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Introduction

Let us denote by H a separable Hilbert space with norm |-| and inner product
(-,+) and consider the stochastic differential equation in H

dX (t) = (AX(t) + F(X(t)))dt + BdW(t), t=>0

(1)
X(0) =z € H,

where A : D(A) C H — H is the infinitesimal generator of a strongly
continuous semigroup ¢4, F: D(F) C H — H is nonlinear, B : H — H is
linear and continuous and (W ());>o is a cylindrical Wiener process, defined
on a stochastic basis (2, F, (F;)i>0, P) and with values in H.

We shall assume that problem (1) has a unique solution X (¢,z) and we
denote by P;, t > 0, the corresponding transition semigroup, which is defined
by setting

Pp(z) =E[p(X(t,z)], t>0,z€H (2)

where ¢ : H — R is a suitable function. To fix the ideas, for £ > 0 we
consider the space Cy(H) of all continuous mappings ¢ : H — R such that

R, o p(z)
1+ |z|*
is uniformly continuous and
o ()]

=Ssup ———— < O
||90||0J€ :cEIl:{) 1+ |1’|k

We shall write C,(H) := Cyo(H). Under suitable conditions the semigroup
P, acts on Cy,(H).

It is well known that the function u(t, z) := P,p(z) is formally the solution
of the Kolmogorov equation

Dyu(t, x) = Kou(t,z), u(0,z) = ¢(x), (3)
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where K is given by
1
Kogp(x) = s Ti[BB*Dp(x)] + {Ax + F(x), Dp(x)), x € H, (4

and B* is the adjoint of B. The expression (4) is formal: it requires that
@ is of class C?, that BB*D?*p(z) is a trace class operator and that z €
D(A)N D(F). So, it is convenient to define Ky in a suitable domain D(Kj).

We start by the set of ezponential functions E4(H), which consists of the
linear span of the real and imaginary part of the functions

H—C, zw @M  heD(AY),

where D(A*) is the domain of the adjoint operator of A. By a simple com-
putation we see that K is well defined in £4(H) and

Kop(r) = —=|Bh[*¢(x) +1i ((z, A*h) + (F (), h)) ¢(z), ()

for any ¢ € E4(H) and x € D(F). Notice that if D(F) = H and |F(z)| <
c(1 + |z]) for some ¢ > 0 then Koo € Cp1(H).

The semigroup P, is not strongly continuous in Cy,;(H) in all interesting
cases. It is continuous with respect to a weaker topology, see, for instance, [8],
9], [29], [31], [40]. We shall follow the approach of m-semigroups introduced
by Priola. In this approach we define the infinitesimal generator K of P, in
the space Cj ;(H) as follows

"

D(K) = {QO S Cb’k(H) :dg € Obk(H)’tE% Ptﬁﬂ(iﬂ)t_ gO(:L") = g(.’E),
e OO} (6)

o€ D(K), z € H.

Po—
Vo € H, sup a4
te(0,1)

A problem which arises naturally is to investigate the relationships between
the “abstract” operator K and the “concrete” differential operator K defined

in (5).

Let us briefly describe how this problem has been discussed so far.
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A well known approach consists in solving equation (3) and look for an
invariant measure v for the semigroup P;, that is, a probability measure on
H such that

| Petavtdn) = [ plopido)

H H

for any t > 0, ¢ € Cy(H). It is straightforward to check that for any p > 1,
Y e Cb(H)

L%WWMMSLBWW@WMZAM%MM)

Hence, the semigroup P, can be uniquely extended to a strongly continuous
contraction semigroup in LP(H;v), for any p > 1. Let us denote by K, :
D(K,) C L*(H;v) — LP(H;v) its infinitesimal generator. If the invariant
measure v enjoys suitable regularity properties then K, is an extension of
Ky and K,p = Kyp, for any ¢ € E4(H). The next step is to prove that
(Ko,E4(H)) is dense in D(K) endowed with the graph norm. That is, that
Ea(H) is a core for (K,, D(K,)). Many papers have been devoted to this
approach, see [3], [17], [19], [20], [36] and references therein.

An other approach, based on Dirichlet forms, have been proposed to
solve (3) directly in the space L?(H; p), see [2], [30], [35], [44] and references
therein. Here p is an infinitesimally invariant measure for K. Differently
from the previous strategy, the solution is used to construct weak solution to
(1), for instance in the sense of a martingale problem as formulated in [45].

We stress that in the described strategies equation (3) is considered in
some [P-space. Recently, increasing attention has been devoted to study
Kolmogorov operators like K in spaces of continuous functions. We mention
here the papers [41], [42], where the stochastic equation

(7)

dX, = (AX(t) + F(X(t))) dt +VAdW (t)
X(0) =z € H,

has been considered. Here H := L?(0,1), W (t), t > 0 is a cylindrical Wiener
process on H, A : H — H is a nonnegative definite symmetric operator of
trace class, A is the Dirichlet Laplacian on (0,1), F : H}(0,1) — H is a
measurable vector field of type

Fz)(r) dii (o) (r) + ®(r,x(r)), =€ H(0,1), e (0,1).



viii Introduction

Here H}(0,1) denotes the usual Sobolev space in L?*(0,1) with Dirichlet
boundary conditions. The associated Kolmogorov operator is

Lo(z) = %Tr (AD2g0(x)) + (Az + F(x), Dp(x)),

where ¢ : H — R is a suitable cylindrical smooth function. Roughly speak-
ing, the authors show that L can be extended to the generator of a strongly
continuous semigroup in a space of weakly continuous functions weighted by
a proper Lyapunov-type function. Then, they construct a Markov process
which solves equation (7) in the sense of the martingale problem.

The goal of this thesis is twofold. First we want to show that K is
the closure (in a suitable topology) of Ky. To get our results, we need, of
course, suitable regularity properties of the coefficients and a suitable choice
of D(Kp). Second we want to study the following equation for measures i,
t>0on H,

d

G | etz - /H Ko()ym(dr), VeeD(K), te0.T), (8)

where i is given in advance. The precise definition will be given later. Since
the operator K is abstract, it is of interest to consider the concrete equation
d

g [ e@mtin = [ Kp@ptan), ¥oe DKo, 10T ©)

For this problem uniqueness is difficult and existence is easier.

Let us give an overview on some recent developments about this problem
in the finite and infinite dimensional framework.

In [5] (see also [6] for the elliptic case) a parabolic differential operator of
the form

d d
Lu(t, z) = du(t, x) + Z a” (t,2)0, 0y, u(t, ) + Z b (t, 2)0p,u(t, ),
ij=1 i=1
is considered. Here (¢,z) € (0,1)xR%, u € C5°((0,1)xR?) and a, bi: (0,1)x
R? — R are suitable locally integrable functions. The authors prove that if
there exists a suitable Lyapunov-type function for the operator L, then for

any probability measure v on R? there exists a family of probability measures
{p, t € (0,1)} such that

/01 /Rd Lu(t, z)p(dz)dt = 0
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for any u € C§°((0,1) x R?) and limy_o fga ((2)p(dx) = [4a ((x)v(dx), for
any ¢ € Cg°(R%). Uniqueness results for this class of operators have been
investigated in [4].

Equations for measures in the infinite dimensional framework have been

investigated in [7]. Here it has been considered a locally convex space X and
an equation for measures formally written as

| Hettoutan =0 (10)

where ¢ : X — R is a suitable “cylindrical” function and H is an elliptic
operator of the form

Ho(t,z) =Y a?(t,2)0,,00,0(z) + > _V(t2)00(x), (tx)€(0,1) x X,
i,j=1 i=1

where a/, b': (0,1) x R? — R are suitable locally p-integrable functions. The
authors showed that under certain technical conditions, it is possible to prove
existence results for the measure equation (10).

At our knowledge, there are no uniqueness results for the measure equa-
tion (9) in the infinite dimensional framework .

The main novelty of this thesis consists in showing existence and unique-
ness of a solution for problem (9). Differently from [7], we deal with time in-
dipendent differential operators which act on continuous functions defined on
some separable Hilbert space. We consider important cases such as Ornstein-
Uhlenbeck, reaction-diffusion and Burgers operators.

Let us describe the content of the thesis.

In Chapter 1 we consider an abstract situation, a general stochastically
continuous Markov semigroup P; with generator K. Under a suitable as-
sumption we prove general existence and uniqueness results for equation (8).

In Chapter 2 we consider the case when F' = 0. In this case P; reduces
to the Ornstein-Uhlenbeck semigroup. We prove that K is the closure of K
in Cy(H) (this result was known, see [31]) then we solve both equation (8)
and equation (9).
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In Chapter 3, we consider the case when F' is a bounded and Lipschitz
perturbation of A. We prove that K is the closure of Ky in Cy(H). The
results of chapters 2, 3 are contained in the paper [37].

In Chapter 4, we consider the case when F' is a Lipschitz perturbation of
A. We prove that K is the closure of K in Cj;(H) (this result was known in
Cy2(H) with more regular coefficients, see [21], [31]). We prove existence and
uniqueness of a solution for problems (8), (9) when' [, (1+ [z|)|uo|rv (dz) <
0.

In Chapter 5 we consider reaction diffusion equations of the form
dX(t,€) = [AcX(t, &) + AX (L, &) — p(X(¢,§))]dt + BAW(t,€), €O,
X<t7€):07 t2075680,

X(0,8) ==, €€0O,z€H,

where A¢ is the Laplace operator, B € L£(H) and p is an increasing poly-
nomial with leading coefficient of odd degree d > 1. Here O = [0, 1]" and
H = L*(O). We prove that K is the closure of K; in the space of all contin-
uous functions ¢ : L?¢(O) — R such that

Lot

— Y < Q.
z€L24(0) 1+ |x|dL2d(o)

Moreover, we prove existence and uniqueness of a solution for problems (8),
(9) when / (1+ |x!dLQd(O)) |to|7v (dx) < co. The results of this chapter seem
H
to be new and are contained in the submitted paper [38].
In Chapter 6 we consider the stochastic Burgers equation in the interval

[0,1] with Dirichlet boundary conditions perturbed by a space-time white
noise

( 1
dX = (D?X +3 Dg(Xz)) dt +dw, ¢e€][0,1],t>0,

X(t,0) = X(t,1) = 0

kX(Oag) = Qf(f), 5 S [07 1]7

Here |po|rv is the total variation measure of yg
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where x € L?(0,1). We prove that K is the closure of Kj in the space of all
continuous functions ¢ : L5(0,1) — R such that

sup ()]

< Q.
zers(o,) 1+ |x|%6(o,1)|x|%4(0,1)

We prove existence and uniqueness of a solution for problems (8), (9)
when / (1+ |l‘|i6(0’1)|x|%4(071))|M0|TV(dZE) < 00. The results of this chapter
H

seem to be new and they are the object of a forthcoming paper.
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0.1 Functional spaces 1

0.1 Functional spaces

Let E, E’ two real Banach spaces endowed with the norms | - |g, | - |z

We denote by L(E, E’) the Banach algebra of all linear continuous
operators T' : ' — E’ endowed with the usual norm

TN eee.ery = sup{[Tx|pr; @ € E, |2lp =1}, T € L(E, EY).

If E = FE', we shall write £L(FE) instead of L(E, E). If E' = R, the
space (E,R) is the topological dual space of F, and we shall write E*
instead of (E,R).

We denote by C(F; E') the Banach space of all uniformly continuous
and bounded functions f : F — E’, endowed with the norm

Iflleye.ery = sup |f(z)] e
zelE

If B/ =R, we shall write C,(F) instead of C,(E;R). In some cases, we
shall denote the norm of Cy(E) by || - ||o. However, this notation will
be explicitly given when it is necessary.

The space C}(E; E') consists of all f € C,(F; E") which are Fréchet
differentiable with differential Df € C,(E; L(E, E")), that is Df : B —
L(E, E') is uniformly continuous and bounded. The space C}(FE; E')
is a Banach space with the norm

1 lcpeery = 1flleyey + 1D flleye.ceey)

For any k € N, k > 1, the space Cf(E; E') consists of all f € Cy(E; E')
which are k-times Fréchet differentiable with uniformly continuous and
bounded differentials up to the order k.

For any k € N, k£ > 1, the Banach space C, x(E) consists of all functions
¢ : B — R such that the function £ — R, z — (1+]z|*) !¢ (z) belongs
to Cp(E). We set [[flox = [I(1+ |- %)~ ¢llo-

M(E) denotes the space of all finite Borel measures on E. We denote
by |p|rv the total variation measure of u € M(E).

If V: E — R is a positive measurable function, My (E) is the set of
all Borel measures on E such that

/E(l + V(2))|p|rv (dr) < oo.

If V(z) = |z|% for some k > 1 we write My (E) instead of My (E).
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In most of the cases, we shall work with Hilbert spaces. Let H be a separable
Hilbert space of norm | - | and inner product (-,-). The following notations
are used

e Y(H) is the cone in L(H) consisting of all symmetric operators. We
set
L*(H)={T €X(H): (Tx,z) >0, z,ye€ H}.

e [1(H) is the Banach space of all trace class operators endowed with
the norm

ITll = Te VT, T € Ly(H),
where Tr represents the trace. We set L (H) = Ly(H) N L*(H);

0.1.1 Gaussian measures

Let m € R and A € Rt. The Gaussian measure of mean m and variance \
is the measure on R

1 _(e=m)?

Npr(dz) = { @eN12°

dz, it A>0,

where dx is the Lebesgue measure on R and 6, is the Dirac measure at m.

Let n > 1. We are going to define the Gaussian measure on R" of
mean a € R" and covariance Q € L*T(R"). Since @ is linear, symmetric
and positive, there is an orthonormal basis {ej,...,e,} and n nonnegative
numbers {1, ..., A\, } such that

Q@i = )\2‘61', 1€ {1,,n}
Let us consider the linear transformation R : R” — R" defined by
r— Rr = ((z,e1),...,(x,en)).

As easily seen, R is orthonormal. Let us consider the product probability
measure on R"”

p(d€) == T Nigayn (d&)
=1

and define the Gaussian measure N, o by

| etaNugtds) = [ B Outas)
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for any integrable Borel real function ¢ : R — R.
If Q@ € L*T(R") is strictly positive, that is det@ > 0, the Gaussian measure
N(a, Q) can be represented by the explicit formula

N, oldz) = (2m) "2 (detQ)~2e (@ @-ae=algy 3 ¢ R™.

When a = 0, we shall write Ng instead of N(a, Q).

In order to extend the notion of Gaussian measure on a Hilbert space, we
need to introduce some concepts.

Let R be the set of all real valued sequences®. R* may be identified
with the product of infinite copies of R, that is

R =[] X,

neN

where X,, = R, for any n € N. Any element of R* is of the form (x,)nen,
with z,, € R. B(R*) is the o-algebra of R* generated by the cylindrical sets

{(ajn>neN € R : Ly € Al? s Ty, € An}’

where n € N, 4y,...,i, € N, A, € BR),j=1,...,n.
We identify the Hilbert space H with ¢2, that is the set of all sequences
(Tn)nen € R such that

oo

Z |z, |* < oo

n=1

It is easy to see that ¢? is a Borel set of R*.
Now let () be a symmetric, nonnegative, trace class operator. Briefly,
Q € L (H). We recall that Q € L{(H) if and only if there exists a com-
plete orthonormal system {e;} in H and a sequence of nonnegative numbers
(A& )ken such that
Qek = )\kek, keN

and

TFQ = Z)\k < +00.
k=1

For any a € H and Q € L{(H) we define the Gaussian probability
measure N, o on R* as a product of Gaussian measures on R, by setting

NG,Q:HNUL}C,/\M ap = <a,€k>, kGN,

k=1

2In the literature it is often denoted by R¥ or RN
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where N,, », is the Gaussian measure on R with mean a; and variance Aj.
If a = 0 we shall write Ng for brevity.
After a straightforward computation, we see that

/ ]2 Nugdz) = 3 (a2 + M) = [lal% + TrQ < oo,
*~ k=1

since a € H and @) is of trace class. It follows that the measure N, g is

concentrated in H, i.e.
:/ Na7Q(dZL') =1.
H

For this reason, we say that N(a, Q) is a Gaussian measure on H.
Let us list some useful identities. The proof is straightforward and may
be found in several texts (see, for instance, [22], [23]). We have

/H<x, h)N,o(dx) = (a,h), he H;

/H(x —a,h)(z —a,k)N,qo(dx) = (Qh, k), h, ke H,;

/ ei<$’h>Na7Q(dx) = e“a’h)_%@h’m, heH.
H

0.2 The stochastic convolution

Here and in what follows we assume the following hypothesis, typical of the
infinite dimensional framework (see [9], [22], [25], [26])

Hypothesis 0.1. (i) A: D(A) C H — H is the infinitesimal generator of
a strongly continuous semigroup e of type G(M,w), i.e. there exist
M >0 and w € R such that ||| zcry < Me®t, t > 0;

(i1) B € L(H) and for any t > 0 the linear operator Qy, defined by
t
Qix = / BB e xds, v € H, t >0 (11)
0

has finite trace;

(111) (W (t))i>o is a cylindrical Wiener process, defined on (2, F, (Ft)i>o0, P)
and with values in H.
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We are going to define the stochastic convolution W4(¢). Formally, the
Wiener process W (t), t > 0 can be written as the series

W(t) =" Bils)ex

where {e;,k € N} is an orthonormal basis for H and (i(-), ¥ € N are
mutually indipendent brownian motions. We formally write Wy(t) as the

series
© ot
> / ¢4 BerdBi(s). (12)
k=1"0
The generic term .
/e(t_S)ABekdﬁk(s),
0

is a vector valued Wiener integral, which can be defined as
t o0 t
/ e(tfs)ABekdﬁ]xs) — Z/ <€(tfs)ABek’ €h>dﬁk(8) e
0 W1 70

It is easy to check that

t 2 ¢
/ eI Bedfi(s)| = / e =94 Bey |ds.
0 0

Theorem 0.2. Assume that Hypothesis 0.1 holds. Then for any t > 0 the
series in (12) is convergent in L*(Q, F,P; H) to a Gaussian random variable
denoted W(t) with mean 0 and covariance operator @y, where @ is defined
by (11). In particular we have

E[[Wa()"] = Tr Q:.
Proof. See, for instance, [22]. O

We study now Wy(t) as a function of ¢. To this purpose, let us introduce

the space

Cw ([0, T} L*(Q, F, Py H)) = Cw ([0, T); H))
consisting of all continuous mappings F': [0, 7] — L*(Q2, F,P; H) which are
adapted to W, that is such that F(s) is F,-measurable for any s € [0, 7.
The space Cyw ([0,T]; H)), endowed with the norm

1/2
1 E v (o750 = (Sup IE(IF(lt)|2)> :

te[0,T

is a Banach space. It is called the space of all mean square continuous adapted
processes on [0, T] taking values on H.
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Theorem 0.3. Assume that Hypothesis 0.1 holds. Then for any T > 0 we
have that Wa(-) € Cw([0,T]; H).

Proof. See, for instance, [22]. O

Example 0.4 (Heat equation in an interval). Let H = L?(0,7), B = I and
let A be given by (?)

D(A) = H?*(0,m) N Hy(0, ),
(13)
Az = Diz, x € D(A).
A is a self-adjoint negative operator and

Aej, = —k’2€k, k eN,

where

ern(€) = (2/m)Y?sinké, €e€(0,7], keN.

Therefore in this case @), is given by

t
1
th—/eQSA:cds—§(thA DA 'z, xe€H
0
Since
1l Kl—e2 1 X1
TQ=-> — <>y — <

we have that Q; € L (H). Therefore Hypothesis 0.1 is fulfilled.

Example 0.5 (Heat equation in a square). We consider here the heat equa-
tion in the square O = [0, 7]Y with N € N. We choose H = L?(0), B =1,

and set
D(A) = H*(0) N Hy(0),

Ax = Az, x € D(A),

where A¢ represents the Laplace operator.
A is a self-adjoint negative operator in H, moreover

Aey, = —’]{7|2€k, ke NN,

SH¥(0,7),k € N represent Sobolev spaces and Hg (0, 7) is the subspace of H'(0, ) of
all functions vanishing at 0 and 7.
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where
WP =4+ By (b hy) €NV,

and
ern(€) = (2/m)N?sin ki€ - - -sinkné, €€ 0,7]N, ke NV,

In this case
1
Tr Q= Z W (1 — e_2t|k|2> =400, t>0,
keNN
for any N > 1.
Choose now B = (—A)™*/%2 a € (0,1), so that
Bx = Z ||~ (x, ex)e.
keNN
Then we have
1 2
Tr Q: = Z W(l—EQtIM ), t >0,
keNN

and so, Tr @; < o0 provided a > N/2 — 1.

0.2.1 Continuity in time of the stochastic convolution

We assume here that Hypothesis 0.1 is fulfilled. We know by Theorem 0.3
that Wy(+) is mean square continuous. We want to show that Wu(-)(w) is
continuous for P-almost all w, that is that W4(+) has continuous trajectories.
For this we need the following additional assumption.

Hypothesis 0.6. There exists o € (0, 3) such that

1
/ s72 Ty [e*Ce*]ds < +oo.
0

Note that Hypothesis 0.6 is automatically fulfilled when C' is of trace-
class.

We shall use the factorization method, (see [12]) based on the following
elementary identity

t
T

t— o) Yo —s) %o = 0<s<o<t 14

J R e R e S EREL S A
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where o € (0, 1). Using (14) we can write

- t
Wa(t) = 2214 / At — )Y (o) do, (15)
T 0
where Y
Y(o) = / e g — §)"*BdW (s), o >0. (16)
0

To go further, we need the following analytic lemma.

Lemma 0.7. Let T > 0, € (0,1),m > 1/(2a) and f € L*™(0,T; H). Set
t
Flt) = / DAL 50971 f(o)do, € [0,T].
0

Then F € C([0,T]; H) and there ezists a constant Cy, 7 such that
F()] < Coutl| fllizmorary, 1 € 0.7]. (a7)

Proof. Let My = sup;co 7y le"|| and ¢ € [0, T]. Then by Hélder’s inequality
we have,

2m—1

t om 2m
|F(t)| < My ( / (t — 0)(a1)2m1d0> | fl2m(o.1:m)
0

(18)

2m—1

2m — 1 2m 1
= MT <—) 4 am ’f|L2m(O,T;H)7

2am — 1

that yields (17). It remains to show the continuity of F. Continuity at 0
follows from (18). So, it is enough to show that F' is continuous at any
to > 0. Forz—:<%°set

F.(t) = /Ot_s =t — )2 f(o)do, te0,T].

F. is obviously continuous on [e,T]. Moreover, using once again Holder’s
inequality, we find that

2m—1

2m — 1 2m 1
|F(t) — F.(t)| < Mrp (—> £ m | f|L2m (0.1 m)-

2ma — 1

Thus lim._o F.(t) = F(t), uniformly on [%,T], and F is continuous at ¢y as

required. O]
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Now we are ready to prove the almost sure continuity of Wu(-).

Theorem 0.8. Assume that Hypotheses 0.1 and 0.6 hold. Let T > 0 and
m € N. Then there exists a constant C,, 1 > 0 such that

E<prMMM>s@J. (19)

te[0,7]

Moreover Wa(+) is P—almost surely continuous on [0, T].

Proof. Choose a € (0, 3=) and let Y be defined by (16). Then, for all o €

(0,71, Y(0) is a Gaussian random variable Ng, where
S,x :/ s 2% Qe*N xds, x € H.
0

Set Tr (S,) = Cu . Then for any m > 1 there exists a constant D,,, > 0
such that
E (|Y(0)]"™) < Dpoo™, o €[0,T).

This implies

g 2 D 1
E (Y (0)]2™) do < e gt
| B @R do < D gne

so that Y(-)(w) € L*™(0,T; H) for almost all w € €. Therefore, by Lemma
0.7, Wa(-)(w) € C([0,T]; H) for almost all w € Q. Moreover, we have

Cur ™ [F
sup |WA(t)|2m < < : ) / |Y(O')|2md0'.
0

te[0,7) ™

Now (19) follows taking expectation. ]

0.2.2 Continuity in space and time of the stochastic
convolution

Here we assume that the Hilbert space H coincides with the space of functions
L*(O) where O is a bounded subset of RY. We set

Wat)(€) = Wa(t,§), t>0,£€0.

We want to prove that, under Hypothesis 0.9 below, W4(+,-)(w) € C([0,T] x
O) for P-almost all w € Q.

Hypothesis 0.9.
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(i) For any p > 1 the semigroup et has a unique extension to a strongly
continuous semigroup in LP(O) which we still denote et4

(ii) There exist r > 2 and, for any ¢ € [0,1], C. > 0 such that

4% | weno) < Cet ™7 |2| ooy for all 2 € LP(O). (20)

(11i)) A and C are diagonal with respect to the orthonormal basis {ey}, that
is there exist sequences of positive numbers { O }ren and { g tren such
that

Ae, = —frer, Cep, = Aper, ke N.

Moreover, B, T +00 as k — oo.

(iv) For allk € N, e, € C(O) and there exists k > 0 such that

lex(©)] <k, keN, £€O. (21)

(v) There exists a € (0,3) such that

Z)\kﬂm L (22)

Example 0.10. Assume that A is the realization of an elliptic operator of
order 2m with Dirichlet boundary conditions in O. Then (i) holds, (ii) holds
with 7 = 2m, see e.g. [1]. (iv) does not hold in general. As easily seen, it is
fulfilled when O = [0, 7|".

If O =10,7], Ais as in (13) and @ = I, then Hypothesis 0.9 is fulfilled
with » =2 and « € (0,1/4).

To prove continuity of Wa(t, &) on (t,£) we need an analytic lemma.

