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Abstract

Lot-sizing is one of the many issues arising in the context of production planning. Its main

objective is to determine the timing and level of production so as to reach the best possible

trade-o� between minimizing setup and inventory holding costs and satisfying customer demand.

When a limited production capacity and a deterministic time-varying demand rate are assumed,

lot-sizing leads to the formulation of large-sized mixed-integer programs, most of which are hard

to solve.

In the present work, we deal with one of the many capacitated dynamic lot-sizing models, the

Discrete Lot-sizing and Scheduling Problem or DLSP, and study several variants of this problem

where changeover costs and/or times are sequence-dependent. We propose various extensions

of an existing exact solution approach for the single-level, single-resource DLSP with sequence-

dependent changeover costs.

Our contributions concerns both problem modelling and e�cient implementation of solution

algorithms. In terms of problem modelling, we investigate the integration of various additional

relevant industrial concerns into the basic model. More precisely, we consider the following op-

erational aspects: the presence of a multi-attribute product structure which can be exploited

to reduce the size of the optimization problem, the integration of positive changeover times to

better model the production loss caused by a changeover and the presence of identical parallel

resources that need to be planned simultaneously. In terms of algorithmic developments, we

present for each of these extensions a solution procedure aiming at providing exact optimal solu-

tions: a tight MIP formulation for the corresponding problem variant is derived and the resulting

mixed-integer program is solved thanks to a commercial MIP solver. Moreover, results of ex-

tensive computational experiments carried out to evaluate the proposed solution approaches are

provided. In general, they show the practical usefulness of the proposed algorithms at solving

medium to large-sized instances with a reasonable computational e�ort.

Keywords: Production planning, Lot-sizing, Sequence-dependent changeover costs
and times, Mixed-integer linear programming, Valid inequalities
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Résumé

Le dimensionnement des lots de production est une des nombreuses activités survenant dans

le cadre de la plani�cation de production. Il a pour objet de déterminer quand et combien

produire de façon à réaliser le meilleur compromis possible entre la minimisation des coûts liés à

la production (coûts �xes de recon�guration des ressources, coûts de stockage...) et la satisfaction

de la demande des clients. Dans ce travail, nous supposons la capacité de production limitée et

la demande des clients connue et variable dans le temps. Dans ce cas, le problème d'optimisation

de la taille des lots de production conduit à la formulation de programmes linéaires mixtes en

nombres entiers, dont la plupart sont di�ciles à résoudre.

Nous nous intéressons ici en particulier à un problème de plani�cation de production par

lots connu sous le nom de "Discrete Lot-sizing and Scheduling Problem" ou "DLSP". Plus

précisément, nous étudions plusieurs variantes de ce problème dans lesquelles les coûts et/ou

les temps de changement de produits sur la ressource sont dépendent de la séquence et nous

proposons diverses extensions d'une méthode disponible dans la littérature pour la résolution

exacte du problème mono-niveau, mono-resource.

Nos contributions portent à la fois sur la modélisation du problème et sur l'implémentation

de méthodes e�caces de résolution.

En ce qui concerne la modélisation, nous étudions l'intégration de diverses aspects opéra-

tionnels dans le modèle de base a�n d'en améliorer la pertinence industrielle. Ainsi nous consid-

érons les extensions suivantes : la prise en compte d'une structure de produits "multi-attribut"

qui permet de diminuer la taille du problème d'optimisation à résoudre, l'intégration de temps

de changement positifs a�n de mieux modéliser la perte de production causée par une recon�g-

uration de la ressource et la présence de plusieurs ressources parallèles dont la production doit

être plani�ée simultanément.

En ce qui concerne la résolution du problème, nous présentons pour chacune des extensions du

modèle de base une approche de résolution visant à fournir des solutions optimales exactes. Nous

proposons une formulation forte du programme linéaire mixte en nombres entiers correspondant

au problème et utilisons un solveur commercial pour le résoudre. De plus, nous fournissons les
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résultats de nombreux tests numériques permettant d'évaluer les algorithmes de résolution pro-

posés. En général, ces résultats montrent l'utilité pratique de ces algorithmes pour la résolution

d'instances de moyenne et grande taille en des temps de calcul compatibles avec une application

industrielle.

Mots-clés : Plani�cation de production, Dimensionnement des lots de production,
Coûts et temps de recon�guration dépendant de la séquence, Ressources parallèles,
Programmation linéaire mixte, Inégalités valides
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2 Introduction

1.1 Background

Nowadays, industrial companies increasingly �nd that they must rely on e�ective supply chains

to successfully compete in the global market and networked economy. In [86], supply chain

management is de�ned as "the task of integrating organizational units along a supply chain

and coordinating materials, information and �nancial �ows in order to ful�l (ultimate) customer

demands with the aim of improving competitiveness of the supply chain as a whole". Supply

chain management spans all movement and storage of raw materials, work-in-process inventory,

and �nished goods from point-of-origin to point-of-consumption. The author of [86] describes

three building blocks as playing a major role in the e�cient coordination of �ows throughout a

supply chain:

• the use of information and communication technology to instantaneously exchange infor-

mation such as sales data, forecasts, orders, shipments... between di�erent partners of a

supply chain,

• a process orientation within the organization in order to improve cooperation between the

business functions and focus the organization on creating value for the customer,

• the use of advanced planning systems (APS), i.e. of optimization softwares able to extend

the capabilities of the widely used Enterprise Resource Planning (ERP) and to help solving

the various planning problems arising in supply chain management.

The models and methods presented in the present thesis work deals with production planning

and are (ultimately) meant to be embedded in optimization softwares such as APS. Therefore

we brie�y provide in the sequel a short description of advanced planning systems.

According to [38], the role of planning in a supply chain is to support "decision-making

by identifying alternatives of future activities and selecting good ones or even the best one".

Even if ERP systems are e�cient at gathering data and keeping them in synchronization across

an organization, they fail at providing good feasible plans for supply chain activities. This is

mainly explained by the fact that they rely on traditional planning and scheduling systems (such

as Manufacturing Resource Planning) which utilize a stepwise procedure to allocate material

and production capacity, plan materials and capacity separately and do not consider limited

material availability or capacity constraints. Advanced Planning Systems such as SAP APO,

Manugistics, i2... are meant to solve these problems. In contrast to ERP which are mainly

transactional systems, APS can be described as analytical systems which use the data stored in

ERP systems to provide good feasible plans (see chapter 2 of [78]). These optimization softwares
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Figure 1.1: Architecture of Advanced Planning Systems: Supply Chain Matrix

are able to reach a good trade-o� between �nancial and customer satisfaction objectives and can

thus be useful decision support tools.

There is a huge variety of decisions that need to be made to e�ciently plan the supply chain

activities. APS rely on a two-dimension classi�cation of these decisions and use the so-called

"supply chain matrix" (see �gure 1.1) to structure the planning tasks along two axes:

• the level of the managerial decision making involved and the time during which the decision

will have an impact on the future development of the supply chain. Following the principles

of hierarchical production planning, three planning levels are used: "long-term/strategic",

"mid-term/tactical" and "short-term/operationnal".

• the supply chain process involved. Four di�erent processes are identi�ed: procurement,

production, distribution and sales.

Among the various modules of the supply chain matrix, the production planning module aims

at deciding about the products to be made, the timing and level of the production as well as

the resources to be used. It is most often run within each production site and uses a rather high

level of detail: individual items are usually considered, time is divided into short periods such

as days or shifts, planning is performed for each machine group or �ow line that may become

a bottleneck. Production planning aims at satisfying the demand assigned by master planning

to the considered production site as well as at minimizing production costs and times. Among

other decisions, short-term production planning comprises the determination of lot-sizes and the

detailed scheduling of the production resources. In case the loading of the resources is strongly

a�ected by the sequence of jobs, both lot-sizing and detailed scheduling should be performed

simultaneously.
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The purpose of the present work is to discuss such a situation where lot-sizing and scheduling

decisions are linked by the presence of sequence-dependent changeover costs and to investigate

models and algorithms for solving the resulting discrete optimization problem.

Lot-sizing
Lot-sizing or batching is de�ned in [64] as "the clustering of items for transportation or manu-

facturing processing at the same time". Lot-sizing problems arise in production whenever setup

times or setup costs are required in order to prepare a resource for the processing of a new prod-

uct. Setup actions can involve many di�erent operations such as cleaning, preheating, machine

adjustments, calibration, inspection, test runs or change in tooling... Setup costs or changeover

costs account for instance for the additional workforce needed to set up the equipment, for the

production loss during the resource downtime and for the raw materials consumed during the

setup operations. To minimize setup costs and times and obtain a more e�cient use of produc-

tion resources, production should be run with large batches. However, batching generates cycle

inventory as the production cannot be synchronized with the actual demand pattern. Items

must be held in stock between the time they are produced and the time they are actually used to

satisfy the demand. This generates inventory holding costs because of tied up capital, inventory

value depreciation and of the cost of storing goods (warehousing, handling...).

Hence the objective of lot-sizing is to reach a good (or even optimal) trade-o� between

setup costs and inventory holding costs while taking customer satisfaction into account. Making

the right decisions in lot-sizing will a�ect directly the production system performance and its

productivity and therefore has a strong impact on the ability of a manufacturing company to

compete in the market. Furthermore lot-sizing often leads to di�cult optimization problems.

This probably explains the existence of a vast amount of academic research dealing with lot-

sizing.

In what follows, we give a brief overview of lot-sizing models, relying on the typology proposed

by [64] and restricting ourselves to deterministic models. The proposed classi�cation (see table

1.1) is based on two characteristics:

• resource constraints. Models are uncapacitated if capacity constraints on resources are not

restrictive or capacitated if capacity constraints are explicitly stated.

• demand rate. Demand can be considered constant or dynamic.

An early attempt of modelling the trade-o� between setup and inventory holding costs is the

Economic Order Quantity (EOQ) model developed by [48] which assumes a single item with a

constant demand rate and an in�nite production capacity. The optimal solution of the EOQ
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In�nite capacity Finite capacity

Constant demand EOQ ELSP

Dynamic demand WW CLSP, DLSP...

Table 1.1: Typology of lot-sizing models

model is easy to derive, but because of its rather strong assumptions, its practical relevance may

be questioned.

A �rst extension of the EOQ model is the Economic Lot Scheduling Problem (ELSP) where

multiple items with a constant demand rate share the same production resource with a limited

capacity. In the ELSP, the objective is to �nd a production schedule which minimizes long-run

average cost (see [33] and [105] for literature reviews on the ELSP). Solving the ELSP optimally

is NP-hard, thus most solution procedures are heuristic. An important class of policies used in

the resolution of the ELSP is based on cyclic production patterns where a production schedule

involving all items is designed and repeated periodically.

Another extension of the EOQ is the Wagner-Whitin (WW) problem where the assumption

of steady-state demand rate is dropped. In the WW problem, a single item with a dynamic

demand has to be produced on a facility with an unlimited capacity. The planning horizon is

subdivided into several discrete periods. Demand is given per period and may vary over time. An

exact solution procedure based on dynamic programming is presented in [96]. Literature reviews

on various extensions of the WW problem were provided by Wolsey (see [97]) and Brahimi,

Dauzère-Peres, Najid and Nordly (see [14]).

Finally, capacitated dynamic lot-sizing models combine both complicating features and con-

sider multiple items with a dynamic demand sharing a production resource with a limited ca-

pacity. These models result in the formulation of large-sized mixed-integer programs, most of

which are hard to solve. Because of this, various solution techniques from the Operations Re-

search �eld have been proposed to solve them. Surveys on capacitated dynamic lot-sizing models

can be found in [64], [30], [54] and [55]. In the present work, we focus on one of the problems

belonging to this general class (the Discrete Lot-sizing and Scheduling Problem or DLSP) and

propose models and algorithms to solve various extensions of this problem.
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1.2 Context

The present work follows a previous study by Nicolas Miègeville for Saint-Gobain Glass (see

[72]). Among others, the author of [72] considers the problem of planning the so-called "�oat

lines" used for �at glass production. The most important components of a �oat line are the

furnace where glass is made by the fusion of silica and other components, the �oating tin bath

and the annealing zone where the continuous ribbon of molten glass is gradually cooled under

strictly monitored conditions to give it its physical characteristics, and the cut area where the

glass is cut into sheets of various sizes. Floating lines can be described as capacitated, expensive

and in�exible resources. For instance, the cost of a new �oat line can be estimated at around 80

millions of euros. Moreover changeovers on a �oat line between di�erent types of glass can last as

long as a few days, the associated costs being dependent on the production sequence. Decisions

about lot-sizing and scheduling are therefore particularly important in this industrial context.

In [72], the author proposes an original model of the production system to be planned, aiming

mainly at reducing the size of the resulting optimization problem and relying on a standard

commercial solver to solve it. In the present work, we build on this previous study and use some

of the original modelling ideas presented in it to develop extensions of the speci�c variant of

lot-sizing problems discussed here.

However, in order to be able to solve lot-sizing problems by feeding a mixed-integer pro-

gramming (MIP) formulation into a standard solver, we have to focus about providing the best

possible formulation. Namely, the e�ciency of the Branch & Bound procedure embedded in MIP

solvers such as CPLEX or XPRESS-MP is highly impacted by the quality of the lower bounds

used to evaluate the nodes of the research tree. In the standard Branch & Bound procedure,

these lower bounds are provided by the optimal solution of the linear relaxation of the problem,

the value of which strongly depends on the way the problem is formulated as a mixed-integer

program. Thus, as pointed out by [5], "in spite of the remarkable improvements in the quality

of general purpose mixed-integer programming software, the e�ective solution of a variety of

lot-sizing problems depends crucially on the development of tight formulations for the special

problem features occurring in practice." Research aiming at improving the MIP formulation of

lot-sizing problems through extended reformulations and valid inequalities was initiated in the

early 1980s and there now exists a good knowledge about the "right" way to formulate many

simple production planning problems. This knowledge, combined with the progress of commer-

cial solvers, enables us to solve problems that were considered out of reach some ten years ago.

An introduction on the relevant literature is provided by L.A. Wolsey in [98]. The present work

belongs to this line of research. Indeed in our solution approach, we use existing knowledge about
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the polyhedral structure of the problem under study and propose several extensions of known

tight reformulations and families of valid inequalities in order to take additional operational

aspects into account.

1.3 Description and main contributions

In the present manuscript, we discuss a variant of lot-sizing problems known as the Discrete

Lot-sizing and Scheduling Problem (DLSP). A detailed description of the DLSP will be given in

the sequel but we brie�y recall the main features of this model.

The DLSP is a small bucket model: the planning horizon is divided into a rather large number

of short periods and during a planning period, at most one type of item can be produced on the

resource. Moreover a discrete production policy is assumed, implying that an item, if assigned

to a planning period, must be produced at full capacity.

We consider here a complicating operational aspect: the sequence-dependency of changeover

costs and times. Changeover costs and times are said to be sequence-dependent when their value

depends not only on the item which will be produce after the changeover but also on the item

which was produced before the changeover. Sequence-dependent changeover costs and times

create additional linkages between items in the MIP formulation and thus make it more di�cult

to use decomposition methods such as Lagrangian relaxation or column generation to solve the

problem. Moreover, additional binary variables and constraints have to be introduced in the

MIP formulation, resulting in an increased MIP size.

In [98], Wolsey proposes to solve the DLSP with sequence-dependent changeover costs using

a tight MIP formulation and a standard commercial solver. Our main contributions relate to

extensions of this work to cases where additional relevant industrial concerns are incorporated

in the model:

• For the single-resource DLSP without changeover times, we present a new way of modelling

the production system to be planned by properly exploiting a multi-attribute product struc-

ture. When such a structure is present in the industrial context under study, we suggest to

exploit it using an adaptation of the formulation given in [98]. Computational experiments

show that thanks to the proposed model, we are able to speed up the resolution of the

problem by CPLEX solver for a large class of instances.

• We also consider the integration of positive changeover times in the model and develop

an extension of the formulation proposed in [98] to take this into account. We provide

computational results which indicate that the proposed MIP modelling and reformulation
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approach seems to be particularly e�cient for the instances with a medium number of

items and a low capacity utilization.

• Finally, we discuss the case of identical parallel resources and derive a family of strong

valid inequalities to deal with this variant. Some insights about the impact of a partial

specialization of the resources on both the algorithmic performance and the total production

cost are also provided.

1.4 Outline of the thesis manuscript

We now present the general structure of the manuscript. We brie�y describe the content of each

chapter and (if relevant) give the corresponding paper.

In chapter 2, we review the literature on capacitated lot-sizing models, focusing particularly

on recent developments. A classi�cation of the main contributions based on the number of

resources and product levels considered in the models is proposed. The corresponding working

paper can be found in [42].

In chapter 3, we study the DLSP with a single production resource and zero changeover

times and discuss two new ways of modelling the production system to be planned by properly

exploiting structures frequently encountered in industrial applications. One of these modelling

ideas proves useful at improving the e�ciency of a commercial solver to solve medium to large-

sized instances. A paper version (see [40]) of this chapter is under review for publication.

In chapter 4, we present a new tight formulation for the DLSP with sequence-dependent

changeover costs and changeover times. Our proposal is based on the extension of the tight

MIP formulation available for the case without changeover times (see [98]) to the case of positive

changeover times. The obtained formulation is then further strengthened thanks to the use of

a family of valid inequalities. The results of our computational experiments indicate that the

proposed approach is e�cient at solving medium to large-sized instances. A paper version (see

[43]) of this chapter has been accepted for publication in Operations Research Letters.

In chapter 5, we consider the DLSP with identical parallel resources and sequence-dependent

changeover costs and present an initial MIP formulation for this speci�c variant. The presence of

parallel resources makes this extension of the DLSP particularly di�cult to solve. This is why we

discuss a heuristic procedure aiming at providing good approximate solutions for this problem.

Although the computational behavior of the proposed algorithm is not really satisfactory, this

preliminary study enables us to identify several interesting directions for future research.

In chapter 6, we focus on improving the initial MIP formulation described in chapter 5
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and derive a family of valid inequalities for the single-item variant denoted DLS-CC-SC with

several machines in [78]. The results of our computational experiments show that thanks to the

proposed enhanced formulation, the e�ciency of the Branch & Bound procedure embedded in

CPLEX solver can be signi�cantly improved. Moreover, our computational experiments provide

some insights about the impact of a partial specialization of the resources on both the algorithmic

performance and the total production cost.

Chapter 7 provides general concluding remarks and highlights several interesting directions

for future research.

Finally, we provide in appendix A the revised version of a paper (see [41]) in which an

optimization problem arising in the context of glass production is investigated. This work was

carried out as part of our thesis project. However it does not relate to production planning but

rather to production line design. We therefore do not include it in the main part of the present

manuscript but in the appendix section. This paper is under review for publication.
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Chapter 2

A literature review on capacitated
lot-sizing models

We discuss one of the many processes arising in the context of supply chain man-

agement, namely production planning. We focus on one type of production planning

models called capacitated lot-sizing models. These models appear to be well suited

for the case where the available production resources are rather in�exible. We re-

view the literature on single-level single-resource lot-sizing models as well as their

extensions to multi-level and/or multi-resource problems.

11
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2.1 Introduction

Production planning is the process of determining a tentative plan for how much production

will occur in the next time periods, during an interval of time called planning horizon. It is an

important challenge for industrial companies because it has a strong impact on their performance

in terms of customer service quality and operating costs. However, production planning often

proves itself to be a very complex task, mainly for the following reasons:

• Most often a production resource is not fully dedicated to the production of a single product

but is rather used to produce di�erent types of product. In many industries, the production

resources available are not �exible and can produce only one type of product at a time with

a given production rate. Thus a production planner is faced with a competition between

products sharing the same production facility and has to decide which products should be

produced, when and in which quantities, while taking into account all constraints arising

from the production system. In some cases, these constraints can be so tight that even

�nding a feasible production plan can be very di�cult.

• A production plan has to meet several con�icting objectives, namely guaranteeing an ex-

cellent customer service level and minimizing production and inventory costs. Thus basic

policies like not satisfying the demand exceeding the production capacity or keeping high

levels of inventory to be able to meet any demand are usually not commercially accept-

able or much too expensive. A good production plan is therefore the result of a trade-o�

between con�icting objectives.

• A production plan is never �xed for ever. Its validity is restricted to a prede�ned planning

horizon so that at the latest, when reaching the end of the planning horizon, a new plan has

to be designed that re�ects the current status of the production system. Moreover reality

will nearly always deviate from the plan and if the discrepancy between the plan and the

actual situation is too large, the plan has to be revised before the end of the planning

horizon.

Production planning is thus a di�cult and recurring problem for industrial companies and

there is a strong need for decision support systems. The development of such decision support

systems has been the focus of a large body of the Operations Research literature for the last �fty

years and there is now a wide variety of models available for production planning and inventory

management.

In the present chapter, we focus on one type of production planning models: capacitated

dynamic lot-sizing models. Capacitated lot-sizing models are based on the following assumptions:
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• Production resources have a limited capacity and can produce only one type of product at

a time. They are rather in�exible, meaning that a signi�cant amount of setup is required

to change production from one type of product to another.

• Demand for all products is deterministic and time varying. It has to be satis�ed without

backlogging, i.e. the production plan should be built so that a perfect customer service

level is achieved.

• There are two types of cost to be taken into account:

� setup costs. Setup costs are the costs incurred when changing the resource con�gura-

tion from one type of product to another one. A recon�guration may involve opera-

tions such as line clearance, color purging, tool or die changes... Setup costs account

for the loss of potential production during the duration of the setup, the additional

workforce needed, the additional raw material consumed during the setup...

� inventory holding costs. Inventory holding costs account for the opportunity costs of

capital as well as for the direct costs of storing goods (warehousing, handling...).

To minimize setups costs, production should be run with large batches but at the expense of

high inventory costs. On the contrary, inventory levels can be kept low if production of a product

is run in frequent and small batches, but at the expense of high setup costs. Thus capacitated

lot-sizing models aim at �nding a production schedule achieving an optimal trade-o� between

setup and inventory holding costs, while complying with given capacity constraints and insuring

that demand for all products is satis�ed without backlogging. Recent overviews on the lot-sizing

literature can be found among others in [30], [54], [55] and [98].

The practical relevance of capacitated lot-sizing is supported by the numerous examples of

their application in various industries: tile manufacturing [22], tire industry [53], plastic injection

molding [21], textile industry ([31], [82]), paper production [45], metallic alloy moulding [29],

packaging lines in process industries ([84], [69])... Moreover, as pointed out by [78], multi-level

multi-resource lot-sizing models are promising candidates to replace the traditional MRPII logic

which provides only suboptimal production schedules.

The purpose of this chapter is to present a general survey on capacitated lot-sizing models.

We will review the main contributions to this long standing but active research �eld, focusing

particularly on recent developments.

The complexity of lot-sizing models depends on the features taken into account in the model.

As a �rst step for classi�cation, we use the following characteristics because they strongly impact

the complexity of lot-sizing decisions:
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• number of resources. The products can be made on one single machine (single-resource

models) or on multiple machines (multi-resource models). The use of parallel machines

complicates the problem as we not only have to determine the timing and level of produc-

tion, but we also have to assign production lots to machines.

• number of levels. Production systems may be single-level or multi-level. In single-level

systems, the �nal products are obtained directly from raw materials after processing by

a single operation with no intermediate subassembly. Demand on products is assessed

directly from customer orders or market forecasts. In multi-level systems, there is a parent-

component relationship between items. Raw materials after processing through several

operations change to end products. The output of an operation (level) is an input for

another operation. Therefore the demand at one level depends on the lot-sizing decisions

made at the parents' level. As a consequence, multi-level problems are more di�cult to

solve than single-level problems.

• planning horizon discretization. Lot-sizing problems can be either big bucket or small

bucket problems. Big bucket problems are those where the time period is long enough to

produce multiple types of items while for small bucket problems the time period is so short

that only one type of items can be produced in each time period.

The chapter is organized as follows. Section 2.2 provides a general review on established

single-level single-resource models. In section 2.3, we then discuss single-level multi-resource

models. Finally, section 2.4 deals with multi-level extensions of lot-sizing models.

2.2 Single-level single-resource models

In this section, we deal with single-level single-resource models: all products to be made are end

items and make use of the same resource with a limited production capacity.

2.2.1 Big bucket models

The capacitated lot-sizing problem (CLSP)

The capacitated lot-sizing problem (CLSP) is a typical example of a big bucket problem, where

many di�erent items can be produced on the same resource in one time period. The classical

CLSP consists in determining the amount and timing of the production of products in the

planning horizon: the outcome is a production plan giving for each planning period the quantity

(lot size) of each item that should be produced. However detailed scheduling decisions are not
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integrated in the CLSP. The usual approach is therefore to solve the CLSP �rst and to solve a

scheduling problem for each period separately afterwards.

In the CLSP, it is required that the resource is setup for a given item in each period where

it is produced. The resulting setup costs and times may vary for each item and each period

but, as the exact sequence of production within each time period is not de�ned, they should be

sequence-independent, i.e. they should not depend on the exact sequence followed to make the

products on the resource.

Before going on with the literature review, we brie�y present the mixed-integer programming

(MIP) formulation for the basic CLSP with zero setup times.

We wish to optimize the production schedule for a set of N items over an horizon featuring

T planning periods. A period is indexed by t = 1, ..., T , an item by i = 1, .., N .

We use the following notation for the parameters:

• dit: deterministic demand (in units) for item i in period t,

• Pt: available production capacity (in time units) on the resource in period t,

• vit: capacity needed (in time units) to produce one unit of i in period t,

• hi: holding costs per unit and period for item i,

• cit: setup costs for item i in period t.

In the CLSP, the items to be produced can have di�erent production rates on the resource.

This is why the production capacity is not expressed as the number of items that can be produced

in a planning period, but rather as an available amount of time (Pt) that will be consumed by

the produced items with an item-speci�c production rate (vit).

Decision variables are de�ned as follows:

• Iit: inventory level corresponding to item i at the end of period t,

• xit: production quantity for item i in period t,

• yit: binary setup variables. yit = 1 if the resource is setup for item i in period t, and 0

otherwise.

Using this notation, the CLSP can be formulated as a MIP model:

(CLSP)

min

N∑

i=1

T∑

t=1

(hitIit + cityit) (2.1)
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∀i, ∀t, Iit = Ii,t−1 + xit − dit (2.2)

∀i, ∀t, vitxit ≤ Ptyit (2.3)

∀t,
N∑

i=1

vitxit ≤ Pt (2.4)

∀i, ∀t, Iit ≥ 0 (2.5)

∀i, ∀t, xit ≥ 0 (2.6)

∀i, ∀t, yit ∈ {0, 1} (2.7)

The objective, to minimize the sum of inventory holding costs and setup costs, is expressed by

(2.1). Constraints (2.2) express the inventory balance. Due to restrictions (2.3), production of

an item can only take place if the resource is setup for that particular item. Constraints (2.4)

are the capacity constraints. The set of constraints (2.2) and (2.5) ensure that demand for each

item is ful�lled without backlogging. Inequalities (2.6) are the non negativity conditions on the

production quantities. The binary character of the setup variables is expressed by (2.7).

A recent review on the literature about the CLSP can be found in [59]. The authors clas-

sify solution methods into three main categories: exact methods, common-sense or specialized

heuristics and mathematical programming-based heuristics.

The use of exact methods to solve the CLSP is described among others in [2], [4], [5], [34] and

[98]. The goal of this line of research is to improve the MIP formulation of the problem using

reformulations and valid inequalities so that commercial solvers like CPLEX or XPRESS-MP

are able to solve practical instances using a standard Branch & Bound type procedure.

Common-sense or specialized heuristics can be found for instance in [27] and [63]. In [27], a

�rst production plan is built using a greedy period-by-period heuristic based on the single-item

Silver-Meal approach ([83]). In a second step, this initial plan is modi�ed so that feasibility is

guaranteed and costs are reduced. [63] develop a heuristic algorithm using an iterative item-

by-item strategy for generating solutions to the problem. In each iteration, a subset of items

from those not already scheduled is selected and production schedules over the planning horizon

for this set of items are determined. To ensure feasibility of the overall problem, each item

is scheduled by solving a bounded single item lot-sizing problem where production capacity is

restricted to take into account the production of already scheduled items.

A general drawback of common-sense heuristics is that they can be rather di�cult to adapt

for di�erent variants or extensions of the problem because in most cases we have to alter the

heuristic completely. On the contrary, mathematical programming-based heuristics which use an
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optimum seeking mathematical programming procedure to generate a solution are more general

and allow for extensions to di�erent problems. Another advantage is that many of these heuristics

provide lower bounds on the optimal solution cost, thus providing guidance for the assessment

of the quality of the obtained solution. However they usually require much more computational

e�ort for real-world problems and due to their technical concepts cannot be implemented easily

by practitioners. Many mathematical programming-based procedures used to solve the CLSP

rely upon a Lagrangian relaxation of the capacity constraints. By dualizing capacity constraints

into the objective function, the problem decomposes into a series of single item uncapacitated

problems, each of which can be solved using an e�cient single-item algorithm. This approach is

applied among others by [26], [90] and [93]. Some other heuristic solution approaches based on

di�erent methods like column generation or metaheuristics can also be found in the literature.

The reader is referred to [59] for more details.

Extensions of the CLSP

As mentioned above, in the CLSP, the decision variables are the production quantities of every

item in every period, which can be considered as production orders to be released and submitted

to the shop �oor. This type of model does not involve the lot sequence within a period: this de-

cision has to be determined by an additional scheduling step. However the need for simultaneous

lot-sizing and scheduling arises in the case of sequence-dependent setup costs which is frequently

encountered in process industries. Therefore recent research has focused on extending the CLSP

to incorporate scheduling decisions and deal with sequence-dependent setup costs. This problem

is called General Lot-sizing and Scheduling Problem (GLSP) in some papers.

The integration of scheduling decisions in the CLSP formulation can be done in several

ways. In [45] and [46], the production sequence within a period is de�ned through the use of

setup state variables giving the resource con�guration at the beginning of each period and a

series of setup transition variables linked by �ow conservation constraints. In both papers, the

resulting problem is solved thanks to a specialized heuristic. [37] and [70] use a di�erent approach

where each period of the planning horizon is divided into a �xed number of micro-periods with

variable length. The production sequence within each period is obtained by assigning an item

to each micro-period. Their solution method is based on the use of a local search algorithm

called threshold accepting. Finally, in [47], the authors build a predetermined sets of e�cient

production sequences. In this case, the production planning problem consists in selecting for

each planning period a production sequence among those already identi�ed as e�cient and in

determining the corresponding lot sizes. A tailored enumeration method of the Branch & Bound
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type is used to optimally solve medium-sized instances of the problem.

2.2.2 Small bucket models

In small bucket models, the assumption is made that during each time period, at most one type

of item can be produced on the resource. Thanks to this assumption, lot-sizing and scheduling

decisions can be made simultaneously: namely a unique item is assigned to each planning period

and the resulting sequence of item-period assignments de�nes the production schedule. Note

that in small bucket models, the production of a lot may last several periods and setup costs

should be incurred in a period only if the production of a new lot begins. To model this, new

decision variables often called start-up variables or changeover variables are introduced. In the

sequel, we use the binary variable zit to indicate whether the production of a new lot of item i

is beginning in period t (zit = 1) or not (zit = 0).

The Continuous Setup Lot-sizing Problem (CSLP)

A �rst small bucket model is the so-called Continuous Setup Lot-sizing Problem (CSLP). In the

CSLP, only one item can be produced by period and the quantity produced can be any value

between 0 and the resource capacity.

