H. R. Kricheldorf and . Chemospheres, 43, 49. b) Degradable Aliphatic Polyesters : Advances in Polymer Science 157, 2001.

P. Le and . Haut, poids moléculaire a été dégradé efficacement par catalyse enzymatique 'in vitro' en utilisant la protéinase K : par exemple Williams D.F, ou encore Summing L., McCarthy S., Macromolecules, pp.32-4454, 1981.

S. Mecking, Nature or Petrochemistry????Biologically Degradable Materials, Angewandte Chemie International Edition, vol.43, issue.9, pp.1078-1114, 2004.
DOI : 10.1002/anie.200301655

P. Gruber, M. O-'brien, T. Polylactides-''natureworks, E. T. Vink, K. R. Rabago et al., b) Dechy- Cabaret O, Biopolymers in 10 volumes, pp.235-403, 2001.

O. Coulembier, A. P. Dove, R. C. Pratt, A. C. Sentman, D. A. Culkin et al., Latent, Thermally Activated Organic Catalysts for the On-Demand Living Polymerization of Lactide, Angewandte Chemie International Edition, vol.101, issue.31, pp.4964-4978, 2005.
DOI : 10.1002/anie.200500723

W. H. Davies, 1357. b) Smith I, J. Chem. Soc.J., Tighe B.J., Makromol. Chem, pp.182-313, 1951.

A. Hengge, J. Marlier, J. F. Andres, G. O. Pierini, A. B. De-rossi et al., Can acyl transfer occur via a concerted mechanism? Direct evidence from heavy-atom isotope effects, Journal of the American Chemical Society, vol.114, issue.16, pp.6575-71, 1992.
DOI : 10.1021/ja00042a057

A. Hassner, in Encyclopedia of Reagents for Organic Synthesis, Synlett, vol.3, pp.10-1568, 1995.

O. Thillaye-du-boullay, E. Marchal, B. Martin-vaca, F. P. Cossio, D. Bourissou et al., An Activated Equivalent of Lactide toward Organocatalytic Ring-Opening Polymerization, Journal of the American Chemical Society, vol.128, issue.51, pp.16442-1786, 2006.
DOI : 10.1021/ja067046y

URL : https://hal.archives-ouvertes.fr/hal-00144994

A. Khmelnitsky, Y. L. Rich, J. O. Kumar, A. Gross, and R. A. , Biocatalysis in nonaqueous solvents, 133. e) Klibanov A.M., Nature, pp.47-241, 1987.
DOI : 10.1016/S1367-5931(99)80009-X

B. Cambou, A. M. Klibanov, J. Zaks, A. Klibanov, and A. M. , Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media, Journal of the American Chemical Society, vol.106, issue.9, pp.2687-1249, 1984.
DOI : 10.1021/ja00321a033

R. A. Gross, D. L. Kaplan, and G. Swift, Enzymes in Polymer Synthesis, ACS Symposium Series Chem. Rev, vol.684, issue.101, p.3793, 1998.

A. C. Albertsson, U. Degradable-aliphatic-polyesters-edlund, and A. C. Albertsson, Advances in Polymer Science, Adv. Polym. Sci. Prog. Polym. Sci, vol.157, issue.67, pp.32-762, 2002.

G. Rogers, T. Bruice, and G. Dodson, Synthesis and evaluation of a model for the so-called charge-relay system of the serine esterases, Journal of the American Chemical Society, vol.96, issue.8, p.2473, 1974.
DOI : 10.1021/ja00815a028

G. Kirchner, M. P. Scollar, A. M. Klibanov, J. Bianchi, D. Cesti et al., Resolution of racemic mixtures via lipase catalysis in organic solvents, Journal of the American Chemical Society, vol.107, issue.24, pp.7072-56, 1985.
DOI : 10.1021/ja00310a052

D. Rottici, F. Haeffner, C. Orrenius, T. Norin, K. Hult et al., Hydrolase in Organic Synthesis, Journal of Molecular Catalysis B : Enzymatic Biocatal. Biotransform. Industrial Biotechnology, vol.1617, issue.181 2, p.126, 1998.