Lemma 0.11. Assume that Hypothesis 0.9 holds. Let T > 0, a € (0,1/2),
m >+ and f € L*([0,T] x O). Set

t
Flt) = / DAL 50971 f(o)do, € [0,T].
0
Then F € C([0,T] x O) and there exists a constant Cr,,, such that

sup | F(t,&)[*" < CTm|f’L2m ([0,T]x0O) (23)
te[0,T],6€0
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Proof. Set e = 1 ar. Taking into account (20) we have that

t
F(O)lveano) < [ (6= 0" el (o) w-moydo
0

t
<c. / (t — 0)*> ()] am (o do
0

By using Hélder’s inequality and taking into account that “°=2 > 1, we

2m—1
find

t 2m—1
- m(a—2)
E () oo < C- ( / (t - )5 da) 12 om0

Since € > ﬁ we obtain (23) a consequence of Sobolev’s embedding theorem.

]

We are now ready to prove

Theorem 0.12. Assume that Hypotheses 0.1 and 0.9, hold. Then W(-,-)
is continuous on [0,T] x O, P—almost surely. Moreover, if m > 1/a we have

E( sup ,WA@,@W) < +oo.
(t,8)

€[0,T]x0O

Proof. We write W4(t) as in (15), where Y is given by (16) with B = v/C.
Let us prove that Y € LP([0,T] x O), p > 2, P-almost surely. First we notice
that for all o € [0,T], £ € O, we have, setting Y (0)(¢) = Y(0,§),

Y(0,€) = ZW | e o =9 eanio)

Thus, Y (0,£) is a real Gaussian random variable with mean 0 and covariance
(0, &) = given by

=3 n /0 e=2ks 52, (£)[2dis.
k=1

Taking into account (21) and (22) we see that

00 +oo
S Z Ak / e~ 2P g2 ey (€))ds
k=1 0

:/{2220‘ 1F Z)‘kﬁ2a 1
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Therefore there exists C,, > 0 such that
E|Y (0,8 < Cpp, m > 1.

It follows that .
B[ [ V.0 de < TCl0)
o Jo
where || is the Lebesgue measure of O. So Y € L*"(]0,T] x O) and con-

sequently Wy € C([0,T] x O), P-a. s. Now the conclusion follows taking
expectation in (23), with W, replacing F' and Y replacing f. O



Chapter 1

Measure valued equations for
stochastically continuous
Markov semigroups

1.1 Notations and preliminary results

Let E be a separable Banach space with norm |-|g. We recall that Cy(E) is the
Banach space of all uniformly continuous and bounded functions ¢ : E — R
endowed with the supremum norm

pllo = sup |o(z)].
zeFE

Definition 1.1. A sequence (p,)neny C Cp(E) is said to be m-convergent to
a function ¢ € Cy(F) if for any = € E we have
lim ¢, () = p(z)

n—oo

and
sup ||@nllo < 0.
neN

Similarly, the m-indexed sequence (¢, . nm)nieN.. nmen C Cp(E) is said to
be m-convergent to ¢ € Cy(F) if for any ¢ € {2,...,m} there exists an i — 1-
indexed sequence (¢, n; 1 )men,..n; 1en C Cp(E) such that

-----

and
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We shall write
llm A 11m (,Onl,...m,m ;

n1—00 T, — 00

2
™ .
or ¢, — @ as n — 0o, when the sequence has one index.

It is worth noticing that if the sequence (@nm)nmen C Cyp(E) is 7-
convergent to ¢ C C,(E) we can not, in general, extract a subsequence
(Vny,.my, Jken Which is still 7-convergent to ¢. This is the reason for which we
consider multi-indexed sequences. However, in order to avoid heavy nota-
tions, we shall often write a multi-indexed sequence as a sequence with only
one index.

Remark 1.2. As easily seen the m-convergence implies the convergence in
LP(E; ), for any p € M(E), p € [1,00).

Remark 1.3. The notion of m-convergence is considered also in [29], under
the name of boundedly and pointwise convergence.

Remark 1.4. The topology on C,(FE) induced by the m-convergence is not
sequentially complete. For a survey on this fact see [31], [40] .

Definition 1.5. For any subset D C Cy(E) we say that ¢ belongs to the
m-closure of D, and we denote it by ¢ € D", if there exists m € N and an
m-indexed sequence {¢n,  n. tnien,..mmen C D such that

lim -+ lim @n, ., = @

n1—00 T, — 0O

Finally, we shall say that a subset D C Cy(E) is m-dense if D" = Cy(E).

1.2 Stochastically continuous semigroups

We denote by B(E) the Borel o-algebra of E.

Definition 1.6. A family of operators (P;)>0 C L(Cy(E)) is a stochastically
continuous Markov semigroup if there exists a family {m(z,-), t > 0, z € E}
of probability Borel measures on F such that

e the map Rt x F — [0,1], (t,z) — m(x,T") is Borel, for any Borel set
I' e B(E);

o Pp(x) = fE o(y)m(x, dy), for any t > 0, p € Cp(E), x € E;

e for any p € Cy(F), x € E, the map Rt — R, t — P,p(z) is continuous;
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o P, = PP, and Py = Idg.

Remark 1.7. Notice that if (¢n)nen C Co(E) is a sequence such that @, -
¢ € Cy(E) asn — oo, then Pip, — Pip asn — oo, for any t > 0.

In [40] semigroups as in Definition 1.6 are called transition m-semigroups.
We have the following

Theorem 1.8. Let (P;);>0 be a stochastically continuous Markov semigroup.
Then the family of linear maps P} : (Cy(E))* — (Cy(E))*, t > 0, defined by
the formula

(0, PIF) £cy(E), (o)) = (Pips F) £(cy(B), (Cy(B)))s (1.1)

where t > 0, F' € (Cy(E))*, ¢ € Cu(E), is a semigroup of linear maps on
(Cy(E))* of norm 1 and maps M(E) into M(E).

Proof. Clearly, Py is linear. Let F € (Cy(E))", t > 0. We have, for any
NS Cb(E),
(o, BLF) o), iz < lllol[ Fllcym)--

Then P, : (Cy(E))* — (Cp(E))* has norm equal to 1. Moreover, by (1.1) it
follows easily that P;(P*F) = Py, F, for any t,s > 0, F € (Cy(E))*. Hence,
(1.1) defines a semigroups of application in (Cy(E))* of norm equal to 1.

Now we prove that P : M(E) — M(E). According to Definition 1.6, let
{m(z,-), € E} be the family of probability measures associated to P;, that
is Pp(x) = [, e(y)m(x,dy), for any ¢ € Cy(E). Note that that P > 0 for
any ¢ > 0. This implies that if (p, F) > 0 for any ¢ > 0, then (p, PF) >0
for any ¢ > 0. Hence, in order to check that P : M(E) — M(E), it is
sufficient to take p positive. So, let © € M(E) be positive and consider the
map

A:B(E) >R, T A= / o D) p(de).
E

Since for any I' € B(E) the map E — [0, 1], + — m(x, ") is Borel, the above
formula in meaningful. It is easy to see that A is a positive and finite Borel
measure on E, namely A € M(FE). Let us show A = P} p.

Let us fix ¢ € Cy(F), and consider a sequence of simple Borel functions
(¢n)nen which converges uniformly to ¢ and such that |p,(z)| < |p(x)],
x € F. For any x € E we have

n—oo

lim Ewn(y)m(r,dy) = /E e(y)m(z, dy) = Pro(x)
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and

sup < [lllo-

zelE

/E en(y)me(, dy)

Hence, by the dominated convergence theorem and by taking into account
that ¢, is simple, we have

[ et =i [ e@nn) = i [ ([ eomiedn ) utas)

n—oo E n—oo
- [ ([ etomta.an) o) = [ Piptautan)
5 \JE E
This implies that Py = A and consequently Py € M(E). O

1.2.1 The infinitesimal generator

It is clear that a stochastically continuous Markov semigroup is not, in gen-
eral, strongly continuous. However, we can define an infinitesimal generator

(K, D(K)) by setting

P, —
D) ={ o € CulE) : 39 € Cu(E), lim TEDZED ),
Vr e E, sup M <oo}
S t€(0,1) 0 (1.2)
P, —
Kip(r) = lim t‘p(z)t 2@ e DK s e B
\ t—

The next result is proved in Propositions 3.2, 3.3, 3.4 of [40]. For the reader’s
convenience, we give the complete proof.

Theorem 1.9. Let us assume that (P;)i>o is as in Definition 1.6 and let
(K, D(K)) be its infinitesimal generator, defined as in (1.2). Then

(i) for any ¢ € D(K), Pyp € D(K) and KPyp = PKo, t > 0;

(ii) for any ¢ € D(K), x € E, the map [0,00) — R, t — Pp(x) is
continuously differentiable and (d/dt) Pip(x) = PKp(x);

(i1i) for any f € Cy(E), t > 0 the map E — R, 1z fot P, f(x)ds belongs
to D(K) and it holds

K(/OtPsfds) =Pf—f.
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Moreover, if ¢ € D(K) we have

K(/OtPsfds> :/OtKPsfds;

(iv) K is a w-closed operator on Cy(E), that is for any sequence {p, tneny C
Cy(E) such that o, = o € Cy(E) and Ky, = g € Co(E) asn — oo it
follows that ¢ € D(K) and g = Kp;

(v) D(K) is w-dense in Cy(E);
(vi) for any A > 0 the linear operator R(\, K) on Cy(E) defined by

ROVK)f(@) = [ e Bf@dt e ) ek
0
satisfies, for any f € Cy(E)

RN K) € LIC(E)),  [[RA K)llzcymy) <

>

ROLK)f € D(K), (M — K)RO\K)f = f.
We call R(\, K) the resolvent of K at \.
Proof. (i). Take ¢ € D(K). Since ¢ € D(K) we have that

. Phpo—¢ x
1 — = Ko.
hi%l+ h Y

Hence, by Remark 1.7

r .. PhBo—Py o . Pryp —
KPpZ tim PP 2 gy (%>

s P -

~p (%):pt[(@

(ii). By (i) we have KP,p(z) = d/dtPip(x) = P,Kp(z). Since the map
t — P.Kp(x) is continuous, (ii) follows.

(iii) First, we have to check that f(f P, fds belongs to Cy(E). For any x € £
we have

< t]l¢lfo-

/0 ' Po(a)ds

Now let us fix € > 0 and take § > 0 such that

19
sup |Psp(r) — Psp(y)| < n

s€[0,¢]
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when |z — y| < . This is possible since (F;);>o is a locally bounded in
L(Cy(E)). Therefore, for any =,y € E, |x — y| <  we have

/ Ppla)ds - / Pl

Hence, fot Pypds € Cy(E). Let us show f; P,pds € D(K). Now, taking into
account that for any x € F the integral fot Psp(x)ds is a Riemann integral,

we have . .
Py ( / Ps¢d5> - / Pronipds,
0 0

for any h > 0, since fg P,p(z)ds is the limit with respect to the m-convergence
of functions in C,(H). So, for any = € E, h > 0 we have

n(f t Pupds) (o) - [ ' Prp(a)ds = / Propla)ds - / ' Pp(a)ds

t+h t t+h h
:/ Pscp(:v)ds—/ Psgp($)ds:/ Psgp(qz)ds—/ Pyp(x)ds.
h 0 t 0

therefore, by the continuity of s — Psp(x) we have

1 1 (7 ([ Pats) 0= [ Piotoias) = Prpto) - o0

Finally, since || Ps|| (¢, () < 1 we find

([ o) f i)
This implies
% (Ph ( /0 t Psgods) (z) — /0 t Psw(:c)d8>

This prove the first part of (v). Now take ¢ € D(K). By (ii) we see that for
any r € F it holds

t
< [ 1Pel@) - Puel)lds <=
0

< 2[l¢llo-

< Q.
0

sup
he(0,1)

Pp(x) — () :/o %Psgp(a:)ds :/0 P, Kp(z)ds.

Hence, (iii) follows.
(iv) Take (©,)nen € D(K) such that ¢, - 0 as n — oo and K¢, — g €
Cy(H) as n — oo. By (iii) and Remark 1.7, for any ¢ > 0 we have
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t t
Z lim PSKgondsg/ P,gds.
0

n—oo 0
Hence it follows easily
t

Pp—o¢ » 1 ™
lim PP T gy 2 P,gds = g,
t—0t+ t t—0+ t 0

which implies ¢ € D(K) and K¢ = g.
(v). Take ¢ € Cy(E) and set

3=

Op = n/ Ppds.
0

By (iii) we have ¢ € D(K). Since for any z € E the map [0,00) — R,
s +— Pyp(x) is continuous, we have |p,(x) — ¢(x)|g — 0 as n — oo, for any
x € E. Finally, we have |, (x)| < ||¢|lo, which implies ¢, - ¢ as n — oo.
(vi) For any A > 0 and for any f € Cy(E) we set

Fyf(z) = /000 e™MP,f(x)dt, zcE.

Fix A > 0 and for any f € Cy(FE).

Step 1 We first prove that F\f € Cy(F). Notice that for any f € Cy(E),
A > 0 the integral on the right-hand side of is meaningful, since P.f(x) is
continuous and

e Pof(x)] < e fllo-

Hence,

sup /()| < 171
el

for any f € C(E). To prove the claim, it is sufficient to check that the
function £ — R, x — F)\f(z) is uniformly continuous. So, let us fix € > 0.

Let T > 0 such that o/
0\ ar €
L —. 1.
< ) )e <3 (1.3)

There exists 0 > 0, depending on f and 7', such that if z,y € F and |z—y|g <

0 we have \
sup |Pif(0) - P )] < 5 (1= ir ) (1)

t€[0,T] 2

Then, if z,y € E and |z — y|g < § it holds

[Exf(x) = Fxf(y)l
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T ')
< / P f(a) — Pof(y)] dt + / NP f(x) — Puf(y)] dt
0

T

£ A T N > — At
2 1—e 0 T

thanks to (1.3), (1.4).
Step 2 Here we are checking F)\f € D(K) and (A—K)F\f = f. Set g = F\f
and gr = fOT e NP, f(z)dt. We have

lim [|g — grllo < ||fHo/ e Mdt = 0.
T—o00 T
For any h > 0, x € E we have

N l/0 e (Puynf(x) = Pif (1)) dt = T (h,w) + To(h, ),

h h
where
e —1
L) = (@)
A rh
Ta(h, ) :T/ e MP,f(x)dt.
0

We clearly have

Tim Ty(h,2) = Agle), w€H

and

eAh -1 0

sup [|[T'1(h,-)|lo < sup { - } ||f||0/ e Mdt < oo.
he(0,1) he(0,1) 0

Hence, I'1(h,-) = A\g as h — 0*. Concerning the term ['y(h,z), for any

xr € F we have

lim Dy(h,z) = f(x),

h—0t+

since the map [0,00) — R, t — e P, f(x) is continuous. On the other hand
we have

A h A (1 B 6—,\h)
L) < 5 [ el = )
ol < 5 [ el = =Sl

which implies

sup [[T'2(h, )]0 < oo.

he(0,1)
Hence, T'y(h,-) = f as h — 0%. We have found that F) € D(K) and that
KFEy\f = AF\f+ f. This implies (A — K)F\f = f. O
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Definition 1.10. We shall say that a set D C D(K) is a m-core for the
operator (K, D(K)) if D is m-dense in Cy(FE) and for any ¢ € D(K) there
exists m € N and an m-indexed sequence {@n, . n,, tnien,..nmen C D such
that

R 1 N T R

ni—oo Ny, — 00

and
lim .-+ lim Ko, .. = Kp.
ni—00 Ny — 00
It is clear that a m-core is nothing but the extension of the notion of core
with respect to the m-convergence. A useful example of core is given by the
following

Proposition 1.11. Let (P;);>0 be a stochastically continuous Markov semi-
group and let (K, D(K)) be its infinitesimal generator. If D C D(K) is
w-dense in Co(E) and P,(D) C D for allt > 0, then D is a w-core for
(K, D(K)).

Proof. In order to get the result, we proceed as in [28]. Let ¢ € D(K).
Since D in m-dense in Cy(E), there exists a sequence (@, )n,en C D (for the
sack of simplicity we assume that the sequence has only one index) such that
Oy —  aS Ny — 00. Set

1 &
@) = 13 P (1.5

for any ny,no,ng € N. By Hypothesis, (¢, nyns) C D. Taking into account
Remark 1.7, a straightforward computation shows that for any x € E

1

lim lim lim @n ppn ()= lim lim ny " Py, (x)dt

ni—00 Ng—00 N3—00 n1—00 Ng—00 0

1

= lim nl/nl Pyp(z)dt = p(x).

ni—00 0

Moreover,
sup ||90n1,n27n3||0 < sSup ||90n2||0 < 00

ni,n2,n3EN n9

. ™
since @,, — @ as ny — 00. Hence,

. . . ™
lim lim lm ¢p, nyns = @

ni—00 Ng—00 N3—00
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Similarly, since D C D(K') and Theorem 1.9 holds, we have

1
ni

lim K(Pnl,ng,ng (:E) =" Kpt(pnz (:E)dt

ns—o0 0

=11 (P 60a(@) = (@)
So we find

lim lim lim K¢, pyn(z) = lim lim ny (Pn% Dy (T) = Pny ($)>

71— 00 Mg —00 N3— 00 n1—00 Ng—00
= lim n (Pigo(:v) - gp(x)) = Ky(x), (1.6)
n1—00 ny

since ¢ € D(K). To conclude the proof, we have to show that these limits
are uniformly bounded with respect to every index. Indeed we have

sup HK@m,nz,mH < HK@NQH < 00,
n3zeN

sup
no €N

71 (P oy = 0 )| < 200 50D [l 0 < oc.
ni 0 no €N

Finally, the last limit in (1.6) is uniformly bounded with respect to n; since
v € D(K). O
1.3 The measure equation

Theorem 1.12. Let (P;)i>o be a stochastically continuous Markov semi-
group, as in Definition 1.6, and let (K, D(K)) be its infinitesimal generator

in Cy(E), defined by (1.2). Then, for any p € M(E) there exists a unique
family of measures {u, t > 0} C M(E) fulfilling

T
/ |t |y (E)dt < 0o, T >0 (1.7)
0

[ etwptin) - [ ewmian = [ ([ ®etomtan)as. a9

for any ¢ € D(K), t > 0, and the solution is given by Pju, t > 0.

Proof. Let us fix p € M(E). We split the proof into two parts.
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1.3.1 Existence of a solution

By Theorem 1.8, formula (1.1) defines a family {Pfu,;t > 0} of finite Borel
measures on E. Moreover, | ulicym)- < lilleey- = lulrv(E). Hence,
(1.7) follows. Since for any ¢ € Cy(E) it holds

tgianwmmwaéwwmmx

by the semigroup property of P, it follows that for any ¢ € Cy(FE) the function
R =R, o [ po)Puld) (19)
E

is continuous. Clearly, Pyu = p. Now we show that if ¢ € D(K) then the
function (1.9) is differentiable. Indeed, by taking into account (1.2) and that
Piu € M(FE), we can apply the dominated convergence theorem for any
¢ € D(K) to obtain

d

& [ otarPruta) -
S
ygzﬂ(ﬁ%gf)umwm
= [ 1 (472 @rrutan) = [ Kot Prntan)

Then, by arguing as above, the differential of (1.9) is continuous. This clearly
implies that {Pu, t > 0} is a solution of the measure equation (1.8).

1.3.2 Uniqueness of the solution

Since problem (1.8) is linear, it is enough to take yu = 0. We claim that in
this case y; = 0, V¢ > 0. In order to prove this, let us fix T" > 0 and let us
consider the Kolmogorov backward equation

{ut(t,m) + Ku(t,z) = p(x) t€[0,T],z€E, (1.10)

u(T,xz) =0,

where ¢ € C,(E). The meaning of (1.10) is explained by the following
lemma.
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Lemma 1.13. For any T > 0, ¢ € Cy(E) the real valued function
u:[0,T]x E—R

u(t, ) = —/0 C P@)ds, (tx) € [0.T] x E. (L11)

satisfies the following statements
(i) ue G([0,T] x E) 1;

(ii) u(t,-) € D(K) for any t € [0,T] and the function [0,T] x E — R,
(t,x) — Ku(t,x) is continuous and bounded;

(iii) the real valued function [0, T]| x E — R, (t,x) +— u(t, z) is differentiable
with respect to t with continuous and bounded differential u,(t, ), and
the function [0, T|xE — R, (t,z) — w(t, z) is continuous and bounded;

(iv) for any (t,z) € [0,T] x E the function u satisfies (1.10).

Proof. For any s,t € [0,T], s <t we have

u(t,z) —u(s,x)=— /OTt P.o(x)dr + /OTS P.o(x)dr

:/ P-o(x)dr.
T—t
Then

[u(t,-) = uls,)llo < [t = slllllo-
(i) is proved. By (vi) of Theorem 1.9, u(t,-) € D(K) for any t € [0,7] and
it holds Ku(t,z) = —Pr_ip(z) + ¢(x), for any z € E. So (ii) follows (cfr.
Definition 1.6). Now let h € (—=t,T —t) and x € E. We have

u(t + h,x) — u(t, x)
h

T—t
= E/ P.o(x)ds — Pr_yp(x)
T—t—h

+ Ku(t,z) — p(x) = (1.12)

Then, since Pyp(x) is continuous in ¢, (1.12) vanishes as h — 0. This implies
that u(¢, z) is differentiable with respect to ¢ and (1.10) holds. Moreover, by
(ii), we have that the map ¢ — w;(t,z) = —Ku(t,x) + ¢(x) is continuous.
This proves (iii) and (iv). The proof is complete. O

LClearly, Cy([0,T] x E) is isomorphic to C([0, T]; Cy(E))
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We need the following

Lemma 1.14. Let {u:} be a solution of the measure equation (1.7), (1.8).
Then, for any function u : [0,T] X E — R satisfying statements (i), (i), ()
of Lemma 1.13 the map

0,T] >R, o /E u(t, 2) 1y (dz)

is absolutely continuous and for any t > 0 it holds

/Eu(t,:c),ut(dx) - /Eu((),a:)u(dx)
= /Ot (/E (us(s, ) + Ku(s,x))us(dx)) ds. (1.13)

Proof. We split the proof in several steps.

Step 1: Approzimation of u(t,z).

With no loss of generality, we assume 7' = 1. For any x € E, let us consider
the approximating functions {u" (-, x)},en of u(-, ) given by the Bernstein
polynomials (see, for instance, [46], section 0.2). Namely, for any n € N,
x € E we consider the function

= k
0, 7] = R, t—u"(t,z)= E apn(t)ul =, x),
— g (n )

where
Qpn(t) = (Z) th(1 — )k,

Since u € C([0,T]; Cp(E)), it is well known that it holds

lim sup [Ju” () = u(t, ) o = 0 (1.14)
00 ¢e0,1]
and
sup [lu (¢, Ylo < 00, nEN.
te[0,1]
Then, for any ¢ € [0,1]
lim u”(t, ) = u(t, ). (1.15)

We also have that for any n € N, ¢ € [0, 1]

u"(t,-) € D(K),
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and that for any = € E the function [0,1] — R, ¢ — Ku"(¢, ) is continuous
(cfr. (ii) of Lemma 1.13). Then, for any x € E' it holds

lim sup |Ku"(t,z) — Ku(t,x)| =0,

N0 ¢e(0,1]
sup [|[Ku"(t,-)||o < sup [[Ku(t,-)|o < oo. (1.16)
t€[0,1] t€[0,1]

This clearly implies that for any ¢ € [0, 1]

lim Ku™(t,-) = Kul(t,-). (1.17)

n—oo

Similarly, since for any x the function ¢ — wu(t, x) is differentiable with respect
to t, we also have that for any z €

lim sSup ’u?@a 'CE) - ut(ta :L')’ = Oa

N0 ¢e(0,1]
sup lug (¢, -)llo < sup [Jug(t,-)ljo < oo (1.18)
te[0,1] t€[0,1]

Hence, for any ¢ € [0, 1]

lim uf(t,-) = w(t, ). (1.19)

n—oo

Step 2: differential of [, u™(t, ) (dx)
For any n € N, k < n and for almost all ¢ € [0, 1] we have

% ( /E ak,n(t)u(%,z) ut(dx)) =
= % (ak,n(t) /E u(%x) ut(daz))
= o (1) [E u(%,x)ut(dx)mm(t) /E Ku(%,x)ut(dx).
- /E (a;m@)u(g,x) +ozk7n(t)Ku<§,x>>ut(dx).