Using the same notation as in subsection 2.2.1, a MIP model of the CSLP can be stated as

follows:

(CSLP)

min
N∑

i=1

T∑

t=1

(hitIit + citzit) (2.8)

∀i, ∀t, Iit = Ii,t−1 + xit − dit (2.9)

∀i, ∀t, vitxit ≤ Ptyit (2.10)

∀t,
N∑

i=1

yit ≤ 1 (2.11)

∀i, ∀t, zit ≥ yit − yi,t−1 (2.12)

∀i, ∀t, Iit ≥ 0 (2.13)

∀i, ∀t, xit ≥ 0 (2.14)

∀i, ∀t, yit ∈ {0, 1} (2.15)

∀i, ∀t, zit ∈ {0, 1} (2.16)

The objective, to minimize the sum of inventory holding costs and startup costs, is expressed by
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(2.8). Constraints (2.9) express the inventory balance. (2.10) guarantee that production of an

item can only take place if the resource is setup for that particular item and that capacity limits

are respected. Constraints (2.11) ensure that only one item may be produced per period. The

beginning of a new lot is de�ned by means of inequalities (2.12). The set of constraints (2.9) and

(2.13) ensure that demand for each item is ful�lled without backlogging. Inequalities (2.14) are

the non negativity conditions on the production quantities. The binary character of the setup

and startup variables is represented by (2.15) and (2.16).

[60] try to solve the CSLP using Lagrangian relaxation applied to the capacity constraints.

More recently, [20] presents a cutting-plane approach based on several families of valid inequalities

derived for the single-item version of the problem. [95] develops an integer programming column

generation algorithm to solve the same problem and uses the cutting-planes proposed by [20]

to tighten the formulation of the master linear program at each node of the Branch & Bound tree.

The Discrete Lot-sizing and Scheduling problem (DLSP)

The Discrete Lot-sizing and Scheduling problem (DLSP) is another small bucket model. The

di�erence with the CSLP is that a discrete production policy is assumed, implying that an

item, if assigned to a planning period, must be produced at full capacity. This "all-or-nothing"

assumption is enforced by replacing in the formulation CSLP the inequalities (2.10) by the

equalities:

∀i, ∀t, vitxit = Ptyit (2.17)

The �rst contributions on the DLSP use sequence-independent setup costs. [35] solve medium-

sized instances using a Branch & Bound procedure where the lower bounds are determined by

means of Lagrangian relaxation. [17] describe a heuristic for the DLSP with positive setup

times based on dual ascent and column generation techniques. [15] also address the DLSP with

sequence-independent setup times and take into account additional operational constraints on

batch availability. They develop a two-phase simulated-annealing heuristic to solve their problem

and are able to �nd good solutions for instances involving at most 10 items and 100 periods.

The DLSP with sequence-dependent setup costs is addressed in [36] and [80] who both refor-

mulate the problem as as Travelling Salesman Problem with Time Windows. Studying the same

variant, [56] show the equivalence between the DLSP with a single resource and a scheduling

problem named Batch Sequencing Problem (BSP) and present a speci�c Branch & Bound type

algorithm to solve the resulting BSP.
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Big bucket models Small bucket models
Sequence-independent
changeover costs

[2], [4], [5], [26], [27], [34],
[59], [63], [90], [93]

[15], [17], [20], [35], [60],
[67], [66], [73], [94], [95]

Sequence-dependent
changeover costs

[37], [45], [46], [47], [70] [36], [56], [80]

Table 2.1: Literature review: single-level single-resource models

There is also a rather large amount of polyhedral results for the DLSP. Strong valid inequal-

ities for the single-item variant can be found in [67], [66], [73] and [94]. These valid inequalities

can be used to tighten the formulation of multi-item instances, thus improving the e�ciency of

the standard Branch & Bound procedure embedded in commercial solvers. Excellent literature

reviews on polyhedral results for the DLSP can be found in [78] and [98].

Table 2.1 summarizes our literature review on single-level single-resource models.

2.3 Single-level multi-resource models

The lot-sizing models presented in the previous section assume that the products are processed

on a single resource. However in many cases a manufacturer has access to multiple machines

or production lines, which can be used in parallel. In this section, we focus on the single level,

parallel resources problem. A recent review on lot-sizing problems involving parallel resources

can be found in [52]. As mentioned above, parallel resources further complicate the production

planning problem. Namely, as an item can be produced on several machines, there is an additional

decision to be made: the assignments of production lots to resources. As for the single-resource

models, a distinction can be made between big bucket and small bucket models.

2.3.1 Big bucket models

We �rst consider extensions of the classical CLSP described in section 2.2.1 to the case of parallel

resources. [102] consider a capacitated lot-sizing problem with parallel machines. They assume

that a lot cannot be split among several machines so that in a given period, an item can be pro-

duced on one machine at most. They develop hybrid heuristics combining local search techniques

such as tabu search and a genetic algorithm to deal with the resulting problem. [92] address

the same problem and propose a heuristic based on the Lagrangian relaxation of the capacity

constraints and subgradient optimization: at each iteration, a series of single-item multi-resource

problems are solved using a dynamic programming algorithm. Finally, [52] focuses on the CLSP

with parallel identical machines: all the resources have the same available capacity and the setup

and production costs are identical on each of the resources. In this case, there exists a large
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number of equivalent solutions with the same total cost that di�er only by the numbering of the

machines. As this degeneracy will slow down the Branch & Bound algorithm, he proposes to

add symmetry breaking constraints to the mixed-integer programming formulation in order to

obviate this problem.

There are also some papers extending the big bucket models with sequence-dependent setup

costs presented in section 2.2.1 to the case of several parallel resources. Among them, [58] propose

an original model where the sequence of products produced on a machine in a period is modelled

as a collection of subsequences. Each subsequence is made of at most 5 items and by enumeration,

an optimal ordering for these items can be found. The lot-sizing problem is then formulated as

the problem of assigning a subsequence chosen among those predetermined to a position in the

global production schedule on each resource. The authors propose a column-generation approach

combined with a Branch & Bound procedure to solve the resulting problem. [19] use a model

similar to the one presented in [46] to solve a variant of the CLSP with heterogenous parallel

resources and sequence-dependent setup times. The problem is solved heuristically using a

rolling-horizon method. While planning production on a rolling horizon basis, only the lot-sizing

and sequencing decisions regarding the �rst periods of the horizon will be actually implemented

in the production system. Namely after a few periods, the horizon is rolled forward and the

model is applied once more with updated demand, inventory and capacity information. [19]

propose to determine precisely the lot-sizing and sequencing decisions only for the �rst planning

periods. The other production decisions for the end of the planning horizon (which will not be

actually implemented) are only approximately evaluated, without considering explicitly setup

costs and times. This enables them to reduce the size of the mixed-integer program to be solved

and thus to save a signi�cant amount of computing time while avoiding some drawbacks arising

from a purely myopic approach. In a recent paper, [71] extends his GLSP model to the case of

parallel production lines and uses a solution procedure combining local search strategies with

dual reoptimization to solve real problems gathered from the consumer goods industry.

2.3.2 Small bucket models

We now present extensions of the small bucket models to the case of multiple parallel resources.

In [84], a �rst extension of the CSLP is used to plan production on several packaging lines in a

process industry. In their model, the authors consider that an item is a combination of a package

size and a product to be �lled into the packages. They assume that items can be grouped into

families: a family can be either a package size or a product according to the industrial application.

A major setup will occur if a transition between items belonging to di�erent families has to be
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Big bucket models Small bucket models
Sequence-independent
changeover costs

[52], [102], [92] [22], [53], [69], [84]

Sequence-dependent
changeover costs

[19],[58], [71] [21], [23], [82]

Table 2.2: Literature review: single-level multi-resource models

carried out whereas the transitions between two items belonging to the same family will lead

only to a minor setup. In their model, they impose that only one family can be produced per

planning period and focus on de�ning the exact sequence of family-period assignment. They use

a standard Branch & Bound procedure to solve small instances involving 4 products, 5 periods

and a single production line. Industrial applications of the CSLP with multiple parallel resources

can be found in [21] for the planning of injection molding operations and in [69] for the planning

of a yoghurt-packaging facility. In both papers, specialized heuristics are used to solve industrial

instances of the problem.

[22] and [23] consider production planning for the curing stage in a tile manufacturing fa-

cility. The problem is formulated as a DLSP with heterogenous parallel resources (the curing

kilns). They apply Lagrangian relaxation to the inventory balance constraints to decompose the

problem into a series of single-resource independent subproblems. Combining this with a sub-

gradient optimization method, they are able to obtain strong lower bounds on the optimal cost.

Feasible production schedules are generated from every Lagrangian solution using a so-called

product-line assignment heuristic. Another industrial extension of the DLSP can be found in

[53] who propose a production planning model for an international tire manufacturer. The prob-

lem involves multiple capacitated resources of di�erent types: the molds and the heaters needed

to build and cure the tires. It is solved by a column-generation-based algorithm combined with

Lagrangian relaxation to reduce the degeneracy of the master problem. [82] solve a DLSP with

multiple parallel machines arising in a company producing acrylic �bres using a problem-speci�c

heuristic.

Table 2.2 summarizes our literature review on single-level multi-resource models.

2.4 Multi-level multi-resource big bucket models

In a multi-level lot-sizing problem, the production planning is considered not only for the �nal

level (i.e. the end products), but also for the components and subassemblies needed to make the

end products. Because of the parent-component relationship between items, production at one

level leads to demand for components at a lower level (dependent demand). At the highest level,
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production is triggered by market demand (independent demand).

The parent-component relationship between items, also known as the bill of materials, is

usually represented by an acyclic directed network where every node in the network is an item,

an arc represents the assembly or distribution relation between items and the weight of an arc

is the quantity relation (also called the "gozinto factor") between the two terminal nodes of the

arc. Di�erent kinds of product structures can be distinguished:

• serial product structure: each item has a single predecessor and a single successor in the

network.

• assembly product structure: each item can be made from several predecessors (i.e. com-

ponents) but has a single successor (i.e. parent).

• general product structure: each item can be made from several predecessors and can have

several successors. Thus there may be several end products that have some components in

common: this situation is sometimes referred to as component commonality.

Most contributions on multi-level lot-sizing problem use big bucket models and a general

product structure. They can thus be seen as extensions of the classical CLSP described in

section 2.2 to the multi-level multi-resource case. This is why we chose to classify the literature

with respect to the type of solution approach used rather than with respect to the planning

horizon discretization.

We classify solution methods into four main categories: exact methods, specialized heuristics,

mathematical programming-based heuristics and metaheuristics.

2.4.1 Exact methods

Most single-level capacitated lot-sizing problems are NP-hard. The multi-level extension makes

them even harder because of the interdependency between levels created by the parent-component

relationship between items. The demand at lower levels is namely the result of the lot-sizing

decisions made at highest levels. Practical instances are often too di�cult to be optimally solved

with a commercial integer optimization software. Therefore most existing solution approaches

are based on heuristic techniques and the literature on exact solution methods to solve multi-level

capacitated lot-sizing problems is rather sparse.

Noticeable exceptions can be found in [4], [5], [77], [78] and [98]. These papers are based on

the concept of echelon stock. The echelon stock of an item in a given period can be de�ned as

the total stock of this item within the system, whether held directly as stock or as the stock of

other items containing one ore more units of this item. The problem can be reformulated using
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echelon stock variables and the obtained reformulation can be seen as a series of single-item

lot-sizing subproblems linked by capacity constraints. Thanks to this, valid inequalities available

for single-item problem can be used. Some computational experiments based on a branch-and-

cut procedure using these valid inequalities can be found in [4] and [5] but they are limited to

instances involving a single resource.

2.4.2 Specialized heuristics

Several dedicated heuristics have been proposed for solving multi-level extensions of the CLSP.

They mainly aim at building a good feasible solution for the problem, but without assessing the

quality of the found solution with respect to some lower bounds on the optimal cost.

Most of them follow a level-by-level approach but modify the setup and inventory costs at

highest levels to model the interdependencies. [8] study a multi-level CLSP with a serial product

structure. They solve the problem by applying sequentially a multi-item single-level specialized

heuristic to each level of the problem, beginning with the end products and proceeding through

the raw materials. To compensate with this level-by-level myopic approach, before solving the

lot-sizing problem at a given level, they modify the setup and inventory costs following the

procedure described in [10]. This cost-adjustment approach enables them to (approximately)

model the impact of the lot-sizing decisions made at the given level on the lowest levels. A

similar approach is used in [89] for general product structures.

Another type of special-purpose heuristic can be found in [18]. The authors study a multi-

level CLSP with multiple resources and a general product structure. The starting point for their

heuristic is a feasible production plan for the uncapacitated problem. It is obtained by applying

sequentially the optimal Wagner-Whitin algorithm to solve single-item single-level problems,

beginning with the end items and proceeding to items at the lowest levels. Afterwards, they

try to achieve a feasible production plan for the capacitated problem by moving production

backwards in time from overloaded periods to earlier underloaded ones while maintaining the

feasibility of the plan with respect to demand satisfaction and component availability. With their

heuristic, they were able to �nd good solutions for instances involving 40 items, 2 resources and

12 planning periods.

2.4.3 Mathematical programming-based heuristics

As already mentioned for the single-level single-resource CLSP, mathematical programming based

heuristics make use of an optimum seeking mathematical programming methodology and adapt

it to generate good feasible solutions for practical instances.
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A �rst example of such an approach can be found in [88]. They propose to solve the multi-

level multi-resource CLSP with a general product structure by Lagrangian relaxation applied to

both the multi-level inventory balance constraints and the resource capacity constraints. Thanks

to this relaxation, the overall problem is decomposed into single-level single-item lot-sizing sub-

problems. They use subgradient optimization to update the Lagrangian multipliers and obtain

good lower bounds on the cost of an optimal production plan. This procedure is combined with

a sophisticated forward and backward scheduling heuristic to transform the obtained unfeasible

solutions into good feasible solutions for the initial problem.

A second family of mathematical programming-based approaches involves various Linear

Programming relaxations of a MIP formulation of the multi-level multi-resource CLSP. [65]

solve a multi-level CLSP with an assembly product structure and several resources, each of

them being dedicated to a speci�c product level. They reformulate the problem using extended

production variables and solve the linear programming relaxation of the obtained tightened

formulation. They try to build a feasible solution for the initial problem by applying a number

of rounding heuristics on the linear programming solution. Their heuristic was tested on instances

involving only serial product structures with up to 3 levels. [49] and [61] describe a coe�cient-

modi�cation heuristic where small LP restrictions of the original problem are repeatedly solved.

At each iteration, capacity constraints and objective function coe�cients are modi�ed in the

linear program to account for the capacity consumed and the costs incurred by the setups on the

resource.

[85] proposes to reduce the complexity of the overall MIP model by using a time-oriented

decomposition approach leading to the resolution of a series of reduced-sized mixed-integer pro-

grams. In this approach, lot-sizing decisions are not made altogether for the entire planning

horizon but sequentially, each time for a limited time interval called the lot-sizing window. In

each step, setup decisions are made only for the periods within the lot-sizing windows while

setup decisions already made for previous periods are taken into account and setup decisions

for periods following the lot-sizing window are only approximated through continuous variables.

The resulting sub-model whose size is drastically reduced is solved by a commercial solver. Lot-

sizing windows are then deployed in internally rolling schedules up to the end of the planning

horizon given by the initial decision problem so that a production schedule for the entire horizon

is obtained. Their computational experiments show that the proposed heuristic provides a better

solution quality than the heuristic found in [88].
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Big bucket models Small bucket models
Sequence-independent
changeover costs

[4], [5], [6], [7], [8], [18],
[49], [50], [61], [65], [100],
[101], [78], [85], [88], [89],
[98], [99]

[4], [5], [77], [78], [98]

Sequence-dependent
changeover costs

Table 2.3: Literature review: multi-level multi-resource models

2.4.4 Metaheuristics

In the past decade, meta-heuristics such as tabu search, simulated annealing and genetic algo-

rithms have become more and more popular for solving complex combinatorial problems. One

of the main reasons for their success is their �exibility and ability to handle large and complex

problems. Thus these methods seem especially adapted for multi-level extensions of the standard

lot-sizing problems. But a major disadvantage is the fact that they do not provide a lower bound

to assess the solution quality: it has to be calculated separately. Moreover, although their basic

principles are easy to understand, this type of algorithms are in fact fairly complex because of

all the special adaptations that are needed to make them work better.

Applications of metaheuristics to solve multi-level lot-sizing problems can be found among

others in [6], [7], [50], [62], [101] [100] and [99]. A detailed review on this subject can be found

in [54].

Table 2.3 summarizes our literature review on multi-level multi-resource models.

2.5 Conclusion

In the present chapter, we reviewed the literature on single-level single-resource lot-sizing models

as well as their extensions to multi-level and/or multi-resource problems. Although research

on capacitated lot-sizing started some �fty years ago, lot-sizing problems are still challenging

because many extensions are very di�cult to solve. This research �eld thus remains very active.

As mentioned by [55], the research on lot-sizing is currently evolving towards two directions:

• Whereas the early models were usually more compact and captured only the main trade-

o�, there is now an increased attention to model into more detail speci�c characteristics of

the production system such as sequence-dependent costs, multiple resources, backlogging...

The objective is to better represent real life production planning problems and to provide

more valuable decision support to managers. The present work belongs to this line of

research. Indeed, we investigate various extensions of the single-level, single-resource DLSP
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in order to integrate into the basic model additional relevant industrial aspects such as

sequence-dependent changeover costs, positive setup times or parallel resources.

• Another new interesting research area deals with the integration of lot-sizing models into

more global models in order to better coordinate production and distribution decisions.

Examples of integrated production-distribution planning models can be found in [24], [25],

[32], [39], [75], [81], [91] and [103].

Finally, solution approaches for such di�cult extensions of the lot-sizing problems should be

based on previous research. Hybrid optimization procedures combining the strength of di�erent

methodologies like MIP formulation strengthening and metaheuristics seem to be a promising

research direction.
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Chapter 3

The single-resource DLSP without
changeover times

We consider the Discrete Lot-sizing and Scheduling Problem. More precisely, we

study the variant with a single production resource, sequence-dependent changeover

costs and no changeover times. We propose two new ways of modelling the produc-

tion system to be planned by properly exploiting structures frequently encountered

in industrial applications. Using these new modelling ideas, we are able to reduce

the size of the mixed-integer program to be solved. Computational results show

that, thanks to the formulation exploiting the modelling idea referred to as a "multi-

attribute product structure", exact optimal solutions can in general be obtained more

e�ciently as compared with previously described approaches.

29
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3.1 Introduction

In the present chapter, the Discrete Lot-sizing and Scheduling Problem (DLSP) with a single

resource and zero changeover times is considered. As de�ned by [35], the single-resource DLSP

is based on several key assumptions:

• There is one resource (a machine, a production line, ...) with a limited production capacity.

• All items to be produced are end items.

• Demand for products is deterministically known and time-varying.

• The production plan is established for a �nite time horizon subdivided into several discrete

periods.

• At most one item can be produced per period ("small bucket" model) and the facility

processes either one product at full capacity or is completely idle ("all-or-nothing" as-

sumption).

• Costs to be minimized are the inventory holding costs and the changeover costs.

In the DLSP, the changeover costs to be incurred when the production of a new lot begins can

depend either on the next item only (sequence-independent case) or on both the previous and the

next items (sequence-dependent case). We consider here the (more di�cult) case of sequence-

dependent changeover costs. In this chapter, we assume zero changeover times. However the

integration of positive changeover times is an important extension of this type of models and will

be considered in chapter 4.

The DLSP with sequence-dependent changeover costs was studied by [36] and [80]. They

both reformulate the problem as a Travelling Salesman Problem with Time Windows and use

either Lagrangian relaxation or a dynamic programming-based algorithm to solve it. [56] show

the equivalence between the DLSP with sequence-dependent changeover costs and the Batch

Sequencing Problem (BSP) and use a speci�c Branch & Bound type algorithm for solving the

BSP to optimality. In these papers, the number of items considered in the computational exper-

iments is relatively small (no more than 10 items) whereas the horizon length can be up to 100

periods. More recently, [98] proposes to strengthen an initial MIP (mixed-integer programming)

formulation of the DLSP with sequence-dependent changeover costs using both a reformulation

of the changeover variables and valid inequalities. Thanks to this strengthened formulation, the

lower bounds provided by the linear relaxation of the problem are signi�cantly better, enabling

a Branch & Bound type procedure to solve the problem more e�ciently. However, as pointed
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out by [5], the large number of variables needed in the reformulation to handle changeovers is an

important drawback of this approach.

The purpose of chapter 3 is to study two new ways of modelling the production system to

be planned by properly exploiting structures frequently encountered in industrial applications.

The proposed models basically aim at reducing the size of the resulting mixed-integer program

to be solved by a commercial solver, mainly by eliminating an important fraction of the variables

and constraints needed to handle changeovers. This can be achieved by exploiting one of the

following ideas:

• The �rst idea originates from the observation that changeover matrices used in industrial

applications often involve few di�erent elements as compared to their size. For instance, a

matrix that could involve a hundred di�erent values may involve only ten. This may be

explained by the fact that these matrices are evaluated by production experts who tend to

�rst range changeovers by type and to evaluate the cost of each changeover type afterwards.

In the model to be presented in section 3.3, this observation is exploited to reduce the size

of the problem to be solved by using a factorization of the changeover matrices. This can

be achieved by aggregating ("factorizing") individual changeovers between pairs of items

into a small number of changeover types, each type being de�ned by a common changeover

cost value.

• The second idea originates from the observation that products can usually be described

in terms of a set of physical attributes such as color, dimension, quality level... If this is

possible, each item to be produced will be identi�ed, not only by a unique index as it is

usually done, but also by a M -tuple, each component of which indicates the value of the

corresponding attribute for the given item. When such a multi-attribute product structure

can be exhibited in the industrial context under study, it can also be exploited to reduce

the size of the problem to be solved. This can be achieved by looking at changeovers at an

aggregate level using the relevant physical attributes instead of considering each individual

changeover between items.

Both ideas were �rst presented and exploited in [72] to solve a production planning problem

arising in the �oat glass manufacturing industry. But these ideas were directly combined together

to solve the industrial problem under study and were not evaluated by comparison with other

existing approaches. Here we propose to close this gap by :

• considering each idea separately and proposing an improved MIP formulation exploiting

it,
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• comparing the obtained formulations to a reference formulation found in the literature.

The chapter is organized as follows. In section 3.2, we �rst introduce a strengthened re-

formulation proposed by [98] for the DLSP with sequence-dependent changeover costs. In our

computational experiments, we use it as a reference for comparison with our models. Our �rst

proposal to model the production system using a factorization of changeover matrices is described

in section 3.3. In section 3.4, we present our second proposal based on the use of a multi-attribute

product attributes. In both sections, we �rst recall the modelling idea we exploited and intro-

duce the derived formulations for the DLSP with sequence-dependent changeover costs. Results

of computational experiments carried out on a large number of randomly generated instances

to evaluate our approaches are then reported. Section 3.5 presents the concluding remarks and

discussions for future investigations.

3.2 A strong formulation for the DLSP with sequence-dependent
changeover costs

In this section, we �rst recall a strong formulation for the DLSP with sequence-dependent

changeover costs. This formulation was �rst presented by [60] for the variant of the DLSP referred

to as CSLP (Continuous Setup Lot-sizing Problem), where the all-or-nothing assumption is re-

laxed. More recently, [5] and [98] proposed to use it to solve the DLSP with sequence-dependent

changeover costs. We next discuss a further strengthening of this formulation obtained by ex-

ploiting valid inequalities proposed by [94]. The use of such a strengthened formulation to solve

a pigment sequencing problem involving 10 items and 100 periods is reported in chapter 14 of

[78].

3.2.1 Initial formulation

We wish to optimize the production schedule for a set of N items over an horizon featuring T

planning periods. A period is indexed by t = 1, ..., T , an item by i = 0, .., N . We agree to use

item i = 0 to represent idle periods.

We use the following notation for the parameters:

• dit: demand (in units) for item i in period t,

• Pit: production capacity (in units per period) for item i in period t,

• hi: holding costs per unit and period for item i,

• cij : changeover costs from item i to item j.
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Decision variables are de�ned as follows:

• Iit: inventory level corresponding to item i at the end of period t.

• yit: setup variables. yit = 1 if the resource is setup for item i in period t, and 0 otherwise.

• wijt: changeover variables. wijt = 1 if the resource is switched from item i to item j at the

beginning of period t, and 0 otherwise.

With this notation, [5] and [98] propose to formulate the DLSP with sequence-dependent

changeover costs as follows:

(DLSP0)

min
N∑

i=1

T∑

t=1

hiIit +
N∑

i=0

N∑

j=0

T∑

t=1

cijwijt (3.1)

∀i, ∀t, Iit = Ii,t−1 + Pityit − dit (3.2)
N∑

i=0

yi0 = 1 (3.3)

∀i, ∀t, yi,t−1 =
N∑

j=0

wijt (3.4)

∀j, ∀t, yjt =
N∑

i=0

wijt (3.5)

∀i, ∀j,∀t, wijt ≥ 0 (3.6)

∀i, ∀t, Iit ≥ 0 (3.7)

∀i, ∀t, yit ∈ {0, 1} (3.8)

The objective, minimizing the sum of inventory holding costs and changeover costs, is expressed

by (3.1). Changeover costs cij are incurred between two successive production batches of item i

and item j, in the �rst period of production of item j.

Constraints (3.2) express the inventory balance. The "all-or-nothing" assumption is enforced

by the term Pityit in the equality: if the resource is setup for i in period t, then all the available

capacity is used and the production quantity of item i must be equal to Pit. (3.3) is also linked

to the "all-or-nothing" assumption: together with constraints (3.4)-(3.5), they ensure that in

each period, the resource either produces a single product at full capacity, or is idle (i.e y0t = 1).

Equalities (3.4) and (3.5) link the setup variables with the changeover variables. (3.4) guar-

antee that item i can be produced in period t− 1 if and only if a changeover from i to another

item j (possibly i = j) takes place at the beginning of period t. Similarly, (3.5) guarantee that
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item j can be produced in period t if and only if a changeover from another item i (possibly

i = j) to item j takes place at the beginning of period t.

(3.6) state the non-negativity of the changeover variables: observe, as pointed out by [5], that

thanks to constraints (3.3)-(3.5) and (3.8), there is no need to de�ne variables wijt as binary

variables. The set of constraints (3.2) and (3.7) ensure that demand for each item is ful�lled

without backlogging. The binary character of the setup variables is represented by (3.8).

3.2.2 Strengthening the formulation with valid inequalities

As suggested by [98], the formulation DLSP0 can be further strengthened using a family of strong

valid inequalities developed by [94] for the single-item DLSP with Wagner-Whitin costs, constant

capacity and no backlogging.

In lot-sizing problems, the expression "Wagner-Whitin costs" refers to the case where the

unit production cost uit and the storage cost hit satisfy: ∀i, ∀t, hit + uit ≥ ui,t+1. This means

that if changeover costs are not taken into account, it is more expensive to produce a given item

in period t and keep it in stock till the end of period t+1 than to produce it in period t+1. This

condition is often referred to as the absence of speculative motive for early production. Thus,

in the presence of Wagner-Whitin costs, the only reasons why a demand is produced before the

period where it occurs, are the limited resource capacity and the production �xed costs. In the

various models studied in the present work, we do not consider the unit production cost (either

because it can be neglected by comparison to other costs or because it is constant throughout the

horizon and therefore not subject to optimization). TheWagner-Whitin condition is thus satis�ed

by all studied instances as we assume positive inventory holding costs (i.e. ∀i,∀t, hit ≥ 0).

Moreover, when the resource capacity is constant throughout the planning horizon, demand can

be measured in terms of how many units can be produced during one production period, i.e. the

production capacity and demand quantity can be normalized to one unit per period without loss

of generality: dit ∈ {0, 1} and Pit = 1

We �rst introduce some additional notation:

• Di,t,τ : cumulated demand for item i in the interval {t, ..., τ}. Thanks to the normalization,

demand on item i is binary so that Di,t,τ is equal to the number of positive demand periods

for i in {t, ..., τ}.

• Si,q: qth positive demand period for item i. Note that Si,Di,1,t+q denotes the qth period

with positive demand after period t.
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We also introduce the start-up variables zr
it de�ned as:

zr
it =





1 if the production of a new lot of item i begins at period t, i.e. if

a start-up for item i takes place at the beginning of period t,

0 otherwise.

The start-up variables are linked to the changeover variables by the equations:

∀i, ∀t, zit =
∑

j:j 6=i

wjit (3.9)

With this notation, the following inequations (3.10) are valid inequalities for the DLSP with

sequence-dependent changeover costs:

∀t, ∀i,∀p ∈ {0...Di,t+1,T }, Iit ≥
p∑

q=1

(
1− yi,t+q −

Si,Di,1,t+q∑

τ=t+q+1

ziτ

)
(3.10)

We brie�y explain the underlying idea. First note that yi,t+q +
∑Si,Di,1,t+q

τ=t+q+1 ziτ = 0 if and only

if the resource is not setup for item i in period t+ q and no startup for i takes place between the

period t + q + 1 and the period where the qth demand after period t occurs, i.e. if and only if no

production of item i is possible in the interval {t + q, ..., Si,Di,1,t+q}. In this case, the quantity

needed to satisfy the qth demand after period t should be in stock at the end of period t. Thus

we see that constraints (3.10) force an increase of the stock of item i at the end of period t by

one for each index q for which no production occurs in the interval {t + q, ..., Si,Di,1,t+q}. The

reader is referred to [94] for a detailed proof of the validity of (3.10).

In the computational experiments to be presented in subsections 3.3.4 and 3.4.6, the following

cutting-plane generation strategy has been implemented to strengthen the formulation DLSP0:

1. We solve the linear relaxation of the problem using the formulation DLSP0.

2. We check whether each valid inequality of type (3.10) is satis�ed. If it is violated by the

current continuous solution, we add it to the formulation.

3. If at least one violated inequality is found in step 2, we go back to step 1 and repeat until no

more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSP0*.

As pointed out by [5], an important drawback of the formulation DLSP0 is that the number of

variables needed in the formulation to handle changeovers, (N+1)2T , grows very rapidly with the

problem size. In the sequel, we present two ways to avoid this issue in certain situations, namely

when changeover matrices can be factorized or when products can be described as combinations
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of a number of physical attributes.

3.3 The DLSP with factorized changeover cost matrices

In this section, we aim at evaluating the idea we refer to as the "factorization" of changeover

cost matrices. In most papers dealing with the DLSP with sequence-dependent changeover costs

(see [36], [56] and [80]), changeovers between pairs of items are considered individually and

modelled one by one in the formulation. This is explained by the fact that it is assumed that the

corresponding changeover costs can be precisely evaluated one by one. However, in many cases,

changeover matrices are the result of a human evaluation by production experts. Due to the

complexity of this task, these experts tend to �rst range changeovers by type and to evaluate the

cost of each changeover type afterwards. As a consequence, the obtained changeover matrices

contain only a small number of di�erent values as compared to their size.

This observation was made for the industrial case described in [72]. Another possible ap-

plication of the "factorization" can be found in the presence of a structure sometimes referred

to as "major/minor setup cost structure". In this case, there are only two di�erent values in

the changeover costs matrix: a large value corresponding to a major setup and a smaller value

corresponding to a minor setup. This situation is described for instance in [36] for the case where

there is a natural order of the products (e.g. from light to dark colors) or for the case where

there are product families. Similar situations are described in [9], [28] and [84].

In the sequel, this observation is exploited to reduce the size of the problem to be solved by

using a factorization of the changeover matrices. This can be achieved by aggregating ("factor-

izing") individual changeovers between pairs of items into a small number of changeover types,

each type being de�ned by a common changeover cost value.

