B. Quantiques, M. Optiques-bibliographie, ]. H. Benisty, J. M. Gérard, R. Houdré et al., Confined photon systems : fundamental and applications, 1999.

E. M. Purcell, Spontaneous Emission Probabilities at Radio Frequencies, Phys. Rev, vol.69, issue.3, p.681, 1946.
DOI : 10.1007/978-1-4615-1963-8_40

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of Cavity-Enhanced Single-Atom Spontaneous Emission, Physical Review Letters, vol.50, issue.24, pp.1903-1906, 1983.
DOI : 10.1103/PhysRevLett.50.1903

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard et al., Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity, Physical Review Letters, vol.81, issue.5, pp.1110-1113, 1998.
DOI : 10.1103/PhysRevLett.81.1110

C. C. Gerry and P. L. Knight, Introductory Quantum Optics, 2005.
DOI : 10.1017/CBO9780511791239

R. Loudon, The quantum theory of light, 1973.

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Processus d'intéraction entre photons et atomes, EDP Science, 1996.

J. M. Raimond and S. Haroche, Confined Electrons and Photons : new physics and applications . NATO ASI Series, 1995.

R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Physical Review Letters, vol.68, issue.8, pp.1132-1135, 1992.
DOI : 10.1103/PhysRevLett.68.1132

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. L. Roux, Growth by molecular beam epitaxy and characterization of InAs/GaAs strained???layer superlattices, Applied Physics Letters, vol.47, issue.10, pp.471099-1101, 1985.
DOI : 10.1063/1.96342

S. Guha, A. Madhukar, and K. C. Rajkumar, Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained In(xGa(1-x)As on GaAs(100) Applied Physics Letters, pp.572110-2112, 1990.

J. Y. Yao, T. G. Andersson, and G. L. Dunlop, As/GaAs, Journal of Applied Physics, vol.69, issue.4, pp.2224-2230, 1991.
DOI : 10.1063/1.348700

J. M. Gerard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouche et al., Optical investigation of the self-organized growth of InAs/GaAs quantum boxes, Journal of Crystal Growth, vol.150, pp.351-356, 1995.
DOI : 10.1016/0022-0248(95)80234-4

R. Heitz, T. R. Ramachandran, A. Kalburge, Q. Xie, I. Mukhametzhanov et al., Observation of Reentrant 2D to 3D Morphology Transition in Highly Strained Epitaxy: InAs on GaAs, Physical Review Letters, vol.78, issue.21, pp.784071-4074, 1997.
DOI : 10.1103/PhysRevLett.78.4071

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Direct formation of quantum???sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Applied Physics Letters, vol.63, issue.23, pp.3203-3205, 1993.
DOI : 10.1063/1.110199

G. D. Lian, J. Yuan, L. M. Brown, G. H. Kim, and D. A. Ritchie, Modification of InAs quantum dot structure by the growth of the capping layer, Applied Physics Letters, vol.73, issue.1, pp.49-51, 1998.
DOI : 10.1063/1.121719

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, Surface morphology evolution during the overgrowth of large InAs???GaAs quantum dots, Applied Physics Letters, vol.79, issue.22, pp.793615-3617, 2001.
DOI : 10.1063/1.1420579

A. Lema??trelema??tre, G. Patriarche, and F. Glas, Composition profiling of InAs???GaAs quantum dots, Applied Physics Letters, vol.85, issue.17, pp.3717-3719, 2004.
DOI : 10.1063/1.1811796

B. Legrand, B. Grandidier, J. P. Nys, D. Stiévenard, J. M. Gérard et al., Scanning tunneling microscopy and scanning tunneling spectroscopy of self-assembled InAs quantum dots, Applied Physics Letters, vol.73, issue.1, pp.96-98, 1998.
DOI : 10.1063/1.121792

. Ph, G. Lelong, and . Bastard, Binding energies of excitons and charged excitons in GaAs/Ga(In)As quantum dots, Solid State Communications, vol.98, pp.819-823, 1996.

