y—rays. The
evaporation of light particles of a particular kind stops if a further emission is no longer
possible because the excitation energy has dropped to a value below the corresponding
separation energy (plus the Coulomb barrier in case of charged particles).

The deexcitation process of the compound system thus ends with, the so—called
evaporation residues. For y—quanta the emission process lasts until zero energy and
the lowest possible spin values are reached. After that further —decay is possible un-
til one ends with a stable element of the nuclear chart. Which of the decay types
dominates depends on the mass, excitation energy and angular momentum of the
system under consideration. The evaporation of particles during the fission process
(pre—scission particle emission) can be considered as a chain of bifurcation processes,
the scenario of which is schematically illustrated in Fig. 5.5, where for simplicity only
the emission of neutrons (which is the predominant process) is considered. Fission
occurs with a certain probability without the emission of any particle (first—chance
fission). During fission one, two, or more neutrons can be emitted (one then speaks

about 274, 374 ... —chance fission). In actual heavy—ion—induced fission the decay
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Figure 5.5: First and higher—chance fission [45]

scheme becomes even more complicated, because other kinds of light particles (p, «, d,
y—quanta) are also emitted during fission. The dynamics of deep-inelastic collisions,
fusion, and heavy—ion—induced fission can be, as already mentioned above, described
by Langevin equations, which are classical equations of motion governed by conser-
vative, frictional and fluctuating forces. The description of the evaporation of light
particles and y—quanta going along with heavy-ion-induced fission and governing the
formation of evaporation residues is performed in the framework of the conventional

Weisskopf or the Thomas—Fermi evaporation models.

5.2 The Langevin formalism

Let us write down in the most general form the equations of motion for a single collective

variable (generalized coordinate) R and its associated conjugate momentum P

{ P=M&, (5.1)

MR = F(R) + Fpriet.(R, R) + Fi(R,1).
We chose a simplified version of the frictional force which in general is a rather com-

plicated object, in this sense that its value at the time ¢ depends on an integral over

all previous times t’. We will use the frictional force in the form
Fprier. (R, R) = —v(R)R. (5.2)

The fluctuating (Langevin) force depends on the coordinate R and explicitly on the
time ¢ [63]
Fi(R,t) = \/D(R) I'(t), (5-3)
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where the fluctuation strength coefficient D(R) is connected with the friction coefficient
v(R) by the fluctuation—dissipation theorem [64]. Finally, we obtain from eq. (5.1) the
set of Langevin equations in the following form:

{ R=P/M, 5.4
P =F(R) —v(R)P/M + /D(R)T'(¢). '
The variables R and P are themselves stochastic variables, since they are solutions of
the coupled eqgs. (5.4) which contain the stochastic variable I'(¢). It is convenient for
later discussions to write the Langevin egs. (5.4) in a more general multidimensional
form, replacing the variables {R, P} with the general set of dynamical variables y =
{vi}, (i=1,...,N) where

yi = hi(y) + Z 95 (y)L;(t), (5.5)

J

and where (I';(¢)) = 0 and (I';(¢)I;(¢')) = 20,;0(t — t'). The functions h;(y) contain
the conservative and frictional forces and the functions g;;(y) the fluctuation strength
coefficients.

5.2.1 The discretized Langevin equations

For the numerical treatment we discretize the Langevin equations introduced in the
previous section. We introduce the time interval 7 and consider the times ¢, = n7 (n
integer). This interval 7 is chosen larger than the correlation time e of the random
process I'(t), but smaller than, the times over which the forces and form factors in the
Langevin equation vary appreciably as functions of the coordinate R = R(t). We then
integrate eqs. (5.4) from t,, to t,4q = t, + 7. We regard the functions F(R), v(R)
and D(R) as constant in this interval and replace them with their values at time ¢,,.
We denote thus R, = R(t,) and P, = P(t,). Discretized Langevin equations can be

written then as

Rn+1 == Rn -+ (Pn/M)T
Poi1 = P, + [F(R,) —¥(Ry) Py /M| 7 + \/D(R,) W,, (5.6)

where the stochastic variable
o1
W, = W(t,) = / AT (t') (5.7)
tn
is a superposition of Gaussian—distributed random numbers and is therefore again
Gaussian—distributed. The quantity W, can be written as W,, = a,,w(t,,) with w(¢,) be-

ing a normalized random variable which satisfies conditions (w(t,)) = 0 and (w(t,)w(t,) =
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20,,- The last equation is consistent with the assumption that 7 is larger than the
correlation time € of the stochastic process I'(t), so that there is no correlation between
the intervals ¢, < t,41 and ¢, < t < t,y_1. The value of the coefficient a, is deter-
mined e.g. in Ref. [45] and is equal to a, = /7. The discretized form of the Langevin

equations reads then

Rpy1 = Ry + (Py/M) T
Posi = P+ [F(Ry) — 7v(Ra)Po/M] 7+ /D(Ro)v/T w(tn (5.8)

5.2.2 The Langevin equations of the Surface Friction Model
(SFM)

In order to describe fusion and deep—inelastic heavy—ion collisions we now establish

Langevin equations with the phenomenological input of the surface friction model [65]

oV
DPr(n+1) = DPr(n) — ( &E r) + K, M) T+ /Dy T W, (t)

Pr(n+1) +pr(n) -

Tpt1 = Tp + 2,LL

9

(5.9)

where the relative coordinate is now denoted as r and the diagonal, radial friction form
factor as K, = 3.5 x 1072(s/MeV) ( 2

conservative potential V' (r) consists of a nuclear and a Coulomb part.

, i is the reduced mass of the system. The

The diagonal diffusion coefficient is determined within the fluctuation—dissipation

theorem as
D, =K,T, (5.10)

where the temperature 7' is calculated from the internal excitation energy E* along
each trajectory, T = ,/E*/a, and the value a = A/8MeV ! is used for the level
density parameter. We neglect fluctuations associated with the non-diagonal friction
terms because they turn out to be small as was shown by solving the corresponding
Fokker-Planck equation of the surface friction model with a moment expansion method
[66]. The quantity w,(t,) in egs. (5.9) is the Gaussian—distributed random variable.
We have now specified the phenomenological input of the surface friction model.
Let us now explain how the fusion cross sections can be calculated by Monte—Carlo

sampling of trajectories.
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5.3 Cross sections for fusion and deep—inelastic colli-

sions

The total fusion cross section is usually calculated through

T & do(l)
or =13 SN+ 0T = T (5.11)
=0 l

where T} is the transmission coefficient through the fusion barrier with angular mo-
mentum L = hl. The spin distribution (partial fusion cross section with respect to the
orbital angular momentum) is defined as
do F(l) . (
dl k2

In order to describe well the fusion of heavy ions above the barrier, classical trajec-

2l + 1)1 (5.12)

tory models including frictional forces but neglecting statistical fluctuations have been

frequently used. One applies a sharp cut—off model for the transmission coefficient

r_ )1 for | <lp
: 0, forl>lp

Fusion occurs for [ < [r. The fusion excitation function is therefore

(5.13)

or(E) = 7 ZF(zz 1) = ;;‘E (lF(E) + 1)2. (5.14)

The critical [—value for fusion [ was determined for each center—of-mass energy F
by solving egs. (5.9) without the fluctuating forces. In this approximation, the mean
trajectory determines the fusion cross section. Technically, [z is determined by running
trajectories for each energy by successively diminishing the initial [—value, (chosen large
enough), until a trajectory with a particular [—value is captured behind the barrier,
(i.e. loosing all its energy). This then defines the critical [—value for fusion, {r. The

corresponding spin distributions are of triangular form

dor(1) :{ (r/k2)(20+ 1) forl < Ip,

5.15
dl 0 for I > lp. (5:15)

If statistical fluctuations are taken into account these formulas have to be modified in

the following way: We perform a transformation of the variable [

[ =1(z) = Iz, (5.16)

where [~ can be chosen as the grazing angular momentum, in order to write the fusion

cross section in the following way

>

T & T Np

—ZO 20+ 1)T] ﬁ/zdeTf z2/del b= GESe (6a7)
I= 0

W
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This allows to evaluate the last integral by Monte Carlo sampling of trajectories. Con-
sidering z as a uniformly distributed random variable 0 < 2 < 1, one solves egs. (5.9)
including the fluctuating forces N times with initial conditions for the orbital angular
momentum chosen according to eq. (5.16). The corresponding trajectories lead to fu-
sion or they are reflected from the barrier. The transmission coefficient for fusion 7} is
equal to one if a trajectory leads to fusion or zero if it does not. Therefore, the fusion
cross section is obtained by counting the number of trajectories Ng leading to fusion
normalized to the total number of trajectories N. The result does not depend on the
particular choice of [, if this is chosen large enough.

Simultaneously, one obtains the total cross section for deep—inelastic collisions in

the form

1
T 12 pic _ T 2 Npic
ﬁl>o/del(m) - SR (5.18)

where Np;¢ is the number of deep—inelastic trajectories, i.e. trajectories with an energy
loss larger than that for quasi-elastic events. The fusion spin distribution now is no
longer of triangular shape but smeared out due to the action of the fluctuating forces.
It is calculated simultaneously with the total cross section by sampling trajectories in

bins j of the initial angular momentum

o). S E A (5:19)

(dap) _2mn N ]F
J J

where [; is the initial angular momentum, N JF the number of fusing and N, the total
number of trajectories in the initial angular momentum bin j. Analogously, the spin

distribution for deep—inelastic collisions is obtained

(dO’D[C) 2 N]»DIC (5.20)
j

d ); k9 N,

J

where N jD ¢ is the number of deep-inelastic collisions in the angular momentum bin ;.

5.4 Fusion cross sections with the ETF ion—ion po-

tential

Applying the Langevin formalism together with the surface friction model (SFM) de-
scribed in the previous section we can now turn to the determination of the fusion cross
sections as function of the center-of-mass energy of the colliding ions [67]. As a po-
tential entering the equations (5.9) we used the one obtained with ETF approximation
of section 4.5 (see egs. (4.14) and (4.19)). However, before we start comparing three

different models of the ion—ion static potential we have to realize that the proximity
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barriers obtained by Myers and Swigtecki in Ref. [53] were rigorously adjusted to the
newest set of measurements. The deviation of 4% for a barrier of the order 200 MeV
which sometimes occurred for the similar parametrization from 1981 is actually no
more present.

In the Gross-Kalinowski potential [68| the nuclear part is obtained through the

single—folding procedure
Vi = /Vl(r — ) pa () 7, (5.21)

where subscripts {1,2} denote the colliding nucleus, V' is the spherical Woods-Saxon
potential V' = V;/(1 + exp([r — R,]/a,)) with the parameters: R, = 1.25 AY? fm,
a, = 0.65 fm, Vo = —50 MeV. The nuclear density is parameterized asp = po/(1 +
exp([r — Ry)/aq)), Rq = [1.12AY3 —0.86A713] fm, aq = 0.54 fm, py = 0.170 fm=3.
The Coulomb potential is given as a point—charge potential. Since the expression
(5.21) is not symmetric under the exchange of projectile and target, a symmetrized

form thereof is used:
1

The general behaviour of the potential (5.21) can be easily reproduced by the following

simple formula:

V) = =3 A — By~ (1 esp [ - ), (.23)
i=1
where R = 1.30 (A2, + A)2) fm, A1 = 33, Ay = 2.0, A3 = 3.0, Ay = A; = 0.0,
a = 0.61 fm.

The fusion cross sections estimated in the present investigations within the Langevin
formalism developed recently by Frobrich and coworkers turn out, however, to be too
small, on average by one order of magnitude as compared to the experimental data
available in Refs. [69, 70]. This fact is not astonishing when one compares the heights
of the barriers obtained through both the ETF and Gross—Kalinowski nucleon—nucleon
potentials plotted in the left hand side of figures 5.6 and 5.7. The parameters of the
mentioned potential, however, were slightly refined compared to these coming from
its original prescription 5.21. It was necessary to reproduce reliably, together with the
simple phenomenological model of the frictional forces (see section 5.2.2), the excitation
functions for large variety of target—projectile systems.

In order to improve the estimates of the cross sections one should first consider
the effect of the deformation of the colliding ions which can lower the fusion barrier
substantially in the case of non-spherical shapes of targets and projectiles
(i.e. 28Si +17 Hf or ¥¥Ca +238 U), mostly due to significantly lowering of the Coulomb
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Figure 5.6: Fusion potentials and corresponding excitation functions in the ETF+SFM
approaches (thick line), Myers-Swigtecki proximity model with the prescription from
Ref. [53] (dashed—dotted line) and the Gross—Kalinowski model Ref. [45, 68] (dashed
line). Experimental data are taken from Ref. [69, 70]
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Figure 5.7: Similar study as in Fig. 5.6 performed for three reactions 2Se+!%20s,
%8Fe+2%8Ph and **Ca+242Pu but without the comparison with experimental data. Con-
tinuous line corresponds to ETF+SFM model, dashed to Gross—Kalinowski approach
and dashed-dotted to proximity model of Myers and Swiatecki
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barrier. As we can see, studying figures 5.6 and 5.7, the value of the fusion cross
sections are mainly influenced, in all five cases, by the height and the width of fusion
barriers which, in case of the ETF and Gross-Kalinowski potentials, differ as much as
~ 12 MeV. The same investigation for both the ETF and proximity potentials gives
a difference of, at most, =~ 5 MeV. From the point of view of classical mechanics the
influence of the barrier hight on the cross section seems to be rather clear. The trajec-
tory with given energy value Fy,.,; passes through the barrier Ey,,, when Eyypp < Eypg;
and will be reflected otherwise. Statistically, in the sampling method of NV trajectories
all of them have comparable energy value within a few percent of dispersion which is
brought about by the fluctuating Langevin force. The more trajectories from this fixed
bundle are reflected from the barrier of given height as compared with N, the lower
the fusion cross section will be (see eq. 5.17). Now, let us try to explain what happens
if the barrier width is varied. The width of the barrier has the largest influence on the
frictional terms in the Langevin equations (5.9). As we can easily conclude, if the bar-
rier hump is getting more and more narrow (OV (r)/dr becomes larger), the frictional
force is increasing, what in turn, implies that the energy loss for a given trajectory on
its way grows. The probability of overcoming the potential barrier by this trajectory
is then significantly decreased.

Since we believe that the sudden approrimation is a reasonable treatment for
inter—nuclear distances s > 0 fm (see Fig. 4.1a), i.e. for not too large density overlaps,
the height of fusion barriers seem rather realistic there. If on the other hand, the
overlap of the densities of the colliding ions becomes large for s ~ 0 fm then the
sudden approximation used for s < 0 fm becomes more and more questionable because

of sharply increasing density in this region (see Fig. 4.1b).



Chapter 6

Macroscopic nuclear properties

6.1 Descriptions of the nuclear surface

One of the fundamental problems in nuclear structure is the adequate description of
nuclear shapes. Indeed, in the study of heavy—ion reactions, in fusion, fission, nuclear
rotations and collective vibrations the nuclear deformation—energy landscape plays a
predominant role. It is then obvious that the parametrization of the nuclear shape needs
to be both simple (involving only a few relevant collective parameters) and flexible, i.e.
allowing for a reliable description of the large variety of the above phenomena. A very
successful description of the nuclear surface was proposed in Ref. [71] known as the
“Funny—Hills” parametrization of the nuclear surface. This prescription has been the
reference for over 30 years now. We will use in this work its slightly modified version

(see |72] and section 6.2) thereof describing the nuclear shape in cylindrical coordinates.

6.1.1 The Funny—Hills (FH) deformation parameters

A very efficient parametrization of the nuclear surface, in particular for a description
of the fission process, was proposed already in 1972 in Ref. [71]:

p2(u) = Ric® (1 — u2) (A + au + Bu2) , (6.1)

where p,(z) is the distance from the symmetry axis (chosen as z—axis), to the surface
of the nucleus. The positions of left and right ends of the nucleus are in the point
Zmin = —20 + Zsh and Zper = 2o + 2s, Tespectively with zg = ¢Ry. The quantity zg, is
the shift of the z—coordinate which ensures that the nuclear center of mass stays at

z = (. The dimensionless coordinate wu is defined as

Z — Zsh
= . 6.2
u=2 (62)

63
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The volume conservation condition

4
0 Zmin 0
1
20 CQRSW/(I —u*)(A+ au + Bu?) du (6.3)
21
gives the elongation parameter c:
1 -1/3

The parameter ¢ measures the elongation of the nucleus in units of the radius R, of the
corresponding spherical nucleus of the same volume. The coordinate z,, is determined

by requiring that the position of the center of mass of a nucleus z.,, is located at z =0

Zmazx 1
2 [ p*(2)zdz  Roc [(1—u?) (A+ au+ Bu?)udu
Zmin -1
Zem = Zman = 1 =0, (65)
2 [ p2(2)dz [ (1 —u?)(A+ au+ Bu?)du

Zmin —1

which yields
L3
2sh = —paC 2. (6.6)
A shape in the Funny-Hills parametrization is usually defined by the above elongation
parameter ¢ and a neck parameter h which can be expressed through the hexadecapole

deformation parameter B by the relation
1
B:2h+§(c—1). (6.7)

The case of h = 0 corresponds for actinide nuclei approximately to the average liquid-
drop path to fission. The parameter A can easily be evaluated from the volume—

conservation condition and is equal to
A=—=——(c—1) = =h. (6.8)

In order to avoid unphysical three body shapes for certain z values for which p? <
0 for certain combinations of the {c, h} parameters, in particular for small nuclear
elongations and, in addition, to be able to better describe diamond-like shapes preferred
particularly by nuclear ground states in the actinide region, an alternative analytical
form was proposed in Ref. [71] for negative values of the parameter B, namely

pz(u):{ROC (1 —u2) (A+ au + Bu?) ., B>0 (69)

R:* (1 —u?) (A+ au) exp (Bc*u?), B<0
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The multipole moments of the uniform density distribution are given by the

following integrals

2
Qo= g7 [ Pol?) 1" Pl (6.10)

where po(7) is the nuclear density distribution, the auxiliary variable = is equal to
T = ps/\/ P2+ 22, (p? = 22+ y?) and P,(z) is the n*—order Legendre polynomial of x.

6.1.2 Trentalange-Koonin-Sierk (TKS) parametrization

Following the idea of Ref. [73] we might generalize the Funny-Hills parametrization
by expanding the axially symmetric shape of the fissioning nucleus into a series of

Legendre polynomials P,:

p2(2) = R2 i anPn<z — ZSh) , (6.11)
n=0,2,4,... 20

where Ry and z, are defined in the same way as in the Funny-Hills parametrization

and where the left and right tips of the nucleus are located at z,,;,, = —z9 + 25, and

Zmaz = 20 + Zs, T€spectively and where the shift 2, of the z—coordinate ensures that

the center of mass of nucleus is located at at z = 0, a quantity which is zero if all odd

deformation parameters «,, vanish. The condition

ps(zmin) = ps(zmax) =0, (6'12)

implies the following relations:

S aP(-1) = S(-17a, =0 (6.13)

i a,P,(1) = i o, =0 (6.14)

The parameters g and a; can be easily evaluated from the above equations:

o (o]
— Z Oy, o = — Z Oy . (6.15)
n=24, n=3,5,
Notice, that the spherical nuclear shape corresponds to as, = oy = —%, oblate forms
to as < —2 and prolate ones to —2 > a; < 0. When a5 is tending to zero the nucleus
becomes infinitely long.

The volume conservation condition

Zmaz ( )

V:—R3 /dgp/ / pdp =

Zmin
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Zmar g

= nR} / Zan o ZSh)dz:
20

Zmin

= nRiz / Z an P (u)du = 2w Rz (6.16)
—1 n=0
gives the following relation
2 Ry
6.17
0= 3 Oéo ( )

where 20 = (Zimaz — Zmin)/2 is the half length of the deformed nucleus. Notice, that the
elongation parameter ¢ used in Ref. [71] is equal to the half length of a nucleus in the

units of spherical radius Ry

2
Cc = ZQ/RO (618)

30(0

In presence of odd multipolarity deformations one has to introduce an additional
condition which fixes the position of the mass center of the deformed nucleus at the

origin of the coordinate system

2T Zmazx Z Zmazx

Zem = /dgp / zdz / pdp—ﬂ'RO/ Zan ) ( ZSh)dz

20

0 Zmin Zmin

1

= 7R}z /(zou + 250) D iy Po(u)du =0 . (6.19)

-1 n=0

The above relation allows to evaluate the value of the coordinate z,;, as

10(1 20&1
sh = ——— R 6.20
RZsh = 3 020 9% 0 - ( )

6.2 Modified Funny—Hills parametrizations

6.2.1 Axially symmetric shapes with a Gaussian neck

The main goal of the shape definition in cylindrical coordinates is its simplicity and the
relatively small number of physically relevant deformation degrees of freedom which
need to be included. In order to describe in a reasonable way the nuclear fission pro-
cess, i.e. reproduce very extensive fission barriers occurring e.g. for some actinide
nuclei we have to incorporate quite a substantial number of octupole, hexadecapole
and higher—multipolarity deformation parameters, at least, up to 5y4. This, however,
is theoretically possible but in practice not too convenient with respect to the compu-
tation time even for high-performance computational clusters. Please note, that for
each deformation degree of freedom one has to construct the grid of points of, at least,

20 points. For a four—dimensional deformation space the total number of points is
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N, = 20* = 1.6 x 10° grid points. For a five-dimensional space N, = 3.2 x 10° points
etc. In each such a point the set of single-particle states for a given nucleus should
be determined. After that we can come to the evaluation of the total macroscopic—
microscopic energy. This problem will be discussed in further sections.

An efficient description of the nuclear surface arised from the careful study of
the original FH and TKS parametrizations given by egs. (6.9) and (6.11). Our aim
is, however, not to propose a totally new shape description but rather to improve
the existing ones by avoiding the problem of spurious roots of p,(2)? between its end
points and, if possible, by lowering the average liquid-drop energy along the fission
path. Finally, we concluded [72] that the parametrization

R

P2 (2) = Fa. D) (1—u?) (1+au—Be ™™) (6.21)

turns out to be the most appropriate for the problems which are going to be dis-
cussed in this work. The quantities z; and u are defined as in the two previous shape
parametrizations and the function

f@iﬂ:l—ggczﬁ+¢ﬂa—%yﬁﬂ® (6.22)
ensures the volume conservation of the deformed nucleus.

The physical meaning of the deformation parameters entering the eq. (6.21) is
similar to the one given in the previous subsection, namely: ¢ describes the elongation
of the nucleus, B is responsible for the neck formation and « represents the left-right
mass asymmetry. The neck width parameter a resulting from the minimization of the
liquid drop energy along the fission paths yields a value a = 1. Very close energy values
for constant elongations ¢ (but different values of B ) one obtains for 0.8 < a < 2. A
similar study for the influence of this parameter on the total nuclear energy, when
taking into account microscopic (shell and pairing) corrections will be presented in
section 8.2.

Similarly as in Ref. [71] it is more convenient to introduce the following linear
combination of ¢ and B

1

h=3B—(c—1)] (6.23)

as the neck parameter. The line h = 0 in the limited deformation space {c, h} corre-
sponds then roughly to the average liquid drop path to fission for actinide nuclei. Of
course, the parameters B and h do not correspond directly to those of Ref. [71] but
they have a very similar physical meaning.
The shift coordinate zy, is obtained from an equation similar to (6.5) and is equal
to
4

T azy/f(a,B) , (6.24)
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where the normalization factor f(a, B) is given be eq. (6.22).

The parametrization (6.21) describes better the diamond-like shapes then the
original Funny—Hills one. Let us remind that this kind of shapes are exhibited by some
nuclei in the equilibrium. The desirable advantage of the parametrization presented
here is, without any doubt, that we obtain no more three-body unphysical shapes, i.e.
where p?(2) < 0 which could show up in the Funny-Hills definitions (6.1) and (6.9).
The scission point defined by z,. = 0 is reached here at B = 1 for left-right symmetric
shapes (o = 0) and

2
le—f—(ﬂ at uscz230;
when asymmetry (« # 0) is considered.

(6.25)
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Figure 6.1: Family of shapes obtained through the modified FH parametrization with
gaussian—like neck characterized by parameter B for {¢ = 2.0, = 0.0} (first row),
for {¢ = 2.0, = 0.25} (second row), for {¢ = 1.6, = 0.0} (third row) and for
{c=1.2,a=0.0} (lower row)

6.2.2 Axial shapes with Lorentzian neck

The shape of a fissioning nucleus can be also described by the following variation of

the original FH shape definition:
P2 () =R —u?) (A+au+ f(u), (6.26)
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where zy and u are defined as before and

f(u) = sign(B) (1 — ﬁ) : (6.27)

The parameter c as in section 6.2 describes the elongation of the drop, B is responsible
for the neck formation and o gives the left-right asymmetry. As it was shown in
Ref. [71] it is more convenient to introduce the following linear combination of ¢ and
B

1 1

h=5B~(c—1) (6.28)

as the neck parameter. Then the line A = 0 corresponds roughly to the average liquid

drop path to fission for actinide nuclei. The volume conservation condition

Zmaz 1

4
“mR = 2n / P2(2)dz = 27 R3S / (1—u?)[A+ au+ f(u)]du, (6.29)
Zmin -1
with 2,5, = —20 + 2zsn and 2,4 = 20 + 25, allows to evaluate the adjustable parameter
A 1 3
A= — — - 6.30
3 477 (6.30)
where
/ 1
1:'3/1—71—%1: 6.31
sn(8) [ (1= gm0 -y (631
4 9 B| — arctan(4/|B
= sign(B) g——arctan( |B|) + 2 il 3 WIB)
| B | B

The shift coordinate zg, is obtained from the condition (6.5):

2r f7 R(2)2dz Roe [ (1—u?) (A+au+ f(u))udu
Zem = z:;zx = 1_1 =0, (632)
2 [ p2(z)dz JA—u?)(A+au+ f(u))du

Zmin —1

and it is equal to

Zeh = —=aC 2 . (6.33)

6.2.3 Nonaxial case

The Funny Hills-like parametrizations (6.1), (6.11), (6.21), (6.26) presented in previous
sections are not able to describe three—axial shapes which are strongly realised by
some actinide nuclei along their paths to fission. It should be realised that all these
shape parametrizations contain until now only three physically relevant deformation

parameters (responsible respectively for elongation, neck formation and left-right mass
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asymmetry). In order to consider also nonaxial shapes, let us assume that the cross—
section perpendicular to the symmetry z—axis is of the form of an ellipse

2y
StE=1 (6.34)
with its half axes a and b and that this ellipse is the same for all z. In the polar

coordinates the above equation reads

272
9 a“b

= : 6.35
=R cos?(p) + a2 sin®(p) (6.35)
One can introduce now the deformation parameter n defined as
b2 _ a2
7] - (12 + b2 ) (636)

which is related to the non—axiality of the drop. In order to keep the same volume
conservation condition of the drop as for the axial case (6.16) we assume that the

surface of the ellipse (6.34) is independent on 7, i.e.
mp = mab , (6.37)

where p? is given e.g. by eq. (6.21). The half axes of the drop cross section at given z

0= pi(2) (1‘")1/4 ,

1+n

b= ps(2) <1+_77>1/4 :

L—n

Finally, after exploiting the constant—volume condition (6.16), the square of the dis-

are therefore of the form

(6.38)

tance from an arbitrary surface point (z,¢) to the z—axis is given by

V1—n?

14 ncos(2¢) (6:39)

Pz, ) = pi(2)

This parameter 7 can, in general, depend on z but in the following we assume that it

is z—independent.