3.3.1 Initial formulation

We now present a formulation for the DLSP with factorized changeover costs. We use the same

notation as in section 3.2 for the following parameters:

• dit: demand for item i in t,

• Pit: production capacity for item i in t,

• hi: holding costs per unit and period for i,

• cij : changeover costs from item i to item j.
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We assume that there is a limited number A of changeover types. A is equal to the number of

di�erent values found in the changeover cost matrix. Each changeover type α = 1...A corresponds

to a strictly positive changeover cost Cα.

We introduce the following notation:

• SC(α) = {(i, j) s.t. cij = Cα} is the subset of pairs of items (i, j) such that the changeover

from i to j is a changeover of type α.

• S1
C(α) = {i ∈ [0...N ] s.t. ∃j ∈ [0...N ] s.t. cij = Cα} is the subset of items having at least

one changeover of type α toward another item.

• S2
C(α) = {j ∈ [0...N ] s.t. ∃j ∈ [0...N ] s.t. cij = Cα} is the subset of items having at least

one changeover of type α from another item.

We use the following decision variables:

• Iit: inventory level corresponding to item i at the end of period t.

• yit: setup variables. yit = 1 if the resource is setup for item i in period t, and 0 otherwise.

• wαt: changeover variables. wαt = 1 if a changeover of type α takes place at the beginning

of t, 0 otherwise.

(DLSP1)

min

N∑

i=1

T∑

t=1

hiIit +
A∑

α=1

T∑

t=1

Cαwαt (3.11)

∀i, ∀t, Iit = Ii,t−1 + Pityit − dit (3.12)

∀t,
N∑

i=0

yit = 1 (3.13)

∀t, ∀α,∀i ∈ S1
C(α), wαt ≥ yi,t−1 +

∑

j st Cij=Cα

yjt − 1 (3.14)

∀t, ∀α,∀j ∈ S2
C(α), wαt ≥

∑

i st Cij=Cα

yi,t−1 + yjt − 1 (3.15)

∀α, ∀t, wαt ≤
∑

i∈S1
C(α)

yi,t−1 (3.16)

∀α, ∀t, wαt ≤
∑

j∈S2
C(α)

yjt (3.17)

∀i, ∀t, Iit ≥ 0 (3.18)

∀i, ∀t, yit ∈ {0, 1} (3.19)
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∀α, ∀t, wαt ∈ {0, 1} (3.20)

The objective, minimizing the sum of inventory holding costs and changeover costs, is ex-

pressed by (3.11). Note that changeover costs are not computed for each pair of items as in the

formulation DLSP0 but for each changeover type α.

Constraints (3.12) express the inventory balance. Equalities (3.13) ensure that in each period,

the resource either produces a single product, or is idle (i.e y0t = 1).

Constraints (3.14)-(3.17) link the setup variables with the changeover variables. (3.14) guar-

antee that there is a changeover of type α at the beginning of period t if an item i ∈ S1
C(α) is

produced in period t − 1 and one of the items j such that Cij = Cα is produced in period t.

Similarly, (3.15) guarantee that there is a changeover of type α at the beginning of period t if an

item j ∈ S2
C(α) is produced in period t and one of the items i such that Cij = Cα is produced

in period t − 1. (3.16) and (3.17) ensure that there is a changeover of type α at the beginning

of period t only if an item i ∈ S1
C(α) is produced in t− 1 and an item j ∈ S2

C(α) is produced in

period t.

The set of constraints (3.12) and (3.18) ensure that demand for each item is ful�lled without

backlogging. The binary character of the setup and changeover variables is represented by (3.19)

and (3.20).

Let us now compare the number of changeover variables in the formulations DLSP0 and

DLSP1. For the sake of simplicity, we do not take into account the item i = 0 in the comparison.

As shown in section 3.2, in this case, the formulation DLSP0 includes N2T changeover variables,

one for each possible pair of items and for each period. When a factorization of the changeover

matrices is possible, the proposed formulation DLSP1 includes AT changeover variables. This

leads to a signi�cant reduction in the number of variables as A is seen to be much smaller than

N2 in many practical applications.

However, due to the aggregate representation of changeovers used in the formulation DLSP1,

it is not possible to express the link between setup and changeover variables using equalities

similar to the tight equalities (3.4)-(3.5) used in formulation DLSP0. This is why we had to

adapt the formulation proposed in [35] and to link setup and changeover variables using a large

number of weaker inequalities. As will be discussed in subsection 3.3.4, this leads to an important

loss of e�ciency in the solution procedure.
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3.3.2 Strengthening the formulation with valid inequalities

As for the formulation DLSP0, the formulation DLSP1 can be further strengthened under the

assumption of Wagner-Whitin costs, constant capacity and no backlogging. This can be achieved

by extending the inequalities (3.10) to the case of factorized changeover cost matrices.

In order to do this, we introduce the same notation as in section 3.2 for parameters Di,t,τ

and Si,q. We also introduce startup variables zit de�ned as in section 3.2.

The start-up variables are linked to the setup variables by the following set of equations:





∀i, ∀t, zit ≥ yit − yi,t−1

∀i, ∀t, zit ≤ yit

∀i, ∀t, zit ≤ 1− yi,t−1

Moreover variables zit satisfy the following inequations:

∀i,∀t, zit ≤
∑

α st i∈S2
C(α)

wαt (3.21)

Namely, if t is the �rst period of production of a lot of item i, a changeover of type α such

that i ∈ S2
C(α) must take place at the beginning of period t.

With this notation, we have:

Proposition 3.1 All feasible solutions of DLSP1 satisfy:

∀t, ∀i,∀p ∈ {0...Di,t+1,T }, Iit ≥
p∑

q=1

(
1− yi,t+q −

Si,Di,1,t+q∑

τ=t+q+1

ziτ

)
(3.22)

Proof 3.1 The underlying idea is the same as the one used to derive the valid inequalities (3.10)

for formulation DLSP0. As constraints (3.10), (3.22) force an increase of the stock of item i

at the end of period t by one for each index q for which no production occurs in the interval

{t + q, ..., Si,Di,1,t+q}.
The reader is referred to [94] for a detailed proof of the validity of (3.10). 2

We also derived a second family of valid inequalities in order to obtain a better evaluation of

changeover costs in fractional solutions and thus to strengthen the formulation DLSP1.

We �rst de�ne an additional changeover type α = 0 to represent changeovers between distinct

items with a zero associated cost (i.e. changeovers between items (i, j) s.t. i 6= j and Cij = C0 =

0) and introduce additional binary variables w0t de�ned as:
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w0t =





1 if a changeover of type α = 0 takes place between two items i 6= j

at the beginning of period t,

0 otherwise.

With this notation, we have:

Proposition 3.2 All feasible solutions of DLSP1 satisfy:

∀t = 1...T,
N∑

i=0

|yit − yi,t−1| = 2
A∑

α=0

wαt (3.23)

Proof 3.2 We consider an arbitrary integral feasible solution of DLSP1, say (I, y, w) and an ar-

bitrary time period t ≥ 1 and we show that the chosen feasible solution satis�es the corresponding

valid equality.

We denote i0 and i1 the items for which the resource is setup in period t−1 and t respectively.

There are two possibilities:

• if i0 = i1, the resource is setup for the same item in period t − 1 and t so that ∀i, |yit −
yi,t−1| = 0 and

∑N
i=0 |yit− yi,t−1| = 0. There is no changeover at the beginning of period t.

Thus ∀α = 0, ..., A, wαt = 0 and we have 2
∑A

α=0 wαt = 0.

• if i0 6= i1, we have: |yi0t−yi0,t−1| = 1, |yi1t−yi1,t−1| = 1 and ∀i /∈ {i0, i1}, |yit−yi,t−1| = 0.

As a consequence,
∑N

i=0 |yit − yi,t−1| = 2. There is a changeover from i0 to i1 at the

beginning of period t so that exactly one of the variables wαt (α = 0, ..., A) equals 1 and

2
∑A

α=0 wαt = 2

As
∑N

i=0 |yit−yi,t−1| = 2
∑A

α=0 wαt in both cases, this establishes the validity of (3.23). 2

Due to the presence of absolute values in their expression, valid equalities (3.23) cannot be

used directly to strengthen the formulation DSLP1 but they can be exploited to derive weaker

valid inequalities, the expression of which is linear.

Proposition 3.3 All feasible solutions of DLSP1 satisfy:

∀t = 1...T,∀ε ∈ {−1; 1}N+1,
N+1∑

i=0

εi(yit − yi,t−1) ≤ 2
A∑

α=0

wαt (3.24)

Proof 3.3 We have: ∀εi ∈ {−1; 1}, εi(yit − yi,t−1) ≤ |yit − yi,t−1|.
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Thus,

∀ε ∈ {−1; 1}N+1,
N+1∑

i=0

εi(yit − yi,t−1) ≤
N∑

i=0

|yit − yi,t−1|

≤ 2
A∑

α=0

wαt

2

Due to their large number, all valid inequalities of type (3.24) cannot be added a priori to the

formulation. They can however be generated as needed according to a cutting-plane generation

strategy. This can be done by using the following separation algorithm:

(SEP) Given (I∗, y∗, w∗) the optimal solution of the linear relaxation of (3.11)-(3.20),

for t = 1...T :
1. For i = 0...N , compute difit = y∗it − y∗i,t−1.

2. Compute ei using the following rules:

• if difit ≥ 0, ei = 1.

• if difit < 0, ei = −1.

3. Compute Dift =
∑N+1

i=0 eidifit.

• if Dift > 2
∑A

α=0 w∗αt, the valid inequality corresponding to ε = (e1, e2, ..., eN ) is violated.

• else all valid inequalities corresponding to period t are satis�ed by the current continuous

solution.

If for each time period t = 1...T , Dift ≤ 2
∑A

α=0 w∗αt, then (I∗, y∗, w∗) satis�es all valid

inequalities (3.24), otherwise at least one valid inequalities has been found.

In the computational experiments to be presented in subsection 3.3.4, the following cutting-

plane generation strategy has been implemented to strengthen formulation DLSP1:

1. We solve the linear relaxation of the problem using formulation DLSP1.

2. We check whether each valid inequality of type (3.22) is satis�ed. If it is violated by the

current continuous solution, we add it to the formulation.

3. When no more valid inequality of type (3.22) can be found, we look for violated valid inequal-

ities of type (3.24) using separation algorithm (SEP).

4. If at least one violated inequality is found in steps 2 or 3, we go back to step 1 and repeat
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item 0 1 2 3 4 5
inventory holding costs 0 7 8 7 5 5

Table 3.1: Simple example using factorization: inventory holding costs

0 1 2 3 4 5
0 0 200 200 200 200 40
1 40 0 40 200 200 200
2 40 40 0 200 200 200
3 40 200 40 0 200 200
4 200 40 200 40 0 200
5 200 40 200 200 200 0

Table 3.2: Simple example using factorization: changeover costs matrix

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
item 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0
item 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
item 3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
item 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
item 5 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1

Table 3.3: Simple example using factorization: demand on products

until no more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSP1*.

3.3.3 A small illustrative example

We use a very simple example to illustrate the proposed model and to show an application of

the formulation DLSP1. We consider a production planning problem involving N = 5 items and

T = 15 periods. We agree to use the item i = 0 to describe an idle period. We assume that

there are A = 2 changeover types. The �rst changeover type α = 1 has an associated cost of

C1 = 40 and the second changeover type α = 2 corresponds to the changeover cost C2 = 200.

Table 3.1 gives the inventory holding costs for each item. The changeover cost matrix can be

found in table 3.2. Note that this matrix contains only A = 2 distinct values whereas there could

be 6 ∗ 5 = 30 distinct positive values for the matrix coe�cients. Table 3.3 provides the demand

for each item.

Figure 3.1 shows the optimal production plan obtained while using the formulation DLSP1,

the cost of which is Z∗ = 918. The �rst line gives the lot schedule and the second line indicates

the type of the changeover occurring at the beginning of the corresponding time period.
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Period

Lot schedule

Changeover type

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0 Item 1 Item 4 Item 3 Item 5 Item 1 Item 2

22 11 22 11 22 22

Figure 3.1: DLSP with factorized changeover matrices: optimal production plan for the simple
example

3.3.4 Computational results

In this subsection, we discuss the results of some computational experiments carried out to

compare the two formulations presented in sections 3.2 and 3.3. We adapted the procedure

described in [80] to generate instances of the DLSP with factorized changeover costs matrices

and created 3 sets of randomly generated instances

The instances di�er with respect to the following characteristics:

• Problem dimension: The problem dimension is represented by the number of products N,

the number of periods T and the number of changeover types A. We use three di�erent

combinations, leading to 3 sets of problem instances:

� set A: N = 10, T = 60 and A = 2;

� set B: N = 25, T = 50 and A = 2;

� set C: N = 30, T = 100 and A = 2.

• Inventory holding costs: For each item, inventory holding costs have been generated ran-

domly from a discrete uniform DU(5, 10) distribution.

• Production capacity utilization: Production capacity utilization ρ is de�ned as the ratio of

the total cumulated demand on the total cumulated available capacity. We experimented

di�erent values for ρ: 0.5, 0.7 and 0.9.

• Demand pattern: Binary demand for each product has been randomly generated according

to the procedure described in [80].

• Changeover costs: Changeover costs Cij have been randomly generated from a uniform

distribution on the discrete set {C1, ..., CA}. We tested several possibilities: the values of

the various changeover costs can either be chosen to be close to one another or be de�ned

so that there is one changeover type having a corresponding cost signi�cantly higher than

the other ones. In our study, we limit our experiments to instances with A = 2 and we
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measure the relative di�erence between the two possible values for changeover costs, C1

and C2, by the ratio r : r = C2/C1. We tested several values for r : 1.1, 2, 5, 10 and 30. In

all instances, the changeover costs between two items belong to the interval [0,200].

For each possible combination of problem dimension, production capacity utilization and

changeover cost ratio, 5 instances were generated, resulting in a total of 3 × 3 × 5 × 5 = 225

instances. All tests were run on a Pentium 4 (2.8 Ghz) with 505 Mb of RAM, running under

Windows XP. We used a standard MIP software (CPLEX 8.1.0) with the solver default settings

to solve the obtained mixed-integer programs, using either formulation DLSP0* or formulation

DLSP1*.

Tables 3.4-3.6 show the computational results obtained with both formulations, for sets A,

B and C respectively. As the value of the ratio r appears to have an impact on the quality of

the results, we grouped the instances with respect to the value of r so that each line corresponds

to the average value for 15 randomly generated instances (5 instances for each possible value of

production capacity utilization). For both series of results, we provide:

• Variables and Constraints: the number of variables and constraints in the formulation.

• #VI : the average number of valid inequalities of type (3.10) or (3.22) added to the formu-

lation by the cutting-plane generation procedure.

• #Opt : for set A and B instances, the number of instances out of the corresponding 15

instances that could be solved to optimality within 30 minutes of computation.

• #Feas: for set C instances, the number of instances out of the corresponding 15 instances

for which a feasible solution could be found within 30 minutes of computation.

• Gap: for the instances that could not be solved to optimality, the average gap obtained

after 30 minutes of computation between the best integer solution (if one could be found)

and the best lower bound obtained.

We now compare the results obtained with formulations DLSP0* and DLSP1*. Results from

tables 3.4-3.6 show that:

• For small and medium instances (sets A and B), the results obtained with formulation

DLSP0* are much better. Namely, using this formulation, all instances could be solved to

optimality within 30 minutes of computation whereas using formulation DLSP1*, only 8%

of the instances could be solved to optimality. Moreover, the obtained residual gap for the

other instances is large (39% on average).
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Formulation DLSP0* Formulation DLSP1*
Variables 8520 2040

Constraints 1921 6061
#VI 1211 644
ratio r #Opt Gap #Opt Gap
r=1 15 0% 0 53%
r=2 15 0% 0 58%
r=5 15 0% 0 41%
r=10 15 0% 1 28%
r=30 15 0% 5 6%

Table 3.4: Factorized changeover cost matrix: results for set A instances

Formulation DLSP0* Formulation DLSP1*
Variables 36350 3900

Constraints 3851 11801
#VI 880 471
ratio r #Opt Gap #Opt Gap
r=1 15 0% 0 59%
r=2 15 0% 0 63%
r=5 15 0% 0 48%
r=10 15 0% 0 31%
r=30 15 0% 7 5%

Table 3.5: Factorized changeover cost matrix: results for set B instances

Formulation DLSP0* Formulation DLSP1*
Variables 102200 9300

Constraints 9201 28101
#VI 3414 1032
ratio r #Feas Gap #Feas Gap
r=1 15 5% 11 66%
r=2 9 13% 11 71%
r=5 14 6% 13 72%
r=10 14 3% 14 59%
r=30 15 5% 15 40%

Table 3.6: Factorized changeover cost matrix: results for set C instances
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• For larger instances (set C), the number of instances for which at least one feasible solution

could be found within 30 minutes of computation is approximately the same for both

formulations. However, the residual gap is much smaller with formulation DLSP0* (6% as

compared to 62% with formulation DLSP1*).

These results are mainly explained by the fact that in formulation DLSP1*, weak inequalities

(3.14)-(3.15) are used to link setup and changeover variables rather that tight equalities similar to

(3.4)-(3.5). As a consequence, in fractional solutions obtained while solving the linear relaxation

of formulation DLSP1*, the changeover costs between items are poorly approximated and the

quality of the resulting lower bounds is weak. Thus, even if the number of variables introduced

in the formulation is drastically reduced while using factorized changeover matrices, it does not

compensate for the poor quality of the lower bounds. This leads to a severe loss in the e�ciency

of the Branch & Bound procedure imbedded in the commercial solver. This study shows that

reducing the size of the mixed-integer program to be solved is not enough to make it easier to

solve. A good (tight) formulation is critical if we are to obtain good results.

In the sequel, we study another modelling idea: the description of products as combina-

tions of physical attributes. Using this idea, we are able to reduce the size of the obtained

mixed-integer program while maintaining the quality of the lower bounds provided by the lin-

ear relaxation. Thanks to the combination of these two advantages, it will be shown that the

proposed formulation is able to outperform formulation DLSP0* on many instances.

3.4 The DLSP with products described as combinations of phys-
ical attributes

In most papers dealing with the DLSP, each individual item to be produced is described with

a single index (i in the formulation presented above) and is considered independently of the

other items. However, in many industrial situations, the items to be produced are described in

terms of a set of physical characteristics or attributes (e.g. color, diameter, size, shape, mixture

composition, quality level...). Moreover it is frequently the case that many items share a common

value for some attribute so that we can de�ne a (small) �nite number of possible values for each

attribute. In what follows, we propose to exploit this fact to derive a new formulation for the

DLSP which is likely to be solved more e�ciently using standard MIP software.

This can be achieved by using an adaptation of the strong DLSP0 formulation described in

section 3.2. In the proposed formulation, we look at changeovers at an aggregate level using the

relevant physical attributes instead of considering each individual changeover between items. By
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doing so, we are able to signi�cantly reduce the number of changeover variables and associated

constraints in the formulation, while maintaining the quality of the bounds provided by the linear

relaxation of the problem. We extend the approach used by [98] to derive valid inequalities for

the resulting mixed-integer linear program. Computational results show that exact optimal

solutions can in general be obtained more e�ciently with the new model as compared with

previously described approaches.

3.4.1 Main assumptions

In order to use the proposed product description as a combination of physical attributes, we need

to make several assumptions on the production system.

1. We �rst suppose that each item to be produced can be described by a set of M physical

attributes, each of them takes a �nite number of discrete values. We also suppose that

each item is uniquely identi�ed thanks to a M -tuple, each component of which gives the

value of the corresponding attribute for the given item.

2. Second, we assume that the setup state of the resource can also be described using product

attributes. Thus, we will not describe the setup state of the resource by indicating the item

that the resource is able to produce, but by indicating, for each attribute, for which value of

this attribute the resource is setup. The resource setup state will therefore also be described

by a M -tuple, each component of which gives the value of the corresponding attribute for

the present state of the resource. To ensure consistency, it should be understood that a

given item can be produced on the resource if and only if the resource is setup with the

correct value for every attribute.

3. Third, we assume that we are able to evaluate the changeover costs on the resource for

each attribute separately. This means that given an attribute and two possible values for

this attribute, we are able to evaluate the cost of a changeover from one value to the other

and that this cost does not depend on the setup state of the resource with respect to the

other attributes.

4. Finally, we need to specify how the costs relative to di�erent attributes will combine, i.e.

how we will compute changeover costs when changeovers for di�erent attributes happen

simultaneously on the resource. We consider here the case where the global changeover

costs is the sum of all individual changeover costs for the di�erent attributes. Another

possible assumption is that global changeover costs equal the maximum of the individual

costs.
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Thanks to these assumptions, we will be able to decide about the production plan on the resource

using the product attributes. In this case, the production plan will consist of a set of parallel

sequences, one for each attribute. Each of these sequences indicates, for every planning period,

for which value of the corresponding attribute the resource is setup. Thus, in each planning

period, combining the values for the di�erent attributes, we will be able to deduce the item for

which the resource is setup. A detailed mathematical programming formulation is proposed in

subsection 3.4.3, but in order to illustrate the usefulness of the new model, we �rst discuss some

industrial situations where it appears to be well suited.

3.4.2 Possible industrial applications

In order to illustrate the practical relevance of the proposed model, we provide examples of indus-

trial situations found in the literature where using physical attributes to describe the products

is appropriate.

• In [28] and [84], a production planning problem for a packaging line is considered. For

this type of production line, two physical attributes of the products have to be taken into

account: the size or shape of the package and the product used to �ll it. Hence each item

can be described by means of two attributes: the package size/shape and the product to

be used. Each individual item would be described by a pair (k1, k2) where k1 is the index

of the corresponding package size/shape and k2 the index of the corresponding product.

• [29] discuss a lot-sizing problem they found in an automated foundry. Each item to be

produced can be described by two attributes: the type of metal alloy it is made of and the

shape it takes from the used mould. Here we could use as well a pair (k1, k2) where k1

would give the index of the alloy type and k2 the index of the mould shape.

• [82] study a production planning problem arising in the textile industry in a company pro-

ducing acrylic �bers. The authors report that two physical characteristics of the products

have an impact on the scheduling of the plant spinning unit, namely the �ber composition

and their diameter. Thus, we could use a pair (k1, k2) to describe each item: k1 would

refer to the �ber composition and k2 to its diameter.

• [72] considers the production planning problem for a �oat glass production line. Here each

item (a glass sheet) can be described using several physical characteristics: glass color

and quality, dimensions of the sheet (thickness, width and length). An item could thus

be described using a 5-tuple, with components corresponding to the color, quality and

dimensions of the corresponding glass sheet. As mentioned in the introduction of this
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chapter, the production system model studied was �rst suggested in this particular context

of application.

Though far from being exhaustive, the above list is a good indication of the wide applicability

of the model proposed here.

3.4.3 Initial formulation

We now present a formulation for the DLSP with product attributes and sequence-dependent

changeover costs. This formulation can be used to solve the DLSP when a product description

using physical attributes is possible and when the assumptions discussed in subsection 3.4.1 hold.

We use the same notation as in section 3.2 for the parameters relative to items:

• dit: demand for item i in t,

• Pit: production capacity for item i in t,

• hi: holding costs per unit and period for i.

We assume that each item can be described using M physical characteristics or attributes.

Correspondence between items and attributes is given by a matrix A of dimensions M× (N +1).

Ami represents the value of the attribute m for item i and the ith column of A gives the M -tuple

describing item i in terms of product attributes. For each attribute m, we have:

• a set of possible values: k ∈ [0, V m]

• a changeover cost matrix: Cm. Cm
kl is the cost of a transition from the value k ∈ [0, V m] to

the value l ∈ [0, V m] of attribute m.

We agree to use the M -tuple (0,0,....,0) to describe the item i = 0: i.e ∀m,Am0 = 0.

We use the following decision variables:

• Iit: inventory level corresponding to item i at the end of period t.

• yit: setup variables at the item level. yit = 1 if the resource is setup for item i in period t,

and 0 otherwise.

• wm
klt: changeover variables at the attribute level. wm

klt = 1 if a switch from the value k to

the value l of attribute m takes place at the beginning of period t, and 0 otherwise.

Under the assumption that changeover costs related to di�erent attributes are added whenever

two transitions occur simultaneously (see assumption 4 in subsection 3.4.1), the DLSP can be

formulated as follows:
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(DLSP2)

min

N∑

i=1

T∑

t=1

hiIit +
M∑

m=1

V m∑

k=0

V m∑

l=0

T∑

t=1

Cm
kl w

m
klt (3.25)

∀i, ∀t, Iit = Ii,t−1 + Pityit − dit (3.26)
N∑

i=0

yi0 = 1 (3.27)

∀m, ∀k ∈ [0, V m],∀t,
∑

i st Ami=k

yi,t−1 =
V m∑

l=0

wm
klt (3.28)

∀m, ∀l ∈ [0, V m], ∀t,
∑

i st Ami=l

yit =
V m∑

k=0

wm
klt (3.29)

∀m, ∀(k, l) ∈ [0, V m]× [0, V m], ∀t, wm
klt ≥ 0 (3.30)

∀i, ∀t, Iit ≥ 0 (3.31)

∀i, ∀t, yit ∈ {0, 1} (3.32)

The objective, minimizing the sum of changeover costs and inventory holding costs, is expressed

by (3.25). Note that inventory holding costs are computed item by item whereas changeover costs

are computed attribute by attribute. Constraints (3.26) express the inventory balance. Combined

with the non negativity constraints (3.31), they prevent any backlogging. (3.27), together with

constraints (3.28)-(3.29), guarantee that in each period the resource either produces a single item

or is idle.

Equalities (3.28) and (3.29) link the setup variables with the changeover variables. First

note that the term
∑

i st Ami=k yit equals 1 if and only if an item i requiring the resource to be

setup for the value k of the attribute m is produced in period t, i.e. if and only if the resource

is setup for the value k of attribute m in period t. Thus (3.28) guarantee that the resource

is setup for the value k of attribute m in period t − 1 if and only if a changeover from value

k to another possible value l of attribute m (possibly l = k) takes place at the beginning of

period t. Similarly, (3.29) guarantee that the resource is setup for the value l of attribute m

in period t if and only if a changeover from another possible value k of attribute m (possibly

k = l) to value l takes place at the beginning of period t. The non negativity of the changeover

variables is stated by (3.30) and the binary character of the setup variables is expressed by (3.32).

The formulation DLSP2 can be easily modi�ed to consider the other possible assumption

about the combination of costs relative to di�erent attributes, i.e. the assumption that global

changeover costs equal the maximum of the individual costs. This can be done by de�ning addi-
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tional continuous variables Ct to evaluate the changeover costs to be incurred at the beginning

of each period t. In this case, the DLSP can be formulated as follows:

(DLSP2 MAX)

min
N∑

i=1

T∑

t=1

hiIit +
T∑

t=1

Ct

s.t. ∀m,∀t, Ct ≥
V m∑

k=0

V m∑

l=0

Cm
kl w

m
klt

and (3.26)− (3.32)

In the sequel, we assume that global changeover costs equal the sum of the individual costs and

thus use formulation DLSP2. However similar results could be obtained with the other assump-

tion.

Let us now compare the number of changeover variables in the formulations DLSP0 and

DLSP2. For the sake of simplicity, we do not take into account the item i = 0 in the com-

parison. As shown in section 3.2, in this case, DLSP0 includes N2T changeover variables, one

for each possible pair of items and for each period. Note that when the product description

using attributes is possible, we can compute the number of products as the number of possible

combinations obtained by choosing for each attribute m one value out of V m. Thus we have:

N2 =
( ∏M

m=1 V m
)2. Now, as can be seen above, in formulation DLSP2, there are

∑M
m=1

(
V m2

)
T

changeover variables, one for each pair of possible values of each attribute and for each pe-

riod. In most cases where the product description using attributes will be implemented, we will

have:
∑M

m=1

(
V m2

) ¿ ( ∏M
m=1 V m

)2, thus leading to a signi�cant reduction in the number of

changeover variables needed in the formulation.

In words, in the proposed model, we do not consider each individual changeover between

items, but rather look at changeovers at a more aggregate level using product attributes. By

doing so, we are able to signi�cantly reduce the size of the mixed-integer linear programm to be

solved (e.g. using a Branch & Bound procedure).

3.4.4 Strengthening the formulation with valid inequalities

As for the formulation DLSP0, the formulation DLSP2 can be further strengthened under the

assumption of Wagner-Whitin costs, constant capacity and no backlogging. This can be achieved

by extending the inequalities (3.10) to the formulation DLSP2. In order to do this, we �rst de�ne
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two new sets of variables:

Y m
kt =

∑

i st Ami=k

yit =





1 if the resource is setup for the value k of

attribut m in period t,

0 otherwise.

Zm
kt =

∑

l∈[0,V m] st l 6=k

wm
lkt =





1 if a startup for the value k of attribut m

takes place at the beginning of period t,

0 otherwise.

With this notation, we have:

Proposition 3.4 All feasible solutions of DLSP2 satisfy:

∀t, ∀i,∀p ∈ {0...Di,t+1,T }, ∀m = 1...M, Iit ≥
p∑

q=1

(
1− Y m

Ami,t+q −
Si,Di,1,t+q∑

τ=t+q+1

Zm
Ami,τ

)
(3.33)

Proof 3.4 Before the proof, which extends the one given in [94] for the formulation DLSP0, we

brie�y explain the idea underlying (3.33). Y m
Ami,t+q +

∑Si,Di,1,t+q

τ=t+q+1 Zm
Ami,τ

= 0 if and only if the

resource is not setup in period t + q for the value Ami of attribute m needed to produce item i

and no startup for this value occurs between the period t + q + 1 and the period where the qth

demand after period t occurs, i.e. if and only if no production of item i is possible in the interval

{t + q, ..., Si,Di,1,t+q}. In that case, the quantity needed to satisfy the qth demand on item i after

period t should be in stock at the end of period t.

Now consider an arbitrary integral feasible solution of DLSP2, say (I, y, w, Y, Z). We arbi-

trarily choose an item i, a period t, a demand occurrence p ∈ {0...Di,t+1,T } and an attribute m

and we show that the chosen feasible solution satis�es the corresponding valid inequality. In the

sequel, for the sake of simplicity, we drop the item index i and we denote k = Ami the value of

attribute m for item i.

We denote Rq the qth production period for this item in the feasible solution considered. By

de�nition, we have R1 < R2 < ... < Rq < ... < RD1,T
. Moreover, because backlogging is not

allowed, the qth production period must occur before the qth demand period: ∀q,Rq ≤ Sq.

Let q0 be the highest index such that RD1,t+q < t + q. Then we have:

• ∀q ≤ q0, RD1,t+q < t + q. The qth demand after period t is produced before period t + q.

• ∀q > q0, t + q ≤ RD1,t+q ≤ SD1,t+q. The qth demand after period t is produced between

t + q and the period SD1,t+q where it occurs. In this case, the resource must be setup for
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the value k of attribute m at least once in the interval {t + q, ..., SD1,t+q}. Thus we have:

∀q > q0, Y
m
ik,t+q +

SD1,t+q∑

τ=t+q+1

Zm
k,τ ≥ 1 (3.34)

Hence,

t∑

t=1

yt +
p∑

q=1

(
Y m

k,t+q +

SD1,t+q∑

τ=t+q+1

Zm
k,τ

)

≥
t∑

t=1

yt +
q0∑

q=1

Y m
k,t+q +

p∑

q=q0+1

(
Y m

k,t+q +

SD1,t+q∑

τ=t+q+1

Zm
k,τ

)
(3.35)

≥
t∑

t=1

yt +
q0∑

q=1

yt+q + p− q0 (3.36)

≥ D1,t + q0 + p− q0 (3.37)

≥ D1,t + p

(3.35) comes from the fact that
∑q0

q=1

∑SD1,t+q

τ=t+q+1 Zm
k,τ ≥ 0. To obtain (3.36), we use the fact that

yt+q ≤ Y m
k,t+q as well as the inequalities (3.34). Finally, (3.37) is true because, by de�nition of q0,

the cumulated demand D1,t + q0 is satis�ed by the cumulated production before t + q0,
∑t+q0

t=1 yt,

so that
∑t+q0

t=1 yt ≥ D1,t + q0 .