J. Y. Marzin, J. M. Gérard, A. Izraël, D. Barrier, and G. Bastard, Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs, Physical Review Letters, vol.73, issue.5, pp.716-719, 1994.
DOI : 10.1103/PhysRevLett.73.716

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, . Ph et al., Line narrowing in single semiconductor quantum dots: Toward the control of environment effects, Physical Review B, vol.66, issue.4, p.41306, 2002.
DOI : 10.1103/PhysRevB.66.041306

URL : https://hal.archives-ouvertes.fr/hal-00546650

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff et al., Dephasing in InAs/GaAs quantum dots, Physical Review B, vol.60, issue.11, pp.607784-7787, 1999.
DOI : 10.1103/PhysRevB.60.7784

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. Mao et al., Timeresolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection, Applied Physics Letters, issue.11, pp.761380-1382, 2000.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-ribeiro et al., Charged Excitons in Self-Assembled Semiconductor Quantum Dots, Physical Review Letters, vol.79, issue.26, pp.5282-5285, 1997.
DOI : 10.1103/PhysRevLett.79.5282

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin et al., Quantum boxes as active probes for photonic microstructures: The pillar microcavity case, Applied Physics Letters, vol.69, issue.4, pp.449-451, 1996.
DOI : 10.1063/1.118135

L. C. Andreani, G. Panzarini, and J. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Physical Review B, vol.60, issue.19, pp.13276-13279, 1999.
DOI : 10.1103/PhysRevB.60.13276

J. R. Guest, T. H. Stievater, X. Li-cheng, D. G. Steel, D. Gammon et al., Measurement of optical absorption by a single quantum dot exciton, Physical Review B, vol.65, issue.24, p.65241310, 2002.
DOI : 10.1103/PhysRevB.65.241310

J. Hours, P. Senellart, E. Peter, A. Cavanna, and J. Bloch, Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot, Physical Review B, vol.71, issue.16, p.71161306, 2005.
DOI : 10.1103/PhysRevB.71.161306

J. M. Gerard and B. Gayral, InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics, Physica E: Low-dimensional Systems and Nanostructures, pp.131-139, 2001.
DOI : 10.1016/S1386-9477(00)00187-9

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nature Physics, vol.76, issue.2, pp.81-90, 2006.
DOI : 10.1038/nphys227

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs et al., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, vol.89, issue.7014, pp.432200-203, 2004.
DOI : 10.1038/nature03119

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn et al., Strong coupling in a single quantum dot???semiconductor microcavity system, Nature, vol.65, issue.7014, pp.432197-200, 2004.
DOI : 10.1103/PhysRevLett.89.233001

E. Peter, P. Senellart, D. Martrou, A. Lema??trelema??tre, J. Hours et al., Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity, Physical Review Letters, vol.95, issue.6, p.95067401, 2005.
DOI : 10.1103/PhysRevLett.95.067401

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. Mckeever et al., Observation of the Vacuum Rabi Spectrum for One Trapped Atom, Physical Review Letters, vol.93, issue.23, p.93233603, 2004.
DOI : 10.1103/PhysRevLett.93.233603

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon et al., AlAs???GaAs micropillar cavities with quality factors exceeding 150.000, Applied Physics Letters, vol.90, issue.25, p.90251109, 2007.
DOI : 10.1063/1.2749862

S. Noda, M. Fujita, and T. Asano, Spontaneous-emission control by photonic crystals and nanocavities, Nature Photonics, vol.88, issue.8, pp.449-458, 2007.
DOI : 10.1038/nphoton.2007.141

A. Yariv, Optical electronics in modern communications, 1997.

T. Kobayashi, Novel-type lasers, emitting devices, and functional optical devices by controlling spontaneous emission, SPIE, 1982.

Y. Bjork and G. Yamamoto, Analysis of semiconductor microcavity lasers using rate equations, IEEE Journal of Quantum Electronics, vol.27, issue.11, pp.2386-2396, 1991.
DOI : 10.1109/3.100877

U. Mohideen and R. E. Slusher, Microcavities and photonic bandgaps : Physics and applications , page 363, NATO ASI Series, 1996.

M. Fujita, R. Ushigome, and T. Baba, Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 microA, Electron. Lett, vol.36, 2000.

