A. 3. Implémentationimpl´implémentation-des-algorithmes-bibliographie-[-aat07-]-g, M. Alenya, C. Alberich, and . Torras, Depth from the visual motion of a planar target induced by zooming, IEEE International Conference on Robotics and Automation, pp.4727-4732, 2007.

S. [. Arulampalam, N. Maskell, T. Gordon, and . Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.174-188, 2002.
DOI : 10.1109/78.978374

P. [. Ayer, J. Schroeter, and . Bigün, Segmentation of moving objects by robust motion parameter estimation over multiple frames, European conference on Computer Vision, pp.316-327, 1994.
DOI : 10.1007/BFb0028364

C. [. Alenyà and . Torras, Artificial Intelligence Research and Development, chapter Monocular object pose computation with the foveal-peripheral camera of the humanoid robot Armar-III, 2008.

M. Bertozzi, A. Broggi, M. Cellario, A. Fascioli, P. Lombardi et al., Artificial vision in road vehicles, IEEE Special Issue on Technology and Tools for Visual Perception, pp.1258-1271, 2002.
DOI : 10.1109/JPROC.2002.801444

A. [. Bertozzi, A. Broggi, and . Fascioli, Vision-based intelligent vehicles: State of the art and perspectives, Robotics and Autonomous Systems, vol.32, issue.1, pp.1-16, 2000.
DOI : 10.1016/S0921-8890(99)00125-6

M. Bertozzi, A. Broggi, P. Grisleri, T. Graf, and M. Meinecke, Pedestrian detection in infrared images. Intelligent Vehicles Symposium, Proceedings. IEEE, pp.662-667, 2003.

P. [. Broggi, P. C. Cerri, and . Antonellop, Multi-resolution vehicle detection using artificial vision, IEEE Intelligent Vehicles Symposium, 2004
DOI : 10.1109/IVS.2004.1336400

A. Broggi, A. Fascioli, M. Carletti, T. Graf, and M. Meinecke, A multi-resolution approach for infrared visionbased pedestrian detection. Intelligent Vehicles Symposium, pp.7-12, 2004.

]. C. Bra07 and . Braillon, Détection d'obstacles par fusion de flux optique et stéréovision dans des grilles d'occupation, 2007.

E. [. Bar-shalom and R. O. Tse, Tracking in a cluttered environment with probabilistic data association, Automatica, vol.11, issue.5, 1975.
DOI : 10.1016/0005-1098(75)90021-7

. Duda, Uniqueness of the gaussian kernel for scale-space filtering, IEEE Transactions on pattern analysis and machine intelligence, vol.8, issue.1, pp.26-33, 1985.

]. A. Bwf-+-05, J. Bruhn, C. Weickert, T. Feddern, C. Kohlberger et al., Variational optical flow computation in real time, IEEE Transactions on Image Processing, vol.14, issue.5, pp.608-615, 2005.

J. [. Bruhn, C. Weickert, and . Schnörr, Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods, International Journal of Computer Vision, vol.61, issue.3, pp.61211-231, 2005.
DOI : 10.1023/B:VISI.0000045324.43199.43

]. T. Cam94 and . Camus, Real-time optical flow, 1994.

]. J. Can86 and . Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell, vol.8, issue.6, pp.679-698, 1986.

D. [. Camus, M. Coombs, T. Herman, and . Hong, Real-time single-workstation obstacle avoidance using only wide-field flow divergence, Proceedings of 13th International Conference on Pattern Recognition, pp.323-330, 1996.
DOI : 10.1109/ICPR.1996.546964

C. [. Collado, A. Hilario, . De-la, and J. M. Escalera, Model based vehicle detection for intelligent vehicles, IEEE Intelligent Vehicles Symposium, 2004, pp.572-577, 2004.
DOI : 10.1109/IVS.2004.1336447

M. [. Coombs, T. Herman, M. Hong, A. Collins, H. Lipton et al., Algorithms for cooperative multisensor surveillance Fast computation of scale normalised gaussian receptive fields Scale Space Methods in Computer Vision World modeling and position estimation for a mobile robot using ultrasonic ranging Non-parametric model for background subtraction Edge landmarks in monocular slam Background modeling for segmentation of video-rate stereo sequences Ewald and V. Willhoeft. Laser scanners for obstacle detection in automotive applications. Intelligent Vehicles Symposium A generic deformable model for vehicle recognition Determining optical flow, IEEE International Conference on Robotics and Automation European Conference on Computer Vision British Machine Vision Conference IEEE Computer Society Conference on Computer Vision and Pattern Recognition BMVCGav00] D. M. Gavrila. Pedestrian detection from a moving vehicle Lecture Notes In Computer Science, Proceedings of the 6th European Conference on Computer Vision Stiller. Vehicle detection fusing 2d visual features Proceedings of the IEEE Intelligent Vehicles Symposium Artificial Intelligence, pp.49-591456, 1981.

A. [. Hartley and . Zisserman, Multiple View Geometry In Computer Vision, 2000.
DOI : 10.1017/CBO9780511811685

A. [. Isard and . Blake, Condensation?conditional density propagation for visual tracking, International Journal of Computer Vision, vol.29, issue.1, pp.5-28, 1998.
DOI : 10.1023/A:1008078328650

K. [. Javed, M. Shafique, and . Shah, A hierarchical approach to robust background subtraction using color and gradient information. Motion and Video Computing, pp.22-27, 2002.

J. [. Julier and . Uhlmann, New extension of the Kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI, pp.182-193, 1997.
DOI : 10.1117/12.280797

]. R. Kal60 and . Kalman, A new approach to linear filtering and prediction problems, Journal of basic Engineering, 1960.