As
∑t

t=1 yt −D1,t is the inventory level of item i at the end of period t, this establishes the

validity of (3.33). 2

The number of valid inequalities (3.33) grows quite fast with the problem size and the pro-

duction capacity utilization: e.g. for the instances involving 30 products and 100 periods with

a capacity utilization of 90% (see subsection 3.4.6), there are more than 21000 valid inequalities

(3.33) for formulation DLSP2. Hence it is not possible to include directly all valid inequalities

in formulation DLSP2. In the computational experiments to be presented in subsection 3.4.6,

the following cutting-plane generation strategy has been implemented to strengthen formulation

DLSP2:

1. We solve the linear relaxation of the problem using formulation DLSP2.

2. We check whether each valid inequality of type (3.33) is satis�ed. If it is violated by the

current continuous solution, we add it to the formulation.

3. If at least one violated inequality is found in step 2, we go back to step 1 and repeat until no

more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSP2*.
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item 0 1 2 3 4
attribute 1: bottle size 0 1 1 2 2
attribute 2: liquid composition 0 1 2 1 2
product description (0,0) (1,1) (1,2) (2,1) (2,2)

Table 3.7: Simple example of multi-attribute product structure: product description

0 1 2 0 1 2
0 0 100 200 0 0 10 10
1 0 0 200 1 0 0 20
2 0 100 0 2 0 10 0
Attribute 1 Attribute 2

Table 3.8: Simple example of multi-attribute product structure: changeover costs

period 1 2 3 4 5 6 7 8 9 10
item 1 0 1 0 0 1 0 0 1 0 0
item 2 0 0 0 0 0 0 0 0 0 1
item 3 0 0 0 0 1 1 0 1 0 1
item 4 0 0 0 1 0 0 0 0 0 0

Table 3.9: Simple example of multi-attribute product structure: demand on products

3.4.5 A small illustrative example

We use a very simple example to illustrate the proposed model and to show an application of

the formulation DLSP2. We consider a bottle �lling line where 4 items can be produced. An

item is described by the corresponding bottle size (attribute 1 with two possible values) and the

composition of the liquid to be used (attribute 2 with two possible values). Table 3.7 shows how

each of the 4 items can be described using the two attributes. We agree to use the item i = 0

described by the pair (0,0) for the idle period. Table 3.8 gives the changeover costs for each

attribute and table 3.9 provides the demand for each product.

Figure 3.2 shows the optimal production plan obtained while using formulation DLSP2*.

The �rst two lines give the sequence of setup states for each attribute. In each planning period,

we can deduce from these sequences the item for which the resource is setup. The changeover

costs to be incurred between each lot are shown below. We used the assumption that changeover

costs relative to di�erent attributes are added whenever changeovers for di�erent attributes occur

simultaneously. This is the case here at the beginning of periods 1, 4, 9 and 10 where both the

bottle size and the liquid composition are changed.

Before going on with the computational results, we brie�y explain with this simple example

how, for each attribute m, the equalities (3.28)-(3.29) can be seen as �ow conservation constraints

in a network. Namely, as pointed out by [5], the de�nition of a production plan can be seen
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Figure 3.2: DLSP with a multi-attribute product structure: optimal production plan for the
simple example

as a problem of de�ning a single unit �ow in a network under additional constraints. With

this interpretation, equalities (3.4)-(3.5) of formulation DLSP1 can be seen as �ow conservation

constraints in the corresponding network.

Here we consider, for a arbitrarily chosen attribute m, the graph Gm = (Vm, Em). A node

v ∈ Vm corresponds to a pair (k, t) where k ∈ [0, V m] is a possible value for attribute m and

t ∈ [0, T ] is a time period. There is an oriented arc a ∈ Em from node v1 to node v2 if and only

if v1 = (k, t) et v2 = (l, t + 1). The setup variable at the attribute level Y m
kt corresponds to the

�ow through node (k, t) and the changeover variables wm
kl,t+1 corresponds to the �ow between

node (k, t) and node (l, t + 1). With this interpretation, a production sequence on the resource

for attribute m corresponds to a �ow of a single unit through graph Gm, starting from a node

(k, 0) (initial setup state of the resource with respect to attribute m) and arriving in a node

(l, T ) (�nal setup state of the resource with respect to attribute m). Thus equalities (3.28) can

be seen as �ow conservation constraints, stating that the �ow trough node (k, t− 1) is equal to

the sum of the �ows on the arcs directed away from this node. Similarly, equalities (3.29) can

be seen as �ow conservation constraints, stating that the �ow through node (l, t) is equal to the

sum of the �ows on the arcs directed toward this node.

Figure 3.3 shows, for both attributes, the interpretation of the optimal production plan for

the illustrative example as a single unit �ow in the corresponding networks. For the sake of

simplicity, only the arcs with a positive �ow are shown.

3.4.6 Computational results

In this subsection, we discuss the results of computational experiments carried out to compare

the two formulations presented in sections 3.2 and 3.4. We created 5 sets of randomly generated

instances. The instances di�er with respect to the following characteristics:
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Period 0 1 2 3 4 5 6 7 8 9 10
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Figure 3.3: DLSP with a multi-attribute product structure: interpretation of the production
plan for the simple example as a single unit �ow in networks

N T M V m

set A 10 60 2 V 1 = 2, V 2 = 5
set B 25 50 2 V 1 = 5, V 2 = 5
set C 25 50 3 V 1 = 3, V 2 = 3, V 3 = 3
set D 30 100 3 V 1 = 2, V 2 = 3, V 3 = 5
set E 30 100 5 V 1 = 2, V 2 = 2, V 3 = 2, V 4 = 2, V 5 = 2

Table 3.10: Multi-attribute product structure: characteristics of generated instances

• Problem dimension: The problem dimension is represented by the number of products N

and the number of periods T. We use three di�erent combinations:

(N,T ) ∈ {(10, 60), (25, 50), (30, 100)}.

• Multi-attribute product structure: The product structure is described by the number of

attributes M and the number of possible values V m for each attribute m. We use �ve

di�erent combinations, leading to 5 sets of instances. Table 3.10 gives the characteristics

of the generated instances for each set.

For set C and E instances, we have
∏M

m=1 V m > N . Therefore we used the following pro-

cedure to generate matrix A:

1. We generated a matrix A′ with ∏M
m=1 V m columns. A′ describes all possible combina-

tions of the attribute values.

2. For each column i of A′, we randomly generated a weight wi from a discrete uniform

DU(1,
∏M

m=1 V m) distribution.
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3. The matrix A is generated by selecting the N columns of A′ corresponding to the N

smallest weight wi.

• Inventory holding costs: For each item, inventory holding costs have been generated ran-

domly from a discrete uniform DU(5, 10) distribution.

• Production capacity utilization: Production capacity utilization ρ is de�ned as the ratio of

the total cumulated demand on the total cumulated available capacity. We experimented

di�erent values for ρ: 0.5, 0.7 and 0.9.

• Demand pattern: Binary demands for each item have been randomly generated according

to the procedure described in [80].

• Changeover costs: For each attribute m, changeover costs Cm
lk have been randomly gener-

ated from a discrete uniform DU(Cm
min, Cm

max) distribution. We tested several possibilities:

the changeover costs for all attributes can either be taken from the same interval or the

changeover costs for the �rst attribute are greater than for the other(s). In our study, we

de�ne the ratio r as: r = C1
mean

Cm
mean

where Cm
mean denotes the mean of interval [Cm

min, Cm
max].

We tested several values for r : 1, 2, 5, 10 and 30. In all instances, the resulting changeover

costs between two items belong to the interval [0,200].

For each possible combination of multi-attribute product structure, production capacity utiliza-

tion and changeover costs ratio, 5 problems were generated, resulting in 5 × 3 × 5 × 5 = 375

instances. All tests were run on a Pentium 4 (2.8 Ghz) with 505 Mb of RAM, running under

Windows XP. We used a standard MIP software (CPLEX 8.1.0) with the solver default settings,

using either formulation DLSP0 or formulation DLSP2.

Tables 3.11-3.15 show the computational results obtained with formulations DLSP0* and

DLSP2*, for each set of instances. As the value of the ratio r appears to have an impact on

the results quality, we grouped the instances with respect to the value of r so that each line

corresponds to the average value for 15 randomly generated instances (5 instances for each value

of production capacity utilization). For both series of results, we provide:

• #Opt : for set A, B and C instances, the number of instances out of the corresponding 15

instances that could be solved to optimality within 30 minutes of computation.

• #Feas: for set D and E instances, the number of instances out of the corresponding 15

instances for which a feasible solution could be found within 30 minutes of computation.
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Formulation DLSP0* Formulation DLSP2*
Variables 8520 3960

Constraints 1921 1681
#VI 1191 2108
ratio r #Opt Gap #Opt Gap
r=1 13 3% 5 9%
r=2 10 6% 5 5%
r=5 2 12% 6 4%
r=10 0 21% 11 3%
r=30 1 14% 15 0%

Table 3.11: Multi-attribute product structure: results for set A instances

Formulation DLSP0* Formulation DLSP2*
Variables 36350 6150

Constraints 3851 2451
#VI 838 1453
ratio r #Opt Gap #Opt Gap
r=1 3 7% 0 17%
r=2 0 16% 0 16%
r=5 0 26% 4 11%
r=10 0 31% 7 4%
r=30 0 36% 11 5%

Table 3.12: Multi-attribute product structure: results for set B instances

• Gap: for the instances that could not be solved to optimality, the average relative gap

value obtained after 30 minutes of computation between the best integer solution (if one

could be found) and the best lower bound found.

We now compare the results obtained with formulations DLSP0* and DLSP2*. The results

from tables 3.11-3.15 show that:

• for high values of ratio r (r ≥ 5), i.e. when one attribute has corresponding changeover

costs clearly higher than the other(s) attribute(s), the results obtained with formulation

DLSP2* are better. This can be seen as:

� a feasible solution could be obtained for all instances,

� more instances could be solved to optimality within 30 minutes of computation,

� when a guaranteed optimal solution could not be found within 30 minutes of compu-

tation, the residual gap is smaller.

• for small values of the ratio r (r ≤ 2), formulation DLSP0* provides better results for

medium-sized instances (sets A, B and C). However, this is not the case for the larger

instances in sets D and E. Namely, for these instances,
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Formulation DLSP0* Formulation DLSP2*
Variables 36350 4950

Constraints 3851 2451
#VI 840 1653
ratio r #Opt Gap #Opt Gap
r=1 5 11% 0 20%
r=2 3 13% 0 21%
r=5 0 24% 0 14%
r=10 0 24% 9 10%
r=30 0 39% 8 7%

Table 3.13: Multi-attribute product structure: results for set C instances

Formulation DLSP0* Formulation DLSP2*
Variables 102200 12200

Constraints 9201 5601
#VI 2792 2865
ratio r #Feas Gap #Feas Gap
r=1 10 38% 15 40%
r=2 7 42% 15 42%
r=5 10 48% 15 35%
r=10 10 57% 15 29%
r=30 10 62% 15 24%

Table 3.14: Multi-attribute product structure: results for set D instances

Formulation DLSP0* Formulation DLSP2*
Variables 102200 10600

Constraints 9201 6001
#VI 2792 2911
ratio r #Feas Gap #Feas Gap
r=1 12 29% 15 31%
r=2 10 34% 15 36%
r=5 9 47% 15 33%
r=10 10 54% 15 29%
r=30 12 59% 15 26%

Table 3.15: Multi-attribute product structure: results for set E instances
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� a feasible solution could not always be found with formulation DLSP0* whereas at

least one feasible solution could be found for each instance with formulation DLSP2*.

� the residual gap is signi�cantly smaller on some instances with formulation DLSP2*.

Comparison between the results obtained with the two formulations thus shows that using

formulation DLSP2*, we are able to improve the e�ciency of the Branch & Bound procedure,

especially for the high values of ratio r and for the largest instances. This can be explained by

two main factors:

• Using formulation DLSP2*, the problem size (i.e. the number of variables and constraints)

is signi�cantly reduced. As a consequence, the time spent at each node of the Branch &

Bound tree to solve the linear relaxation is shorter and more nodes can be explored within

30 minutes of computation.

• The formulation enhancement obtained thanks to the valid inequalities adapted for formu-

lation DLSP2 gives better results when ratio r has a high value. More precisely, for high

values of r, the lower bounds provided by formulation DLSP2* are higher than the ones

provided by formulation DLSP0*. On the contrary, for small values of r, the lower bounds

provided by the formulation DLSP0* are higher than the ones provided by formulation

DLSP2*.

Thus the combined advantages of a reduced problem size and of tighter lower bounds enable

formulation DLSP2* to outperform the formulation DLSP0* on many instances.

3.5 Conclusion and perspectives

We presented here two new formulations for the DLSP with sequence-dependent setup costs.

These formulations are derived using two original modelling ideas:

• The �rst idea is based on the so-called factorization of changeover matrices. This leads

to a signi�cant reduction in the number of changeover variables to be introduced in the

formulation. However this idea cannot be combined with a tight formulation providing

good lower bounds. As a consequence, as shown by the computational results, the proposed

formulation is not able to outperform an existing tight formulation found in the literature.

• The second idea is to use a possible description of the products as combinations of a number

of physical attributes. When such a structure is present in the industrial context under

study, we show how to exploit it to reduce the size of the mixed-integer linear program
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to be solved while maintaining the quality of the lower bounds provided by the linear

relaxation. Thanks to these combined advantages, we are able to improve the e�ciency

of the solution process. Computational experiments show that the proposed formulation

DLSP2* performs better than the tight formulation DLSP0* we chose as a reference for

comparison, especially in cases where one of the physical attributes has corresponding

changeover costs higher than the other(s) attribute(s).

To conclude, several interesting subjects for future research are worth mentioning:

• To strengthen the various formulations studied in the present chapter, we used and adapted

the valid inequalities proposed for the single-item single-resource DLSP by [94]. However,

it might be useful to investigate the use of other existing reformulations (valid inequalities,

extended formulations,...) such as those proposed in [78] for lot-sizing problems.

• It would also be interesting to investigate possible extensions of formulation DLSP2* based

on the multi-attribute product structure to problems with positive changeover times or

problems involving multiple resources.

• In our model based on the multi-attribute product structure, we considered each attribute

with the same level of detail. However, in industrial applications such as the one presented

in [72], it may be possible to rank each attribute according to the relative importance of the

corresponding changeover costs and thus to establish a hierarchy between attributes. In

this case, it may be reasonable to consider that the changeover costs for the less important

attributes are sequence-independent and to allow these attributes to take several values

within a time period. This would lead to the formulation of a hybrid big/small bucket

model similar to the ones presented in [29], [31], [69] and [72].
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Chapter 4

The single-resource DLSP with positive
changeover times

We consider the Discrete Lot-sizing and Scheduling Problem with sequence-dependent

changeover costs and times. We propose to solve this problem as a mixed-integer

program using a commercial solver. This is achieved thanks to the extension of an

existing tight formulation for the case without changeover times to the case with

positive changeover times. The results of our computational experiments show that

using the proposed tight MIP formulation, instances of medium size can be optimally

solved with a reasonable computational e�ort.

63



64 The single-resource DLSP with positive changeover times

4.1 Introduction

The models presented in chapter 3 assume that a changeover does not incur any delay in the

production plan. However in many practical applications, changeover operations such as cleaning,

preheating, machine adjustments, calibration, inspection, test runs, change in tooling... require

a signi�cant amount of time that must be accounted for in the model. This can be done by using

positive changeover times to represent the capacity loss caused by a changeover.

In the present chapter, the Discrete Lot-sizing and Scheduling Problem (DLSP) with sequence-

dependent changeover costs and times is considered. We brie�y recall the basic assumptions on

which the DLSP relies:

• Demand for products is deterministic and time-varying.

• The production plan is established for a �nite time horizon subdivided in several discrete

periods.

• At most one item can be produced per period ("small bucket" model) and the facility

processes either one product at full capacity or is completely idle ("all-or-nothing assump-

tion").

• Costs to be minimized are the inventory holding costs and the changeover costs.

Here the single level single machine variant of this problem is studied: all items to be pro-

duced are end items and share the same constrained resource. In the DLSP, it is assumed that

there is a changeover between two production runs for di�erent items, resulting in a changeover

cost and/or a changeover time. Changeover costs and times can depend either on the next item

only (sequence-independent case) or on the sequence of items (sequence-dependent case). Sig-

ni�cant changeover times which consume scarce production capacity tend to further complicate

the problem. We consider here the most di�cult variant: the DLSP with sequence-dependent

changeover costs and times (denoted DLSPSD in the sequel). Moreover, there are two ways to

represent changeover times in a small bucket model: changeover times can be assumed to be

equal either to an integer number of planning periods or to a fraction of a planning period. In

the sequel, we assume that changeover times are equal to an integral multiple of the time bucket.

The DLSP has received much attention in the literature. However only a few papers deal

with the variant studied here. [80] reformulate the DLSPSD as a Travelling Salesman Problem

with Time Windows and use a dynamic programming-based algorithm to solve it. [56] show the

equivalence between the DLSPSD and the Batch Sequencing Problem (BSP) and use a speci�c
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Branch & Bound type algorithm for solving the BSP to optimality. In both papers, the mixed-

integer programming formulation proposed for the problem is weak and does not provide lower

bounds good enough to solve the problem using a commercial solver (see results in section 3.2).

However, as pointed out by [78], there is now a good knowledge about the "right" way to formulate

many simple production planning submodels as mixed integer programs and, thanks to it, many

practical production planning problems can be (approximately) solved using commercial solvers.

To the best of our knowledge, these results have not yet been exploited to solve the DLSPSD. In

the present chapter, we attempt to close this gap by proposing a new tight formulation for this

speci�c variant of the problem.

The purpose of this chapter is thus to introduce a strengthened formulation for the DLSP

with sequence-dependent changeover costs and times. This formulation is an extension of the

formulation proposed by [98] for the DLSP with sequence-dependent changeover costs and zero

changeover times. Thanks to this strengthened formulation, the lower bounds provided by the

linear relaxation of the problem are signi�cantly better, enabling a Branch & Bound type pro-

cedure to solve the problem more e�ciently.

The chapter is organized as follows. In section 4.2, we �rst recall the formulation proposed

by [80] and [56] for the DLSP with sequence-dependent changeover costs and times. In section

4.3, we present the proposed tight formulation for the DLSPSD. Some computational results

obtained with this formulation are given in section 4.4 and section 4.5 provides the concluding

remarks.

4.2 A �rst formulation for the DLSP with sequence-dependent
changeover times

In this section, we �rst recall the formulation proposed by [80] for the DLSPSD.

We wish to optimize the production schedule for a set of N items over an horizon featuring

T planning periods. A period is indexed by t = 1, ..., T , an item by i = 0, .., N . We agree to use

item i = 0 to represent idle periods.

We use the following notation:

• dit: demand (in units) for item i in period t.

• Pit: production capacity (in units per period) for item i in period t.

• hi: holding costs per unit and period for item i.

• cij : changeover costs from item i to item j.
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• Tij : changeover time from item i to item j. Tij is assumed to be an integer number of

planning periods.

Decision variables are de�ned as follows:

• Iit: inventory level corresponding to item i at the end of period t.

• yit: setup variables. yit equals 1 if the resource is setup for item i in period t, and 0

otherwise.

• ∀(i, j) st i 6= j, wijt: changeover cost variables. If Tij > 0, wijt equals 1 during the �rst

period of a changeover from item i to item j, and 0 otherwise. If Tij = 0, wijt equals 1 in

the �rst period of production of j, and 0 otherwise.

• ∀(i, j) st Tij 6= 0, vijt: changeover time variables. vijt equals 1 during each period of a

changeover from item i to item j, and 0 otherwise.

(DLSPSD1)

min

N∑

i=1

T∑

t=1

hiIit +
N∑

i=0

N∑

j=0,j 6=i

T∑

t=1

cijwijt (4.1)

∀i,∀t, Iit = Ii,t−1 + Pityit − dit (4.2)

∀(i, j) st Tij > 0,∀t = 1 ... T,∀τ = t− Tij ... t− 1,

if τ ≥ 0, yjt + yiτ ≤ 1 (4.3)

∀(i, j) st Tij > 0,∀t = Tij ... T, ∀τ = t− Tij ... t− 1,

vijτ ≥ yi,t−Tij−1 + yjt − 1 (4.4)

∀(i, j) st Tij > 0,∀t, wijt ≥ vijt − vij,t−1 (4.5)

∀(i, j) st i 6= j and Tij = 0, ∀t, wijt ≥ yi,t−1 + yjt − 1 (4.6)

∀(i, j) st i 6= j, ∀t, wijt ≤ yi,t−1 (4.7)

∀(i, j) st i 6= j,∀t, wijt ≤ yj,t+Tij (4.8)

∀t,
N∑

i=0

yit +
∑

(i,j) st Tij>0

vijt = 1 (4.9)

∀i,∀t, Iit ≥ 0 (4.10)
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∀i,∀t, yit ∈ {0, 1} (4.11)

∀(i, j) st j 6= i,∀t, wijt ∈ {0, 1} (4.12)

∀(i, j) st Tij > 0, ∀t, vijt ∈ {0, 1} (4.13)

The objective, to minimize the sum of inventory holding costs and changeover costs, is ex-

pressed by (4.1). Changeover costs cij are incurred between two successive production runs of

item i and item j, in the �rst period of production of item j if Tij = 0 or in the �rst period of

the transition from i to j if Tij > 0.

Constraints (4.2) express the inventory balance. The "all-or-nothing" assumption is enforced

by the term Pityit in the equality: if the resource is setup for i in period t, then all the available

capacity is used and the production quantity of item i must be equal to Pit. Together with

constraints (4.10), they also ensure that demand for each item is ful�lled without backlogging.

Constraints (4.3) ensure that if item j is produced in period t, no other item i with changeover

times Tij > 0 can be produced in periods [t− Tij , t− 1], since these periods need to be reserved

either for item j or for a transition from item i.

For pair of items (i, j) such that Tij > 0, constraints (4.4) force that if production takes place

for item i in period t−Tij − 1 and for item j in period t, then periods [t−Tij , t− 1] are reserved

for the transition from i to j.

For the case of positive changeover time (Tij > 0), constraints (4.5) force wijt = 1 if period t

is the �rst period of a transition from item i to item j. Similarly for the case of zero changeover

time (Tij = 0), constraints (4.6) force wijt = 1 if period t is the �rst period of production of item

j after a changeover from item i.

If wijt = 1, constraints (4.7) ensure that item i is produced in period t−1, whereas constraints

(4.8) ensure that item j is produced in period t + Tij .

(4.9) ensure that in each period, the resource either produces a single item at full capacity,

or is idle (i.e y0t = 1), or is in transition between two items.

The binary character of the setup and changeover variables is represented by constraints

(4.11)-(4.13).

4.3 A tight formulation for the DLSPSD

We now present a tight formulation for the DLSP with sequence-dependent changeover costs and

times. This formulation is an extension of the formulation proposed by [5] and [98] for the DLSP

with sequence-dependent changeover costs and zero changeover times.
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4.3.1 Initial formulation

We use the same notation as in section 4.2 for the problem parameters.

Decision variables are de�ned as follows:

• Iit: inventory level corresponding to item i at the end of period t.

• yit: setup variables. yit equals 1 if the resource is setup for item i in period t, and 0

otherwise.

• wijt: changeover cost variables. If Tij > 0, wijt equals 1 during the �rst period of a

transition from item i to item j, and 0 otherwise. If Tij = 0, wijt equals 1 in the �rst

period of production of j, and 0 otherwise.

• vt: changeover time variables. vt equals 1 during each period of a changeover between two

items, and 0 otherwise.

With this notation, we propose to formulate the DLSPSD as follows:

(DLSPSD2)

min
N∑

i=1

T∑

t=1

hiIit +
N∑

i=0

N∑

j=0

T∑

t=1

cijwijt (4.14)

∀i, ∀t, Iit = Ii,t−1 + Pityit − dit (4.15)

∀i, ∀t, yi,t−1 =
N∑

j=0

wijt (4.16)

∀j, ∀t, yjt =
∑

i=0...N st t−Tij>0

wij,t−Tij (4.17)

∀t,
N∑

i=0

yit + vt = 1 (4.18)

∀i, ∀t, Iit ≥ 0 (4.19)

∀i, ∀t, yit ∈ {0, 1} (4.20)

∀i, ∀j,∀t, wijt ∈ [0, 1] (4.21)

∀t, vt ∈ [0, 1] (4.22)

The objective, minimizing the sum of inventory holding costs and changeover costs, is ex-

pressed by (4.14). Note that, in the formulation DLSPSD2, variables wiit are introduced: wiit = 1

means that the resource is setup for item i both in period t− 1 and in period t, i.e. that a pro-

duction run for item i takes place over periods t− 1 and t.
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Constraints (4.15) express the inventory balance. Together with constraints (4.19), they

ensure that demand for each item is ful�lled without backlogging.

Equalities (4.16) and (4.17) link the setup variables with the changeover cost variables. (4.16)

guarantee that item i can be produced in period t−1 if and only if a changeover from i to another

item j (possibly j = i) takes place at the beginning of period t. Similarly, (4.17) guarantee that

item j can be produced in period t if and only if a changeover from another item i (possibly

i = j) to item j begins early enough (i.e. in period t − Tij) to be �nished at the beginning of

period t.

(4.18) ensure that in each period, the resource either produces a single product at full capacity,

or is idle (i.e y0t = 1), or is in transition between two items (i.e. vt = 1).

The binary character of the setup variables is represented by (4.20). (4.21) and (4.22) state

the non-negativity of the changeover variables: observe, as pointed out by [5], that thanks to

constraints (4.16)-(4.18) and (4.20), there is no need to de�ne variables wijt and vt as binary

variables.

We note that thanks to this reformulation, there is no need to introduce explicit changeover

time variables vijt in the formulation to ensure that positive changeover times between pro-

duction runs for di�erent items are respected. Thus the entire set of inequalities (4.3)-(4.8) of

formulation DLSPSD1 is replaced by the (much smaller) set of equalities (4.16)-(4.17).

4.3.2 Strengthening the formulation with valid inequalities

As shown in [98] for the case without changeover times, the formulation DLSPSD2 can be further

strengthened through a family of valid inequalities adapted from the ones developed by [94]. We

investigate here an extension of this idea to the case of positive changeover times and propose a

family of valid inequalities for the problem (4.14)-(4.22).

This can be done using the assumption of Wagner-Whitin costs, constant capacity and no

backlogging. In this case, demands and production capacity can be normalized without loss of

generality: dit ∈ {0, 1} and Pit = 1. We �rst introduce some additional notation:

- Di,t,τ : cumulated demand for item i in the interval {t, ..., τ}. Demand on item i is binary so

that Di,t,τ is equal to the number of positive demand periods for i in {t, ..., τ}.
- Si,q: qth positive demand period for item i. Note that Si,Di,1,t+q denotes the qth period with

positive demand for item i after period t.
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We also introduce the start-up variables zit de�ned as follows: zit equals 1 if the production of

a new lot of item i starts at the beginning of period t, 0 otherwise. These start-up variables are

linked to the changeover variables by the equations:

∀j,∀t, zjt =
∑

i:i6=j

wij,t−Tij (4.23)

Equalities (4.23) state that the production of a new lot of item j begins in period t if and

only if a changeover from another item i 6= j starts "early enough" (i.e. in period t− Tij) to be

�nished at the beginning of period t.

With this notation, we have:

Proposition 4.1 The following inequations (4.24) are valid inequalities for the DLSP with

sequence-dependent changeover costs and times:

∀t, ∀i,∀p ∈ {0...Di,t+1,T }, Iit ≥
p∑

q=1

(
1− yi,t+q −

Si,Di,1,t+q∑

τ=t+q+1

ziτ

)
(4.24)

Proof 4.1 A sketch of proof is as follows. First note that yi,t+q +
∑Si,Di,1,t+q

τ=t+q+1 ziτ = 0 if and only

if the resource is not setup for item i in period t + q and no startup for i takes place between the

period t + q + 1 and the period where the qth demand after period t occurs, i.e. if and only if no

production of item i is possible in the interval {t + q, ..., Si,Di,1,t+q}. In this case, the quantity

needed to satisfy the qth demand after period t should be in stock at the end of period t. Thus we

see that constraints (4.24) force an increase of the stock of item i at the end of period t by one for

each index q for which no production occurs in the interval {t+q, ..., Si,Di,1,t+q}. A detailed proof

of the validity of (4.24) can easily be derived from the above (see also [94]). 2

In the computational experiments to be presented in section 4.4, the following cutting-plane

generation strategy has been implemented to strengthen the DSLPSD2 formulation by adding

violated valid inequalities (4.24):

1. We solve the linear relaxation of the problem using the formulation DLSPSD2.

2. We check whether each valid inequality of type (4.24) is satis�ed. If it is violated by the

current continuous solution, we add it to the formulation.

3. If at least one violated inequality is found in step 2, we go back to step 1 and repeat until no

more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSPSD2*.
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item i 0 1 2 3 4
inventory holding costs hi 0 7 5 6 7

Table 4.1: Simple example with positive changeover times: inventory holding costs

Changeover costs Changeover times
0 1 2 3 4 0 1 2 3 4

0 0 100 120 180 105 0 0 0 2 0 2
1 110 0 176 115 198 1 2 0 1 0 1
2 103 164 0 128 140 2 0 0 0 1 0
3 156 135 122 0 137 3 2 1 0 0 1
4 196 188 142 154 0 4 0 0 0 0 0

Table 4.2: Simple example with positive changeover times: changeover costs and times between
items

4.3.3 A small illustrative example

We use a small example to show an application of the formulation DLSPSD2 and to illustrate

the interpretation of equalities (4.16)-(4.17) as �ow conservation constraints in a network.

We consider a problem involving N = 4 items and T = 15 periods. We agree to use item

i = 0 to denote idle periods. Table 4.1 gives the inventory holding costs for each item and table

4.2 provides the changeover costs and times between pairs of items. Demand over the planning

horizon for each item is provided in table 4.3.

The upper part of �gure 4.1 shows the optimal production plan obtained while using the

formulation DLSPSD2 , the cost of which is Z∗ = 903. The symbol "Tr" denotes a period where

the resource is in transition between two production runs.

Before going on with the computational results, we brie�y illustrate on this small example

the interpretation of equalities (4.16)-(4.17) as �ow conservation constraints. Namely, as pointed

out by [5] for the variant with zero changeover times, the de�nition of a production plan can be

seen as a problem of de�ning a single unit �ow in a network under additional constraints.

More precisely, we consider a graph G = (V, E). A node v ∈ V corresponds to a item-period

pair (i, t). There is an oriented arc a ∈ E from node v1 to node v2 if and only if v1 = (i, t) et

v2 = (j, t + Tij + 1). The setup variable yit corresponds to the �ow through node (i, t) and the

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
item 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
item 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
item 3 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
item 4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

Table 4.3: Simple example with positive changeover times: demand on items
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Figure 4.1: Positive changeover times: optimal production plan for the small example

changeover variables wij,t+1 corresponds to the �ow between node (i, t) and node (j, t + Tij + 1).