S. M. Thiyagarajan, A. F. Levi, C. K. Lin, I. Kim, P. D. Dapkus et al., Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers, Electronics Letters, vol.34, issue.24, p.342333, 1998.
DOI : 10.1049/el:19981639

T. Ide, T. Baba-tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature, Applied Physics Letters, vol.85, issue.8, pp.1326-1328, 2004.
DOI : 10.1063/1.1787157

J. M. Gérard and B. Gayral, Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, Journal of Lightwave Technology, vol.17, issue.11, p.2089, 1999.
DOI : 10.1109/50.802999

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin et al., Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Applied Physics Letters, vol.79, issue.18, pp.2865-2867, 2001.
DOI : 10.1063/1.1415346

C. Santori, D. Fattal, J. Vukovi´cvukovi´c, G. S. Solomon, and Y. Yamamoto, Indistinguishable photons from a single-photon device, Nature, vol.65, issue.6907, pp.594-597, 2002.
DOI : 10.1016/S0038-1098(98)00461-X

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff et al., A Quantum Dot Single-Photon Turnstile Device, Science, vol.290, issue.5500, pp.2902282-2285, 2000.
DOI : 10.1126/science.290.5500.2282

W. Chang, W. Chen, H. Chang, T. Hsieh, J. Chyi et al., Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities, Physical Review Letters, vol.96, issue.11, p.96117401, 2006.
DOI : 10.1103/PhysRevLett.96.117401

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler et al., Electrically driven high-Q quantum dot-micropillar cavities, Applied Physics Letters, vol.92, issue.9, 2008.
DOI : 10.1063/1.2890166

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on Practical Quantum Cryptography, Physical Review Letters, vol.85, issue.6, pp.1330-1333, 2000.
DOI : 10.1103/PhysRevLett.85.1330

J. M. Gérard, I. Robert, E. Moreau, and I. Abram, G??n??ration de photons uniques monomodes par une boite quantique d'InAs en microcavit??, Journal de Physique IV (Proceedings), vol.12, issue.5, 2002.
DOI : 10.1051/jp4:20020094

C. T. Foxon and B. A. Joyce, Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique, Surface Science, vol.50, issue.2, pp.434-450, 1975.
DOI : 10.1016/0039-6028(75)90035-7

C. T. Foxon and B. A. Joyce, Interaction kinetics of As2 and Ga on {100} GaAs surfaces, Surface Science, vol.64, issue.1, pp.293-304, 1977.
DOI : 10.1016/0039-6028(77)90273-4

L. L. Chang, A. Segmüller, and L. Esaki, Smooth and coherent layers of GaAs and AlAs grown by molecular beam epitaxy, Applied Physics Letters, vol.28, issue.1, pp.39-41, 1976.
DOI : 10.1063/1.88558

W. J. Schaffer, M. D. Lind, S. P. Kowalczyk, and R. W. Grant, Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.1, issue.3, pp.688-695, 1983.
DOI : 10.1116/1.582579

E. H. Parker, The Technology And Physics Of Molecular Beam Epitaxy, 1985.
DOI : 10.1007/978-1-4899-5364-3

J. M. Van-hove, C. S. Lent, P. R. Pukite, and P. I. Cohen, Damped oscillations in reflection high energy electron diffraction during GaAs MBE, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.1, issue.3, pp.741-746, 1983.
DOI : 10.1116/1.582684

J. M. Van-hove, P. R. Pukite, and P. I. Cohen, The dependence of RHEED oscillations on MBE growth parameters, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.3, issue.2, pp.563-567, 1985.
DOI : 10.1116/1.583180

T. Hashizume, Q. K. Xue, J. Zhou, A. Ichimiya, and T. Sakurai, Structures of As-Rich GaAs(001)-(2 ?? 4) Reconstructions, Physical Review Letters, vol.73, issue.16, pp.2208-2211, 1994.
DOI : 10.1103/PhysRevLett.73.2208

A. J. Springthorpe, S. J. Ingrey, B. Emmerstorfer, P. Mandeville, and W. T. Moore, Measurement of GaAs surface oxide desorption temperatures, Applied Physics Letters, vol.50, issue.2, pp.77-79, 1987.
DOI : 10.1063/1.97824

C. T. Foxon, J. A. Harvey, and B. A. Joyce, The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique, 11] W. G. Schmidt. (4 ? A?2) and (2 ? A?4) reconstructions of GaAs and InP(001) surfaces. Applied Physics A: Materials Science & Processing, pp.1693-1701581, 1973.
DOI : 10.1016/S0022-3697(73)80135-0

F. Houzay, C. Guille, J. M. Moison, P. Henoc, and F. Barthe, First stages of the MBE growth of InAs on (001)GaAs, Journal of Crystal Growth, vol.81, issue.1-4, pp.67-72, 1987.
DOI : 10.1016/0022-0248(87)90367-8