Note that the last terms belong to L*([0, 1]). This implies

/Eu"(t,x)pt(dx)—/Eu”(O,x)/L(dx)
= [ ([ wrtsn) + Bt s
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for any n € N.
Step 3: Conclusion
Consider the functions

f:00,1] =R, f(t)= / u(t, ) pe(de)

E

and
fui 00 =R 40 = [ (e o)(de)
E
By 1.14 we have

/E (u"(t, ) — u(t, x)) pe(dz)

< sup fu"(£,-) — ult, ) lolpwelrv (E).
te€(0,1]

Since (1.7) and (1.14) hold, it follows that the sequence (f,)nen converges
to fin L'([0,1]), as n — oco. We also have, by Step 2, that f,, is absolutely
continuous and hence differentiable for almost all ¢ € [0, 1], with differential
in L'([0, 1]) given by

£lt) = [ (uh(t.) + Kt )l o),
B
for almost all ¢ € [0,1]. By (1.17), (1.19) we have

lim f(t)=lim [ (u}(t,z)+ Ku"(t,z))p(dz)

n—oo n—oo E

:/E (uet, @) + Ku(t, 2)) p(da), (1.20)

for all ¢ € [0, T]. Moreover, it holds

sup | f,,(1)] < ( sup |lu(t,-)ljo + sup ||Ku(tw)||)|ut|Tv(E)'
neN tel0,1] t€[0,1]

Hence, still by (1.16) and (1.18), there exists a constant ¢ > 0 such that

sup,, | f1(t)| < c|ut|rv(E). By taking into account (1.7), it follows that the

limit in (1.20) holds in L'([0,1]). Let us denote by g(t) the right-hand side

of (1.20). We find, for any a,b € [0, 1],

f(b) = fla)= lim (fa(b) = fu(a))
b

b b
—lim [ f.(t)dt= / Tim f(H)dt = / g(t)dt.

n—od

Therefore, f is absolutely continuous, and f’(¢) = g(t) for almost all t € [0, 1].
Lemma 1.14 is proved. ]
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Now let p € Cy(E) and let u be the function defined in (1.11). Then u
satisfies statements (i)—(iv) of Lemma 1.13. Hence, by Lemma 1.14 it follows
that the function [0,7] — R, t — [, u(t, z)p(dx) is absolutely continuous,
with differential

u(t, z)ps(dx) :/E (ue(t, z) + Ku(t, ) pme(dz)

- /E o)),

dt Ji

for almost all ¢ € [0,7]. So, we can write

Oz/Eu(T,LL‘)uT(d:U)—/U(()?I)M(dx) =

E

:/OT <%/Eu(t,x),ut(d:c)) dt
:/OT (/E go(:r)ut(dx)> dt.

for all ¢ € C,(E). By the arbitrariness of T, it follows that for any ¢t > 0 it

holds |
/0 (/E Sp(fﬂ)us(dx)) ds = 0.

In particular, the above identity holds true for ¢ = K1, for any ¢ € D(K).
Then, taking into account (1.8), it follows that for any ¢ € D(K), t > 0 it
holds

/E (@) (dz) = 0. (1.21)

Finally, since D(K) is m-dense in Cy(E) (cfr. (v) of Theorem 1.9), (1.21)
holds for any ¢ € C,(E), t > 0 and consequently p; = 0 for any ¢ > 0. The
proof is now complete. O]



Chapter 2

Measure equations for
Ornstein-Uhlenbeck operators

2.1 Introduction and main results

We denote by H a separable Hilbert space with norm | - | and inner product
(-,+) and we consider the stochastic differential equation in H

dX ()= AX (t)dt + BAW(t), t>0
(2.1)
X(0) =z € H,

where A, B, {W(t)}:>o fulfil Hypothesis 0.1. In the following, we set @@ =
BB*. For any = € h, equation (2.1) has a unique mild solution X(¢,x),
t > 0, that is a square integrable random process adapted to the filtration
(Fi)e>0, given by

X(t,2) = e 4+ Wa(t). (2.2)

It is well known that the random variable X (¢, z) has Gaussian law of mean
edx and covariance operator @Q; (cfr. Hypothesis 0.1). Hence, the corre-
sponding transition semigroup (R;):;>o, called the Ornstein- Uhlenbeck (in the

following, OU) semigroup enjoys the representation

Ripl) = /H S+ y)No(dy), @€ Co(H), t>0, ze H,  (2.3)

where Ng, is the Gaussian measure on H of zero mean and covariance ope-
rator Q¢ (see [22]). Of course, in the above formula we mean Ng, = dy. Also,
the OU semigroup (R:):>o is a stochastically continuous Markov semigroup

29
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in Cy(H). Moreover, it is well known that for any ¢t > 0, h € H it holds’
Ryt () = et eh—5@ihh) (2.4)

We denote by (L, D(L)) the infinitesimal generator

;

P _
Po—
Vo € H, sup a4 <oo}
te(0,1) 0 (2‘5>
P _
Le(x) = lim “O(x)t 20 e p(L), e H.
\ t—

By Theorem 1.12 follows

Theorem 2.1. Let (R;)i>0 be the Ornstein-Uhlenbeck semigroup (2.3), and
let (L,D(L)) be its infinitesimal generator. Then, for any u € M(H) there
exists a unique family of measures {us, t > 0} C M(H) fulfilling

T
/ ’,Ut’Tv(H)dt < 00, T > 0; (26)
0

[ ot~ [ sptan = [ [ Lotwhtan)as.  21)

for any ¢ € D(L), t > 0. Moreover, i, = Riu, t > 0.

We are interested in extending the previous results to the Kolmogorov
operator associated to equation (2.1), which looks like

%Tr[QDQgp(x)] + (x, A*Dyp(x)), =z € H.

To this purpose, we need some preliminary results. It will be helpful the
following result about approximation of Cy(H )-functions.

Proposition 2.2. We recall that E(H) is the linear span of the real and
imaginary part of the functions

H—C, zw— @

LR; acts on reals functions, but it can be trivially extended to complex ones
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where h € H. Then E(H) is m-dense in Cy(H) and for any ¢ € Cy(H) there
exists a two-indezed sequence (Yn, n,) C E(H) such that

lim lim @, . (2) =¢(x), r€ H (2.8)
n]y—0o0 Ny—0o0
SUD [[@ny.nallo < [lello- (2.9)
ni,n2

Moreover, if ¢ € CL(H) we can choose the sequence (¢n, n,) C E(H) in such
a way that (2.8), (2.9) hold and for any h € H

lim  lim (Dpp, p,(x), h) = (Dp(x),h), x € H

n1—00 Ny —00

sup || Doy s ll oy i,y < 1Dl 0y () (2.10)

ni,n2

Proof. (2.8) and (2.9) are proved in[26], Proposition 1.2. (2.10) follows by
the well known properties of the Fourier approximation with Fejér kernels of
differentiable functions (see, for instance, [33]). O

We are going to improve this result. We recall that the set E4(H) has
been introduced in Section 1.1.

Proposition 2.3. For any ¢ € Cy,(H) there ezists a three-indexed sequence
(90n1,n2,n3) C gA(H) such that

. . . ™
lim lim lm @, pyn, = .

n1—00 Ng—00 N3—00

Moreover, if ¢ € CL(H), we have that for any h € H it holds

lim lim  lim (D@, nyns, h) = (Do, h).

n1—00 Ng—00 N3—00

Proof. Let ¢ € Cy(H) and let us consider a two-indexed sequence (¢n, n,) C
E(H) as in Proposition 2.2. Let us define the sequence (@n, n,n,) by setting

¢n17n2,n3(‘r) - gOnth(?’LgR(ng,A*)ﬂf), HAS H, ng € N,

where R(njz, A*) is the resolvent operator of A* at ns. Clearly, ¥n, nyns €
Ea(H). Taking into account that nR(n, A*)xr — z as n — oo for all x € H,
and that for some ¢ > 0 it holds [nR(n, A*)x| < c|z| for any x € H,n > 1, it
follows that ¢, myms — Pnyme as N3 — 00. If f € CL(H), we observe that

(D(f(nR(n,A*)-)(x),h) = (Df(nR(n, A*)x),nR(n, A)h).

Therefore, be arguing as above, we find (D(f(nR(n, A*)-),h) = (Df(-),h)
as n — oo . Hence the result follows. ]
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Example 2.4. If A # 0 we have D(L) N E4(H) = {constant functions}. In
fact for any x € H,h € D(A*) we have

R i(hx)y _ Li(h,x) 1 ]
lim 2t ‘ :{—5 (Qh, h) + i(A*h, z)| ¢®),

t—0t t
which is not bounded when h # 0 and A # 0.

Let Z4(H) be the linear span of the real and imaginary part of the func-
tions

H—C, z+— / eile o) =5 (Quhh) gs . g > 0, h € D(AY),
0

where D(A*) is the domain of the adjoint operator of A.

Proposition 2.5. The set T5(H) is m-dense in Cy(H), it is stable for R,
and To(H) C D(L). Moreover, it is a w-core for (L,D(L)) and for any
w € Tao(H) it holds
1
Lo(z) = iTr[QDQQO(x)} + (xz, A*Dy(x)), =z € H. (2.11)

Proof. Let h € D(A*) and a > 0. We have

a
lim 1 pile Ao ) =3 (Qshh) g — pilah) e |
a—0t a Jq ’
and
1 a - A 1 .
sup _/ elle wh) =5 (Qshih) g _ gileh) | < 9
a>0 | Jo -

Then E4(H) C Za(H) . Consequently, in view of Proposition 2.3, Z4(H) is
m-dense in Cy(H). Now let ¢t > 0. By taking into account (2.4), we can apply
the Fubini theorem to find

Rt (/a el<68A7h>é<Q5h7h>dS) (x) —
0

a * *
— / i Az k) — 3 (Qres A het AT h)— 3 (Qshh) o
0
@ ; t A 1
:/ ez(e( +9) wh) =5 (Qershih) go _
0

a+t t
_ / R I / gl e =3 (@bt g5 (2.12)
0 0
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since (Qie*A h, ¥ h) = (e¥4Q.e*A h, h) = (Quysh, h) — (Qh,h). Then we
have Ry(Za(H)) C Zs(H). Now we prove that Z,(H) C D(L). Let

0
By (2.12) we have that

Rep(z) — p(x) =
att sA 1 b sA 1

:/ ez(e z,h)—Q(Qsh,h>dS_/ ez(e m’h>_5<QSh’h>d8.
a 0

This implies

RtSO(x) - SO(LE) (A2, h)—3(Qah,hy _ eilah) (2.14)

and

|Rep(x) — p(a)] < 2t.
Then ¢ € D(L) and by Proposition 1.11 follows that Z4(H) is a w-core for
(L,D(L)). In order to prove (2.11), it is sufficient to take ¢ as in (2.13). By
a straightforward computation we find that for any x € H it holds

STHQD o()] + (2, A" Di(0))

@ * 1 * S
:/ ('(A* Ah,x)y — §<es Qe** " h h>> e )= 5 (Quhd) g g

_ i{es4x,h) %(Qsh,h)d
/ 95 §

z(e“A:v h) f%<Qah hy ei(:p,h)

cfr. Example 2.4. By taking into account (2.14), it follows that (2.11) holds.
]

We are now able to prove the main result of this chapter

Theorem 2.6. Let (R:)i>0 be the Ornstein- Uhlenbeck semigroup (2.3) and
let Lo : To(H) C Cy(H) — Cy(H) be the differential operator

Logp(r) = 3 THQD ()] + {r, A°Dip(a)), o € Ta(H)

Then, for any p € M(H) there exists a unique family of measures {j, t >
0} € M(H) fulfilling (2.6) and the measure equation

[ tanatan — [ wtontn = [ ( [ nptopian)is, @)

for any ¢ € To(H), t > 0. Moreover, uy = Rp, t > 0.
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Proof. By Proposition 2.5 we have that Z4(H) is a m-core for (L, D(L)) and
that Ly = Lop, for any ¢ € Z4(H). So it is easy to see that Rju, t > 0 is
a solution of the measure equation (2.15). Hence, if ¢ € D(L) there exists a
sequence? (p,)nen C Za(H) such that

lim ¢, = ¢, lim Lo, = K.

n—oo

For any ¢t > 0 we find

[ ctwimtan) - [ stomtan =i ([ euoian) - [ puoptan)
= Ot ( /H Koson(:v)us(da:)> ds.

Now observe that for any s > 0 it holds

i [ Lo (o) = /H Loo()(d)

n—oo

and

/H Lopn (@) ps(d)

< su[N> | Lownllo|pes| v (H).
ne

Hence, by taking into account (2.6) and that sup,cy || Lo¢n|lo < 0o, we can
apply the dominated convergence theorem to obtain

i [ ([ topomian) as = [ ( [ Lotwpian) as

So, fit,, t > 0 1is also a solution of the measure equation (2.6), (2.7). Since by
Theorem 2.1 such a solution is unique, it follows that the measure equation
(2.6), (2.15) has a unique solution, defined by R;u, t > 0. O

2.2 Absolute continuity with respect to the
invariant measure
We consider the case when the semigroup R; has a unique invariant measure

. The aim of this section is to study the absolute continuity of the family
(14¢)¢>0, solution of (2.6), (2.7), with pg = pu, where p € L' (H, ).

2For simplicity we assume that this sequence has only one index
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We recall that a necessary and sufficient condition that guarantees exis-
tence of an invariant measure is that

sup Tr[Qt] < 00,
t>0

see [22], Theorem 11.7. For simplicity, in this section we shall assume that
Hypothesis 0.1 holds and that w < 0. These conditions imply that the
operator
Qoo — / etAQetA* dt
0

is well defined and of trace class (see, for instance, [22]). We also have that
p = Ng_, is the unique invariant measure for the semigroup (R;);>o and that

t—+o00

lin_ Rig(a) = [ plahulda) = (g.p).

for all ¢ € Cy(H), v € H. The last statement means that the dynamical
system (H,B(H), i, (R:)t>0) is strongly mizing.

For p > 1, we consider the functional space LP(H; u). For any ¢ € Cy(H)
we have

/H |Rep(@)Pu(der) < /H Ryl (2)(de) =
- /H (@) Puldz),

since p is the invariant for R;. This allows us to extend the Ornstein-
Uhlenbeck semigroup (R;):>o to a strongly continuous semigroup of contrac-
tions, still denoted it by (R;);>0, on LP(H; ). When p = 2, we shall denote
the scalar product of the Hilber space L*(H; i) by

<(207w>L2(H;p,)7 @, Q,D S LQ(H,,u)

2.3 The adjoint of R; in L*(H; )
By Theorem 2.1, we have pu; = R; 19, that is
| etomtdn) = [ Rep@yaldn) = [ Repla)olaintda).

for any ¢ € Cy(H), t > 0. Then, it is natural to study the adjoint of R; in
the space L*(H, ).
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Following Chojnowska-Michalik and Goldys (see [10]), we shall give an
explicit representation of the adjoint of R; in the Hilbert space L*(H; u), by
using the so called second quantization operator. We set

L,(H)={T € L(H) : 3S € L(H) such that T = SQY/*}.
It is easy to see that 7" € L,(H) if and only if

Tl g2y € LUQLS, H); H),

where (Q}X/JQ, H) is the Banach space endowed with the norm ||x||Q1/2(H) =

|Q<1>é2x|. Consequently, since Q%Q(H ) is dense in H, the space L, is dense in
L(H) with respect to the pointwise convergence.
Let us define a linear mapping

F:L,H)— L*(H,u; H)

by setting

where S € L(H) is such that T = SQN?. Tt is easy to see that
[ 1Faluld) = HQULTT QL.
H

Then F' is extendible by density to all L(H). We shall still denote this
extension by F', and we shall write

F(T)x = QY*TQ Mz,

Clearly, F' is not, in general, a bounded linear operator. Let us define, for
any contraction 7' € L(H), the linear operator

AT € LOH) [Tl ey <13 — L(LP(H, 1))

by setting

C(T)e) () = [ GlQUT QI + QUVT=TTQ yuldy)
H
for all ¢ € LP(H;u). It is easy to check that I'(T) is still a contraction
and that (I'(7))* = I'(T™). The operator I is called the second quantization
operator. For details we refer to [10,23].

We have the next result, proved in [10].
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Theorem 2.7. Assume that for any t > 0 it holds
A (QUA(H)) € QUA(H). (2.16)
Then, for allt >0 and ¢ € L*(H; ) we have
Rip(z) = (D(Qu*e"QL%)¢) (@).
Remark 2.8. Condition (2.16) is weaker than to require that the OU semi-
group R; enjoys the strong Feller property. We say that a semigroup (P;)>o

on By(H), the Banach space of all bounded and Borel functions ¢ : H — R,
enjoys the strong Feller property when it holds

P,p € Cy(H)

for any ¢t > 0, Vo € By(H). This property is equivalent to require that for
all t > 0 it holds

¢(H) C Q*(H), (2.17)
see [22], Theorem 9.19.

We recall that in general the adjoint of (R;)i>o in L?*(H;p) is not an
Ornstein-Uhlenbeck semigroup. However, the next proposition gives a suffi-
cient condition in order to have this property.

Proposition 2.9. Assume that Qu(H) C D(A*) and that the operator

A1z = QoA Q L, x € D(A) = {2 € Quo(H) : Qtw € D(A*)})

generates a Cy-semigroup given by et = Qo QL. Then the adjoint of
Ry in L*(H; i) is the operator R; defined by

Rio(z) = /H ©(y) Newas g, , (dy),

where

t
Q147 = / eMQeMads, v e H, t>0.
0

Proof. See [25], Proposition 10.1.9. O
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2.3.1 Absolute continuity of 1

Theorem 2.10. Let juo(dz) = p(z)p(dx), where p € L*(H; ), and let the
family of measure {p;, t > 0} be the solution of (2.6), (2.7). If (2.17) holds,
then for all t > 0 the measure p; is absolutely continuous with respect to
and it satisfies

p(de) = (T(QL*eQY)p) (x)u(dx).

Proof. Let {pn}nen be a sequence in L*(H, ;1) that converges to pin L'(H; ).
Since for all ¢ > 0 we have R,(Cy(H)) C Cy(H) C L*(H; p), it holds

/H |Rep(2)(pn(x) — pl2))|p(dz) < [l¢llo /H (@) — p(z)|p(dz),  (2.18)
for all ¢ € Cy(H), n € N. Clearly, this implies

lim <Rt§0,pn>L2(H;u) = (¢, jtt),

n—oo

for all p € Cy(H). Now let us set S(t) = Q="e4QY*. By Theorem 2.7 we
have

(Rebr, o) pogy = (01, T(S(8))¥2) L2 () (2.19)

for any v, € L*(H;u). Since T'(S(t)) € L(L'(H;u)), by a computation
as above we obtain

n—oo

lim (@, T(S(t)) pn) 22(m,0) = /H () (D(S()p) ()u(dr),

for any ¢ € C,(H). Finally, taking into account (2.18), (2.19) for any ¢ €
Cy(H) it follows

(@, ) = (Rep, pro) =
= lim (Rip, pn) 12y = 1 (0, T(S(8))pn) 12 (1) =

- /H () (T(S(1))p) (2)(d).

This concludes the proof. O

2.3.2 The case of a symmetric Ornstein-Uhlenbeck semi-
group

A particular class of Ornstein-Uhlenbeck processes are the so called reversible
Ornstein- Uhlenbeck processes, which arise in the theory of Interacting Particle
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System and other areas of Mathematical Physics. We are interested to find
necessary and sufficient conditions on A and @, in order to have

<Rt907 ¢>L2(H;u) = <907 Rtw>L2(H;u)a

where y is the invariant measure for R; and ¢, v € L*(H; u). This problem
was solved in [47] in the case @ = I. A characterization for general sym-
metric Ornstein-Uhlenbeck semigroups of the form (2.3) has been given by
Chojnowska-Michalik and Goldys in [11] as follows

Theorem 2.11. The following conditions are equivalent
(i) The semigroup (Ry)i>o i symmetric in L*(H; u);
(it) if v € D(A*) then Qv € D(A) and AQx = QA*z;
(iii) e1Q = Qe for allt > 0.
See Theorem 2.7 in [11].
Corollary 2.12. Let (R;)i>o be symmetric. Then the following holds
(i) Qoo(H) C D(A) and the operator AQw = —3Q is bounded, symmetric

and negative;
(i) Q(H) C A(H);
(i17) if ker A = {0}, then

1. 1———

See Corollary 2.5 in [11].
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Chapter 3

Bounded perturbations of OU
operators

3.1 Introduction and main results

We consider here the stochastic differential equation in H
dX (t) = (AX(t) + F(X(t)))dt + BdW(t), t=>0
X(0) =z € H,

where A, B,W are as in Hypothesis 0.1 and

Hypothesis 3.1. F': H — H is Lipschitz continuous and bounded.

Under Hypothesis 0.1, 3.1 equation (3.1) has a unique mild solution
t t
X(t,z) = ex +/ e =DABAV (s) +/ AR (X (s, 2))ds, (3.2)
0 0

(see, for instance, [22]). The transition semigroup (F;)>o in Cp(H ) associated
to equation (3.1) is defined by setting

Pup(z) =E[p(X(t,z))], ¢€Cy(H),t>0,z€H. (3.3)

Since X (¢, x) is continuous in mean square, as easily checked the semigroup
(P)i>0 is a stochastically continuous Markov semigroup (cfr. Proposition
3.2). This allows us to define the infinitesimal generator (K, D(K)) of (P;)i>0

41
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as in (6), by setting

(

P, _
D) ={ o € Cuth) : 3y € Cytan), fim HEDZED o)
Ve € H, sup M <oo}
te(0,1) 0 (3.4)
P, _
Kip(r) = lim t‘p(x)t 20 e p(K), e n.
\ t—

3.2 The transition semigroup and its infinite-
simal generator

We begin with showing that the transition semigroup (P;);>o in (3.3) is a
stochastically continuous Markov semigroup in Cy(H).

Proposition 3.2. Under Hypothesis 0.1, 3.1 the transition semigroup
(P)i>0 defined in (3.3) is a stochastically continuous Markov semigroup in

Cy(H).

Proof. The proof of the fact that (P):>o maps Cy(H) into Cp(H) and that
it is a semigroup of operators may be found in [26], Proposition 3.9. We
also have Pyp(z) = [, ¢(y)m(x,dy), where m(z,-) is the probability Borel
measure on H defined by m(z,I') = P(X(t,2) € I'), VI' € B(H). Hence, the
semigroup (P;)s>o is Markovian. Finally, since X (¢, z) fulfills (3.2), it follows
easily that for any ¢ € Cy(H), v € H the function H — R, t — Pyp(z) is
continuous. [

3.2.1 Comparison with the OU operator

According to Chapter 2, we consider the OU semigroup (R;)¢>o under Hy-
pothesis 0.1 given by formula (2.3) and its infinitesimal generator (L, D(L)),
given by (2.5).

Proposition 3.3. Under Hypothesis 0.1, 3.1 let (L, D(L)) be the infinite-
simal generator of the OU semigroup (Ry)i>o, and let (K, D(K)) be the infi-
nitesimal generator of the semigroup (Py)i>o in Cy(H).

Then D(K)NCL(H) = D(L)NCL(H) and for any ¢ € D(L) N CL(H)
we have Ky = Ly + (Dy, F).
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Proof. Let X (t,z) be the solution of equation (3.2) and let us set
¢
Za(t,z) = ea +/ eE=DAQV2aW (5).
0
Let ¢ € D(L)NCY(H). By taking into account that

X(t,x) = Zs(t,7) + /t eEVAR(X (t, x))ds,

0

by the Taylor formula we have that P-a.s. it holds

p(Zat,x)) = p(Zalt x)) — p(X (L, 2)) + 9(X(t, 2))

- e(x(to)- | <Dso<fz,4<t,x>+<1—5>X<t,x>>, / e<t-S>AF<X<t,x>>ds>d§.

0
Then we have

Rup(z) — p(z) = E[p(Za(t,2))] — ¢(z) = Pip(r) — o()

-E UOI <Dgp(§ZA(t,m) + (1= 6X(t,z)), /Ot e(t_S)AF(X(t,x))ds> dg} .

Since ¢ C D(L) N C{(H), it follows easily that for any = € H

. Po(r) — oz
tim PO 2O o 1 (Dl Pla)
and
Py — Ryp —
sup ||~ < sup | ==\ +1Dollcy e Fllcymm < oo,
t€(0,1] t 0o te(0,1] t 0

that implies ¢ € D(K) and K¢ = Ly + (Dy, F'). The opposite inclusion
follows by interchanging the role of R; and P; in the Taylor formula. O

3.2.2 The Kolmogorov operator

We consider the Kolmogorov operator associated to equation 3.1

Kop(r) = %Tr [QD*¢(@)] + (z, A*Dyp(x)) + (Dy(x), F(z)), (3.5)

where © € H, ¢ € T,(H) (the space Z4(H) has been introduced in the
previous chapter).
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Theorem 3.4. The operator (K, D(K)) is an extension of Ky, and for any
v € Z4(H) we have K¢ = Kyp.

Proof. Note that Za(H) C C}(H). Since by Proposition 2.5 we have Z(H) C
D(L), by Proposition 3.3 we have Z,(H) C D(K) and K¢ = Ly + (D, F),
for any ¢ € Z4(H). Finally, by taking into account (2.11), it follows that
K¢ = Kyp holds for any ¢ € Z4(H). O

3.3 A 7-core for (K, D(K))

We now prove that Z,(H) is a m-core for K. We need the following approx-
imation result

Lemma 3.5. Under the hypothesis of Proposition 3.3, let ¢ € D(L)NC}(H).
Then there exists m € N and an m-indexed sequence (¢n, .. n,,) C Za(H) such

,,,,,

that
lim -+ lim ¢, nm;go, (3.6)
1 7
lim -l 5T QD0 ] + (A Dy ) Lo (37)
n1—00 Ny — 0O

and for any h € H

lim --- lim (D@, .., h) = (Do, h). (3.8)

nip—oo M, — 00

.....

Proof. We observe that the results of Proposition 2.3 also holds by approx-
imations with functions in Z4(H). Indeed, let (@n,nyms) C Ea(H) as in
Proposition 2.3. By setting, for any nq, no, ng,ngy € N

1

ny
¥ni,n2,n3,n4 (l‘) =Ny Rtgpm,nz,ns ($)dt
0

we have, according to (2.4), that ¥, nynsns € Za(H). Clearly,

m -+ WM QO npmsms = ©-

ni—o00 n4—00
Moreover, since D(R;f) = e!4" R,(Dy) (cfr., e.g., [25], Proposition 6.2.9), we
find that for any h € H it holds

1

o
(Dnsansns@): 0 =11 [ 7 Re((Dpny s (), 1) )t
0
Hence,
lim -+ im (D@n, nynsmis ) = (D, h).

n1—00 n4—00
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We now construct the desired approximation for ¢ € D(L) N C}(H). Let
o € D(L)NCH(H) and (p,,) C Zo(H) as above (we denote this sequence
with one index to avoid heavy notations). By setting (¢n, n,ns) as in (1.5)
with R; instead of P;, we have that (3.6), (3.7) hold, by the same argument
of the proof of Proposition 1.11.