With this interpretation, a production sequence on the resource corresponds to a �ow of a single

unit through the network, starting from a node (i, 0) (initial setup state of the resource) and

arriving in a node (j, T ) (�nal setup state of the resource). Thus equalities (4.16) can be seen as

�ow conservation constraints, stating that the �ow through node (i, t − 1) is equal to the sum

of the �ows on the arcs directed away from this node. Similarly, equalities (4.17) can be seen as

�ow conservation constraints, stating that the �ow through node (j, t) is equal to the sum of the

�ows on the arcs directed toward this node.

Due to the presence of positive changeover times, the structure of graph G used here is seen

to be di�erent from the one used in [5]. Namely, when all changeover times are equal to zero,

the arcs in graph G link pairs of nodes related to successive planning periods, which is not the

case anymore with positive changeover times.

The lower part of �gure 4.1 shows the interpretation of the optimal production plan for the

illustrative example as a single unit �ow in the corresponding network. For the sake of simplicity,

only the arcs with a positive �ow are shown.

4.4 Computational results

In this section, we discuss the results of some computational experiments carried out to evaluate

the formulation DLSPSD2* proposed in section 4.3.
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4.4.1 Problem instances generation

We created several sets of randomly generated instances following the procedure described in

[80] and [56]. The reader is referred to these references for more details. The generated instances

di�er with respect to the following characteristics:

• Problem dimension: The problem dimension is represented by the number of products N

and the number of periods T. We use 7 di�erent item-period combinations, namely (N, T )

= {(5,20), (10,40), (5,60), (10,60), (15,60), (10,90), (15,90)}, leading to 7 instance sets

denoted sets A to G.

• Production capacity utilization: Production capacity utilization ρ is de�ned as the ratio

between the total cumulated demand and the total cumulated available capacity. Because

changeover times are nonzero, we experimented di�erent medium values for ρ: ρ was varied

between 0.5 and 0.75, in steps of 0.05.

For each possible combination of problem dimension and production capacity utilization, 5

problems were generated, resulting in 7×6×5 = 210 instances. All tests were run on a Pentium 4

(2.8 Ghz) with 505 Mb of RAM, running under Windows XP. We used a standard MIP software

(CPLEX 8.1.0) with the solver default settings to solve the problem, using either formulation

DLSPSD1 presented in section 4.2 or formulation DLSPSD2* presented in section 4.3.

4.4.2 Comparison of formulations DSLPSD1, DLSPSD2 and DLSPSD2*

We �rst carried out some computational experiments in order to evaluate the reformulation pro-

posed in section 2.1 and the family of valid inequalities derived in section 2.2. The comparison

has been limited to the smallest instances (sets A and B) since computation time limits are

exceeded for set B instances with the DLSPSD1 formulation.

Table 4.4 shows the results obtained with the DSLPSD1, DLSPSD2 and DLSPSD2* formu-

lations for the sets A and B instances. For each formulation, we provide:

- Variables and Constraints: the average number of variables and constraints.

- #VI : for the DLSPSD2* formulation, the average number of valid inequalities of type (4.24)

added by the cutting-plane generation procedure.

- #Opt : the number of instances out of the corresponding 30 instances that could be solved to

optimality within 20 minutes of computation.

- Gap0: the integrality gap, i.e. the relative di�erence between the lower bound provided by

the linear relaxation of the problem and the value of an optimal solution. For the DLSPSD2*
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set A set B
MIP formulation DLSPSD1 DLSPSD2 DLSPSD2* DLSPSD1 DLSPSD2 DLSPSD2*
Variables 1167 960 960 7880 5720 5720
Constraints 2392 361 361 19946 1321 1321
#VI _ _ 124 _ _ 479
#Opt 27 30 30 0 0 30
Gap0(%) 84 59 4 92 68 5

[65;95] [47;69] [0;12] [80;96] [57;73] [0;13]
#Nodes 49362 738 3 2497 35497 100

[16;191523] [11;2780] [0;19] [391;4969] [24705;52968] [2;319]
CPUIP(s) 343 3 1 1200 1200 30

[3;1200] [0;8] [0;3] [1200;1200] [1200;1200] [3;100]
Gap (%) 2 0 0 81 33 0

[0;29] [0;0] [0;0] [60;91] [11;44] [0;0]

Table 4.4: Results for set A and B instances

formulation, we consider the lower bound obtained after the cutting-plane generation procedure

has stopped.

- #Nodes: the number of nodes of the search tree explored before a guaranteed optimal solution

is found or the computation time limit of 20 minutes is reached.

- CPUIP : the computation time in seconds required to �nd a guaranteed optimal solution. If

one could not be found, we use the computation time limit of 1200 seconds.

- Gap: the gap obtained after 20 minutes of computation between the best integer solution and

the best lower bound found.

For performance measures Gap0, Nodes, CPUIP and Gap, we provide the average value (on

the �rst line) and the minimum and maximum values (in brackets on the second line) for the

considered set of randomly generated instances.

Table 4.4 shows that the results obtained with the DLSPSD2* formulation are much better

than the ones obtained with the DLSPSD1 formulation. Namely, computation times are signi�-

cantly reduced and more instances can be solved to optimality within the time limit while using

the DLSPSD2* formulation.

This can be explained by the combination of two advantages:

1. The lower bounds provided by the linear relaxation of the DLSPSD2* formulation are

much better than the ones obtained with the DLSPSD1 formulation. This formulation

improvement is achieved to a large extent thanks to the use of a small number of valid

inequalities (4.24). This can be seen e.g. for set A instances for which the integrality gap

is reduced in average from 84% with the DLSPSD1 formulation to 59% with the basic
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DLSPSD2 formulation and 4% with the strengthened DLSPSD2* formulation.

2. The MIP size (number of variables and constraints) is signi�cantly reduced with the DL-

SPSD2* formulation. As a consequence, the time spent at each node of the branch and

bound tree to solve the linear relaxation is shorter. This size reduction is explained by the

fact that using the DLSPSD2* formulation, there is no need to introduce explicit changeover

time variables vijt for each possible transition between pairs of items (i, j). Moreover, the

set of equalities (4.16)-(4.17) are su�cient to ensure that positive changeover times be-

tween production runs for di�erent items are respected. As a consequence, the numerous

inequalities needed in the DLSPSD1 formulation to link changeover time variables to setup

and changeover cost variables can be eliminated from the formulation.

Thus, thanks to tighter lower bounds and a reduced MIP size, the e�ciency of the branch and

bound procedure embedded in CPLEX solver is signi�cantly improved while using the DLSPSD2*

formulation.

4.4.3 Results with the MIP formulation DLSPSD2*

In order to further validate our approach, we carried out additional computational experiments.

More precisely, we considered instances similar to the ones studied in [56] and [80], i.e. instances

for which (N, T ) = {(5, 60), (10, 60)} (sets C-D). We also used 3 additional sets of larger instances

for which (N, T ) = {(15, 60), (10, 90), (15, 90)} (sets E-G).

Table 4.5 displays the detailed results obtained with the DLSPSD2* formulation. We observe

that:

- For medium size instances (sets C-D), 98% of the generated instances could be solved to

optimality within 20 minutes of computation.

- For large size instances (sets E-G), 42% of the generated instances could be solved to optimality

within the computation time limits. Moreover the average remaining gap obtained after 20

minutes of computation between the best integer solution and the best lower bound found is

small (3.6% on average).

Thus, even if the proposed approach was implemented on a computer with more computing

power, these results suggest the potential of the MIP modelling approach to solve instances larger

than the ones considered in [56] and [80].
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set C set D set E set F set G
Variables 2880 8580 17280 12870 25830
Constraints 1080 1981 2881 2971 4321
#VI 1084 1131 1093 2534 2517
#Opt 30 29 27 8 3
Gap0(%) 5 5 4 5 6

[1;13] [1;11] [2;6] [3;10] [2;17]
#Nodes 150 382 440 604 299

[0;832] [74;1385] [13;1217] [48;1085] [30;707]
CPUIP (s) 46 248 440 1089 1150

[9;168] [60;1200] [53;1200] [82;1200] [144;1200]
Gap(%) 0 0.01 2 3 5

[0;0] [0;0.13] [0;2] [0;7] [0;15]

Table 4.5: Results for set C-G instances obtained with the DLSPSD2* formulation

4.5 Conclusion

We presented a new tight formulation for the DLSP with sequence-dependent changeover costs

and times. Our proposal is based on the extension of a tight MIP formulation available for the

case without changeover times to take into account positive changeover times. The obtained

formulation is then further strengthened thanks to the use of a family of valid inequalities.

The computational experiments carried out show that using the proposed formulation, we

are able to signi�cantly improve the e�ciency of the Branch & Bound procedure imbedded in

CPLEX solver thanks to tighter lower bounds and a reduced MIP size and to solve medium-sized

instances with a reasonable computational e�ort.

To conclude, several interesting directions for future research are worth mentioning:

• We assumed here that there is a single capacitated resource in the production planning

problem to be solved. However many industrial applications involve several resources.

Hence, it might be useful to investigate possible extensions of formulation DLSPSD2* to

problems involving multiple parallel resources.

• In chapter 3, a new formulation (denoted DLSP2*) for the DLSP with sequence-dependent

changeover costs exploiting a possible description of the products as combinations of a

number of physical attributes is presented. To derive this formulation, we assumed zero

changeover times. It could be interesting to investigate its extension to the case of positive

changeover times.



Chapter 5

The multi-resource DLSP: MIP
formulation and heuristic solution
approach

We present an initial MIP formulation for the DLSP with sequence-dependent changeover

costs and multiple (parallel) resources. The presence of parallel resources makes this

extension of the DLSP particularly di�cult to solve as can be seen in our �rst com-

putational results obtained while using a commercial solver. This is why we propose

a heuristic procedure aiming at providing good approximate solutions for this prob-

lem. We develop a solution approach based on the representation of a solution by

the demand assigned to each resource. Although the computational behavior of the

proposed algorithm is not really satisfactory, this preliminary study enables us to

identify several interesting directions for furture research.

77
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5.1 Introduction

The models presented in the previous chapters assume that there is a single resource available

to produce all items. However in many cases, a manufacturer has access to multiple machines or

production lines, which can be used in parallel. Single-resource models may still be useful in these

situations. Namely, when the set of items to be produced can be partitioned into disjoint subsets,

each of which being assigned to one of the available resources, the multi-resource production

planning problem is seen to decompose into a series of single-resource problems.

However, in most industrial applications involving multiple production resources, the ma-

chines or production lines have some �exibility. A given item can thus be produced on several

resources and the problem cannot be decomposed into a series of single-resource problems. As a

result, we have to plan production for all the resources simultaneously. The presence of parallel

resources complicates the problem mainly because there is an additional decision to be made:

we have to determine not only the timing and level of production, but also the assignment of

production lots to machines.

In the present chapter, we consider the extension of the Discrete Lot-sizing and Scheduling

Problem with sequence-dependent changeover costs to the case where there are several identical

parallel resources. This problem is based on the following key assumptions:

• There are several identical parallel resources: the production capacity and the changeover

cost matrices are the same for each resource.

• All items to be produced are end items.

• Demand for items is deterministically known and time-varying.

• The production plan is established for a �nite time horizon subdivided into several discrete

periods.

• For each resource, at most one type of product can be produced per period ("small bucket"

model) and the facility processes either one type of product at full capacity or is completely

idle ("all-or-nothing" assumption).

• Costs to be minimized are the inventory holding costs and the sequence-dependent changeover

costs.

• Changeover delays between two production lots are assumed to be zero.

The DLSP has received much attention in the literature. However only a few papers deal

with the variant studied here. The authors of [23] consider production planning for the curing
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stage in a tile manufacturing facility and formulate their problem as a DLSP with heterogenous

parallel resources (the curing kilns). Their model involves sequence-dependent changeover costs

and times. Their solution procedure uses a Lagrangian relaxation of the inventory balance

constraints to decompose the problem into a series of single-resource independent subproblems.

They were able to provide approximate solutions for instances involving at most 5 items, 5

partially specialized processors and 52 time periods. More recently, [82] heuristically solve a

multi-resource DLSP with sequence-dependent changeover costs arising in a company producing

acrylic �bres. They use a special-purposed algorithm adapted from a heuristic found in the

literature. The related CSLP with multiple heterogenous resources was studied by [21] for the

planning of an injection molding plant in the health care industry. In their problem, changeovers

are sequence-dependent and incur both changeover costs and delays. The authors develop a two-

phased resource-based heuristic aiming at decomposing the initial large problem into smaller

subproblems. In their numerical experiments, they consider instances involving a maximum of

51 items, 45 resources and 30 periods.

Moreover, the literature on exact solution approaches to solve single-level multi-resource

lot-sizing problems is rather sparse. A noticeable exception can be found in [78] (chapter 14)

where the use of MIP modeling and reformulation approach to solve real life production planning

problems is presented. Among others, the authors of [78] study an industrial case arising in a

plant producing insulating boards by extrusion. Their problem shares some common features

with the problem discussed here. Indeed, it involves several heterogenous parallel resources with

varying capacities and sequence-dependent changeover times. A big bucket model similar to

the ones studied in [58] and [71] is used: the planning horizon is divided into long planning

periods and lot-sizing and scheduling decisions are made simultaneously to decide about the

exact production sequence within each planning period. In [78], a unit �ow formulation using

equalities similar to constraints (3.4)-(3.5) of the DLSP0 formulation to link setup and changeover

variables is proposed. It is further strengthened thanks to several families of valid inequalities for

single-resource single-item subproblems. In the sequel, we use a similar approach but we study

a small bucket model and assume identical resources with a constant capacity.

The purpose of the present chapter is thus to propose a �rst MIP formulation for the DLSP

with identical parallel resources and sequence-dependent changeover costs and to present a sim-

ple heuristic solution procedure aiming at providing good solutions for medium to large-sized

instances.

This chapter is organized as follows. In section 5.2, we �rst introduce an initial MIP formu-

lation for the DLSP with identical parallel resources and sequence-dependent changeovers. In
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section 5.3, we present a small industrial example we found in a French company. Results of

computational experiments obtained with the proposed MIP formulation are then reported in

section 5.4. However, even for the small instances, this initial formulation does not seem strong

enough to provide good solutions. This is why we investigate a heuristic solution procedure

based on the representation of a solution by the demand assigned to each resource. An early

version of the proposed algorithm is presented in section 5.5 whereas some preliminary results

are discussed in section 5.6. Section 5.7 provides the concluding remarks.

5.2 Initial formulation

In this section, we derive a MIP formulation for the DLSP with parallel resources and sequence-

dependent changeover costs. This formulation is an extension of the tight formulation proposed

in [5] and [98] for the DLSP with a single resource and sequence-dependent changeover costs.

We wish to optimize the production schedule for a set of N items to be produced on R parallel

resources over an horizon featuring T planning periods. A period is indexed by t = 1, ..., T , an

item by i = 0, .., N and a resource by r = 1, ..., R. We agree to use item i = 0 to represent idle

periods on the various resources.

We use the following notation for the parameters:

• dit: demand (in units) for item i in period t,

• P r
it: production capacity of resource r (in units per period) for item i in period t,

• hi: inventory holding costs per unit and period for item i,

• cr
ij : cost of a changeover from item i to item j on resource r.

Note that, when the available resources are assumed to be identical, the values of the parameters

P r
it and cr

ij are the same for every resource r = 1, ..., R.

Decision variables are de�ned as follows:

• Iit: inventory level corresponding to item i at the end of period t.

• yr
it: setup variables. yr

it = 1 if the resource r is setup for item i in period t, and 0 otherwise.

Note that yr
0t = 1 corresponds to the case where resource r is idle on time period t.

• wr
ijt: changeover variables. wr

ijt = 1 if the resource r is switched from item i to item j at

the beginning of period t, and 0 otherwise.
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With this notation, we propose to formulate the DLSP with parallel resources and sequence-

dependent changeover costs as follows:

(DLSPPR)

min
N∑

i=1

T∑

t=1

hiIit +
R∑

r=1

N∑

i=0

N∑

j=0

T∑

t=1

cr
ijw

r
ijt (5.1)

∀i,∀t, Iit = Ii,t−1 +
R∑

r=1

P r
ity

r
it − dit (5.2)

∀r,
N∑

i=0

yr
i0 = 1 (5.3)

∀r,∀i,∀t, yr
i,t−1 =

N∑

j=0

wr
ijt (5.4)

∀r,∀j, ∀t, yr
jt =

N∑

i=0

wr
ijt (5.5)

∀r,∀i,∀j,∀t, wr
ijt ≥ 0 (5.6)

∀r,∀i,∀t, Iit ≥ 0 (5.7)

∀r,∀i,∀t, yr
it ∈ {0, 1} (5.8)

The objective, minimizing the sum of inventory holding costs and changeover costs, is expressed

by (5.1). Changeover costs cr
ij are incurred between two successive production batches of item i

and item j on resource r, in the �rst period of production of item j.

Constraints (5.2) express the global inventory balance and, together with (5.3), guarantee

that the "all-or-nothing" assumption is ful�lled. Note that the total production quantity of item i

in period t is equal to the sum of the quantities produced on the available resources:
∑R

r=1 P r
ity

r
it.

(5.3), together with constraints (5.4)-(5.5), ensure that in each period, each resource r either

produces a single product at full capacity, or is idle (i.e yr
0t = 1).

For each resource r, equalities (5.4) and (5.5) link the setup variables with the changeover

variables. (5.4) guarantee that item i can be produced in period t− 1 on resource r if and only

if a changeover from i to another item j (possibly i = j) takes place on this resource at the

beginning of period t. Similarly, (5.5) guarantee that item j can be produced in period t on

resource r if and only if a changeover from another item i (possibly i = j) to item j takes place

on this resource at the beginning of period t.

(5.6) state the non-negativity of the changeover variables: observe, as pointed out by [5], that

thanks to constraints (5.3)-(5.5) and (5.8), there is no need to de�ne variables wr
ijt as binary

variables. The set of constraints (5.2) and (5.7) ensure that demand for each item is ful�lled
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without backlogging. The binary character of the setup variables is enforced by (5.8).

When there is a single resource with Wagner-Whitin costs and a constant capacity, the initial

formulation for the DLSP can be further strengthened thanks to the strong valid inequalities

developed by [94]. This approach was proposed in [98] for the basic model and we investigated

in chapters 3 and 4 extensions of these valid inequalities to various single-resource variants of

the DLSP. However, these valid inequalities are based on the key assumptions that demand can

be normalized without loss of generality (i.e. dit ∈ {0, 1}) and that at most one unit of demand

can be produced in each time period.

In the present case, all resources have the same constant capacity throughout the planning

horizon so that we can still de�ne a unit of item i as the maximum quantity of this item that can

be produced per period on one resource. Thus production capacity can be normalized (P r
it = 1)

and demands can be expressed without loss of generality as integer multiples of the production

capacity on a resource (i.e. ∀i, ∀t, dit ∈ {0, 1, ..., R}).
But the assumption that at most one unit of demand can be produced in each time period

does not hold anymore as several units of a given item can be produced simultaneously on various

resources. This hinders the direct extension of the valid inequalities developed by [94] to the

general multi-resource problem. As a consequence, we did not use them in our �rst computational

results to be presented in section 5.4.

5.3 A small industrial example

Before going on with a discussion on our computational results, we present a small industrial

example in order to show the practical relevance of the proposed model. This example was found

in a French company producing energetic components for gas generators. These gas generators

are used in automotive safety applications such as airbag deployment and safety belt tensioning.

More details about this industrial case can be found in [11]. In the sequel, numerical data relative

to costs have been modi�ed for con�dentiality reasons.

This example deals with the production of N = 12 semi-�nite products which can be described

as propellant tubes. As the further transformation of these intermediate products into end

products does not involve capacity-constrained resources, it is not considered here. The plan is

established for 12 weeks, each week being divided into 2 periods, so that the planning horizon

is made of T = 24 periods. There are R = 2 extruding machines which can be considered as

identical parallel resources.

The set of products is partitioned into 2 families, each family being de�ned by a common
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Product (family 1) 1 2 3 4 5 6
Inventory holding costs 11148 8730 8830 8973 7388 14301

Product (family 2) 7 8 9 10 11 12
Inventory holding costs 6752 7451 5581 4239 6885 7063

Table 5.1: Simple example with 2 parallel resources: inventory holding costs

chemical composition. Products i = 1..6 belong to family 1, products i = 7...12 to family 2.

Products of the same family di�er with respect to their shape and dimensions. The cost of a

(minor) changeover between two products belonging to the same family is evaluated at 2360

euros. As the cleaning operations required to change the chemical composition are dangerous

and time consuming, the cost of a (major) changeover between products belonging to di�erent

families is evaluated at 1.5 times the cost of a minor changeover (i.e. at 3540 euros). Demand

on family 1 products represents around 60% of the total demand, demand on family 2 products

around 40%.

The production capacity per period is constant throughout the planning horizon so that we

can de�ne a unit of product as the quantity of this product which can be produced on one

resource during a planning period. Thus demand can be normalized: dit ∈ {0, 1, 2}. Table 5.1

provides the inventory holding costs expressed in euros per unit per period for each product.

The model and MIP formulation presented in section 5.2 can be used to plan production

in this industrial application. We created a set of instances (set I) based on this example and

used it in our computational experiments to be presented in subsection 5.4. Moreover, current

practice in the company is to prohibit production of family 2 products on resource 1 in order

to avoid major changeovers. We also carried out some limited computational experiments (see

subsection 6.4) to evaluate the additional cost resulting from this policy.

5.4 Computational results obtained with the initial formulation

In this subsection, we discuss the results of some computational experiments carried out to

evaluate the formulation presented in section 5.2. We used 4 sets of randomly generated instances.

The instances di�er with respect to the following characteristics:

• Problem dimension: The problem dimension is represented by the number of products N,

the number of periods T and the number of resources R. We use 4 di�erent combinations,

leading to 4 sets of problems:

� set A: N = 5, T = 30 and R = 2;
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� set B: N = 10, T = 40 and R = 2;

� set C: N = 5, T = 30 and R = 3;

� set D: N = 10, T = 40 and R = 3.

• Inventory holding costs: For each item, inventory holding costs have been generated ran-

domly from a discrete uniform DU(5, 10) distribution.

• Production capacity utilization: Production capacity utilization ρ is de�ned as the ratio

between the total cumulated demand (
∑N

i=1

∑T
t=1 dit) and the total cumulated available

capacity (R× T ). ρ was varied between 0.75 and 0.95, in steps of 0.05.

• Demand pattern: Integer demands dit ∈ {1, ...R} for each product have been randomly

generated according to a procedure similar to the one used in [80].

• Changeover costs: Changeover costs cr
ij have been randomly generated from a discrete

uniform DU(100, 200) distribution. As the resources are assumed to be identical, there is

a common changeover cost matrix for all resources.

We also created an additional set of instances, denoted set I, based on the numerical data of

the industrial example presented in subsection 5.3. As no data about real demands was available,

we randomly generated demand matrices by adapting the procedure described in [80] in order

to respect the allocation of production volume among the two product families. The production

capacity utilization in the industrial application was close to 100%. This is why we experimented

several high values for the production capacity utilization ρ: 0.9, 0.95 and 1.

For each possible combination of problem dimension and production capacity utilization, 10

instances were generated, resulting in a total of 4 × 5 × 10 + 3 × 10 = 230 instances. All tests

were run on a Pentium 4 (2.8 Ghz) with 505 Mb of RAM, running under Windows XP. We used

a standard MIP software (CPLEX 8.1.0) with the solver default settings to solve the problems

using formulation DLSPPR.

Tables 5.2 to 5.6 display for each set of instances the computational results obtained with the

formulation DLSPPR. We grouped the instances with respect to the value of ρ so that each line

corresponds to the average value for 10 randomly generated instances. For each set of instances,

we provide:

• Variables and Constraints: the number of variables and constraints.

• #Opt : the number of instances out of the corresponding 10 instances that could be solved

to optimality within 30 minutes of computation.
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Formulation DLSPPR
Variables 2670

Constraints 872
#Opt CPUIP Gap

ρ = 0.75 3 1604s 15%
ρ = 0.80 2 1617s 19%
ρ = 0.85 0 1800s 13%
ρ = 0.90 0 1800s 14%
ρ = 0.95 2 1626s 15%

Table 5.2: Initial formulation for the DLSP with parallel resources: results for set A instances

Formulation DLSPPR
Variables 10960

Constraints 2162
#Opt CPUIP Gap

ρ = 0.75 0 1800s 48%
ρ = 0.80 0 1800s 44%
ρ = 0.85 0 1800s 54%
ρ = 0.90 0 1800s 47%
ρ = 0.95 0 1800s 41%

Table 5.3: Initial formulation for the DLSP with parallel resources: results for set B instances

• CPUIP : the average computation time in seconds required to �nd a guaranteed optimal

solution. If one could not be found, we use the computation time limit of 1800 seconds.

• Gap: for the instances that could not be solved to optimality, the average relative gap

value obtained after 30 minutes of computation between the best integer solution and the

best lower bound found.

Results from table 5.6 show that thanks to the initial formulation DLSPPR, we are able to

obtain guaranteed optimal solutions for 66% of set I instances. Moreover, the average remaining

gap between the best integer solution and the best lower bound obtained after 30 minutes of

Formulation DLSPPR
Variables 3930

Constraints 1233
#Opt CPUIP Gap

ρ = 0.75 0 1800s 17%
ρ = 0.80 2 1610s 18%
ρ = 0.85 0 1800s 19%
ρ = 0.90 0 1800s 15%
ρ = 0.95 0 1800s 15%

Table 5.4: Initial formulation for the DLSP with parallel resources: results for set C instances
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Formulation DLSPPR
Variables 16240

Constraints 3043
#Opt CPUIP Gap

ρ = 0.75 0 1800s 36%
ρ = 0.80 0 1800s 42%
ρ = 0.85 0 1800s 41%
ρ = 0.90 0 1800s 40%
ρ = 0.95 0 1800s 41%

Table 5.5: Initial formulation for the DLSP with parallel resources: results for set D instances

Formulation DLSPPR
Variables 9024

Constraints 1538
#Opt CPUIP Gap

ρ = 0.9 10 761s 0.25%
ρ = 0.95 4 1190s 0.16%
ρ = 1 6 1139s 0.22%

Table 5.6: Initial formulation for the DLSP with parallel resources: results for set I instances

computational is small (below 1%). This indicates the practical usefulness of the proposed

formulation at solving small-sized instances arising in industrial applications such as the one

described in section 5.3.

However, as can be seen from the results displayed in tables 5.2 to 5.5, the formulation

DLSPPR does not seem e�cient at providing good solutions for medium to large-sized instances

of the problem. Namely, for set A instances, which involve only 5 items, 2 resources and 30

planning periods, the average remaining gap between the best integer solution and the best

lower bound obtained after 30 minutes of computation is 15%. For set D instances, the average

gap after 30 minutes of computation is above 40%.

These prohibitively long computation times provided us the motivation to develop an approx-

imate solution approach for the problem under study. Moreover, as pointed out by [73], "the

(single resource) constant capacity, multi-item discrete lot-sizing problem with start-up costs

is NP-hard". Here we deal with the extension of this problem to the case of identical parallel

resources. Hence, even if the corresponding feasibility problem can be polynomially solved (see

[79]), the optimization problem studied in the present chapter is NP-hard.



A heuristic solution procedure for the multi-resource DLSP 87

5.5 A heuristic solution procedure for the multi-resource DLSP

We describe here the proposed two-phased resource-based decomposition heuristic to solve the

DLSP with identical parallel resources and constant capacity. In the sequel, we use the same

notation as in section 5.2 for the problem parameters and variables.

5.5.1 General description of the heuristic procedure

The main idea of the proposed heuristic procedure is to decompose the multi-resource DLSP

into a series of single-resource problems, each of which being easier to solve than the original

multi-resource problem. In order to do this, we allocate each unit demand of matrix D to one

of the resources. The demand matrix D is thus decomposed into R matrices Dr where Dr is

the demand matrix assigned to resource r. Once the demand has been allocated to the various

resources, we solve each resulting single-resource DLSP thanks to the tight MIP formulation

DLSP0* described in chapter 3.

The main issue here is therefore to �nd a good allocation of the demands to the resources,

i.e. a good decomposition of the demand matrix D into R matrices Dr. In the sequel, we try to

achieve this thanks to a two-phased heuristic:

1. We build an initial solution by �nding a feasible decomposition of the demand matrix D.

2. We try to improve it using a local search type procedure.

Before going on with a detailed presentation of each phase, we brie�y explain how the im-

provement phase works. In our approach, a solution for the multi-resource DLSP is represented

by R matrices Dr of dimension N × T such that Dr is a feasible demand matrix assigned to

resource r and D =
∑R

r=1 Dr. A neighbor of a solution is de�ned as another solution for which

the demand allocation to the various resources has been slightly modi�ed. These changes in

the demand matrices may result from shifting some demand from one resource to another or

from exchanging demands between two resources. Starting from an initial (current) solution and

using one of these neighborhood operations, we build several neighbored solutions or candidates.

The cost of each candidate solution could be evaluated by solving a series of R single-resource

DLSP. However, this would lead to prohibitive computation times. This is why we choose to

evaluate each candidate solution using a lower bound easier to compute. This lower bound is

provided by the linear relaxation of the production planning problem involving R independent

parallel resources (see section 5.5.3 for more detail). As this linear relaxation is computed using

a tight MIP formulation, the obtained lower bound is of good quality and can be used to evaluate

each candidate. At each iteration in the improvement phase, we look in the neighborhood for
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the candidate solution with the lowest cost. If this candidate has a cost lower than the cost

of the current best solution, this candidate is accepted as the new current solution and a new

neighborhood is built. If no better candidate solution can be found, the procedure stops.

A general outline of the algorithm is as follows:

Phase 1: Initialization

Find an initial feasible allocation of demands to resources using algorithm INI presented in

subsection 5.5.2 and compute an initial feasible solution.

Phase 2: Improvement

Step 1. Create candidate solutions using one of the neighborhood operations.

Step 2. Evaluate each candidate solution by solving the linear relaxation of the corresponding

multi-resource production planning problem involving R parallel independent resources (using

the formulation DLSPPRi presented in section 5.5.3).

Step 3. Check whether a candidate solution has an estimated cost lower than the value of the

linear relaxation of the current best known solution.

Step 4. If a candidate solution is identi�ed in step 3, go to step 5. Else stop the procedure.

Step 5. Compute the exact cost of the identi�ed candidate solution by solving R single-resource

DLSP (using the formulation DLSP0* presented in section 3.2). If the obtained cost is lower

than the cost of the current best known solution, replace the current solution by the candidate

solution and go to step 1. Else stop the procedure.

5.5.2 Phase I: Building an initial feasible solution

We identi�ed several rationales which could be used to assign demands to resources and build a

(good) initial feasible solution:

1. Consecutive demands for a given item should be assigned to the same resource as they are

likely to be produced during the same production run.

2. Specializing each resource on a subset of items should help reducing total costs as some

changeovers could be avoided.

3. Items with a low volume of demand should be produced on a single resource to avoid doing

numerous changeovers for items which represent only a small portion of the total demand.

4. A resource should be dedicated to items with a very high volume of demand.
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5. Pairs or subsets of items for which the corresponding changeover costs are lower than the

average should be assigned to the same resource.

6. The production capacity utilization should be approximately equal for all the resources,

i.e. the workload assigned to each of the resource should be approximately balanced.

In our implementation, we used the �rst two rationales to build the following initialization

algorithm (INI).

Step 1. Analyze demand matrix D to identify, for each item, sequences of positive demand

periods.

Step 2. For t = 1...T , for i = 1...N ,

1. Consider the sequence (if any) of positive demand periods for item i beginning in

period t.

2. Try to assign the whole sequence to the resource which has the largest volume of

demand for item i already assigned to it.

