K. Fatima, K. Salem, and . Khuri-makdisi, Fast Jacobian group operations for C 3,4 curves over a large finite field, LMS Journal of Computation and Mathematics, vol.10, pp.307-328, 2007.

M. A. Leonard, M. Leonard, M. Adleman, and ´. Huang, The Function Field Sieve Algorithmic Number Theory, Lecture Notes in Computer Science, vol.877, pp.108-121, 1994.

M. Leonard, J. Adleman, M. Demarrais, and . Huang, A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields

M. Adleman and ´. Huang, Algorithmic Number Theory, Lecture Notes in Computer Science, vol.877, pp.28-40, 1994.
DOI : 10.1007/3-540-58691-1

M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Mathematics, vol.160, issue.2, pp.781-793, 2004.
DOI : 10.4007/annals.2004.160.781

S. Sattam, K. G. Al-riyami, and . Paterson, Certificateless Public Key Cryptography, Advances in Cryptology ? ASIACRYPT 2003, pp.452-473, 2003.

S. Arita, Algorithms for Computations in Jacobian Group of C ab Curve and Their Application to Discrete-Log Based Public Key Cryptosystems, En Japonais. Traduction anglaise dans les actes de Conference on The Mathematics of Public Key Cryptography, pp.82-1291, 1999.

S. Arita, An addition algorithm in Jacobian of Cab curves, Discrete Applied Mathematics, vol.130, issue.1, pp.13-31, 2003.
DOI : 10.1016/S0166-218X(02)00586-3

E. Artin, Beweis des allgemeinen Reziprozit??tsgesetzes, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.95, issue.1, pp.353-363, 1927.
DOI : 10.1007/BF02952531

A. O. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics of Computation, vol.61, issue.203, pp.6129-68, 1993.
DOI : 10.1090/S0025-5718-1993-1199989-X

URL : https://hal.archives-ouvertes.fr/inria-00075302

E. Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation, vol.55, issue.191, pp.355-380, 1990.
DOI : 10.1090/S0025-5718-1990-1023756-8

P. Barreto, The Pairing-Based Crypto Lounge, 2005.

S. L. Paulo, B. Barreto, M. Lynn, and . Scott, Constructing Elliptic Curves with Prescribed Embedding Degrees, Security in Communication Networks ? Third International Conference, pp.257-267, 2002.

A. Basiri, A. Enge, J. Faugère, and N. Gürel, Implementing the Arithmetic of C 3,4 Curves, Lecture Notes in Computer Science, vol.3076, pp.87-101, 2004.
DOI : 10.1007/978-3-540-24847-7_6

URL : https://hal.archives-ouvertes.fr/hal-01497045

A. Basiri, A. Enge, J. Faugère, and N. Gürel, The arithmetic of Jacobian groups of superelliptic cubics, Mathematics of Computation, vol.74, issue.249, pp.389-410, 2005.
DOI : 10.1090/S0025-5718-04-01699-0

URL : https://hal.archives-ouvertes.fr/inria-00071967

R. Bender, C. Pomerance, D. A. Buell, and J. T. Teitelbaum, Rigorous Discrete Logarithm Computations in Finite Fields Via Smooth Polynomials, Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin, volume 7 de Studies in Advanced Mathematics, pp.221-232, 1998.

J. Biasse, Algorithmes sous-exponentiels de résolution du logarithme discret sur les jacobiennes de courbes algébriques, Mémoire de master, Master Parisien de Recherche en Informatique, 2007.

B. J. Birch, Weber's class invariants, Mathematika, vol.45, issue.02, pp.283-294, 1969.
DOI : 10.2307/1970494

I. Blake, G. Seroussy, and N. Smart, Elliptic Curves in Cryptography Lecture Note Series, 1999.

D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, Lecture Notes in Computer Science, vol.2139, pp.213-229, 2001.
DOI : 10.1007/3-540-44647-8_13

D. Boneh, B. Lynn, and H. Shacham, Short Signatures from the Weil Pairing, Lecture Notes in Computer Science, vol.2248, pp.514-532, 2001.
DOI : 10.1007/3-540-45682-1_30

M. Jonathan, . Borwein, B. Peter, and . Borwein, Pi and the AGM, 1987.

A. Bostan, F. Morain, B. Salvy, and . Schost, Fast algorithms for computing isogenies between elliptic curves, Mathematics of Computation, vol.77, issue.263, 2006.
DOI : 10.1090/S0025-5718-08-02066-8

URL : https://hal.archives-ouvertes.fr/inria-00091441

R. P. Brent, Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the ACM, vol.23, issue.2, pp.242-251, 1976.
DOI : 10.1145/321941.321944

F. Brezing and A. Weng, Elliptic Curves Suitable for Pairing Based Cryptography. Designs, Codes and Cryptography, pp.133-141, 2005.