We now observe that for any ni,ng,ng € N, the function ¢y, nyn, iS
differentiable in every x € H along any direction h € H, with differential

1 3 _iA
<D90n1,n2,n3 (:C), h> = Pni,n2,n3 (:C) = n_3 Z Rﬁ (<D(Pn2(')7 emns h>)($)
=1

Moreover,

sup H(Dgpnlmz,ns? h>||0 < sup HDQOMHCb(H;H) sSup ||etA||E(H)‘h| < 00.
no 0<t<1

ni,n2,n3€EN

Now by arguing as for Proposition 1.11, yields (3.8). O

3.3.1 The case ' € C}(H; H)

The following proposition is proved in [26], section 3.3.

Proposition 3.6. Let us assume Hypothesis 0.1, 3.1 and that F € C¢(H; H),
that s F' - H — H 1is twice differentiable with bounded differentials. Then
the semigroup (P,);>o defined in (3.3) maps C}(H) into CL(H), and for any
feClH), h € H we have

(DP,f(x),h) = E[(Df(X(t,2)),n"(t, )],

where N (t,x) is the mild solution of the differential equation with random
coefficients in H

%nh(t, x) = An"(t,z) + (DF (X (t,2)),n"(t,z)), t>0,
n"(0,x) = h.

Corollary 3.7. Under the hypothesis of Proposition 3.6, let (K, D(K)) be
the infinitesimal generator of (P;)i>o. Then, for any A > 0,w + M| DF||,
the resolvent R(\, K) of K at A\ maps C}(H) into C{(H) and it holds

M||D .
DR, K) fllcymamy < D fll ey

, e CHH). (3.9
) Xt MIDFeymeimyy | € E- (39)
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Proof. Let f € CL(H). For any t > 0, P,f € C}(H) and for any x,h € H it
holds
(D f(x),h) = E[(Df(X(t,x)),n"(t, x))],

where n*(t, x) is as in Proposition 3.6. It is also easy to see that!
" (¢, )] < Ml MIPED b,

see, e.g., [26], Theorem 3.6. Hence, by (vi) of Theorem 1.9, we have

/OOO e ME[DF(X(t,2)), 1" (t, x))]dt

§M||Df||cb(H;H)/ e—)\te(w+MHDFH)t|h|dt
0

_ M| Dflc,m:m)
A — (w4 M||DF||¢y(m:cm))

|1,

for any h € H. Therefore, (3.9) follows. O

Proposition 3.8. Let us assume that Hypothesis 0.1, 3.1 hold and let F' €
C:(H; H). Denote by (P,)i>o the transition semigroup defined in (3.3), let
(K, D(K)) be its infinitesimal generator. Then, the set To(H) is a m-core
for (K, D(K)), and for any ¢ € D(K) there exists m € N and an m-indexed
sequence (Pn,y .. .n,) C Za(H) such that

-----

lim e lm Kogn,, ., = K. (3.10)
Proof. Let ¢ € D(L) N C{(H). By Proposition 3.3 we have that ¢ €
D(K)N C}(H). Hence, by (i) of Theorem 1.9 we have P,p € D(K) and by
Proposition 3.6 we have P,p € C}(H), for any t > 0. So P,: D(L) N C}(H)
— D(L) N C}(H), for any t > 0. Moreover, Z4(H) C D(L) N C}(H) and so
D(L)NCY(H) is m-dense in Cy(H), in view of the fact that Z4(H) is m-dense
in Cy(H) (cfr. Prop. 2.5). Therefore, by Proposition 1.11, D(L) N C}(H)
is a m-core for (K, D(K)). So there exists a sequence (p,,) C Za(H) (we
denote this sequence with one index to avoid heavy notations) such that
Loy + (Do, F) = Kp, as m — oo. Now, thanks to Lemma 3.5, we
can approximate any ¢, by a sequence (¢m,,) C Za(H) in such a way
that O — Pms Lpmn — Loy as n — oo and (D@, h) = (Dgy,, h)
as n — oo, for any h € H. Since F' : H — H is bounded, we have
(Domn, F) = (Do, F) as n — oo. Finally, since ¢,,,, € Z4a(H) by Theo-
rem 3.4 it follows (3.10). O

1

in order to avoid heavy notations we set |[DF| = || DF||c,m;c(m))
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3.3.2 The case when I is Lipschitz

Theorem 3.4 shows that K is an extension of Ky, and that K¢ = Kyp,
Vo € ZT4(H). We now show that Z4(H) is a m-core for K.

Theorem 3.9. Under the Hypothesis of Theorem 3.4, the set To(H) is a
w-core for (K, D(K)).

Proof. We denote by Lp the Lipschitz constant of F'. Let ¢ € D(K), A >
max{0,w + Lr} and set f = Ap — K. Since C}(H) is dense in Cy(H) with
respect to the supremum norm (see [34]), there exists a sequence (f,,) C
C}(H) such that || f,, — fllo = 0 as ny — oco. Clearly, if ¢,, = R(\, K) fs,
we have

lim Ko, = K. (3.11)

nip—oo

Now we consider a sequence of functions (F,,)n,en C CZ(H; H) such that

lim F,,(z)=F(x), VeeH (3.12)

n9—00

and

sup || Fo,llcyesimy < NF ey, sup (1D Fo, oy < Lee (3.13)
’ILQGN ’I’LQEN

This construction is not too difficult but technical and an example can be
found in [26], section 3.3.1. Let X"*(¢,x) be the solution of (3.2) with F,,
instead of F'. It is straightforward to see that for any T"> 0, x € H

lim sup E[|X™(t,z) — X(t,2)°] =0.

n2—00 4c10.7]

Hence, if P is the transition semigroup associated to X"?(¢,x), we have
that for any ¢ € Cy(H)
lim Py = Pp.

ng—00

We denote by (K,,, D(K,,)) the infinitesimal generator of the transition
semigroup {F;" }1>0, as in (1.2). We also set

KO,nz(p(:C) = K090<x> + <D90<'r)7 Fn2 - F(l’)>, S IA(H>7 x € H.
If R(\, K,,) is the resolvent of K,, at A (cfr. (vi) of Theorem 1.9), we have

lim R\, K,,)f = R\ K)f,

ng—00
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for any f € Cy(H). Setting vn, n, = R(\, Ky, ) frn,, for any ny € N we have
M Onymy = Onys M Koy ny = Kon, .- (3.14)
N9 —00

n9—00
Moreover, since F,, € CZ(H; H), by Corollary 3.7 we have that R(\, K,,,) :
C}H(H) — C}(H) and
MHDQOmHCb(H;H) MHDSOMHCb(H%H)
' T A= @ IDEglleumeuy) T A= (w+Le)
for any ny,ny € N. Consequently, by (3.12), (3.13) it follows
im (Dy, iy, F — Fp,) = 0. (3.15)

Since f,, € C{(H), by Corollary 3.7 we have ¢, n, € D(K,,) N C{(H). By
Proposition 3.8, for any ny, ny € N we can find a sequence (¢, ny.ns) C Za(H)
such that

lim KU,TLQSOHLHQJM = L(pn1,n2 + <D90n1,n27 Fn2> = Kn290n1,n2' (316>

n3—00

HDQONLHQHCE(H;H <

Hence we have
Ko(pnl,m,m = K07n2<pn1,n2,n3 + <D§0n1,n2,n37 F— Fn2>
and by (3.14), (3.15), (3.16) it follows

lim lim K, ¥ni1,n2,n3

n2—00 N3—00

= lim angommz + <D90n1,n27F - Fnz) = K(pnl'

n9—00

Now the result follows by (3.11). O

3.4 The measure equation for K

The following result follows by Theorem 3.4, Theorem 3.9 and may be proved
in essentially the same way as for Theorem 2.6.

Theorem 3.10. Let (P;)i>o be the transition semigroup defined in (3.3) and
let (K,D(K)) its infinitesimal generator. Then, for any u € M(H) there
exists a unique family of measures {p, t > 0} C M(H) fulfilling

T
/ ey (H)dt < 00, T > 0; (3.17)
0

and the measure equation

[ ot~ [ stwptan = [ ([ Koptoyuian)as. @19

for any ¢ € To(H), t >0, and the solution is given by Pfu, t > 0.



Chapter 4

Lipschitz perturbations of
Ornstein-Uhlenbeck operators

We consider here Kolmogorov operators with a Lispchitz continuous nonli-
nearity in the space Cp1(H). The main novelties are discussed in Theorems
4.3, 4.4 and are contained in the submitted paper [38].

4.1 Introduction
Let us consider the stochastic differential equation in the Hilbert space H
dX(t)=(AX(t)+ F(X(t))dt + BdW(t), t>0
(4.1)
X(0) =x € H,
where, behind Hypothesis 0.1 we assume that

Hypothesis 4.1. F': H — H is a Lipschitz continuous map. We set

F(x)—F
o sup P8 =)
z,y€H ’:E - y’
T#y

It is well known that under hypothesis 0.1 and (4.1) for any z € H
problem (4.1) has a unique mild solution, that is a solution of the following
integral equation

t t
X(t,x) = ez + / HABAW (s) + / AR (X (s, 2))ds (4.2)
0 0

49
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for any t > 0. Moreover, a straightforward computation shows that for any
T > 0 there exists ¢ > 0 such that

sup [X(t,2) — X(ty)| < clo—yl, Va,y e H, (43)
te[0,7)
and
sup E[|X (¢, 2)|] <c(1+2]), =€ H, (4.4)
t€[0,T]

where the expectation is taken with respect to P. As we shall see in Propo-
sition 4.6, estimates (4.3), (4.4) allow us to define the transition operator
associated to equation (4.2) in the space C,1(H), by the formula

Pop(z) =E[p(X(t,z))], ¢ € Chi(H), t>0,z€H. (4.5)

Still by Proposition 4.6, we see that the family of operators (F;);>o maps
Cy1(H) into Cp1(H) and enjoys the semigroup property, but it is not a
strongly continuous semigroup. However, we can define the infinitesimal
generator of (P;);> in Cp1(H) in the following way

(

D(K,Cy (H)) = {%0 € Cp1(H) : 39 € Cp1(H), lim Prp(z) — o(z) —

t—0t t

< oo}
0,1

Kyp(x) = lim Peole) = gp(:v)7 ¢ € D(K,Cy1(H)), v € H.

\ t—0t t

P_
=g(z), x € H, sup i%—f

te(0,1)

(4.6)
The first result of the chapter is the following generalization of Theorems
1.8, 1.12

Theorem 4.2. Let (P,);>0 be the semigroup defined by (4.5) and let
(K, D(K,Cy1(H))) be its infinitesimal generator in Cy1(H), defined by (4.6).
Then, the formula

(s PEE) £y (1), (Coa(m))*) = (Prps ) £y (1), (o (H)))

*

defines a semigroup (P} )0 of linear and continuous operators on (Cy1(H))
which maps My(H) into My(H). Moreover, for any p € My(H) there exists
a unique family of measures {ps, t > 0} C My(H) such that

/OT (/H |37||Mt|Tv(dx)) dt < oo, VYT >0 (4.7)
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and

[ etwmian - [ etonin = [ ([ Kotwpian)as )

foranyt >0, ¢ € D(K,Cy1(H)). Finally, the solution of (4.8) is given by
Pru, t>0.

A natural question is to study the above problem replacing K with the
Kolmogorov differential operator

Kop(x) = %Tr [BB*D*p(z)] + (z, A*Dp(x)) + (Dp(z), F(z)), x € H. (4.9)

We stress the fact that the operator K is defined in an abstract way, whereas
Ky is a concret differential operator.

In order to study problem (4.8) with Ky replacing K, we shall extend
the notion of 7-convergence in the spaces Cy;(H) and the related notion of
m-core. We recall that the m-convergence has been introduced in Definition
1.1. We have the following

Theorem 4.3. Under Hypothesis 0.1 and (4.1), the operator (K, D(K, Cy1(H)))
is an extension of Ko, and for any ¢ € E4(H) we have p € D(K,Cy;(H))
and K¢ = Kop. Finally, Ea(H) is a w-core for (K, D(K,Cy1(H))).

As consequence we have the third main result of this chapter

Theorem 4.4. For any p € My(H) there exists an unique family of mea-
sures {pg, t >0} C My(H) fulfilling (4.7) and the measure equation

[ ctwmtan) - [ etontn = [ ([ Koptoman)as. @10

t >0, ¢ € EA(H). Moreover, the solution is given by Pju, t > 0.

Remark 4.5. We shall work with uniformly continuous functions for con-
venience only. It is worth noticing that we can state all the result of this
chapter (and also of other chapters) in spaces of continuous functions.

4.1.1 The transition semigroup in C};(H)
This section is devoted to studying the semigroup (P;);>o in the space C, 1 (H).

Proposition 4.6. Formula (4.5) defines a semigroup of operators (P;);>o in
Cy1(H), and there exist a family of probability measures {m(z,-), t >0, z €
H} C M (H) and two constants cog > 0, wg € R such that
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(i) Pr € L(Cyi(H)) and ||P| (e, ) < coe™;

(i1) Pyp(x) = / o(y)m(x, dy), for anyt >0, p € Co1(H), v € H;
H

(iii) for any ¢ € Cy1(H), x € H, the function R™ — R, t — Pyp(x) is
continuous.

(iv) PPy = Py, for anyt,s >0 and Py = I;

(v) for any ¢ € Cyh1(H) and any sequence (pp)nen C Cy1(H) such that

li fn = P
im =
av T[] T4
we have, for anyt > 0,
im = .
a4 T+ ]

Proof. (i). Take ¢ € Cy1(H), t > 0. We have to show that P,y € Cy1(H),
that is the function z +— (1 + |z|) ' Pip(x) is uniformly continuous and
bounded. Take ¢ > 0 and let 6, : R* — R be the modulus of continuity of
(1+]-])"'¢. We have

bip(r)  Poly) _
1+ |z 1+ |y

Il(t7x7y) + Ig(t,l’,y) + ]3(t,1],y)7

where

Li(t,z,y)=E ( p(X(tx)  o(X(y)) ) 1+]X(t,x)|]’

1+ |X(tz)| 1+]|X(ty) 1+ |z]

o e(X(ty) (X 2)| - [X(Ey)]
[2“’”“”‘E_1+|X<t,y>\( [ )}
[3(]5733,1/):1@'@(X(t,y))(lﬂLlX(t,x)l)( 1 1 )]

1+ |X(t,y)] L+]z] 1+ [yl

For I,(t,z,y) we have, by taking into account (4.3), (4.4), that there exists
¢ > 0 such that

1+|X(t,x)|}

1+ |z

E[1+|X(t,x)|]
1+ |z

<0, (clz - yl) < cly(clz = yl).
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Then, there exists §; > 0 such that |I1(¢,z,y)| < e/3, for any z,y € H such
that |x —y| < 6;. For I(t, z,y) we have, by elementary inequalities,

”9‘:”01
Ir(t, x < ——FE||X(t z2)| —|X(t

[[ollo,1
< ——E[|X(t,xr) — X(¢, < clzx —y|.
< [ ERLE(X () - X)) € elrelr — o]

Then there exists 0o > 0 such that |Ix(t, z,y)| < ¢/3, for any x,y € H such
that |z — y| < 0. Similarly, for I3(¢, z,y) we have

L+ E[IXE )] [l2] = lyll
Is(t,z,y)| <
L3t 2, )| < llellog 1+ |z| 1+ |yl

<cllellop(1+ )|z —yl.

for some ¢ > 0. Then, there exists 63 > 0 such that |I3(t,z,y)| < £/3,
for any x,y € H such that |z — y| < 3. Finally, for any =,y € H with
|z — y| < min{dy, ds, 03} we find that

Pp(x)  Pp(y)
1+ x| 1+ |y

<é€

as claimed. Now, by taking into account (4.4), there exists ¢ > 0 such that

Pp(x)
1+ |z

1+ E[|X(¢ )]
1+ |z

< [lello,x < cllellos

Then Py € Cp1(H). Note that by (4.4) it follows that the operators P; are
bounded in a neighborhood of 0. Hence, the existence of the two constants
co > 0, wg € R follows by (iv) and by a standard argument. Notice that by
the same argument follows® (v).

(ii). Take ¢ € Cp1(H), and consider a sequence (¢, )nen C Cp(H) such that

lim —2» % % (4.11)
T TH

Since m(t,-) is the image measure of X (t,z) in H, the representation (ii)
holds for any ¢,,, that is

Prpu(t) = E[pu(X(t,2))] = /H ou ()i, dy).

LOf course, to prove (iv)-(v) we do not use this statement of (i)
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Since (4.4) holds we have 7(x,-) € M;(H), and by (4.11) there exists ¢ > 0
such that |p,(z)] < ¢(1 + |z]), for any n € N, x € H. Finally, the result
follows by the dominated convergence theorem.

(iii). For any ¢ € Cyp1(H), v € H, t,s > 0 we have

p(X(tz)  o(X(s )
1+ [ X(ta) 1+ |X(s,2)]

AXG) s e
D X ()] = 1X (5,2

() — Pupla) —E { 1+ |X<t,x>|>]

+E {
Then

|Pep() = Pop(a)| < E[0, (|X (1 2) = X(s,2)[) (1+ | X (¢ 2)])]
+ llelloaB[IX(E 2) — X (s, 2)[], (4.12)

where 6, : R* — R is the modulus of continuity of (1 + |- [)"'¢. Note
also that since for any x € H the process (X (¢, x)):>o is continuous in mean
square, we have

lim [ X (t,z) — X(s,2)] =0 P-as..

t—s

Hence, by taking into account that 6, : R* — R is bounded and that (4.4)
holds, we can apply the dominated convergence theorem to show that the
first term in the right-hand side of (4.12) vanishes as t — s. Finally, the fact
that the second term on the right-hand side of (4.12) vanishes as ¢t — s may
be proved by the same argument.

(iv). Take ¢ € Cp1(H), and consider a sequence (¢, )nen C Cp(H) such
that (1+|-])"*¢n = (1+|-|)"'¢ as n — oo. By the markovianity of the
process X (¢, x) it follows that (iv) holds true for any ¢,. Then, since by (iii)
L+ Pwn = (14| ])" Py as n — oo, still by (iii) we find

Pt—l—sSO m 1 Pt—l—sgon T PtPsSOn m PtPsSO
= lim = lim = .
T+l e b e T[] 4[]
This concludes the proof. O

Remark 4.7. We recall that for any £ > 0, T" > 0 there exists ¢, > 0 such
that

sup E[|X(t,2)|"] < cp(1 4 |2[F),

te[0,7]

that implies {m(z,-), t > 0, x € H} C (450 Mi(H). Consequently, all the

results of this section are true with Cj ,(H) replacing Cp 1 (H).

Here we collect some properties of the generator (K, D(K,Cy1(H))).
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Proposition 4.8. Let X (t,z) be the mild solution of problem (4.1) and let
(Py)i>0 be the associated transition semigroups in the space Cy,1(H) defined by
(4.5). Let also (K, D(K,Cy1(H))) be the associated infinitesimal generators,
defined by (4.6). Then

(1) forany ¢ € D(K,Cy1(H)), we have Pp € D(K,Cy1(H))) and K Py =
PtKSO; t 2 07'

(i1) for any p € D(K,Cy1(H)), x € H, the map [0,00) — R, t — Pyp(z)
is continuously differentiable and (d/dt) Pup(x) = PKp(x);

(111) given co > 0 and wg as in Proposition 4.6, for any A > wq the linear

operator R(\, K) on Cyp1(H) doefined by

RN K)f(x) = /000 e MPf(x)dt, f€Cy(H),veH

satisfies, for any f € Cp1(H)
Co

A—w
R\ K)f € D(K,Cpi(H)), (M —K)RAK)f=F.
We call R(\, K) the resolvent of K at \;

R\ K) € L(Cya(H)), RN, K) | cicya ) <

(iv) for any p € Cy1(H), t > 0, the function
t
H — R, x»—>/ Pyp(z)ds
0

belongs to D(K,Cy1(H)), and it holds

t
K (/ Psgpds) =Py — .
0

Proof. (i). It is proved by taking into account (4.6) and (iii) of Proposition
4.6.

(ii). This follows easily by (i) and by (iii) of Proposition 4.6.

(iii). By (i) of Proposition 4.6 we have

e < [T o, - S
0 0,1 0

A — Wo
Finally, the fact that RO\, K)f € D(K,Cy1(H)) and (A — K)R(\, K)f = f
hold can be proved in a standard way (see, for instance, [8], [40]).
(iv). The proof is the same of Theorem 1.9. O
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4.2 Proof of Theorem 4.2

In order to prove this theorem, we need some results about the transition
semigroup (P;)¢>o in the space Cp(H). Since for any ¢ € Cy(H) the repre-
sentation formula

Prolar) = /H o)z, dy), ceH, t>0

holds (cfr. (ii) of Proposition 4.6) and X (¢, z) is continuous in mean square,
it follows easily that (F;);>o is a semigroup of contraction operators in the
space Cp(H). Moreover, we have that for any x € H, ¢ € Cy(H) the function
R* — R, t +— Pyp(x) is continuous (cfr. (iii) of Proposition 4.6). This means
that (P;);>o fulfills Definition 1.6, namely it is a stochastically continous
Markov semigroup.

Following (6), we denote by (K, D(K,Cy(H)) the infinitesimal generator
of P, is the space C,(H), defined by

. Poylx)— oz
DK, €)= { o € Cy(a) : 3g € Gy, tim DAD P _ gy
xr € H, sup i <oo}
< te(0,1) 0
P, _
Kip(r) = lim “”(””)t 2@ e DK, Cy(H)), x € H.
\ t—

(4.13)
It is clear that D(K,Cy(H)) C D(K,Cy1(H)). Hence, by applying Theorem
1.12 to (K, D(K,Cy(H))) it yields

Theorem 4.9. For any p € M(H) there exists a unique family of measures
{p, t >0} C M(H) such that

T
/ el (H)dt < 00, VT >0 (4.14)
0
and

[ cwmian - [ ctomian = [ ([ Ketwpian)as @)

holds for any t > 0, ¢ € D(K,Cy(H)).

We split the proof into two lemmata.
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Lemma 4.10. The formula

(@5 Py F) £(Cy 1 (1),(Coa (1)) = (Brps ) £(Cy1 (H).(Coa (H))*) (4.16)

defines a semigroup of linear operators in (Cy1(H))*. Finally, P} : My(H) —
M (H) and it maps positive measures into positive measures.

Proof. Fix t > 0. By (4.4) it follows that there exists ¢ > 0 such that
|Pip(x)] < cll@lloa(l + |z|), for any ¢ € Cp1(H). Then, if F € (Cy1(H))*,
we have

‘<90>Pt*F>E(Cb,1(H)7(Cb,1(H))*) < CHFH(Cb,l(H))* (pHle

for any ¢ € Cy1(H). Since P/ is linear, it follows that Pf € L((Cy1(H))*).
Note that by (ii) of Proposition 4.6 it follows P,y > 0 for any ¢ > 0. This
implies that if (p, F') > 0 for any ¢ > 0, then (@, P/F) > 0 for any ¢ > 0.
Hence, in order to check that P : M;(H) — M;(H), it is sufficient to take
w positive. So, let u € M;(H) be positive and consider the map

A:B(H)—-R, T'—A(l)= / 7 (z, T)pu(dx).
H

We recall that since X (¢, x) is continuous with respect to x, for any I' € B(H)
the map H — [0,1], x — m(z,I') is Borel, and consequently the above
formula in meaningful. It is straightforward to see that A is a positive and
finite Borel measure on H, namely A € M(H). We now show A = P/ u.

Let us fix ¢ € Cp(H), and consider a sequence of simple Borel functions
(pn)nen which converges uniformly to ¢ and such that |p,(z)| < |@(x)],
x € H. For any x € H we have

tin [ ouwm(edy) = [ plumle.dy) = Poota)
and

sup < [lello-

zeH

/H en(y)mi(z, dy)

Hence, by the dominated convergence theorem and by taking into account
that ¢,, is simple, we have

n—oo H n—oo

[ ([ etimtoan) ) utan) = [ Ptantan)

This implies that Pfu = A and consequently Pfu € M(H).

[ eloman =t [ pu@irn) =t [ ([ ot ) u
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In order to show that Py € M;(H), consider a sequence of functions
(Vn)neny C Cy(H) such that ¢, (x) — |z| as n — oo and ¢ (z) < |z|, for any
x € H. By Proposition 4.6 we have [, ¥(y)m(z,dy) — [, [y|m(x,dy) as
n — oo and [, ¢, (y)m(x, dy) < ¢(1+|z]), for any & € H and for some ¢ > 0.
Hence, since p € M;(H) we have

[ lelPutin) = i [ o) Prutin)

=t [ ([ atomtean ) utan) < [ 1+ ahutan) < o

This concludes the proof. O

Lemma 4.11. For any p € My(H) there exists a unique family of finite
Borel measures {u, t > 0} C My (H) fulfilling (4.7), (4.8), and this family
is gwen by Pru, t > 0.