E. M. Anderson, K. M. Larsson, O. Kirck, D. Xu, Z. Li et al., One Biocatalyst???Many Applications: The Use of Candida Antarctica B-Lipase in Organic Synthesis, Biocatalysis and Biotransformation, vol.112, issue.3, pp.181-225, 1998.
DOI : 10.1271/bbb.60.2059

A. Cordova, A. Hult, K. Hult, H. Ihre, T. Iversen et al., Synthesis of a Poly(??-caprolactone) Monosubstituted First Generation Dendrimer by Lipase Catalysis, Journal of the American Chemical Society, vol.120, issue.51, p.13521, 1998.
DOI : 10.1021/ja982252u

S. Kobayashi, H. Uyama, S. Namekawa, and S. Kobayashi, Enzymatic Ring-Opening Polymerization of Lactones by Lipase Catalyst: Mechanistic Aspects, Macromolecular Symposia, vol.33, issue.1, pp.178-207, 1997.
DOI : 10.1002/masy.200650822

L. A. Henderson and R. A. Gross, Renewable ressources, biopolyesters and biocatalysis, ACS, p.100, 2000.

S. Matsumura, K. Mabuchi, and K. Toshima, Lipase-catalyzed ring-opening polymerization of lactide, Macromolecular Rapid Communications, vol.18, issue.6, p.477, 1997.
DOI : 10.1002/marc.1997.030180604

K. Numata, R. K. Srivastava, A. Finne-wistrand, A. C. Albertsson, Y. Doi et al., Branched Poly(lactide) Synthesized by Enzymatic Polymerization:?? Effects of Molecular Branches and Stereochemistry on Enzymatic Degradation and Alkaline Hydrolysis, Biomacromolecules, vol.8, issue.10, p.3115, 2007.
DOI : 10.1021/bm700537x

S. Huijser, B. B. Staal, J. Huang, R. Duchateau, C. E. Koning et al., Chapitre 2 : eROPdu L-lacOCA [59] a), Proc. Natl. Acad. Sci. U.S.A, pp.1100-1265, 1565.

R. A. Verlinden, D. J. Hill, M. A. Kenward, C. D. William, and I. Radecka, Bacterial synthesis of biodegradable polyhydroxyalkanoates, Journal of Applied Microbiology, vol.130, issue.6, p.1437, 2007.
DOI : 10.1016/S0169-409X(01)00218-6

C. Lavallee, D. Grenier, R. E. Prud-'homme, L. Borgne, A. Spassky et al., Advances in Polymer Synthesis, p.450, 1985.

L. Borgne, A. Spassky, N. , P. Kemnitzer, J. E. Mccarthy et al., Polymer Int, Macromolecules Macromolecules Macromolecules Int. J. Bio. Macromol, vol.26, issue.25, pp.6143-237, 1221.

T. L. Gresham, J. E. Jansen, F. W. Shaver, T. Shiota, and Y. Goto, ??-Propiolactone. I. Polymerization Reactions, Journal of the American Chemical Society, vol.70, issue.3, pp.998-753, 1948.
DOI : 10.1021/ja01183a030

W. Jeong, J. L. Hedrick, R. M. Waymouth, J. Kagiya, T. Sano et al., Chapitre 3 : Les ?-OCAs [21] a), Am. Chem. Soc. Kogyo Kagaku Zasshi J. Macromol. Sci. Chem. Polymer, vol.129, issue.268, pp.1144-951, 1965.

C. D. Eisenbach, R. W. Lenz, A. Duda, M. Kowalczuk, G. Adamus et al., Journal of Polymer Science : Part A : Polymer Chemistry, Journal of Polymer Science : Part A : Polymer Chemistry, pp.31-6718, 1976.

Z. Jedlinski, Stereochemical Control in the Anionic Polymerization of ??-Butyrolactone Initiated with Alkali-Metal Alkoxides, Macromolecules, vol.29, issue.11, p.3773, 1996.
DOI : 10.1021/ma951888s

Z. Jedlinski and M. Kowalczuk, Nature of the active centers and the propagation mechanism of the polymerization of .beta.-propiolactones initiated by potassium anions, Macromolecules, vol.22, issue.8, p.3242, 1989.
DOI : 10.1021/ma00198a008

F. M. Dean, K. B. Hindley, S. Small, J. Heidelberg, and T. , 1 : Organic and Bio-organic Chemistry, Chem. Soc., Perkin Trans. Egyptian Journal Of Pharmaceutical Sciences J. Org. Chem, vol.16, issue.463, pp.69-2290, 1972.

M. Hmamouchi, R. Prud-'homme, J. Xu, S. P. Mccarthy, R. A. Gross et al., Journal of Polymer Science : Part A : Polymer Chemistry, Macromolecules Macromolecules Macromolecules, vol.29, issue.4582, pp.4565-4594, 1593.