6.2.4 Ellipsoidal case

For a vanishing neck parameter, B = 0 eqs. (6.21, 6.39) describe a pure ellipsoid with
the following main half axes:

A= Ry/\c (1_—77)1/4 :

L
+ +
=S 3

B=Ry/\c <—>1/4 :

1 —

=
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Figure 6.2: Transformation from the (c, h) to (52, 84) coordinates obtained for the FH
parametrization of eq. 6.1 and 6.9. Figure is taken from Ref. [71]

In the traditional ((3,) parametrization these axes are expressed as

A= R(B,7)[1 —kcos(y —7/3)],
B = R(B,7)[1 —kcos(y+7/3)],
C=R(B,7)[1+kcos(7)], (6.41)

where k = /2 and
R(3,7) = Ro/{[1L — kcos(y — 7/3)] [L = kcos(y + 7/3)] [L + kcos(7)]}'/*  (6.42)

The transformations between the coordinates {c,n} and {3, ~} are shown (both ways)
in Figs. 6.3 and 6.4 respectively. The closed ovals in Fig. 6.4 correspond to the shapes
with constant deformation 3, which can occur for prolate (y € (0+ 2nw, I+ 2n7)) as

well as for oblate shapes (v € (§ + 2nm, 2 4 2nm), where (n =1,2,3...).
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Figure 6.3: Transformation from the (3,7) to (¢,n) coordinates in the pure ellipsoidal
case
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Figure 6.4: Transformation from the (¢,n) to (/3,7) coordinates in the pure ellipsoidal
case
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6.3 Liquid drop fission barriers

The discovery of the fission process was inspired by the research work which lead to the
attribution of the Nobel Prize to Enrico Fermi in 1938 for the experiment of bombarding
uranium nuclei by neutrons. As it turned out later, what was observed were the fission
fragments of the bombarded uranium nucleus and not some transuranium elements
with atomic number larger then 92, as was initially expected. About nine years later,
O. Hahn and F. Strassmann concluded that as a consequence of of the bombardment
of uranium, lighter isotopes of barium are formed. The first qualitative description
of the nuclear fission process was given by L. Meitner, and her collaborator O. Frisch
(Nature, vol. 143, p. 239). By analogy with a charged liquid drop they explained this
process as the result of the competition of the long range Coulomb repulsion between
protons tending to tear the nucleons apart and the surface tension force trying to keep
the nucleons together like the surface of a liquid drop. This simple idea was developed
later by N. Bohr and J. A. Wheeler in their famous paper The mechanism of nuclear
fission in Physical Review (vol. 56, p. 426). This paper has been the reference point
for the next generations of nuclear physicists working on nuclear fission.

Since that breakthrough explanation of the nuclear fission phenomenon by Meit-
ner and Frisch we have no doubt that this process is determined mainly by the strong
short range attractions between the neighbouring nucleons and long range Coulomb
repulsion of protons in an atomic nucleus. As we know even from the first descriptions
of the liquid drop idea in nuclear physics that the volume term which is the dominant
constituent of the average, liquid drop energy for the nucleus of given mass A does
not change with a deformation. On the other hand the surface-energy contribution
depends strongly on the nuclear surface area which is a function of the nuclear shape.
The competition of the positive Coulomb and the negative surface—energy contributions
gives as a consequence an energetical barrier which can be tunnelled by the nucleus
on its way to fission. Summarizing, if the surface LD energy increases faster then the
Coulomb energy decreases, i.e. if

2Esurf Z EC'oula (643)

then such a barrier exists. Inserting the explicit expressions for Ey,, s and Ecgy, as in
the standard Liquid—Drop model discussed in section 2 and the approximations of the

deformation functions By, f, Boow We rewrite the condition (6.43) as

2 Z?  o?
asquA2/3 ’ ga2 > aCoulm ’ ?7

where « is the global deformation parameter defined already by eq. (3.14). The above

(6.44)

expression can be transformed into the more convenient form

2By, ;A
— _ >1. 6.45
BC’oulZ2 o ( )
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Figure 6.5: Liquid drop energy landscape as function of the elongation (c¢) and neck

parameter (h) for 22Th and 2% Py

Let us define the fissility parameter x as

bCouIZZ ~ Z2
WA 49A°

Using this parameter we can classify the atomic nuclei with respect to their ability

x (6.46)

to spontaneous fission, namely for nuclei with high fission barrier, i.e. for which the
probability of fission is extremely low x < 1 and, conversely, x > 1 for a vanishing
fission barrier

For the actinide nuclei 2*2Th and ?*°Pu the two dimensional LD energy landscapes
are shown in Fig. 6.5, where the average fission barrier is visible as the valley which runs
along the line h = 0 starting from the spherical minimum through the saddle visible e.g.
in the case of #*Th around {c =~ 1.6, h = 0} to the scission point where we have to do
already with two fragments. In turn, for proton-rich heavy and super—heavy nuclei we

can observe that the liquid drop barrier is usually significantly reduced or even is not
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Figure 6.6: Liquid drop fission barrier within LSD model for super—-heavy nucleus
298 X114

present at all. This can happen, in principle, due to the stronger Coulomb repulsion as
compared to the nuclear attraction between the nucleons for such the nuclei. However,
the experiments concerning the heavy and super—heavy elements seem to confirm that
even nuclei in which the liquid drop barriers are practically inexisting can be stable
against the spontaneous fission. Such an effect exists e.g. in the super—heavy elements
with Z = 114 (see e.g. Fig. (6.6)).

Keeping in mind that the total nuclear energy contains also the quantal correc-
tions we can immediately conclude that the shell and pairing effects are responsible
for creating the fission barrier, and therefore for the stability of that nucleus. Fig-
ure 6.7 presents a comparison of the LD fission barrier of the nucleus ?*?Th using the
Lublin-Strasbourg Drop model [8] together with three different parametrizations of
the nuclear surface, presented above, namely the Funny—Hills and the modified FH
parametrizations. The liquid drop fission barriers of ??Th evaluated with the shape
definitions given by eq. (6.21) with that obtained using the original Funny-Hills pa-
rameters (6.9) reveals that the new shape definition with gaussian neck gives the low-
est average barrier, however, this reduction is of the order of 100-300 keV only (see
Fig. 6.7). Mentioned results we compare also, in the same figure, with the similar, pos-
sible shape description where the neck is created by a Lorentz function (see eq. (6.26)
and [74]). Unfortunately, also in that case we were not able to eliminate three-body
shapes appearing along the path to fission.

It appears in Fig. 6.8 that the TKS formula (6.11) gives a very satisfactory de-
scription of the barrier heights, already with three deformation parameters as, ay and
ag. The parameter ag brings almost negligible contributions (order of keV’s) even in

the region of the exit configuration from the barrier.
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Figure 6.7: Fission barrier of ?*Th evaluated within the LSD (Lublin Strasbourg Drop)
model for different shape descriptions: the modified Funny—Hills with the Gauss neck
(6.21) and the Lorentz neck (6.26), as well as the original Funny-Hills parametrization
(6.1) as a function of the elongation parameter c.

Studying Figure 6.9 we can convince ourselves about the power of the shape
definitions in cylindrical coordinates. The axial liquid—drop fission barrier obtained
with the use of the Funny—-Hills-like parametrizations with only two parameters {c, h}
are identical, within 0.2 — 0.4 MeV to those, generated in spherical coordinates with

the help of the multipole expansion of the form

)\maac

R(B) = Ro[L+ > (BYao(60) - 53/4)|, (6.47)
A=2
where Y)o(6) are the appropriate spherical harmonics. However, for super—heavy nuclei
which shapes at the scission configuration are, in general, rather compact the definition
(6.47) can be alternatively applied. In that case one does not need as many deformation
parameters 3, to reproduce such a shape, as for the actinide nuclei (e.g. 2**Th) which
are known to exhibit more elongated shapes with substantially pronounced neck in the
scission configuration. This fact is one of the main reasons for which the expansion
(6.47) is still applied, (see e.g. Ref. [75]).
In order to see the convergence of the multipole expansion we have evaluated the
LSD fission barrier of **Th using different number of ﬁ&mm) parameters. The results
are presented in Fig. 6.10.
It can be seen from this figure that one has to use, at least, five, lowest—order
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Figure 6.9: Fission barrier of ??Th evaluated within the LSD model using the [,
(with A\, = 14) deformations compared with the barriers obtained with two free
parameters only using the Funny-Hills prescription and its modification (Lorentz). Rio
is the relative distance between fission fragments.
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Figure 6.10: Fission barrier of 232Th evaluated within the LSD model using different

numbers of the 3{"*” deformations.

even (3, deformations to obtain the fission barrier comparable with that given by the
original or modified Funny-Hills equation which contains in the axial and left-right

symmetric case only two parameters {c, h}.

6.4 Yukawa—folding description of nuclear structure

In 1935 Hideki Yukawa presented a theory of the strong interaction where the force
between two nucleons is mediated by the exchange of a meson between the two inter-
acting particles, in the same way as the photon represents the particle responsible for
the electromagnetic interaction. From the very short range of the strong interaction
Yukawa was able to estimate the mass of this meson to be about 140 MeV/c?, a particle
which was found a couple of years later and which is known today as the m—meson.
The form of the meson potential which Yukawa postulated is of the form:
1 _mge

Vyu(r) =G " e h ", (6.48)

where (G is the coupling constant and where the characteristic length of this interaction

is the m—meson Compton wave length

). 04

which is of the order of 1.4 fm with a pion mass of m, ~ 139 MeV, and therefore,

indeed, of very short range.
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6.4.1 Folded densities

Nuclear density in the most general way can be expressed with a help of a folding
procedure of Ref. [76]:

p(7) = po [ drag (17 =72l (6.50)
\%4

where pg is the uniform density distribution of the charge or the nuclear matter

) po = 3A/4rR3, for r < Ry
)=
0, for r > Ry

which satisfies the nucleon—number conservation condition
/po(F) &r = N(Z). (6.51)
1%

The folding function in eq. (6.50) needs to be normalized

/g (| = 7]) dPrs = 1. (6.52)

The folding function g ( |1 —73| ) can be chosen to be of the form of the Yukawa function
(6.48) with a width parameter a (of the order of the pion Compton wavelength)

1 e~ Im—72l/a

(6.53)

gl =72l) = dmad |Fy — | /a’

The function g ( |} —73| ) should not be misunderstood here to represent the interaction
potential of two nucleons, but rather the fact that an interaction of finite (short) range
between the constituents of an N—particle system will generate a density distribution
with a diffuse surface where this surface diffuseness should be of the order of 1 fm, as
this is obtained through the definition (6.50).

6.4.2 Coulomb potential

Having established the charge distribution in the nucleus in the form of eq. (6.50) the
Coulomb potential can be calculated from the expression (see e.g. [76])

—

= e/d37*2 7‘2 (654)

|’f’1—7"2|

For two functions f and g the following equation is fulfilled:

/d3r2f 1 —T2)g / Pk f (k) R 75) (6.55)
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Thus, replacing g(7 — 7= )m by their Fourier transforms we have

= 47T6,00 _7
/ Py / & k;2 — (k)T (6.56)
where the Fourier transform of the Yukawa function of eq. (6.53) is of the form
1 1
g(k) = (6.57)

2m (14 a?k?)’

Due to the fact that the function ¢ depends only on the norm of k we can perform

immediately the second integration and rewrite above expression as

Ve(71) %epo/dgrg /dk:— sin(k|m — 75]). (6.58)

|71 — 73]

Inserting the Fourier transform of the Yukawa function given by the eq. (6.57) the final
expression is of the form

Vir) = 25’) / d'ry
27)2
1 1 S
X O/dkmg Sln(l{?|7’1 — 7"3‘). (659)
Using the relation
) eim _ efim
sin(z) = — (6.60)
we transform the last expression to the form
1 o0 eil;~('r_"1—'r_"3)
V(7)) = = /d3 x/dk,—:
(Tl) epo 7“3| 1—r3| / 22k(k’2+%)
zk (F1—73)
P / d®ry / dk—— 6.61
a?k(k?+ %) (6.61)

Using the residues method to perform the last integral in the complex plane we come
to the following relation:

Vo(71) = V(715 sharp) + AV.(7), (6.62)

where V_(77; sharp) is the dominant term in the Coulomb potential coming from the
uniform density distribution and AV,(7}) is the correction which origins from the dif-
fuseness of the charge distribution.

Explicitly this expressions looks like

1
Vo(71; sharp) = Poe/dgrzr
v

7”1—7‘2|

(6.63)
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and

1 _ P =7
a

(6.64)

= =€
|71 — 7]

AV;(’I:}) = —poe/d37’2
\%

Applying the Gauss—Ostrogradsky theorem allowing for the conversion of the volume
integral of a given function f (|7 — 75|) over the whole space into a surface integral of

the function F(|7 — 75|) over the corresponding surface in the general form

[ @ 117 = ) = $(dS, - 7o) P — 72l) (6.65)
1% S
we transform these two integrals (6.63) and (6.64) to the more convenient form (for
numerical integration by e.g. Gauss—Legendre quadrature), i.e.
~ 1
Vi(7; sharp) = =225 d1as, - (7 — )]

2
S

a

x l1 - <1 + M) e—ﬁ;@] . (6.66)
a

For a spherical nucleus described by the radius R, the integrals (6.66) can be easily

- - -3
AV.() = +25 f(aS, - (7 - 1) (—'“ ”')

evaluated analytically.

6.4.3 Coulomb energy

By analogy with the previous subsection one can derive the expressions for the Coulomb

energy of deformed nucleus. This energy is defined as |76]

1 1
E.=- / / &y dry — (7)) plin). (6.67)
2 U Tg‘

|71 —

Inserting folded density (6.50) to the above we get

o
Ec = 7 /d3T1 d37'2
Vv

x [ [ drs drag(i7i = 7)) g1 — 7). (6.68)
Vv

Further calculations will be lead like in the case of the Coulomb potential generalizing
eq. (6.55) for three functions f, g, h we have that

[ [ s £(7 = 7l) g7 - 7)) AR - 7)) =

Vv

-
— —

— (2m)} / Bl F(R) g(—F) h(k) e* =), (6.69)



CHAPTER 6. MACROSCOPIC NUCLEAR PROPERTIES 82

Inserting the above identity to eq. (6.68) we obtain
%9 1 L
E, = 4r PC / / &y dr / B~ g?(k) eFT), (6.70)

After performing the integral over k we come to the following formula

&Eridry T
// ne /dkg sin(k|™ — 7). (6.71)

|71 — 75|

Applying first the Fourier transform of the function g as given in eq. (6.57) we have

d3T1d3T2
dk 72
//|T1—T2| / 1+a2k2) (6.72)

The residuum theorem brings us to the similar conclusion as before (see Appendix,

section A.2.1), namely
E. = E.(sharp) + AE,, (6.73)

where E.(sharp) is the part of the Coulomb energy generated by the uniform density
distribution whereas A E,,, like before, is the negative correction from the surface charge

2
1

E.(sharp) = po /d3r1 d*ry —, (6.74)

12 |7"1 — T2|

Vv
— o2 1 - 1 B

AEC pO //d?)rl d37,2 €7|7‘17T2|/a <1+ |T1 r2|> ) (675)

by |71 — 75| 2 a

Transforming double volume integral into two surface ones we are left with the expres-

sions which are easier to compute numerically

E.(sharp) = jéjé dSl (r — TE)] [d:qz (7 — T2>], (6.76)
|71 — T2
_ P %% (S - (7 —47‘2)] £d§2d; (1 —75)] (6.77)
alj ) |71 — 3| /a
y 2|F1—F2| 54 5+3|771—7?2| +1|771—7?2|2 o
a a 2 a?

6.4.4 Yukawa—folded effective potentials

In order to obtain the potential energy landscape many authors used the well known
macroscopic—microscopic model which will be the topic of more detailed studies in the
section 7.2.1. Since the time when the shell effect were approximately incorporated by

Myers and Swiatecki [77] this model evolved continuously, to describe the total nuclear
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energy as a function of deformation with better and better accuracy. At the same time,
however, the alternative, more microscopic approach of the Hartree—Fock and Hartree—
Fock-Bogoliubov type with effective nucleon—nucleon interactions became more and
more performant. In 1966 Strutinsky proposed a new way of evaluating shell effects
[78] which gave a new impetus to the macroscopic—microscopic approach, a method
which played a predominant role in these kind of calculations for several decades. A
drawback of the Strutinsky shell-correction method which consisted in the fact that
the particle number was only conserved on the average was cured quite recently [79] by
a smoothing procedure in particle number space (or rather in N'/3 space, to be precise)
which conserves the particle number precisely. Much progress was also made in the
treatment of the short range pairing correlations, however, this work will only use the
traditional BCS approach. The shell and pairing corrections to the average liquid drop
trends are calculated for a given nucleus on the basis of the single—particle levels which
change considerably as a function of the nuclear shape. One then understands that
the knowledge of the nuclear mean-field potential is absolutely crucial as the basis for
an appropriate treatment of processes like nuclear fission, fusion, rotations, collective
excitations etc. Historically the first realistic single-particle nuclear potential was the
Nillson potential [80] which was simply the harmonic oscillator well corrected by terms
proportional to [?> which deepen its bottom for the peripheral nucleons. Taking into
account also the spin—orbit coupling ~ ['- 5 one insures also the correct shell structure
of the single—particle energy levels. Later, the more realistic Woods—Saxon potential
[81] was proposed which after many improvements has been successfully applied until
now.

Since the mean-field single-particle potential should correspond approximately
to the density distribution of nucleons we can generate its shape by the convolution of
the nuclear density with the Yukawa-like function which can be considered here as the
spin independent two-body interaction (interaction between two infinitesimal volume

elements of a nuclear drop)

Vo e—IT1—"r2|/A
AT N3P — | /N

V(riz) = T2 = [T — T3l (6.78)

In order to obtain the central part of the single-particle potential we fold the
density distribution (6.50) with the Yukawa interaction (6.78), (see e.g. Ref. [76])

x@@n:/fmvmg%f? (6.79)
\%

Using the Fourier transform of Yukawa function ¢g(k) as in eq. (6.57), we rewrite the

above integral as follows
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[oe) ]{] o
Vip (71) = — / d*ry / P W L) (6.80)

0
(2ﬂ)3/2 J 1+ 22

Performing the second integral over the angles 6 and ¢ in momentum—space we come

to the expression for the potential:

1/2 3 o0

2 d r3 g(k?) .

V(M) =—(2) W [= ﬁ/dkki k|7 — 7). 6.81

J == (2) v [ [arn 2 skl - ). s
1% 0

Inserting the explicit Fourier transform (6.57) in the place of the function g(k), we

obtain finally an expression which is convenient for the integration by the residues

method in the complex plane

Vb d37“3 zk\rl 73]

Vi (7)) = — / dk & . 6.82

» (71) 472 z |7 — 73] (14 A2k2) (1 + a?k?) (6.82)

In general, we assume that the range A of the Yukawa interaction is slightly

different from the range a of the folding function of the same type used to generate the
density distribution in the eq. (6.50).

After analytical integration in the complex plane we observe that the single—

particle potential is the sum of two terms, namely

Vip (71) = V (713 sharp) + AV (), (6.83)

where the sharp—density potential independent on the density diffuseness a is now

% 67|F17F2|/)\
47'[')\3 i |F1 — 7?2|/)\

V (7; sharp) = — drs, (6.84)

and the correction being a function of both the diffuseness parameters A and a reads

AV (7)) ey (7; sharp) Vo e M s (6.85)
_ . — ro. .
T a2 — )\2 T3S an 47'['(0,2 _ )\2) J |7?1 _ F2| 2

Converting the above spatial integrals into surface integrals as before we obtain

Vo 7 — i\ P = T |7 — 7|
V (71; sharp) = e ]{(dSz T12)<|T1 S T2|> [1 — (1 + M) e X ] (6.86)

and

4m(a® —
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For a spherical nucleus with radius Ry the expression (6.86) can be evaluated analyti-

cally [76] and is equal to

Vo [1— (14 R) e RN for gy < R
Vipn (115 sharp) =

—Vo [ cosh(fe) — sinh(f)] €22 for 1y > Ry,

By DWANCGY)
(6.88)
while (6.87)
a2
AVpp(r1) = —m Vipn (115 sharp)
a’V R —Rg/asinh(ri/a)

N ()\2,22) [1 - (1 + 70) € Ro/ (rf/Zé } for 71 S RO

ity [ 52 cosh(fe) — sinh(2)] T for 1 > Ry,
(6.89)

The splitting of folded quantities like Coulomb and nuclear potential as well as
the corresponding folded energies into sharp and diffused component is mathematically
strict, but, as was demonstrated in Ref. [76], not really necessary since the effect of the
density diffuseness can be practically mocked up by a renormalisation of the diffuseness
parameter A of the sharp-density contribution. In addition, as shown in Ref. [76], the
diffuse—density correction seems to vary very slowly with the nuclear deformation. For
these reasons the corrections were no longer used in the form given by egs. (6.64),
(6.75), (6.87) in later calculations [82].

The spin—orbit component of the total single-particle mean—field interaction can

be built using the central part of the potential V, in the standard way

Ao\’ = -
Vio = m<M> VWo[dx V],  q={np}, (6.90)

where ¢ denotes the vector of 2 x 2 Pauli matrices (0, 0y, 0.).
We used the following parametrization for the depth parameter of central part of the
single—particle potentials for protons and neutrons [82]:

Ve =V, + V.9,
Vyr =V, =V, 6, (6.91)
where
s 3¢, 72 9J 1 B
(1152 /(1422 0) e
A

P=60(-— 28. .92
A 60(24O>+ 8.0, (6.92)
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constant | value | unit
A 0.8 | [fm]
a 0.7 | [fm]
V, | 525 | [MeV]
V, | 487 | [MeV]
J 35.0 | [MeV]
Q 25.0 | [MeV]
¢ %% [MeV]
M ] 938.9 | [MeV/e?]
o 1.16 | [fm]

Tab. 6.1 Constants used in the Yukawafolding procedure

At the end of our discussion of folded potentials let us compare in Fig. 6.11 the shape
of the Yukawa-folded potential with the corresponding Woods-Saxon potential for
spherical 2°Pu. As we can see in the above figure both, the Yukawa—folded (6.86)

0

0

W-S potential -~ : W-S potential - .

10 b Y-f potential 10l Y-f potential

20| 240p, w0 240p,
> S
< 3¢+ PROTONS 2 30t NEUTRONS
> a0t > 40t

-50 | -50 |

60 F——————" ] 60 I

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
r(fm) r(fm)

Figure 6.11: Comparison of the spherical Yukawa—folded (solid line) and Woods—Saxon
(dashed line) potentials of 2*°Pu for protons (without the Coulomb contribution) (Lh.s.)

and for neutrons (r.h.s.). W-S potential parameters are taken from Ref. [83]

and Woods—Saxon with Chepurnov’s parameters [83], central potentials are almost
identical. A minor difference of ~ 0.5 MeV is, however, observed in the depths of the

proton and neutron wells.
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6.4.5 Yukawa—folded nuclear energy

Alternatively to the liquid drop approach one can express the average nuclear energy
by the double folding integral [76] as

1 ., S,
Buw =5 [ [ @' d'ra Viria) pl7) p(72)/ 03, (6.93)
Vv

where V(ry5) is given by eq. (6.78).
The subsequent mathematical procedure is practically identical to the one pre-
sented in the earlier sections, and we will simply give here the final expressions for the

nuclear folded energies E,,,(sharp) and AE,,, [76], namely:

[P =72/
e (sh //d3 R — 94
(sharp) = 8 T d°ry A (6.94)
and
a’(a® — 2)\?)
AE,, = —WEavr(sharp)
Vo A2 (a> =) - =

—— &P d°7 — m=r2l/A " (6.95
* sw(aQ—V)Qv/v/ E "’le—m 2a | ° (6.95)

The two last equations, for the average nuclear energy are valid for the Yukawa fold-
ing function given e.g. by eq. (6.78). After transformation by means of the Gauss—
Ostrogradsky theorem we can rewrite the above in the following form:

E (Shar - %% dSl 7"1 — 7’2)][d52 ('Fl — FQ)]
wr(sharp) = £33 (7 — I/ V)
|71 — 7“2| |71 — 7] J—
-9 g4 2 4 |1 —=72|/X )
l : + 2+ (6.96)
and
a?(a? — 2)\2
AFEyy = —Wﬂzw(s}mﬁ?)
[dS, - (7 — 7)][dSs - (Fy — )] 3 2 NG
- 3a® — 5\ 2\ —a” ) —=
8ma(a? — \? 25%5% (|ry — mala)t (3a )+ @) a
+ jéjé dSl 7"1 — 7’2)”d§2 . (’Fl — FQ)]
8ra(a? — A\?)? - (|71 — ma]a)*
> - > =2 . .
X [(5% 3a?)+ (302 — 20y T2l %(aQ - A?)M} eIF=1-72l/a. (6.97)
a a
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6.4.6 Folded nuclear energy with different proton—neutron den-
sity distributions

In this section we want to carry out the similar study as it was done in section 3 using

the Skyrme energy functional £[p] together with the Thomas—Fermi approximation.

In order to investigate the response of the nuclear energy for the relative change of

neutron versus proton density deformations we recall the folding—procedure already

used in the previous sections. Since the total nuclear density

(1) = pn(7) + pp(7) (6.98)

is the sum of proton and neutron densities one can rewrite the expression (6.93) as

follows

Fracldef(p), def(n) = 5 [ [ dry s Vi) {py(72) + pul)} 10p(72) + pu(2)) 16}

Vv
(6.99)
what is equivalent to
1 R S
Eueldef (), def(m) = 5 [ [ ' d'ra V(ria) py(7h) po(7) /i
Ve Vb
1 R ~
+ 5 | dra V) pu) puli)/oh
Vo Vi
1 . L
+ 5 [ [ dr Vi) ) plr)rd
Vp Vi
1 R ~
+ 5//d37’1 d>ry V(r12) pp(71) pa(7s)/ 06 (6.100)
Vp Vi

Since the expressions written in the last two lines are symmetric with respect to the in-
terchange the neutrons with protons, we can rewrite the above equation in the following

form:

Fruclde (), def(n) = 5 [ [[dry dr, Vir) py(r2) pl2) 16}

Ve Vo
1 ., -
£ 5 [ [ dra Vi) ou) pur)/
Vi Vi
w [ [l dir Vire) o) pp(72)/08, (6.101)
Vi Vi

We can attribute an obvious physical interpretation to the three above terms: The first
and second term describe respectively the interaction energy of protons and neutrons
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(among themselves), while the third term corresponds to the interaction between pro-
tons and neutrons. Let us notice that the integration limits in eq. (6.101) are fixed for
the two first terms to the proton and neutron distribution alone whereas in the last
term the integration with respect to r; and 7o run over the neutron (V) and proton
(V,) distributions respectively. The corresponding three volume integrals are identical
within the integration limits to those given by egs. (6.94) or (6.96) (¢ denoting protons

or neutrons)

Vo pi®pl 7{ 7{ [dS, - (7, — 7)[dS, - (7 — 7))
Sq S (

E,y(sharp) =

8T pj 71— T2 /A)?
o M=l gy (o) B=T creri (6.102)
A A
and
(@) (d) 202 2
Po_Po a*(a” — 2X7)
ANE, . = — E, . (sh
qq P { (@ — 22)2 qq (sharp) +
Vo [dSy - (7 — 7)][dSs - (Fy — 7%)] 3 5 s o |Th— T
— 3a’ — HA 2% —  ——
Sra(a® — A2)2ff DL (3a A
N Vo j{j{[dgl'(ﬁ—7?2)][d§2'(771—772)]
2 _ )\2\2 2 = 4
8ra(a? — A\?) 44, (|71 — m2a)
S o 1 > =2 B -
X [(m2 3a?)+ (302 — 20y T2l S(a*— )?)M} e”m'/a}, (6.103)
a a

where p{”) = 3\, /47 R} is the uniform density distribution of protons or neutrons (with

P+ p = po). As Vi we admit after Davis and Nix (see Ref. [76]) that

2(0? = M) agury [1 = Fsurs (N = Z)/A)*]

Vi —
0 (3a® — 5adA? + 2\%) 7rd ’

(6.104)

where a, A\ are given in Tab. 6.1 whereas ag,, s and K, s are the LD surface-energy

constants listed in Tab. 2.1 Finally, eq. (6.101) can be written in the compact form as
Eoue(def(p),def(n)) = Epp + Enp + 2E,,. (6.105)

Please note that in order to be consistent with what is assumed for the nuclear folded
proton and neutron potentials, we also use here the same radius R, and the surface
diffuseness A for both these distributions.