Proof. We first check that Pju, t > 0 satisfies (4.7), (4.8). By Proposition
4.10, for any pu € M;(H), formula (4.16) defines a family {P/u, t > 0} of
measures on H. Moreover, by (i) of Proposition 4.6 it follows that for any
T > 0 it holds

sup | Pplicu iy = sup [ (1 o B ulr(de) < o0
t€[0,T] te[o, 7] JH

Hence, (4.7) holds. We now show (4.8). By (i), (ii), (iv) of Proposition
4.6 and by the dominated convergence theorem it follows easily that for any
¢ € Cp1(H) the function

RT — R, tr—>/ )P/ p(dx) (4.17)

is continuous. Clearly, Pfu = p. Now we show that if ¢ € D(K,Cy1(H))
then the function (4.17) is differentiable. Indeed, by taking into account
(4.6) and (i) of Proposition 4.8, for any ¢ € D(K,C,1(H)) we can apply the
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dominated convergence theorem to obtain

% HsO(x)Pt*u(dl’) =
~ it ([ Prastemtan) - [ Piomias)
. <Pt+hs0(:v)h— Bs@(ﬂﬁ)) (d)
zggHH(ﬁ%fﬁ)@MM@
= [t (PEZE) @opiatan) = [ Kol Pontan)

Then, by arguing as above, it follows that the differential of the mapping
defined by (4.17) is continuous. This clearly implies that P u, t > 0 satisfies
(4.8). In order to show uniqueness of such a solution, by the linearity of the
problem it is sufficient to show that if p = 0 and {p, t > 0} C M;(H)
is a solution of equation (4.8), then u; = 0, for any ¢ > 0. Note that
equation (4.8) holds in particular for p € D(K, D(K,Cy1(H))) (cfr. (4.13))
and consequently (4.15) holds, for any ¢ € D(K, D(K,Cy1(H))). Note also
that by (4.7) follows that g, ¢ > 0 fulfils (4.14). Hence, by Theorem 4.9, it
follows that u; = 0, V&t > 0. This concludes the proof. ]

4.3 Proof of Theorem 4.3

We split the proof in several steps. We start by studying the Ornstein-
Uhlenbeck operator in Cj,1(H) that is, roughly speaking, the case F' = 0 in
(4.9). In Proposition 4.13 we shall prove Theorem 4.4 in the case F' = 0.
Then, Corollary 4.14 will show that (K, D(Ky)) is an extension of K, and
Ky = Kyp for any ¢ € E4(H). In order to complete the proof of the
theorem, we shall present several approximation results. Finally, Lemma
4.16 will complete the proof.

4.3.1 The Ornstein-Uhlenbeck semigroup in Cj;(H)

An important role in what follows will be played by the Ornstein-Uhlenbeck
semigroup (Ry)i>o in the space Cp1(H), defined by the formula

R gD(l’), t= Oa
t¢“)l/¢@mx+wN@uw,t>o
H
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where p € Cy1(H), v € H and Ny, is the Gaussian measure of zero mean
and covariance operator (); (cfr. Hypothesis 0.1 and Chapter 2). We recall
that formula (3.9)

Rip(z) =E [go (e“‘x + /0 t e(t_S)ABdW(s)ﬂ (4.18)

holds, for any t > 0, ¢ € Cy1(H), x € H. Hence, the Ornstein-Uhlenbeck
semigroup (R;)¢>o coincides with the transition semigroup (4.5) in the case
F =01in (4.1). Consequently, (R;):>o satisfies stamentes (i)—(v) of Proposi-
tion 4.6. We recall that (2.3) holds, and consequently R, : E4(H) — Ea(H),
for any t > 0. We define the infinitesimal generator L : D(L,Cy1(H)) —
Cy1(H) of (Ri)i>0in Cp1(H) asin (4.6), with L replacing K and R, replacing
P,

Theorem 4.12. Let (P,);>0 be the semigroup (4.5) and let (R;);>0 be the
Ornstein- Uhlenbeck semigroup (4.18). We denote by (K, D(K,Cy1(H))) and
by (L,D(L,Cy1(H))) the corresponding infinitesimal generators in Cy1(H).
Then we have D(L,Cy1(H)) N CLH(H) = D(K,Cyo1(H)) NCH(H) and K¢ =
Lo+ (D, F), for any ¢ € D(L,Cy1(H)) N CE(H).

Proof. Let X (t,z) be the mild solution of equation (4.1) and set

t
Za(t,z) = ea +/ e=IABAW ().
0

Take ¢ € D(L,Cy1(H)) N CL(H). By taking into account that
t
X(t,x) = Za(t,x) +/ VAR (X (s, 2))ds,
0

by the Taylor formula we have that P-a.s. it holds

p(Zalt,x)) = p(Zalt, 7)) — (X (L, 2)) + o(X(t, 7)) = p(X(t, 7))

- [ {(petezaa + 0 - xt0), [t E K s0as ) de

Then we have

Rip(x) — ¢(x) = E[p(Za(t,2))] — o(x) = Pep(x) — p(z)

=|[ 1 (Detezattn) + (1= 9x e, [ t A (X (s, ) |

0
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Before proceeding, we need the following
Claim. For any xz € H it holds

lim 1E Uol <D<p(§ZA(t, z)+ (1 - 86X(tx)), /t e(t_S)AF(X(s,x))ds> d{}

t—0t ¢ 0

= (Do(x), F(x)). (4.19)

For any «x € H we have

wlf 1 (Dolezattn) + (1= X(t.0)). [ IR (s, 0)ds ) ]
{Dg(a), F(x)

_E [ [ DeeZa0.2) + (1~ 9X(1.2)) ~ D) Fla) df]

1| [ (Delezattin) + (1 - 9X @), [ IO a)ds — F(0) )

= Il(t,l‘) + ]Q(t,I)

For I1(t,z) we have
1(t, )| <E [ | petezatn + (- X(0.2) - Dota) da] F(a)

<cpE [/0 Op,(|1EZa(t,x) + (1 =X (t,x) — :U])df} (1+ |z|)

where 0p, : Rt — R" is the modulus of continuity of Dy and c¢p > 0 is
such that |F(z)| < cp(1 + |z|), Vo € H. Since E[|Z4(t,z) — x|?] — 0 and
E[|X(t,z) — z|?)] — 0 as t — 0T, it follows

lim [,(t,z) =0, Vze€ H.

t—0+
For I,(t,z) we have

1

10,0 < 1Dplcan® | 7

/0 N E(X (s,2)) — F(x))ds

|

1 t
i / AR (2)ds — F(z)| = L (t, ) + La(t, x).
0

Notice that by Hypothesis 0.1

+|| Dl e, (1)

Balta) < 5 [ €MB{F(X (s,2)) = Fia)ds
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M t
< /4:7/ R X (s, 2) — z|)ds.
0
Consequently, since E[| X (¢, z) — z[*] — 0 as t — 07, it follows that

lim Ipy(t,z) — 0.
t—0+
For I5(t,x) we have, by the fact that the semigroup e, ¢ > 0 is strongly

continuous,
lim Ip5(t,z) — 0.

t—0t

Then,
lim Ih(t,z) =0, Vze H.

t—0t+

This prove the claim.
By taking into account that ¢ € D(L,Cy;(H)) N C{(H) and that (4.19)
holds, for any x € H we have

P _
tim PO _ o) 4 (Do), P,
As easily seen, x — Lo(x) + (Dp(z), F(z)) is uniformly continuous. More-
over, since t — E[| X (¢, x)|] is continuous and E[| X (¢,2) —z|] — 0 as t — 0T,
there exists ¢ > 0 such that

‘th(fﬁ) — »(x)

— A < o1+ )

M [t o\
verll Dellcymm’y | €1+ BIX (5, 0)l)ds
0

M ! —S)w
<c (Ve ey [ s (15 b
0

This implies

Pp—v¢
¢ 0,1

Hence, ¢ € D(K,Cy1(H)) N CLHH) and Ky = Ly + (D, F) as claimed.

The opposite inclusion follows by interchanging the role of R; and P; in the

Taylor formula. m

sup < 00.

te(0,1]

Let us set
1
Lop(x) = 5T [BB*D*p(z)] + (x,A*Dyp(z)), ¢ € Ea(H), x € H.

We need the following approximation result
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Proposition 4.13. For any ¢ € E4(H) we have ¢ € D(L,Cy1(H)) and
Ly = Lop. (4.20)
The set E4(H) is a m-core for the infinitesimal generator (L, D(L,Cy1(H))),

and for any ¢ € D(L,Cy1(H))NC}(H) there exists m € N and an m-indezed
sequence (Pny . )ny,.mmen C Ea(H) such that

. . Sonl ey, T (IO
lim --- lim N , 4.21
n1—00 T — 00 1+|| 1_|_|| ( )
L n n ™ L
lim .- lim —fmenm 2 2P (4.22)
N R T

Finally, if ¢ € D(L,Cy1(H)) N CE(H) we can choose the sequence in such a
way that (4.21), (4.22) hold and

lim -+ lHm (Dgp, ., h) = (Do, h), (4.23)

ni—o0 TN, — 00

.....

for any h € H.

Proof. We recall that the proof of (4.20) may be found in [26], Remark 2.66
(in [26] the result is proved for the semigroup (R;)¢>o in the space Cpo(H),
but it is clear that the result holds also in Cy1(H)).

Here we give only a sketch of the proof, which is very similar to the proof
given in [37]. Take ¢ € D(L,Cy1(H)). For any ny € N, set

_ map(x)
Clearly, ,, € Cy(H) and (1 + |- )Y, = (1+]-|) 7Ly as ny — oco. By
Proposition 2.3, for any ny € N we fix a sequence? (¢, s )nsen C Ea(H) such
that ©n, ns i ©n, aS ng — 00. Set now, for any nq,ny, ng,ny € N

1 &
¥nq,n2,n3,n4 (w) = n_4 kz_: Rﬁ‘pmns ("L‘) (424)

Since for any ¢ € Cp1(H), © € H the function R™ — R, t — Ryp(x) is
continuous, a straightforward computation shows that the sequence (¢y, . n,)

2we assume that the sequence has only one index
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fulfils (4.21). Similarly, we find that for any = € H it holds
lim lim lim lim  Lo@n nymnsn (T)
71 —00 N9 —00 N3— 00 Mg —> 00

= lim lim lm Um L, nyngn ()

n1—00 Ng—00 N3—00 N4—00

= lim lim lim nl/m LRthn%nS(l')dt
0

n1—00 Ng—00 N3— 00

= lim lim lim n (Rigpmm(x) —gom,ns(a:)>

n1—00 Ny —00 N3— 00

= lim (R p(@) - ¢(2)) = Lp(@).

n1—00

Here we have used the continuity of ¢t — LR;py,n,(x) and the fact that
LRt pnyns(x) = (d/dt) Rin, ny(x) (cfr. Proposition 4.6 and Proposition 4.8).
Let us check that any of the above limit is equibounded in Cy;(H) with
respect to the corresponding index. By (4.24) we have

sup |’L90n17n2,n37n4”0,1 < HL907L2TL3H0'

ngs€N

By contruction of (¢, ng)ny.n, We have

sup ‘nl (Riﬁpnmm - Sonzmza) H < sup ||2n1‘»0n27n3||0 <00
n3€EN 1 0,1 n3€EN
and
sup ||n1 <Ri90n2 - %) ‘ < |12mipllo1-
TLQGN n1 071
Finally,

< 00

an (5-)]

n1EN 0,1
since p € D(L,Cy1(H)). Hence, (4.22) follows.
If ¢ € D(L,Cy1(H))NCYL(H), by Proposition 2.3, there exists a sequence?
(¢n)nen C Ea(H) such that ¢, = ¢ as n — oo and (D, h) = (Dp, h) as
n — oo, for any h € H. Since for any t > 0, n € N we have

(DRgafa). ) = [ (Dinleo+y). 1) Noy(dy), € H

it follows (DRypn, h) = (DRyp,h) as n — oo, for any h € H. Then, the
claim follows by arguing as above. O]
By Theorem 4.12 and Proposition 4.13 we have

Corollary 4.14. (K, D(K,Cy1(H))) is an extension of Ky and for any ¢ €
EA(H) we have ¢ € D(K,Cy1(H)) and Ky = Kyp.

3

we assume that the sequence has only one index
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4.3.2 Approximation of ' with smooth functions

It is convenient to introduce an auxiliary Ornstein—Uhlenbeck semigroup

V@) = [ e+ y)Ny sorqausp(dy). ¢ € ColH)
H

where S : D(S) C H — H is a self-adjoint negative definite operator such
that S~ is of trace class. We notice that U, is strong Feller, and for any ¢ > 0,
¢ € Cy(H), Upp is infinite times differentiable with bounded differentials (see
[26]). We introduce a regularization of F' by setting

(Fy(z), h) = /H <F (e%% + y) ,e%Sh> Ny its y(dy), meN,

It is easy to check that F}, is infinite times differentiable, with first differential
bounded by k, for any n € N. Moreover, F,(z) — F(z) as n — oo for all
r € H and |F,(z)| < |F(z)|, foralln e N,z € H.

Let P be the transition semigroup

Blp(z) = Elp(X"(t,2))], ¢ € Cra(H) (4.25)

where X™(t,z) is the solution of (4.1) with F), replacing F. It is easy to
check
lim E[|X"(t,z) — X(t,2)]*] =0, t>0,z€H

and
E[IX"(t,2)l] <E[IX(L2)l], ¢>0,2¢€H,

where ¢y > 0, wy € R are as in Proposition 4.6. This implies

L B x Py
im = ,
nooe L[| 14

(4.26)

for any t > 0, ¢ € C1(H). We denote by (K, D(K,,Cy:(H))) the infini-
tesimal generator of the semigroup P;* in Cy1(H), defined as in (4.6) with
K, replacing K and P} replacing P,. We recall that all the statements of
Proposition 4.6, Theorem 4.9 hold also for P* and (K,,, D(K,,Cy1(H))). We
also recall that the resolvent of (K, D(K Cy1(H))) in Cp1(H) is defined for
any A > wp by the formula R(\, K)f(z) = [;° e MP,f(x)dt, f € Cyp1(H),
x € H (cfr. Theorem 4.9). Slmllarly, for a fixed n € N the resolvent of
(Kn, D(K,,Cy1(H))) in Cp1(H) at A > 0 is defined by the same formula
with P}* replacing P;. Since (4.26) holds, it is straightforward to see that

i TN En)e x RO K)o
oo 14| L+

(4.27)
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for any ¢ € Cp1(H), A > wo.
The following proposition follows by Corollary 4.9 of [37] and by the fact
that ||DF,|| < k, for any n € N.

Proposition 4.15. For any n € N, let (K, D(K,,Cy1(H))) be the infinite-
simal generator of the semigroup (4.25). Then for any A > max{0,w+ Mk},
the resolvent R(\, K,,) of K,, at A maps C} into C{(H) and it holds

M|\D :

Corollary 4.14 shows that K is an extension of K and that K¢ = Ky,
Vo € E4(H). So, in view of the fact that K Py = P;Kyp for any ¢ € E4(H)
(cfr. (i) of Proposition 4.8), it is not difficult to check that Pju, t > 0 fulfils
(4.7), (4.10). Now, let p € M;(H) and assume that {p;, t > 0} C M;(H)
fulfils (4.7), (4.10). In view of Theorem 4.11, to prove that p, = Pjpu, for
any t > 0, it is sufficient to show that u;, ¢ > 0 is also a solution of (4.8). In
order to do this, we need an approximation result.

Lemma 4.16. The set E4(H) is a m-core for (K,D(K,Cy1(H))), and for
any ¢ € D(K,Cy1(H)) there exist m € N and an m-indered sequence
(Onyomm) C Ea(H) such that

f € CLHH). (4.28)

. . Pri,.nm T ¥
lim --- lim N , 4.29
mse e T4 |- 14 (4.29)
lim --- lim D — . 4.30
mosemmee 14 -] 14| (4.30)

Proof. Step 1. Let* ¢ € D(K,Cy1(H)), A > max{0,wp,w + Mr} and set
f=Xp — Kp. We fix a sequence (f,,) C C}(H) such that

1m = .
e T[] T+

Set ¢,, = R(\, K) f,,,. By Proposition 4.8 it follows that

™ Ky, » K
lim —m oz _ ¥ . lim Pz L
R e T L S
Step 2. Now set ¢n,n, = R(\ Kyuy)fn,, where K, is the infinitesimal

generator of the semigroup P;*?, introduced in (4.25). Since f,, € C{(H), by
Proposition 4.15 we have ¢y, ,, € C}(H) and

M||D fo, ||, a1
D . . < 1 10 (M 7
SSE%H Prvma | Cy ey < =7 (@ + Mr)

(4.31)

(4.32)

“the assumpion A > wy is necessary to define the resolvent of K (cfr. Proposition 4.8)
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for any n; € N. Moreover, by (4.27) it holds

lim  pn, n, = Pnis nilinoo Koy Pny ng = Kon,, (433}

n9—00

for any ny € N. Since ¢y, n, € D(K,,,Cp1(H)) N CLH(H), by Theorem 4.12
we have

Koy Oniny = Lpny ny + <D‘:0n1,n2a Fnz)'

Step 3. By Proposition 4.13, for any ny,n, € N there exists a sequence
(Pnymams) C Ea(H) (we still assume that it has only one index) such that

lim ¢ =@ lim ZPmanama 1 Lonng
n3—oo ni,n2,n3 ni,n2» N3—00 1+ | . | 1 + | . |

(4.34)

and
lim <D90n1,n2,n37 h> = <D90n1,n27 h>-

n3—00
for any h € H. Notice that, since F},, is globally Lipschitz, it follows that
(Dnimangs Fra) 7 (DPnyma, Fn2>.

lim =
w4 T+ ]

This, together with (4.34), implies that the sequence (¢n, nyny) fulfils

lim © = ) Lim Kn2<70"17n2,n3 s angpm,m
n3—00 ni,n2,n3 ni,mas 300 1 + | - | 1 + | ‘ ‘

Since K is an extension of K (cfr. Corollary 4.14), we have
Kn nons = KoPninang = KnaPninams + <D¢n1,n2,n3’ F— Fn2>
for any nq,no,n3 € N. So we find

lim KO(pnhm,na o Km(pm,m + <D90n17n27 F— Fn2>
s 14| E

, (4.35)

for any ny,ny € N. Moreover, by (4.32), we see that

[(Dpnyns (), F(x) = Fop (@))| _ MID fro ey | F(2) = Fy (7))
1+ |z T A= (w+ Mk) 1+ |z|

and consequently
D ni,n 7F B Fn s
]_lm < 90 1,712 2> - O
e 1+ ]
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This, together with (4.33) implies

lim Kn290m7n2+<D90n1,n27F_Fn2> s Kgpm )
e | T+

(4.36)

Finally, by taking into account (4.31), (4.35), (4.36), we can conclude that

the sequence (¥n, ny.ns)nynns fulfils
lim lim lim Zhenzns T 92

n1—00 N9 —00 N3— 00 1—|—‘| 1—|—|’

Y

K . K
Iim lim lim 0¥Pn1nong ©

N1 —00 Mg —00 N3 — 00 1—|—|| 1+||

This concludes the proof. O

4.4 Proof of Theorem 4.4

Let ¢ € D(K,Cy1(H)) and assume that (¢,)neny C Ea(H) fulfils (4.29),
(4.30) (for simplicity we assume that this sequence has only one index: this
does not change the generality of the proof). For any ¢ > 0 we find

= Ot ( /H Koson(w)us(daz)> ds,

since ¢, € D(K,Cy1(H)) and K, = Ky, for any n € N (cfr. Corollary
4.14). Now observe that since sup,,cy |Kopn ()] < ¢(1 + |z|) for some ¢ > 0
and since us € M;(H) for any s > 0, it holds

lin [ FKog (o)(da) = /H K p(a)pslde)

n—oo

and

sup
neN

| Kogulayutdo)| < [ (1 el (ds).

Hence, by taking into account (4.7) we can apply the dominated convergence
theorem to obtain

i [ ([ Kagutonatan) as = [ ([ wotopian) i
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So, pt, t > 01is also a solution of the measure equation for (K, D(K, Cy1(H))).
Since by Theorem 4.2 such a solution is unique and it is given by P/u, t > 0,
we have [, o(x)P;u(dz) = [, o(x)m(dz), for any ¢ € E4(H). By taking
into account that the set £4(H) is m-dense in Cy(H) (cf. Proposition 2.3),
we have [, o(x)P;p(dz) = [, ¢(x)w(dx), for any ¢ € Cy(H), which implies
P = py, Yt > 0. This concludes the proof.
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Chapter 5

The reaction-diffusion operator

We deal with Kolmogorov operators associated to reaction-diffusion stochas-
tic equations. The results of Theorems 5.2, 5.3, 5.4 seem to be new and they
are contained in the submitted paper [38].

5.1 Introduction

We shall consider here the stochastic heat equation perturbed by a polyno-
mial term of odd degree d > 1 having negative leading coefficient (this will
ensures non explosion). We shall represent this polynomial as

A —p(§), EE€R,

where A € R and p is an increasing polynomial, that is p/(£) > 0 for all £ € R.

We set H = L*(O) where O = [0,1]", n € N, and denote by 90O the
boundary of @. We are concerned with the following stochastic differential
equation with Dirichlet boundary conditions

X(t,6) = [AcX(t,6) + AX(t,8) — p(X(t,6))]dt + BAW(t,€), €€ O,
X(t,6) =0, t>0,¢e€do,

X(0,€) = 2(¢), €€0, weH,

(5.1)

where A¢ is the Laplace operator, B € L(H) and W is a cylindrical Wiener

process defined in a stochastic basis (Q, F, (F;)i>0, P) in H. We choose W of
the form

W(tE) = en&)Bi(t), £€0,t>0,

k=1

71
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where {ex} is a complete orthonormal system in H and {3} a sequence of
mutually independent standard Brownian motions on (2, F, (F)>0, P).

Let us write problem (5.1) as a stochastic differential equation in the
Hilbert space H. For this we denote by A the realization of the Laplace
operator with Dirichlet boundary conditions,

Ax = Az, x € D(A),
(5.2)
D(A) = H*(O)N Hy(0).

A is self-adjoint and has a complete orthonormal system of eigenfunctions,
namely

er(€) = (2/m)"? sin(mk &) - - - (sinThnén),
where k = (ky,...,k,), ki € N. For any © € H we set z = (z,¢er), k € N".
Notice that
Aep = —m?k]>, keN", [k =k + - + k.

Therefore, we have
2
e <e ™ t>0. (5.3)

Remark 5.1. We can also consider the realization of the Laplace operator
A with Neumann boundary conditions

Nz = A¢x, x€ D(N),

[XN):{éEEH%O):g%::OOHGO}

where 7 represents the outward normal to 0O. Then
Nfr = —m*k[* fr, ke (NN{O})",

where

fiu(&) = (2/m)V? cos(mki&y) - - - (cos Thn&y),
k= (kyi,...k,), ki e NU{0} and |k|* =k +--- + k2.
Concerning the operator B we shall assume, for the sake of simplicity (1),
that B = (—A)™/2, where

7>g—1 (5.4)

LAll following results remain true taking B = G(—A)~7/2 with G € L(H).
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The reason of this assumption will be explained in section 5.4.
Now, setting X (t) = X(¢,-) and W (t) = W (t,-), we shall write problem
(5.1) as
dX(t) = [AX(t) + F(X(t))]dt + (—A)~72dW (t),
(5.5)
X(0) = z.

where F'is the mapping
F:D(F)=L*0)c H— H, z(£) — X — p(x(£)).

It is well known that for any z € L?*¥(Q) problem (5.5) has a unique mild
solution X (¢,z),t > 0, x € H (see, for instance, [9], [26]), fulfilling

t t
X(t,x) = o + / e DABAW (s) + / VAR (X (s,2))ds (5.6)
0 0

for any ¢ > 0. Finally, it is well known that for any 7" > 0 there exists ¢ > 0
such that

sup E [\X(t,x)|dL2d(O)] <ec (1 n |x|§2d(o)). (5.7)
te[0,T]

X (t,z) — X(t,y)] <Pz -y, (5.8)
see [26], Theorem 4.8.

5.2 Main results

We consider here the Kolmogorov operator

Kog(r) = 5 Te[BB* DXp(x)] + (z, AD@(x)) + {Dp(x), F()), = € I*(O).
(5.9)
We are interested in extending the results of Theorems 4.2, 4.3, 4.4 to this
operator. This will be done in Theorems 5.2, 5.3, 5.4 respectively.
Denote by Cj,4(L?**(O)) the space of all functions ¢ : L?*(O) — R such
that the function

L2d(0) N R, T — SO(‘Z)
L+ 123200

is uniformly continuous and bounded. The space Cj, 4(L*(0)), endowed with

the norm

()]
lolle, az2a)y = sup ——————
alL50)) z€L24(0) I+ ’$|%2d(0)
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is a Banach space. For a sequence (¢n)nen C Cha(L*(0)) and a function
¢ € Cyq(L*(0O)) we write

lm = a .
TLHOO]_—I'_I |L2d () 1+|'|L2d(0)
if
lim @n( ) QO(ZE) ’ Vo € L2d(0)
n—oo | + |$|L2d 1 + ‘.’L”LQd(O
and

Slelp H%ch La(L24(0)) < 0.

Thanks to estimates (5.7) and (5.8) we can define a semigroup of transi-
tion operators in Cj 4(L*(0)), by the formula

Pep(x) = E[p(X(t,2))], >0, ¢ € Coa(L*(O)), x € L**(0),  (5.10)

see Proposition 5.5. We define its infinitesimal generator by setting

(

DK, Coa( L2(0))) = {90 € Coa(L%(0)) : Ig € CrulL*(0)),
- Pipla) - ole) _

t—0t

g(x), Vo € L2d((9),
< oo}
Cy,q(L?4(0))

¢ € D(K,Cyq(L*(0))), x € L**(0O).