J. P. Senet, The Recent Advance In Phosgène Chemistry, p.106, 1997.

B. Iliev, 14-Membered cyclodepsipeptides with alternating ??-hydroxy and ??-amino acids by cyclodimerization, Tetrahedron, vol.62, issue.6, p.1079, 2006.
DOI : 10.1016/j.tet.2005.11.002

R. Howe, Chemistry of carbon coumpound'', 2ème édition, p.11, 1965.

). Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromolecular Rapid Communications, vol.21, issue.3, p.117, 2000.
DOI : 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X

A. Duda, S. Penczek, M. Witzke, D. R. Narayan, R. Kolstad et al., Thermodynamics of L-lactide polymerization. Equilibrium monomer concentration, Macromolecules, vol.23, issue.6, pp.1636-7075, 1990.
DOI : 10.1021/ma00208a012

B. J. Tighe, . Chem, G. P. Blackbourn, B. J. Tighe, and B. J. Tighe, 3591. c) Smith I 695. d) Smith I. e) Smith I. f) Smith I, J. Polym. Sci. : Part. A Chem. Ind.J., Tighe B.J., J. Polym. Sci. Polym. Chem. Ed.J., Tighe B.J., J. Polym. Sci. Polym. Chem. Ed.J., Tighe B.J., J. Polym. Sci. Polym. Chem. Ed, pp.1857-949, 1969.

E. Marchal, Synthèse et polymérisation d'heterocycles oxygénés, Mémoire CNAM soutenu le 10, p.4, 2004.

R. G. Parr and W. Yang, Functional Theory of Atoms and Molecules, J. Chem. Phys. Phys. Rev, vol.98, issue.5648, pp.37-785, 1988.

L. Du and . De, 40 mmol) est mis en suspension dans 60 mL de THF anhydre sous argon Le milieu réactionnel est refroidi à 0°C puis du diphosgène (4.8 mL, 40 mmol) est ajouté goutte à goutte pendant 20 minutes. Le milieu réactionnel devient homogène quand la moitié du diphosgène a été ajoutée. La solution est agitée 120 minutes à température ambiante puis contrôlée par RMN 1 H (apparition d'un doublet à 1.72 ppm) Le solvant est alors évaporé. L'huile récupérée est dissoute dans 30 mL d'Et 2 O. Les sels de lithium insolubles sont éliminés par filtration sous atmosphère inerte et rincés par 20 mL d'Et 2 O. Le milieu est ensuite concentré jusqu'à précipitation du lacOCA (environ 15 mL)

*. Thillaye-du-boullay, O. Marchal, E. Martin-vaca, B. Cossio, F. P. Bourissou et al., An Activated Equivalent of Lactide toward Organocatalytic Ring-Opening Polymerization, Journal of the American Chemical Society, vol.128, issue.51, p.16442, 2006.
DOI : 10.1021/ja067046y

URL : https://hal.archives-ouvertes.fr/hal-00144994

. Du-rac-lactate-de-lithium, g, 33 mmol) est mis en solution dans 50 mL de THF anhydre sous argon. Le milieu réactionnel est refroidi à 0°C puis du diphosgène (4 mL, 33 mmol) est ajouté goutte à goutte pendant 20 minutes. La solution est agitée 120 minutes à température ambiante puis contrôlée par RMN 1 H (apparition d'un doublet à 1.72 ppm)

. Dans-un-tube-de-schlenk-préalablement-séché-sous-vide,-le-l-lacoca, 1 mmol) est mis en suspension dans 270 µL de toluène (3.8 M) Le milieu réactionnel est agité à 80°C. A cette température, il devient homogène. 14 mg de Novozyme 435 sont alors ajoutés sous argon à l'aide d'une ampoule à solide. La réaction est agitée à 80°C. La conversion du monomère en polymère est suivie par prélèvements d'un échantillon de solution (quelques µL de milieu réactionnel) qui est concentré puis Après 2h30 d'agitation, la conversion est totale. On préleve alors un aliquot (20 µL) pour la chromatographie d'exclusion de taille (SEC) puis on ajoute de nouveau du L-lacOCA (120 mg, 1 mmol) ainsi que 270

. Pour-chaque-test and . Le-pivoca, le protocole suivant est utilisé Il est décrit ci-dessous dans le cas de la ROP amorcée à l'alcool benzylique et catalysée par la DMAP (Dp = 20). L'alcool benzylique est distillé sur CaH 2, La DMAP est recristallisée dans le toluène. Le PivOCA est recristallisé dans CH 2 Cl