The above discussed Yukawa—folding prescription for the average energy, is un-
fortunately not able to give reliable predictions of LD type fission barriers. A different
version of this approach known as the “Yukawa—plus—exponential” model [42] was rather
developed which is much better in this respect than the version which was discussed

above.
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However, the aim of our investigations is to examine the sensitivity of the nuclear
system for the relative change of the neutron versus proton deformations rather then
the absolute energy value. The latter is well reproduced within the LSD model. What
will be discussed here is rather the relative change (or stiffness) of the macroscopic
energy as function of the elongation or neck—parameter difference c,, — ¢, or h,, — h, in
the two dimensional {c, h} deformation space.

As can be seen in Fig. 6.12 and 6.13, the average LD energy becomes less and less
stiff in c—direction when the global elongation is increasing. This means that a more
elongated nucleus is more sensible for further relative change of neutron and proton
elongations. On the contrary, we do not observe a similar effect when considering
the neck parameters of the proton (h,) and neutron (h,) density distributions. The
average Yukawa-folded energy seems to be weakly dependent in h—direction on the
global nuclear elongation. Since the magnitude of the Coulomb energy variations as a
function of the relative difference of proton versus neutron deformations is substantially
smaller then the corresponding change of the nuclear part (compare stiffnesses of the
corresponding curves in Figs. 6.12) and 6.13) we expect that the energetical effect of
proton versus neutron and neutron versus proton deformations should be, to some
extent, comparable. The curves shown in Fig. 6.13 are slightly more asymmetric with
respect to ¢, — ¢, = 0 then the corresponding ones in Fig. 6.12. It seems clear when we
realize that proton distribution does not interact elecrostatically with the neutron one.
Remember also that protons increase its Coulomb energy approaching the spherical

shape and decreases it by following the larger deformations.
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6.5 Diagonalization of the mean—field potentials

6.5.1 Diagonalization of the axial effective potentials

Let us consider a single—particle Hamiltonian H which has axial symmetry (e.g. con-
taining a prolate deformed mean—field). The central potential is then independent of
the angle ¢ in cylindrical coordinates. It is then obvious that the single-particle Hamil-
tonian commutes with the third component of the total angular momentum operator

jZ = ZZ + 5, and with the parity operator P
[H,J.)=0, [H,P=0, (6.106)

where the action of the parity operator P on an arbitrary spatial function U(z,y, 2) is
given by

and its eigenvalues are equal to m = +1. The eigenstates of an axially symmetric
Hamiltonian are defined by a set of quantum numbers, characterizing the eigenvalues
of a complete set of compatible observables. Such a set could be {2 = A+X, 7}, where
2 and 7 are respectively the total angular momentum and parity quantum numbers. It
can happen also that the reflection symmetry with respect to the zOy—plane is broken,
e.g. when octupole deformations are taken into account. Then the parity operator no

longer commutes with H and the parity 7 is no longer a good quantum number.

6.6 The harmonic—oscillator potential

For the case of an axially symmetric system the harmonic oscillator potential can be

written as

1 1
Vio (p, 2) = =mw? p* + ~mw,2*

5 5 (6.108)

For the present case of axial symmetry one usually introduces harmonic-oscillator (h.o.)

constants 3, and (3, which then allow to define dimensionless coordinates ( and n

1 mw,
1 mw

BL=r ===  n=p% (6.109)
b, h

The eigenstates of an axially symmetric h.o. potential are then built with the help of
the appropriate Laguere polynomial in the | (perpendicular to the symmetry z—axis)
direction and the Hermite polynomial in the z—direction

oihe

Snpn (B 5) =61 () . (2) S x(0), (6.110)
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2 / 1
— 1/2 ,—¢*/2 —
¢nz(z) _an (ﬁz) € an(C)7 an - ﬁznznzl 9

n,!

(n,+A)!°

where

Un (p) = N BLv2i2 L5 (), ND = (6.111)

The single—particle energies of this Hamiltonian are given as

1
+ 5) hw.,, a={n,,n,, A X} (6.112)

The corresponding eigenstates of any axially symmetric single-particle potential can

E,=(2n,+|A|+1)hw, + (n.

be expanded in the basis of this h.o. potential
(R, 0,4) = Xau(a) g Cia(R,0), (6.113)
where C? are in general complex coefficients. In the Schrédinger equation
H®(R,0,q) = [Tein + Vap + Voo, + Veou 6pq) = (R, 0,q), q={p,n} (6.114)

for which the set of eigensolutions CIDZ-(I?, 0,q) is expressed by the series expansion
(6.113) where the coefficients C? play the role of eigenvectors of the Hamiltonian matrix
H,3 with corresponding eigenvalue ¢;

Y HopClh=e;Cl. (6.115)
B
The matrix elements H,z of the axial effective Hamiltonian

Hog=(a|-V h—v+v<q V@

2m

3). (6.116)

can be written explicitly as

—

(o] =9 5 V18) =% [ ero E g (52 VO Fo) - Voy(Fo)
(o

0

[e.e]

x [ e dCH, () Huy ()L, () L () VA2, )1,

—00

(6.117)

where the left gradient operator is chosen to be acting (as the hermitian conjugate) on
the left. The explicit expressions for matrix elements of the spin—orbit potential will be
derived with the use of the matrix elements of the central potential in the forthcoming

sections.
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6.6.1 Nonaxial Hamiltonian symmetries

Let us define the following operation:

~

j=Kn,", (6.118)

where 7’ ! denotes here the inverse of the reflection operation with respect to the
1Oz—plane, while K is the time-reversal operation which can be defined as

K = Kye ™ (6.119)

with K, being the complex conjugation operator. We can immediately note that
the time-reversal operation contains the rotation operation by an angle m around the

”y—axis” in the spin space. Let h be a single—particle Hamiltonian operator. If

hli) = eulp) (6.120)
and

ghi~ = h, (6.121)
then it is true that

glu) = ). (6.122)

It explicitly means that if the eigenstates of the single-particle Hamiltonian are invari-
ant with respect to this symmetry and

) = Chla), (6.123)

then the coefficients of the development C* are real in the h.o. basis. For the density
distribution or the total mean—field potential /' this imply respectively:

p(l‘,y,Z) :p<$, —y,Z) (6124)

Viz,y,z) =V(z,—y,2) (6.125)

Let us consider in more detail the case of a nonaxial potential. We can first
introduce the set of three operators connected with the rotation by angle © with respect
to the i—axis ({i := x,y, z}) acting together with the parity operator P (with parity
eigenvalues equal to m = +1) as

7 = PR;(m). (6.126)

The action of these operators on an arbitrary spatial function ¥ (x,y, z) gives

ﬁx@/)(L% Z) pr(W)¢(xayv Z) = p’g[)(l‘, —-Y, _Z> = @D(—xy?/az),
ﬁyﬂb(x?y? Z) PRy(WW(% Y, Z) = Pw(_x7y7 _Z) = ¢($, -y, Z)a
ﬁ';ﬂ/)(SC,y,Z) = PRZ(W)w(Iaya Z) = pw(_x7 -Y, Z) = w<xay7 _Z)' (6127)
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Let us now remember that the rotation around the i—axis by the angle 7 called i

signature operation is generated by the operator

A

Ri(m) = e7™/h Gi=li+ 4, (6.128)

where [; and §; are respectively the i-components of the orbital angular momentum and
spin operators. The action of R, on an arbitrary eigenfunction (7 s) of the mean—field
Hamiltonian A

R.(m) @7 5) = r o(7 5) (6.129)

yields the eigenvalues r = +i. We recall that for the spin functions s ,,, represented
by |+) and |—) we have that

1 1
Sal+) = Shl=), Sal=) = gl ),
. 1 . . 1 ,
Sty =3h(+) =) 8= = Sh(=) | +),
. 1 . 1
52 +) = Shl+), 82|=) = —5hl=), (6.130)

|+w=(;), Lﬁ==(?>. (6.131)

It is also instructive to demonstrate the action of the rotation operators {e~} on

where

the spin functions |[+) and |—), namely

L . 1/m\?2 1./m\?3 1 /m\*
cimsain )y {7 T __<_) 2 _~(_> 5 _<_) 54 }' > 6.132
e |+) { 22% 53 crx+6z 5 a$+24 5 G, + + ) ( )

Noting that (6;)*" = I, (1=1,2,3,...) and reordering the terms in the above as

{36 v a5 -56) - m ()Y [+ -
{cos (5) — idsin @H 4 > = i, |4) = —i|-) (6.133)
we obtain explicitly that
Ty = (<)), e =) = (<)),
e 1) = (+)|=), e =) = (1)),
M) = (<)1), ) = ()|, (6.134)

Collecting the properties (6.127), (6.130), (6.134) and admitting that, in general, a
single—particle wave function ¢(7; s) is the product of the spatial and spin components:
©(138) = Y (T) Xs,m,, the parity operator P may be rewritten in terms of the operators
; as

P = —#, i, (6.135)
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whereas, the z—signature operator S, is given by

~

S. = R.(r) = ift, 7, (6.136)

The latter acting on an arbitrary wave function (7 s)
S (75 s) = q (T s) (6.137)

gives the eigenvalues ¢ = +i. Examining the commutation properties of above intro-
duced operators we conclude on the following properties:

A

7‘§z] = 07
ﬁ-laﬁ-]] 7&07 {i:-’ﬂ»%z}y
2_ ], (6.138)

— —

=N

Let us now investigate the consequences of the combined symmetries g)f? and @SZ. If
the operator § = K T, ! acts following the parity operator P or the z-signature operator
S, then for the density and for the total single-particle potential we have the following

properties:

e for the operation 4P

P(L Y, Z) = p(_x7 Y, _Z)a
V(z,y,2) =V(-x,y,—z), (6.139)

e and for the operation 45, (parity symmetry P broken),

p(IL‘, Y, Z) = p(—(L’, Y, Z),
V(z,y,z) =V (-z,y, 2). (6.140)

In the case of the symmetry (6.139) one concludes by virtue of the commutation rules
(6.138) that both quantum numbers 7 and ¢ can be used to identify the eigenstates
of the Hamiltonian h. Then the Hamiltonian matrix is composed of 4 quasi-diagonal
blocks corresponding to the four possible combinations of quantum numbers {r, ¢} as:
{1,1}, {1, -1}, {-1,1}, {—1,—1}. This is not the case when the parity symmetry is
broken as in expression (6.140), however, the z-signature and § symmetries are still
conserved. This means that the single-—particle states can then only be characterized
by the quantum number ¢ (then the Hamiltonian matrix decays only into 2 blocks
corresponding to ¢ = +1). When, in turn, the z—signature symmetry is broken while
the parity and ¢ are conserved then the only good quantum number is the parity =
(Hamiltonian matrix decaying into 2 blocks corresponding to m = 41). When this is
the case then both the parity and z-signature symmetries are broken, and the only
symmetry to be conserved in all above cases is the § which is, in principle, the time—

reversal symmetry and then no good quantum number exists.
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6.6.2 Matrix elements of a triaxial arbitrary potential in the

h.o. basis

As we have already mentioned in the introduction to this chapter the knowledge of
the single-particle spectrum of an atomic nucleus is the starting point to any nuclear—
structure investigation. For the description of the average single-particle field and in
the absence of spherical or axial symmetry the cartesian coordinate system is the most
suitable. In that case all three coordinates are treated on the same footing and no
symmetry conditions are imposed on the basis wave-functions. Of course, in such a
coordinate system the angular momentum algebra can not be applied directly to the
resulting wave functions even if the symmetry of the system turns to be accidentally
spherical or axial. Let us derive in the following explicitly the expressions for the
matrix elements of all the components of the total single-particle Hamiltonian.

A triaxial harmonic oscillator potential can be written as

1 1 1
Vio (7,1, 2) = émwiﬁ + imwjgf + émwng, (6.141)

where an energy eigenvalue is given usually as
1 1 1
E(ng,ny,n,) = hw, (nx + 5) + hw, (ny + 5) + hw, (nz + 5) (6.142)

and the corresponding normalized eigenstate as

12y Mys M2y 20) = W ()W, (y) Wi, (2) X (B) =

-1 ag)? ay Az

Ty, Hoy Hy  (8) ¢ Lo @nes] )

Here H,, is the n'"—order normalized Hermite polynomial (see Appendix) and

Mwi
h

(6.144)

a; =

are parameters (characteristic lengths) which allow to scale the cartesian coordinates
{z,y,2} — {&n, (Y, (1 ={1,2,3}) in the following way:

E=amr, n=ayy, (=azz. (6.145)

The three oscillator constants w; cannot be chosen arbitrarily, but are rather related
by the fact that the volume does not change with the nuclear deformation. In practical

calculations one usually uses the following identity:

41
hwo = Mw, wyw,)/? ~ i MeV (6.146)
which corresponds roughly to the energetical spacing between main shells in the har-

monic oscillator spectrum. However, the matrix elements determined within a given
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basis should essentially not depend significantly on the particular values of the involved
oscillator parameters.

Let us now introduce some recursion relations of the Hermite polynomials:

Hy1(z) = 2zH,(x) — 2nH, 1(x), (6.147)

d

%Hn(x) = 2nH,_1, (6.148)

where Hy(z) =1, Hi(z) = 2z.
Multiplying both sides of ex. (6.147) by H,/(x) we get

H,1(z) Hy(x) = 22 H,(x) Hy(z) — 2nH,, _1(x) H, (). (6.149)

In order to eliminate the undesired factor = on the right-hand side of this equation we
apply again eq. (6.147) to obtain

/ 1 /
H,H, = \/ e Hy 1 Hyrq + \/ anle 1—1 —
n n

Matrix elements of the one-body kinetic energy operator in the base of triaxial h.o.

1
H, 2H, .  (6.150)

potential can be easily derived analytically since we dispose with the relations (6.147)
and (6.148):

<n;anlyan;7Z,|Tkin|nxanyan272> - 52’2 X

1 1 1
{571%71’1 5nyng/hwz [5(”2 + 5)571271’2 - Z nz(nz - ]-) 5nz—2,n’z
1
— /el = 1) Ot 2] + cyel. }. (6.151)

Let us calculate now the matrix elements of the mean—field effective, local potential
which is admitted here as an arbitrary local potential, of arbitrary shape, invariant
only with respect to the time-reversal operation

<ng;7 TLy, za Z,|‘/;p|n$7 Ty, Nz Z> = 52’2 <ng;7 TLy, n |‘/;p|n$7 Ty, ’I’LZ>, (6152)

where

<TL;, n;; TL/ |‘/8p|nx7 Ny, nz) -
/ dge Hyy () Ho, ( / dne™" Hy, (1) Ha, (1)
< [ e H (O, Ve, )
The largest part of above matrix elements can be calculated recursively by virtue

of the relation (6.150) for products of the normalized Hermite polynomials. The nu-

merical details of this operation will be discussed at the end of this subsection. The
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matrix elements of of the single-particle potential V;, can be rewritten as:

n, +1
n,

(n;, ng;an/z|%p|nx>ny>n2> = <nlx7 ngpnlz + 1|V8p|nl‘v Ty, Ny — 1>
ooy
+ TL_ <nm7ny7nz - 1|V<>‘p|nw>ny>nz - ]'>
z

n, —1

n <n;7n;7n;“/sp|nmvnyanz - 2> (6153)

Similar relations can be derived for recursion in the x— and y— direction.

In practice we can, simply by studying the parity of the integrand in eq. (6.152),
find immediately the matrix elements which are, by the symmetry conditions, equal to
zero. As an example, for potentials which are symmetric with respect to the z—axis (not
necessarily strictly axially symmetric) a certain number of matrix elements vanish due
to the fact that V;, in eq. (6.152) is then an even function in z—direction (V(x,y, z) =
V(—z,y,2)) and thus, if for the basis states, (n, + n,) is going to be the odd number,
then the integral (6.152) over the symmetric interval (—oo,00) is equal to zero. A
similar reasoning can be applied in the other two, (y, z) directions.

The symmetry in given direction is sometimes called the partial parity and is
determined through to the quantum number n; by (—1)™, (i labelling the cartesian
coordinates). The symmetry consideration imposed on the potential might, at fist
sight, appear as a mathematical trick, but is of great importance from the physical
point of view (as already discussed in the preceding section 6.6.1). The fact that one of
these symmetries of the total potential is conserved implies that the basis states used in
the development of the full wave function (see e.g. eq. (6.113)) can be characterized by
an additional good quantum number, what is directly connected with the conservation
of the corresponding quantity. Such a symmetry property is then also obeyed by
the Hamiltonian matrix and makes this matrix block-diagonal what is particularly
desirable for numerical diagonalization.

For axially symmetric potentials e.g., the blocks for the positive and negative
0 = A + X are identical and only one of them (e.g. for positive 2 values) needs
to be calculated. A further splitting of the Hamiltonian matrix is possible when the
parity symmetry 7 is taken into consideration in a similar way. On the other hand,
as one can immediately conclude, that the discussed symmetries bring about also the
corresponding simplifications of the considered nuclear shapes and, as a consequence,
we are often not able to describe properly various nuclear phenomena like e.g. nuclear
fission, if these symmetry properties are unduly imposed. Even for a static description
of the fission process, it appears that at least four relevant deformation degrees of
freedom need to be considered (see chapter 9). In the past such limitations of the

symmetry were often necessary because they reduced significantly the dimensions of
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the matrices to be diagonalized numerically. Being able, nowadays, to diagonalize
matrices of quite appreciable dimensions and calculate numerically multidimensional
integrals in an accessible time-scale, we can afford taking into account more general
nuclear shapes.

The above calculated matrix elements of the central nuclear potential (6.151),
(6.152) do not contain any information about the symmetries of the Hamiltonian and,
at this stage, the results presented above should be understood rather as presenting
the general technique of determining matrix elements of an arbitrary local potentials.
In future sections we will discuss the problem of the time-reversal symmetry and its
implications for the appropriate choice of the basis which the total Hamiltonian is
diagonalized in. Then the required matrix elements will be certain linear combination
of these, calculated above in the original h.o. basis.

Let us now come to the description of the potential which couples the spin and
orbital movements in the quantum system, called spin—orbit potential. This potential,
as given already in eq. (6.90) for the two nucleon charge states (q={p,n}), can be
obtained from the respective central potential VI, (¢ = {p,n}) through

154
2Mec (6 5)

2
s.0. (= . h = — =

VIO (F) =i A, <—> V- [Fx V],

where the parameters )\,, denoting the strength of the spin-orbit coupling are given

by expressions (6.93) and, as already explained before, ¢ is the vector (o,,0y,0.)

of (2 x 2) Pauli matrices. Finally, recall that this potential after obvious algebraic

transformations can be written as the combination of products involving spatial and

spin operators in the following form:
K

V., = [@ (0,2 - 0.%) 15, (0

NWVp
ox

Vp
0z

— 9,

)+ 6. (axavﬂ’ — 0 aVsp)].

Oy Y 0z
(6.155)

Since it is clear that spin—orbit interaction distinguishes protons and neutrons, we will
omit the index "q” by all further expressions containing V;,. As a consequence, the
matrix elements of V;, are of the following form:

<nlm7n;,n;“/s.o.‘nx,ny,nz> = —%{
(o OV oV
oy (o (95 = 0:g e s )
g, my, 126y (@a;f«p B amagzsp) Ny Ny Nz)
IV, oV
+ o nijo- (0 ayp ~% 8zp) ”rvnyanﬁ} (6.156)
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For further applications it is convenient to express the spin operators {6,,d,,6.} in

terms of the operators {7, ,5_,6} defined as

0y = 0., (6.157)
which act on the spin part of the general wave function in the following way:
ol 1) =11), o41) =0,
o_[ ) =11), o-|1)=0. (6.158)

Since the partial derivation of an arbitrary local potential, as given e.g. by (6.86), is
quite complicated and, in general, not possible to express analytically, it is convenient
to perform explicitly the integrations by parts that appear in eq. (6.156) (noting simul-
taneously that W, vanishes at infinity) in order to transfer the derivative operation
from the potential to the basis wave functions. These operations are easy to carry out
analytically. Applying eq. (6.147) and the explicit form of the derivative of the basis

wave function, given e.g. in z—direction as

dq]n:ligjxx) = Nnx\/@ (aH;x_l(axx) — aiangc (afo‘) ) 6_%‘15352
= Clx[ %‘I’M—l(x) — nm; 1‘1’nx+1(‘”)] (6.159)

we obtain that

1
(.0 0l S Vio g, ny,ns, B) = 5/{{(2'|0+|Z>B_ +(¥)o_|2) By + 2(¥|02|S) B,

x? y?
where

By =B, FB,, (6.160)

B, = %(1—(—1)"%%) a,a, X

{— Ly 4 1) {(nl, iy, nl — 1, Ve ng, ny +1,n2)
—y/ny(n. + 1)(nk, n'y,nlz + 1, [Vip|ng, ny — 1,n)
4/l (. + 1){(n, nfy — 1,0}, [Vip|ng, ny, n, + 1)
y/na (g, + 1)l + 10 [Viplna, my, e — 1)),
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(1 - (—1)"3+”y) a0, X

n,(n, +1)(n., —1, n L, |Vep| Mz, 1y, 1 + 1)

—\nz(nf, + 1) (0 + 1,0y, 0, [V ne, ny, n. — 1) (6.161)
+1/n (ng + 1)(n, ny, — 1, |Viplng + 1,1y, n,)
+y/ne(n, + 1){nl,n, n. +1,|Vi|n. — 1,ny,nz)],

[

B, = %(1—(—1)"%%) (gt X

[— n’y(nm+1)(n — 1,0, [Vip|ng + 1, ny,n.)

— /N (1, 4 1)(n, n'y + 1,0, [Vip|ne — 1,ny,n.)

+y/nl(ny + 1){n), — 1,n;, N, |Vip|ng, ny + 1,n.)

T

+/ny(n, + 1)(nl, + 1m0, 0L, [Vig|ng, my — 1,n2) .

As one can see from eq. (6.160), the spin—orbit interaction, proportional to B_
and B., couples only the "antiparallel” spin states whereas the one containing B, acts
between states of "parallel” spin orientations. This is different from the case of the
central potential which gives nonzero contributions only between states of the same
spin projection. This unique feature of the spin—orbit potential leads to the energetical
splitting of each single-particle level (except for s—states) into two levels of the same
orbital angular momentum but opposite spin orientations.

In order to build the matrix of the central potential recursively it is enough
to calculate numerically all diagonal matrix elements as well as a certain number of
off-diagonal matrix elements which for certain combinations of n,,n,,n. cannot be
determined by recursion. The number of such elements makes only a few percent of
the totality. The rest of the off-diagonal matrix elements are determined in succes-
sive, parallel lines to the main diagonal of the matrix. After the computation of the
average-potential matrix elements we have to do the same for the spin—orbit poten-
tial with the help of the relation (6.160). Here also, some matrix elements must be
calculated numerically. It is also possible to calculate them purely recursively under
the condition that we first calculate a few necessary additional matrix elements of the
central potential for which n, + n, +n, = Ny + 1, (Where N,,,, denotes the cut—off
condition referring to the number of h.o. main shells used in the expansion of the total
wave function). It is then convenient to put the basis states (6.143) (omiting the spin

o quantum number) in the following order:
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|0,0,0), ]0,0,1), 10,0,),
|0,1,0), ]0,1,1), 10,1,),
11,0,0), |1,0,1), |1,0,),
11,1,0), |1,1,1), |1,1,),

6.6.3 Time-reversal symmetry properties of the h.o. basis

In this section, on the basis of Ref. [84], we are going to investigate the harmonic
oscillator basis and the corresponding transformation properties with respect to the
time-reversal operation. This operation turns out to be useful when the physical
operators have a well defined symmetry with respect to time-reversal, i.e. when they

satisfy the condition
KOK™!' = +0. (6.162)
The time-reversal operator (dependent on the sign convention) is defined as
K =nio, K, (6.163)

Above, n = %1, o0, is the second Pauli matrix and K, is the complex conjugation
operator.

The time-reversal operator K has the following properties:
e Anti-linear: Kc=c*K, ceC
e Unitary: KKT = K1K =1,
e For two arbitrary vectors u, v, (u|K|v) = (v|K*t|u)*,
e K2 =+]: if system as even number of fermions,
e K2 =—]: if system as odd number of fermions.
The two first properties define the time-reversal operator as being anti-unitary.
Kramers’ theorem:

If his a single-particle Hamiltonian of a system and KhK™'= iz, then the eigenstates
of this Hamiltonian split into two groups: {u}, {fi} in such a way that

>

1) = €u|ﬂ>7
) = eul i),

>
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where |fi) = K|u) is orthogonal to |p).

We can calculate the action of the operator K on the eigenstates of the z—component
of the spin (the sign of 7 in the definition (6.163) is chosen usually as —1 ).

RJ+) = +1-), |+>=((1)), |—>=(f)

K|-) = —|+) (6.164)
In the most general form (with phase factor n = +1) we can write
K j,j2) = (=177 |j,—jz) (6.165)

Let us remind the definition (6.143) of the harmonic oscillator basis with an
additional phase factor (+i)™

D) = (+0)" |1, 0y, M2 |52), (6.166)

which has the advantage that the matrix elements of an arbitrary potential which
is "partly” symmetric with respect to z—axis (i.e., V(z,y,2) = V(x,—y, z)) are real.
Time-reversed h.o. state according to the definition (6.163) and the property (6.164)
is of the following form:

\5> = (=)™ |ng, ny,ns) | — s2) (6.167)

Note, that the {|b)}—basis is composed of either purely real or purely imaginary ele-
ments. To simplify the notation, we will in the following use the symbol |n) instead of
[Ty Moy, M)

One can also easily check the following property:
K[b) = +b)
Kby = -y

Now, starting from the |b)—basis and applying the following transformation we come
to the new |t)—basis according to:

— 1 . 7
ty) = %(2\@ — 1)
J— 1 ST
L) = ﬁ(llﬁ — b)) (6.168)

The action of the time-reversal operator on the new basis states is the following:
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Klty) = +]t-)
KJt-) = —Jt)

Using the results of the action of the Pauli matrices o; on the h.o. states (6.166) we

can investigate immediately their action on the |t)—basis:

oults) = (~1)e)
oty = (<1t

oylt) = (=1)" " ty) (6.169)

Let us now consider an operator O that is supposed to be purely spatial, i.e. does
not act on spin coordinates. The purpose of this consideration is to give the general
prescription to construct the matrix of this operator in the t—basis Let us order the
|b)—basis like: {|b)} = {|b),|b)} This basis is orthonormal which means that

(v'1b) = (¥'|b) =0
(b'|Ob) = (¥'|O]b) = 0 (6.170)

The latter comes from the orthonormality of the spin eigenfunctions (remind that

|b) has spin “up” projection and |b) has spin "down” projection).

(V'|O[b) = i ™+ (n/|O|n)
F10]p) = i+~ (1/|O|n) (6.171)

By the definitions (6.166), (6.167) and (6.168) this result can be easily generalized for

the t—basis, namely:

~ 1 NA N
{t+10]t+) = S({|O0[b) + (V'|OID))
1 .
— i[ifnyﬂrny _'_ Z-ny/fny]<n/|0‘n>

1 .
= ST+ (—=1)~ =) (n!|On) (6.172)
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Introducing the function of an integer n

Fin) = 5"+ (-1)7), (6.173)
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n! —n, —1)(n'|On) (6.174)

Having calculated the matrix elements of an arbitrary spatial, local operator O,
let us finally determine the matrix elements of a mixed operator of the type Od; in
the t—basis, which is the product of a purely spatial and purely spin operator. This
will be the direct step to the construction of the spin—orbit potential matrix elements
within this basis. Starting from the previous results, we want to extend them to the
case of an operator of this form: Ooc;. What is obviously meant here is that in such a
mixed operator O acts only on the spatial part of the basis and o; only on the spin—
dependent part. Thus, the matrix elements split into two different parts. Keeping in
mind relations (6.170) and (6.175) it is easy to obtain that

(t,|00, |t ) = F(nl, +n, + 1)(n'|On)

(#1004t ) = F(n, +n,)(n'|O|n)

(" |00|ty) = F(n,+ny)(n|O|n)

(" |00y|t_) = F(n,+ny, — 1)(n|O|n)

(' |00yt ) = F(n), + n, +2)(n'|O|n)

(' |00y|t_) = F(n, +n, + 1)(n'|O|n)

(t_|O0yJt.) = F(n) +n, + 1)(n'|O|n) (6.175)
(t" |00, |t-) = F(ni, +ny)(n'|O]n)

The above presented transformation eq. (6.168) of the original h.o. basis given by
eq. (6.143) to the |tL)— basis is the starting point to obtain the matrix elements of
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an arbitrary single—particle Hamiltonian imposing the time-reversal symmetry which
is generally fulfilled, except for the cranked, rotating potentials which break it. The
time—reversal symmetry is, of course, also broken for odd proton and/or odd neutron
numbers. The matrix elements of the Hamiltonian in the new |t,)—basis are easily
derived by summing up (with the right phase factor) the appropriate matrix elements
calculated in the original h.o. basis (6.143). By virtue of the property (6.175), the full
matrix of the mean—field Hamiltonian in the transformed |t.)—basis is shown schemat-
ically below.