N. Brisebarre and G. Philibert, Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j, Journal of the Ramanujan Mathematical Society, vol.20, pp.255-282, 2005.

R. Bröker, Constructing elliptic curves of prescribed order, 2006.

N. G. De-bruijn, On The Number of Positive Integers ??? x and Free of Prime Factors > y, Indagationes Mathematicae (Proceedings), vol.54, pp.50-60, 1951.
DOI : 10.1016/S1385-7258(51)50008-2

R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited (preliminary version), Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.209-218, 1998.
DOI : 10.1145/276698.276741

G. David and . Cantor, Computing in the Jacobian of a Hyperelliptic Curve, Mathematics of Computation, vol.48, issue.177, pp.95-101, 1987.

M. Cipolla, Un metodo per la risoluzione della congruenza di secondo grado, Napoli Rend, vol.9, pp.153-163, 1903.

C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, Bahram Honary, ´ editeur, Cryptography and Coding: 8th IMA International Conference, pp.360-363, 2001.
DOI : 10.1007/3-540-45325-3_32

H. Cohen and H. W. Lenstra-jr, Heuristics on class groups of number fields
DOI : 10.1007/BF01199694

H. Dans and . Jager, Number Theory Noordwijkerhout, Lecture Notes in Mathematics, vol.1068, pp.33-62, 1983.

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete mathematics and its applications, 2006.

P. Cohen, On the coefficients of the transformation polynomials for the elliptic modular function, Mathematical Proceedings of the Cambridge Philosophical Society, vol.231, issue.275, pp.389-402, 1984.
DOI : 10.1017/S0305004100061697

D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Transactions on Information Theory, vol.30, issue.4, pp.587-594, 1984.
DOI : 10.1109/TIT.1984.1056941

J. Couveignes, Computing l-isogenies using the p-torsion, Algorithmic Number Theory ? ANTS-II, volume 1122 de Lecture Notes in Computer Science, pp.59-65, 1996.
DOI : 10.1007/3-540-61581-4_41

J. Couveignes, K. Alster, J. Urbanowicz, and H. C. Williams, Algebraic Groups and Discrete Logarithm Public-Key Cryptography and Computational Number Theory, pp.17-27, 2001.

J. Couveignes, C. Thierry-henocq, D. R. Fieker, and . Kohel, Action of Modular Correspondences around CM Points, Algorithmic Number Theory ? ANTS-V, volume 2369 de Lecture Notes in Computer Science, pp.234-243, 2002.
DOI : 10.1007/3-540-45455-1_19

J. Couveignes-et-françois-morain-leonard, M. Adleman, M. Huang, and ´. , Schoof's algorithm and isogeny cycles, Lecture Notes in Computer Science, vol.877, pp.43-58, 1994.
DOI : 10.1007/3-540-58691-1_42

A. David and . Cox, Primes of the Form x 2 + ny 2 ? Fermat, Class Field Theory, and Complex Multiplication, 1989.

M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper II, Journal für die reine und angewandte Mathematik, pp.25-36, 1941.

M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper Abhandlungen aus dem mathematischen Seminar der hamburgischen Universität, pp.197-272, 1941.

M. Deuring, Die Klassenkörper der komplexen Multiplikation. Dans Enzyklop. d. math. Wissenschaften, volume I 2 Heft 10, Teubner, 1958.

´. Diderot-et-d-'alembert, Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers, par une société de gens de lettres, Briasson, pp.1751-1772

C. Diem, The GHS Attack in Odd Characteristic, Journal of the Ramanujan Mathematical Society, vol.18, issue.1, pp.1-32, 2003.