(5.11)
We recall that M y(L?*#(0)) is the space of all finite Borel measures on L?¢(O)
such that

Pp— ¢
sup —

t€(0,1)

\ t—0t t ’

/ |x’dL2d(0)‘M‘TV<dx) < 0.
L2d((9)

Since L?4(O) C H, we have My(L*¥(0)) € M(H). The following theorem
generalizes Theorem 4.2 to the reaction-diffusion case.

Theorem 5.2. Let (P;)1>0 be the semigroup defined by (5.10) in Cyo(H), and
let (K, D(K,Cyq(L*(0)))) be its infinitesimal generator in Cyq(L**(0)),
defined by (5.11). Then, the formula

(0, P F) £(0y 4(124(0)), (Cy a(224(0)))) = (Peps F) £(C4 a(124(0)), (G a(L24(0)))")
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defines a semigroup (P} )0 of linear and bounded operators on (Cy, 4(L**(O)))*
which maps My(L*4(0O)) into My(L*4(O)). Moreover, for any u € My(L*3(O))
there exists a unique family of measures {js, t > 0} C Mg(L*(O)) such that

T
/ </ |$|dL2d(O)|,LLt|Tv(dl'>> dt < o0, VYT >0 (5.12)
0 H

and

[ ctmtan)— [ etwtan = [ ([ wotwpmian) s )

t >0, p € DIK,Cypa(L*(0))). Finally, the solution of (5.12), (5.13) is
gwen by Pfu, t > 0.

It is worth noticing that Cy(H) C Cy1(H) C Cy4(L**(O)), with continu-
ous embedding. This argument will be used in what follows. Note, also, that
for any ¢ € C,4(L*(0)) there exists a sequence (¢, )nen C Cy(H) such that

lim SOnd = Ld y .
oo Lt [ ey 1] [

The main result of this section is the following

Theorem 5.3. The operator (K, D(K, Cy 4(L**(0)))) defined in (5.11) is an
extension of Ko, and for any ¢ € E4(H) we have p € D(K, Cy 4(L**(0))) and
Ky = Kop. Moreover, the set E4(H) is a m-core for (K, D(K, Cy4(L*(0)))),
that is for any ¢ € D(K, Cy4(L**(O))) there exist m € N and an m-indexed
sequence (Pny . np)nien,..nmeN C Ea(H) such that

lim - lim —etm T L4 (5.14)

m=co  mm—o0 L+ || 14| [faue

and
lim --- lim Kon....nm z Ko
m=oemm=oo Lt |- L) L[ o)

(5.15)

Thanks to Theorem 5.3 we are able to prove the following

Theorem 5.4. For any p € My(L*(O)) there exists a unique family of
measures {p, t > 0} C My(L*(0)) fulfilling (5.12) and the measure equa-

tion
[ ctomtan) — [ otwtan = [ ([ Kuptoptan)as. 619

t > 0,9 € Ea(H). Finally, the solution of (5.12), (5.16) is given by P}y,
t>0.
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In the next section we study the transition semigroup (5.10) and its infi-
nitesimal generator (5.11) in the space Cj, 4(L**(O)). In section 5.4 we shall
introduce an approximation of problem (5.5) that will be often used in what
follows. Finally, in sections 5.5, 5.6, 5.7 we prove Theorems 5.2, 5.3, 5.4,
respectively.

5.3 The transition semigroup in Cj 4(L*(O))

The following two propositions may be proved in essentially the same way as
Proposition 4.6 and Proposition 4.8.

Proposition 5.5. Formula (5.10) defines a semigroup of operators (P;);>o in
Cya(L*(0)), and there exists a family of probability measures {m;(z,-), t >
0, x € L*(0)} € My(L*(0)) and two constants co,wy > 0, such that

(i) P, € L(Cha(L*(0))) and ”PtHE(Cb,d(L?d(O))) < coet;

(ii) Pyp(x) = /Hcp(y)m(:v,dy), for any t > 0, ¢ € Cypa(L*(0)), z €
L2d(0>,'

(iii) for any ¢ € Cyq(L*4(O)), x € H, the function Rt — R, t — Pyp(x) is
continuous.

(Z’U) PtPS = Pt-‘rs; fOT any t,S Z 0 and PO :I;

(v) for any ¢ € Cyqa(L*(O)) and any sequence (n)nen C Cha(L**(O))

such that

1m =

= L[ faae) L] [ao)

we have, for any t > 0,

i nx D
n—oo 1+ |- dL2d(O) 1+ dL2d((9)

Proposition 5.6. Under the hypothesis of Proposition 5.5, let us consider
the infinitesimal generator (K, D(K,Cy4(L?**(0)))) of P; defined in (5.11).
Then

(i) for any ¢ € D(K,Cyq(L**(0O))), we have Pyp € D(K,Cy4(L*(0)))
and KPyp = PKp, t > 0;
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(ii) for any ¢ € D(K,Cyq(L*(0))), z € L*(0O), the map [0,00) — R,
t — Pup(x) is continuously differentiable and (d/dt) Pip(z) = PKp(x);

(111) given co,wo > 0 as in Proposition 5.5, for any w > wy the linear ope-
rator R(w, K) on Cy4(L**(O)) defined by

R(w, K)f(z) = /Ooo e P f(x)dt, f € Cyoa(L*(0)), z € L*(0)

satisfies, for any f € Cy1(H)

R(w,K) € ﬁ(ob,d(LQd(O)))a | R(w, K)Hc(cb’d(md(om <

W — Wy

R(w,K)f € D(K, Cya(L*(0))), (wl = K)R(w,K)f = f.
We call R(w, K) the resolvent of K at w.

5.4 Some auxiliary results
It is convenient to consider the Ornstein—Uhlenbeck process
dZ(t) = AZ(t)dt + (—A)/2dW (t),
Z(0) =z,
and the corresponding transition semigroup in Cy(H)
Ryp(x) = E[p(Z(t, )], ¢ € Coa(H). (5.17)

Notice that thanks to (5.3), (5.4) the operator
t t
Qta::/ e ABB e xds = / (—A) Ve Ay dt
0 0

—H(-A) U= ), 1200 € I,

is of trace class. This implies that the Ornstein-Uhlenbeck process Z(t,x)
has Gaussian law of mean e’z and covariance operator Q;. For the corre-
sponding transition semigroup the representation formula

Ryp(r) = /H oz + y)Ng, (dy)
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holds for any ¢t > 0, ¢ € C,1(H), © € H. Notice that we can take v = 0
and B = [ (white noise) only for n = 1. As in section 4.3.1, we denote
by (L, D(L,Cy1(H))) the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup (R;);>o in the space Cy1(H).

A basic tool for proving our results is provided by the following approxi-
mating problem

dX™(t) = (AX™(t) + F,(X™(t))dt 4 (—A)~2dW (),
(5.18)
X"(0) =z € H,

where for any n € N, F}, : H — H is defined by

Fn(x)(f) = )\ZL’(S) —pn(l’(f)), reH
and p,, is defined by

np(n)
n? +p2(n)’
Notice that p,, is bounded and differentiable, with bounded differential

np' (1) (1 p*(n) )207

n2+p2(n) \ n2+p3(n)

pn(n) = n € R.

Pn(n) =

for any n € N, n € R. Clearly, [p,(n)| < [p(n)|, n € R and p,(n) — p(n) as
n — oo, for any n € R. The mapping F,, : H — H is Lipschitz continuous,
and for any n € N, z € H problem (5.18) has a unique mild solution X" (¢, x),
t > 0 (cfr. section 1). Since by the above discussion we have |F,,(z)| < |F(z)],
x € H and |F,(z)] — |F(z)| as n — oo, for any z € H it is not difficult
though tedious to show that for any x € L?¥(0) it holds

lim sup E[|X"(t,z) — X(¢,2)] =0 (5.19)
n—=0 ¢el0,7)
and
E [yX"(m)wLM(O)} <E [|X(t,x)\§2d(o)} , neN. (5.20)

Thanks to (5.19), (5.20) and by the fact that F,, : H — H is Lipschitz
continuous, we can define the transition semigroup associated to the mild
solution of (5.18) in both the spaces C 4(L?**(O)) and Cy 1 (H).

Proposition 5.7. For any n € N, let (P')i>0 be the transition semigroup
associated to the mild solution of problem (5.18) in the space Cyq(L**(0)),
defined as in (5.10) with X™(t,z) replacing X (t,x). Then
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(1) (P)is0 satisfies statements (i)—(v) of Proposition 5.5, and for cy,wy

as in Proposition 5.5 we have || P}"|| zc, 4240y < coe“t;

(i) (P")i0 is a semigroup of operators in the space Cy1(H). Moreover
it satisfies statements (i)—(v) of Proposition 4.6. In particular, there
exists cn,wy > 0 such that ||P{"||zc,, m) < cne’t for any t > 0.

Proof. (i) follows by (5.20). (ii) follows since equation (5.18) satisfies Hy-
pothesis 4.1. 0

By (ii) of Proposition 5.7, we can define, for any n € N, the infinitesimal
generator (K, D(Cy1(H))) of the semigroup (P}*):>o in the space Cy1(H)
(cfr. (4.6)).

By Theorem 4.12 and Proposition 5.7 it follows that

Proposition 5.8. For any n € N we have that D(L,Cy1(H)) N CH(H) =
D(K,,Cy1(H))NCLH), and for any p € D(L,Cy1(H)) N CLH(H) we have
Knp = Lo+ (D, Fr).

The semigroup (FP}*)i>o enjoys the following property, which will be es-
sential in the proof of Theorem 5.3.

Proposition 5.9. For any n € N, the semigroup (P*);>0 maps C}(H) into
CLH(H), and for any ¢ € CL(H) it holds

2
|DPp(x)| < 2=t Sug |Do(z)|
S

Proof. Since the nonlinear mapping F,, is differentiable with uniformly con-
tinuous and bounded differential, it is well known (see, for instance, [22]) that
the mild solution X" (¢, x) of problem (5.18) is differentiable with respect to
x and for any z,h € H we have DX™(t,z)-h = n''(t,z), where (¢, x) is the
mild solution of the differential equation with random coefficients

d
Lof(t,2) = Anf(t,2) + DE(X(t.2)) nl(t,) 120
ni(t,z) = 0.

Multiplying the above identity by 7(t,z) and integrating over O we find
that
1d

5 77t 2)1” = (A+ N, x),ny’i(tiv)>—/op;(X"(t,fr)(é))\nﬁ(w)(f)IQdf-

Taking into account that p/, > 0 and integrating by parts we find that
1d

sl + [ [Dala)(©Fde < At )P
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Now, the classical Poincaré inequality implies |Denl (¢, z)| > 72|n(t, z)| and
so we obtain

1d
5%‘772(15737)’2 < ()\—7T2)|?72<t,13)‘2, erutZO
Consequently, by the Gronwall lemma we find that
" (8, 2)| < XA, (5.21)

Now take ¢ € C}(H). For any z,h € H we have
DP¢(x) - h =B [Dp(X"(t,)) 1" (t,z)] .
Hence by (5.21)
|DP¢(x) - h| < E [[Dp(X"(t,2))|In" (¢, 2)]] < sup | Dp() |2~ n],

which implies the result. [

5.5 Proof of Theorem 5.2

We have first to show that (P;)¢>o is a semigroup of linear and continuous
operators in (Cy4(L**(0)))* and that Pru € My(L**(O)) for any t > 0,
p € My(L*(0)). These facts follow by Proposition 5.5 and by the argument
of Lemma 4.10. We leave the details to the reader.

We now show existence of a solution for the measure equation, namely
we show that Pu, t > 0 fulfils (5.16), (5.12). To show that Pfu, t > 0 fulfils
(5.16) one can use the argument from Lemma 4.11. We left the details to
the reader. We now check that (5.12) holds. Fix 7" > 0. By the local
boundedness of the operators Pu and by the semigroup property it follows
that there exists ¢ > 0 such that

sup || B (| oy a(z2a(0)))) < €
te[0,7

Still by the first part of the theorem, since p € My(L*¥(O)) we have Pju €
My(L?4(0)). Hence

T T
[ ([ eltusolrrsnvtan) o= [ [ falta | Rutrvtan) )
0 H 0 L24(0)

T T
< / 157 1l (. az2aon-dt < C/ Il atzzaony-dt
0 0

= Tl azsioyy = T / (1+ 2l a0 [l (d2) < o0,
L24(0))
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Then, (5.12) is proved.

Let us prove uniqueness of the solution. By (4.3) follows that the mild
solution X (¢, ) of problem (5.6) can be extended to a process (X (¢, z))i>02en
with values in H and adapted to the filtration (F;):>0. In the literature, the
process X (-, z) is called a generalized solution of equation (5.6) (see [26]).

Hence, we can extend the transition semigroup (5.10) to a semigroup in
Cy(H), still denoted by (F;)i>0, by setting

Fp(z) =E[p(X(t,z))] t20,z€H, ¢eCy(H).

Clearly, || Pl z(c,(myy < 1. In addition, the representation

Pp(z) = /H p(y)mi(z, dy)

holds for any ¢ € Cy(H), where m,(x,-) is the probability measure on H
defined by m,(x,T) = P(X(t,x) € T), T € B(H). Tt is clear that 7} (z,T") =
m(z,T) when ' € B(L?*(0)). We define the infinitesimal generator K :
D(K,Cy(H)) — Cy(H) of the semigroup (P;);>¢ in the space Cy(H) as in
(4.13). By arguing as in Lemma 4.11, one can show that the semigroup
(P)i>o in Cy(H) is a stochastically continuous Markov semigroup, in the
sense of [37]. So, we can apply Theorem 4.9 and then for any u € M(H)
there exists a unique family of measures {y;, t > 0} C M(H) such that

T
/ ’/,Lt’Tv(H)dt < 00, VYT >0 (522)
0

and (5.13) holds for any t > 0 and ¢ € D(K,Cy(H)).

Now take p = 0, and assume that {4, ¢t > 0} C My(L**(O)) fulfils
(5.16), (5.12). Then {u, t > 0} C M(H). We want to show now that s,
t > 0 fulfils also (5.22) and (5.13) for any t > 0, ¢ € D(K,Cy(H)). Taking
in mind that for this equation the solution is unique, this will imply p; = 0
(as measure in H and consequently as measure in L??(0)) for any ¢ > 0.

Clearly, (5.22) follows by (5.16). It is also possible to prove, by a standard
argument, that D(K,Cy(H)) C D(K,Cya(L*(0))) and D(K,Cy(H)) =
{p € D(K,Cya(L*(0))) N Cy(H) : Ko € Cy(H)}. Then, for any ¢ €
D(K,Cy(H)), we have ¢ € D(K,Cy4(L*(0))) and hence (5.13) holds for
any ¢ € D(K,Cy(H)). This concludes the proof. O

5.6 Proof of Theorem 5.3

The proof is splitted into two lemmata.
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Lemma 5.10. (K, D(K, Cy4(L**(0)))) is an extension of Ky, and for any
¢ € Eo(H) we have ¢ € D(K, Cy 4(L**(0))) and Ko = Kyp.

Proof. 1t is sufficient to prove the claim for ¢ € E4(H) of the form ¢(z) =
'@l x ¢ H, where h € D(A). For any t > 0, € L?**(O) we have

X(t,x)=Z(t,x) + /t eIAR(X (s, x))ds,

where Z(t, x) is the OU process introduced in section 5.4. Then we have

Ryp(x) — ¢(x) = Pp(z) — p(x)

_ﬂE{Al¢@zuﬁm-%a-—axxux»<h¢/1ﬂ@AF@Y@~@W“>d4’

0

for any z € L?¥(0O), since (Dy(z),y) = ip(z)(h,y). Since Z(t,z), X(t, )
are continuous in mean square, by arguing as for Theorem 4.12 it follows

lim iE E /01 o(EZ(t,2) + (1 — )X (t,x)) <h, /Ot e(t_s)AF(X(s,x))ds> dg}

t—0t

= ip(x)(h, F(z)) = (Do(x), F(x)). (5.23)
In addition, by (5.7) we have that for any z € L?*(O)

% ‘E Uol P(EZ(t,7) + (1 - )X (t,2)) <hv /t e(t_S)AF(X(S’I>)dS> dg] ‘

0
g
-t

h t
< %/0 E [|X(8,I)|szd(o)ds] < |h|c (1 + |x|‘£2d(0)> ) (5.24)

| <8 [eprocs.aas

t
/ eIAR(X (s, x))ds
0

for some ¢ > 0. We recall that E4(H) C D(L,Cy1(H)) N CL(H). by (5.23)
and Proposition 4.13 it follows

lim P“"(“’)t_ ) _ Lo(z) + (Dp(x), F(2)) = Kop(z), Yz € L*(0).

t—0t

By (5.24) we have

Py —¢
t

Ryp —
sup EE—
te(0,1]

< sup
Cpa(L?4(0))  t€(0.1)

+ |hle < o0

0,1

that implies ¢ € D(K, Cy4(L*(0))). This concludes the proof. O
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Lemma 5.11. The set E4(H) is a w-core for (K, D(K, Cy4(L*(0)))), and
for any ¢ € D(K,Cyq(L*(0))) there exists m € N and an m-indezed se-
quence (Pny....n) C Ea(H) such that

Pny,nm T %

lim --- lim = , 5.25
m=co  mm—00 L4 |- |7y 14|12 2
K n n ™ K
lim - lim et T LA (5.26)
m=co  mm=oo L4 |- 700y 14|+ L2

Proof. Take ¢ € D(K,Cyq(L**(0))). We shall construct the claimed se-
quence in four steps.

Step 1. Fix w > wp,2(A — 7?) and set f = wp — Kp. Then we have
¢ = R(w, K)f. We approximate f as follows: for any n; € N we set

1h
nyf(em " x)
foy(2) = T , reH
ny + |em I\LZd(O)

By the well known properties of the heat semigroup, we have erils € L*(0),
for any x € H. Hence, f,, € Cy(H) and

lim Jm Z /
m=oo 1+ | [Tao) 141" IL20(0)

By Proposition 5.5 we have

n1—>ool+|-|dL2d(O) 1—|—|.|C£2d(0)

for any ¢ > 0. Since we have |||z ¢, 4(z24(0y) < coe®®, V& > 0 (cfr. (i) of
Proposition 5.5) and w > wy, it follows

lim R(waK)fnl ; R<W7K)f
m—oo 14 dL2d(O) L+ %Qd(O)

Setting ¢, = R(w, K) f,,, by the above argument we have

Oy n 17 Koy, n Ko

nl_)OO1+|.|C[l/2d(O) 1+| szd((’)) n1—>ool+|-|dL2d(O) 1+||%2d(o)

(5.27)

Step 2. For any n; € N, let us fix a sequence (fn, n,)ngen C Ci(H) such
that

llm fnl,nz ; fnl‘

n9—00
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Now set ©n, ny, = R(w, K) fp, n,- By arguing as in step 1 we have

U Gnns = Pns M0 Ky = Kipn,. (5.28)

ng—00

Step 3. We now consider the approximation of K introduced in section
5.4. We denote by (K,,, D(K,,,Cy1(H))) the infinitesimal generator of the
transition semigroup associated to the mild solution of problem (5.18) in the
space Cp1(H). For any ny,no,ng € N set

o0
_ —wt pn3
@nlmz,ns _/ e Pt fnlmzdt'
0

For any n;,ng,ns € N the function ¢, n,n, is bounded, since

/ ewtptnsfnmdt‘g||f||0 / et < oo,
0 0

The fact that ¢, n,n, € Co(H) follows by standard computations. By (v) of
Proposition 4.6 and by (i) of Proposition 5.7 it follows that

. @ni,na,ns T @ni,no
lim = = ’ ) (5.29)
n3—0o0 1 _|_ | : C[llgd(o) 1 —'I— | . |%2d(0)

It is also stardard to show that for any nj,ng,ng € N it holds ¢, nyms €
D(K,,,Cy1(H))) for and K, ©ny nons = Wnynens — frims- Hence, by (5.29)
we obtain
hm Kng(pnld,ng,ng ; Kgpnilf@
n3~>oo]_—|—|-|L2d(O) 1—|—| T24(0)

(5.30)

By Proposition 5.9 it follows that ¢, n,.ms € CL(H) and

|D90n1,n2,n3 (ZL“)| =

/ e “'DP Frims (z)dt
0

. D fuy ns ()]
< (w 2)\+27r2)tdt D < Super' n1,n2 ) 5.31
<[ e sp D f )] < 2 sl (5.30)

Hence ©n,y nyng € D(Kny, Co1(H)))NCE(H), and by Proposition 5.8 it follows
that Koy 0nymemns = Ly noms + (D@ nams, Fng). Hence, by Lemma 5.10 we
have, for any z € L*(0)

K@m,m,m (ZL‘) - L(pm,m,m (ZL‘) + <D$0n1,n2,n3 ('r)7 F(l’)>
= Bz Pninang (l‘) + <D§0n1,n27n3(x)7 F(x> - Fn3<x>><532>



5.6 Proof of Theorem 5.3 85

We recall that |F,,(z)| < |F(z)] < c|x|i2d(o), for any n3 € N, z € L*(0)

and for some ¢ > 0. In addition, |F,,(x) — F(x)| — 0 as ng — oo, for any
x € L?4(0O). Consequently, by (5.31) it follows that

D ni,no,n 7F_Fn s
lim DPnina. ca ) (5.33)
e L+ L24(0)

Step 4. By Propositon 4.13 for any ni,ns,ns € N there exists a sequence?

(¢n1,n2,n3,n4) C gA(-H) such that

lim  ©ny nyns,ms = ¥ni,n2.ns> (5.34)

n4—00

lim %TY[BB*DQSDnhnz,ns,m] + <x7AD90n1,n2,n3,n4> T Lo, ng s
A 1 T

(5.35)

and for any h € H

lim <D90n1,n2,n3,n47 h) = <D90n1,n2,n37 h).

n4—00

This, together with the above approximation, implies that for any ny, no, ng €
N we have

lim <D90n1,n2,n3,n4a F— Fn3> s <D90n1,n2,n3a F— Fn3>'
m=oe 1| [0 L+ 1 [Z200)

(5.36)

Step 5. By (5.27), (5.28), (5.29), (5.34) we have

: : : : Pninonzng ¥
lim lim lim lim 2 = y ,
nlaoongﬂoongﬂoomlﬂool—f— | . 124(0) 1+| . L24(0)

and consequently (5.25) follows. We now check

Kony nonsng = K
lim lim lim lim 0¥n1,namany T ®

n1—00 np—00 n3—oong—oo 1+ | - C/{%(O) 1+]- CLl2d(O)

This will prove (5.26). By Lemma 5.10, for any nq,ns,ng,ny € N we have
K@n, nonsme = Koni nomsn,- Moreover, by Theorem 4.3 we have ©p, 1y ns.n, €

D(K,,,Cy1(H))) and by (5.32)

K090n17n2,n37n4 (ZL‘) = Kn390n1,n27n3,m (I) + <D90n1,7L2,n377L4 (ZL‘), F(LE) - Fna (I)>,

2

we assume that it has one index
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for any ny,ng,n3,ny € N, x € L*(0). By (5.32), (5.35), (5.36) it holds

lim KO(PM 7L2 n3,ng T Kns@m,m n3 <D<:0n1 ,N2,M3) F— Fn3>
ng—oo | -+ |

L2d ) 1 + | LQd )
By (5.30), (5.33) it holds

lim K3y nams T <D§0n1,nz,n37 F— an> r Kpnn,
n3—o00 1+ | . |C£2d(0) 1+ | . ‘%2‘1((’))

By (5.27), (5.28) it holds

K 90711 no m Ko
lim lim =

n1—00 na—oo | + |

7 .
L2d((’)) L+ L24(0)

5.7 Proof of Theorem 5.4

Take 1 € My(L?**(O)). The fact that Pfu, t > 0 fulfils (5.12) and (5.16)
follows by Theorems 5.2, 5.3 and by the fact that K P,p = P,K¢p = P,Kyp,
for any ¢ € E4(H) (cfr. Proposition 5.6 and Lemma 5.10). Hence, exi-
stence of a solution is proved. Let us show that such a solution is unique.
Assume that {u;, t > 0} C My(L*(0)) fulfils (5.12) and (5.16). By The-
orem 5.3 for any ¢ € D(K,Cyq(L?**(0))) there exist m € N and an m-
indexed sequence (¥n,.. nn)nien,..nmen C Ea(H) such that (5.14), (5.15)
hold. This, together with (5.12), implies that p;, ¢ >0 fulfils (5.13) for
any t > 0, ¢ € D(K,Cyq(L*¥(0))) (here we can use the same argument
used to prove Theorem 4.4). Since the solution of (5.12), (5.13) is unique
and it is given by Pu, t >0, it follows [, ¢(x)P;u(dr) = [, o(z)w(dz),
for any ¢ € E4(H). Hence, since E4(H) is m-dense in Cy(H), it follows
[ (@) Prp(de) = [, ¢(x)p(dx), for any ¢ € Cy(H), that implies Py = puy,
Vvt > 0. This concludes the proof. n



Chapter 6

The Burgers equation

We consider the Burgers equation with Dirichlet boundary conditions per-
turbed by a white noise. Existence and uniqueness of a mild solution are
discussed in [13]. In [19] is proved uniqueness of an invariant measure v
(its existence is proved in [13]). Moreover, still in [19], several estimates
are proved in order to ensure that the operator Ky(see (6.10) below) is m-
dissipative in L?(H;v). Thanks to these estimates, we are able to prove new
results which are described by Theorems 6.4, 6.5 and are the object of a
forthcoming paper.