[4) [t-)

<H>ozﬁ 0 1)

0 | (H)ig |1t

6.6.4 Diagonalization of the symmetric potentials in the origi-

nal h.o. basis

At the beginning of this subsection, let us recall that the formalism presented in the
previous subsection is valid for an arbitrary potentials without imposing any additional
symmetry with the exception of time-reversal. We now want to introduce a less gen-
eral way of diagonalizing potentials which are symmetric with respect to the z—axis
(including the case of pure axial symmetry). It can be easily concluded from eq. (6.154)
that both the central and spin—orbit potentials verify the same spatial symmetries. The
shape of a potential having this kind of symmetry can be described e.g. by the previ-
ously introduced modified Funny-Hills shape parametrization (6.21). Let us recall that
the latter is able to describe nuclear shapes whenever the cross section perpendicular
to the z—axis can be, at most, an ellipse. Of course, one can also imagine an infinite

number of other geometrical shapes for which
V(ZC,y,Z) = V(—;U, —y,Z). (6176)

is verified. Notice also that we do not impose any limitations concerning the shape
in z—direction. For simplicity let us come back to the original h.o. basis. Repeating
the argumentation given after eq. (6.153), we can come to the conclusion that for the

potentials the only "good quantum number” can be (see Ref. [85])

g= (=)=t )|y, (6.177)
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where ¥ is the projection of the spin, equal to {1/2,—1/2}. As already discussed,
taking into account any symmetries existing in the system makes the matrix of the
Hamiltonian block-diagonal. The number of pairs of the identical blocks depends on
the number of operators commuting with the Hamiltonian. Then ¢ defined by (6.177)
is the only good quantum number, our matrix will split only into two identical blocks
with ¢ = 1 and ¢ = —1 respectively.

As previously explained, it is sufficient to diagonalize only the one of these blocks
and, according to the Kramer’s theorem, every state can then be occupied by two par-
ticles. We can see therefore that the here discussed transformations contain already
the time reversal operation. Schematically the Hamiltonian matrix may be presented
like:

|bodaa T) |beven 1) |bodd 1) |beven 1)
Veent + Vsoss | Vson + Vsos2 0 0 |boaa 1)
Vso1 = Vsos2 | Veent — Vsoss 0 0 |beven 1)
0 0 Veent + Vso3 | Vso1 + Vsos2 ||boaa 1)
0 0 Vo1 = Vsos2 | Veent — Vsouz ||beven T)

The meaning of the symbols used in this scheme is the following: For example, |byaq 1),
denotes the set of basis states given by (6.166) for which n, + n, is an odd number
with the spin projection 1/2, marked symbolically by the up arrow. By the analogy,
the meaning of the three other type of basis states is obvious. The quantities Ve,
and V., are the following: Vientr = Viin + Vip + Voow 0pg, (¢ = {p,n}) and Vi, p,
(n ={1,2,3}) corresponds to the spin-orbit term entering the eq. (6.160) proportional
to B,, By, B, respectively. Keeping in mind the argumentation given after egs. (6.153)
and (6.177) we conclude that the upper—left and the lower-right blocks of the full

matrix must be identical, i.e. must have the same eigensolutions.

6.6.5 Numerical accuracy of the calculations

The primary source of the error in calculating the single-particle energies and wave

functions is the truncation of the h.o. basis. Integration errors involved in the cal-
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Figure 6.14: Asymptotic behaviour of neutron wave function for a spherical 2*Pb. The
product of r times the radial wave function is plotted vs r beyond the last level for
the Fermi surface and the least-bound level. The thin solid straight line shows the
exact slope, the thick, solid curves gives the results for the harmonic-oscillator basis
containing up to 24 main shells while the dashed curve illustrates the results for 12
h.o. shells. This picture is taken from Ref. [86].

culation of the matrix elements, folding of the potential and diagonalization of the
Hamiltonian matrix can in practice be made negligibly small compared to this trun-
cation error. Looking at Fig. 6.14 we conclude that levels below the Fermi surface
converge fairly rapidly with the size of the basis, whereas bound states close to zero
energy converge more slowly. We can state therefore that the unbound levels from the
energy—continuum approach to zero energy as the basis becomes infinite. This state-
ment is true since we know that any positive energy is a solution of the Schrédinger
equation. In order to simulate the energy continuum the density of the unbound levels
must approaches infinity what is possible only when the basis is going to be infinite.
Thus, levels calculated with a finite basis do not represent any physical resonant
states. Nevertheless, they are used in calculating the microscopic (shell and pairing)

corrections which require the knowledge of the density of levels g(e).



Chapter 7

General remarks on the mean—field

models

7.1 Selfconsistent approach

The Hamiltonian of the N-body system is, to a good approximation, given by

N N . N N 1 N
i=1 ij=1
i)
N 2 —
where t; = me = —%Vz is the kinetic energy operator of the i*" particle and v;; is the

interaction between the ¥ and j** particle.
Formally, it is evident that the Hamiltonian H in the form
N 1 N N X X
H= Zl(tz +U;) + (5 -Zl V55 — z; UZ) =Ho+ H; (7.2)
i= ij= i=

is identical to the operator (7.1). Such a writing is useful under the condition that the
one-body operator H, is a very good approximation of H and that H,; can be treated
as a perturbation. Writing the total Hamiltonian in the form of eq. (7.2) we can
choose as the one-body mean—field potential U an arbitrary potential which leaves
the potential H, small as compared to Ho. This mean—field potential is often chosen
e.g. as a Nilsson potential or, more realistically, a Woods-Saxon or Yukawa-folded

potential. For such a choice of the one-body potential the solution of the Schrédinger

equation for H, is
N

Hold;) = <fi + Ui) |95) = Ejlé) (7.3)

i=1
for which we can find the solution for the N-body wave function |¢;) in the form of

the tensor product

65) = l1(1)) ® |2(2)) @ ... @ |on(N)), (7.4)

111
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where the single-particle states |¢,) are the eigensolutions of the single-particle Hamil-

tonian h
hley) = (E+U)|en) = euley). (7.5)

Since we discuss the system of N identical fermions, we have to realize that,
because of the Pauli principle, the N—body wave function is not of the form (7.4)
but is rather expressed as the linear combination which is totally antisymmetric with
respect to the interchange of the coordinates of two arbitrarily chosen particles. Such
a form is offered e.g. by the Slater determinant

e1(1)  »i(2), ... ei(N)
Pa(1)  92(2), ... p2(N)
1 .
|9;) = | : (7.6)
ox(1) on(), - on(N)

When we manage to diagonalize the matrix which corresponds to the total Hamil-
tonian  (which, in general, is of the infinite size) in the basis of the eigenvectors |¢;)
of Hy, giving us the coefficients of the development of the eigenstates of H in the basis
of 7—20, the problem is solved. This, of course, is not possible and we need to con-
straint ourselves to the diagonalization in the truncated Hilbert spaces (of finite size)
which is the domain of the nuclear shell model. The Hartree—Fock method yields a
one-body Hamiltonian H, with the corresponding single-particle mean—field U which
is generated in the variational procedure (as will be shortly demonstrated below) by
the sum of all nucleon—nucleon interactions constituting the two—body operator V in
eq. (7.1). The best one-body potential U and the corresponding N—body ground-—
state wave function |¢g) is obtained within the HF approach through the variational
method which says that the ground-state energy has to be minimal with respect to all
variations of the single—particle states which constitutes |¢y), i.e.

g LOAD) g (gl 600) = 0 (7.7
{oldo )

When we write the ground-state function |¢) in coordinate space in the form
of the Slater determinant, we come to the conclusion that the variation |d¢g) consists
in replacing the single particle state ¢; in (7.6) by ¢; + dp;. If now j < N, i.e. if ¢,
corresponds to a single—particle state which is already occupied in |¢y) then we add
in the Slater determinant corresponding to the state |¢y) the multiple of the line j to
the line ¢ which shows that variations of |¢y) which correspond to the transformations
inside the the Hilbert space of the already occupied states do not change the value

of |¢o) and are not physically interesting. We can, therefore, limit |0¢g) to variations
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which project on the exterior of the occupied space in the |¢g). In the formalism of

second quantization we can then write the variation |d¢g) as
|5¢0> = (Scsjajajw)o), ] S an, S > an, 568]‘ qu. (78)
The variational principle (7.7) then leads to

( do|Hata;|do) =0 (7.9)

and writing the operator H in the second quantization we finally have

S (alfl8) (dolagas o aslon) +5 3 (aBloho) (dolalafasaraiaslss) =0, (7.10)
af afBvyo

Evaluating the two-body term one finds
N
5 > (aBlilyd) (dolaagas ay alas|¢o) = Z (Jkl0|sk) — (jk|o]ks)] (7.11)
apyd k=1

and the variation (7.7) can be written in the form
N
(jlls) Z (Jk|0|sk) — (jk|o[ks)] = 0. (7.12)
If we define a one-body Hamiltonian H, as
Ho = > ulty) Z (pklo|vk) — (pklolkv))| afa,, (7.13)

7%

we conclude that the matrix element of 7:l0 between the ground state ¢, and the state

¢1 which corresponds to an one particle-one hole excitation is equal to zero

(do|Hol¢1) = 0. (7.14)

Defining the one-body potential U by

N

(HIO1) = 32 (Cpfok) = Gl o) (7.15)

we can rewrite H, in the following form:

Ho =Y (ult+Ulv)a)a, . (7.16)
7
The interpretation of the one-body operator U is evident: U is the mean—field felt
by a particle when it is interacting with all the other particles of the system. Since
7:{0 = Zf\il iz(()z) depends on the states ¢, being the eigenfunctions of izo we have the
following selfconsistent problem:
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Starting from the potential Uy, we solve the Schrodinger equation (£ + Uo) p; =
ejp;. Having the N single-particle states o; of (£ + Up) with their eigensolutions £j we
construct through eq. (7.15) the new mean-field U; with which we repeat the procedure
until the convergence is obtained. The Hartree—Fock problem is therefore solved in an
iterative way. The fact that the occupied and the unoccupied states are completely
uncoupled implies that the Hamiltonian H, can be diagonalized in these two subspaces

separately. This is obtained if the HF selfconsistent states are generated by Ho
holj) = (E+ U)1j) = &) (7.17)

which implies that
(k|Hol j) = €;0k;, Jk < an. (7.18)

We rewrite the HF equation (7.17) in the coordinate space using (7.15) as

(Pt + Ulm) = (R m) + (7] Ulm) = e 7im) (7.19)
[ @ra (G117 (Falm) + Y (7Y {kIUTm) = 2 7im) (7.20)
k
h2
—%V21<pm +ZZQOk ) [(KlD|ml) (kl|o]Im)] = €mem (1) (7.21)
k 1=1
-
—%ﬁm%m>+z/fm/dm[ ()2 (7)1 (72U (75 = ol o () u(7)
- §:¢AFowaﬁnwﬂ@ﬁmva—fanmwwwmwa]=emwm@a (722
k
h2 . N
— - Pen(i) + [ [ @ragi@e(7 - D) en() -
=1

N

lz:/d?’m(pf('?g)v(\ﬂ — F2|)@I(F1)¢m(F2):| = Empm(71)  (7.23)

Let us define

N
Un(it) = 3 [ dragi(@)o(i — o) (7.24)
=1
and .
(7, 72) Z @1 (M)u(|m1 = T2])eu(71) (7.25)

which allows us to rewrite the HF equation (7.23) in the coordinate space in the fol-
lowing form:
h2

—%V2 O (1) + Un (71) o (771) / Up(71,75)om(72) d’ry = EmPm(T1), (7.26)
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where the local part Ug(r]) is called the Hartree potential and the non-local part
Ur(7,72) the Fock potential. The latter has its origin in the antisymmetrization of
the N-body wave function. The Hartree—Fock potential is then non—local but, in fact,

the same for all the occupied states. We can define thus the potential
N
UAi') =3 / o1 (F)u(|7 = Fol)ier(s) drad (7, 71 )

=SS ([ — Fal)er(F) dra - (7 i), (7.27)

1=1k=1

Keeping in mind that

/ (P )om (P ) dPry" = Okm (7.28)
we rewrite (7.23) as
-
5= V2 om(1) + / UL ) om(T) P11 = empm (). (7.29)

The potential U(r,7;’) which appears in eq. (7.29) is independent on the single—
particle state on which it acts since in eq. (7.27) the sum runs over all occupied states.
This potential is therefore the same for all the single—particle states of the system.
We can see in eq. (7.27) that the direct (Hartree) part depends on the integral of
|o1(7)|*v(71, 2 ) whereas the exchange (Fock) part contains the integral of the term
07 (72)pr(Ta)v (7,7 ). If the states [ and k are very different to each other then the
product ¢} (7)pk(7) will change its sign frequently in the region where v(7, 75 ) is
essentially non—zero which makes, as a consequence, this term substantially smaller
as compared to the direct term where |¢;(75)|? contributes maximally. This fact im-
plies that the exchange part of the potential is usually small compared to the direct
contribution (not always !, depending on the form of the interaction).
The energy of the ground state is given as
1

N
Eur = {(¢o/H|do) = _{(jlt|s) + 5
j=1

N
> ((Jklolik) — (jklolkj)) =
7,k=1

36— 5 3 (alik) = (3kliks)) =
S+ 500 = 3 (5 1010) (7.30)

7.2 Non—selfconsistent approaches

7.2.1 Microscopic—-macroscopic model

Over the years, considerable effort has been devoted to calculating the potential energy

of a nucleus as a function of its geometrical shapes. The average trends of the nuclear
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potential energy are described quantitatively by the Liquid-Drop Model (LDM), but
there exists also regular deviations from the LDM energy. The most visible deviations
are associated with shell effects: Close-shell, so—called magic nuclei are more tightly
bound than the average nucleus. The second, most important deviation is associated
with nuclear pairing correlations, which also lead to an increased binding in some nuclei
relative to others. These shell and pairing corrections to the liquid drop energy are
both examples of single—particle effects and arise because of fluctuations in the actual
distribution of the single—particle levels in the nucleus relative to a smooth distribution
of levels. Single-particle effects are responsible for many important phenomena which
occur particularly in the deformed ground-state shapes and secondary minima.

It is rather clear, that the most fundamental approach for calculating the nuclear
potential energy would be to start with an adequately chosen nucleon-nucleon inter-
action and solve the resulting many—body problem in some mean—field or shell-model
approximation.

In the macroscopic—microscopic method which is introduced here, the total nu-

clear potential energy F is given by

E(N,Z;def) = Erpm(N, Z;def) + 0 Eghen(N, Z; def) + 0 Epair (N, Z; de f)
(7.31)

that is, by the sum of a liquid—drop type energy Epas, a shell correction energy 6 Egpen
and a pairing energy 6 E,,;,-. The liquid-drop term describes the smooth trends of the
potential energy, while the shell and pairing—energy corrections, which are calculated
from single—particle energies, give the fluctuations about the smooth behaviour.

The procedure of determining the single—particle levels in general consists of
three steps: (1) specifying the geometrical shape of the nucleus, (2) generating the
singleneutron and single—proton potential related to this shape, and (3) solving the
Schrodinger equation for this single—particle potential. In order to obtain the single—
particle potential that is related physically to a given shape, one can fold an adequately
chosen function, e.g. of Yukawa type, with a uniform sharp-surface generating density
distribution of appropriate shape. The parameters of this folding function are obtained
in Ref. [82| through the global fit to nuclear masses and fission barrier heights . To
solve the Schrédinger equation for the above potential we used an expansion of the
single—particle wave function in the basis of triaxially deformed harmonic—oscillator
wave functions. The details of this procedure are described in the previous chapter.
When the single-proton and single-neutron levels are computed at a given deformation,
the shell correction is determined by means of the method suggested by Strutinsky [78|,
while the pairing correlations are obtained within the BCS approach with a constant

value of the pairing strength Gpu;, [71].
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7.2.2 The shell correction

The shell correction for a system with a specified particle number N is simply given by
the difference between the sum of the single—particle levels and the smooth distribution
é(n) obtained by "washing—out” of the shell structure, (see e.g. [86])

N o
5Eshell = Z €; — /é(n)dn (732)
n=1 0

The primary advantage of Strutinsky’s averaging method is that it can be used for
arbitrary single-particle spectra which arise from some realistic potentials.

The summation in eq. (7.32) should extend only over the occupied states with
the continuum states, represented by an appropriate, continuous expression. However,
since the continuum states affect the final shell correction only in determining the
smooth curve é(n) for particle numbers n below the Fermi surface, for this purpose
they can be approximated by discrete states. The next step is to separate the exact
level density g(e) into a smoothly varying part g(e) and a part dg(e) that describes its

local fluctuations, i.e.,

g(e) = g(e) + dg(e). (7.33)

This is achieved by expanding the J—function in the series of Hermite polynomials.
Since Hermite polynomials of low order exhibit less oscillations more slowly than those
of high order, the first few of them in the above equation represent the smoothly
changing contribution g(e) and the remaining terms the fluctuating contribution dg(e).

This expansion includes automatically a Gaussian weighting functions and leads to

L5 L § —un 3 c U
916) = 2 300 = 2= 3¢ 3 (), (7.34)

n=1

where we use the abbreviation

u, = (e —ey)/y (7.35)

and where the coefficients ¢, are given by

(,,:l)m”,, m even,
Crp = 4 2Tm7)] (7.36)
0, m odd.

The scaling factor v, which has the dimension of energy, has been introduced to make
the arguments dimensionless and to control the range over which the Gaussian weight-
ing function is effectively nonzero. The summation over m in eq. (7.34) includes even
values only, since the coefficients of all odd Hermite polynomials are zero. Therefore,
the smooth level density is given by an expression analogous to eq. (7.34) but with the
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summation over m extending only to p which defines the order of the shell correction.
The oscillations in the Hermite polynomials lead to an unpleasant feature of Strutin-
sky’s method. In the process of decreasing to zero below bottom level, the smooth level
density g(e), in general, becomes slightly negative for certain energies. This, in turn,
causes the average particle number 71(e) also slightly negative for certain energies below
the bottom level. Therefore, the lower limit of the integrals over particle number n in
eq. (7.32) should in principle start at —oo rather than at zero. The average particle

number can now be evaluated explicitly

e

~ ~ / — [1 1 —u? 2
n(e) = / g(e)de = nz::l {5[1 + erf(u,)] — ﬁe mzzjl cmHml(un)}. (7.37)

In practice, it is more convenient to transform the integration over the particle number

— 00

in eq. (7.32) into an integration over energy, namely

/Né(n)dn: /\eg(e)de. (7.38)

The upper limit A can be interpreted as the Fermi energy of the smooth distribution

of levels and is directly determined by the equation

a(\) = / gle)de = N, (7.39)

—00

which in practice is usually solved iteratively with 7(\) given by eq. (7.37). The integral
eq. (7.38) can be evaluated explicitly

[e.9]

75(71)61” => {%[1 + erf (i, )] — —=vye " —

n=1

Ly, VHnliin) + enHo1(n) + My H() | b, (7.40)
NP

where i, = (A—e,)/7. This result gives finally the shell correction. As we can see, the
shell correction depends explicitly on the single-particle energies e,, and the smooth
é(n) only below the Fermi surface A. States above the Fermi surface enter only in
determining the smooth function é(n) for n < N, and the contributions of the higher
states (n > N) rapidly approaches to zero. In particular, in eq. (7.37) and eq. (7.40)
a given term n approaches zero as the energy e, exceeds the smooth Fermi energy A
by an amount that is large compared to the smoothing range . This means that the
summations in these equations can be truncated as soon as (e, — \)/y > 1.

Since neither the smoothing parameter v nor the order p of the shell correction

represent physical quantities, the value of the shell correction should be insensitive
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Figure 7.1: Study of the plateau condition of the Strutinsky method with Yukawa—
folded set of s—p states of 2°Pu. Only purely ellipsoidal shapes are discussed which
are described uniquely by the elongation parameter c. The left hand side pictures cor-
respond to the proton shell corrections while the r.h.s to the neutron shell corrections.
The order of the correction is p = 6

to the choice of these quantities (see Fig. 7.1). Since the smooth function é(n) is
determined by the single-particle levels, the y—value should be comparable to the
spacing between them, and should be large enough to average over the levels between
major shells.

7.2.3 The BCS approach

The existence of the two—body pairing interaction in an atomic nucleus between nu-
cleons of the antiparallely correlated total angular momenta (corresponding to time—

reversed states) is confirmed by numerous experimental facts, as e.g.:

e The total angular momentum of an even—even nucleus is equal to zero whereas
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for odd nuclei it is determined by the unpaired particle,

e The differences of binding energies of neighbouring even—even and even—odd nu-
clei indicate a lower separation energy of the odd valence particle as compared

to the even nucleon,

e The large energy gap between the ground state and the first excited state of

even—even nuclei,

e The moments of inertia which well reproduce the rotational spectra of atomic

nuclei require the inclusion of the pairing interactions.

In spite of such very rich experimental evidence of the pairing correlations in atomic
nuclei it is, in fact, not easy to extract pure pairing effects from the mixture of other
collective, short and long range correlations which influence the experimental results.

The method originally introduced by Bardeen, Cooper and Schrieffer (BCS) [87]
for treating pairing correlations in solid-state physics has been adapted to nuclear
physics by Belyaev [88].

This interaction is of short range and the states of paired nucleons are character-
ized by the time-reversal transformation

&) = Kla), (7.41)

where |a) = |j,m), |&) = |7, —m) while j and m being respectively the total
angular momentum quantum number of a nucleon and its projection on the quantiza-
tion axes. The set of single—particle levels around the Fermi surface affected by this
interaction is usually refered to a pairing window.
Let us consider the j—shell in a nucleus. The set of quantum numbers character-
izing this shell is |u):
(J,m) = p

1) = ¢ [0) = [j,m) = c],[0) (7.42)

and the time-reversed state

) = (=1)7*7|j, —m) = (1),

10). (7.43)

Suppose that the interaction in a multi-fermion system leads to the scattering
of the particles. Initially, only the lowest states below the Fermi surface are occupied
and the others are empty. When the interaction is switched on, each level has a
certain probability of being occupied or empty. Let u, be the probability amplitude
that the single-particle state e, is empty and v,-that this state is occupied (with
v, + u, = 1). The wave function corresponding to this situation can be written as a
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linear combination of the vacuum state of the fermion system |0) and the state occupied
by the pair |v,7) = ¢ ¢ |0)

|6,) = u,|0) + v, ctet |0), (7.44)

where ¢,, ¢/ are respectively the annihilation and creation operators of a fermion in
state |v) for which the anticommutator relation {c,,c}} = {¢, ¢,/ } = d,,» holds. As a

consequence, we can expect that the total wave function of the even system of Nynqg

fermions contained in the pairing window can be written as

9) = II (w +wv.c/cd)lo), (7.45)
VENyind
where it can be shown that the amplitudes u,,, v, of the probability that the state v is
either occupied or empty, fulfil the normalization condition

(plp)y =1 if and only if w+vi=1, v=1,..., Nyina (7.46)

Since it is experimentally known that the ground state of even—even nuclei always have
an angular momentum equal to zero, we conclude that the scattering caused by the
pair interaction never breaks a pair, but rather scatters one pair («, @) to another pair

(8, ) which implies that the pairing Hamiltonian can be written in the form

Hpoir = > Gap czgcgc@ca, (7.47)
af

where G5 = (33|0]aa) is the appropriate pairing matrix elements of the two-body
interaction.

Comparing now the above expression with the general expression for the two—
body Hamiltonian

. 1 )
H(2) = 3 > {aplolyd) cfehese, (7.48)
afByo

we get
(af|v]yd) = Gag%ac?%.
It is frequently assumed that the matrix elements G5 are state independent, i.e.
Gop = Gpair- The Hamiltonian (7.47) then corresponds to the so—called monopol-
pairing interactions between nucleons of the same charge state ¢ and in time reversed
states.
The values of the coefficients v, and v, are still unknown. In order to determine

their values we use the variational method to minimize the energy of the system

5 ({6 Hyair | ), ) = 0, (7.49)

where now u,, v, are the variational parameters. The unpleasant feature of the BCS

wave function (7.45) is that it contains terms corresponding to different numbers of
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particles. As an example, let us write explicitly this function for the simplest case,

where only two nucleon single-particle states are available:

|p)e = (ua+ Uacicg)(uﬁ + %CECE)W =
(uattp)|0) + (uavsches + ugvacicd)|0) — vavaclcjegc10).  (7.50)

From the above we can see that |¢), contains three type of states: one zero—particle
state, two two—particle states and one four—particle state. For atomic nuclei of N
neutrons and Z protons we have to postulate that in the BCS method the number of
particles (Z and N) must, at least, be conserved on the average, i.e. with the particle

number operator

N= Y (e +cie) (7.51)
VENwind
we should have
(6IN19) = Nuina (7.52)
The variational principle (7.49) with the above constraint can be rewritten in the form
5 ({8 Hyair = AN 10}, ) = 0 (7.53)

which leads (for a constant pairing matrix element G,3 = Gpair) to the set of coupled
BCS equations of the form:

Numa= T 23— % {1- el
VeN'Luind v VENw'Lnd (er)‘)2+A2

(7.54)
2 S 1
Gpair VENming A /(e,—A)2+A2’
where
A = Gpair Z Uy Uy (7.55)
VENyind
The occupation probabilities appearing in eq. (7.45) are given by
1 y— A
V2 = —{1 ___° } (7.56)
2 \/(ey — A2+ A2

The pairing gap A and the Lagrange multiplier A which has the meaning of the BCS
Fermi energy are given by the solutions of the above, coupled BCS equations.

Taking into account the pairing correlations, the ground-state energy of the nu-
cleus is given within the BCS model as

ERCS) = min [(¢] Hpair — AN|6)]. (7.57)
or explicitly by

E(BCS) — Z 2e,v2 —

g.s.