3. If the assignment tested in step 2.2 is not feasible, try to assign the whole sequence to

another resource.

4. If no feasible assignment could be found in step 2.3, assign each unit demand in the

considered sequence to the �rst resource for which this assignment is feasible.

Algorithm INI provides a feasible solution in which, as much as possible, sequences of con-

secutive demands are assigned to the same resource and resources are specialized on a subset of

items. However, it would be worth investigating the use of some of the ideas presented above

(either individually or combined together) to build initial feasible solutions. Namely, as it is

shown in our preliminary computational results, the solutions provided by algorithm INI have a

rather high cost.

5.5.3 Phase II: Improving a feasible solution

In the second phase of our solution procedure, we try to improve the initial solution by a local

search type procedure.

Representation of a solution
A solution of the multi-resource DLSP is characterized by an assignment of each unit demand

in matrix D to a resource r = 1...R. It is thus represented by R matrices Dr of dimension N×T ,
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with Dr giving the demands assigned to resource r and D =
∑R

r=1 Dr. The feasibility of an

assignment can be easily checked by the following set of inequalities:

∀r,∀t,
N∑

i=1

t∑

τ=1

Dr
i,τ ≤ t (5.9)

Namely, for each resource r, the available capacity up to period t should be su�cient to

accommodate the total demand assigned to this resource up to period t.

De�nition of the neighborhood
A neighbor of a solution is de�ned as another solution for which the demand allocation to the

various resources has been slightly modi�ed. We use two types of neighborhood operations:

• MOVE: a demand sequence for a given item is shifted from resource r to resource r′.

• SWAP: two demand sequences (possibly for di�erent items) are exchanged between re-

sources r and r′.

We �rst de�ne a demand sequence as a sequence of consecutive periods with a positive demand.

But, in order to get some additional �exibility, we allow in some cases a demand sequence to

include periods without demand and de�ne a limit for the maximum number of these zero demand

periods.

In our computational experiments, we use successively 3 types of neighborhoods:

1. Demand sequences can include as most T periods with zero demand and candidate solutions

are obtained by a SWAP operation. Here we try to �nd good candidates by exchanging a

whole line of demand matrix Dr with a whole line of demand matrix Dr′ .

2. Demand sequences cannot include any period with zero demand and candidate solutions

are obtained by a MOVE operation.

3. Demand sequences can include as most 1 period with zero demand and candidate solutions

are obtained by a SWAP operation.

For each type of neighborhood, we consider all the neighbors that could possibly be obtained

with the corresponding operation. As a consequence, we have to evaluate at each iteration a

rather large number of candidate solutions.

Evaluation of candidate solutions
Each candidate solution should be evaluated by the cost of the corresponding optimal produc-

tion plan. This could be done by solving for each neighbor a series of R single-resource DLSP
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(using tight formulation DLSP0* described in chapter 3) or by solving the following planning

problem involving R independent parallel resources (see formulation DLSPPRi described in the

sequel).

This would lead to prohibitive computation times because for each candidate solution, one

(or R) mixed-integer program(s) would have to be solved. This is why we chose to evaluate each

neighbor by a lower bound easier to compute. This approximate evaluation is provided by the

linear relaxation of the production planning problem involving R independent parallel resources.

This problem is described below by the formulation DLSPPRi where the same notation as in

chapter 5 is used. The formulation DLSPPRi is similar to the formulation DLSPPR of chapter 5.

The main di�erence is that resources are not coupled anymore by inventory balance equations.

Namely, variables Iit, which represent a common inventory supplied by all the resources and used

to meet all demands dit, are replaced by variables Ir
it which represent the inventory speci�c to

resource r, supplied only by this resource and used to meet demands dr
it exclusively. The related

problem could thus be decomposed into R single-resource subproblems but, as we only solve its

linear relaxation, we found it more e�cient to solve it as such rather than to decompose it.

(DLSPHeur)

min

R∑

r=1

N∑

i=1

T∑

t=1

hiI
r
it +

R∑

r=1

N∑

i=0

N∑

j=0

T∑

t=1

cr
ijw

r
ijt (5.10)

∀i, ∀t, Ir
it = Ir

i,t−1 +
R∑

r=1

P r
ity

r
it − dr

it (5.11)

∀r,
N∑

i=0

yr
i0 = 1 (5.12)

∀r,∀i,∀t, yr
i,t−1 =

N∑

j=0

wr
ijt (5.13)

∀r,∀j,∀t, yr
jt =

N∑

i=0

wr
ijt (5.14)

∀i, ∀t, zr
it =

∑

j:j 6=i

wr
jit (5.15)

∀t, ∀i,∀p ∈ {0...Dr
i,t+1,T }, Ir

it ≥
p∑

q=1

(
1− yr

i,t+q −
Si,Dr

i,1,t
+q∑

τ=t+q+1

zr
iτ

)
(5.16)

∀r,∀i,∀j, ∀t, wr
ijt ≥ 0 (5.17)

∀r,∀i,∀t, Iit ≥ 0 (5.18)

∀r,∀i,∀t, yr
it ∈ {0, 1} (5.19)

∀r,∀i,∀t, zr
it ∈ [0, 1] (5.20)
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Hence, at each iteration, we need to solve a rather large number of linear programs. In order

to speed up this evaluation step, we used the following ideas:

• Infeasible candidate solutions can be identi�ed without solving a linear program thanks to

the feasibility check based on inequalities (5.9).

• For each feasible candidate to be tested, a lot of information is available in advance since

it di�ers from the current solution only by slight changes in the problem data. There-

fore, rather than solving each linear program individually "starting from scratch", we use

the "advanced basis" option of CPLEX solver in order to reduce the number of simplex

iterations.

• We introduce an additional constraint in formulation DLSPPRi enforcing that the total

cost of the candidate should be lower than the cost of the linear relaxation of the current

best known solution. Thus too expensive candidates are refused as soon as the lower bound

provided by the dual simplex algorithm exceeds this limit. This early rejection of expensive

candidates aims at saving some simplex iterations and should help decreasing computation

times.

Once the cost of every candidate solution has been approximately estimated, we check

whether a candidate has a cost lower than the linear relaxation of the current best known solu-

tion. If such a candidate can be identi�ed, its exact cost is evaluated by solving to optimality R

single-resource problems. If the exact cost of the candidate solution is lower that the cost of the

current best known solution, the candidate is accepted as the new current best known solution.

5.6 Preliminary computational results obtained with the heuris-
tic solution procedure

We discuss here some preliminary computational experiments carried out to evaluate the perfor-

mance of the proposed heuristic solution procedure for the DLSP with parallel resources.

We use the instances of sets A and C described in subsection 5.4 and compare the results

obtained using the exact solution approach described in section 5.2 with the results obtained

using the approximate solution approach described in section 5.5.

Tables 5.7 and 5.8 display the computational results obtained with both solution approaches.

We grouped the instances with respect to the value of ρ so that each line corresponds to the

average value for 10 randomly generated instances.
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Formulation DLSPPR Heuristic
CPUIP GapIP Gapini CPUheur Gapfin

ρ = 0.75 1604s 15% 37% 118s 18%
ρ = 0.80 1617s 19% 40% 139s 23%
ρ = 0.85 1800s 13% 38% 220s 22%
ρ = 0.90 1800s 14% 48% 230s 22%
ρ = 0.95 1626s 15% 35% 245s 20%

Table 5.7: Heuristic solution approach: results for set A instances

Formulation DLSPPR Heuristic
CPUIP Gap Gapini CPUheur Gapfin

ρ = 0.75 1800s 17% 55% 257s 34%
ρ = 0.80 1610s 18% 50% 256s 32%
ρ = 0.85 1800s 19% 56% 280s 41%
ρ = 0.90 1800s 15% 53% 384s 36%
ρ = 0.95 1800s 15% 54% 347s 41%

Table 5.8: Heuristic solution approach: results for set C instances

For the exact MIP solution approach, we provide:

• CPUIP : the average computation time in seconds required to �nd a guaranteed optimal

solution. If one could not be found, we use the computation time limit of 1800 seconds.

• GapIP : the average relative gap value obtained after 30 minutes of computation between

the best integer solution and the best lower bound. If a guaranteed optimal solution could

be found within the time limit, we use a gap of 0%.

For the heuristic solution approach, we provide:

• Gapini: the average relative gap value between the initial integer solution provided by

algorithm INI and the best lower bound obtained with the exact solution approach after

at most 30 minutes of computation.

• CPUheur: the average running time of the heuristic.

• Gapfin: the average relative gap between the best solution found by the heuristic procedure

and the best lower bound found by the exact solution approach.

Results from tables 5.7 and 5.8 show that the proposed algorithm is rather e�cient at im-

proving the initial feasible solution. Namely, the gap between the best known solution provided

by the heuristic and the best known lower bound provided by the exact solution approach is

reduced from an average of 46% before the improvement phase begins to an average of 29%



94 The multi-resource DLSP: MIP formulation and heuristic solution approach

after this phase stops. Thus, the lower bound based on the linear relaxation of the formulation

DLSPPRi seems to be a good estimation of a candidate solution and can be used e�ciently

to identify interesting neighbors of the current solution. Furthermore, for set A instances, the

average remaining gap (Gapfin) obtained with the heuristic solution procedure is only slightly

larger than the gap (GapIP ) obtained with the MIP approach (21% vs 15%) whereas the average

computation time is signi�cantly decreased (1700s vs 190s).

However, the computational behavior of the proposed heuristic is not really satisfactory. In-

deed, its running times are quite high and the quality of the obtained solutions is poor. Moreover,

we were not able to �nd solutions for sets B and D instances because of exceeded computational

memory limits. This may be explained by the following di�culties:

• The cost of the initial solutions provided by algorithm INI is high (46% above the best

known lower bound on average).

• A large amount of computational e�ort is needed to evaluate the candidate solutions at

each iteration. This may be due to the combination of several reasons:

� At each iteration, we generate all possible candidates obtained with the chosen neigh-

borhood operation. As a consequence, the number of candidate solutions to be eval-

uated (i.e. the number of linear programs to be solved) is rather large.

� The linear programs to be solved are rather large because of the introduction of the

numerous (single-resource) valid inequalities (5.16).

� The reoptimization carried out by CPLEX solver using "an advanced basis" is not

very e�cient and the number of simplex iterations carried out before optimality is

reached remains high. This is probably accounted for by the fact that a change in the

demand matrix coe�cients a�ects both the right-hand side of the inventory balance

constraints (5.11) and the left-hand side (variable coe�cients) of the valid inequalities

(5.16). Thus the linear programs to be sequentially solved at each iteration of the

heuristic di�er signi�cantly from each other.

• The local search carried out to improve the current solution is rather simple. We use

a deterministic sequence of three neighborhoods and the procedure has no way to avoid

becoming stuck in a local optimum if it �nds one.

To obviate these di�culties, we may try to embed our solution approach in a local search pro-

cedure such as simulated annealing or threshold accepting. Namely in these methods, neighbors
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are generated one by one by applying a randomly chosen neighborhood operation and local op-

tima can be partially avoided thanks to the fact that a candidate worse than the current solution

may be accepted as the new current solution under certain conditions. This may help improving

the quality of the obtained solutions. However, the application of both methods will still be

hindered by the fact that evaluating a candidate solution will require a rather large amount of

computational e�ort.

Another possible option would be to represent solutions by the resource production schedules

rather than by the demand assigned to each resource. The main advantage of this option is

that evaluating the cost of a solution will be much easier than in the representation used here.

Namely, in the DLSP, thanks to the "all-or-nothing" assumption, �xing the setup pattern for

each resource enables one to compute directly the cost of the corresponding production schedule.

Therefore, using this solution representation, there is no need anymore to solve a linear program

to evaluate each candidate. An approach based on this type of representation can be found in [15].

In this paper, the authors address the single-resource DLSP with sequence-independent setup

costs and times and take into account additional operational constraints on batch availability.

They developed a two-phased simulated-annealing heuristic to solve their problem and were able

to �nd good solutions for instances involving at most 10 items and 100 periods. In order to

solve the problem studied here, it may be worth extending their work to the case of identical

parallel resources and sequence-dependent changeover cots. Another interesting direction could

be to adapt the approach proposed by [71] in which an extension of the CLSP to the case

of parallel resources and sequence-dependent setup costs and times is considered. The author

also uses the resource setup patterns to characterize each solution but as he does not assume

a discrete production policy, he has to solve a generalized network �ow problem to compute

optimal production quantities for each resource and evaluate the exact cost of each solution. His

solution approach is based on the combined use of a local search metastrategy such as Threshold

Accepting and dual reoptimization. It was successful at solving practical problems gathered from

the consumer goods industry but running times remained rather high. A simpli�ed version of

this procedure, in which a direct evaluation of each candidate solution would be used, could also

prove useful at solving the multi-resource DLSP considered here.

5.7 Conclusion

We presented here an initial MIP formulation for the DLSP with sequence-dependent changeover

costs and parallel resources. Although the proposed formulation proves useful at solving small-

sized instances arising in industrial applications such as the one described in section 5.3, it does
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not seem strong enough to provide solutions for larger instances.

This is why we �rst tried to develop a heuristic procedure aiming at providing good approxi-

mate solutions for medium and large-sized instances of the problem. Although the computational

behavior of the proposed algorithm is not really satisfactory, this study enabled us to identify

several interesting directions for further research, among which is the use of a local search method

based on the representation of a solution by the resource setup patterns.

In the next chapter, we focus on improving the initial MIP formulation proposed here and

derive a family of strong valid inequalities for the single-item DLSP with a constant capacity,

startup costs and parallel resources (i.e. the variant denoted DLS-CC-SC with parallel resources

in [78]).



Chapter 6

The multi-resource DLSP: valid
inequalities and exact solution approach

We focus on improving the initial MIP formulation introduced in the previous chapter

for the DLSP with parallel resources and sequence-dependent changeover costs. We

derive a family of strong valid inequalities for the case where the available resources

are identical and the production capacity is constant throughout the planning hori-

zon. The results of our computational experiments show that thanks to the proposed

enhanced formulation, the e�ciency of the Branch & Bound procedure embedded

in CPLEX solver can be signi�cantly improved. Moreover, our computational ex-

periments provide some insights about the impact of a partial specialization of the

resources on both the algorithmic performance and the total production cost.

97
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6.1 Introduction

In the previous chapter, we discussed the DLSP with sequence-dependent changeover costs and

identical parallel resources. We presented a �rst MIP formulation for this problem. However,

even if the proposed formulation was an extension of an existing tight formulation for the single-

resource variant of the problem, it does not seem strong enough to be able to solve medium to

large-sized instances. Namely, as can be seen from tables 5.2 to 5.5 in section 5.4, the average

remaining gap after 30 minutes of computation is between 15% for the smallest studied instances

and 47% for the largest studied instances. These results are mainly explained by the fact that

the lower bounds provided by the linear relaxation of the initial formulation introduced in section

5.2 only provides a poor approximation to the exact optimal integer solution values.

In order to address this issue, we �rst tried to develop a heuristic solution procedure where

the multi-resource problem is decomposed into a series of single-resource problem. However,

the preliminary results obtained with an early version of the algorithm were not satisfactory.

A possibility would have been to investigate one of the directions for future research identi�ed

in section 5.7, among which was the use of a local search method based on the representation

of a solution by the resource setup patterns. But we decided to focus on improving the initial

formulation and on extending the valid inequalities available for the single-resource variant of

the problem to the multi-resource variants.

The purpose of the present chapter is thus to derive strong valid inequalities for the single-item

DLSP with constant capacity, startup cost and several machines (i.e. the variant denoted DLS-

CC-SC with several machines in [78]) and to provide some insights about the impact of a partial

specialization of the resources on both the algorithmic performance and the total production

cost.

This chapter is organized as follows. In section 6.2, we �rst describe how the initial formu-

lation proposed in chapter 5 can be strengthened by valid inequalities and symmetry-breaking

constraints. Computational experiments were carried out to evaluate the impact of the proposed

formulation enhancements. In our computational study, we considered two cases:

• the resources are totally versatile: each resource is able to produce the complete set of

items (see section 6.3).

• the resources are partially specialized: each resource is able to produce only a predetermined

subset of items. These subsets may have some items in common so that the planning

problem cannot be decomposed into a series of single-resource problems. (see section 6.4)

Section 6.5 provides the concluding remarks.
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6.2 Strengthening the formulation with valid inequalities

We study in this section several ways of strengthening the formulation DLSPPR presented in

5.2. The main idea here is to extend the strong valid inequalities developed by [94] for the single-

resource single-item DLSP to the case of parallel resources. However, these valid inequalities

are based on the key assumption that the resource capacity is constant throughout the planning

horizon. As a result, demand can be normalized without loss of generality and at most one unit

of demand can be produced in each time period (i.e. dit ∈ {0, 1} and Pit = 1). The extension of

the valid inequalities developed by [94] to the general multi-resource problem is hindered by the

fact that with several production resources available, for a given item, several units of demand

can be produced in each time period. In what follows, we �rst provide valid inequalities for the

speci�c case where an item can be produced on at most one resource in a given period. We

then propose an extension of the valid inequalities developed by [94] for the general case. In

both cases, we assume that there are R identical resources with a constant production capacity,

Wagner-Whitin costs and no backlogging. These assumptions are necessary in order to normalize

the demand and production capacity as shown e.g. in [35] and [94].

6.2.1 Valid inequalities for a speci�c case

We �rst investigate a speci�c case based on the assumption that an item can be produced on at

most one resource in a given period. This assumption is based on the idea that in most optimal

production plans, the available resources will not be producing the same type of items in the

same period. This additional assumption on the production system may sometimes lead to an

increase in the optimal cost but it seems to be rather reasonable for many industrial applications.

For instance, the authors of [102], who studied the CLSP with parallel resources, used a similar

"no lot splitting" assumption: in their model, the production of an item within a given time

period cannot be split among di�erent facilities, it has to be processed on a single facility.

To guarantee that a given item can be produced on at most one resource per period, the

following additional constraints are introduced in the formulation DLSPPR:

∀i,∀t,
R∑

r=1

yr
it ≤ 1 (6.1)

Thanks to this assumption, demands and production capacity can be normalized without

loss of generality (dit ∈ {0, 1} and P r
it = 1) and the property that at most one unit of demand

can be produced in each time period holds.

We �rst introduce notation similar to those used in chapters 3 and 4 :
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• Di,t,τ : cumulated demand for item i in the interval {t, ..., τ}.

• Si,q: qth positive demand period for item i. Note that Si,Di,1,t+q denotes the qth period

with positive demand after period t.

We also introduce the start-up variables zr
it de�ned as:

zr
it =





1 if the production of a new lot of item i begins in period t on resource r, i.e. if

a start-up for item i takes place at the beginning of period t on resource r,

0 otherwise.

The start-up variables are linked to the changeover variables through the equations:

∀r,∀i, ∀t, zr
it =

∑

j:j 6=i

wr
jit (6.2)

With this notation, a whole family of valid inequalities can be deduced from the following

result:

Proposition 6.1 Under the assumption that an item can be produced on at most one resource

in a given period, all feasible solutions of DLSPPR satisfy:

∀t, ∀i, ∀p ∈ {1...Di,t+1,T }, Iit ≥
p∑

q=1

(
1−

R∑

r=1

(
yr

i,t+q +

Si,Di,1,t+q∑

τ=t+q+1

zr
iτ

))
(6.3)

Proof 6.1 Before providing the proof, we brie�y explain the idea underlying (6.3).
∑R

r=1

(
yr

i,t+q +
∑Si,Di,1,t+q

τ=t+q+1 zr
iτ

)
= 0 if and only if no resource is setup for item i in period

t + q and no startup for this item occurs between the period t + q + 1 and the period where the

qth demand after period t occurs, i.e. if and only if no production of item i is possible in the

interval [t + q, Si,Di,1,t+q]. In this situation, as at most q− 1 units of demand can be produced in

the interval [t + 1, t + q] (one unit produced per time period), the quantity needed to satisfy the

qth demand on item i after period t should be in stock at the end of period t.

Now consider an arbitrary integral feasible solution of DLSPPR, say (I, y, w, z). We arbitrar-

ily choose an item i, a period t and a demand occurrence p ∈ {1...Di,t+1,T } and we show that the

chosen feasible solution satis�es the corresponding valid inequality. In the sequel, for the sake of

simplicity, we drop the item index i.

We denote Tq the qth production period for this item in the feasible solution considered. As

we assume that at most one unit of demand can be produced per period, we have T1 < T2 < ... <

Tq < ... < TD1,T
. Moreover, because backlogging is not allowed, the qth production period must
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occur before the qth demand period: ∀q, Tq ≤ Sq.

Let q0 be the highest index such that TD1,t+q < t + q. Then we have:

• ∀q ≤ q0, TD1,t+q < t+q. For q ≤ q0, the qth demand after period t is produced before period

t + q0.

• ∀q > q0, t + q ≤ TD1,t+q ≤ SD1,t+q. For q > q0, the qth demand after period t is produced

between t+q and the period SD1,t+q where it occurs. In this case, one of the resources must

be setup for item i at least once in the interval [t + q, SD1,t+q]. Thus we have:

∀q > q0,
R∑

r=1

(
yr

i,t+q +

Si,Di,1,t+q∑

τ=t+q+1

zr
iτ

) ≥ 1 (6.4)

Hence,

t∑

τ=1

R∑

r=1

yr
τ +

p∑

q=1

( R∑

r=1

(
yr

t+q +

SD1,t+q∑

τ=t+q+1

zr
τ

))

≥
t∑

τ=1

R∑

r=1

yr
τ +

q0∑

q=1

R∑

r=1

yr
t+q +

p∑

q=q0+1

R∑

r=1

(
yr

t+q +

SD1,t+q∑

τ=t+q+1

zr
τ

)
(6.5)

≥
t∑

τ=1

R∑

r=1

yr
τ +

q0∑

q=1

R∑

r=1

yr
t+q + p− q0 (6.6)

≥ D1,t + q0 + p− q0 (6.7)

≥ D1,t + p (6.8)

(6.5) comes from the fact that
∑q0

q=1

∑R
r=1

∑SD1,t+q

τ=t+q+1 zr
τ ≥ 0. To obtain (6.6), we use the

inequalities (6.4). Finally, (6.7) is true because, by de�nition of q0, the cumulated demand D1,t+

q0 is satis�ed by the cumulated production before t+q0,
∑t+q0

τ=1

∑R
r=1 yr

τ , so that
∑t+q0

τ=1

∑R
r=1 yr

τ ≥
D1,t + q0 .

As
∑t

τ=1

∑R
r=1 yr

τ − D1,t is the inventory level at the end of period t, this establishes the

validity of (6.3). 2

6.2.2 Valid inequalities for the general case

When there are R identical parallel resources, the formulation DLSPPR can also be strengthened

using a family of strong valid inequalities similar to those developed by [94]. However, the

extension is not as easy as in the previous case because, for a given item, the property that at

most one unit of demand can be produced in each time period does not hold any more.
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When all resources have the same constant capacity throughout the planning horizon, we can

de�ne a unit of item i as the maximum quantity of this item that can be produced per period

on one resource. Thus production capacity can be normalized (P r
it = 1) and demands can be

expressed without loss of generality as integer multiples of the production capacity on a resource

(i.e. ∀i,∀t, dit ∈ {0, 1, ..., R}).
We introduce the following notation:

• Di,t,τ : cumulated demand for item i in the interval {t, ..., τ}.

• Si,q: period where the q positive unit demand occurs. Note that we may have Si,q = Si,q−1

or Si,q = Si,q+1 if demand for item i is strictly superior to 1 in a given period. Si,Di,1,t+q

denotes the period where the qth positive unit demand occurs after period t.

We also use the start-up variables zr
it as de�ned above.

With this notation, we have:

Proposition 6.2 If the production planning problem involves R identical parallel resources, all

feasible solutions of DLSPPR satisfy:

∀t, ∀i,∀p ∈ {1...Di,t+1,T }, Iit ≥
p∑

q=1

(
1−NProd(i, t, q)

)
(6.9)

where NProd(i, t, q) is de�ned as follows:

• Let a ∈ N and b ∈ [0, R− 1] be de�ned as q = a×R + b.

• Let (R1,R2) be a partition of R = {1, ...R} such that |R1| = b− 1.

• NProd(i, t, q) is expressed as:

NProd(i, t, q) =
∑

r∈R1

yr
i,t+a+2 +

∑

r∈R2

(yr
i,t+a+1 + zr

i,t+a+2) +
∑

r∈R

Si,Di,1,t+q∑

τ=t+a+3

zr
i,τ (6.10)

Proof 6.2 Before proceeding to the proof, let us observe that the basic idea underlying (6.9) is

the same as the one underlying the valid inequalities (3.10) for formulation DLSP0. The main

di�erence comes from the fact that with R identical parallel resources, it is possible to produce in

a given period at most R units of each item instead of at most 1 unit of each item.

Constraints (6.9) ensure that if the quantity needed to satisfy the qth unit demand on item

i after period t cannot be produced between t + 1 and the period Si,Di,1,t+q where it occurs, it

will be in stock at the end of period t. Indeed, the term NProd(i, t, q) is de�ned so that if

NProd(i, t, q) = 0, at most q−1 units of item i can be produced in the interval [t+1, Si,Di,1,t+q].
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Namely, suppose NProd(i, t, q) = 0 for an arbitrary choice of i, t and q. Let a and b be the

quotient and remainder of the euclidian division of q by R (i.e. q = a×R + b):

• In periods τ ∈ [t + 1; t + a], all resources may produce item i so that at most a × R units

of item i can be produced.

• In period t + a + 1, we have: ∀r ∈ R2, y
r
i,t+a+1 = 0 with |R2| = R − b + 1 so that at most

b− 1 units of item i can be produced on the resources in set R1.

• In periods τ ∈ [t + a + 2; Si,Di,1,t+q], no production of item i is possible. Namely for each

r ∈ R1, the resource cannot be setup for item i in period t + a + 2 and no startup for this

item can occur between period t + a + 3 and period Si,Di,1,t+q. Similarly, for each r ∈ R2,

the resource cannot be setup for item i in period t + a + 1 and no startup for this item can

occur between period t + a + 2 and period Si,Di,1,t+q.

As a consequence, if NProd(i, t, q) = 0, at most a×R + b− 1 = q − 1 units of item i can be

produced in the interval [t + 1, Si,Di,1,t+q] and the inventory level of item i at the end of period t

should be increased by 1. In proposition 6.2, R1 can be seen as the subset of resources that may

produce item i only in the interval [t + 1; t + a + 1] and R2 as the subset of resources that may

produce item i only in the interval [t + 1; t + a].

We now provide the proof for proposition 6.2. Consider an arbitrary integral feasible solution

of DLSPPR, say (I, y, w, z). We arbitrarily choose an item i, a period t and a demand occurrence

p ∈ {1...Di,t+1,T } and we show that the chosen feasible solution satis�es all corresponding valid

inequalities of type (6.9). In the sequel, for the sake of simplicity, we drop the item index i.

We denote Tq the period where the qth unit of item i is produced in the feasible solution

considered. Note that we may have Tq = Tq−1 or Tq = Tq+1 if several resources produce item i in

a given period. Because backlogging is not allowed, the qth production period must occur before

the qth demand period: ∀q, Tq ≤ Sq.

Let q0 = a0 ×R + b0 be the smallest index such that:

• b0 = 1.

• Tq0 = a0 + 1

• ∀q < q0, Tq ≤ a0

We have: ∀q = a×R + b ≥ q0, Tq ≥ a + 1. This means that for q ∈ [q0; p], the qth unit demand

after period t must be produced between the period t + a + 1 and the period where it occurs. As a

consequence: ∀q ∈ [q0; p], Nprod(t, q) ≥ 1.
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Hence,

t∑

τ=1

R∑

r=1

yr
τ +

p∑

q=1

Nprod(t, q)

≥
t∑

τ=1

R∑

r=1

yr
τ +

q0−1∑

q=1

Nprod(t, q) +
p∑

q=q0

Nprod(t, q) (6.11)

≥
t∑

τ=1

R∑

r=1

yr
τ +

∑

q=1...q0−1 st q=1 mod R

Nprod(t, q) +
p∑

q=q0

Nprod(t, q) (6.12)

≥
t∑

τ=1

R∑

r=1

yr
τ +

∑

q=1...q0−1 st q=1 mod R

R∑

r=1

yr
t+b q

R
c +

p∑
q=q0

Nprod(t, q) (6.13)

≥
t∑

τ=1

R∑

r=1

yr
τ +

a0∑

a=1

R∑

r=1

yr
t+a +

p∑
q=q0

Nprod(t, q) (6.14)

≥
t+a0∑

τ=1

R∑

r=1

yr
τ + p− q0 + 1 (6.15)

≥ D1,t + q0 − 1 + p− q0 + 1 (6.16)

≥ D1,t + p (6.17)

(6.12) and (6.13) come from the fact that:

q0−1∑

q=1

Nprod(t, q) ≥
∑

q=1...q0−1 st q=1 mod R

Nprod(t, q) ≥
∑

q=1...q0−1 st q=1 mod R

R∑

r=1

yr
t+b q

R
c

(6.14) is obtained using ∀q ∈ [q0; p], Nprod(t, q) ≥ 1. (6.15) is true because, by de�nition of q0,

the cumulated demand D1,t + q0− 1 is satis�ed by the cumulated production before t+a0, so that
∑t+a0

τ=1

∑R
r=1 yr

τ ≥ D1,t + q0 − 1 .

As
∑t

τ=1

∑R
r=1 yr

τ − D1,t is the inventory level at the end of period t, this establishes the

validity of (6.9). 2

The number of valid inequalities (6.9) is much larger than the number of valid inequalities

(6.3). Namely, for each item i, each period t and each demand p ∈ {1...Di,t+1,T }, there are
∏p

q=1 Cb−1
R valid inequalities because for each index q = a×R + b, we have Cb−1

R possibilities to

partition R. This is why in the implementation of the solution procedure, we used the following

separation algorithm (SEP).

Given (I∗, y∗, w∗, z∗) the optimal solution of the linear relaxation of DLSPPR:



Strengthening the formulation with valid inequalities 105

For i = 1...N , for t = 1...T , for p = 1...Di,t+1,T :

1. For q = 1...p:

- consider all partitions (R1,R2) of R = {1, ...R} and select the partition (Rq
1,Rq

2)

so as to minimize
∑

r∈R1
yr

i,t+a+2 +
∑

r∈R2
(yr

i,t+a+1 + zr
i,t+a+2).

- compute v∗q = NProd(i, t, q) using partition (Rq
1,Rq

2).

2. Compute V = I∗it +
∑p

q=1 v∗q .

- If V < p, the valid inequality of type (6.9) obtained by using partition (Rq
1,Rq

2)

de�ned in step 1 for each index q in the sum is violated.

- If V ≥ p, all valid inequalities of type (6.9) corresponding to item i, period t and

demand occurrence p are satis�ed.

6.2.3 Symmetry-breaking constraints

As mentioned by [52] who discusses the CLSP with parallel machines, an additional di�culty

arises when the available resources are identical. Namely, given a solution of the CLSP, a di�erent

solution with the same total cost can be created just by renumbering in each time period the

machines. As as result, there is a large number of equivalent optimal solutions. It is known

that this symmetry is likely to deteriorate the e�ciency of the Branch & Bound algorithm,

due to unnecessary node duplication. To obviate this problem, [52] proposes several types of

symmetry-breaking constraints to be added to the formulation.