We recall that in [41], [42] it has been considered a generalized Burg-
ers stochastic equation and the associated Kolmogorov operator it has been
studied in spaces of continuous functions (see the Introduction of this thesis
for a more detailed description). However, in [41], [42] the noise is driven by
a trace class operator, whereas in our case the perturbation is a white noise.

6.1 Introduction and preliminaries

We consider the stochastic Burgers equation in the interval [0, 1] with Dirich-
let boundary conditions perturbed by a space-time white noise

1
dx = (D?X +3 Dg(XQ)) dt +dw, ¢e[0,1],t>0,

X(£,0)=X(t,1)=0

[ X(0,8) = z(£), € €[0,1],

where € L%(0,1) and W is a cylindrical Wiener process defined in a prob-
ability space (2, F,P) and with values in L?(0,1).

87



88 The Burgers equation

Let us write problem (6.1) in an abstract form. We denote by L?(0,1), p >
1, the space of all real valued Lebesque measurable functions z : [0,1] — R

such that
1 1/p
= ([ latepas) <o
0

and by L>(0,1) the space of all real valued Lebesque measurable essentially
bounded functions endowed with the norm

2|0 := sup |z(§)].
£€0,1]

We denote by H the Hilbert space of all Lebesque square integrable function
z :[0,1] — R, endowed with the norm

= ([ |x<£>|2d5)%

() = / (E)y(E)de, w,y € O

and the inner product

As usual, H*(0,1), k € N, is the Sobolev space of all functions in H whose
differentials belong to H up to the order k, and H}(0,1) is the subspace of
H?" of all functions whose trace at 0 and 1 vanishes. We define the unbounded
self-adjoint operator A in H by

82
Al’ = 8—5233

for  in the domain
D(A) = H*(0,1) N Hy(0,1).

and by e, t > 0 the semigroup in H generated by A. Finally, we denote by
{ek }ren the orthonormal system in H given by the eigenvectors of A

ex(§) = \/gsin(kﬁ), ¢e€l0,1], ke N.

We have
Aep, = —k2€k, k € N.
We set

b(z) = % De(?), x e D(b) = H}.
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The operator b enjoys the foundamental property
(b(x),r) =0 forallx € H,.

Thanks to the introduced notations, we write problem (6.1) in the abstract
form

dX = (AX +b(X))dt + dW (1),
(6.2)
X(0)=z, z€H

As usual, the cylindrical Wiener process W (t) is given (formally) by
W(t)=> Bit)er, t>0,
k=1

where {0} is a sequence of mutually independent standard Brownian mo-
tions on a stochastic basis (2, F, (Fi)i>0, P). We recall that the solution of
the linear stochastic equation

dZ(t, ) = AZ(t,z)dt + dW(t), t>0

(6.3)
Z(0,z2) =x € H
is given by the stochastic convolution
Z(t,x) = o+ Wa(t), (6.4)

see Chapter 2. The process Z(t, x) has a version which is, a.s. for w € Q, a-
Hélder continuous with respect to (¢, z), for any o € (0, 1) (see [22], Theorem
5.20 and Example 5.21). Now set

Y(t,x) = X(t,2) — Wa(t).

We write (6.2) as

Y (t,z) =z + /Ot e(t_s)A% (Y(s,x) + Wa(t, z))* ds, 65)

Y(0,2)=2z, z€H

As we shall see, if z(t) € L*(0,1) a.s., then etAa%zQ € LP(0,1) is bounded.
Then the above integral converges and the equation is meaningful.

We say that X (¢, x) is a mild solution of (6.2) if Y (t,z) = X (¢,2) —Wa(t)
satisfies (6.5) for a.s. all w € Q.

The following result is proved in [13].
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Theorem 6.1. Let x € LP(0,1), p > 2. Then there exists a unique mild
solution of equation (6.2), which belongs a.s. to C([0,T]; L*(0,1)), for any
T > 0.

The following estimate is proved in [19].

Proposition 6.2. For anyp > 2, k> 1, T' > 0 there exists a constant cp
such that

E

sup \X(t,x)|§] < cprr(l+ ]a;\’;)
te[0,T7]

6.2 Main results

In order to proceed, we need to introduce some functional spaces. We denote
by Cy(H) the Banach space of the bounded real valued and continuous func-
tion on H endowed with the usual supremum norm || - ||o. We also denote by
Cp1(H) the Banach space of all continuous functions f : H — R such that

1£llox := 11+ [+ |2) " fllo < o0

Now set
V(z) = |zlglz}, e L°0,1)

and denote by Cp1/(L5(0, 1)) the space of all continuous function ¢ : L°(0,1) —
R such that the function

p(@)
L%(0,1 R —
OU=R o= v

is bounded. The space Cp1/(L%(0, 1)), endowed with the norm

HSOHO,V = sup M
wers(oy 1+ V(z)

is a Banach space. As easily seen, Co(H) C Cyp1(H) C Cpv(L(0,1)) with
continuous embedding.
For a sequence (¢,)nny C Cpv(L°(0,1)) and ¢ € Cyy(L°(0,1)) we shall

use the notation
1i On ®
im

nﬂOOl—I—V:l—i—V

to say that
lim #nl2) = 2(v) 5
n—oo 1+ V(zx) 14 V(x)

Vo € L%(0,1)
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and

sup ||@nllo,y < oo.
neN

When the sequence has more than an index, the meaning of the limit is the
same given in Definition 1.1.

The reason which justifies the introduction of the above spaces is that we
are not able to prove that the transition semigroup associated to the mild
solution of (6.2) acts on uniformly continuous functions. However, thanks to
the estimate given in Proposition 6.2 we can define a semigroup of transition
operators in Cp1/(L%(0,1)) by the formula

Pup(z) =E[p(X(t,z))], t>0,¢€Cy(L%0,1)), z € L°0,1), (6.6)

where X (¢, x) is solution of (6.5) (see Proposition 6.10). We define its infi-
nitesimal generator by setting

;

D(K,C,v(L°(0,1))) = {w € Cpv(L°(0,1)) : 3g € Gy (L8(0, 1)),
<m§

, @€ D(K,Cyv(L0,1))), x € L°(0,1).

(6.7)
We notice that My (L5(0,1)) coincides with the space of all finite Borel
measures ;1 € M(H) such that

Pp—
t

lim Feoplw) = olx) = g(z), v € L%(0,1), sup

t—0+ t t€(0,1)

PN CORTC

\ t—0+ t

/ V(z)|pu|rv(dz) < oo.
L5(0,1)

The first result of the chapter is the generalization of Theorems 1.8, 1.12.
We omit the proof which is very similar to the proof of Theorem 4.2

Theorem 6.3. Let (P)i>0 be the semigroup defined by (6.6) and let us
consider its infinitesimal generator (K, D(K,Cyyv(L%(0,1)))) given by (6.7).
Then, the formula

(s PLE) £(0y v (15(0,1)), o (15(0,0))%) = (B0 F) £(Cyy (18(0,1)), (G v (16(0,1)))%)

defines a semigroup (P} )i>o of linear and continuous operators on Cyy (L°(0, 1))
which maps My (L5(0,1)) into My (L5(0,1)). Moreover, for any measure
€ My (L%(0,1)) there exists a unique family {p, t > 0} C My (L%(0,1))

such that .
/ (/ V(x)|,ut|Tv(d:B)> dt < oo, VT >0 (6.8)
0 L5(0,1)
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and

/LG(%) o) pe(d) — / p(z)p(dz)

L%(0,1)
_ /0 t ( /L . Kgp(aj),us(dx)> ds (6.9)

for anyt >0, ¢ € D(K,Cyy(L5(0,1))). Finally, the solution of (6.8), (6.9)
s gwen by Pru, t > 0.

We consider the Kolmogorov differential operator
1 2 1 2
Kop(z) = 5Tr [D go(:p)} + (z, ADp(z)) — §<D§Dg0(x),x ) (6.10)

x € L5(0,1), ¢ € E4(H). The following result is the core of this chapter and
it is proved in section 6.8

Theorem 6.4. The operator (K, D(K,Cyy (L5(0,1)))) is an extension of Ko,
and for any ¢ € Ea(H) we have p € D(K,Cpv(L%(0,1))) and Ky = Kyp.
Finally, the set E4(H) is a w-core for (K, D(K,Cyy(L5(0,1)))), that is for
any ¢ € D(K,Cpy(L5(0,1))) there exist m € N and an m-indexed sequence
(@nymm Jnaen,...nmen C Ea(H) such that

m --- lim 2Meetm oz 9
n—oo  nm—oo 1+ V 1+V

and

Hm --- i s
mlinoo an—>noo 1+V 1+V

The third main result of this chapter follows by the previous ones and by
reasoning as for Theorems 4.4, 5.4.

Theorem 6.5. For any p € My (L5(0,1)) there exists an unique family
of measures {us, t > 0} C My (L%(0,1)) fulfilling (6.8) and the measure
equation

/Lﬁ(o,1) o) (dr) — /L6(0’1) o(x)p(dx) = /Ot (/L6(0,1) Kogp(g:)us(d;p)) ds,
(6.11)

t >0, 9 € EA(H). Moreover, the solution is given by Pju, t > 0.
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6.3 Further estimates on the solution

In the case of the Burgers equation we are not able to prove uniform con-
tinuity of the solution with respect to the initial data as done in (4.3) in
the case of Lipschitz nonlinearities or in (5.8) in the case of polynomial non-
linearities. We prove only uniform continuity with respect to the inital datum
in a bounded neighbourhood. In order to proceed, set

0 = sup [Wa(t)|w, T >0.

te€[0,T]

Clearly 6 is a random variable, and 6 < oo a.s.
We need the following estimates, proved in Lemma 3.1 of [13]

Lemma 6.6. For any p € [2,00) there exists ¢, > 0 such that if Y (t,z) is a
solution of (6.5), then

Y(t,x)|, <cp (93 + |z]p) el t2pot,
We have the following

Theorem 6.7. For any p € [2,00) there exists a continuous function c, :
(RT)* — R such that

Yt 2) =Y (& 9)lp < ot [2lp, [ylp, Oz = ylp, 2,y € LP(0,1)
Proof. Here we follow [13]. By (6.5) we have
Y<t7 x) - Y(t7y) = etA(m - y)

+5 | A (51) = V(5 )V (5.0) Y (5,9) + 2W(5) s

then

Y, 2) =Yyl < lz—yl
1 t
" 5/0

As well known, e, ¢ > 0 has smoothing properties. In particular, for any
51,80 € R, 81 < 89,7 > 1, e maps W*7(0, 1) into W*27(0, 1), for any ¢ > 0.
Moreover, there exists C; > 0, depending on s1, So, 7, such that

e(t_S)A(%((Y(s, ) =Y (s,y)(Y(s,z) + Y(s,y) +2W(s)))| ds.

(6.12)

81—%2

|€tAZ|W52,r(071) S Cl (1 +t 2 > |Z|W51*T(O,l)7 A W817r(0, 1), (613)
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see Lemma 3, Part I in [43]. Using the Sobolev embedding theorem we have

(=942 ((¥ (5,) = Y (5, 9)) (¥ (s5,2) + ¥ (s,) + 2V (5))

o€ p
< O e(t_s)Aﬁ((Y(s,x) —Y(s,9)(Y(s,2) + Y(s,y) + 2W(s)))' L,
73 w2 0,1)

and, thanks to the above estimate with s; = —1, so = 1/p, r = p/2

P”“%«wam—Y@mxwam+Y@w+ﬂW@»

p

<0G, (1 Yt s)*%*i>

0

X |22 ((Y(s,2) =Y (s5,9)(Y(s,2) + Y(s,y) + 2W(s)))‘

23

W% (0,1)

< LGy (L4 (£ = 8) 7573 ) [(Y(s,2) = Y (s.9))(Y (s,2) + Y (5,9) + 2 (s)|

[NS]

< 010y (1 +(t— s)*%*%) Y (s,2) = Y (s, )], [V (s,2) + Y (s,) +2W(s)],

<60 (14 (=)%Y (5,2) = Y(s,p),
x ((260° + lalp + lylp) €7 + 2)

Now the result follows by (6.12) and by Gronwall lemma (see, for instance,
Lemma 7.1.1 in [32)). O

By recalling that Y (t,2) = X(t,2) — Wx(t) it follows immediately the
following result, which will be fundamental in the next section

Corollary 6.8. For any p € [2,00), x € LP(0,1), T > 0

sup |X(t,z+h)—X(t,z)|, =0 a.s., as |h|, — 0.
t€[0,T]
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6.4 The transition semigroup in C,1/(L%0, 1))

This section is devoted in studying the semigroup (P;);>¢ in the space
Cov(L8(0,1)).

Remark 6.9. By Corollary 6.8 we have that for any ¢ € Cp1(L%(0,1))

lim sup |Pp(x+h)— Pp(z)| =0.

€20 pg<e, te[0,T]

This is not sufficient to show that P, ¢t > 0 maps uniformly continuous
functions into uniformly continuous functions. However, as we shall see in
(i) of the next proposition, this allows us to show that P, maps the space
Cyv(L%(0,1)) into itself.

Proposition 6.10. Formula (6.6) defines a semigroup of operators (P;)i>o
in Cyy (L8(0,1)) and there exist two constants co > 1, wy € R and a family
of probability measures {m;(x,-), t > 0, z € L5(0,1)} € My (L5(0,1)) such
that

(i) P € L(Coy(L%(0,1))) and || Pl (e, (z5(0,1)) < e’

(ii) Pip(x) = /Hcp(y)m(ady), for any t > 0, p € Cv(L°(0,1)), z €
L5(0,1);

(iii) for any ¢ € Cpv(L%(0,1)), x € L5(0,1), the function RT — R, t
Pip(x) is continuous.

(iv) P,Ps = Py, for any t,s >0 and Py = I;

(v) for any ¢ € Cpy(L(0,1)) and any sequence (¢n)nen C Cpv(L9(0,1))

such that
li ©n 2
im

nﬂOOl—l—V:l—i—V

we have, for anyt > 0,

i 2t#n = D

Proof. (i). Take ¢ € Cpv(L%(0,1)), ¢ > 0. We have to show that P €
Cyv(L%(0,1)). By Proposition 6.2 it follows that

[Pep()] < lleplloy (1 +E[V(X(E,2))]) < cllgllov(l+V(x)),
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for some ¢ > 0. Then, we have to show that the function L°(0,1) — R.
x — Pyp(z) is continuous. Fix x¢ € L5(0,1). We have

|Prp(x0 + h) — Pop(wo)| < Elp(X(t, 20 + h)) — (X (¢, 70))]].

By Corollary 6.8 we have that | X (¢, zo+h)—X (¢, 20)|¢ — 0 P-a.s. as |h|g — 0.
Then, by the continuity of ¢ it follows |p(X(t,20 + h)) — @(X(t,20))| —
0 P-a.s. as |hl¢ — 0. On the other hand, p(X (¢, 29 + h)) has bounded
expectation, uniformly in any L5(0, 1)-ball of center xy. Then, it follows that
Pip(xzog + h) — Pip(xg) has |hl¢ — 0. (i) is proved. The other statements
follows by arguing as for Proposition 4.6. O

Proposition 6.11. Let X(t,x) be the mild solution of problem (6.2) and
let (P,)i>o be the associated transition semigroups in the space Cyy (L°(0,1))
defined by (6.6). Let also (K, D(K,Cyy(L5(0,1)))) be the associated infini-
tesimal generators, defined by (6.7). Then

(i) for any ¢ € D(K,Cyy (L5(0,1))), we have Pop € D(K,Cyy(L(0, 1))
and KP,p = PKyp, t > 0;

(ii) for any ¢ € D(K,C,v(L%(0,1))), = € H, the map [0,00) — R, ¢ —
Pyp(x) is continuously differentiable and (d/dt) Pup(x) = P,Kp(x);

(iii) for any ¢ € Cpv(L%(0,1)), t > 0, the function
t
H—-R, z~ / Pyp(x)ds
0

belongs to D(K,Cyv(L%(0,1))), and it holds

t
K</ PswdS) = P — ¢;
0

(v) for any A > wy, where wy is as in Proposition 6.10, the linear operator

R(\, K) on Cpy(L5(0,1)) defined by
RO\ K)f(z) = /OO e MP,f(z)dt, f € Cyy(L%0,1)), z € L50,1)
0
satisfies, for any f € Cpy (L°(0,1))

C
R\ K) € L(Cyv(L°(0,1))), IR\, K| ey zs0,1)) < +—

A — Wo
R\ K)f € D(K,Coy (L0, 1)), (M — K)R(\, K)f = f,

where ¢y is as in Proposition 6.10. We call R(\, K) the resolvent of K
at \.
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Proof. (i), (ii) follows by 6.7, Proposition 6.10 and may be proved as for
Theorem 1.9.

Let us show (iii). First, we have to check that f(f P,fds belongs to
Cy v (L5(0,1)). By (i) of Proposition 6.10, for any z € L°(0,1) we have

t t
‘/ Pyp(z)ds| < H(p”oycg/ e%ds(1+ V(x)).
0 0

then,

1
sup < 00.

versoy 1+ V(z)

/O ' Pp(a)ds

Now let us fix € > 0, 2o € L5(0,1) and take 6 > 0 such that

€

sup sup |Psp(xo+ h) — Psp(xo)| < -

s€[0,t] heL6(0,1) t
|hle<d

The constant § > 0 exists thanks to Remark 6.9. Therefore, for any h €
L5(0,1), |hle < & we have

¢ ¢ ¢
/ P,p(xo + h)ds — / Psp(xg)ds| < / |Pro(zo + h) — Pip(xo)|ds < e.
0 0 0

By the arbitrariness of z, it follows f(f Pypds € Cyy(L8(0,1)). The rest of
the proof is essentially the same done for Theorem 1.9. ]

6.5 Proof of Theorem 6.3

We point out that we have introduced the theory of stochastically continu-
ous Markov semigroup in spaces of uniformly continuous functions only for
convenience. All the result of chapter 1 remains true if we replace Cy(FE)
by Cy(E), the Banach space of all the continuous functions f : E — R,
where F is a separable Banach space. Then, if we consider the semigroup
(P,)t>0 in (6.24) restricted to the space Cy(L5(0,1)), by Remark 6.9 we have
P, : Cp(L5(0,1)) — Cy(L5(0,1)) and consequently (P;);>o is a stochastically
continuous Markov semigroup in Cy(L%(0, 1)).
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Now set!

(

D(K.Cy(L%(0,1))) = ¢ € D(K,Cy(L°(0,1))) : Ig € Cy(L°(0, 1)),
<o0f

. @€ D(K,Cy(L5(0,1))), x € L%(0,1).
(6.14)
As pointed out above, all results of Chapter 2 remain true with Cy(L%(0,1))
replacing Cy(E). In particular, Theorem 1.8 and Theorem can be extended
to (P)i>o and its infinitesimal generator (K, D(K,Cy(L%(0,1)))). For the
reader’s convenience, we summarize these results in the following theorem.

. Pip(z) — o(x) Pip—¢

t

— g(x), € 190, 1), sup
t€(0,1)

Theorem 6.12. The family of linear maps P} : (Co(E))* — (Co(E))*, t > 0,
defined by the formula

() B F) cey(wo o), oo = (Pros F) een(Lo0.0), €(5(0,1))");
where t > 0, F € (Cy(L%(0,1)))*, p € Co(L5(0,1)), is a semigroup of linear
operators on (Cy(L°(0,1)))* which acts on M(L%(0,1)). Moreover, for any

p € M(L(0,1)) there exists a unique family of measures {p;, t > 0} C
M(LS(0,1)) fulfilling

T
/ |:ut|TV(L6(07 1))dt < 00, T> O;
0

/ (@) ue(dr) — / o(@)u(de)
Cp(L5(0,1)) Cp(L5(0,1))

-/ t (/ e Kip(a)p(d) ) s,

for any ¢ € D(K,Cy(L%(0,1))), t > 0, and the solution is given by P;pu,
t>0.

Thanks to this theorem, by reasoning as in the proof of Theorem 5.2 we
get the desired result. O

Here || - ||o denotes the supremum norm of Cy(L%(0,1))
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6.6 The OU semigroup in C,1/(L%0,1))

Here we consider the transition semigroup in Cp1/(L%(0,1)) associated to the
mild solution of (6.3). It is well known (see, for instance, [14]) the following
result

Proposition 6.13. that for any p,k > 1, T > 0 there exists a constant
cpr > 0 such that

E | sup |Z(t,2)]}

M < o (L4 |2]5) - (6.15)
_te[O,T]

This easily implies that for any 7" > 0 there exists ¢y > 0 such that

E | sup V(Z(s,x))] <er(1+V(x)). (6.16)

L€ [0,T7

Then, for any t > 0, we define the Ornstein-Uhlenbeck semigroup (R;);>o in
Cyv(L8(0,1)) by setting

Rip(z) =E[p(Z(t,z))], t>0,p€Cv(L0,1)), z € L50,1), (6.17)

where Z(t, z) is the mild solution of (6.3). Clearly, (6.16) shows that R, acts
on Cpy(L5(0,1)). Tt is obvious that all the result of Proposition 6.10 holds

also for the OU semigroup (R;):>0. We define the infinitesimal generator of
(Rt)e>0 in Cp i (LE(0,1)) by setting

;

D(L,C@‘/(L(S(O, 1))) = {90 S bev(Lﬁ(O, 1)) : Elg < bev(Lﬁ(O, 1)),

lim Rip(@) = p(@) = g(z), Vo € L°(0,1), sup
$ t—0+ t te(0,1)

Rip — ¢
t

<oo)
0,V

)

\ t—0+ t

, @€ D(L,Cypy(L%0,1))), z € L0, 1).
(6.18)

Remark 6.14. Since all the results of Proposition 6.10 hold for the OU
semigroup, it follows that all the results of Proposition 6.11 hold for the OU
semigroup and its infinitesimal generator in Cyy (L%(0,1)).

We set

Log(x) = 5 TD%6(2)] + {r, ADp(x)), ¢ € EalH), z € L°(0,1).
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Proposition 6.15. We have E4(H) C D(L,Cyy(L5(0,1))), and Ly = Lo,
for any v € EA(H).

Proof. Since Hypothesis 0.1 holds for the operators A and B = I, the re-
striction of R; to Cp1(H) generates a semigroup of operators in Cy(H) (cfr.
section 4.3.1 and Remark 4.5). We still denote the semigroup by (R;)>o.
Now let (L, D(L,Cp1(H))) be the infinitesimal generator of the OU semi-
group in the space Cp1(H), defined as in (2.5). Since E4(H) C D(L,Cp1(H)),
to conclude the proof it is suffient to show

D(L,C@l(H)) = {(,0 S D(L,ijv(L(S(O, 1)))ﬂCb,1(H) : Ly € ijl(H>}. (619)

Indeed, if ¢ € D(L,Cyyv(L5(0,1))) NCp1(H) and Ly € Cy1(H), in order to
show ¢ € D(L,Cy1(H)) it is sufficient to show

Rip— ¢
t

sup < Q.

te(0,1]

0,1

For any « € H we have

t
Ripla) = o(o) = [ Rupla)ds.
0
Hence, since Ly € Cy1(H) and by the local boundedness of R; we have

Rip— ¢
sup —

te(0,1]

< sup |[Rill e, a1 Lpllon < oo
0,1 te(0,1]

The other inclusion is obvious. This proves (6.19). By Proposition 4.13 it
follows that Ly = Loy, Yo € E4(H). O

Remark 6.16. We stress that in this chapter we work with the Ornstein-
Uhlenbeck semigroup (R;):>o in spaces of continuous functions. As we have

pointed out in Remark 4.5, all the results of Chapter 4 remain true with
Cy(H) replacing Cyp(H) and Cp 1 (H) replacing Cy1(H).

6.7 The approximated problem

It is convenient to consider the usual Galerkin approximations of equation
(6.2). For any m € N we define

by (x) = Ppb(Ppx), € H
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where
m
Pm:Zel-@ei, m € N.
i=1

We consider the approximating problem
dX™(t) = (AX™(t) + by (X™(1))dt + dW (),
(6.20)
X™(0) ==,
By setting Y™(t,z) = X™(t,x) — Wx(t), the corresponding mild form is
1 t
Y™(t,z) = o + 5/ et =AP, De (P (Y™(5,2) + Wa(s)))*ds, (6.21)
0
Since for any m € N the identity
(by(z),2) =0, xe€H
holds, all the estimates of Proposition 6.2, 6.18 are uniform on m and we

have the following result.

Theorem 6.17. For any x € LP(0,1), p € [2,00) there exists a unique mild
solution X™ € LP(0,1) of equation (6.20). Moreover, for any xy € LP(0,1),
0>0andT >0

lim sup |X"(t,z)—X(t,z)|,=0
Lt lz—zg|p<d
t€[0,T]
As in (3.3) we denote by P/ the transition semigroup
Pp(z) = E[p(X™(t,2))], t=0, ¢ € Cy(L0,1), x € L°(0,1) (6.22)
By a standard argument, we find that for any Cpy(L%(0,1)) we have
: Py Fip
1 L= = t>0.
me 14V 14V 7

For any m € N, we define the infinitesimal generator of the semigroup
(P{")i=0 by

DU, Cur(2°0.1)) = { o € Cur(2°0.1)): 3y € G20, 1),
5P — P
t

P — P
lim —* o) = p() = g(x), z € L%(0,1), sup [|[--T—T < oo}
0,V

t—0+ t te(0,1)
, € D(K,,,Cov(L5(0,1))), z € L%(0,1).

(6.23)
It is clear that all the results of Propositions 6.10, 6.11 hold for (P;");>o and
for its infinitesimal generator (K,,, D(K,,,Cpv(L%(0,1)))).