C. Diem, An index calculus algorithm for non-singular plane curves of high genus, 2006.

C. D. , F. Hess, S. Pauli, M. Pohst, and ´. , An Index Calculus Algorithm for Plane Curves of Small Degree Algorithmic Number Theory ? ANTS-VII, Lecture Notes in Computer Science, vol.4076, pp.543-557, 2006.

R. Dupont, Moyenne arithmético-géométrique, suites de Borchardt et applications, Thèse de doctorat, ´ Ecole polytechnique, 2006.

R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM. ` A para??trepara??tre dans Mathematics of Computation, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00644845

R. Dupont, A. Enge, and F. Morain, Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields, Journal of Cryptology, vol.18, issue.2, pp.79-89, 2005.
DOI : 10.1007/s00145-004-0219-7

URL : https://hal.archives-ouvertes.fr/inria-00386299

R. Dupont and A. Enge, Provably secure non-interactive key distribution based on pairings, WCC 2003 ? Proceedings of the International Workshop on Coding and Cryptography, pp.165-174, 2003.
DOI : 10.1016/j.dam.2005.03.024

URL : https://hal.archives-ouvertes.fr/inria-00386311

R. Dupont and A. Enge, Provably secure non-interactive key distribution based on pairings, Discrete Applied Mathematics, vol.154, issue.2, pp.270-276, 2006.
DOI : 10.1016/j.dam.2005.03.024

URL : https://hal.archives-ouvertes.fr/inria-00386311

N. D. Elkies, D. A. Buell, and J. T. Teitelbaum, Elliptic and Modular Curves over Finite Fields and Related Computational Issues, Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin, volume 7 de Studies in Advanced Mathematics, pp.21-76

A. Enge, Hyperelliptic Cryptosystems: Efficiency and Subexponential Attacks, Books on Demand, 2000.
URL : https://hal.archives-ouvertes.fr/tel-00505980

A. Enge, The Extended Euclidian Algorithm on Polynomials, and the Computational Efficiency of Hyperelliptic Cryptosystems. Designs, Codes and Cryptography, pp.53-74, 2001.

A. Enge, A. Blokhuis, J. W. Hirschfeld, D. Jungnickel, and J. A. Thas, A General Framework for Subexponential Discrete Logarithm Algorithms in Groups of Unknown Order, de Developments in Mathematics, pp.133-146, 2001.
DOI : 10.1007/978-1-4613-0283-4_8

A. Enge, Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time, Mathematics of Computation, vol.71, issue.238, pp.729-742, 2002.
DOI : 10.1090/S0025-5718-01-01363-1

A. Enge, The complexity of class polynomial computation via floating point approximations. HAL-INRIA 1040 et ArXiv cs, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00001040

A. Enge, Computing modular polynomials in quasi-linear time. HAL- INRIA 143084 et ArXiv 0704, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00143084

A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algorithms, Acta Arithmetica, vol.102, issue.1, pp.83-103, 2002.
DOI : 10.4064/aa102-1-6

URL : https://hal.archives-ouvertes.fr/inria-00512717

A. Enge and P. Gaudry, An L (1/3???+?????) Algorithm for the Discrete Logarithm Problem for Low Degree Curves, Moni Naor, ´ editeur, Advances in Cryptology ? Eurocrypt, pp.367-382, 2007.
DOI : 10.1007/978-3-540-72540-4_22

URL : https://hal.archives-ouvertes.fr/inria-00135324

A. Enge, P. Gaudry, and F. Morain, Computing #E(GF(p)) for large prime p ? an update, mars, 2005.

A. Enge-et-françois-morain, C. Fieker, and D. R. Kohel, Comparing Invariants for Class Fields of Imaginary Quadratic Fields, Algorithmic Number Theory ? ANTS-V, volume 2369 de Lecture Notes in Computer Science, pp.252-266, 2002.

A. Enge-et-françois-morain-marc-fossorier, T. Høholdt, A. Poli, and ´. , Fast Decomposition of Polynomials with Known Galois Group Applied Algebra, Algebraic Algorithms and Error-Correcting Codes ? AAECC-15, volume 2643 de, Lecture Notes in Computer Science, pp.254-264, 2003.