AQ
— Gpair Y . (7.58)

VENyind par VENyind
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7.2.4 Pairing correction

The second type of microscopic single—particle correction, the pairing correction, arises
from short-range interaction of correlated pairs of nucleons moving in time-reversed
orbits described in the previous section. This is the most important and relatively
easy treated residual interaction felt by nucleons. This interaction always lowers the
total potential energy relative to the energy without pairing. However, one has to keep
in mind that the macroscopic part of the total energy of a nucleus contains already
the average effect of the pairing correlations so that the pairing correction fluctuates
around zero. The lowering of the total energy is larger when more pairs of nucleons are
able to interact, which occurs, when the level density near the Fermi surface is high.
This is opposite to the behaviour of the shell correction, where the potential energy
is lowered mostly when the level density is low. This leads to a partial cancellation
of these two effects (see Fig. 7.3). The shell contribution is the larger of these two
corrections and it therefore determines the main trends of the total microscopic energy.
The most essential features of the pairing correlations can be described in terms of a
constant pairing interaction G, acting between pairs of particles. The standard
pairing calculation in the BCS approximation tells how much the energy is lowered for
the actual distribution of levels. A similar calculation performed for the same number
of particles distributed smoothly with a level density §(e) determines the lowering in
energy for an average nucleus. The difference between the lowering for the realistic and
the uniform level densities gives finally the pairing correction. In calculations of the
pairing contribution for either neutrons or protons, we consider N,,;,4 pairs of particles,
with $Nyinq pairs lying above the sharp Fermi surface and 3 N,;,q lying below (we limit
the discussion to an even number of nucleons because only such will be the subject of
our investigations). Then, for a specified pairing strength G, the pairing correlation
energy being the difference between the ground-state energy in the BCS model (7.58)

and the sum of the single-particle energies up to the Fermi energy is given by
0 Bpair = B =3~ '2e, =

Nwind A2 Noind
2< o oevn—> 'ey) o~ Gpair< S>> '1>, (7.59)
v=1 pair v=1

where > ' denotes a sum over the occupied single—particle states only and the pairing
gap A and the Fermi level \ are the solutions of the coupled BCS equations (7.54).
There exist a couple of methods of determining the pairing strength G,,;.. One
of them proposed in |71] called uniform gap method consist in determining the average
pairing strength G, through the equation similar to (7.54) when the sum over the

states lying in the pairing window is replaced by the appropriate integral over the
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smooth level-density g(e) as

A0
2 g(e)de v, 29
= = = ~ 2¢(\)In —. 7.60
Gpair S\/Q [(6 — )\)2 + AQ] 1/2 g( ) . A ( )

The cut—off energy €2 (half of the energetical pairing window) is related to the number
of states (2 X Nyinq) taken into account in the sum (7.54) by the relationship

20 = Nyina/ (N, (7.61)

where g(\) is the average level density at the Fermi surface. The average pairing
gap A is experimentally found to be well approximated by A =12M eV/ VA. Tt was
shown in [89] that reasonable estimates of the pairing gaps A, and A,, can be obtained
using Nying = V15N, (N = {Z, N}). However, if we are increasing continuously the
number of pairs N,;,q participating in the pairing interaction we would observe that
the resulting quantities A and G, become less and less sensitive for this change.

The coupled equations (7.54) are solved iteratively until convergence is achieved.
We start from the estimate of G given by eq. (7.60) and insert it together with the first
guess of the diffused Fermi energy A = 1[e(N) + (N + 1)] into the second equation
in (7.54). Then, having the initial estimation of the pairing gap A we insert it into
the first equation (7.54). We then calculate the new position of A. We repeat this
procedure until the values of A\ and A between two successive iterations differ by ¢,
where ¢ is desired accuracy. This procedure must be repeated for all deformation
points of the multidimensional space. The deformation dependences of the proton and
neutron pairing gaps A, and A,, are plotted in Fig. 7.2 for the nuclei ?**Th and **°Pu.

In order to make the pairing correction as a function of the nuclear deformation
oscillate about zero we have to subtract from eq. (7.59) the average pairing energy
which was already taken into account in the fit of LSD model parameters. The average
energy of pairing correlations is determined from an expression analogous to eq. (7.59)
but with the summation over the discrete states e, replaced by the integral over the
smooth function é(n) (similarly as it was done in eq. (7.60) ). However, the resulting
integrals can now be evaluated analytically if é(n) is replaced by a linear function
(obtained by making a Taylor expansion of the nuclear number around the sharp-
Fermi surface and neglecting quadratic and higher order terms). The average density
of pairs is then given by

p= %~(X). (7.62)

For such a uniform levels distribution the discrete sums in eq. (7.59) need to be replaced
by the corresponding integrals according to the following prescription

> fle=N =5 [ f)dy

VENyind
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with y; = % and yp = WT“'"”Z we get the average pairing correlation energy in
the form
- 1 N2, 2pA \211/2 1+~ Nuind
6 Epair = ——M{ﬁ ( ) } —~ 1} = PAG pir arct ( L ) 7.63
P 4 ﬁ * Nwind * 2p pair A1CLAN 2ﬁA ( )

with the pairing strength G\, and the average pairing gap A related by

1 N, 2 1/2 N,
_ :ﬁln{ (T’i) +1] 4 ji}. (7.64)
Gpair QPA QpA

The pairing correction for either neutrons or protons is then finally given by

AEuir = 6Epair — 0 Epgir. (7.65)

The average value of the pairing gap A is assumed to remain constant with deformation.
In Figs. 7.2 the typical oscillating behaviour of the proton and neutron pairing gaps are
presented. Comparing Fig. 7.2 and Fig. 7.3 the obvious coincidence between the peaks
of the A,(,)—values and the corresponding extrema of the total pairing correction can
be observed. The total value of the pairing correction (§Epu;r = 5E§ZZT + 5E1()Zz?r) for
the majority of the here investigated nuclei, two of which are shown in Figs. 7.2 and
7.3 oscillates about 2 MeV.
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Figure 7.2: Proton and neutron pairing gaps for »*Th and ?'°Pu as a function of
elongation ¢ with h = 0 calculated within the uniform gap method. The straight solid

line corresponds to the average pairing gap A
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Figure 7.3: Shell and pairing corrections for the nuclei presented in Fig. 7.2 with ellip-

soidal deformation. The solid continuous line denotes the Strutinsky shell correction

whereas the thin correspond to the BCS and the average pairing energy (7.63) respec-

tively



Chapter 8

Static description of the nuclear fission

8.1 Total energy landscapes for equal proton and neu-

tron deformations

Before we investigate the influence of different proton—neutron deformations on the
total fission barriers as function of the {c, h} deformation parameters which respectively
describe the elongation and the neck of a nucleus, let us first consider the surfaces of the
total nuclear energy for equal deformations of both these distributions. The nuclear—
energy surface is usually defined for a nucleus of given mass number A and proton
(Z) or neutron (NN) number as the total energy function depending on the deformation
parameters.

Recalling the argumentation given in sections 6.1.1 and 6.2 we state that the
two deformation parameters {c, h} are the most relevant degrees of freedom for the
description of the fission process in cylindrical coordinates, either by the original or by
the modified Funny-Hills parametrization.

The total nuclear energy is understood as the sum of a liquid drop average part
given e.g. by the LSD model (see section 2) and the shell plus pairing correction
energy, (see Fig. 8.1) which are of quantum origin. The shell energy contribution
is obtained within the traditional Strutinsky averaging method introduced in section
7.2.2. The pairing correlations, in turn, are treated here by means of the BCS method
presented in section 7.2.3 where the constant value of pairing strength G4, is imposed.

Figures 8.2-8.3 illustrate the total potential energy landscapes of two actinide nuclei
232Th, 2Py and the super-heavy elements: *%Hs, #X 299X 200X as function of
the elongation parameter ¢ and the neck parameter h. For *°Pu we observe well
pronounced stationary points corresponding to the ground state (¢ ~ 1.20,h ~ —0.3),
the isomeric minimum (¢ ~ 1.40,h ~ —0.05) as well as two major saddle points
(¢~ 1.30,h ~ 0.0) and (¢ =~ 1.65, h = —0.2). The energy landscapes of other actinides
e.g. 262387 are very similar to those shown in Fig. 8.2 in this sense that the positions
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Figure 8.1: Total quantum correction in two dimensional space {c, h} for 2% Pu

of the main stationary points are almost identical within Ac ~ Ah =~ +0.02. For
lighter actinides we notice, what was already remarked for LD barriers in section 6.3,
that now the exit configuration from the barrier appears for very elongated shapes (c
reaches 1.9) while the same is observed for super—heavy elements already for ¢ ~ 1.5.
We can therefore say that, in general, the width of the total fission barrier depends on
the mass number A. On the contrary to the above discussed cases the second minimum
is situated in the super—heavy element 25X (see Fig. 8.3) significantly higher than the
ground state by approximately 4.5 MeV and the outer barrier is reduced to a height
of hardly 2MeV. For a large number of other super-heavy nuclei the second minimum
and the outer barrier are not present at all (see, e.g. Fig. 8.3 for 39%5X). In this
context, we would like to focus our attention again on the structure of the potential-
energy landscapes corresponding to the two heavy isotopes 219X and 21SX. As seen
in Fig. 8.4, we can clearly distinguish relatively well pronounced second minimum in
218 X which, however, is higher than the ground state minimum by about 4MeV. Also
the second saddle can be visible around ¢ ~ 1.4, h =~ 0. These outer stationary points

do not appear in the case of the isotope 275X .
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Figure 8.2: Total nuclear energy as a function of the elongation parameter ¢ and the

neck parameter h for two actinides 232Th and ?*°Pu and the heavy element 2°®Hs
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Figure 8.4: Total nuclear energy for two elements 279X and 275X

8.2 Total nuclear energy versus neck shape

In section 6.2 we have introduced the modified version of the FH shape parametriza-
tion which for a long time was the alternative for the shape definitions by the spherical
harmonics. We also discussed the LD energy as function of the neck parameter a in
eq. (6.21) stating that for a large range of its value the LD energy-landscapes remain
practically unchanged to within 100-300 keV. Having now the ability of describing the
shell and pairing energy contributions we would like to carry out a similar investigation

and examine the influence of the neck parameter a on the total nuclear energy.

a | By, (MeV) | EPer(MeV) | Eyim(MeV) | E7;"(MeV)
1.0 | -1811.9 -1806.5 -1810.7 -1802.5
20| -1812.1 -1805.9 -1810.9 -1801.9
3.0 -1812.1 -1805.5 -1810.9 -1799.9
4.0| -1811.8 -1804.5 -1811.1 -1798.6
5.0 -1811.7 -1804.7 -1810.7 not existing

Tab. 8.1 Fission-barrier stationary points of ?*Pu as function of the neck parameter a.

Studying Tab. 8.1 we observe that for the lowest values of parameter a, i.e.
a = 1.0 and a = 2.0, the second saddle point and the exit point from the barrier
lie energetically lower than for the higher a—values. This reasoning shows that for
very elongated nuclear shapes close to the scission configuration a reasonable choice
of the neck parameter is a ~ 1.0. Notice also that the height of the first barrier
is quite insensitive to this parameter. Likewise, the ground state and the isomeric
minimum are practically unaffected by the particular choice of the a—value. However,
for a = 5.0 both these minima go slightly up by approximately 0.5 —1.2 MeV. A similar

behaviour is observed also for other investigated, actinide nuclei such as 23¢2%*U or
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232Th. Summarizing, we can conclude that, since the total energy landscapes are only
weakly dependent on the particular choice of the a—value for a wide range of {c, h}
deformations, we propose to let the parameter a change linearly as a function of the
elongation c

a=5-—2c (8.1)

Such a treatment of this deformation degree of freedom allows to minimize the total
energy of the main minima and saddle points which, as we have already noticed, are
the stationary points of the nuclear path to fission. Of course, the most appropriate
treatment of the above problem would be to consider a as the fifth, additional defor-
mation parameter to the four—-dimensional deformation space proposed in section 6.2.
This, however, is not a crucial point of this work since we are interested mostly in that
part of the whole energy-landscape which is close to the average way to fission in the

deformation space.

8.3 Two dimensional static path to fission

In the current section we try to find an efficient method of searching the trajectory in
the deformation space which a nucleus would follow on its way to fission. Constraining
ourselves only to a two dimensional deformation space is, of course, not sufficient to
fully describe the physical reality of the nuclear fission which is much more complex.
What we want to propose here is, in fact, a fast way of searching the energy land-
scape for the approximate positions of the energetical stationary points, i.e. the main
minima and saddles, not taking too much care on what is the path followed by the
nucleus between these points. The least—action method proposed here does not take
into account the mass parameters associated with a given deformation degree of free-
dom and therefore delivers only a crude approximation of a more realistic, dynamical
fission—path treatment, and serves solely as a ”"guide-line” in the energy landscape.
Let us imagine a two-dimensional static path to fission h(c) which corresponds
to the least—action trajectory in the {c, h} —deformation plane satisfying the condition

c/ (VpOt (e, h () = Vi (g_g_)) 1+ %(CC) dc = min, (8.2)

where ¢y . and c,.. are respectively the elongations of the ground state and the scission
point while V. (¢, h (¢)) is the total potential energy.
The two dimensional path to fission can then be approximated by the following

expression:

he) = [hys + (hse — hgs)(c — Cgs):| N ﬁ:ai <in (mﬂ), (8.3)

Cse — Cgs Cse — Cgs
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where hy s and h,. correspond to the neck parameters of the equilibrium and scission
shape respectively. As we can easily notice, the first term of expression eq. (8.3)
in nothing but a linear interpolation between these two points which produces some
average path, while the second term describes the deviation of the desired, more realistic
fission path from this average trend. The minimization of expression (8.2) allows to
determine the free parameters a; of the Fourier expansion (8.3). For the sake of keeping
the computational time within reasonable limits we need to truncate this series. Taking
into account, at most, 25 first harmonic components yields, however, as seen in Fig. 8.3,
a very reasonable convergence already using only 15 first terms in the Fourier series.

Studying the behaviour of the bundle of two-dimensional fission paths in Fig. 8.3

0.2

h(c) aver.

0.1rF 10

-0.4

-0.5 fiiis

-0.6

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
C

Figure 8.5: Convergence of the Fourier development of the 2 dimensional fission path
h(c) given by eq. (8.3) for ?*°Pu. The position of the ground state is determined by
the crossing point of all curves with the straight line

as functions of the number of basis harmonics (N) used in the series (8.3) we can
conclude that this method can have the tendency to slightly underestimate the energy
of the saddles and overestimate local minima of the energy landscape when too few
harmonics are used. We also made the experience that such a method is difficult to
handle in a deformation space of more than two dimensions. That is why we restricted
its use to the investigations of unequal proton versus neutron deformations in the two—
dimensional {c, h} deformation space. An alternative method to locate extremal points

in a multidimensional deformation space will be discussed in chapter 9.
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8.4 Energy landscapes with unequal proton—neutron

deformations

Until now a large majority of macroscopic—microscopic calculations of potential-energy
surfaces of fissioning nuclei assumes equal deformations of proton and neutron distri-
butions for both, densities and single-particle potentials (see e.g. [90, 91, 92]). In
view of the results obtained in Ref. 35|, one can expect that such calculations predict
fission barriers that are systematically about 1 MeV too high. In the following section
we would like to take advantage of our experience achieved so far and perform the
macroscopic-microscopic calculations assuming that protons and neutrons can deform
independently [74], [93]. Motivated by the results of Ref. [35] we want to investigate
the effect of such an additional degree of freedom on the total energy of a nucleus along
its way to fission.

The obtained results will then be compared to those of the selfconsistent Hartree—
Fock approach where deformation energy surfaces are usually generated through cal-
culations with a constraint on some multipole moments of the total mass distribution,
which leaves protons and neutrons free to deform differently within this constraint,
even though it, of course, turns out that these deformations are quite close to one
another. We should note, however, that only fluctuating with the deformation part of
the quantal corrections for the proton and neutron deformation difference can actually
influence barrier heights calculated with the macroscopic—microscopic approach, since
the average trend of this difference can be taken into account in the fitting procedure
of the parameters of the macroscopic (e.g. liquid drop) model.

Studying the results presented in Ref. [35] we suggest that it might be useful
to generalize the currently used macroscopic-microscopic approaches in order to allow
protons and neutrons to have different deformations. We can start from the following

expression for the total energy:

Etot = Emacr({C]n hpa apa np}7 {Cna hna Qp, nn}) + 5Emic7"({cp7 hp7 apa np}a {Cna hn7 Qp, nn})
(8.4)

Since we know the response of the nuclear liquid drop for the relative change of pro-
ton and neutron deformations (see chapter 3 and section 6.4.6) let us include in our
consideration the quantum (shell+pairing) effects introduced respectively in section
7.2.2 and 7.2.3 and which are seen here to be the terms inducing the effect of different
proton—neutron deformations. We will proceed in the following way:

We start from equal proton and neutron deformations ¢,, = ¢,, h, = h, assuming
for further simplification that o, = a,, = 0 and 1, = n, = 0. Let, in the beginning,
{¢cp, hp} determine the deformation of the fissioning nucleus, denoted as {c,h}. For

given values of {c, h} we find the corresponding set of neutron parameters {c,, h,} for
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Figure 8.6: Total shell correction as a function of proton and neutron elongations c,
and ¢, for 2**Th

which the total energy is minimal. The proton and neutron density deformations then
are obviously expected to be quite close to each other. Indeed, keeping in mind the
results of Ref. [35] the relative difference of both these deformations reaches, at most,
10%.

The final proton and neutron deformation is the result of the interplay of purely
liquid drop and shell effects. The LD contribution tends, as we can observe in Fig. 6.12
and 6.13, to keep both distributions deformed identically, whereas the quantal
(shell+pairing) correction can have its minima not always for identical proton (c,) and
neutron (¢, ) deformations (see Figs. 8.6 and 8.7). What is interesting is that the minima
situated for substantially different p—n deformations, which are visible particularly in
Fig. 8.7, can not produce any significant p—n deformation difference because of a strong
resistance of the LD part against such a variation, what has been already discussed in
section 6.4.6. Summing up the macroscopic (given by eq. (6.105)) and the microscopic
contributions, described in sections 7.2.2, 7.2.3 and minimizing the total energy with
respect to neutron deformations we obtain that {c,, h,} and {c,, h, } are usually slightly
different. The magnitude of these difference depends on the strength of the total shell
effect for a given value of the deformation and, on the other hand, on the macroscopic
resistance of the nuclear system against such a variation.

Looking at Figs. 8.8 and 8.9 we observe that the differences c,, —c, strongly depend
on the deformation of the nucleus and are always negative for prolate deformations, ex-
cept for 232Th, 23*Th and #*U for which they are slightly positive in the closest vicinity
of the spherical shape. We also see that the difference h, — h, weakly depends on the
deformation and oscillates usually around zero—value, being mostly positive in all pre-

sented cases. It is not misleading since we realize that the stiffness of the macroscopic
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Figure 8.7: The same study as in Fig. 8.6 for ?*°Pu

energy as function of h,, — h, almost does not depend on the deformation (see Fig. 6.12
and 6.13). The strongest variations of h, — h, are noticed around the ground states
and the second minima, however for 2?Ds its maximal amplitude coincides with the
same for ¢, — ¢, which manifests particularly about the saddle point (see Fig. 8.9). A
similar but significantly weaker effect occurs for 3)5X. Large values of proton-neutron
deformation—difference are obtained for all examined nuclei. This difference can be
translated directly on the proportionally large energy difference of nuclei with unequal
and equal proton-neutron deformations, reaching even 3 MeV with oscillations of about
1.5MeV at the second barrier, particularly for the actinides. Heavier element, i.e. 272Ds
undergoes such the effect in the region between the equilibrium and the first barrier
hump, being negligibly small on its top. The similar can be said looking at Fig. 8.9 for
208X, except that before the second minimum lying ~ 4 MeV higher that the ground
state, the energy gain due to different p—n deformations is almost not present.

These results can indicate that rearrangement effects of the nuclear structure
along the fission path leads to an increase of the difference between neutron and pro-
ton deformations with the proton deformations becoming significantly larger than the
neutron ones beyond the fission isomeric state.

For smaller nuclear deformations, i.e. before the second minimum the lowering
of the total energy due to different p—n deformations is on the average practically the
same for all these 8 elements and oscillates about 0.3 MeV being peaked slightly before
the first barrier maximum, At the maximum itself, however, the effect seems to die
out. This can be explained by the fact that the total (shell + pairing) correction itself
is almost negligible at the first saddle what is well visible for 2*°Pu in Fig. 8.1 and,
clearly, cannot bring about a sizable effect. As a consequence, the peak of the first

barrier is mainly due to the LD energy.
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Figure 8.10: Differences between the fission barriers obtained with and without the
condition of equal proton and neutron deformations in the HFB procedure with the
Gogny effective interaction for 22Th, 236U, 238U, 24°Py. Dashed line describes the fission
barrier with left-right mass asymmetry included whereas the solid one corresponds to
the reflection—symmetric case. Figure is taken from Ref. [35]

Collecting all previous conclusions we can say clearly that the proton and neutron
density distributions of fissioning nuclei are far from being equal. The relative differ-
ence between them often exceeds 10% particularly behind the second saddle. This
also means that the thickness of the neutron skin does not remain constant with the
elongation of the fissioning nucleus. The effect of these deformation differences on the
nuclear binding energies is found to be approximately 0.5 MeV.

Nuclear masses are not strongly affected by the examined effect, but the estimates
of the decay and fission lifetimes of heavy and super—heavy nuclei can certainly be
substantially improved in this way.

The above presented results confirm those obtained in Ref. [35] with the use of
the selfconsistent HFB method and the effective interaction of the Gogny type. The
quantitive, energetical effect of different proton—neutron deformations studied within
the macroscopic—microscopic framework is, however, not as spectacular as the one
obtained through the HFB procedure. We suppose that the effect would be more dra-
matic when the octupole and nonaxial deformations (o # 0, n # 0) are additionally
included in our investigations. This, in principle, is not as conceptually complicated
as numerically time—-consuming. Certainly, the HF or HFB selfconsistent methods give
the nuclei much more flexibility with respect to a possible rearrangement of their den-
sity structure than the commonly used macroscopic—microscopic methods. Usually,
the only constraint imposed on the selfconsistent HF or HFB densities concerns the
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mass quadrupole moment while the nucleus deforms along its way to fission. In the
case of the traditional Strutinsky method nuclear density distribution is imposed at the
beginning in the form of a phenomenological function with an in advance fixed number
of degrees of freedom to be varied as e.g. the average radius, surface diffuseness, etc.
(see section 2.4). In our study we used the Yukawa—folding average energy expression
(6.93), where the uniform density distribution was inserted as the folding function.
This kind of distribution does not allow at all for any flexibility in the rearrangement
of the liquid drop structure with deformation but the magnitude of the central density
po in eq. (2.19). If concerned the microscopic quantal corrections, the field of possi-
ble improvements is rather constrained by the manners of determining the shell and
pairing corrections themselves. As we remember, the Strutinsky as well as the BCS
approach consist in some kind of smoothing out the single-particle proton and neutron
spectra and that is why both these methods are not very sensitive to the details of the
single—particle potential where these spectra come from. Besides, there exists also the
numerical problem of the accuracy of approximating the microscopic energy values on
the given deformation grid. This, however, can be efficiently controlled on the average
but it is impossible to eliminate its local, sometimes quite substantial deviations. For
such subtle effects like the ones discussed here, this problem is not without impor-
tance. To approximate the energy between the mesh points of the deformation grid we
used a new method based on a Gauss-Hermite washing out of the discrete structure
of the mesh, developed recently by K. Pomorski and presented briefly in Appendix in

one—dimensional case.



Chapter 9

Nonaxial and mass—asymmetric fission

barriers

The last section of this work will be devoted to the fission barriers obtained through the
macroscopic—microscopic approach using the modified Funny-Hills parameters {c, h, o, n}
to describe the shape of fissioning nucleus.

In the previous chapter (chapter 8) we gave an introduction to this problem
considering the fission barriers in a two dimensional deformation space, with {c, h}
being the predominant shape coordinates for the nuclear fission problem. The other
two parameters {«,n} respectively describe left-right asymmetric shapes and thus
allowing for unequal masses of the fission fragments and giving up the restriction to
axially symmetric shapes. Recall, however, that in our approach both fragments are
assumed to have exactly the same non-axiality, i.e. the parameter n does not depend
explicitly on the z—coordinate which determines the direction of nuclear elongation in
a cylindrical coordinate system.

It is a well known fact that practically for almost all investigated actinide nuclei
from ?°Th to **°Cf and the heavier nuclei, 2°® Rf-275X their saddle points exhibit
nonaxial shapes as well as octupole deformations. Of course, as we will convince
ourselves later, the importance of these two additional deformation degrees of freedom
is not the same for all discussed elements. This fact is not a surprise when we realize
that the shell structure which is responsible for the non—spherical shapes of nuclei in
the equilibrium changes remarkably from one nucleus to another. This effect is even
more pronounced in super—heavy nuclei.

In order to reproduce the fission barrier one has to know, as previously mentioned,
at least its stationary points, i.e. the ground state minimum and the the first saddle
and, if these exist, the second isomeric minimum and the second saddle. These are the
points which the fission path of each fissioning nucleus must pass through. Finding
these energy minima in the multidimensional deformation space does not cause too

many technical troubles but it are the saddle points which correspond to the actual
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peak of the fission barrier, which require much more care.

9.1 A procedure for searching saddle points

There exist a couple of ways of searching a multidimensional deformation space for the
saddle point. We would like to sketch here three often applied methods.

For the first approach, one requires to find two primary shape coordinates which
would determine the average fission path. For the shape definition in the form of
the multipole expansion (eq. 6.47), B, and 3, are good candidates, because the first
describes the nuclear elongation while the second, being orthogonal to (35, modifies
the nuclear surface in the perpendicular direction allowing for diamond-like or necked
shapes. For the Funny—Hills-like parametrizations discussed in section 6.2 the equiva-
lent two parameters would be ¢ and h.

Having established two dominant deformation parameters, one minimizes the to-
tal energy for each such pair of points {02, 54} or {c, h} with respect to the additional
degrees of freedom as e.g. (5, age or, in the case of Funny—Hills type parametrization,
a,n, which describe the octupole and nonaxial deformations respectively. This pro-
cedure allows us to reduce the dimensionality of the problem and look for the saddle
points only in the {3, 54} or {c, h} spaces. This simplifies the treatment substan-
tially but we do not have any guarantee that the resulting saddle corresponds, in fact,
to the real maximum of the fission barrier. During our investigations we frequently
faced the problem of local minima trying to minimize the total energy over «,n for
a given point {c,h} (see Fig. 9.1). As we see in this figure for certain pairs {c, h}
we could identify two, or sometimes even more energy minima corresponding to phys-
ically dissimilar shapes for which the total energy differs by less than 1 MeV. Such
minor differences could be the results of the numerical uncertainty of the macroscopic—
microscopic method itself, so that the systematic search for the lowest minimum could
lead to a kind of shape phase transitions.

Keeping in mind the above disadvantages we decide to use another method to
search the full four-dimensional space {c, h, a,n} finding all existing saddle points in
the {c, h}—subspace and chose as the appropriate the lowest ones, which are located
between the main minima. Technically, we solved this problem in the following way:

On the given mesh in the four-dimensional deformation space {c, h, , n} we look

for the points for which the length of the gradient vector

3} Voot \2 | (WVot\2 | (Voot\2 | (WVoor\?
|VV”“‘:\/( azt) +( azt) +( agt) +( &pyt) (9-1)

is lower than for the 3* — 1 neighbouring points. After identifying such a point we

search the energy in its neighbourhood to localize the point for which the expression
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(9.1) is equal to zero with the desired numerical accuracy. In the next step we use
basic mathematical analysis rules to determine whether the found point, in the two—
dimensional subspace {c, h} of the dominant deformation parameters, is a minimum,
a maximum or a saddle point. For the cases where the two first possibilities can be
excluded, we check the properties of the point which is suspected to be a physically
relevant saddle point. Recall that in the c—direction there has to be a local maximum
which in the h—direction is a local minimum. This means that the determinant of the

second derivatives matrix H

82 Vpot 82 Vpot

dcz2 7 Ocdh
det H = (9.2)
Voot 9*Vipor
dhoc’ O h?
. . . . . o ol 0*Vpot 0* Vot
in this point must be negative and, in addition, the conditions —%* < 0 and =55 > 0

must be simultaneously fulfilled. Such a procedure finds usually many saddle points
which satisfy the above conditions. One then has to decide which of them correspond
to the fission barrier.

Finally, the third method of distinguishing a saddle point which we have men-
tioned above is the “test of water” [94, 95]. After finding the energy minimum corre-
sponding to the ground state we then progressively fill it up with “water” determining
the first point in the fission valley which is getting “wet”. By adjusting carefully the
increase of the water level one is able unambiguously identify the location and the
energy of the true saddle.

9.2 Fission barrier heights

Using the second of the above mentioned method of determining the physically relevant
saddles we performed the calculations for 18 chosen actinide as well as for 47 super—
heavy nuclei which have not yet been investigated experimentally with respect to their
fission properties.

In Fig. 9.2 we show the heights of the fission barriers for these actinide nuclei cal-
culated within the macroscopic—microscopic framework, as the difference between the
total ground-state energy and the energy of the inner saddle point, found in the above
described way. In the same figure we also plotted the difference of the experimental
and theoretical barriers for these nuclei. Because of a lack of experimental barriers
for nuclei heavier then ?*2Cf, we give their theoretical estimates obtained in the same
macroscopic-microscopic model separately in Fig. 9.3.