T. [. Ke and . Kanade, Transforming camera geometry to a virtual downward-looking camera : robust egomotion estimation and ground-layer detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.390-397, 2003.

J. J. Koenderink, The structure of images, Biological Cybernetics, vol.27, issue.269, pp.363-370, 1984.
DOI : 10.1007/BF00336961

C. [. Koike, P. Pradalier, E. Bessiere, and . Mazer, Proscriptive bayesian programming application for collision avoidance
URL : https://hal.archives-ouvertes.fr/hal-00019260

]. K. Kru99, ]. R. Krugerlat02, D. Labayrade, J. Aubert, and . Tarel, Robust real-time ground plane motion compensation from a moving vehicle Real time obstacle detection in stereovision on non flat road geometry through " v-disparity " representation, Machine Vision and Applications Intelligent Vehicle Symposium, pp.203-212646, 1999.

N. David and . Lee, A theory of visual control of braking based on information about time-to-collision. Perception, 1976.

N. David and . Lee, Plummeting gannets : a paradigm of ecological optics, Nature, vol.293, 1981.

[. Lindeberg, Scale-space for discrete signals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.3, pp.234-254, 1990.
DOI : 10.1109/34.49051

[. Lindeberg, Discrete derivative approximations with scale-space properties: A basis for low-level feature extraction, Journal of Mathematical Imaging and Vision, vol.9, issue.4, pp.349-376, 1993.
DOI : 10.1007/BF01664794

[. Lindeberg, Scale-space Theory in Computer Vision, 1994.
DOI : 10.1007/978-1-4757-6465-9

[. Lucas and T. Kanade, Feature detection with automatic scale selection An iterative image registration technique with an application to stereo vision, Proc. DARPA IU Workshop, pp.79-116, 1981.

S. [. Lemaire and . Lacroix, Monocular-vision based SLAM using Line Segments, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.2791-2796, 2007.
DOI : 10.1109/ROBOT.2007.363894

]. D. Low99 and . Lowe, Object recognition from local scale-invariant feature, International Conference on Computer Vision, pp.1150-1157, 1999.

]. D. Low04 and . Lowe, Distinctive image features from scale-invariant keypoints, IJCV, pp.91-110, 2004.

D. N. Lee, D. S. Young, and D. Rewt, How do somersaulters land on their feet ? Journal of Experimental Psychology : Human Perception and Performance Location and relative speed estimation of vehicles by monocular vision, Proceedings of the IEEE Intelligent Vehicles Symposium, pp.1195-1202, 1992.

N. [. Mittal and . Paragios, Motion-based background subtraction using adaptive kernel density estimation, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.302-309525, 2001.
DOI : 10.1109/CVPR.2004.1315179

C. [. N-`-egre, J. L. Braillon, C. Crowley, and . Laugier, Real-time Time-To-Collision from variation of Intrinsic Scale, Proc. of the Int. Symp. on Experimental Robotics, 2006.

J. [. N-`-egre, C. Crowley, and . Laugier, Scale invariant segment detection and tracking, Proc. of the Int. Symp. on Experimental Robotics, 2008.

L. [. Nanda, C. Davispp99, T. Papageorgiou, K. I. Poggio-regan, and . Beverly, Probabilistic template based pedestrian detection in infrared videos Looming detectors in the human visual pathways, Intelligent Vehicle Symposium Trainable pedestrian detection. International Conference on Image Processing, pp.15-2035, 1978.

[. Schiff, J. A. Caviness, J. J. Gibsonsf98-]-h, B. J. Sun, and . Frost, Persistent fear responses in rhesus monkeys to the optical stimulus of " looming Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons, Science Nature Neuroscience, vol.136, issue.14, pp.982-983296, 1962.

M. A. Sotelo, D. Fernandez, J. E. Naranjo, C. Gonzalez, R. Garcia et al., Vision-based adaptive cruise control for intelligent road vehicles, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.64-69, 2004.
DOI : 10.1109/IROS.2004.1389330

R. [. Schmid, C. Mohr, and . Bauckhage, Evaluation of interest point detectors, International Journal of Computer Vision, vol.37, issue.2, pp.151-172, 2000.
DOI : 10.1023/A:1008199403446

URL : https://hal.archives-ouvertes.fr/inria-00548302

O. [. Stein, A. Mano, and . Shashua, Vision-based acc with a single camera : bounds on range and range rate accuracy. Intelligent Vehicles Symposium, pp.120-125, 2003.

M. [. Seki and . Okutomi, Robust obstacle detection in general road environment based on road extraction and pose estimation. Intelligent Vehicles Symposium, pp.437-444, 2006.

A. [. Tran and . Lux, A method for ridge extraction, Asian Conference on Computer Vision, 2004.

]. P. Tor95 and . Torr, Motion Segmentation and Outlier Detection, 1995.

M. [. Viola and . Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.511-518, 2001.
DOI : 10.1109/CVPR.2001.990517

M. [. Viola, D. Jones, and . Snow, Detecting Pedestrians Using Patterns of Motion and Appearance, International Journal of Computer Vision, vol.20, issue.3, pp.153-161, 2005.
DOI : 10.1007/s11263-005-6644-8

G. Welch and G. Bishop, An introduction to the kalman filter, 1995.

]. A. Wit83, F. Witkin, X. Xu, K. Liu, and . Fujimura, Scale-space filtering Pedestrian detection and tracking with night vision, IEEE Transactions on Intelligent Transportation Systems, vol.6, issue.1, pp.1019-102263, 1983.

C. [. Zhao and . Thorpe, Stereo- and neural network-based pedestrian detection, IEEE Transactions on Intelligent Transportation Systems, vol.1, issue.3, pp.148-154, 2000.
DOI : 10.1109/6979.892151