A. Enge and F. Morain, SEA in genus 1: 2500 decimal digits, décembre 2006 Communication sur la Number Theory List, pp.2-0612

A. Enge, M. Pohst, and R. Schertz, Verfahren zur Konstruktion elliptischer KurvenüberKurven¨Kurvenüber endlichen Körpern, 2005.

A. Enge and R. Schertz, Constructing elliptic curves over finite fields using double eta-quotients, Journal de Th??orie des Nombres de Bordeaux, vol.16, issue.3, pp.555-568, 2004.
DOI : 10.5802/jtnb.460

A. Enge and R. Schertz, Modular curves of composite level, Acta Arithmetica, vol.118, issue.2, pp.129-141, 2005.
DOI : 10.4064/aa118-2-3

URL : https://hal.archives-ouvertes.fr/inria-00386309

A. Enge and A. Stein, Smooth ideals in hyperelliptic function fields, Mathematics of Computation, vol.71, issue.239, pp.1219-1230, 2002.
DOI : 10.1090/S0025-5718-01-01352-7

A. Enge and P. Zimmermann, mpc ? A library for multiprecision complex arithmetic with exact rounding. Version 0.4

L. Euler, . Evolutio-producti, and . Infiniti, ? x)(1 ? xx)(1 ? x 3 )(1 ? x 4 )(1 ? x 5 )(1 ? x 6 ) etc. in Seriem Simplicem. Acta academiae scientiarum Petropolitanae, 1780:I: Opera Omnia I, pp.125-169472, 1783.

S. Flon, R. Bao, R. Deng, J. Zhou, and ´. , Fast Arithmetic on Jacobians of Picard Curves, Lecture Notes in Computer Science, vol.2947, pp.55-68, 2004.
DOI : 10.1007/978-3-540-24632-9_5

M. Fouquet, P. Gaudry, and R. Harley, Finding Secure Curves with the Satoh-FGH Algorithm and an Early-Abort Strategy, Advances in Cryptology ? EUROCRYPT 2001, pp.14-29, 2001.
DOI : 10.1007/3-540-44987-6_2

URL : https://hal.archives-ouvertes.fr/inria-00514426

M. Fouquet-et-françois-morain, C. Fieker, and D. R. Kohel, Isogeny Volcanoes and the SEA Algorithm, Algorithmic Number Theory ? ANTS-V, volume 2369 de Lecture Notes in Computer Science, pp.276-291, 2002.

D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly elliptic curves. Preprint, Cryptology ePrint Archive, 2006.

G. Frey, Applications of Arithmetical Geometry to Cryptographic Constructions Finite Fields and Applications ? Proceedings of The Fifth International Conference on Finite Fields and Applications F q 5, pp.128-161, 1999.

G. Frey and H. Rück, A Remark Concerning m-Divisibility and the Discrete Logarithm in the Divisor Class Group of Curves, Mathematics of Computation, vol.62, issue.206, pp.865-874, 1994.

R. Fricke, Lehrbuch der Algebra, volume III ? Algebraische Zahlen, 1928.

P. Furtwängler, Allgemeiner Existenzbeweis f???r den Klassenk???rper eines beliebigen algebraischen Zahlk???rpers, Mathematische Annalen, vol.49, issue.1, pp.1-37, 1907.
DOI : 10.1007/BF01448421

S. Galbraith, F. Hess, and F. Vercauteren, Aspects of Pairing Inversion, IEEE Transactions on Information Theory, vol.54, issue.12, 2007.
DOI : 10.1109/TIT.2008.2006431

S. D. Galbraith, S. M. Paulus, and N. P. Smart, Arithmetic on superelliptic curves, Mathematics of Computation, vol.71, issue.237, pp.393-405, 2002.
DOI : 10.1090/S0025-5718-00-01297-7

S. Galbraith, . Pairings, F. Dans-ian, G. Blake, N. P. Seroussi et al., Advances in Elliptic Curve Cryptography, pp.183-213, 2005.