Kpp(z) = lim Pip(z) — p(z)

\ t—0t t
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6.7.1 The differential DP/"¢

In the previous chapters, we derived the properties of the differential D P,
of the transition semigroup directly from the estimates on the differential
X, (t,x) of the solution X (t,z). This method cannot be applied here, by
the lack of informations about X, (¢, z). In [19], it is proposed to consider a
Kolmogorov operator with an additional potential term

Kgp(r) = Kop(x) — clalip(), ¢ € Ea(H)

and the corresponding semigroup given by the Feynman-Kac formula
Siplw) =B el Wit (x (1, )]

By using a generalization of the Bismut-Elworthy formula (see [24]) and some
estimates on X, (¢, x) the authors are able to get estimates on DS(t)¢. Then,
by the formula

t
P,p = Syp + c/ Si—s (|- |1) ds
0

they get estimates on D P;p.

This method it has been succesfully used to get solutions of the for the
3D-Navier-Stokes equation (see [18], [27]). It has been also used to get
smoothing properties of the differential D P, with application to control
problems (see, for instance, [15], [16], [39])

The following result is proved in Proposition 3.6 of [19].

Proposition 6.18. There exists wy > 0 such that for any m € N, t > 0 and
¢ € C{(H) with Dy € Cy(H; H'(0,1)) we have DP™p(x) € H'(0,1) and
IDE (@) 01) < (1D lloyaaoy + ellello) (1+ |2]6)” e
The following two results are essential for the proof of Theorem 6.4.

Proposition 6.19. Take A\ > wq, wy, where wy s as in Proposition 6.10 and
w1 1s as in Proposition 6.18. Let f € Eo(H) and, for m € N consider the
function

L°(0,1) = R, z+ ¢(z)= /OO e MP™ f(z)dt.
0

Then

(i) @ is continuous, bounded and Fréchet differentiable in any x € L°(0,1)
with continuous differential Dy € C(L%(0,1); H*(0,1)). Moreover, it
holds

1
|Do()|m10,1) <

8
S (1D flleyca o) + el fllo) (1+ |zf6)”;
w1

(6.24)
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(ii) ¢ belongs to D(L,Cyy(L°(0,1))) N D(K,,, Cpv (L%(0,1))) and
Koplw) = Lp(a) — 3 (DePuDiple), (Pua)?), Vi € 1°(0,1). (6.25)

Proof. Notice that the mild solution of (6.20) is defined for any x € H (cfr.
[13]). Then, the transition semigroup P; can be defined in Cy(H). So, since
f € Cy(H), it follows ¢ € Cy(H). By Proposition (6.18) we have

ID()] 10 < / e NDP,f (@) oyt
0
S/ e dt (| Df lleycrmoy + cll fllo) (1 + |2]6)°
0

and (6.24) follows. Still by (6.24) we get Dy € C(L%(0,1); H'(0,1)). Indeed,
for any =, h € L5(0,1),

|Do(x + h) — DeDp() | 10,1

< 5= (IDFC+0) = DI oy + eS¢+ 1) = FOlo) (1 +Jalo)
Since f € Cy(H), and Df € Cy(H; H'(0, 1)), by uniform continuity it follows
|Do(x + h) — Dp(x)|g101) — 0 as |h|g — 0. This concludes the proof of (i).

Let us prove (ii). Since the semigroup (P/™);>¢ satisfies the statements of
Proposition 6.10, it follows that its infinitesimal generator K,, enjoys the
statements of Proposition 6.11. In particular, we have ¢ = R(X\, Ky,)f
and therefore ¢ € D(K,,,Cpv(L%(0,1))). Then we have to show that ¢ €
D(L,Cpv(L%(0,1))). Now let (R;)i>0 be the OU semigroup (6.17) and let
(L, D(L,Cpyv(L%(0,1)))) be its infinitesimal generator in Cyy (L°(0,1)). Fix
xr € L50,1), T > 0 and for ¢t € [0,T] set X™(t) = X™(t,x), Z(t) = Z(t,z).
By (6.21), (6.3) we have

t
X™(t) = Z(t) + = / =94P De(P,, X™(s))%ds
0
and consequently

PPote) = BLCEM(0)] =B [ o200+ 5 [ 1P, D(P X" (5) )

Notice that since f € C}(H), by (6.24) we get that the function L°(0,1) — R,
x +— Dp(x) is continuous. Then, by Taylor formula we have

Rip(x) — p(x) = P p(x) — ¢(2)
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#38 [ [ (Dotex 0+ 1= 20, [ e BuDBaX (0 s

2
(6.26)
We claim that

lim %E { /O 1 <D<p(§Xm(t) +(1—6)Z(), /0 te(tS)APng(Pme(s))2ds>d§}

t—0+
= —(DePuDy¢(), (Pnz)’) (6.27)
holds. By Theorem 6.1, for any 7" > 0 we can write
X(t) =z +6,(¢)
Z(t)=x+6(t), te]|0,T]
where 0,(t), 02(t) : Q@ — H, t € [0,T] are random variables such that 0;,6, €
C([0,T]; H) a.s. and 6,(0) = 65(0) = 0. On the other hand, by Proposition
6.19 we can write
Dyo(z+z) = Dp(z)+n(z), z€H
where n € C(H, H'(0,1)) and n(0) = 0. With these notations we have
Dp(EX™(t) + (1 =) Z(t)) = Dop(x + £01(t) + (1 — §)0(1))
= Dep(x) +n(£01(t) + (1 — £)a(t)).

Then
lim sup [D(EX™(t) + (1 =€) Z(t)) — Do(x)|m10,1) =
t—0+ £€[0,1]
= lim_sup [n(01(1) + (1 = €)02(1)) | 11 0.y = O- (6.28)

For any ¢ > 0 we have

1 t
‘— / IR, De(P,X™(s))%ds — Py De((Pr)?)
0

t wW-12(0,1)

1 t
<3 /O e I4P,, De (PnX™(s))? — (Pin)?)|y1.2(0.1) 48

ds. (6.29)

L[ .
+¥/ e )Apmpg(me)Q—Png(me)2|W_1,2(0,1)
0

The first term on the right-hand side is bounded by
1 [ "
Z/o | P D (PnX™())* = (Pn)?) |20 95
I m
< ?/o (PaX™(5))? — (Por)?], ds

1 t
< [ 1K) = aly 1X7(5) + s
0
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Since X™ € C([0,T]; H) P-a.s., it follows

N Y m
lim g/ ‘e(t )APmD5 ((PmX (5))? — (me)z) |W71,2(0’1) ds =0, P-as.
0

t—0t

Since the semigroup €4, ¢t > 0 can be estended to a strongly continuous
semigroup in W~12(0, 1), for the last term of (6.29) it holds

1 t
im — (t—s)A 2 2 .
Jim /0 | Py De(Pnt)? = P De(Prnt)?|y -1 q ) d5 = 0.
Hence, by (6.29) we have
1 t
lim |~ / e(t_S)APng(Pme(s))st—Png(me)z‘ =0, P-as.
t—>0+ t 0 W71’2(0,1)

This, together with (6.25) and an integration by parts, implies

1

lim © <D<p(§Xm(t) (11— 6)Z(1), / e(t‘s)APng(Pme(s))2d5>d§

t—0+ ¢ 0 0

= (Dp(z), Py De(Ppz)?) = —(De P Dp(z), (Ppz)?), P-as.  (6.30)

In order to obtain (6.28), it is sufficient to show that the terms in the above
limit are dominated by an integrable random variable. Indeed, for any t €
(0,T] we have

t [ (petexmo+ (=02, [ D) s e

<1 |[ petexmi+ -z

H1(0,1)

t
x / AP, De(Pr X ™ (5))?ds
0

W-1.2(0,1)

< /0 |Do(6X™(t) + (1 — §)Z(t)>|H1(0,1) dg

1 ' t—s)A m 2
X /0 |44 P De(Py X ()% 129, 48
< Il(t> X [Q(t)

Set

o - (||Df||cb(H;H1(0,1)) + C||f||0>
= .

)\—wl
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By (6.24) we have

/O IDQ(EX™(t,2) + (1 — €)Z(t, ) 1 oy
<C, (11 X" (t2) + (1 - O Z(t2)[3)

<c, / (14 XM (6, 2) S + (1— )| Z(t, 2)E) de

<C, <1+ sup |X™(t,z)[g + sup IZ(t,x>|§>-
te[0,7]

t€[0,T]
Here we have used the convexity of the function z — |z|8. For I1(t) we have

c t

L(t) < 7 (P X™(5))?|, ds

Then, for any ¢ € (0,7] we have

t

0

/01 (Dp(ex™(t) + (1 - )2 (1)), / t e(tS)APng(Pme(S))2d5>d§‘

< cC, <1+ sup | X™(t,z)|5 + sup \Z(t,x)|§> (sup ]X"%t)]i) (6.31)

te[0,7) te[0,T te[0,7)

Notice that by Propositions 6.2, (6.13) the random variable

t€[0,T] te€[0,7)] t€[0,T]

g(x) = cC <1+ sup |X™(t,7)[g + sup |Z(t,f€)|§> (Sup IXm(t)ﬁ)

(6.32)
belongs to L'(Q,P) and

Elg(@)] < C (1 + |zgle[3) (6.33)
for some C' > 0. Consequently, since for any ¢t € (0, 7T

1

t

[ (petexm+ 1 -0z, [ 0P D R0 )ae] < o)

0

by the dominated convergence theorem and by (6.30) follows (6.27) as claimed.
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By (6.26), (6.27) and by the fact that ¢ € D(K,,, Cp(L°(0,1))) we obtain

— 1
fim PO =) _ gy (DD, (P)?) V€ L0.1).

t—0t t

Now, by (6.31), (6.32), (6.33) we have

Rip(x) — o(x)
t

Plro(z) — p(z)

sup
te(0,T

< sup + Elg()]

te(0,77]
<c(1+V(x))

since ¢ € D(K,,,Cpv(L%(0,1)). This implies p € D(L,Cpy(L%(0,1))) and
(6.25) follows. O

Proposition 6.20. Fix m € N, f € E4(H) and let ¢ be as in Proposition

6.19. Then, there exist k € N and a k-indezxed sequence (o,
Ea(H) such that

. . (;077,1 wnE T 90
| | e 6.34
n11£>noo nklinoo 1+V 1+V ( )

| | Lotk — 6.35

and, for any h € H

lim .-+ lim ———== = : (6.36)

Proof. Set

-1
,(x) = (1 +p—1|e%Ax|g) o(ers), zeH, peN.

Clearly,

(6.37)

By the well known properties of the heat semigroup, erly € L5(0,1), for any
x € H. Then, since by Proposition 6.19 we have ¢ € C,(L5(0,1)), it follows
that ¢, : H — R is bounded. Moreover, an easy computation show that 1,
is continuous. Then, v, € Cy(H). A standard computation show

Dy era), erh 8 erda)|erAz|T((erAa)3, erh
6
_1,ta - 2
1+ pLlerz|d p<1 —|—p—1|€%Al‘|§>

(Dip(x), h) =

bl
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x,h € H. Hence, by taking into account (6.24), there exists ¢; > 0, depend-
ing on f, such that for any x € L5(0, 1) we have

1 1 1 1 1
|Do(era)loler*hlz | 8llplloler z[Fler afgerhl /s

—1],=A 2
1L+ pter a3 p(l +p*1\e%Ax]§>

[(Dp(), h)| <

1 1A
oLt lertal) | dllelolet el )

1 2
(1o tlertals) 0 —w)  p (14 ptlertals)

C
< <p - 2||<PHO) o,

/\—w1

Then, 1, is Fréchet differentiable in any x € H and its differentiable is
bounded. An easy but tedious computation shows that D, : H — L(H)
is continuous. Therefore?; ¢, € C{(H). In addition, as easily checked, by
(6.24) and by the above formula it follows

Diy,h) = (Dg,h
lim APV 2 Doh) gy g (6.38)
p=oo 14| [g 1+ ][5

For any ns,n3 € N, consider the function

1

Ungmg : H =R, @y () = 1 / * Ry, () dt.
0

By Proposition 4.8, Remark 4.5 and by the above computation we find
¢n2,n3 GD(L7cb,1(H>>mcl}(H)7 ng, 13 EN-

Then, by Proposition 4.13 (cfr. Remark 4.5 and Remark 6.16) there exists a
sequence® {1V, ngny bnaen C Ea(H) such that

n};ilpoo ¢TL2,TL3,TL4 ; wn2,’n37 n}lilg)o Lowng,ng,m; ; Lwﬂg,ng (6-39)
m (D, ngmas B = (Dpyns, h), Vh € H. (6.40)
ng—00

2CL(H) is the space of all ¢ € Cy(H) which are Fréchet differentiable with continuous
and bounded differential Dy : H — L(H)
3we assume that the sequence has one index
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Now set

On, = erlso,

1
ny
Pring = n2/ Rt-{-ispdta
0 "
1
ny
¥ni,nang — N2 Rt—i-nilqbnsdtv
0

Prinanz,ng = Rn—ll wm 3,14

As easily checked, by the definition of ¢, ny.nsn, and by (6.37)

Pninangng T ¥

lim lim lim lim s = 5
N1—00 Ng—00 N3—00 Ng—00 | -+ | . |6 1+ | . |6

which implies (6.34).
Let us show (6.35). By (2.4) we have that ¢, nynsn, € Ea(H) and by
Proposition 4.13 we have

L¢n1,n2,n3,n4 = L()(;Dnl,nz,ng,nzp vnla No, N3, Ny S N
Consequently, by (6.39) and by (i) of Proposition 4.8

im Lopn, nymgns = UM R Lhy, ny g

n4—00 ng—oo  nq

= R%Lwnlﬂ’m = LRﬁwm,nz - me,m,M‘
Still by Proposition 4.8 we have

LRt = o (Rt = Ryt ).

Therefore
fm L (Rt = Rotns) I (Ropeaw— Rav)
nzlinoo nglinoo 1+V N nzlinoo 1+V
R Ly
™M
1+V

The last equality follows by (v) of Proposition 6.10 and by the fact that
¢ € D(L,Cyv(L%(0,1))). Finally, since
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(6.35) follows.
let us show (6.36). Notice that for any ny, ny,n3,ny € N, h € H} we have

(D s (@), Deh) = Rox ({7 Dibnyynss Deh) ) ()

= —Ri <<D§€"711ADwn2,n3,n47 h>) (x)

By the elementary properties of the heat semigroup, for any ¢ > 0 the linear

operator Dget 1 HY — H, z — Dee!?z is bounded by |Dee!z|y < ct™1/2|z]4,
1

where ¢ > 0 is indipendent of . Then DgeﬁA : H} — H can be extended to

a linear and bounded operator in H, which we still denote by Dge%A. Then
by (6.40) we have

lim <D§D90n1,n27n3,n47 h> = <D€D90n1,n2,n37 h>a Vh e H.

n4—00

By the same argument we find

lim (DeD@n, ngmgs h) = (DeDymgs b)Y, Vh € H.

ns—o00

Notice now that by definition of ¢, ,,, we have

(DeDgnyny (), h) = Rt (<D§e%ADwn2, h>> (z), ,heH.

ni

Now, since Dg@TllA : H — H is linear and bounded, by (6.38) it follows

 (Deen T Dy h) . (Deeri Dy, 1)
lim = .
memee L[ L1 8

Hence, by Proposition 6.10 (cfr. Remark 6.14) we have

Hm <D§D90n1,n27h> Ll <D§D90mah>.
memee L] [g L[5

Finally, by Proposition 6.10 applied to the semigroup (R;);>0 we find

LA
li <D§D(pn1’h> = i R% <<D§e"1 Dw,h>>
im ————=—=1 3
miee 1T mee  14[ 8
;<D§D90>h>
L+ ][5

This complete the proof. O
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6.8 Proof of Theorem 6.4

We split the proof into two lemmata.
Lemma 6.21. K is an extension of Ko and K¢ = Kop for any p € E4(H).

Proof. Take h € D(A). It is sufficient to show the claim for
o(x) =@Mz e 150,1).

Let (L, D(L,Cy1(H)) be the infinitesimal generator in Cp, ; (H ) of the Ornstein-
Uhlenbeck semigroup associated to the mild solution of (6.3) and, for any
m € N, let (K, D(Ku,Cyyv(L%(0,1)))) be the infinitesimal generator of
the semigroup (P™);>o in Cpv(L%(0,1)), as defined in (6.22), (6.23). Since
Es(H) C D(L,Cp1(H))NCy1(H), by arguing as for Proposition 6.19 we find
that for any ¢t > 0, z € L%(0,1) it holds

Bo(x) = Rip(x)

1

=3 Uol O(EZ(t, ) + (1 — ) X™(t,x))dE <h, /Ot e(t_s)APng(Pme(s,x))2ds>}

?

=3 UO ¢(€Z(t,w)+(1—f)Xm(t,a:))dg/o (h, e(t_s)APng(Pme(s,x))2>dsdg}

= —%E { /0 O(EZ(t,2) + (1 — ) X™(t, x))dE /0 (D Ppel™*)h, (Pme(s,x))2>ds] :

since Dp(x) = ip(x)h. Letting m — oo, by Theorem 6.17 we find

Pio(r) — p(r) = Ryp(x) — ¢()

~ 1 t
—%E U O(EZ(t,x) + (1 — €)X (1, x))dgf (Dee™ N, (X (s,2))%) ds} :
0 0
This implies, still by arguing as for Proposition 6.19,

tim PP 2O oy o) (Deh #?) = Liole) - L (DeDola). ),

t—0t t

for any = € L°(0,1). As easily seen, |D¢e'*h|y < m|Dghla, then

| Dehls
ot

Rip(x) — ¢(x)
t

‘th(x) — p(x)

t | X

S ‘
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Now, since ¢ € D(L,Cp1(H)), the first term of right-hand side is bounded

by
Rip(z) — ¢(z)
t

where c, 7 > 0 depends only by ¢ and T". By Proposition 6.2, the last term
on the right-hand side is bounded by

|D£h\2E

< c(1 4 [zls),

|Dehls

D¢h
s (sup |X (1, 0) s < T

5 (Ltafd),
te[0,7)

AEWW&@@@S

where ¢r > 0 depends only by 7'. Then,

Pyp—o
t

< Q.
0,V

sup
te(0,1)

This implies ¢ € D(K,Cyy(L%(0,1))) and K¢ = Ly — (D¢ D¢, (-)?). Con-
sequently, the claim follows by Proposition 4.13. O

Lemma 6.22. £4(H) is a w-core for (K, D(K,Cyv(L%(0,1)))), that is for
any ¢ € D(K,Cpy(L°(0,1))) there exist m € N and an m-indexed sequence
(@nr,o i JnreN,...nmeN C Ea(H) such that

lim - i il 6.41
R N N (6.41)
and % K

lim - lim —ofMenm T 28 (6.42)

n1—00 Tyn — 00 1—|—V - 1+V

Step 1. Take ¢ € D(K,Cp(L5(0,1))) and fix A > wy, wy, where wy is as in
Proposition 6.10 and w; is as in Proposition 6.18. We set A\p — K¢ = f. By
Proposition 6.11 we have ¢ = R(\, K)f. Let us fix a sequence (f, )n,en C
Ea(H) such that

o I

im

ni—oo 1 +V B 1+V
We set ¢, = R(\, K) f,,. By Proposition 6.10, 6.11 it follows

. Pn om P . Koo, = Ko
lim = ,  lim = .
ni—oo 1 +V 14V n-ocl4+V 14V

Step 2. Now let (K, D(K,,,Cpv(L%(0,1)))) be the infinitesimal generator
of the semigroup (P/™);>o in the space Cy 1 (L5(0, 1)), as defined in (6.23). We
set

(6.43)

Pning = / eiktPthfmdt
0
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By Proposition 6.11 we have @, ,, € D(K,,,Cpv(L%(0,1))) and by a stan-
dard computation

ni,ne T n . Kn ni,ne T K n
hm QO 1,12 QO 1 , im 2%0 1,12 4 SO 1 ) (644)
no—oo 14+ V 14V’ moeo 14V 1+V

Notice that f,, satisfies the hypothesis of Proposition 6.19. Hence, ¢, », €
D(L, Cb7v(L6(0, 1)) and

1
angom,nz = Lgom,m - 5 <D§PTL2DQOTL1,7127 (Pn2’>2> ) (645)
for any ny,ny € N, x € L5(0,1). In addition, by (6.24) it holds

’<D§D90n1,n2(x)7x2> - <D€Pn2D90n1,n2($>v (Pnzx)2>|
= ‘<D¢n1 n2( ) D{( 2) PmDE(me)QM
< ’Dgpnlﬁw( |H1(01 ‘Dﬁ( ) PnzDé(Pn2x)2|W—1,2(071)
S <HD<107L1HCI) (H;H'(0,1)) +CHSDTL1HO) <1+ |x|6)8
A — W1

X | D¢ (2°) — Py De(Pryz)?

‘W*L?(O,l)

for any = € L%(0,1), where W~12(0, 1) is the topological dual of H' endowed
with the norm | - |y-1.2¢,1). Consequently,

lim <D§D¢n1,n2(x)7x2> — <D€PH2D@R1,HQ($)7 (Pn2$)2> r

0 6.46

Step 3. By Proposition 6.20 for any ny,ns € N there exists a sequence (we
assume that it has one index) {¥n, ng.ns fnsen C Ea(H) such that

. gpnl na,n3 m Qpnl n9
| = = : 6.47
e 1+V 14V (6.47)

. LOSOn ng,n3 LSDn n
1 Loams T it 6.48
nslinoo 1+V 1+V ( )

and
lim <D§D90m,n2,n3?h> ™ <D5D90m7n27h>

moe 1[5 1H[f
Then it follows

. VheH.

2
y <D§Pn2DSOn1,n2,n3> () > Es <D§Pn2D90n1,n2> ()2>

(6.49)
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Step 4. By construction, (¢n,.nmns)nimems C Ea(H). By (6.43), (6.44),
(6.47)

. . . Sonl na,n3 T 90
| | 1 22— )
n11£>noo nglinoo n31£>noo 1+ vV 1+ V

Hence (6.41) follows. Let us show (6.42). By Lemma 6.21, for any ny,ng, n3 €
N, z € L%(0,1) we have

1
K@mﬂm%(l‘) = Ko(pm,m,ns (ZE) - Losom,m,ns (:E) - 5 <D§Q0n1,n27n3(l‘),l‘2> .
By (6.48), (6.49),

lim KOQDm,ng,ng, s Lgpm,nz - % <D§D90n1,n2’ ()2>
ng—oo 14+ V 1+V

By (6.45) it holds
1 2
L(pm,nz - 5 <D5D90n1,n27 () >
1 1
= Kn2D907Z17n2 + 5 <D§PH2D907117H27 (Pn2')2> - 5 <D§D90n1,n27 ()2>
By (6.44), (6.46)

hm Lgpnl,ng,ng - % <D§D§0n1,n2,n37 ()2> L Kspnl,nz
n3—00 1+V 1+V

Finally, by (6.43), (6.44) we have

lim lim K pnina = Ky

6.9 Proof of Theorem 6.5

Take p € My (L5(0,1)).
Existence. By Theorem 6.4 we have P*u € My (L%(0,1)), for any s > 0.
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For any ¢ € D(K,Cyv(L%(0,1))) we have

1
lim — / Psp(x dx—/ Psgox,udx>
tim i ([ Petutan) - [ Pton

1
= lim — (/ K Pyp(z) P} u(dr) —/ gp(x)P;p(dx))
h—0+ h L5(0,1) L6(0,1)

P, _
h—0+ L5(0,1) h

_ / Ko(x) P u(dz)
L5(0,1)

_ /L o, R PIp) (6.50)

Here we have used (iv) of 6.7, Proposition 6.10 and Theorem 6.4. We stress
that the limit above holds by the fact that P*u € My (L%(0,1)) and by 6.7.
Still by Proposition 6.10 the function

R =R s [ Koplo)Plu(do)
L5(0,1)

is continuous. Then, by integrating (6.50) in [0,¢] we find that Pfu, t >0
fulfils (6.11). By (i) of Proposition 6.10 it follows |P/ulry < coe“®t|ul|ry.
Hence Pfu, t > 0 fulfils (6.8).

Uniqueness. Assume that {p,, ¢t > 0} fulfils (6.8), (6.11). Take ¢ €
Cyv(L5(0,1)). By Theorem 6.4 there exist m € N and an m-indexed sequence
(Pngrmm Jra,mmen C Ea(H) such that

lim --- lim Pryyetim 1P
n1—00 nm—oo 1 + 1+V
and
. . KOQOnl ..... Nm T K(,D
lim --- lim

n—oo  mm—oo 1+ V - 1+V

Then, since {p;, t > 0} C My (L5(0,1)), by the dominated convergence
theorem we have

i i ([ @) = [ (@)
n1—00 Nm —00 L5(0,1) L6(0,1)

_ /L oy PHld) = / (@) p(dx)

L5(0,1)
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Similarly, for ant s € [0, ] we have

lim --- lim KO‘;Onl ..... nm(x),us(dx)
ni1—oo Nm — 00 LG(O,I)
[ Ko
L5(0,1)

Threfore, by (6.8) we can still apply the dominated convergence theorem to
find .
lim --- lim </ Kopn,....nm (a:)us(dx)) ds
Mmoo mBmTeo Jg L6(0,1)

_ /0 t ( /L - Kgo(x)us(dx)) ds.

Then, {u;, t > 0} is solution of (6.8) and (6.9), for any ¢ € Cyy(L5(0,1)).
But by Theorem 6.3 such a solution is unique, thus p; must concides with
P, Vt > 0. The proof is complete. O
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