Looking at Fig. 9.2 we observe that our macroscopic-microscopic approach with
the LSD macroscopic energy, the Strutinsky shell correction and the pairing treatment

in terms of the BCS method is able to reproduce the fission barrier heights on the
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Figure 9.1: {«a,n}—energy landscapes for three different values of elongation (c) and
neck (h) parameters
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Figure 9.2: Theoretical fission—barrier heights (By,) for actinide nuclei from *3?Th to

20Cf as function of the neutron number obtained with the macroscopic-microscopic

model of section 7.2.1 (upper part) and difference between experimental [96] and the-

oretical barrier heights (lower part), (see also Tab. 1A in Appendix)
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Figure 9.3: Study of fission barrier heights similar as in Fig. 9.2 for heavy and super—
heavy elements 2®*Rf-218X | (see Tab. 4A in Appendix)

average within 2 MeV. This accuracy is almost of the same quality as the theoretical
barrier-heights estimations by Moller and coworkers in Ref. [96], keeping in mind that
there, the parameters of the macroscopic FRLDM 2002 formula were re-adjusted to
reproduce, in the best possible way, the experimental values of these barriers. Note also
that the parameters of the L.SD model were adjusted only to the in 2002 experimentally
known nuclear masses and evidently its very good performance for the problem of
fission barriers, proves that the physics is contained in the appropriate way with the
use of a minimal number of adjustable parameters. Since we use the same mean—field
potential and Strutinsky shell correction method as in Ref. [96] one element which can
change significantly the fission—barrier heights is the pairing treatment. It is known
that in different pairing approaches, as e.g. the pure BCS or the Lipkin-Nogami
methods (applied in [96]), this correction can differ around the region of the ground
state by about 1 MeV [97]. This uncertainty, by the definition, changes directly the
height of the fission barrier. It is clear that the BCS+uniform gap method used in
our studies is too elementary to be efficiently applied in the detailed descriptions of

the nuclear microscopic properties. The results presented here, at this stage, should
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be rather treated as some preliminary estimations. A possible improvement of our
results can also be also obtained by permitting a z—dependence of the non-axiality
parameter 1 of eq. (6.36) in the used extended version of the Funny—Hills nuclear shape
parametrization with gaussian—like neck.

As we have demonstrated in section 8.4, a substantial reduction of the fission
barrier, exceeding often 2 MeV, can be reached by taking into consideration the effect
of different proton—neutron deformations. Please recall that the corresponding energy
lowering is most pronounced beyond the second energy minimum for most often dis-
cussed actinide and super—heavy nuclei.

Since the total nuclear energy is determined with the use of the Strutinsky model
which requires the knowledge of the single-particle spectra in each deformation point,
the density of the deformation mesh used in the calculations plays also a crucial role.
We re—scaled the single—particle states for the given actinide or super—heavy nucleus
from our knowledge of neighbouring nuclei, using a relation which is strictly fulfilled

for the eigensolutions of the harmonic-oscillator potential:

Aletr)\ 1/3
en:egftr)( - ) , 9.3)

(ctr)

{tr) are respectively the n'" single-particle state of the given and the

where ¢, and e

°tr) . Comparing the total energies of the

neighbouring (central) nucleus of mass A and A
first saddles of the chosen actinides listed in Tabs. 1A and 2A in Appendix, calculated
on the basis of the re-scaled single-particle spectra of 2*°Pu and ?*°Cm respectively,
we can see that the largest energy difference of about 1.2 MeV occurs for 24Pu while
for 2#2Cm there is practically no such difference. The single—particle spectra for super—
heavy nuclei considered here are obtained by the same rescaling procedure of eq. (9.3)
from 272Ds.

We performed the search of the ground-state energies and the inner saddle points
for the selected actinide nuclei on two different meshes in the {c, h,a,n} space, (A
denotes the step in a given direction of the deformation grid): {Ac = 0.03,Ah =
0.04, Aa = 0.03,An = 0.05} and the denser mesh {Ac = 0.01,Ah = 0.01,Aa =
0.03, An = 0.05} which are listed in Tabs. 1A, and 2A for the denser mesh and Tab. 3A
for the wider mesh.

Comparing the values of both the first minima and first saddles in Tabs. 1A
and 3A we observe that their energies may differ by up to 2.3MeV (as e.g. 234U).
If, due to this difference, the ground state (or saddle) is shifted more down in energy
then the saddle point (or ground state), the barrier height is then effectively increased
(decreased). It is clear that a denser mesh will give us more accurate results within
the framework of our approach, but we, of course, have no garentee that the agreement

with the experimental barriers will necessarily improve in this way.
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Let us now compare the absolute energy values of the nonaxial and mass asym-
metric, (o # 0,7 # 0) four-dimensional, inner and outer saddle points with the two—
dimensional, axial and left-right symmetric ones (o« = 0,7 = 0) obtained through the

least—action method of eq. (8.2).

Inner saddle energy (MeV) Outer saddle energy (MeV)
Nucleus | a=0,7=0|a#0,7#0 | AE; |a=0,n=0|a#0,n#0 | AE;
232Th -1759.94 -1760.37 | -0.43 | -1754.21 -1760.40 | -6.19
234Th -1771.01 -1771.30 | -0.29 | -1765.16 -1766.80 | -1.64
247 -1772.32 -1772.70 | -0.38 | -1765.16 -1772.07 | -6.91
2367 -1783.56 -1783.75 | -0.19 | -1778.29 -1782.16 | -3.87
287 -1793.99 -1793.99 0.0 -1791.05 -1796.59 | -5.54
240y -1804.99 -1805.30 | -0.31| -1799.60 -1806.56 | -6.96
236py -1781.03 -1781.25 | -0.22 | -1778.65 -1781.89 | -3.24
238py -1793.70 -1793.84 | -0.14 | -1790.77 -1793.26 | -2.49
240py -1805.34 -1805.69 | -0.35 | -1802.87 -1805.09 | -2.22
242py -1816.84 -1817.35 | -0.51 | -1813.25 -1818.08 | -4.83
244py -1827.84 -1828.65 | -0.81 | -1824.44 -1827.00 | -2.56
246py -1838.45 -1839.54 | -1.09 | -1835.10 -1839.31 -4.21
#2Cm -1814.93 -1815.59 | -0.66 | -1813.93 -1815.46 | -1.53
244Cm -1827.09 -1827.89 | -0.80 | -1825.95 -1830.67 | -4.72
246Cm -1838.87 -1840.12 | -1.25 | -1837.25 -1841.98 | -4.73
248Cm -1850.53 -1852.30 | -1.77 | -1848.58 -1851.85 | -3.27
250Cm -1861.56 -1862.90 | -1.34 | -1859.71 -1862.64 | -2.93
20Ct -1860.52 -1862.46 | -1.94 | -1861.39 -1862.84 | -1.45

Tab. 9.1 Influence of the non-axiality and mass asymmetry on the energy of the inner
and outer fission-barrier maxima for investigated actinide nuclei (see also Ref. [98]).
Columns 2 and 5 correspond to the energies determined through eq. (8.2) while in
columns 3 and 6 the energies of the saddles obtained in full, four-dimensional defor-
mation space are listed (see also Tabs. 1A and 3A). Columns 4 and 7 corresponds
to the difference between the saddle energies without and with the non-axiality and

mass—asymmetry.

As seen in Tab. 9.1 the reduction of both the barrier heights (columns 4 and 7) due
to the inclusion of two additional degrees of deformational freedom «,7n depends, as
we mentioned in the introduction to this chapter, on the considered nucleus (note that
the main barrier minima are axially and left-right symmetric). Concerning the first
barrier (¢ ~ 1.3), the weakest barrier lowering (up to 0.6 MeV) is observed for the
lighter actinides (A = 234 — 240) whereas for the heavier ones (A = 242 — 250) this
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effect is much more pronounced reaching up to 0.7 — 2 MeV. A much more remarkable
barrier lowering (1.4 — 7MeV) is observed for the outer—barrier (¢ ~ 1.6) of the same

actinide nuclei.

9.3 Numerical accuracy of the results

Studying the energy values of the Tables 1A to 3A we can immediately notice that using
a denser deformation grid we obtain, in a few cases, the ground-state energy shifted up
(see Tab. 1A, 2%4Th, ?*4Pu). This effect, however at the first sight peculiar, indicates
that the grid with steps {Ac = 0.03, Ah = 0.04} is, with no doubt, not sufficiently
dense to avoid the substantial errors coming from the numerical interpolation of the
energy values.

As we already mentioned, the problem of finding the physically important saddle
points causes a lot of problems since we are, for numerical reasons, restricted to do this
on a discrete mesh. If the deformation grid is too scarce we can often loose a precious
details of the energy landscape. On the other hand, a two times denser mesh in all of
the four direction implies a 16 times longer computation time. Consequently, one has
always to find a compromise between the accuracy and the computation time, in order
to generate the results in an accessible time-scale and still retain the essential physical
details with a reasonable accuracy.

We should also not neglect the fact that the analytical approximation of the en-
ergy in a multidimensional deformation space (see Appendix A.4) can introduce some
spurious energy-landscape structures like spurious minima, maxima and saddles. Us-
ing the derivative method described previously which acts, by definition, only in the
closest vicinity of a given grid point, makes such artificial structures extremely difficult
to identify. In order to minimize the risk of producing these kind of undesired station-
ary points in the energy landscape we enlarged the order of the correction polynomial
and simultaneously, the value of the smearing parameter v in the Strutinsky-like ap-
proximation method presented in Appendix A.4. We used at the same time as the
approximation base 74, instead of, usually sufficient 5! neighbouring mesh points (7

instead of 5 in each direction).
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Summary

Some essential ingredients for the theoretical description of fusion and fission dynam-
ics are discussed in this work. For the fusion process, the nucleon—nucleon collision
potential, elaborated here on the basis of the semiclassical Extended Thomas—Fermi
approach is essential, whereas, for the fission process, the total potential-energy land-
scape in a multidimensional deformation space plays a central role. This potential—
energy landscape is obtained using an extension of the so—called "Funny-Hills” shape
parametrization which, beside the deformation parameters: c, h, o, describing respec-
tively the nuclear elongation, neck degree of freedom and left-right mass asymmetry,
contains an additional parameter responsible for the non—axiality of the nuclear shape.

We have, in particular, studied the effect of the differences between the proton
and neutron density distributions on both these processes. In the case of the nuclear
fusion potential, this was realized by different proton and neutron density radii of
target and projectile obtained by means of a HF-type variational calculation with the
semiclassical Skyrme ETF energy-density functional. Our theoretical fusion barriers,
which serve with the use of the Langevin formalism as an input to the dynamical
calculations of the fusion cross sections are quite close to the experimental barriers but
are systematically overestimating these by a few MeV, in particular in deformed systems
whereas we have restricted our study to spherical shapes for target and projectile. The
deformation of the colliding nuclei which could be included in future investigations,
e.g. by means of the local curvature approximation would reduce the fusion—barrier
heights by a couple of MeV as compared to the corresponding spherical system, mainly
due to the decrease of the Coulomb barrier. One should also not forget that, in fact,
the nuclear deformation, from the point of view of quantum mechanics, is a dynamical
process, in the sense, that the nuclear surface vibrates around some equilibrium shape.
The amplitude of these collective vibrations depends on the total-energy stiffness in
the vicinity of the ground state and the appropriate inertia parameters. Due to the
mentioned effect the ETF estimates of the fusion barriers are expected to be close to
the experimental values.

We have also made sure, that the small variations of the proton or neutron radii
of colliding spherical nuclei generated by the use of different Skyrme effective forces
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(ensuring some realistic predictions of the nuclear binding energies) can influence the
fusion barrier heights only within 1 — 2 MeV, out of several hundred, i.e. the order of
disagreement between the ETF values with the corresponding experimental data.

Using the ETF model, we have enriched the usually used macroscopic-energy ex-
pression, of e.g. the liquid drop or droplet—type, by an additional term which describes
the change of the nuclear binding energy due to different proton and neutron deforma-
tions and effective radii. As a consequence of these additional degrees of freedom, we
can observe a reduction of the fission-barrier heights in a two dimensional deforma-
tion space (elongation and neck degree of freedom). For all investigated actinide and
super—heavy elements, this reduction of the barrier height is of the order of 0.5 MeV
with quite sizable fluctuations, of more than 1 MeV in the region of the first barrier.

The next step was to investigate the influence of additional deformation param-
eters on the potential-energy landscapes, calculated in our macroscopic-microscopic
approach, that is, we have used the full four—-dimensional description of the nuclear
fission barriers with broken axial and reflection symmetries. Our four-dimensional
calculation of the barrier heights within the Lublin-Strasbourg Drop (LSD) and the
Yukawa—folding model reproduces the experimental data on the average and is in good
agreement with the latest, theoretical estimates, obtained recently by P. Moller and
co-workers within the framework of a similar, but more involved multidimensional
approach.

We have shown that the inclusion of the mass-asymmetry and non-axiality can
reduce the energy of the inner saddle point in the actinide nuclei by 1 —2MeV (mainly
non—axiality) whereas the second saddle can be lowered by as much as 7 MeV (mainly
mass asymmetry). It should be noticed, that the ground state and the isomeric minima
are essentially not affected by these additional degrees of freedom. Considering the
effect of different proton—neutron deformations discussed above in the four dimensional
deformation space {c,, h,, ¢,, h,} does, of course, not totally describe the complexity
of the problem. Its influence on the fission barriers, is, however, as demonstrated
above in the two—dimensional case, far from being negligible. We should also take
into consideration the fact that the macroscopic energy obtained in our approach by
a simple folding procedure starting from sharp-edge densities obviously overestimates
the stiffness of the binding energy as function of the relative change of the neutron
versus proton deformations. The inclusion of the energy contribution coming from the
nuclear surface diffuseness as well as the left-right mass asymmetry and non-axiality
should be the topic of future investigations.

The results discussed in this work mostly refer to static fission barriers. It is,
however, clear that they can be used as an ideal starting point for a more realistic,
dynamical treatment of the nuclear fission process based on the Langevin equation.

Work in this direction is currently on the way.
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Appendix

A.0.1 Leptodermous expansion

In the case of spherical nuclei the leptodermous expansion of the energy functional
around the diffused thin nuclear surface of thickness a, where a/R < 1 can be written

as follows:

E = bvolA+/<77_bvolp)d3T:
\%

2

b r
Dot A + / R0 / (1= boo p) 75 7 (A.1)
Q 0

where R usually represented as R = rgA'/3 is the radius of the spherical surface, p

is the one-body density of the nuclear matter in nucleus, and 7 is the energy density

p=A[ [ [ [ vdrdra,

n= //.../Q/J*ﬁde...dTA, (A.2)

given as

where H is a many-body nuclear Hamiltonian, while 1 the ground-state wave function

of the nucleus. EXplOltlIlg of the 1dent1ty
2 2

one can rewrite the remaining surface-related integral and transform the energy ex-

pression as follows:
E = baA

+ / RS / (1 — oot p)dr (A.4)
S 0
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+ / 2RAQ) / (1 = buot p)( — R)dr (A.5)
S 0

n / ds) / (17 — boot p)(r — R)dr (A.6)
S 0

Above three expressions contain terms proportional to R?, R, and R°, respectively,
thus at the same time, proportional to A%/3, A3 and A°. In the present context,
they should be interpreted as representing the surface, curvature, and Gauss—curvature
contributions, respectively. The nuclear part of the total energy of a spherical nucleus

can thus be written down as
E =byy A+ 47R* Iy + 87 R (I, — Iy R) + 4 (I, — 2RI, + R*Iy) (A.7)

where all the terms except for the first one are proportional respectively to ~ by, fAZ/ 3

~ beur A3 and ~ boy,¢A°. Quantities Iy, I, I, are given as follows

[0 = /(n - bvol p)dT‘
0
I, = /(n — by, p)rdr
0
I, = /(n — byoy p)T2dr, (A.8)

0

A.1 Derivation of the ETF approach

A.1.1 Wigner-Kirkwood expansion

In the following paragraph we want to sketch the semiclassical h—expansion developed
by Wigner [30] and Kirkwood [31] which provides a convenient tool to derive the ETF
functionals 7[p| and J[p] which we are interested in. We will presently restrict ourselves
to the case of N nucleons (one kind only) in a given local one-body potential V' (7) [18].
Let ¢, and ¢, be the eigenfunctions and eigenvalues of the corresponding one-body
Schrédinger equation:

He, = [T+ V(7)]d, = v 0. (A.9)

The N—body system in this local potential is described by the one—body density matrix
N

p(r ") = D2 () o, (7). (A.10)
j=1

Defining the Bloch-density operator

Oy = e 0T (A.11)
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we can define, in turn, the Bloch—density matrix

C(r, 7" 3) —<T|Cg|7“ > = Zg0] (F')e’ﬁsf, (A.12)
which satisfies the following equation:

0
— +H|C(F, 7" 3) =0. A13
5+ A| oo (A13
The sum in eq. (A.12) goes over the complete spectrum. From C' we obtain by an
inverse Laplace transform the one-body density matrix

c+1i00

p(7, 7)) = L5, [% C(F,7'; ﬁ)] = 2%” e W g (A.14)

c—100

= 30,7 () O(A — <)

from which, in turn, the local densities p(7) and 7(7) can be determined

") = Z:l |60 (M)]* = p(7,7)

r=r/

N
) =" |V, (7)) =V, -V, p(i, 7) (A.15)
v=1

r=r

In equation (A.14) X is the Fermi energy which has to be fixed in such a way that by

the particle number conservation condition

/p(F) d*r = N. (A.16)
is fulfilled. One can also define the partition function
. N
Z(8) = Tr (Cy) = /C(F, 7i8) dr =Y e 0% (A.17)

J
which allows to calculate the single—particle level density

N

o) = £51. | 2(8)] = 2ot — =), (A.18)
the number of particles
N = O/g(e) de = L5, [@] ) (A.19)

and the total single—particle energy of the system

:ﬁ; ] £)de = AN — //g )de' = AN — ﬁﬁﬁlzﬁ(?]. (A.20)
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The idea of Wigner and Kirkwood was to expand the overall density matrix C (7, 7; /3)
in a series expansion around its value obtained in the Thomas-Fermi approximation

where h is the order parameter
C(r, 75 8) = Crp(, 7 B) (1 + hixs + X2 + .. ) (A.21)

and where C is given by

L 1 2mNY? ey (i
CTF(T7TI;ﬁ) = 471'3/2/83/2 (?) (& /2 18( ) [8 ( ) (A22)
with
P 74T
=5
S=r—7" (A.23)

The Y, are functions of 7, 7" and 3 and contain combinations of n gradients acting on
V(7). There exists the recursion relation to obtain the y,, successively [99]. Using the

inverse Laplace transform of eq. (A.22) we obtain the Thomas-Fermi density matrix

, 3 .
') = R = i (kn(R) s A.24
prr( ) prr(R) ko(B) s Ji(kp(R)s) ( )
with the local TF density
. 1 m 3/2 . 3/2 .
pel) =55 (32) P-ve| en-vi. (A.25)

A.1.2 Beyond the Thomas—Fermi approximation

In order to calculate Z(/3) given in general by eq. (A.17) one has to determine the trace
of Bloch-density matrix in the basis of the single-particle wave functions
2

Tr (C’g) = W//e_ﬁ'ﬁ/h e M TN By @Pp, (A.26)

where 7 and p are the classical quantities, but H is an operator with the following

properties:
o1 4 o BT =BV
o—BH it B/h _ ~BH, ,iT5/h w(F, p: 3) = u(F, p: 3) (A.27)

The differential equation for w(7, p’; ) can be solved by developing w(7, 7; 3) into

the series, where h is the order parameter

w(7, 73 B) = 1+ hw, (7,03 B) + B wy (7,3 B) + - -+ (A.28)
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After carrying out the above calculations we finally obtain Zy, ,(3) and Cy,_ (7, 7"; 3)

as
1 2m\3/? . 62 B2
R v | g
P = e (rﬁ) /e {1 2 2m" "
AN VA 52172 32 7 7\2 3
1410 (%) =TV 4 55(VIV) + BVAVV)] 4 P (A29)
and
— 1 2m 3/2_ 52 h2 . ﬁ .
a“““T”*:7ﬁﬁ%<ﬁ>em“{l*aﬁﬂwv‘gwwﬂ
g n V4V5 o Boa a8 oay e
i 2 ’ vV (V)2 + A=
53 (VVPVRV = (0 VV VTV 4 e (VV)! | 4 o (A30)

which yields the semiclassical development for the semiclassical densities

1= 2 ()" v

372
’ 72 v’
_1Zm vvﬁ 72 411 ( |t '}@[A V()]
vl vl (a5
. 1 /2m\*? IREL
) =50 (55) {[r-vo] - N
382 |5, 23 (VW .
o §VV[)\—V(T)] _Z[A—V(F) 7|+ }@[)\ V(7).

(A.32)

Summarizing, let us give the final expressions for 7[p] in all possible orders of the
semiclassical expansion:
2/3
o TF: 7lp] = 2 (3n%)% e
e order 1*: 7[p] = Trplp] + = (Vpp) + %62/)
o order i': 7[p] = Tpplp] + yl0] + 7il0] -
As mentioned in the main text we gather here the expressions for 7[p] in the 42—

order ETF approach.
For the 4'"—order spin independent part of the kinetic energy density, of eq. (2.28)

reads
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VAL A2 Vpa- V(A Apg Y A(Vp,)?
7_(1(4) [pq] :(37_‘_2)72/3 pq 24 pq o 60qu v2< pq) - 28 ( pq) o 14 (qu>
4320 Pq Py Pq I

= \2 vOURvIAVIRY = 4 2 = £ \2
_'_@ (qu)g Apq + 184 Vp, vgqu) _ 96 Vpg\ 36A Jaq + 36A(Véfq)
3 Py 3 P, Pq Jfq /5

s (BAY VRV ERE (VY AT Y0
18<fq> 72 7 +54(fq)+12 o

qu (qu) 6Pq'ﬁ(qu) 6pq'ﬁ(ﬁfq)2 (ﬁfq'ﬁpq)qu
— 36 24 — 12 .
Fars fore O T2p, 72 g
(A.33)

_|_

Carrying out the straightforward analytical transformations we are finally left with
the expression for 7% [p,] of the form (primes denoting derivatives with respect to the
radial variable r) :

3 (24 4] 8, mo 36 ., 1,
73" [p]=(37%) 7% 3—5520 {p— [,05,4) + -1, } p {Hpq Pyt T(pg)* + =40y = —Q(pq)ﬂ
8 70 / 96 36 " " !
b (B + Y] = = [0 e
4 1" / 4 2 ].44 1" / 2 54 ].2 oo mnon
U AT U] - S, (fq)+F(f)+ﬁ[3qu 2/,
" 6 o 4 "7 / "7 " 2 /
2y L L ] [f = 2000 )

S PP 30 R R
i 111, (pg)* + 32f,popy + f(pq)] fgpg(fq) (pg) +3fqp3fq</)q>3}<A-34)

When giving the spin dependent part of 7% ] we take advantage of the fact that
the spin-orbit potential Wq has for Skyrme forces the simple form of eq. (2.25) which
allows us to introduce the quantity

Ay =p+p, — W, = —ByVA,. (A.35)
Using the vector identity
rot(rot @) = V(divad) — Ad

one shows that because of the form of the spin-orbit potential, eq. (2.25), one simply
has

W-AW = W-V(diviV')
which then allows us to write the spin dependent part of Tq(4)so in the form of the local
densities p,, and p, and of their derivatives :

mWO
h2

(4) / Py’
)T 1 2\—2/3 2Fq
Tq [p]_(?)’ﬂ' ) ( 4f2

) {[ VAV, +8A(VA) i(AAq)z
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1 L W e e o L .
_ﬁ [AAq(qu~VAq) +2VA,-(Vf,-V)VA, + Vf,-(VA,-V)VA, + qu(VAq)2
q

— = = o 1 = = = 3
+VAq-V(VAq-qu) - §qu'V(VAq)Q} +

i [(V£2)2(VAG)? + (V- VA,)?

—(mi_?/ )(94,)"] + 6%, (94, (Y, ¥) VA, + A, (Vp,V4,)]
- fi (91, Vo) (VA + (Wq-mq)(ﬁpq-mq)}} (A.36)
which for spherical symmetry reads
70 [g] = (372) 23 <mh—V2V°) 41; {5 [Py + g + Sy — S a]
2 [ agy 2] 2 o - (g
g;q C; Ay ) - f;A;” . (A.37)

The 4" order spin-orbit density Jé )p], eq. (2.32) written in terms of the function
A, defined above is given by

T [p] = (37%) 7/ mily py* { IVPA, + — [quVA + (VA,-V)VY,

K28 fq fa

L [(V1)294, + (V- 94,95,

f2
mW h—d 1 = = = —
—2 (70)2 <VAq)3] - % {(qu'v)VAq + AAqv/)q]
q
+3f P [(6fq'6pq)§f4q + (ﬁfq'ﬁAq)ﬁpq}} (A.38)
aPq

which in the case of a spherically symmetric system takes the form

1/3
TV pl = (37%)7¥ R 4q—fq{_[AZ,+;Ag_ 54

+_ |:f”A, +fA”+ féA:]:|

7
—j}— 2 = (] - P [+ L) - f;A;}}ﬁr (4.39)

with the unit vector in radial direction .

A.2 Some numerical utilities

In this section we want to give the outline of the derivations of some useful expres-
sions which frequently occur in the calculations presented within this work. These are
purely mathematical problems, so we do not put them in the main text. However,
these expressions turn out to be helpful for developing numerical codes or calculating
analytically various integrals.
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zzd

A.2.1 Solution of the integral f TAQ) dz

Let us calculate explicitly the integral of the form

o0 izd

e
[:/7(1 A4
J z(ZZJra%) : (4.40)

We can split this integral into three terms, namely:

zzd

eia:d € eizd R
I = / —d /7(1 / d / A.41
x(x? + a%) vt 2(22 + a%) : x(2? T 2 )

“Rr —€ —€ Fr(-r)

The last integral approaches zero since the contour I'z_g) is chosen as an arbitrary
curve connecting points x = R and = —R above the r—axis and letting R — oo0.
This contour should be, however, chosen in such a way that the integral (A.40) has
to be convergent. Expression (A.40) has only one single pole on the interval (0, c0)
in 1 = % Replacing x — —x in the first term of (A.43) we can associate it with

the third one, whereas the second term can be performed in the complex plane, by

inserting
z = ¢ge”
22 = g% (A.42)
dz = ice™ dp.

Now, we get the integral (A.41) in the following form:

idee'®

sin (zd) T
[=2i / = ZO/ e T+ (A.43)

In the above, the first term can be developed using the residues theorem in the complex
plane, (assuming that ¢ — 0 and R — o), where, by the definition, the residues

are given as
1 d!

res; = Zlgﬁ G {(z — pz)kf(z)]’ (A.44)

where k is the multiplicity of the given pole p;. In our case, x = 1/a is the only single

pole (k= 1), so

' (z—l) eizd a2 4
-1 a - /a A4
res ZLH% C-DEr D) 5 € (A.45)

Finally,
2i / sin ( Zd =2mi Y res; = 2ma’ eV (A.46)
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The second integral in eq. (A.43) is solved directly, putting ¢ — 0 and noting that its
integrand diverges for ¢ € (m,27)
= ideet¥
io/}:iir(l]m = z/ 0 dgp = ia’m (A.4T)

Collecting the results (A.46) and (A.47) we may rewrite the expression (A.40) as
I = ia*m + 2na® e, (A.48)

In the similar way we can consider the integral (A.40) on the interval (—oo,0). It
is now clear that in the above the first constant component corresponds to the value
denoted in section 6.4 as sharp whereas the second depending on d = |i"— 7| is usually

treated as a correction.