D. Steven and . Galbraith, Equations for Modular Curves, 1996.

J. Von-zur-gathen and J. Gerhard, Modern Computer Algebra, 1999.
DOI : 10.1017/CBO9781139856065

P. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil descent on elliptic curves, Journal of Cryptology, vol.44, issue.1, pp.19-46, 2002.
DOI : 10.1007/s00145-001-0011-x

URL : https://hal.archives-ouvertes.fr/inria-00512763

P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng, The 2-Adic CM Method for Genus 2 Curves with Application to Cryptography, Lecture Notes in Computer Science, vol.4284, pp.114-129, 2006.
DOI : 10.1007/11935230_8

URL : https://hal.archives-ouvertes.fr/inria-00103435

P. Gaudry and F. Morain, Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm, Proceedings of the 2006 international symposium on Symbolic and algebraic computation , ISSAC '06, pp.109-115, 2006.
DOI : 10.1145/1145768.1145791

URL : https://hal.archives-ouvertes.fr/inria-00001009

P. Gaudry and . Schost, Modular equations for hyperelliptic curves, Mathematics of Computation, vol.74, issue.249, pp.429-454, 2005.
DOI : 10.1090/S0025-5718-04-01682-5

URL : https://hal.archives-ouvertes.fr/inria-00000627

P. Gaudry, E. Thomé, N. Thériault, and C. Diem, A double large prime variation for small genus hyperelliptic index calculus, Mathematics of Computation, vol.76, issue.257, pp.475-492, 2007.
DOI : 10.1090/S0025-5718-06-01900-4

URL : https://hal.archives-ouvertes.fr/inria-00077334

P. Gaudry, An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves, Lecture Notes in Computer Science, vol.1807, pp.19-34, 2000.
DOI : 10.1007/3-540-45539-6_2

URL : https://hal.archives-ouvertes.fr/inria-00512401

P. Gaudry, Fast genus 2 arithmetic based on Theta functions, Journal of Mathematical Cryptology, vol.1, issue.3, pp.243-265, 2007.
DOI : 10.1515/JMC.2007.012

URL : https://hal.archives-ouvertes.fr/inria-00000625

P. Gaudry and . Schost, Construction of secure random curves of genus 2 over prime fields Algorithmic Number Theory ? ANTS-VI, Lecture Notes in Computer Science, vol.3076, pp.239-256, 2004.

A. Gee, Class invariants by Shimura's reciprocity law, Journal de Th??orie des Nombres de Bordeaux, vol.11, issue.1, pp.45-72, 1999.
DOI : 10.5802/jtnb.238

A. Gee, P. Stevenhagen, and J. P. Buhler, Generating Class Fields Using Shimura Reciprocity Algorithmic Number Theory ? ANTS-III, volume 1423 de, Lecture Notes in Computer Science, pp.441-453, 1998.

S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proceedings of the eighteenth annual ACM symposium on Theory of computing , STOC '86, pp.316-329, 1986.
DOI : 10.1145/12130.12162

M. Daniel and . Gordon, Discrete Logarithms in GF (p) using the number field sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.

G. De-la, Recherches d'arithmétique. Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres, pp.265-312, 1773.

G. Guerpillon, Calcul du groupe de classes dans un corps quadratique imaginaire, 2007.

L. C. , G. , and J. Quisquater, A " Paradoxical " Identity- Based Signature Scheme Resulting from Zero-Knowledge Advances in Cryptology ? CRYPTO '88, Lecture Notes in Computer Science, vol.403, pp.216-231, 1990.

P. X. Gutmann, 509 Style Guide, 2000.

L. James, K. S. Hafner, and . Mccurley, A Rigorous Subexponential Algorithm for Computation of Class Groups, Journal of the American Mathematical Society, vol.2, issue.4, pp.837-850, 1989.

G. Hanrot and F. Morain, Solvability by radicals from an algorithmic point of view, Proceedings of the 2001 international symposium on Symbolic and algebraic computation , ISSAC '01, pp.175-182, 2001.
DOI : 10.1145/384101.384125

URL : https://hal.archives-ouvertes.fr/inria-00100542

G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, mpfr ? A library for multiple-precision floating-point computations with exact rounding. Version 2.2

W. B. Hart, Evaluation of the Dedekind Eta Funktion, 2004.

H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen, pp.253-262, 1933.

H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung, Journal für die reine und angewandte Mathematik, pp.193-208, 1936.