. Dans-un-tube-de-schlenk-préalablement-séché-sous-vide and . Le-pivoca-)-butoca, 288 mg, 2 mmol) est mis en solution dans 2 mL de CH 2 Cl 2 . L'alcool benzylique (0.1 mmol, 11 µl) puis la DMAP (0.1 mmol, 12 mg)

. Deux-tests-de-rop-ont-Été-menés-avec-le-(-s-)-butoca, Il est ici décrit dans le cas de la ROP amorcée à l'alcool benzylique pour un rapport monomère/amorceur égal à 20. L'alcool benzylique est distillé sur CaH 2, La DMAP est recristallisée dans le toluène. Le (S)-ButOCA est recristallisé dans l'éther éthylique au moins deux fois juste avant d'être utilisé

. La-deuxième-Étape-correspond-À-la-synthèse-du, MepOCA à partir de l'hydroxyacide. A une solution d'acide (S)-3-hydroxy-2-methyl propanoique (2.1 g, 20 mmol) dans 60 mL de THF sont ajoutés une « pointe de spatule » de charbon actif et 1 Le milieu réactionnel est agité à 60°C pendant 2h, Après filtration du charbon actif, le solvant est évaporé. L'intermédiaire récupéré est dilué dans 60

O. Acide, . Ho, and . Rmn, CDCl 3 ): 3.76 (d, 2H, pp.74-77

. Hz, CH 3 ) Préparation des dépôts MALDI pour le PMPL

. Le-néopentanol-est-sublimé, D. La, and . Est-recristallisée-dans-le-toluène, Le (L)-lacOCA est

P. Le and . Dp, 30 préparé par amorçage au néopentanol (23 mg) est solubilisé dans 6 mL de toluène anhydre. 0.6 mL de méthanol sont ajoutés à ce milieu réactionnel puis 18 µL d'une solution de trimethylsilyldiazomethane (2 mol.L -1 dans l'hexane) La réaction est agitée à température ambiante. Après une heure de réaction

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, R. E. Drumright et al., Polymeric Systems for Controlled Drug Release, Laboratoire Hétérochimie Fondamentale et Appliquée du CNRS (UMR 5069) Spain References, pp.3181-3198, 1999.
DOI : 10.1021/cr940351u

B. J. Keefe, M. A. Hillmyer, W. B. Tolman, O. Dechy-cabaret, B. Martin-vaca et al., For general reviews Dalton Trans, J. Chem. Soc. Chem. ReV. Coord. Chem. ReV, vol.104, issue.250, pp.2215-2224, 2001.

D. Zhang, J. Xu, L. Alcazar-roman, L. Greenman, C. J. Cramer et al., Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring, Despite the lack of ring strain, pp.5274-5281, 2004.
DOI : 10.1021/ma049571s

P. A. Grieco, J. L. Collins, E. D. Moher, T. J. Fleck, and R. S. Gross, Synthetic studies on quassinoids: total synthesis of (-)-chaparrinone, (-)-glaucarubolone, and (+)-glaucarubinone, Journal of the American Chemical Society, vol.115, issue.14, pp.6078-6093, 1993.
DOI : 10.1021/ja00067a025

H. Kricheldorf, Prior investigations using tertiary amines or alkoxides 7b,c led to uncontrolled polymerizations, and only oligomers (Mn < 4.000) could be obtained whatever the monomer feed. (10) The related R-amino acid N-carboxyanhydrides (NCA) proved to be convenient precursors for polypeptides: (a) Deming, T, J. J. Polym. Sci. Part A: Polym. Chem, vol.38, issue.9, pp.3011-3018, 2000.

F. Nederberg, E. F. Connor, M. Möller, T. Glauser, J. L. Hedrick et al., New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization, Angewandte Chemie International Edition, vol.28, issue.14, pp.2712-2715, 2001.
DOI : 10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z

D. Bourissou, B. Martin-vaca, A. Dumitrescu, M. Graullier, and F. Lacombe, Controlled Cationic Polymerization of Lactide, Macromolecules, vol.38, issue.24, pp.9993-9998, 2005.
DOI : 10.1021/ma051646k

URL : https://hal.archives-ouvertes.fr/hal-00361537

A. P. Dove, R. C. Pratt, B. G. Lohmeijer, R. M. Waymouth, J. L. Hedrick et al., Thiourea-Based Bifunctional Organocatalysis:?? Supramolecular Recognition for Living Polymerization, Journal of the American Chemical Society, vol.127, issue.40, pp.13798-13799, 2005.
DOI : 10.1021/ja0543346

B. J. Ed, M. A. O-'keefe, W. B. Hillmyer, R. C. Tolman, and B. Pratt, For general reviews dealing with the preparation of PLA, see: (a), J. Chem. Soc., Dalton Trans. Chem. Rev. C. R. Chim, vol.43, issue.10, pp.6147-775, 1078.