In small bucket models, as planning periods are linked by setup and changeover variables,

the machines cannot be renumbered independently in each period. Thus these models do not

su�er from symmetry problems to the same extent as big bucket models. However, given a

solution of the DLSP, i.e. a production sequence for each resource, a distinct solution with

the same total cost can be obtained by modifying the assignment of production sequences to

resources, i.e. by renumbering the resources globally. In order to avoid any di�culty caused by

symmetry in the Branch & Bound procedure and to exclude alternative equivalent solutions, we

add symmetry-breaking constraints to formulation DLSPPR. We use constraints similar to the

constraints (SBC6) proposed by [52]: we break symmetry by ordering the resources according to

decreasing total changeover costs per resource.

∀r = 2...R,
N∑

i=0

N∑

j=0

T∑

t=1

cr−1
ij wr−1

ijt ≤
N∑

i=0

N∑

j=0

T∑

t=1

cr
ijw

r
ijt (6.18)
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6.2.4 Cutting-plane generation procedure

In the computational experiments to be presented in subsections 6.3 and 6.4, the following

cutting-plane generation strategy has been implemented to strengthen the formulation DLSPPR:

1. We add symmetry-breaking constraints (6.18) and solve the linear relaxation of the problem

using formulation DLSPPR.

2. For each item i = 1...N , each time period t = 1...T and each demand occurrence p =

1...Di,t+1,T , we look for the most violated valid inequality of type (6.9) using algorithm SEP. If

we �nd one, we add it to the formulation.

3. If at least one violated inequality is found in step 2, we go back to step 1 and repeat until no

more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSPPR*.

6.3 Computational results: the case of versatile resources

In this section, we discuss the results of some computational experiments carried out to evaluate

the impact of the formulation enhancements presented in section 6.2. We used the same 5 sets

of instances as in chapter 5. All tests were run on a Pentium 4 (2.8 Ghz) with 505 Mb of

RAM, running under Windows XP. We used a standard MIP software (CPLEX 8.1.0) with the

solver default settings to solve the problems, using either formulation DLSPPR or formulation

DLSPPR*.

Tables 6.1 to 6.5 show the computational results obtained with the formulations DLSPPR

and DLSPPR*, for each set of instances. We grouped the instances with respect to the value of

ρ so that each line corresponds to the average value for 10 randomly generated instances. For

both series of results, we provide:

• Variables and Constraints: the number of variables and constraints.

• #VI : the average number of valid inequalities of type (6.9) added to the formulation

DLSPPR by the cutting-plane generation procedure.

• #Opt : the number of instances out of the corresponding 10 instances that could be solved

to optimality within 30 minutes of computation.

• CPUIP : the average computation time in seconds required to �nd a guaranteed optimal

solution. If one could not be found, we use the computation time limit of 1800 seconds.

• Gap: for the instances that could not be solved to optimality, the average relative gap
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Formulation DLSPPR Formulation DLSPPR*
Variables 2670 2670

Constraints 872 873
#VI 0 580

#Opt CPUIP Gap #Opt CPUIP Gap
ρ = 0.75 3 1604s 15% 10 209s 0%
ρ = 0.80 2 1617s 19% 9 624s 2%
ρ = 0.85 0 1800s 13% 9 410s 1%
ρ = 0.90 0 1800s 14% 10 708s 0%
ρ = 0.95 2 1626s 15% 9 733s 4%

Table 6.1: Versatile parallel resources: results for set A instances

Formulation DLSPPR Formulation DLSPPR*
Variables 10960 10960

Constraints 2162 2163
#VI 0 1204

#Opt CPUIP Gap #Opt CPUIP Gap
ρ = 0.75 0 1800s 48% 1 1783s 10%
ρ = 0.80 0 1800s 44% 0 1800s 9%
ρ = 0.85 0 1800s 54% 0 1800s 13%
ρ = 0.90 0 1800s 47% 0 1800s 11%
ρ = 0.95 0 1800s 41% 0 1800s 12%

Table 6.2: Versatile parallel resources: results for set B instances

value obtained after 30 minutes of computation between the best integer solution and the

best lower bound found.

Results from table 6.1 to 6.5 show that thanks to the formulation enhancements proposed in

section 6.2, the e�ciency of the Branch & Bound procedure is signi�cantly improved. This can

be seen as :

• using the formulation DLSPPR*, 35% of the instances could be solved to optimality within

30 minutes of computation as compared to 12% using the formulation DLSPPR.

• the remaining gap after 30 minutes of computation is signi�cantly reduced (e.g. from 15%

with the basic formulation to 1.4% with the enhanced formulation for set A instances).

• the number of nodes explored before a guaranteed optimal solution is found or the com-

putation time limit is reached is on average 10 times smaller while using the formulation

DLSPPR* than while using the formulation DLSPPR.

These results can be explained mainly by the fact that thanks to the valid inequalities (6.9),

the lower bounds provided by the linear relaxation of the problem are signi�cantly improved.
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Formulation DLSPPR Formulation DLSPPR*
Variables 3930 3930

Constraints 1233 1235
#VI 0 597

#Opt CPUIP Gap #Opt CPUIP Gap
ρ = 0.75 0 1800s 17% 2 1591s 10%
ρ = 0.80 2 1610s 18% 2 1622s 11%
ρ = 0.85 0 1800s 19% 0 1800s 10%
ρ = 0.90 0 1800s 15% 1 1723s 10%
ρ = 0.95 0 1800s 15% 1 1800s 9%

Table 6.3: Versatile parallel resources: results for set C instances

Formulation DLSPPR Formulation DLSPPR*
Variables 16240 16240

Constraints 3043 3045
#VI 0 1498

#Opt CPUIP Gap #Opt CPUIP Gap
ρ = 0.75 0 1800s 36% 0 1800s 18%
ρ = 0.80 0 1800s 42% 0 1800s 23%
ρ = 0.85 0 1800s 41% 0 1800s 26%
ρ = 0.90 0 1800s 40% 0 1800s 25%
ρ = 0.95 0 1800s 41% 0 1800s 24%

Table 6.4: Versatile parallel resources: results for set D instances

Formulation DLSPPR Formulation DLSPPR*
Variables 9024 9024

Constraints 1538 1539
#VI 0 114

#Opt CPUIP Gap #Opt CPUIP Gap
ρ = 0.9 10 761s 0.25% 10 338s 0%
ρ = 0.95 4 1190s 0.16% 10 358s 0%
ρ = 1 6 1139s 0.22% 8 741s 0.12%

Table 6.5: Versatile parallel resources: results for set I instances
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This can be seen for example on set A instances for which the use of valid inequalities of type

(6.9) results in a reduction of the integrality gap from 42% to 10%. Moreover this formulation

improvement is achieved thanks to the generation of a relatively small number of cutting-planes

(580 on average for set A instances).

However, for set B to D instances, the remaining gap after 30 minutes of computation remains

rather large (above 10%), even with the enhanced formulation DLSPPR*. In order to obviate

this problem, we propose in the sequel to use partially specialized resources, i.e. to prohibit the

production of some items on some resources. These additional constraints on the production

system leads to a reduction of the solution space and thus might help solving the production

planning problem more easily. Besides, it corresponds to a rather common industrial practice.

In what follows, some computational experiments exploiting this idea are presented.

6.4 Computational results: the case of partially specialized re-
sources

We now discuss the results of some computational experiments carried out to evaluate the impact

of a partial specialization of the resources on both the algorithmic performance and the total

production cost.

We used the same sets of instances as in the previous subsection but we modi�ed the MIP

formulation DLSPPR in order to prohibit the production of certain types of items on some

resources.

We �rst de�ne a "specialization ratio" µ as the ratio between the number of prohibited

item-resource combinations and the total number of possible item-resource combinations. Thus

µ = 0
NR = 0 for versatile resources and µ = NR−N

NR = R−1
R for totally specialized resources. We

experimented two values for µ:

• µ = 0.2 corresponding to the case of a rather low specialization of the resources,

• µ = 0.4 corresponding to the case of a rather high specialization of the resources.

For set A to D instances, we used the following rules to assign types of items to resources:

1. We sort the items in the increasing order of their total demand Di,1T on the planning horizon.

We denote ik the item in the kth position in the resulting sequence.

2. We prohibit production on some resources for the items with the lowest total demands.

Table 6.6 provides detailed data about the prohibited item-resource combinations for each set of

instances and each value of µ.
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Instances µ = 0.2 µ = 0.4
set A (i1, 2) (i1, 2) ; (i4, 2)

(i2, 1) (i2, 1) ; (i3, 1)
set B (i1, 2) ; (i4, 2) (i1, 2) ; (i2, 2) ; (i7, 2) ; (i8, 2)

(i2, 1) ; (i3, 1) (i3, 1) ; (i4, 1) ; (i5, 1) ; (i6, 1)
set C (i1, 3) (i1, 3) ; (i2, 3)

(i3, 2) (i1, 2) ; (i3, 2)
(i2, 1) (i2, 1) ; (i3, 1)

set D (i1, 3) ; (i6, 3) (i2, 3) ; (i3, 3) ; (i4, 3) ; (i5, 3)
(i2, 2) ; (i5, 2) (i1, 2) ; (i3, 2) ; (i4, 2) ; (i6, 2)
(i3, 1) ; (i4, 1) (i1, 1) ; (i2, 1) ; (i5, 1) ; (i6, 1)

Table 6.6: Partially specialized parallel resources: prohibited item-resource (ik, r) combinations

Our choice for selecting the prohibited item-resource combinations is based on the following

rationale. We �rst reduce the number of possible producing resources for the items with a low

volume of demand, i.e. for the items in the �rst positions in our sorting. The underlying idea is

to avoid doing numerous changeovers for items which represent only a small portion of the global

demand. In the resulting planning problem, the link between resources is thus created by the

items with the highest volume of demand, the production of which has to be allocated among

the various resources during the production planning process. Second, we attempt to obtain an

approximately balanced volume of preassigned demands for each resource. For example, in set

A instances and µ = 0.4, we assigned to resource 1 the item with the lowest volume i1 and the

item with a rather high volume i4, and to resource 2 the items i2 and i3 with a medium volume.

Thus, the fraction of the production capacity of a resource that will be devoted to items which

can be produced only on this speci�c resource is approximately the same for all resources.

For set I instances, we followed the policy used by the plant production managers, i.e. we

prohibited production of family 2 products only on resource 1.

We used the formulation DLSPPR described in subsection 5.2 and eliminated variables cor-

responding to prohibited setup states or changeovers. In the presence of partially specialized

resources, the model does not su�er from symmetry problems so that there is no need to use

constraints of type (6.18) to exclude alternative equivalent solutions. The obtained basic for-

mulation is then strengthened according to a cutting-plane generation procedure similar to the

one presented in subsection 6.2. We used valid inequalities of type (6.9) for the items which can

be produced on several resources and valid inequalities of type (3.10) for items which can be

produced on a single resource. The resulting strengthened formulation is denoted DLSPPRs*.

Table 6.7 to 6.11 display the results obtained using formulation DLSPPRs* for the case of

partially specialized resources (µ = 0.2 or µ = 0.4). Variables, Constraints, #VI, #Opt, CPUIP ,
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µ = 0.2 µ = 0.4
Variables 1950 1200

Constraints 812 511
#VI 572 574

#Inf #Opt CPUIP Gap %AC #Inf #Opt CPUIP Gap %AC
ρ = 0.75 0 10 41s 0% 3% 2 8 13s 0% 11%
ρ = 0.80 2 8 93s 0% 2% 4 6 20s 0% 7%
ρ = 0.85 2 8 105s 0% 4% 2 8 17s 0% 11%
ρ = 0.90 0 10 92s 0% 5% 2 8 13s 0% 15%
ρ = 0.95 0 10 111s 0% 4% 4 6 10s 0% 14%

Table 6.7: Partially specialized parallel resources: results for set A instances

µ = 0.2 µ = 0.4
Variables 6160 4800

Constraints 1760 1521
#VI 1192 1176

#Inf #Opt CPUIP Gap #Inf #Opt CPUIP Gap
ρ = 0.75 0 4 1310s 6% 2 8 477s 0%
ρ = 0.80 0 3 1510s 4% 0 9 559s 1%
ρ = 0.85 1 0 1800s 6% 3 5 1114s 0%
ρ = 0.90 1 2 1486s 6% 4 6 512s 0%
ρ = 0.95 0 2 1564s 4% 5 3 922s 2%

Table 6.8: Partially specialized parallel resources: results for set B instances

Gap are de�ned as in subsection 6.3. We also provide #Inf, the number of instances out of the

corresponding 10 instances that are infeasible while using the assignment rules described in table

6.6 and %AC, the mean increase in the optimal cost caused by the partial resource specialization.

%AC is de�ned as the relative di�erence between the optimal cost of the production plan obtained

with partially specialized resources and the optimal cost of the production plan obtained with

versatile resources. We computed %AC only for set A instances because we did not have enough

instances solved to optimality in sets B to D.

We now discuss the results from tables 6.1-6.4 (µ = 0) and tables 6.7-6.10 (µ = 0.2 or

0.4). Comparison of the computational results obtained for the di�erent values of µ shows

that the partial specialization of the production resources signi�cantly improves the algorithmic

performance. This can be seen for example on set A instances for which the mean computation

time is reduced from 536s for µ = 0 to 88s for µ = 0.2 and 15s for µ = 0.4. Similarly, for set B

instances, the mean remaining gap after 30 minutes of computation is decreased from 11% for

µ = 0 to 5% for µ = 0.2 and to less than 1% for µ = 0.4. This improvement in the e�ciency

of the Branch & Bound procedure can be explained mainly by the reduction of the MIP size

(number of variables and constraints) thanks to prohibited item-resource combinations and by
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µ = 0.2 µ = 0.4
Variables 2850 2130

Constraints 1053 873
#VI 575 598

#Inf #Opt CPUIP Gap #Inf #Opt CPUIP Gap
ρ = 0.75 0 6 1004s 2% 1 9 81s 0%
ρ = 0.80 2 3 1272s 2% 5 5 160s 0%
ρ = 0.85 1 3 1491s 3% 5 5 81s 0%
ρ = 0.90 2 5 1058s 2% 5 5 52s 0%
ρ = 0.95 2 4 1118s 3% 6 4 106s 0%

Table 6.9: Partially specialized parallel resources: results for set C instances

µ = 0.2 µ = 0.4
Variables 11200 7120

Constraints 2560 2083
#VI 1409 1451

#Inf #Opt CPUIP Gap #Inf #Opt CPUIP Gap
ρ = 0.75 0 0 1800s 13% 4 0 1800s 4%
ρ = 0.80 0 0 1800s 16 % 3 0 1800s 9%
ρ = 0.85 0 0 1800s 20 % 1 0 1800s 10%
ρ = 0.90 0 0 1800s 17 % 1 0 1800s 10%
ρ = 0.95 0 0 1800s 19 % 3 0 1800s 11%

Table 6.10: Partially specialized parallel resources: results for set D instances

µ = 0.25
Variables 6000

Constraints 1296
#VI 137

#Infeas #Opt CPUIP Gap %AddCost
ρ = 0.9 0 10 21s 0% 1.6%
ρ = 0.95 0 10 15s 0% 1.4%
ρ = 1 0 10 9s 0% 2.0%

Table 6.11: Partially specialized parallel resources: results for set I instances
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the substitution of the multi-resource valid inequalities of type (6.9) by stronger valid inequalities

of type (3.10) for the items which can be produced on a single resource.

However the cost of a high specialization of the production resources is rather high. Namely,

there is a large proportion of instances that are feasible while using versatile resources but become

infeasible while using specialized resources (26% of the instances when µ = 0.4). Moreover, for

set A instances, the increase in the optimal cost is signi�cant (11.6% on average when µ = 0.4).

As a consequence, a reasonable approach could be to use a low specialization of the production

resources. As shown by our computational experiments, this would lead to a good compromise

between an improved algorithmic performance and a deteriorated optimal cost. We note here

that the use of randomly generated instances makes it more di�cult to �nd general rules to

prohibit item-resource combinations. In industrial applications where items can be grouped into

families or where the total volume of demand is unequally allocated amongst the items, it may

be easier to identify a natural way of specializing the production resources.

This is the case for the small industrial example presented in section 5.3. Comparison of

results from tables 6.5 and 6.11 show that the instances are much easier to solve while using

the partial specialization of the resources de�ned by the plant management. This can be seen

as the mean computation time is divided by a factor of 30 (from 479s to 15s). Moreover, this

improvement can be achieved at the expense of a rather small increase (1.7% on average) in the

optimal cost of the obtained production plans. Hence these results, although preliminary, seem

to validate the policy followed by the production managers to plan the two extruding resources.

6.5 Conclusion

We focused on strengthening the basic formulation proposed in chapter 5 for the DLSP with

parallel resources and sequence-dependent changeover costs. We derived a family of strong valid

inequalities for the case where the available resources are identical and the production capacity is

constant throughout the planning horizon. These valid inequalities were obtained by extending

the valid inequalities proposed by [94].

The results of our computational experiments show that thanks to the proposed enhanced

formulation, the e�ciency of the Branch & Bound procedure embedded in CPLEX solver can

be signi�cantly improved. Moreover, our computational study provides some insights about

the impact of a partial specialization of the resources on both the algorithmic performance and

the total production cost. Namely, our results seem to indicate that a reasonable approach in

an industrial context could be to use a low specialization of the production resources in order

to reach a good compromise between an improved algorithmic performance and a deteriorated
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optimal cost.

To conclude, several interesting directions for future research are worth mentioning:

• In chapter 5, we identi�ed several interesting directions for the development of a heuristic

solution procedure for the problem. It may be worth investigating one of these directions

as it should enable us to solve larger instances of the problem. The obtained algorithm

could be used either alone or as part of a hybrid optimization procedure. We could for

instance speed up the Branch & Bound procedure embedded in a commercial solver by

providing it good feasible solutions obtained with a heuristic algorithm.

• We assumed in the present study that there is no changeover times between production runs

of di�erent items. For instance, in the small industrial example presented in section 5.3,

we did not model explicitly changeover times although they represent a signi�cant amount

of production loss. For the sake of simplicity, we chose to reduce the available capacity by

20% in each time period but this may lead to infeasible or inadequate production plans.

Considering positive changeover times would thus be an important further step towards a

better representation of real life planning problems.

• In the small industrial example, there is another operational aspect that we did not take

into account: the extruding machines use some tools with a limited lifetime to produce

propellant tubes. When one of this tool is used up, it must be changed so that there

are two types of changeovers on the machines: changeover due to a transition between two

production runs of di�erent items and changeover within a production lot due to tool wear.

A similar situation is described in [82] and in chapter 14 of [78] but, to the best of our

knowledge, a MIP formulation for the DLSP taking this operational aspect into account

has not been proposed yet. This would thus deserve further analysis.

• Finally, we only considered single-level problems. However in many industrial applications,

we have to deal with multi-level product structures. It would thus be worth addressing the

multi-level extensions of the models studied here.
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7.1 Conclusion

Lot-sizing is one of the many issues arising in the context of production planning. Its main

objective is to determine the timing and level of production so as to reach the best possible

trade-o� between minimizing setup and inventory holding costs and satisfying customer demand.

When a limited production capacity and a deterministic time-varying demand rate are assumed,

lot-sizing leads to the formulation of large-sized mixed-integer programs, most of which are hard

to solve.

In the present work, we dealt with one of the many capacitated dynamic lot-sizing models, the

Discrete Lot-sizing and Scheduling Problem or DLSP, and studied several variants of this problem

where changeover costs and/or times are sequence-dependent. In [98], the author proposes to

solve the DLSP with sequence-dependent changeover costs using a tight MIP formulation and a

standard commercial solver. Our contributions relate to extensions of this work to cases where

additional relevant industrial concerns are incorporated in the model.

In terms of problem modelling, we investigated the integration of various operational aspects

into the model:

• the presence of a multi-attribute product structure which can be exploited to reduce the

size of the optimization problem,

• the integration of positive changeover times to better model the production loss caused by

a changeover,

• the presence of identical parallel resources that need to be planned simultaneously.

For each of these extensions, we proposed a solution procedure aiming at providing exact

optimal solutions: a tight MIP formulation for the corresponding problem variant is derived and

the resulting mixed-integer program is solved thanks to a commercial MIP solver. Moreover, we

carried out computational experiments to evaluate these solution procedures. In general, our

results show the practical usefulness of the proposed algorithms at solving medium to large-sized

instances with a reasonable computational e�ort.

7.2 Future research

There are several challenging options for future research.

First, in order to derive tight MIP formulations, we made several assumptions on the pro-

duction system to be planned. Further analysis would be required in order to better model
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industrial applications by dropping some of these assumptions and integrating additional rel-

evant aspects such as a multi-level product structure or a time-varying production capacity.

Namely, as shown by our literature review in chapter 2, most multi-level capacitated lot-sizing

models assume sequence-independent changeover costs. It may thus be worth investigating the

multi-level extension of the DLSP with sequence-dependent changeover costs. Besides, we assume

in the present work a constant production capacity throughout the planning horizon in order to

be able to use or derive strong valid inequalities for the single-item subproblems embedded in

our models. However it is rather common in an industrial context that capacity varies over time.

Thus, even if single-item subproblems are NP-hard when capacity is time-varying, integrating a

time-varying capacity in the proposed models could be an interesting subject for future research.

Second, the lot-sizing models discussed here focus on the production stage of the supply chain.

However, separate optimization of the supply chain activities may result in a suboptimal global

solution. It may thus be worth investigating the integration of lot-sizing into more global models.

In the case where products have to be manufactured and shipped to di�erent distribution centers,

retailers or end customers, it makes sense to consider production and distribution simultaneously

at an operational level. In such a situation we should consider �xed and variables costs for both

production and transportation and coordinate lot-sizing and routing decisions. Examples of

integrated production-distribution planning models can be found in [24], [25], [32], [39], [103],

[75], [81] and [91].

Finally, one of the major limitations of the lot-sizing models discussed in the present work

is the assumption of deterministic demand and processing times. Production planning is mostly

based on data about future demands which are estimated by forecasting models. But there

will always be a more or less important forecast error. Moreover the production process may

be a�ected by uncertainties such as stochastic operation yields, quality problems or machine

failures. These uncertainties, both in demand and in processing times, may lead to a reduced

product availability and may thus deteriorate the customer service o�ered by the company.

In a deterministic planning environment, these problems are usually tackled by using safety

stocks or by planning production on a rolling horizon basis. But even if coupled with one of

these procedures, deterministic lot-sizing models fail at capturing the complexity of a stochastic

environment. Moreover, as pointed out by [55], deterministic and stochastic lot-sizing models

may suggest qualitatively di�erent optimal solutions. The integration of uncertainties into lot-

sizing models thus opens an interesting area for further research.



118 Conclusion and future research



Appendix A

Optimizing glass coating lines: MIP
model and valid inequalities

We provide the revised version of a paper in which we studied an optimization problem

arising in the context of glass production. This work was carried out as part of

our thesis project. However it does not relate directly to production planning but

rather to production line design. We therefore include it as an appendix to our main

manuscript. This paper is currently under review for European Journal of Operational

Research.
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A.1 Introduction

This work is motivated by an industrial problem arising in the glass industry in connection with

a speci�c transformation of �at glass called glass coating. Glass coating consists of depositing

in vacuum thin layers of metal on the surface of glass sheets. As a general rule, the process

involves several layers of distinct metals. This aims at giving the glass additional properties such

as a better thermal insulation: see e.g. [1] for an overview on the applications of coated glass.

According to the sequence and thickness of the layers, the property obtained is di�erent: hence

production managers have to cope with some product diversity.

Glass coating can be done on speci�c production lines called "soft-coating lines" using a

process called "cathodic sputtering" ([87]). Basically, these lines are made of a number of metallic

cathodes, each being used to spray or "sputter" a speci�c metal on the glass sheets. Each sheet

can go only once through the production line: during this single passage, all the metal layers

to be deposited on the sheet must be sputtered following the sequence imposed by the product

speci�cations.

The cathodes are ordered along the line: a con�guration of the line corresponds to a sequence

of cathodes. A cathode contains a �nite volume of a single metal. Once the metal of a cathode

has been used up, the cathode must be changed. But, due to technical reasons, this requires a

line shutdown during several days. Because of these time-consuming changeovers, soft-coating

lines are operated according to the following organization. All cathodes on the line are changed

together during a line shutdown. After this, production takes place continuously with this

con�guration during the next production run, the duration of which is typically about one

month. When the run is over, all cathodes are changed and a new con�guration is set up.

The problem addressed in the present paper concerns the determination of the optimal con-

�guration to be set up between two line shutdowns. This decision can be based on reliable future

demand forecasts: the requested products and the anticipated surface to be coated are assumed

to be perfectly known. The con�guration set up at the beginning of a production run should be

able to process all needed products in the quantity requested until the next production shutdown.

In this context, determining the con�guration to be set up consists of selecting among a set of

available cathodes the ones to be placed on the line, ordering them along the production line

and deciding how to use them to process the requested products. Because of its limited capacity,

a cathode may not be su�cient to sputter the entire volume needed to process a given layer.

Thus we have to consider the situation where a layer is sputtered by several cathodes placed at

di�erent positions on the line. The objective is to minimize the number of cathodes to be placed

on the line. Indeed, the larger the number of cathodes to be placed on the line during a setup, the
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greater the changeover operations will be and the more time will be lost for useful production.

Investigation of models and algorithms for solving the resulting discrete optimization problem is

the subject addressed in the present paper.

The problem under study shares some common features with a string processing problem

called the Shortest Common Supersequence problem (see e.g. [68]). It is however signi�cantly

di�erent due to various extra constraints which must be taken into account, one of the most

signi�cant being the limitations imposed on cathode capacity, which frequently result in the use

of a signi�cant number of additional positions.

The problem of optimizing glass coating lines can also be related to the "Assembly Line

Design Problem" (ALDP). In the ALDP, a production line is described as a series of workstations,

each being responsible for performing a speci�c set of assembly tasks. The problem consists of

selecting a piece of equipment for each workstation and deciding which tasks should be performed

by which workstation. Recent overviews on the literature on the ALDP can be found in [3] and

[13]. Nevertheless, the glass coating line problem is di�erent from the ALDP studied in most

papers (see e.g. [76] and [16]). The main reason is that in the ALDP, each assembly task is

performed exactly once, i.e is assigned to a single workstation on the line, whereas on a glass-

coating line, a layer can be sputtered by several cathodes placed at di�erent positions on the

line. The problem of optimizing glass coating lines can thus be seen as an extension of the ALDP

to the case where a task can be assigned to more than one workstation ("parallelized" in the

terminology of [13]). To the best of our knowledge, the only solution approach already available

to deal with this particular extension of the "Assembly Line Design Problem" can be found

in [12] who propose a �exible heuristic search procedure that can be modi�ed to solve various

extensions of the "Assembly Line Balancing Problem". In their paper, the authors assume that

the processing time of a parallelized task is equally allocated to the chosen workstations. On

the contrary, on a glass coating line, the volume of a layer sputtered by several cathodes can be

unequally divided among the various cathodes so that we have to decide about the allocation of

the metal volume to be sputtered among the chosen cathodes. Moreover, their solution approach

is purely heuristic whereas ours being based on a mixed integer linear programming (MIP) model

is intended to provide exact optimal solutions.

The paper is organized as follows. In section A.2, we introduce an initial mathematical

formulation of this problem as a mixed integer linear program. In section A.3, we consider

several ways to strengthen this initial formulation by adding valid inequalities of various types.

In section A.4, we discuss the results of some computational experiments showing the practical

usefulness of the proposed valid inequalities at improving the e�ciency of a Branch & Bound
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type procedure. Conclusions and perspectives for future work are presented in section A.5.

A.2 Problem formulation

We wish to determine the optimal con�guration of a glass coating line to be set up between two

production shutdowns. In this section, we introduce an initial formulation for this optimization

problem as a mixed integer linear program. To describe the problem precisely we introduce the

following notation.

The set of anticipated requirements is supposed to involve M metals and P distinct �nal

products. Each metal type is indexed by m: m = 1, 2, ..., M . Each product, indexed p =

1, 2, ..., P , is made of a glass sheet on which Op layers are to be sputtered. For a given product

p, a layer o = 1, 2, ..., Op is made of a speci�c metal denoted mpo and its thickness is given by

epo. The anticipated surface of product p to be processed during the production run, Sp, being

known, the volume of metal mpo needed to sputter the oth layer of product p can be deduced as:

Vpo = epo ∗ Sp.

Possible positions of cathodes on the production line are indexed by i = 1, 2, ..., N . These

positions are ordered according to the orientation of production �ow. The cathode i+1 is located

immediately after the cathode i along the line.

Available cathodes correspond to C types of cathodes. For each type of cathode c = 1, 2..., C,

we assume that we know mc, the corresponding metal, Vc, the volume of available metal in each

cathode and νc, the number of cathodes belonging to this type. We agree to use an additional

type c = 0 (the empty cathode) to represent free positions on the line. For each metal m, we

denote C(m) the subset of cathode types c such that mc = m. The complementary subset is

denoted C(m) = {c = 1, 2, ..., C st mc 6= m}.

A.2.1 First formulation of the problem as a MIP

Here we �rst provide a mathematical statement of the problem involving the following decision

variables:

- zi
c = 1 if a cathode of type c is placed in line position i, zi

c = 0 otherwise.

- yi
po = 1 if the cathode placed in position i is used to sputter the oth layer of product p, yi

po = 0

otherwise.

- xi
po gives the proportion of Vpo sputtered by the cathode placed in the ith position. Thus all

the xi
po are continuous variables in [0; 1].

Considering the criterion of minimizing the total number of positions used, the formulation
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proposed is:

min
N∑

i=1

C∑

c=1

zi
c (A.1)

∀i,
C∑

c=0

zi
c = 1 (A.2)

∀c,
N∑

i=1

zi
c ≤ νc (A.3)

∀i,∀p, ∀o, yi
po +

∑

c∈C(mpo)

zi
c ≤ 1 (A.4)

∀p,∀o,
N∑

i=1

xi
po = 1 (A.5)

∀i,∀p, ∀o, xi
po ≤ yi

po (A.6)

∀p,∀(o, o′) st o > o′,∀(i, i′) st i < i′, yi′
po′ + yi

po ≤ 1 (A.7)

∀i,∀m,
∑

c∈C(m)

Vcz
i
c −

∑

(p,o) st mpo=m

xi
poVpo ≥ 0 (A.8)

∀i ∈ [1;N − 1], zi
0 ≤ zi+1

0 (A.9)

∀i,∀p, ∀o, yi
po ∈ [0; 1], xi

po ∈ [0; 1] and ∀i,∀c, zi
c ∈ [0; 1] (A.10)

∀i,∀p, ∀o, yi
po ∈ {0; 1} and ∀i,∀c, zi

c ∈ {0; 1} (A.11)

The objective expressed by (A.1) is to minimize the total number of cathodes placed on the

line. Constraints (A.2) ensure that at most one cathode is placed in position i. zi
0 = 1 means

that the ith position on the line is free. Constraints (A.3) ensure that no more than the number

of available cathodes of type c, νc, are placed on the line. Constraints (A.4) guarantee the

compatibility between the metal mpo for layer o of product p and the metal of the cathode

placed in position i : we cannot open the connection yi
po = 1 if the cathode in position i contains

a metal other than mpo. Equalities (A.5) ensure that the demand is perfectly met: all the volume

of each layer should be sputtered. Constraints (A.6) link the continuous variables xi
po with the

binary variables yi
po: some volume of the oth layer of product p can be sputtered in position

i only if the connection is open. Precedence constraints (A.7) force compliance with the order

according to which the layers of a product should be sputtered: for a given product p, the layer

o which is above the layer o′ should not be processed with a cathode i placed before the cathode

i' if the latter is used to sputter o′. Inequalities (A.8) guarantee that the limited capacity of

the cathodes is not exceeded: for each type of metal, the volume remaining at the end of the
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Table A.1: Optimizing glass coating lines: data for problem P0
Product p = 1 o 1 2 3 4

Metal mpo Ag Au Ti Ag
Volume Vpo 210 400 100 100

Product p = 2 o 1 2 3
Metal mpo Ag Ti Au
Volume Vpo 410 800 200

Product p = 3 o 1 2 3
Metal mpo Au Pt Ti
Volume Vpo 4000 1000 1000

Cathode c 1 2 3 4
Number νc 5 5 5 5
Metal mc Ag Ti Au Pt
Volume Vc 1000 2000 3000 2000

Table A.2: Optimizing glass coating lines: optimal solution for problem P0
Line Volume sputtered for the layer (p, o)

i Cathode p = 1 p = 2 p = 3
1 Ag, 1000 (1,1) 210 (2,1) 410
2 Au, 3000 (1,2) 400 (3,1) 1200
3 Ti, 2000 (1,3) 100 (2,2) 800
4 Au, 3000 (2,3) 200 (3,1) 2800
5 Pt, 2000 (3,2) 1000
6 Ti, 2000 (3,3) 1000
7 Ag, 1000 (1,4) 100

production run in the cathode placed in position i should be non-negative. Constraints (A.9)

are used to enforce consecutive empty positions at the end of the line in case all positions are

not used.