E. Hecke, VorlesungenüberVorlesungen¨Vorlesungenüber die Theorie der algebraischen Zahlen, 1923.

F. Heß, Computing Riemann???Roch Spaces in Algebraic Function Fields and Related Topics, Journal of Symbolic Computation, vol.33, issue.4, pp.425-445, 2002.
DOI : 10.1006/jsco.2001.0513

F. Hess, Computing Relations in Divisor Class Groups of Algebraic Curves over Finite Fields, 2004.

F. Hess, I. F. Blake, G. Seroussi, and N. P. Smart, Weil Descent Attacks Advances in Elliptic Curve Cryptography, pp.151-180, 2005.

M. Hindry and J. H. Silverman, Diophantine Geometry ? An Introduction, 2000.

R. Housley, W. Ford, W. Polk, and D. Solo, Internet X.509 Public Key Infrastructure Certificate and CRL Profile, RFC 2459, 1999.
DOI : 10.17487/rfc2459

C. G. and J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum. Dans Gesammelte Werke, pp.49-239, 1969.

J. Michael and . Jacobson-jr, Applying Sieving to the Computation of Quadratic Class Groups, Mathematics of Computation, vol.68, issue.226, pp.859-867, 1999.

J. Michael, S. Jacobson-jr, H. C. Ramachandran, and . Williams, Numerical Results on Class Groups of Imaginary Quadratic Fields Algorithmic Number Theory ? ANTS-VII, Lecture Notes in Computer Science, vol.4076, pp.87-101, 2006.

A. Joux, ?. For-tripartite-diffie, . Hellman, ´. Dans-wieb-bosma, and . Editeur, Algorithmic Number Theory ? ANTS-IV, volume 1838 de Lecture Notes in Computer Science, pp.385-393, 2000.

A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, Lecture Notes in Computer Science, vol.4117, pp.326-344, 2006.
DOI : 10.1007/11818175_19

URL : https://hal.archives-ouvertes.fr/hal-01102034

K. Khuri-makdisi, Linear algebra algorithms for divisors on an algebraic curve, Mathematics of Computation, vol.73, issue.245, pp.333-357, 2004.
DOI : 10.1090/S0025-5718-03-01567-9

F. Klein, Ueber die Transformation der elliptischen Functionen und die Aufl??sung der Gleichungen f??nften Grades, Mathematische Annalen, vol.14, issue.1, pp.111-172, 1878.
DOI : 10.1007/BF02297507

J. Knopfmacher, Abstract Analytic Number Theory de North- Holland Mathematical Library, 1975.

D. Kohel, Endomorphism Rings of Elliptic Curves over Finite Fields, 1996.

C. Lanczos, Solution of systems of linear equations by minimized iterations, Journal of Research of the National Bureau of Standards, vol.49, issue.1, pp.33-53, 1952.
DOI : 10.6028/jres.049.006

T. Lange, Formulae for Arithmetic on Genus 2 Hyperelliptic Curves Applicable Algebra in Engineering, Communication and Computing, vol.15, issue.5, pp.295-328, 2005.

R. Lercier and E. Riboulet-deyris, Elliptic curves with complex multiplication . Communication sur la Number Theory List, 2004.

R. Lercier, Computing Isogenies in GF (2 n ) Dans Henri Cohen, ´ editeur , Algorithmic Number Theory ? ANTS-II, volume 1122 de Lecture Notes in Computer Science, pp.197-212, 1996.

B. Libert, New Secure Applications of Bilinear Maps in Cryptography, Thèse de doctorat, 2006.

S. Louboutin, Computation of class numbers of quadratic number fields, Mathematics of Computation, vol.71, issue.240, pp.1735-1743, 2002.
DOI : 10.1090/S0025-5718-01-01367-9

F. Luca and I. E. Shparlinski, Elliptic Curves with Low Embedding Degree, Journal of Cryptology, vol.19, issue.4, pp.553-562, 2006.
DOI : 10.1007/s00145-006-0544-0

E. Manstavi?ius, Remarks on the semigroup elements free of large prime factors, Lithuanian Mathematical Journal, vol.71, issue.4, pp.400-409, 1992.
DOI : 10.1007/BF00970673

E. Manstavi?ius, Remarks on the semigroup elements free of large prime factors, Schweiger et E. Manstavi?ius, ´ editeurs, New Trends in Probability and Statistic, pp.135-153, 1992.
DOI : 10.1007/BF00970673

M. Ueli, S. Maurer, and . Wolf, The Relationship between Breaking the Diffie? Hellman Protocol and Computing Discrete Logarithms, SIAM Journal on Computing, vol.28, issue.5, pp.1689-1721, 1999.