A.2.2 Expression |77 — 7|
Generally, the vector 7 — 7 in the cylindrical coordinates is equal to

— 7" =ep(p—pcos(p—¢)) +&p sin(p — ¢') + €(z — =) (A.49)

=

or

—/

F—7"=¢y(—p +pcos(p—¢))+eypsin(p—¢)+ ez —2). (A.50)

in the "prime” coordinates. The length of the vector 77— 7’ is

7= 7' =\ p? + p = 2pp cos (p — ') + (= — 2/)°. (A.51)

A.2.3 Surface area in the cylindrical coordinates

In the cylindrical coordinates the surface element can be written as

1 (0p ? p ?
_ 1 op 52
as J1+ (890) + (82) pdzdy (A.52)

and its vector form is

dS =i - ds, (A.53)

where 77 is the normal vector to the surface

o
p&p’ 0z

900\ 2
\/ 1+ % + (%)
The last two equations lead to the follovvlng form for the vectorized surface element

ds = lp,—g—g —pg ] dzdp . (A.55)

(A.54)

We have used in the above the vector decomposition in the cylinder coordinates [€),, €, €].
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A.3 Deformation functions of the LSD model

By virtue of the relations derived in the previous section the relative surface area
Bgur = S(def)/S(0) of deformed nucleus is given by

20 27
1 ap dp
Bour = 47TR3_/ dzo/\lp + (890) +< 82) dp . (A.56)

The parameter B,,, entering also the LSD formula describes the relative change of the

first order curvature of the deformed drop reads

87TR0 // <—+—> as, (A.57)

(A.58)

where R;(z,¢) and Ry(z, ) are the local main radii of the surface. In the cylinder

coordinates this parameter is equal to

- sl Tl @ @) e

Zmin

p op\~ d*p 9?p 8p

2

S T e A 2

{p <6z> P (82) 0p? 7 p@g@ * ago
Opdp P _ 20 @(@) }d

9z Do 82890 TP g2 T P v

+

A.4 Gauss—Hermite approximation formula

Discussing the problem of multidimensional potential-energy surfaces we face with the
problem of approximation the energy values between points in the multidimensional
deformation space. Of course, problem is rather simple for two dimensions, a little more
complicated for three, but yet four dimensional deformation grid requires a lot of efforts.
In 2004 Pomorski invented very efficient method of approximating multidimensional
functions using well-known Strutinsky’s idea of the gauss—folding procedure applied in
the Strutinsky shell correction. Let us focus here only on the main points of this idea.

We consider an ensemble of N points x; which have to cover the whole one—
dimensional interval [a,b] and ordered, i.e. x;;1 > x;). Let z; be a one-dimensional
discrete argument of a given function y(x), while y; = y(x;) its value in this point.

Let j,(z,z") be a symmetric function of its arguments, (i.e. j,(z,2") = j.(2/, x))
having the following properties:

/ Jn(z,2')de = 1. (A.60)
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Let us assume now after Strutinsky that
+oo
Pu(z) = / Pu() ju(z,2') da' | (A.61)

where k£ < n are even natural numbers and P, is an arbitrary polynomial of the order
k. In the following, the function j,(z,z’) will be called the folding function of the
n't—order. Let each discrete point (z;,;) be represented by the function 7;(x) defined
as

gi(z) = / v 0(2" — x;) jp(x,2') da’ | (A.62)

where §(z) is the Dirac d—function, so that
Yi(®) = yi gn(x, 23) - (A.63)

We can immediately note that the above operation transforms the well-defined point
in the coordinate system into an object similar to a ”diffused wave packet”.

Using eq. (A.60) which says that each folding function should be normalized to
the unity we have that

—+00

[ ey de =y (A.64)

—00

Now, we construct the function g(z) by summing up all functions g;(x) corresponding
to each point x;

y(x) = ;wi vi(z) . (A.65)

The function 7(z) is now an approximation of y(z) if the weights w; are determined
from the assumption that the integrals of the original and folded functions are (ap-
proximately) equal:

/by(x) dz ~ 7}(20) dr = éwi Yi - (A.66)

The Riemann summation formula for the integral of the function y(z) between limits

a and b gives

b N
[yt de = Jim > y(w) A, (A.67)
where Ax; is chosen in the middle of the distance of neighbouring argument points
1
AZL‘Z‘ = = (ZL‘Z‘_H - xi—l) (A68)

2
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with g = a and xy,; = b. Comparing eqgs. (A.66) and (A.67) one can see that a
reasonable choice of the weight would be

If the number N of sample pairs (x;,y;) is large enough then the condition (A.66) is
fulfilled fairly strictly.
Finally, the folded function y(x) which approximates the true function y(z) is

given by
N
U(x) = > i A ju(z, 33) (A.70)
i=1

Let the folding function j,(z,z’) be a modified Gauss function

sen sl (S (59) em

S
n determined by the Strutinsky condition (A.61). Heving performed the calculations

where v is the parameter and f,, ( ) is the so—called correction polynomial of the order

similar to these made in the Strutinsky’s description of the shell correction we obtain

z—z’ ) .

explicit expressions for the correction polynomials f,, (where u =

(A.72)

falu) = F = Ju® + qut

fo(u) =35 — 302 4 Tyt — Lub

Finally the function y(x) approximated by the Gauss—Hermite folding function reads:

g(az):#g}yiA:cieXp{— <‘T;x>2} fa (‘T;x> . (A.73)

Since our aim is to approximate the function stored in a mesh {x;, y;}, the smear-

ing parameter v should be related to the distance Ax; between subsequent points.
The equation (A.73) can be directly generalized for the multidimensional case (see
Ref. [100]).
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A.5 Legendre polynomials
The lowest order Legendre polynomials are:

PQ(?E) = 1
P(z) = =
Pyx) — %(3:(;2—1)

Py(z) = %(5:(;3—33;) (A.74)

1
Py(z) = g(35334 —302° + 3)

1
Pi(z) = §(6Sx5 — 702° + 157)

1
Ps(z) = 1—6(231306 — 3152* + 1052% — 5)

1
Pi(z) = 1—6(429x7 — 6932° + 3152° — 357)
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A.6 Fission—barrier—stationary points
7z Energy ¢ h Q n Q- Qs Qs | Qo || I Barr.
A (MeV) ) | @) ) | () | (MeV)
90 | I M=-1765.33 | 1.18 | -0.11 | 0.00 | 0.08 [21.1| 0.0 | 7.2 |-6.6 4.96
232 (6.20)
1S=1760.37 | 1.28 | 0.10 | -0.06 | -0.10 | 60.8 | 2.7 | 8.6 | 6.6 || (5.45)
90 | I M=-1776.48 | 1.21 | -0.12 | 0.00 | 0.00 [26.5| 0.0 | 88 | 0.0 || 5.19
234 (6.50)
1S--1771.29 | 1.28 | 0.10 | -0.03 | -0.10 | 61.7 | 1.3 | 88 | 6.7 || (5.36)
92 | I M=-1777.14 | 1.22 | -0.06 | 0.00 | -0.08 [ 32.8 | 0.0 | 83 | 6.0 || 4.44
234 (5.50)
1S=1772.70 | 1.28 | 0.03 | -0.12 | 0.00 | 52.7| 3.9 | 10.7 | 0.0 | (4.89)
92 | I M=-1789.28 | 1.20 | -0.10 | 0.00 | 0.00 [28.3| 0.0 | 86 | 0.0 || 5.54
236 (5.67)
1S—1783.74 | 1.28 | 0.08 | -0.06 | 0.00 | 60.0 | 2.5 | 9.674 | 0.0 || (4.98)
92 | I M=-1800.82 | 1.21 | -0.10 | 0.00 | 0.00 [28.9| 0.0 | 87 | 0.0 || 6.83
238 (5.50)
15=-1793.99 | 1.33 | 0.00 | 0.00 | -0.05|60.6 | 0.0 | 16.6 | 3.5 || (5.48)
92 | I M=-1811.78 | 1.21 | -0.10 | 0.00 | 0.00 [29.1| 0.0 | 89 | 0.0 || 6.48
240 (5.50)
I S=1805.30 | 1.30 | 0.07 | -0.06 | -0.10 | 64.5| 2.5 | 12.3 | 6.9 | (6.27)
94 | I M=-1787.17 | 1.21 | -0.10 | 0.00 | 0.00 [28.4| 0.0 | 85 | 0.0 || 5.92
236 (4.50)
1S—1781.25 | 1.30 | 0.07 | -0.15 | -0.05 | 62.2 | 6.2 | 12.0 | 3.4 || (4.35)
94 | I M=-1800.32 | 1.21 | -0.10 | 0.00 | 0.00 [28.9| 0.0 | 87 | 0.0 || 6.48
238 (5.00)
15=-1793.83 | 1.29 | 0.07 | -0.09 | 0.00 | 61.5| 3.7 | 11.1 | 0.0 | (4.39)
94 | I M=-1812.67 | 1.21 | -0.09 | 0.00 | 0.00 [29.4| 0.0 | 88 | 0.0 | 6.98
240 (5.15)
I1S=1805.69 | 1.30 | 0.07 | -0.06 | -0.10 | 64.4 | 2.5 | 12.3 | 7.0 | (4.83)

Tab. 1A First saddles and minima of chosen actinides on the mesh {Ac = 0.01, Ah =
0.01, Aae = 0.03, A = 0.05}. Abbreviations "I M”, I S” denote respectively the first

minimum and first saddle point respectively. Underlined energy values in column 11, (I

Barr.), give the heights of the fission barriers calculated within the model presented in

this work whereas values in parenthesis give experimental and theoretical [96] estimates

respectively. Single—particle spectra to calculate the microscopic-energy corrections are

re-scaled, using the relation (9.3), from 24°Pu.
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Z Energy c h « n Q- Qs Qs | Q2 || I Barr
Al (Mev) ®) | 2 | ) | 6) | (vev)
94 | I M=-1824.45 | 1.21 | -0.06 | 0.00 | 0.00 | 32.5 | 0.0 82 | 0.0 7.10
242 (5.05)

1S5=1817.35 | 1.31 | 0.06 | -0.09 [ -0.10 | 65.9 | 3.8 |13.9| 7.0 | (5.55)
94 | I M=-1835.60 | 1.21 | -0.05 | 0.00 | 0.00 [ 33.9 | 0.00 | 82 | 0.0 | 6.94
244 (5.00)
1 5=-1828.66 | 1.31 | 0.05 | -0.09 | -0.10 | 65.4 | 3.68 | 14.4 | 7.2 | (6.29)
94 | I M=-1846.75 | 1.18 | -0.02 | 0.00 | 0.00 [32.7| 0.0 | 59 | 0.0 | 7.21
246 (5.30)
15=-1839.54 | 1.32 | 0.06 | -0.03 | -0.15 | 69.9 | 1.34 | 15.5 | 10.8 | (7.01)
96 | I M=-1822.70 | 1.21 | -0.10 | 0.00 | 0.00 [ 29.7] 0.0 | 9.0 | 0.0 | 7.1
242 (5.00)
15=-1815.59 | 1.34 | 0.01 | -0.09 | -0.20 | 64.5 | 3.1 | 17.8 | 14.2 | (4.28)
96 | I M=-1835.28 | 1.21 | -0.06 | 0.00 | 0.00 [33.0| 0.0 | 84 | 0.0 | 7.26
244 (5.10)
1 5=-1828.02 | 1.33 | 0.04 | 0.00 | -0.15 | 68.2| 0.0 |16.7|10.6 | (5.02)
96 | I M=-1847.26 | 1.21 | -0.05 | 0.00 | 0.00 | 346 | 0.0 | 82 | 0.0 | 7.09
246 (4.80)
15=-1840.12 | 1.33 | 0.05 | -0.06 | -0.15 | 69.1 | 0.0 | 17.0| 10.8 | (5.81)
96 | I M=-1858.60 | 1.21 | -0.04 | 0.00 | 0.00 | 35.6 | 0.00 | 82 | 0.0 | 6.30
248 (4.80)
15=-1852.30 | 1.25 | 0.03 | -0.39 | -0.20 | 46.6 | 12.9 | 9.6 | 16.1 | (6.40)
96 | I M=-1869.02 | 1.21 | -0.04 | 0.00 | 0.00 [ 36.7| 0.0 | 82 | 0.0 | 6.12
250 (4.40)
15=-1862.90 | 1.33 | 0.03 | -0.12 | -0.10 | 69.4 | 4.8 |18.0| 7.4 | (5.98)
98 | I M=-1869.16 | 1.21 | -0.04 | 0.00 | 0.00 [ 36.6 | 0.0 | 82 | 0.0 | 6.70
250 (3.60)
1 5=1862.46 | 1.33 | 0.03 | -0.09 [ -0.15 | 69.2 | 3.6 |17.9|11.2 | (5.88)

Tab. 1A continuation
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Z Energy c h « n Q- Qs Qs | Q2 || I Barr
Al (Mev) ®) | 2 | ) | 6) | (vev)
94 | I M=-1835.38 | 1.21 | -0.05 | 0.00 | 0.00 | 34.0 | 0.0 8.1 | 0.0

244 6.4

[ S=-1828.89 | 1.30 | 0.05 | 0.00 | -0.10 | 63.5 | 0.0 |13.2| 7.2
94 | I M=-1845.96 | 1.21 | -0.04 | 0.00 | 0.00 | 35.3 | 0.0 8.0 | 0.0
246 6.38
[ S=-1839.58 | 1.32 | 0.06 | 0.00 | -0.15 | 69.9 | 0.0 |15.4|10.8
96 | I M=-1822.50 | 1.21 | -0.06 | 0.00 | 0.00 | 32.5 | 0.0 8.2 | 0.0
242 7.1
[ S=-1815.80 | 1.33 | -0.02 | 0.00 | -0.25 | 58.3 | 0.0 |[17.0 | 18.2
96 | I M=-1835.05 | 1.21 | -0.06 | 0.00 | 0.00 | 32.9 | 0.0 84 | 0.0

244 7.02
[ S=-1828.03 | 1.31 | 0.05 | -0.06 | -0.10 | 65.5 | 2.4 |14.3| 7.2

96 | I M=-1847.05| 1.21 | -0.05 | 0.00 | 0.00 | 34.5| 0.0 | 82 | 0.0

246 6.88
[ S=-1840.17 | 1.30 | 0.05 | 0.00 | -0.10 | 64.4| 0.0 |13.5| 7.3

96 | I M=-1858.42 | 1.21 | -0.04 | 0.00 | 0.00 | 356 | 0.0 | 82 | 0.0

248 6.57
I 5S=1851.85 | 1.33 | 0.04 | -0.06 | -0.15 | 69.9 | 2.5 |17.4 | 10.9

96 | I M—-1868.81 | 1.21 | -0.04 | 0.00 | 0.00 | 36.7 | 0.0 | 82 | 0.0

250 5.74
[ S=-1863.07 | 1.32 | 0.03 | 0.00 | -0.10 | 67.7 | 0.0 |16.8| 7.5

98 | I M=-1868.97 | 1.21 | -0.04 | 0.00 | 0.00 | 36.5| 0.0 | 82 | 0.0

250 6.80
[ S=-1862.17 | 1.31 | 0.03 | 0.00 | -0.10 | 65.5 | 0.0 |15.6 | 7.5

98 | I M=-1880.16 | 1.21 | -0.03 | 0.00 | 0.00 | 37.4| 0.0 | 82 | 0.0

252 5.86

I S=1874.30 | 1.32 | 0.02 | 0.00 | -0.10 | 67.1 | 0.0 |17.3| 7.6

Tab. 2A Same as in Tab. 1A but with the single-particle spectra rescaled from °Cm
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Z Energy ¢ h « n Q- Qs Qs | Qu || I Barr
A (MeV) (b) | (®72) | (8*) | (b) | (MeV)

90 | I M=-1765.44 | 1.20 | -0.08 | 0.00 | 0.00 | 27.9 | 0.0 79 | 0.0 5.04
232 | II M=-1764.66 | 1.42 | 0.06 | 0.00 | 0.00 | 85.7 | 0.0 |27.2| 0.0 || (6.20)
I S=-1760.40 | 1.30 | 0.08 | -0.15 | -0.05 | 61.8 | 6.2 | 11.3| 3.2 | (5.45)
IT S=-1760.40 | 1.57 | 0.08 | -0.39 | -0.05 | 114.4 | 25.4 | 54.8 | 2.7

90 | I M=-1776.92 | 1.20 | -0.08 | 0.00 | 0.00 | 29.3 | 0.0 | 8.0 | 0.0 5.92
234 | II M=-1776.10 | 1.42 | 0.06 | 0.00 | 0.00 | 85.9 | 0.0 |27.0| 0.0 || (6.50)
[ S=-1771.00 |1.30| 0.08 | -0.15|-0.05 | 62.7 | 6.3 |11.5| 3.3 | (5.36)
IT S=-1766.80 | 1.51 | 0.08 | -0.30 | -0.20 | 104.9 | 18.4 | 42.6 | 11.6

92 | IM=-1777.22 | 1.21 | -0.09 | 0.00 | 0.00 | 288 | 0.0 | 83 | 0.0 6.92
234 | II M=-1776.24 | 1.42 | 0.07 | 0.00 | 0.00 | 87.1 0.0 [26.9| 0.0 | (5.50)
I S=-1770.30 |1.36 | 0.04 | -0.33 | -0.05 | 66.6 | 12.2 | 18.8 | 3.2 | (4.89)
I S=-1772.07 | 1.60 | 0.00 | 0.00 | -0.05 | 112.3 | 0.0 | 57.7 | 2.8

92 | I M=-1789.51 | 1.21 | -0.08 | 0.00 | 0.00 | 29.7 | 0.0 | 83 | 0.0 6.78
236 | II M=-1788.47 | 1.41 | 0.07 | 0.00 | 0.00 | 87.1 0.0 126.2] 0.0 5.67)
[ S=-1782.73 | 1.30 | -0.04 | -0.03 | -0.30 | 47.6 | 0.7 | 13.5| 21.0 | (4.98)
IT S=-1782.16 | 1.51 | 0.08 | -0.27 | -0.15 | 107.5 | 16.9 | 43.7 | 8.8

92 | I M=-1800.82 | 1.21 | -0.07 | 0.00 | 0.00 | 31.0 | 0.0 | 81 | 0.0 6.55
238 | II M=-1800.08 | 1.40 | 0.08 | 0.00 | 0.00 | 87.4 | 0.0 |25.2| 0.0 || (5.50)
[S=-1794.27 | 1.30 | 0.04 | -0.12 | 0.00 | 59.4 | 4.3 |12.8 | 0.0 | (5.48)
IT S=-1796.59 | 1.54 | 0.04 | -0.21 | -0.05 | 108.9 | 11.0 | 49.2 | 2.9

92 | I M=-1811.81 | 1.20 | -0.05 | 0.00 | 0.00 | 31.8 | 0.0 74 | 0.0 6.83
240 | II M=-1810.97 | 1.40 | 0.08 | 0.00 | 0.00 | 89.2 | 0.0 |25.3| 0.0 || (5.50)
[ 5=-1804.98 | 1.30 | 0.08 | -0.12 | -0.10 | 65.5 5.3 | 12.1] 6.9 | (6.27)
IT S=-1806.56 | 1.54 | 0.04 | -0.39 | 0.00 | 106.0 | 19.8 | 49.2 | 0.0

Tab. 3A Inner and outer stationary points of chosen actinide nuclei found on the
deformation grid {Ac = 0.03, Ah = 0.04, A = 0.03, A = 0.05}. Abbreviations "I
M” and "II S”, by analogy to Tab. 1A, denote respectively the second minimum and
second saddle.



APPENDIX A. APPENDIX 168
Z Energy c h « n Q- Q3 Qs | Qo || I Barr
Al (e 0 | @) | 63| ®) | M)
94 | I M=-1787.46 | 1.21 | -0.09 | 0.00 | 0.00 | 29.6 0.0 8.6 | 0.0 6.64

236 | IT M=-1786.41 | 1.42 | 0.07 | 0.00 | 0.00 | 89.0 0.0 |27.0| 0.0 || (4.50)
I 5S=-1780.82 | 1.30 | 0.08 |-0.12|-0.10 | 63.6 51 | 11.6 | 6.7 || (4.35)
IT S=-1781.89 | 1.57 | 0.04 |-0.18 | -0.10 | 114.1 | 9.8 | 54.5| 5.6

94 | T M=-1800.59 | 1.21 | -0.08 | 0.00 | 0.00 | 30.4 | 0.0 8.6 | 0.0 6.92

238 | I M=-1799.46 | 1.41 | 0.08 | 0.00 | 0.00 | 88.9 0.0 |26.2| 0.0 || (5.00)
[ S=-1793.67 | 1.30 | 0.04 |-0.12| 0.00 | 59.4 | 4.3 |12.8| 0.0 | (4.39)
IT S=-1793.26 | 1.63 | 0.04 |-0.27 | -0.15 | 127.2 | 16.2 | 69.2 | 8.4

94 | T M=-1812.73 | 1.21 | -0.073 | 0.00 | 0.00 | 31.5 0.0 8.4 | 0.0 7.32

240 | IT M=-1811.91 | 1.40 | 0.083 | 0.00 | 0.00 | 89.4 | 0.0 |25.5| 0.0 5.15)
I S=-1805.41 | 1.30 | 0.080 | -0.12 | -0.10 | 65.4 | 5.3 | 12.1 | 6.9 4.83)
IT S=-1805.09 | 1.57 | 0.080 | -0.24 | -0.15 | 125.6 | 17.5 | 59.4 | 8.6

94 | T M=-1824.51 | 1.20 | -0.05 | 0.00 | 0.00 | 32.1 0.0 7.5 | 0.0 7.38

242 | II M=-1823.68 | 1.40 | 0.09 | 0.00 | 0.00 | 91.1 0.0 | 255 0.0 5.05
[ S=1817.13 | 1.36 | 0.00 | 0.00 | -0.25| 66.9 0.0 |20.1|17.6 .55)
IT S=-1818.08 | 1.60 | 0.04 | -0.21 | -0.10 | 125.4 | 12.5 | 64.9 | 5.8

94 | I M=-1835.87 | 1.19 | -0.04 | 0.00 | 0.00 | 32.1 0.0 6.7 | 0.0 7.64

244 | II M=-1834.68 | 1.39 | 0.10 | 0.00 | 0.00 | 92.3 0.0 |24.8| 0.0 || (5.00)
[ 5=-1828.23 | 1.33 | 0.04 |-0.18|-0.10 | 67.5 71 | 16.9 | 7.1 || (6.29)
IT S=-1827.00 | 1.48 | 0.08 |-0.30 | -0.15 | 105.6 | 18.9 | 40.8 | 9.5

94 | I M=-1846.75 | 1.18 | -0.02 | 0.00 | 0.00 | 32.7 | 0.0 5.9 | 0.0 7.58

246 | II M=-1844.73 | 1.39 | 0.09 | 0.00 | 0.00 | 93.8 0.0 |25.5| 0.0 | (5.30)
I 5=-1839.17 | 1.33| 0.04 |-0.18|-0.10 | 68.4 | 7.2 |17.2| 7.2 | (7.01)
IT S=-1839.31 | 1.54 | 0.08 | -0.24 | -0.10 | 123.6 | 17.4 | 55.5 | 6.1

Tab. 3A continuation




APPENDIX A. APPENDIX 169

Z Energy ¢ h « n Q- Qs Qs | Qo || I Barr
A (MeV) (b) [ (®2) ] (@) | (b) || (MeV)

96 | I M=-1822.35 | 1.19 | -0.05 | 0.00 | 0.00 | 31.6 | 0.0 7.5 | 0.0 7.03
242 | II M=-1821.89 | 1.40 | 0.08 | 0.00 | 0.00 | 91.7 | 0.0 26.3 | 0.0 || (5.00)
I S=-1815.32 | 1.30 | 0.04 | 0.00 | -0.05 | 61.4 | 0.0 13.2 | 3.5 || (4.28)
IT S=-1815.46 | 1.54 | 0.08 | -0.18 | -0.15 | 121.2 | 12.8 | 53.1 | 8.9

96 | I M=-1835.06 | 1.19 | -0.04 | 0.00 | 0.00 | 32.1 0.0 | 7.02 | 0.0 7.02
244 | 11 M=-1834.50 | 1.39 | 0.09 | 0.00 | 0.00 | 93.3 | 0.0 |26.01 | 0.0 || (5.10)
[ S=-1828.02 |1.33| 0.04 | 0.00 | -0.15 | 68.2 | 0.0 |16.72 | 10.6 || (5.02)
IT S=-1830.67 | 1.60 | 0.04 | -0.24 | 0.00 | 126.7 | 14.5 | 66.2 | 0.0

96 | I M—-1847.31 | 1.18 | -0.03 | 0.00 | 0.00 | 32.3 | 0.0 6.5 | 0.0 7.14
246 | II M=-1846.35 | 1.39 | 0.10 | 0.00 | 0.00 | 94.5 | 0.0 25.5 | 0.0 || (4.80)
I S=-1840.17 | 1.33 | 0.04 | 0.00 | -0.15 | 69.1 0.0 17.0 | 10.8 || (5.81)
IT S=-1841.98 | 1.57 | 0.04 | -0.30 | 0.00 | 119.9 | 173 | 59.6 | 0.0

96 | I M=-1859.03 | 1.18 | -0.02 | 0.00 | 0.00 | 32.9 | 0.0 5.8 | 0.0 7.16
248 | II M=-1857.28 | 1.39 | 0.10 | 0.00 | 0.00 | 96.3 | 0.0 25.7 | 0.0 || (4.80)
I S=-1851.87 | 1.33 | 0.04 | 0.00 | -0.15 | 70.0 | 0.0 17.3 | 10.9 || (6.40)
IT S=-1851.85 | 1.51 | 0.08 | -0.24 | -0.10 | 117.7 | 16.7 | 49.3 | 6.3

96 | I M=-1869.70 | 1.17 | -0.01 | 0.00 | 0.00 | 33.1 0.0 5.2 | 0.0 7.28
250 | I M=-1867.85 | 1.39 | 0.10 | 0.00 | 0.00 | 99.3 | 0.0 26.8 | 0.0 || (4.40)
[ S=-1862.42 | 1.36 | 0.04 | -0.27 | -0.10 | 75.5 | 11.6 | 21.8 | 7.3 | (5.98)
IT S=-1862.64 | 1.51 | 0.08 | -0.24 | -0.10 | 119.3 | 17.0 | 50.2 | 6.4

98 | I M=-1869.75 | 1.17 | -0.01 | 0.00 | 0.00 | 33.5 | 0.0 2.6 | 0.0 7.18
250 | II M=-1868.22 | 1.40 | 0.11 | 0.00 | 0.00 | 100.9 | 0.0 27.6 | 0.0 || (3.60)
I S=-1862.57 | 1.33 | 0.04 | 0.00 | -0.15 | 71.0 | 0.0 17.6 | 11.1 || (5.88)
IT S=-1862.84 | 1.51 | 0.08 | -0.24 | -0.10 | 119.2 | 16.9 | 50.1 | 6.4

Tab. 3A continuation



APPENDIX A. APPENDIX 170
Z Energy c h « n Q- Qs Q4 Q2o I Barr
Al () O e ] )| ® | M)

104 | I M=-1967.20 | 1.11 | 0.06 | 0.00 | 0.00 | 31.0 | 0.0 |-0.19| 0.0

268 | IT M=-1962.79 | 1.34 | -0.07 | 0.00 | 0.00 | 65.4 | 0.0 | 24.1 | 0.0 6.11
I S=-1961.09 | 1.24 | 0.04 | -0.18 | -0.20 | 56.0 7.5 9.7 | 18.0
IT S=-1958.76 | 1.45 | 0.08 | -0.36 | -0.25 | 111.8 | 25.2 | 42.5 | 19.3

104 | I M=-1977.84 | 1.10 | 0.05 | 0.00 | 0.00 | 28.7 | 0.0 |-0.22| 0.0

270 | I M=-1973.48 | 1.33 | -0.06 | 0.00 | 0.00 | 66.8 | 0.0 | 23.4 | 0.0 5.67
[ S=-1972.17 | 1.24 | 0.00 | -0.18 | -0.05 | 52.6 | 6.2 | 11.5 | 4.6
IT S=-1973.16 | 1.39 | 0.04 | 0.00 | -0.10 | 96.2 | 0.0 | 31.3 | 8.0