A.2.2 A small illustrative example

Problem P0 is a small instance we use in order to illustrate the problem and its resolution. P0

involves M = 4 metals, P = 3 products made of 3 or 4 layers and N = 12 positions on the line.

Table A.1 gives the numerical data relative to this example. The optimal con�guration in this

case is a sequence of Z∗ = 7 cathodes. Table A.2 gives this sequence as well as the optimal use

of cathodes to process the 3 products. We may notice that the �rst layer of product p = 3 is

sputtered by two cathodes made of gold (placed at positions 2 and 4). This is due to the fact

that the volume of metal needed to sputter this layer exceeds the capacity of a single cathode

made of gold. In the sequel, P0 is used to illustrate various features of the proposed resolution

method.



Valid inequalities 125

A.3 Valid inequalities

The formulation introduced in section 2 enables us to solve exactly only small instances: com-

putation times for industrial problems of larger size using one of the best currently available

commercial MIP solver are prohibitively long as can be seen from table A.4. A possible ex-

planation for this lies in the observation that the linear relaxation of the problem (A.1)-(A.11)

only provides a poor approximation to the exact optimal integer solution values. In order to

address this issue, we investigate below several ways of strengthening the initial formulation (i.e.

of reducing the integrality gap). The enhancements discussed here focus on various aspects of

the problem under study, namely:

- available cathodes have a limited capacity,

- only one metal can be assigned to each position on the line,

- precedence constraints between layers of a given product must be respected.

In section 4, computational experiments will be reported showing that, thanks to these enhance-

ments, the linear relaxation is tightened and instances of signi�cantly larger size can be solved

exactly with standard integer linear programming tools.

A.3.1 Valid inequalities from limited capacity of available cathodes

For each metal, we can compute a lower bound on the number of cathodes containing this metal

to be placed on the line. This gives M valid inequalities (A.12) that can be added to the

formulation.

∀m,
N∑

i=1

∑

c∈C(m)

zi
c ≥

⌈∑P
p=1

∑
o=1...Op st mpo=m Vpo

Max{Vc, c ∈ C(m)}

⌉
(A.12)

Namely, for each metalm, dividing the global volume of metal needed to process all �nal products

by the volume contained in the maximum capacity cathode containing metal m and rounding

up gives the minimal number of cathodes of type c ∈ C(m) to be placed on the production line.

A.3.2 Valid inequalities from metal compatibility constraints

In this subsection, we discuss another family of valid inequalities to further strengthen the

formulation. In a �rst step, we derive a series of binary exclusion constraints. These constraints

are logical consequences of the formulation (A.1)-(A.11). In a second step, we exploit the special

structure of these constraints to derive stronger valid inequalities which correspond to maximal

clique constraints in the underlying graph. (See e.g. [74]). We note here that similar approaches

have been used on other optimization problems such as assembly line design ([76]), harvest

scheduling ([44]), cellular telecommunications networks design ([57]) or air line crew scheduling
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([104]). We observe however that in all the above-mentioned references the structures of the

underlying constraint graphs were signi�cantly di�erent from those studied in the present paper,

leading to clearly distinct separation algorithms. In particular, in [76], the separation of clique

constraints is carried out using either complete enumeration or a greedy heuristic whereas our

separation algorithms are exact and polynomial.

We �rst state various families of binary exclusion constraints. These constraints are implied

by the constraints (A.2)-(A.11) of the initial formulation but their explicit statement turns out

to be useful with respect to strengthening. They link pairs of binary variables related to the

same position i on the production line, but to di�erent products, layers or types of cathodes:

∀i, ∀c,∀p, ∀o st mc 6= mpo, z
i
c + yi

po ≤ 1 (A.13)

∀i, ∀p,∀o,∀p′,∀o′ st mpo 6= mp′o′ , y
i
po + yi

p′o′ ≤ 1 (A.14)

∀i, ∀p,∀(o, o′) st o 6= o′, yi
po + yi

po′ ≤ 1 (A.15)

∀i, ∀c,∀c′ st c 6= c′, zi
c + zi

c′ ≤ 1 (A.16)

Constraints (A.13) state that for a given position, there is an incompatibility between a cathode

and a given layer if the corresponding metals are di�erent. Similarly, constraints (A.14) state

that two layers made of distinct metals cannot be sputtered at the same position. Constraints

(A.15) are a consequence of the precedence constraints: they guarantee that two layers belonging

to a given product will not be sputtered at the same position on the production line. Constraints

(A.16) ensure that two distinct cathodes will not be placed at the same position on the production

line.

We next investigate a strengthened formulation for the constraints (A.13)-(A.16) based on

the analysis of the associated constraint graph and the use of valid inequalities deduced from

maximal cliques.

In the constraint graph G = (V,A), a node v ∈ V represents either a type of cathode placed

in a given position (i.e a variable zi
c) or a metal layer sputtered in a given position (i.e a variable

yi
po). There is an edge a ∈ A between two pairs of nodes if the corresponding variables are linked

by one of the binary exclusion constraints (A.13)-(A.16). Constraints (A.13)-(A.16) all deal with

variables related to a same position i on the production line. Therefore, there is no edge in

graph G between two nodes corresponding to di�erent positions on the line. In addition, for a

given position, the binary variables involved as well as the exclusion relations linking them are

identical. G is thus seen to decompose into N independent subgraphs with identical structure:

Gi = (V i,Ai) with V i the subset of nodes related to position i and Ai the subset of edges linking
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these nodes. In the remainder of this subsection, we will study one of these graphs Gi for an

arbitrary choice of i.

A set C ⊂ V i is called a clique if each pair of nodes in C is connected by an edge. A maximal

clique is a clique which is not properly contained in another clique. Each maximal clique in Gi

thus gives rise to a valid inequality called a maximal clique constraint stating that the sum of

corresponding binary variables should be less than or equal to 1. In the following, those are

referred to as type I valid inequalities. We observe that constraints (A.2) and (A.4) of the initial

formulation are among the clique constraints we can obtain thanks to the study of one of the

subgraphs Gi. But not all of them are maximal clique constraints. In the sequel, we show how

to exploit the special structure of the graphs Gi to strengthen these constraints and �nd other

maximal clique constraints, in particular constraints linking variables related to various distinct

products.

The structure of a constraint graph Gi is close to that of a complete multipartite graph, i.e

a graph with node set partitioned into clusters such that any two nodes belonging to di�erent

clusters have an edge connecting them and that there is no connection between nodes within a

single cluster. Here, the set of nodes V i can be divided into M + 1 subsets V i
m which will be

referred to as clusters. The cluster V i
m ⊂ V i is the subset of nodes in Gi related to metal m.

There is an additional cluster, denoted V i
0, made of a single node, namely the node related to

the variable zi
0. Thanks to constraints (A.13), (A.14) and (A.15), there is an edge between any

two nodes belonging to di�erent clusters. But, because of the constraints (A.15) and (A.16),

there are some additional edges between nodes belonging to the same cluster, namely in the

cases where the corresponding variables are related to two layers of the same product or to two

distinct types of cathodes.

The clusters V i
m can be seen to have a special structure. Namely let π(m) ⊂ {1, ..P} be

the set of indices of products p using metal m in at least one layer. The cluster V i
m is made of

1 + |π(m)| disjoint cliques (possibly containing a single node):

- K0
m, the clique containing the nodes related to cathode types c ∈ C(m),

- for each p ∈ π(m), Kp
m, the clique containing the nodes related to the layers of product p made

of metal m.

Proposition A.1 is a direct consequence of this particular graph structure.

Proposition A.1 A maximal clique in Gi is the union of M + 1 cliques, each clique belonging

to a di�erent cluster V i
m of the graph.

Figure A.1 illustrates the structure of a graph Gi for problem P0 introduced in section 2.2.

We show a maximal clique containing 6 nodes and yielding the valid inequality: zi
0 + zi

2 + yi
1,1 +
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Figure A.1: Optimizing glass coating lines: constraint graph Gi for problem P0

yi
1,4 + yi

2,3 + yi
3,2 ≤ 1. For the sake of simplicity, only the edges linking the nodes of this maximal

clique are displayed.

Using proposition A.1, we can compute the number of maximal cliques in a graph Gi as

the number of possible combinations obtained by choosing in each cluster V i
m one clique out of

(1 + |π(m)|) cliques:

Proposition A.2 The number of maximal cliques in a graph Gi is given by:
∏

m=1..M (1 + |π(m)|).

This number can be quite high: e.g for the industrial problem P20 (see appendix), Gi has

2880 maximal cliques so that 2880 ∗ 30 = 86400 type I valid inequalities should be added to the

formulation. Due to this large number, all maximal cliques constraints cannot be added a priori

to the model. They can, however, be generated as needed according to a cutting-plane strategy.

In order to do this, we need to address the so-called separation problem.

The separation problem here can be stated as follows: "given (z∗, y∗, x∗) the optimal solution

of the linear relaxation of the problem, �nd a violated type I valid inequality or decide that

(z∗, y∗, x∗) satis�es all type I valid inequalities ". To solve this problem, we use the following

separation algorithm:

(SEP1) Given (z∗, y∗, x∗) the optimal solution of (A.1)-(A.10), for i = 1...N ,
1. assign to each node in Gi a weight equal to the value of the corresponding variable,

2. for m = 0...M ,

- compute the weight of each clique in the cluster V i
m: this weight is de�ned as the sum of the

weight of all clique nodes.
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Figure A.2: Optimizing glass coating lines: constraint graph G1 for product p = 1 of problem P0

- select the clique Kmax
m of maximal weight wmax

m .

3. compute W =
∑

m=0...M wmax
m .

- if W > 1, the valid inequality given by the maximal clique C =
⋃

m=0...M (Kmax
m ) is violated,

- else all valid inequalities corresponding to position i are satis�ed.

If, for each position i = 1...N , W ≤ 1, then (z∗, y∗, x∗) satis�es all type I valid inequalities,

otherwise at least one violated valid inequality has been found. In the sequel, algorithm (SEP1)

is used to generate type I violated inequalities in order to strengthen the initial formulation.

A.3.3 Valid inequalities from precedence constraints between layers

We now focus on another subset of constraints in our problem: the precedence constraints

between layers of a given product. As in subsection 3.2, we exploit the special structure of these

binary exclusion constraints to derive a family of stronger valid inequalities corresponding to

maximal clique constraints and to further strengthen the formulation.

We �rst explain how this family of stronger valid inequalities is derived. We have two families

of binary exclusion constraints related to a single product p: constraints (A.7) of the original

model stated in section 2 and valid inequalities (A.15) stated in the previous subsection. We

de�ne the corresponding constraint graph Gp = (Vp,Ap). A node v ∈ Vp refers to a binary

variable yi
po and can thus be indexed by (i, o). There is an edge a ∈ Ap between two nodes of

Vp if there is a binary exclusion constraint (A.7) or (A.15) linking the corresponding variables.

Figure A.2 shows the graph G1 obtained for product p = 1 of problem P0. Only a fraction of

edges is presented, the edges drawn as dotted lines connect the nodes belonging to a maximal

clique.

Maximal cliques in graphs Gp have special features that can be exploited as shown by the

following result:
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Proposition A.3 A maximal clique in Gp consists of exactly Op nodes, each node related to a

di�erent layer of product p.

Proof A.1 No two nodes in Vp related to the same layer are connected so that the cardinality of

a clique in Gp cannot be greater than Op, the number of layers of product p.

In addition, a clique in Gp cannot be maximal if it does not include a node related to each

layer 1...Op. Namely, suppose K is a clique containing Op − 1 nodes. All nodes relate to a

di�erent layer so that all layers 1, 2, ...Op except layer o are present. K is thus the subset of

nodes K = {(i1, 1), (i2, 2), ..., (io−1, o − 1), (io+1, o + 1), ..., (iOp , Op)} with i1 ≥ i2 ≥ ... ≥ io−1 ≥
io+1 ≥ ... ≥ iOp.

We now show that K cannot be a maximal clique. Consider a node (io, o) such that io−1 ≥
io ≥ io+1. This node is connected to each node in K. We have namely:

- ∀ω = 1...o − 1, iω ≥ io and ω < o. Hence there is a precedence constraint linking yiω
pω and yio

po

and (io, o) is connected to (iω, ω).

- similarly, ∀ω = o + 1...Op, iω ≤ io and ω > o. Hence there is a precedence constraint linking

yiω
pω and yio

po and (io, o) is connected to (iω, ω).

So K
⋃{(io, o)} is a clique containing K: K is not a maximal clique of Gp.

Each maximal clique in Gp provides a valid inequality for our problem. These valid inequalities

will be referred to as type II valid inequalities.

We can compute the number of maximal cliques in a graph Gp by induction, as stated below:

Proposition A.4 Let Gp(N, L) be the graph for a product p made of L layers and a production

line with N positions. We denote by µ(N,L) the number of maximal cliques in Gp(N,L). We

have:

(i) ∀N, µ(N, 1) = N

(ii) ∀N,∀L ≥ 2, µ(N,L) =
∑N

i=1 µ(N − i + 1, L− 1)

(The proof is left to the reader).

The number of maximal cliques in Gp grows very fast with the problem size, in particular with

the number N of positions and the number L of layers. With the recurrence given above, the

reader can easily check that e.g. for the product p = 5 in problem P20 (N = 30, L = 8), there

are more than 38 billion type II valid inequalities. Hence it is not possible to include directly all

type II valid inequalities in the formulation. This is why we propose two ways of using them to

strengthen the formulation.

First, we remove constraints (A.7) from the formulation and replace them by a much smaller

number of type II valid inequalities. This involves �nding a subset of type II valid inequalities
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such that every binary exclusion constraint of type (A.7) is implied by at least one valid inequal-

ity belonging to this subset, i.e. to �nd a subset of maximal cliques in Gp such that each edge

a ∈ Ap is covered by at least one maximal clique belonging to this subset. The following heuristic

procedure (REP) was devised in order to identify such a subset while keeping the number of

clique constraints as small as possible. It is based on the idea that the edges of graph Gp can be

covered in a systematic way by relying on the angle they make with the horizontal axis. More

precisely, for each node (i, Op) in Vp, we generate the maximal cliques made up by the edges

forming an angle α with the horizontal axis such that tan(α) = b
a where a = 1...N − i and

b = 1...Op − 1.

(REP)
1. For p = 1...P , for i = 1...N , for a = 1...N − i, for b = 1...Op − 1,

generate the following type II valid inequality:

dOp
b
e∑

k=1

O(Op,k,b)∑

o=Op−b(k−1)

yI(i,k,a)
p,o ≤ 1

with I(i, k, a) = max(i + a(k − 1);N) and O(Op, k, b) = min(Op − bk + 1; 1).

2. Check wether each binary exclusion constraint of type (A.7) is covered by at least one gen-

erated type II valid inequality. If an uncovered binary exclusion constraint is found corre-

sponding to layers o and o′ < o and positions i and i′ > i, generate the following type II valid

inequality:
∑o′

ω=1 yi′
p,ω +

∑Op

ω=o′+1 yi
p,ω ≤ 1

3. For each generated type II valid inequality, check wether all binary exclusion constraints

it replaces are covered by more than one type II valid inequalities. If so, eliminate the

corresponding type II valid inequality.

As shown by the computational experiments to be presented in section 4, the use of procedure

(REP) results in a substantial reduction on the total number of constraints in the model as well

as in an enhancement of the formulation.

Second, in order to further strengthen the formulation, we generate additional type II valid

inequalities according to a cutting-plane strategy. This involves solving the following separation

problem for type II valid inequalities: "given (z∗, y∗, x∗) the optimal solution of the linear relax-

ation of the problem, �nd a type II violated valid inequality or decide that (z∗, y∗, x∗) satis�es

all type II valid inequalities". In order to solve it, we will make use of proposition A.5 below. We

�rst build the oriented graph G̃p = (Ṽp, Ãp) in which nodes in Ṽp correspond to binary variables
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Figure A.3: Optimizing glass coating lines: oriented graph G1 for product p = 1 of problem P0

yi
po and are indexed by (i, o). There is an oriented arc from node (i′, o′) to node (i, o) if i ≤ i′

and o = o′ + 1. We de�ne a path as a sequence of nodes linked by arcs directed from a node

to the following one. A maximal path is a path which is not contained in another path. Figure

A.3 shows the graph G̃1 obtained for product 1 in problem P0. Only a fraction of all arcs is

presented.

Proposition A.5 There is an 1-1 correspondence between the maximal cliques of Gp and the

maximal paths of the associated oriented acyclic graph G̃p.

Proof A.2 The graph G̃p is an oriented acyclic graph. Due its special structure, a maximal path

P in G̃p contains Op nodes, each one corresponding to a di�erent layer. P is a subset of nodes in

Ṽp: P = {(i1, 1)..., (io, o)..., (iOp , Op)} with i1 ≥ ... ≥ io ≥ ... ≥ iOp . Thanks to proposition A.3,

we know that the corresponding subset of nodes in Vp is a maximal clique of Gp. Thus a maximal

path of G̃p corresponds to a maximal clique in Gp. The converse is straightforward.

Thanks to proposition A.5, solving the separation problem for type II valid inequalities

reduces to the solution of a number of longest path problems in an acyclic graph, leading to the

following separation algorithm: (SEP2) Given (z∗, y∗, x∗) the optimal solution of (A.1)-(A.10),

for p = 1...P :
1. Assign to each node (i, o) in G̃p a weight equal to the value of the corresponding variable yi

po.

2. Find the maximal weight path P̃max in the acyclic oriented graph G̃p with a standard longest

path algorithm.

3. Let Wmax be the weight of P̃max.

- if Wmax > 1, the valid inequality given by the maximal clique Kmax corresponding to the

path P̃max is violated,
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- else all type II valid inequalities are satis�ed for product p.
If Wmax ≤ 1 for all products p = 1...P , then all type II valid inequalities are satis�ed,

otherwise we have found at least one violated inequality. In the sequel, algorithm (SEP2) is used

to generate type II violated inequalities in order to strengthen the initial formulation.

A.4 Computational results

In this section, we discuss the results of the computational experiments carried out to evaluate

the impact of the formulation enhancements presented in section 3. We also present an em-

pirical study carried out to show the in�uence of some problem parameters on the algorithmic

performance.

A.4.1 Comparison of the initial and enhanced formulations

In order to evaluate the impact of the proposed formulation enhancements, we solved the problem

with a standard MIP software (CPLEX 8.1.0) using either the initial formulation described in

section 2 or the enhanced formulation. More precisely, the strengthened formulation is obtained

thanks to the following procedure:
1. We use procedure (REP) to replace precedence constraints of type (A.7) by a subset of type

II valid inequalities and we add the M valid inequalities (A.12) to the formulation. We solve

the linear relaxation of the problem.

3. We use the separation algorithm (SEP1) to add type I violated valid inequalities.

4. When no more type I violated valid inequalities can be found, we look for type II violated

valid inequalities using the separation algorithm (SEP2).

5. When no more type II violated valid inequalities can be found, we go back to step 3 and

repeat until no more violated valid inequalities (whether of type I or type II) can be generated.
All the tests were run on a Pentium 4 (2.8 GHz) with 504 Mb of RAM, running under Windows

XP. We used the default settings of CPLEX solver. This means that some cutting planes, among

which are clique cuts, cover cuts and Gomory fractional cuts, are added automatically to the

model (see [51] for more details).

We used an industrial data set available in [72] to build 20 test problems. P20 is the industrial

problem presented in [72] and described in table A.7 (see Appendix). P0 is the simple example

introduced in section 2, P1 to P19 are simpler versions of P20. These instances were obtained

by using one or several of the following simpli�cations: removal of possible positions along the

production line; removal of some products; removal of some layers; removal of a metal; removal

of some cathode types. Table A.3 displays the following information for each problem tested: the
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number N of possible positions along the line; the total number
∑

p Op of layers to be sputtered;

the number C of cathode types; the number Var of binary variables and the number Const of

constraints in the initial formulation.

Table A.3: Optimizing glass coating lines: test problems
N

∑
p Op C Var Const Remarks

P0 12 10 4 180 1117 small example in section 2.2
P1 20 17 10 560 8826 P20 without products 4 and 5
P2 20 19 10 600 11378 P20 without products 2 and 3
P3 20 20 10 620 11799 P20 without products 1 and 5
P4 20 22 10 660 14351 P20 without products 1 and 3
P5 20 21 10 640 13170 P20 without products 1 and 2
P6 25 24 5 750 20333 P20 without product 5
P7 25 25 5 775 22484 P20 without product 4
P8 25 26 5 800 24335 P20 without product 3
P9 25 25 5 775 22484 P20 without product 2
P10 25 28 5 850 27137 P20 without product 1
P11 25 26 8 875 20108 P20 without metal Ag
P12 25 22 8 775 13004 P20 without metal Ti
P13 25 25 8 750 17957 P20 without metal Au
P14 25 28 8 925 22310 P20 without metal Pt
P15 25 25 8 850 17032 P20 without metal Steel
P16 25 15 5 525 5449 P20: at most 3 layers per product
P17 25 20 5 650 10204 P20: at most 4 layers per product
P18 25 24 5 750 15208 P20: at most 5 layers per product
P19 25 28 5 850 21437 P20: at most 6 layers per product
P20 30 32 26 1770 41772 see Appendix

The computational results obtained with the initial and enhanced formulations are displayed

in table A.4. For both series of results, we provide:

- Const: the number of constraints in the formulation. For the enhanced formulation, this is the

value obtained after applying the procedure (REP).

- Gap0: the initial gap, i.e. the relative di�erence between the lower bound provided by the

linear relaxation of the problem and the best integer solution found after at most 8 hours of

computation. For the enhanced formulation, we use the value obtained after the strengthening

procedure has stopped.

- Nodes: the number of nodes of the search tree explored before the optimal solution is found or

the computation time limit of 8 hours is reached.

- CPUIP : the time in seconds required to �nd the optimal integer solution when it has been

found.

- Gap: the gap obtained after at most 8 hours of computation between the best integer solution

found and the best lower bound found.
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For the enhanced formulation, we also provide:

- CutsI and CutsII : the number of type I and type II cuts added to the formulation during the

strengthening procedure,

- CPUstr: the time in seconds spent to strengthen the initial formulation, i.e. to carry out

procedure REP and to generate violated type I and type II valid inequalities.

As can been seen from table A.4 (columns 2-6), using the initial formulation, only 7 out of the

21 problems can be solved exactly within the computational limits. Despite long computation

times (8 hours), non-optimal integer solutions are found for 13 problems and in these cases, the

remaining gaps obtained remain quite large (16% on average). In addition, no feasible integer

solution can be found for problem P20.

We compare these results with the ones obtained while using the enhanced formulation to

solve the problem. The results from table A.4 (columns 7-14) show that computation times

for small instances are decreased and that more instances (11 out of 21 problems) are solved

exactly. In addition, using the enhanced formulation, a feasible integer solution is found for

all test problems and, in case the optimal integer solution could not be found after 8 hours of

computation, the remaining gap is signi�cantly smaller (9.6 % on average).

Comparison between the results obtained with the two formulations thus shows that the

enhanced formulation improves the e�ciency of the Branch & Bound procedure. The main

explanatory factor for this is that the lower bounds provided by the linear relaxation of the

enhanced formulation (table A.4 column 11) appear to be stronger than the ones provided by

the linear relaxation of the initial formulation (table A.4 column 3). Indeed, the integrality gap

(i.e the relative di�erence between ZLP and ZIP ) is reduced on average from around 22% with the

initial formulation to about 7.1% with the enhanced formulation. Moreover, it is worth pointing

out here that the results provided in table A.4 strongly suggest that the automatic cutting-plane

generation procedures embedded in the CPLEX software do not seem able to identify the type

I and type II valid inequalities exhibited and discussed in section 3.

A.4.2 In�uence of cathode capacity

We carried out some additional numerical tests to evaluate the in�uence of cathode capacity

on the algorithmic performance. We considered problems P1 to P5 described in table A.3 and

we modi�ed the data relative to the cathodes. More precisely, we considered only one type of

cathodes per metal and we built instances with various cathode capacity values:

- in�nite capacity,

- large capacity: for each metal, the available cathode is the cathode with the largest volume



136 Optimizing glass coating lines: MIP model and valid inequalities

Table A.4: Optimizing glass coating lines: results with the initial and enhanced formulations
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Table A.5: Optimizing glass coating lines: in�uence of cathodes capacity
Cathode capacity Gap0 Opt Gap CPUIP (s) #Nodes

in�nite 11.4 5 0 2617 8781
large 5.4 5 0 10930 30983

medium 11.9 1 8.8 > 28800 105480
small 2.6 1 2.6 > 28800 39088

among those described in table A.7,

- medium capacity: for each metal, the available cathode is the cathode with the second largest

volume among those described in table A.7,

- small capacity: for each metal, the available cathode is the cathode with the third largest

volume among those described in table A.7.

We used the enhanced formulation to solve these instances. Table A.5 displays the computational

results. We provide Gap0, Gap, CPUIP and Nodes as de�ned in subsection A.4.1 and Opt the

number of instances that could be solved to optimality within the computation limit. These

results suggest that instances with medium or small capacity cathodes are more di�cult to solve

than instances with in�nite or large capacity cathodes. Namely, all instances using in�nite or

large capacity could be solved to optimality within 2 hours of computation whereas only 2 out of

the 10 instances using medium or small capacity cathodes could be solved to optimality within 8

hours of computation. Moreover no feasible solution could be found for 2 out of the 5 instances

using small capacity cathodes.

A.4.3 In�uence of product composition

We �nally discuss the results of some experiments carried out to evaluate the in�uence of product

composition, i.e. of the sequence of metal layers to be deposited on the glass sheets. We built

15 instances involving M = 5 metals, P = 5 products made of 6 layers, N = 20 positions on the

line, C = 5 in�nite capacity cathodes. They di�er only with respect to the sequence of metal

layers:

- In E1 to E5, there is a basic sequence of metal de�ned by product 1. Products 2 to 5 are

obtained by a simple modi�cation of this sequence (switch between two consecutive layers or

modi�cation of the metal for one layer).

- In R1 to R5, the sequences of metal layers are randomly generated from a discrete uniform

DU(1, 5) distribution. If two consecutive layers are made of the same metal, we repeat the

random generation until a product is obtained without any identical consecutive layers.

- In H1 to H5, the sequence of layers for each product are chosen in order to obtain supposedly
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di�cult instances (products made of reverse sequences of metal, products made of sequences

with no common metal...).

In order to compare the generated instances, we introduce a measure aiming at evaluating

the di�erence between the products of a given instance with respect to the sequence of metal

layers. This di�erence denoted d is de�ned as: d =
∑P

p1=1

∑P
p2=p1+1 d(p1, p2) where d(p1, p2) =

SCS(p1, p2)− LCS(p1, p2). SCS(p1, p2) is de�ned as the minimum number of cathodes needed

to sputter products p1 and p2 and LCS(p1, p2) is the maximum number of cathodes that can be

used to sputter layers from both p1 and p2. SCS(p1, p2) and LCS(p1, p2) can be computed by a

dynamic programming algorithm as respectively the Shortest Common Supersequence containing

p1 and p2 and the Longest Common Subsequence contained in p1 and p2.

We used the enhanced formulation to solve these instances. The computational results are

displayed in table A.6. These results suggest that instances with a large value of d are more

di�cult to solve than instances with a small value of d. Namely, all instances E1-E5 could be

solved to optimality within one hour of computation whereas the mean computation time for the

instances R1-R5 and H1-H5 is above 4.5 hours. Moreover no feasible solution could be found

for 2 out of the 5 instances H1-H5. It is worth pointing out that for the instance P20 presented

in Appendix d = 5.8. This seems to indicate that in a industrial situation, the products to be

made on the glass coating line are quite di�erent with respect to the sequence of metal layers to

be deposited, leading to an additional di�culty to solve the problem.

Table A.6: Optimizing glass coating lines: in�uence of product composition
Instances d Gap0 #Opt Gap CPUIP (s) #Nodes
E1-E5 2.8 22.4 5 0 2184 7405
R1-R5 5.5 13.1 4 6.5 14642 32325
H1-H5 6.4 11.1 3 0 19075 29792

A.5 Conclusion and perspectives

In this paper, we studied an optimization problem arising in the context of the glass industry in

connection with a speci�c transformation of �at glass called glass coating. In order to improve an

initial MIP formulation, three families of valid inequalities have been discussed: valid inequalities

from limited capacity constraints; valid inequalities from metal compatibility constraints (type

I valid inequalities); valid inequalities from precedence constraints between layers of a given

product (type II valid inequalities). The results of our computational experiments con�rm the

positive impact of the proposed enhancements on the computation times and solution quality.
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Among the possible research directions suggested by the present work, it might be worth

exploring other optimization criteria such as minimizing the volume of unused metal remaining

in the cathodes at the end of the production run. Indeed, partially consumed cathodes at the

end of a production run represent a cost, either as a direct loss because of the unused metal or

as additional constraints for the forthcoming production run because they will impose the use

of a set of initial reduced capacity cathodes. Looking for other families of valid inequalities in

order to further improve the formulation might also be an interesting research direction.

Appendix

Table A.7: Optimizing glass coating lines: data for problem P20
p = 1 o 1 2 3 4

mpo Ag Au Ti Ag
Vpo 2200 2400 2000 2000

p = 2 o 1 2 3 4 5 6 7
mpo Ag Au Ti St Au Ti Ag
Vpo 2100 1300 1000 1000 700 2000 4000

p = 3 o 1 2 3 4 5 6
mpo Au Pt Ti St Au Pt
Vpo 2000 1000 1000 2400 1000 2000

p = 4 o 1 2 3 4 5 6 7
mpo St Ti St Au Pt Ti St
Vpo 1500 1000 2400 1000 750 500 1000

p = 5 o 1 2 3 4 5 6 7 8
mpo Au Pt Ti St Ag St Ti St
Vpo 1000 750 500 1000 2000 1500 1000 2400

c 1 2 3 4 5 6 7 8 9 10
νc 10 10 10 10 10 10 10 10 10 10
mc Ag Ag Ag Ag Ag Ag Ti Ti Ti Ti
Vc 300 500 1000 2000 3000 4000 4000 3000 2500 1000
c 11 12 13 14 15 16 17 18 19 20
νc 10 10 10 10 10 10 10 10 10 10
mc Ti Au Au Au Au Au St St St St
Vc 400 100 500 1000 2500 3500 500 750 1000 1500
c 21 22 23 24 25 26
νc 10 10 10 10 10 10
mc St Pt Pt Pt Pt Pt
Vc 2000 500 750 1000 1500 2000
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