M. Ueli, Y. Maurer, and . Yacobi, A Non-Interactive Public-Key Distribution System. Designs, Codes and Cryptography, pp.305-316, 1996.

A. J. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, vol.39, issue.5, pp.1639-1646, 1993.
DOI : 10.1109/18.259647

J. Mestre, Lettre adresséè a Gaudry et Harley, 2000.

C. Meyer, Bemerkungen zum Satz von Heegner?StarküberStark¨Starküber die imaginärquadratischen Zahlkörper mit der Klassenzahl Eins, Journal für die reine und angewandte Mathematik, pp.179-214, 1970.

P. Mih?-ailescu, F. Morain, and . Schost, Computing the Eigenvalue in the Schoof?Elkies?Atkin Algorithm using Abelian Lifts, Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation ? ISSAC 2007, pp.285-292, 2007.

A. Miyaji, M. Nakabayashi, and S. Takano, New Explicit Conditions of Elliptic Curve Traces for FR-Reduction, IEICE Trans. Fundamentals, issue.5, pp.84-1234, 2001.

F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.111-138, 1995.
DOI : 10.5802/jtnb.143

F. Morain and . Ecpp, Version 6.4, 2001.

F. Morain, La primalité en temps polynomial, Astérisque, vol.294, pp.205-230, 2004.

F. Morain, La barre des 20000 chiffres est franchie, juin, 2006.

V. Müller, Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer KurvenüberKurven¨Kurvenüber endlichen Körpern der Charakteristik größer drei. Dissertation, 1995.

A. Volker-müller, C. Stein, and . Thiel, Computing discrete logarithms in real quadratic congruence function fields of large genus, Mathematics of Computation, vol.68, issue.226, pp.807-822, 1999.
DOI : 10.1090/S0025-5718-99-01040-6

N. Murabayashi, On Normal Forms of Modular Curves of Genus 2, Osaka Journal of Mathematics, vol.29, pp.405-418, 1992.

V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Mathematical Notes, vol.30, issue.2, pp.165-172, 1994.
DOI : 10.1007/BF02113297

H. J. Nussbaumer, Fast Fourier transform and convolution algorithms, 1981.

P. Andrew and . Ogg, Hyperelliptic Modular Curves, pp.449-462, 1974.

P. C. Van-oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic Applications, Journal of Cryptology, vol.12, issue.1, pp.1-28, 1999.
DOI : 10.1007/PL00003816

D. Page, N. P. Smart, and F. Vercauteren, A comparison of MNT curves and supersingular curves, Applicable Algebra in Engineering, Communication and Computing, vol.17, issue.5, pp.379-392, 2006.
DOI : 10.1007/s00200-006-0017-6

C. Stephen, . Pohlig, E. Martin, and . Hellman, An Improved Algorithm for Computing Logarithms over GF (p) and Its Cryptographic Significance, IEEE Transactions on Information Theory, vol.24, issue.1, pp.106-110, 1978.

J. M. Pollard, Monte Carlo Methods for Index Computation (mod p) Mathematics of Computation, pp.918-924, 1978.

C. Pomerance, S. David, T. Johnson, A. Nishizeki, H. S. Nozaki et al., Fast, Rigorous Factorization and Discrete Logarithm Algorithms, Proceedings of the Japan? US Joint Seminar, pp.119-143, 1986.
DOI : 10.1016/B978-0-12-386870-1.50014-9

J. Gonzàlez and R. , Equations of Hyperelliptic Modular Curves, Ann. Inst. Fourier Grenoble, vol.41, issue.4, pp.779-795, 1991.

R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems based on pairing, The 2000 Symposium on Cryptography and Information Security, 2000.

T. Satoh, The Canonical Lift of an Ordinary Elliptic Curve over a Finite Field and its Point Counting, Journal of the Ramanujan Mathematical Society, vol.15, pp.247-270, 2000.

T. Satoh and K. Araki, Fermat Quotients and the Polynomial Time Discrete Log Algorithm for Anomalous Elliptic Curves, pp.81-92211, 1998.