G. L. Baker and T. L. , For alkyl-and aralkyl-substituted poly(a-hydroxyacids), see, Macromolecules, vol.32, issue.7711, 1999.

W. Gerhardt, D. E. Noga, K. I. Hardcastle, A. J. Garcia, D. M. Collard et al., For hydroxyl-functionalized poly(a-hydroxyacids), see ref. 7 and (a), Biomacromolecules, vol.8, 1735.

J. Van-steenbergen, C. F. Van-nostrum, W. E. Hennink, M. Leemhuis, J. A. Kruijtzer et al., 9 For 1,4-dioxane-2,5-diones featuring pendant oligo(ethylene oxide) groups, see, diones derived from D-gluconic acid, see: K. Marcincinova-Benabdillah, M. Boustta, J. Coudane and M. Vert, p.1279, 2001.

P. J. Veld, J. Dijkstra, and R. Feijen, Morpholine-diones have also been used to prepare functionalized poly(ester-amides) For selected references, see: (a) P, Makromol. Chem, 1992.

J. Langer, . J. Amc-)-p, J. Dijkstra, and . Feijen, 12 Self-condensation of a-hydroxyacids is practically limited to symmetrical volatile dioxane-diones. The preparation of unsymmetrically-substituted monomers by step-by-step condensation of an a-hydroxy acid and an a-haloacyl halide usually requires carefullycontrolled conditions in order to avoid undesirable oligomerization reactions during the final cyclization step, Chem. Soc. Macromol. Symp, vol.115, issue.13, 1993.

S. Deechongkit, J. W. You, O. Kelly, G. J. Lett, S. Van-hummel et al., 15 See ESIw for details, Acta Crystallogr., Sect. B Acta Crystallogr., Sect. C Acta Crystallogr., Sect. C J. Am. Chem. Soc. Acta Crystallogr, vol.16, issue.122, pp.61-898, 1125.

A. P. For-recent-reviews, R. C. Dove, B. G. Pratt, H. Lohmeijer, E. C. Li et al., Hedrick in N-Heterocyclic Carbenes in Synthesis, pp.275-296, 2006.

F. Nederberg, E. F. Connor, M. Mçller, T. Glauser, and J. L. Hedrick, New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization, Angewandte Chemie, vol.28, issue.14, pp.2784-2787, 2001.
DOI : 10.1002/1521-3757(20010716)113:14<2784::AID-ANGE2784>3.0.CO;2-B

E. F. Connor, G. W. Nyce, M. Myers, A. Mçck, J. L. Hedrick et al., First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization:?? Organocatalytic Ring-Opening Polymerization of Cyclic Esters, M. Waymouth, J. L. Hedrick, Angew. Chem, pp.914-915, 2002.
DOI : 10.1021/ja0173324

W. Culkin, S. Jeong, E. D. Csihony, N. P. Gomez, J. L. Balsara et al., Zwitterionic Polymerization of Lactide to Cyclic Poly(Lactide) by Using N-Heterocyclic Carbene Organocatalysts, Angewandte Chemie, vol.17, issue.15, pp.2681-2684, 2007.
DOI : 10.1002/ange.200604740

D. Bourissou, B. Martín-vaca, A. Dumitrescu, M. Graullier, and F. Lacombe, Controlled Cationic Polymerization of Lactide, Macromolecules, vol.38, issue.24, pp.9993-9998, 2005.
DOI : 10.1021/ma051646k

URL : https://hal.archives-ouvertes.fr/hal-00361537

). A. Dove, R. C. Pratt, B. G. Lohmeijer, R. M. Waymouth, J. L. Hedrick et al., Thiourea-Based Bifunctional Organocatalysis:?? Supramolecular Recognition for Living Polymerization, Journal of the American Chemical Society, vol.127, issue.40, pp.13798-13799, 2005.
DOI : 10.1021/ja0543346

. Chem and . J. Eur, KGaA, Weinheim www.chemeurj.org 5311 FULL PAPER Mechanistic Investigation into the Formation of Polylactides, pp.5304-5312, 2008.