104 | I M—-1988.42 | 1.09 | 0.03 | 0.00 | 0.00 | 23.8 | 0.0 | 0.13 | 0.0

272 | II M=-1985.18 | 1.34 | 0.02 | 0.00 | -0.15 | 81.0 | 0.0 | 23.5 | 13.5 5.12
[ S=-1983.30 | 1.21 | 0.04 | 0.00 | -0.15 | 51.7 | 0.0 7.1 | 14.0
IT S=-1980.78 | 1.42 | 0.08 | -0.33 | -0.25 | 107.4 | 23.3 | 37.3 | 20.1

104 | I M=-1999.02 | 1.08 | 0.01 | 0.00 | 0.00 | 20.5 | 0.0 | 0.68 | 0.0

274 | II M=-1994.46 | 1.28 | -0.02 | 0.00 | 0.00 | 61.9 | 0.0 | 17.7 | 0.0 6.39
[ S=-1992.63 | 1.21 | 0.04 | -0.30 | -0.10 | 49.7 | 12.1 | 7.9 9.6
IT S=-1994.39 | 1.36 | 0.04 | -0.33 | -0.15 | 86.0 | 16.7 | 26.8 | 12.8

104 | T M=-2009.18 | 1.07 | 0.00 | 0.00 | 0.00 | 18.1 0.0 | 0.83 | 0.0

276 | 1T M=-2004.70 | 1.27 | -0.02 | 0.00 | 0.00 | 61.4 | 0.0 | 16.5 | 0.0 6.42
1 5S=-2002.76 | 1.21 | 0.04 | -0.24 | -0.10 | 51.4 | 9.9 7.8 9.6
IT S=-2004.53 | 1.36 | 0.04 | -0.30 | -0.15 | 87.8 | 15.6 | 27.3 | 12.9

104 | I M=-2018.72 | 1.06 | 0.03 | 0.00 | -0.02 | 16.7 | 0.0 |-0.80| 2.8

278 | I M=-2014.63 | 1.25 | 0.00 | 0.00 | 0.00 | 59.9 | 0.0 | 13.9 | 0.0 5.46
1 5S=-2013.26 | 1.18 | 0.04 | -0.27 | 0.00 | 44.4 | 10.7 | 5.5 0.0
IT S=-2014.00 | 1.36 | 0.04 | -0.33 | -0.15 | 88.1 | 17.3 | 27.7 | 13.1

106 | I M=-1950.10 | 1.12 | 0.04 | 0.00 | 0.00 | 30.8 | 0.0 | 0.56 | 0.0

266 | IT M=-1944.77 | 1.33 | -0.08 | 0.00 | 0.00 | 62.8 | 0.0 | 22.9 | 0.0 7.65
[ S=-1942.45 | 1.15| 0.04 | -0.15 | -0.25 | 33.9 5.4 2.5 | 24.12
IT S=-1945.05 | 1.39 | 0.04 | -0.15 | -0.10 | 92.9 7.8 | 30.1 | 7.86

106 | I M=-1963.15 | 1.11 | 0.06 | 0.00 | 0.00 | 31.5 | 0.0 |-0.13| 0.0

268 | IT M=-1958.41 | 1.33 | -0.07 | 0.00 | 0.00 | 64.7 | 0.0 | 23.8 | 0.0 5.73
[5S=-1957.42 | 1.24 | 0.04 | 0.00 | -0.20 | 57.1 0.0 95 | 179
IT S=-1955.23 | 1.39 | 0.04 | -0.36 | 0.00 | 89.9 | 18.1 | 30.6 | 0.0

Tab. 4A Same study as in Tab. 3A but for chosen heavy and super—heavy elements on
the deformation mesh {Ac = 0.03, Ah = 0.04, Aa = 0.03, An = 0.05}. Abbreviation

"n.e.”

means not exists”.

same as in Tabs. 1A-3A

Meanings of the abbreviations "I M, "IT M”, " S”, "I S”




APPENDIX A. APPENDIX 171
Z Energy c h « n Q- Qs Q4 Q)22 || I Barr
Al (e ® || e | ® | e

106 | I M=-1975.62 | 1.11 | 0.06 | 0.00 | 0.00 | 314 | 0.0 |-0.68| 0.0

270 | IT M=-1971.16 | 1.34 | -0.07 | 0.00 | 0.00 | 66.7 | 0.0 | 24.8 | 0.0 0.78
1 5=-1969.84 | 1.24 | 0.04 | 0.00 | -0.20 | 57.8 | 0.0 9.6 |18.1
IT S=-1967.19 | 1.45 | 0.08 | -0.36 | -0.25 | 113.1 | 25.8 | 43.2 | 19.5

106 | I M=-1987.03 | 1.10 | 0.06 | 0.00 | 0.00 | 28.5 | 0.0 |-1.26 | 0.0

272 | 11 M=-1982.56 | 1.33 | -0.06 | 0.00 | 0.00 | 68.4 | 0.0 | 24.6 | 0.0 6.10
[S=-1980.93 | 1.27 | 0.04 | -0.30 | -0.20 | 62.7 | 13.1 | 13.6 | 18.1
IT S=-1982.07 | 1.42 | 0.04 | 0.00 | -0.15 | 104.9 | 0.0 | 37.5 | 11.9

106 | I M—-1998.25 | 1.09 | 0.03 | 0.00 | 0.00 | 23.7 | 0.0 |-0.21| 0.0

274 | 11 M=-1993.84 | 1.32 | -0.05 | 0.00 | 0.00 | 68.2 | 0.0 | 23.3 | 0.0 5.61
[ S=-1992.64 | 1.27 | 0.00 | -0.33 | 0.00 | 58.6 | 11.9 | 15.2 | 0.0
IT S=-1991.77 | 1.45 | 0.08 | -0.39 | -0.20 | 115.3 | 28.4 | 45.2 | 16.0

106 | I M=-2009.64 | 1.08 | 0.01 | 0.00 | 0.00 | 19.6 | 0.0 | 0.51 | 0.0

276 | I M=-2004.87 | 1.31 | -0.03 | 0.00 | 0.00 | 67.6 | 0.0 | 21.6 | 0.0 7.02
I S=-2002.62 | 1.21 | 0.04 | -0.30 | -0.10 | 50.2 | 12.2 | 8.0 | 9.7
IT S=-2002.89 | 1.39 | 0.04 | -0.24 | -0.05 | 97.6 | 13.2 | 334 | 4.1

106 | T M=-2020.61 | 1.07 | 0.01 | 0.00 | 0.00 | 17.2 | 0.0 | 0.57 | 0.0

278 | I M=-2015.70 | 1.30 | -0.02 | 0.00 | 0.00 | 66.8 | 0.0 | 20.1 | 0.0 8.49
[ S=-2012.12 | 1.21 | 0.04 | -0.18 | -0.30 | 50.3 7.7 7.2 12938
IT S=-2013.80 | 1.48 | 0.04 | -0.36 | -0.20 | 118.7 | 22.6 | 52.4 | 16.2

108 | I M=-1940.52 | 1.12 | 0.04 | 0.00 | 0.00 | 31.1 0.0 | 0.62 | 0.0

266 IT M= n.e. 5.26
1 S=-1935.26 | 1.27 | 0.04 | -0.21 |-0.20 | 61.9 | 89 | 12.7 | 17.3
IT S=-1935.54 | 1.42 | 0.08 | -0.24 | -0.15 | 106.8 | 16.2 | 35.9 | 11.4

108 | I M=-1955.00 | 1.11 | 0.05 | 0.00 | 0.00 | 31.3 | 0.0 |-0.07| 0.0

268 | IT M=-1949.70 | 1.34 | -0.07 | 0.00 | 0.00 | 66.5 | 0.0 | 24.4 | 0.0 6.45
[ S=-1948.55 | 1.21 | 0.04 | 0.00 | -0.15 | 50.4 | 0.0 6.8 | 13.7
IT S=-1948.40 | 1.45 | 0.08 | -0.39 | -0.20 | 111.0 | 27.1 | 42.9 | 154

108 | I M=-1968.92 | 1.11 | 0.06 | 0.00 | 0.00 | 32.1 0.0 |-0.67] 0.0

270 | IT M=-1964.13 | 1.34 | -0.07 | 0.00 | 0.00 | 67.6 | 0.0 | 25.0 | 0.0 6.61
[5=-1962.31 | 1.24 | 0.04 | -0.15|-0.15 | 57.5 | 6.3 9.9 |13.5
IT S=-1961.95 | 1.45 | 0.08 | -0.42 | -0.20 | 111.1 | 29.3 | 43.6 | 15.6

Tab. 4A continuation




APPENDIX A. APPENDIX 172
Z Energy ¢ h « n Q- Qs Q4 Q22 || I Barr
Al (e ® |62 ) | ® | Mev)

108 | I M—-1982.23 | 1.11 | 0.07 | 0.00 | 0.00 | 31.9 | 0.0 |-1.14 | 0.0

272 | II M=-1977.69 | 1.35 | -0.07 | 0.00 | 0.00 | 69.5 | 0.0 | 26.3 | 0.0 6.58
I S=-1975.65 |1.24 | 0.04 | -0.12 | -0.15 | 58.5 | 5.1 | 10.0 | 13.7
IT S=-1975.18 | 1.45 | 0.08 | -0.42 | -0.20 | 112.5 | 29.8 | 44.4 | 15.8

108 | T M=-1994.43 | 1.09 | 0.07 | 0.00 | 0.00 | 28.7 | 0.0 |-1.79| 0.0

274 | II M=-1989.93 | 1.34 | -0.05 | 0.00 | 0.00 | 71.0 | 0.0 | 25.1 | 0.0 6.98
[ S=-1987.45 | 1.18 | 0.04 | -0.15 | -0.25 | 42.9 | 5.9 4.7 | 24.6

108 | I M=-2006.34 | 1.08 | 0.03 | 0.00 | 0.00 | 22.1 | 0.0 |-0.31| 0.0

276 | II M=-2001.96 | 1.32 | -0.04 | 0.00 | 0.00 | 70.6 | 0.0 | 23.8 | 0.0 7.21
[ 5=-1999.13 | 1.21| 0.04 | -0.36 | -0.10 | 48.8 | 14.4 | 8.2 9.7
IT S=-2000.26 | 1.45 | 0.08 | -0.39 | -0.20 | 116.7 | 28.8 | 46.0 | 16.1

108 | T M=-2018.75 | 1.07 | 0.00 | 0.00 | 0.00 | 17.1 | 0.0 | 0.56 | 0.0

278 | II M=-2013.70 | 1.32 | -0.03 | 0.00 | 0.00 | 70.8 | 0.0 | 23.1 | 0.0 7.43
[S=-2011.32 | 1.21 | 0.04 | -0.21 | -0.25 | 50.7 | 8.9 7.5 | 24.7
IT S=-2012.11 | 1.45 | 0.08 | -0.39 | -0.20 | 118.1 | 29.2 | 46.7 | 16.3

110 | T M=-1927.21 | 1.12 | 0.04 | 0.00 | 0.00 | 31.2 | 0.0 | 0.66 | 0.0

266 | II M=-1922.99 | 1.38 | 0.00 | 0.00 | 0.00 | 84.4 | 0.0 | 28.7 | 0.0 5.58
[ S=-1921.63 | 1.27 | 0.00 | -0.39 | -0.05 | 54.2 | 13.0 | 14.1 | 4.4
IT S=-1922.90 | 1.42 | 0.08 | -0.30 | -0.15 | 105.2 | 19.9 | 35.9 | 11.4

110 | T M=-1943.06 | 1.11 | 0.05 | 0.00 | 0.00 | 31.2 | 0.0 | 0.02 | 0.0

268 | II M=-1938.27 | 1.38 | 0.00 | 0.00 | 0.00 | 8.5 | 0.0 | 29.2 | 0.0 4.73
[ S=-1938.33 | 1.27| 0.04 | 0.00 | -0.25| 63.6 | 0.0 | 124 | 21.9
IT S=-1938.17 | 1.42 | 0.08 | -0.33 | -0.15 | 105.6 | 22.1 | 36.6 | 11.6

110 | T M=-1958.39 | 1.11 | 0.06 | 0.00 | 0.00 | 31.6 | 0.0 |-0.56 | 0.0

270 | II M=-1954.86 | 1.35 | 0.00 | 0.00 | 0.13 | 79.3 | 0.0 | 25.3 |-11.3 | 4.96
[ S=-1953.43 | 1.27 | 0.04 | -0.06 | -0.20 | 64.9 | 2.6 | 12.9 | 17.7
IT S=-1952.86 | 1.42 | 0.08 | -0.36 | -0.15 | 105.8 | 24.2 | 37.3 | 11.8

110 | I M=-1973.16 | 1.11 | 0.07 | 0.00 | 0.00 | 325 | 0.0 |-1.06 | 0.0

272 | II M=-1968.43 | 1.34 | -0.05 | 0.00 | 0.00 | 69.2 | 0.0 | 24.7 | 0.0 7.27
I 5=-1965.89 | 1.24 | 0.00 | -0.15 | -0.05 | 53.5 | 5.3 | 11.6 | 4.6
IT S=-1966.86 | 1.42 | 0.04 | 0.00 | -0.20 | 104.3 | 0.0 | 37.1 | 15.9

Tab. 4A continuation




APPENDIX A. APPENDIX 173
Z Energy c h « n Q- Qs Q4 (2 || I Barr
Al (e ® |67 ] @) | 6 | o)

110 | I M=-1987.26 | 1.11 | 0.07 | 0.00 | 0.00 | 32.3 | 0.0 |-1.43| 0.0
274 | 11 M=-1982.74 | 1.34 | -0.06 | 0.00 | 0.00 | 71.1 0.0 | 26.4 | 0.0 7.47
1 S=-1979.79 | 1.24 | 0.00 | -0.12 | -0.05 | 54.5 | 4.3 | 11.8 | 4.6
IT S=-1980.81 | 1.36 | 0.04 | -0.15 | -0.05 | 89.9 7.8 | 27.0 | 4.2
110 | T M=-2000.18 | 1.09 | 0.07 | 0.00 | 0.00 | 29.3 | 0.0 |-2.03| 0.0
276 | I M=-1995.87 | 1.33 | -0.04 | 0.00 | 0.00 | 72.7 | 0.0 | 25.3 | 0.0 6.52
[S=-1993.66 |1.15| 0.04 | 0.00 | -0.25 | 36.7 | 0.0 2.5 | 255
IT S=-1994.10 | 1.36 | 0.04 | -0.12 | -0.05 | 91.3 | 6.4 | 274 | 4.2
110 | T M=-2013.13 | 1.06 | 0.00 | 0.00 | 0.00 | 149 | 0.0 | 0.47 | 0.0
278 | II M=-2008.63 | 1.33 | -0.03 | 0.00 | 0.00 | 724 | 0.0 | 244 | 0.0 7.54
I S=-2005.59 | 1.21 | 0.04 | -0.21 | -0.25 | 50.7 | 8.9 7.5 | 24.7
IT S=-2007.70 | 1.39 | 0.08 | -0.33 | -0.10 | 104.1 | 22.4 | 33.6 | 8.4
112 | I M=-1909.87 | 1.12 | 0.03 | 0.00 | 0.00 | 30.6 | 0.0 | 1.41 | 0.0 3.31
266 | II M=-1905.10 | 1.30 | 0.00 | 0.00 | 0.00 | 65.9 | 0.0 | 17.5 | 0.0
I S=-1906.56 | 1.45 | 0.08 | -0.33 | -0.20 | 111.8 | 23.1 | 42.1 | 15.0
II S=-1906.57 | 1.45 | 0.08 | -0.33 | -0.20 | 111.9 | 23.1 | 42.1 | 15.1
112 | T M=-1926.91 | 1.12 | 0.04 | 0.00 | 0.00 | 29.6 | 0.0 | 0.84 | 0.0 4.56
268 | IT M=-1922.03 | 1.30 | 0.00 | 0.00 | 0.00 | 66.7 | 0.0 | 17.8 | 0.0
[5=-1922.35 | 1.18 | 0.04 | -0.39 | 0.00 | 39.1 | 13.9 | 5.5 0.0
IT S=-1923.62 | 1.42 | 0.08 | -0.33 | -0.10 | 105.9 | 22.0 | 36.8 | 7.7
112 | I M=-1943.50 | 1.11 | 0.04 | 0.00 | 0.00 | 29.4 | 0.0 | 0.38 | 0.0 3.39
270 | I M=-1938.58 | 1.30 | 0.00 | 0.00 | 0.00 | 67.5 | 0.0 | 181 | 0.0
I S=-1940.11 | 1.39 | 0.08 | -0.21 | -0.15 | 101.9 | 13.8 | 30.9 | 11.9
IT S=n.e.
112 | I M=-1959.52 | 1.10 | 0.06 | 0.00 | 0.00 | 29.1 0.0 |-0.77| 0.0
272 | IT M=-1956.81 | 1.35 | 0.00 | 0.00 | 0.13 | 81.1 0.0 | 25.9 |-11.0 || 6.31
[ S=-1953.21 | 1.21 | 0.04 | -0.39 | -0.05 | 47.1 | 15.0 | 8.1 4.7
IT S=-1955.59 | 1.39 | 0.08 | -0.24 | -0.15 | 102.5 | 16.0 | 31.5 | 12.0
112 | I M=-1974.94 | 1.10 | 0.07 | 0.00 | 0.00 | 29.5 | 0.0 |[-1.49| 0.0
274 | 11 M=-1971.41 | 1.33 | -0.04 | 0.00 | 0.00 | 71.0 | 0.0 | 24.5 | 0.0 6.09
[ 5=-1968.85 | 1.12 | 0.00 | -0.06 | -0.35 | 22.8 1.9 3.2 | 373
IT S=-1970.54 | 1.39 | 0.08 | -0.30 | -0.10 | 102.5 | 19.9 | 32.4 | 8.1

Tab. 4A continuation
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Z Energy c h « n Q- Qs Q4 Q22 || I Barr
Al (e ) |2 ] ) | ®) | ey

112 | I M—-1989.89 | 1.09 | 0.07 | 0.00 | 0.00 | 294 | 0.0 |-1.93| 0.0

276 | IT M=-1986.44 | 1.33 | -0.04 | 0.00 | 0.00 | 72.1 0.0 | 252 | 0.0 6.94
1 S=-1982.95 | 1.21 | 0.04 | -0.36 | -0.05 | 49.0 | 144 | 82 | 4.8
IT S=-1984.99 | 1.39 | 0.08 | -0.33 | -0.10 | 102.8 | 22.1 | 33.0 | 8.3

112 | T M=-2003.92 | 1.09 | 0.07 | 0.00 | 0.00 | 27.6 | 0.0 |-2.00| 0.0

278 | I M=-2000.38 | 1.34 | -0.04 | 0.00 | 0.00 | 74.5 | 0.0 | 25.9 | 0.0 6.31
I S=-1997.61 | 1.21| 0.04 | -0.30 | 0.00 | 51.1 | 12.3 | 81 | 0.0
IT S=-1998.69 | 1.36 | 0.04 | 0.00 | -0.05 | 93.0 | 0.0 | 27.9 | 4.2

114 | T M=-1888.50 | 1.12 | 0.01 | 0.00 | 0.00 | 28.6 | 0.0 | 2.42 | 0.0

266 | IT M=-1885.62 | 1.28 | 0.00 | 0.00 | 0.00 | 61.3 | 0.0 | 15.1 | 0.0 2.87
I S=-1885.62 | 1.30 | 0.00 | -0.24 | -0.05 | 64.0 | 8.7 | 17.4 | 4.2
IT S=-1887.24 | 1.42 | 0.08 | -0.42 | -0.10 | 101.3 | 26.8 | 36.2 | 7.7

114 | 1 M=-1906.78 | 1.12 | 0.02 | 0.00 | 0.00 | 28.2 | 0.0 | 1.82 | 0.0

268 | II M=-1903.60 | 1.28 | 0.00 | 0.00 | 0.00 | 62.1 0.0 | 154 | 0.0 3.46
1 S=-1903.32 | 1.30 | 0.04 | -0.42 | 0.00 | 66.2 | 17.8 | 17.1 | 0.0
IT S=-1905.63 | 1.45 | 0.12 | -0.36 | -0.20 | 121.6 | 32.2 | 44.5 | 15.1

114 | I M=-1924.64 | 1.10 | 0.03 | 0.00 | 0.00 | 26.6 | 0.0 | 0.65 | 0.0

270 | IT M=-1922.13 | 1.32 | 0.00 | 0.00 | 0.00 | 72.2 | 0.0 | 20.7 | 0.0 3.58
[ S=-1921.06 | 1.24 | 0.00 | -0.09 | -0.05 | 53.3 | 3.1 11.4 | 4.5
IT S=-1923.42 | 1.39 | 0.08 | -0.24 | -0.10 | 101.5 | 15.7 | 31.1 | 7.9

114 | I M=-1942.06 | 1.10 | 0.04 | 0.00 | 0.00 | 25.9 | 0.0 | 0.07 | 0.0

272 | I M=-1938.82 | 1.30 | 0.00 | 0.00 | 0.00 | 68.3 | 0.00 | 18.4 | 0.0 3.89
[ 5=-1938.17 | 1.24 | 0.04 | -0.03 | -0.30 | 56.8 1.3 94 |27.8
IT S=-1940.26 | 1.39 | 0.08 | -0.24 | -0.10 | 102.8 | 15.9 | 31.7 | 8.0

114 | T M=-1958.82 | 1.09 | 0.04 | 0.00 | 0.00 | 26.0 | 0.0 |-0.25| 0.0

274 | 11 M=-1957.32 | 1.35 | 0.00 | 0.00 | -0.11 | 83.0 | 0.0 | 26.6 | 9.8 5.25
I S=-1953.57 | 1.27| 0.04 | -0.15|-0.35 | 63.2 | 6.9 | 12.6 | 32.4
IT S=-1956.07 | 1.39 | 0.08 | -0.33 | -0.05 | 101.7 | 21.7 | 32.6 | 4.1

114 | I M=-1974.83 | 1.09 | 0.04 | 0.00 | 0.00 | 25.9 | 0.0 |-0.50| 0.0

276 | I M=-1972.99 | 1.33 | -0.04 | 0.00 | 0.00 | 73.0 | 0.0 | 25.0 | 0.0 2.55
I 5S=-1969.28 | 1.24 | 0.04 | -0.15 | -0.30 | 574 | 6.7 9.8 | 28.6
IT S=-1971.86 | 1.42 | 0.08 | -0.39 | -0.10 | 108.9 | 27.1 | 39.5 | 8.2

Tab. 4A continuation
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Z Energy c h « n Q- Qs Q4 Q22 || I Barr
Al (e ) |2 ] ) | ®) | ey

114 | T M=-1990.44 | 1.08 | 0.04 | 0.00 | 0.00 | 24.5 | 0.0 |-0.51| 0.0

278 | I M=-1988.75 | 1.34 | -0.04 | 0.00 | 0.00 | 73.8 | 0.0 | 25.7 | 0.0 5.65
I S=-1984.79 | 1.18 | 0.04 | -0.09 | -0.25 | 44.4 | 3.7 4.7 | 25.1
IT S=-1987.21 | 1.42 | 0.08 | -0.39 | -0.10 | 110.2 | 27.5 | 40.1 | 8.3

116 | T M=-1920.93 | 1.08 | 0.00 | 0.00 | 0.00 | 20.1 0.0 | 1.07 | 0.0 2.07

272 | 1S5=-1918.86 | 1.27 | 0.00 | -0.24 | 0.00 | 59.4 | 8.7 | 14.8 | 0.0

116 | I M=-1939.17 | 1.06 | 0.00 | 0.00 | 0.00 | 154 | 0.0 | 0.91 | 0.0

274 | 11 M=-1938.80 | 1.35 | 0.00 | 0.00 | 0.00 | 83.7 | 0.0 | 26.7 | 0.0 3.53
[ S=-1935.64 | 1.27 | 0.04 | -0.18 | -0.35 | 62.9 | 83 | 12.7 | 32.5
IT S=-1938.64 | 1.39 | 0.08 | -0.27 | -0.10 | 103.3 | 18.1 | 32.3 | 8.1

116 | I M=-1957.19 | 1.05 | 0.00 | 0.00 | 0.00 | 12.3 | 0.0 | 0.94 | 0.0

276 | I M=-1956.35 | 1.35 | 0.00 | 0.00 | -0.10 | 83.9 | 0.0 | 26.6 | 9.0 4.13
[ 5S=-1953.06 |1.27 | 0.04 | -0.06 | -0.35 | 64.7 | 2.8 | 12.7 | 32.7
IT S=-1955.45 | 1.39 | 0.04 | 0.00 | -0.10 | 99.6 | 0.0 | 32.8 | 8.2

116 | I M=-1974.96 | 1.05 | -0.06 | 0.00 | 0.00 | 8.2 0.0 | 3.84 | 0.0

278 | I M=-1973.17 | 1.34 | -0.03 | 0.00 | 0.00 | 75.2 | 0.0 | 25.8 | 0.0 5.40
[ 5=-1969.56 | 1.24 | 0.04 | 0.00 | -0.30 | 58.9 | 0.0 9.8 |28.8
IT S=-1974.09 | 1.48 | 0.12 | -0.36 | -0.20 | 138.7 | 37.0 | 57.2 | 15.7

Tab. 4A continuation
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Résumé

Dans ce travail de these des ingrédients essentiels pour la description théorique de la
dynamique des réactions de fusion et fission nucléaires sont étudiés, tel que le poten-
tiel d’interaction entre noyaux cible et projectile pour le processus de fusion et ’énergie
de déformation dans un espace multidimensionel pour la fission. Nous avons évalué en
particulier I'importance de la différence des distributions de densités protons et neu-
trons. Pour le processus de fusion, le potentiel d’interaction entre les noyaux peut étre
déterminé a travers des densités obtenues d’une facon auto-consistante par des calculs
variationnels semi-classiques a partir d’une interaction nucléon-nucléon effective de type
Skyrme. Les barrieres de fusion ainsi obtenues permettent d’évaluer des sections effi-
caces de fusion dans le cadre du formalisme de Langevin. Pour le processus de fission
il est essentiel de tenir compte de la grande richesse de formes nucléaires qui apparais-
sent tout au long du chemin de fission de I’état fondamental jusqu’au point de scission.
Nous montrons qu’'une paramétrisation tenant compte de 1'élongation, ainsi que de la
possible constriction, asymétrie gauche—droite et non-axialité du noyau, est effectivement
capable dans le cadre de notre approche macroscopique-microscopique de donner une de-
scription précise de ce phénomene. On peut ainsi enrichir I'expression de 1’énergie de
type goutte liquide par un terme qui décrit la variation de I’énergie de liaison nucléaire
due aux différentes déformations des distributions protons et neutrons. La réduction des
hauteurs des barrieres de fission qui en résulte est seulement de 'ordre du MeV, mais il
peut facilement en résulter un changement de la section efficace de fission d’un ordre de
grandeur et ainsi jouer une role capital pour la stabilité des noyaux super-lourds ou des
noyaux exotiques.

Abstract

This thesis work is centred on some essential ingredients of a theoretical description of
the reaction dynamics of the nuclear fusion and fission process, such as the interaction
potential between projectile and target nuclei for fusion and the deformation energy land-
scape in a multidimensional space for the fission process. We have in particular evaluated
the importance of the difference between the neutron and proton density distributions on
these two precesses. The fusion potential between the two interacting nuclei is obtained
through the nucleon densities, determined in a self-consistent way through semiclassical
density variational calculations for a given effective nucleon-nucleon effective interaction
of the Skyrme type. These fusion barriers can then be used in a Langevin formalism to
evaluation fusion cross sections. For the fission process it turns out to be essential to allow
for the large variety of shapes which appear between the nuclear ground state and the the
scission configuration. We show that a shape parametrisation taking into account elon-
gation, as well as possible neck formation, left-right asymmetry and non-axiality allows,
indeed, for a precise description of this phenomena in the framework of the macroscopic-
microscopic approach. We are thus able to enrich the expression of the liquid-drop type
energy through a term which describes the variation of the nuclear energy due to a defor-
mation difference between the proton and neutron distribution. The resulting reduction
of the fission barriers is only of the order of an MeV but this can easily cause an change
in the fission cross section by an order of magnitude and thus play an capital role for the
stability of super-heavy of exotic nuclei.
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