T. Satoh, B. Skjernaa, and Y. Taguchi, Fast computation of canonical lifts of elliptic curves and its application to point counting. Finite Fields and Their Applications, pp.89-101, 2003.

R. Schertz, Die singulären Werte der Weberschen Funktionen f, f 1, Journal für die reine und angewandte Mathematik, pp.46-74, 1976.

R. Schertz, Zur expliziten berechnung von ganzheitsbasen in strahlklassenk??rpern ??ber einem imagin??r-quadratischen zahlk??rper, Journal of Number Theory, vol.34, issue.1, pp.41-53, 1990.
DOI : 10.1016/0022-314X(90)90051-R

R. Schertz, Weber's class invariants revisited, Journal de Th??orie des Nombres de Bordeaux, vol.14, issue.1, pp.325-343, 2002.
DOI : 10.5802/jtnb.361

L. Schläfli, Beweis der Hermiteschen Verwandlungstafeln für die elliptischen Modulfunktionen, Journal für die reine und angewandte Mathematik, pp.360-369, 1870.

R. Schoof, Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p, Mathematics of Computation, vol.44, issue.170, pp.483-494, 1985.

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.219-254, 1995.
DOI : 10.5802/jtnb.142

R. Schoof-van-der-geer, F. Oort, and J. Steenbrink, The exponents of the groups of points on the reductions of an elliptic curve, Arithmetic Algebraic Geometry, pp.325-335, 1991.

I. A. Semaev, Evaluation of discrete logarithms in a group of $p$-torsion points of an elliptic curve in characteristic $p$, Mathematics of Computation of the American Mathematical Society, vol.67, issue.221, pp.353-356, 1998.
DOI : 10.1090/S0025-5718-98-00887-4

M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative discriminant, Mathematics of Computation, vol.48, issue.178, pp.757-780, 1987.
DOI : 10.1090/S0025-5718-1987-0878705-X

A. Shamir, G. R. Blakley, D. Chaum, and ´. , Identity-Based Cryptosystems and Signature Schemes, Lecture Notes in Computer Science, vol.196, pp.47-53, 1985.
DOI : 10.1007/3-540-39568-7_5

D. Shanks, The Infrastructure of a Real Quadratic Number Field and its Applications, Proc. 1972 Number Th. Conf, pp.217-224, 1972.

G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, 1971.

M. Shimura, Defining Equations of Modular Curves $X_0(N)$, Tokyo Journal of Mathematics, vol.18, issue.2, pp.443-456, 1995.
DOI : 10.3836/tjm/1270043475

´. Victor-shoup-fumy and . Editeur, Lower Bounds for Discrete Logarithms and Related Problems Advances in Cryptology ? EUROCRYPT '97, volume 1233 de Lecture Notes in Computer Science, pp.256-266, 1997.

N. P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One, Journal of Cryptology, vol.12, issue.3, pp.193-196, 1999.
DOI : 10.1007/s001459900052

E. Teske, On random walks for Pollard's rho method, Mathematics of Computation, vol.70, issue.234, pp.809-825, 2001.
DOI : 10.1090/S0025-5718-00-01213-8

N. Thériault, Index Calculus Attack for Hyperelliptic Curves of Small Genus, Advances in Cryptology ? ASIACRYPT 2003, pp.75-92, 2003.
DOI : 10.1007/978-3-540-40061-5_5

C. William and . Waterhouse, Abelian Varieties Over Finite Fields, Annales Scientifiques de l' ´ Ecole Normale Supérieure, 4 e Série, pp.521-560, 1969.

H. Weber, Lehrbuch der Algebra Elliptische Funktionen und algebraische Zahlen, 1908.

A. Weil, Sur les courbes alg??briques et les vari??t??s qui s???en d??duisent (Introduction), Courbes algébriques et variétés abéliennes, 1948.
DOI : 10.1007/978-1-4757-1705-1_46

A. Weng, Class polynomials of CM-fields, 2001.

H. Douglas and . Wiedemann, Solving Sparse Linear Equations Over Finite Fields, IEEE Transactions on Information Theory, vol.32, issue.1, pp.54-62, 1986.

N. Yui and D. Zagier, On the singular values of Weber modular functions, Mathematics of Computation, vol.66, issue.220, pp.1645-1662, 1997.
DOI : 10.1090/S0025-5718-97-00854-5