R. C. Pratt, B. G. Lohmeijer, D. A. Long, R. M. Waymouth, and J. L. Hedrick, Triazabicyclodecene:?? A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters, Journal of the American Chemical Society, vol.128, issue.14, pp.4556-4557, 2006.
DOI : 10.1021/ja060662+

L. Zhang, F. Nederberg, J. M. Messman, R. C. Pratt, J. L. Hedrick et al., Organocatalytic Stereoselective Ring-Opening Polymerization of Lactide with Dimeric Phosphazene Bases, Journal of the American Chemical Society, vol.129, issue.42, pp.12610-12611, 2007.
DOI : 10.1021/ja074131c

F. Zhang, R. C. Nederberg, R. M. Pratt, J. L. Waymouth, C. G. Hedrick et al., Phosphazene Bases:?? A New Category of Organocatalysts for the Living Ring-Opening Polymerization of Cyclic Esters, Macromolecules, vol.40, issue.12, pp.4154-4158, 2007.
DOI : 10.1021/ma070316s

J. L. Eguiburu, J. Fernandez-berridi, F. P. Cossío, and J. San-roman, -Lactide Initiated by (2-Methacryloxy)ethyloxy???Aluminum Trialkoxides. 1. Kinetics, For theoretical studies on the ROP of lactide promoted by aluminum and stannous complexes, pp.8252-8258, 1999.
DOI : 10.1021/ma990445b

H. M. Lai, C. Lee, T. Hu, and . Lett, for experimental mechanistic studies, see also: b) S, pp.6265-6270, 2005.

L. Simon and J. M. Goodman, The Mechanism of TBD-Catalyzed Ring-Opening Polymerization of Cyclic Esters, The Journal of Organic Chemistry, vol.72, issue.25, pp.9656-9662, 2007.
DOI : 10.1021/jo702088c

S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich et al., The DMAP-Catalyzed Acetylation of Alcohols???A Mechanistic Study (DMAP=4-(Dimethylamino)pyridine), Chemistry - A European Journal, vol.117, issue.16, pp.4751-4757, 2005.
DOI : 10.1002/chem.200500398

B. J. Smith, H. R. Tighe, and . Kricheldorf, For early studies on the ROP of O-carboxylic anhydrides, see: a) I, Die Makromolekulare Chemie, vol.182, issue.2, pp.313-324, 1981.
DOI : 10.1002/macp.1981.021820204

G. R. Desiraju and G. R. Desiraju, The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it?, For general reviews on nonclassical O···HÀC hydrogen bonding, pp.290-296, 1991.
DOI : 10.1021/ar00010a002

Y. Huang, V. H. Rawal, L. R. Domingo, and J. Andrøs, Hydrogen-Bond-Promoted Hetero-Diels???Alder Reactions of Unactivated Ketones, Journal of the American Chemical Society, vol.124, issue.33, pp.9662-9663, 2002.
DOI : 10.1021/ja0267627

A. Williams, Concerted mechanisms of acyl group transfer reactions in solution, Accounts of Chemical Research, vol.22, issue.11, pp.387-392, 1989.
DOI : 10.1021/ar00167a003

S. Ba-saif, A. K. Luthra, A. Williams-b-)-s, A. K. Ba-saif, A. Luthra et al., Concertedness in acyl group transfer in solution: a single transition state in acetyl group transfer between phenolate ion nucleophiles, Journal of the American Chemical Society, vol.109, issue.21, pp.6362-6368, 1987.
DOI : 10.1021/ja00255a021

A. B. Andres, R. H. Pierini, and . De-rossi, Kinetic and Theoretical Studies on the Mechanism of Intramolecular Catalysis in Phenyl Ester Hydrolysis, The Journal of Organic Chemistry, vol.71, issue.20, pp.7650-7656, 2006.
DOI : 10.1021/jo061165e

T. Oie, G. H. Loew, S. K. Burt, J. S. Binkley, and R. D. Macelroy, Quantum chemical studies of a model for peptide bond formation: formation of formamide and water from ammonia and formic acid, Journal of the American Chemical Society, vol.104, issue.23, pp.6169-6174, 1982.
DOI : 10.1021/ja00387a001

M. Cossi, G. Scalmani, N. Rega, and V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, The Journal of Chemical Physics, vol.117, issue.1, pp.43-54, 2002.
DOI : 10.1063/1.1480445