Skip to Main content Skip to Navigation
Theses

Contributions à l'étude des processus de Lévy et des processus fractionnaires via le calcul de Malliavin et applications en statistique

Abstract : In the first part, we establish Itô's and Tanaka's formulas for the multidimensional bifractional Brownian motion. We study the existence of an occupation density for certain processes related to fractional Brownian motion.
In the second part, we study the cubic variation of Rosenblatt process. We consider the problem of efficient estimation for the drift of fractional Brownian motion . We also construct superefficient James-Stein type estimators which dominate, under the usual quadratic risk, the natural maximum likelihood estimator.
In the last part, we study Skorohod integral processes on Lévy spaces and we prove an equivalence between this class of processes and the class of Itô-Skorohod process. We give a link between stable proceses and selfsimilaire processes through stochastic processes which are infinitely divisible with respect to time .
Document type :
Theses
Complete list of metadatas

Cited literature [114 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00382521
Contributor : Khalifa Es-Sebaiy <>
Submitted on : Friday, May 8, 2009 - 2:01:47 AM
Last modification on : Tuesday, November 17, 2020 - 11:18:13 AM
Long-term archiving on: : Monday, October 15, 2012 - 10:01:50 AM

Identifiers

  • HAL Id : tel-00382521, version 1

Collections

Citation

Khalifa Es-Sebaiy. Contributions à l'étude des processus de Lévy et des processus fractionnaires via le calcul de Malliavin et applications en statistique. Mathématiques [math]. Université Panthéon-Sorbonne - Paris I, 2009. Français. ⟨tel-00382521⟩

Share

Metrics

Record views

1073

Files downloads

1181