E. Burstein and C. Weisbuch, Confined Electrons and Photons, 1995.
DOI : 10.1007/978-1-4615-1963-8

H. Ohno, R. Katsumi, and H. Hasegawa, Reflection electron diffraction intensity oscillation during molecular beam epitaxial growth of (GaAs)n/(InAs)n superlattice semiconductor, Surface Science, vol.174, issue.1-3, pp.598-599, 1986.
DOI : 10.1016/0039-6028(86)90478-4

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. L. Roux, Growth by molecular beam epitaxy and characterization of InAs/GaAs strained???layer superlattices, Applied Physics Letters, vol.47, issue.10, pp.471099-1101, 1985.
DOI : 10.1063/1.96342

F. J. Grunthaner, M. Y. Yen, R. Fernandez, T. C. Lee, A. Madhukar et al., Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures, Applied Physics Letters, vol.46, issue.10, pp.46983-985, 1985.
DOI : 10.1063/1.95788

H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, Confined photon systems : fundamental and applications, 1999.
DOI : 10.1007/BFb0104378

J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, Journal of Applied Physics, vol.53, issue.10, pp.123-181, 1982.
DOI : 10.1063/1.331665

R. E. Fern and A. Onton, Refractive Index of AlAs, Journal of Applied Physics, vol.42, issue.9, pp.3499-3500, 1971.
DOI : 10.1063/1.1660760

P. Griffiths, Fourier transform infrared spectrometry, Science, vol.222, issue.4621, pp.297-302, 1983.
DOI : 10.1126/science.6623077

J. M. Gerard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouche et al., Optical investigation of the self-organized growth of InAs/GaAs quantum boxes, Journal of Crystal Growth, vol.150, issue.110, pp.351-356, 1986.
DOI : 10.1016/0022-0248(95)80234-4

A. J. Campillo, J. D. Eversole, and H. Lin, Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets, Physical Review Letters, vol.67, issue.4, pp.437-440, 1991.
DOI : 10.1103/PhysRevLett.67.437

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Quality-factor and nonlinear properties of optical whispering-gallery modes, Physics Letters A, vol.137, issue.7-8, pp.393-397, 1989.
DOI : 10.1016/0375-9601(89)90912-2

G. Mie, Beitr??ge zur Optik tr??ber Medien, speziell kolloidaler Metall??sungen, Annalen der Physik, vol.24, issue.3, p.337, 1908.
DOI : 10.1002/andp.19083300302

L. Rayleigh, The problem of the whispering gallery, Scientific Paper, vol.5, p.617, 1912.

S. L. Mccall, A. F. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Whispering???gallery mode microdisk lasers, Applied Physics Letters, vol.60, issue.3, pp.289-291, 1992.
DOI : 10.1063/1.106688

R. E. Slusher, A. F. Levi, U. Mohideen, S. L. Mccall, S. J. Pearton et al., Threshold characteristics of semiconductor microdisk lasers, Applied Physics Letters, vol.63, issue.10, pp.1310-1312, 1993.
DOI : 10.1063/1.109714

T. Ide, T. Baba-tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature, Applied Physics Letters, vol.85, issue.8, pp.1326-1328, 2004.
DOI : 10.1063/1.1787157

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala et al., Visible submicron microdisk lasers, Applied Physics Letters, vol.90, issue.11, p.90111119, 2007.
DOI : 10.1063/1.2714312

A. Morand, K. Phan-huy, B. Martin, F. Bredillot, D. Amans et al., Compact add-and-drop and wavelength filter based on microdisk on SOI substrate, Silicon Photonics, p.612561250, 2006.
DOI : 10.1117/12.645340

URL : https://hal.archives-ouvertes.fr/hal-00148201

P. Koonath, T. Indukuri, and B. Jalali, Add-drop filters utilizing vertically coupled microdisk resonators in silicon, Applied Physics Letters, vol.86, issue.9, p.91102, 2005.
DOI : 10.1063/1.1873064

M. Ming-chang, M. C. Lee, and . Wu, Variable bandwidth of dynamic add?drop filters based on coupling-controlled microdisk resonators, Optics Letters, issue.16, pp.312444-2446, 2006.

J. M. Gerard and B. Gayral, InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics, Physica E: Low-dimensional Systems and Nanostructures, pp.131-139, 2001.
DOI : 10.1016/S1386-9477(00)00187-9

T. Lee, P. Cheng, J. Pan, R. Tsai, Y. Lai et al., Far-field emission narrowing effect of microdisk lasers, Applied Physics Letters, vol.72, issue.18, pp.722223-2225, 1998.
DOI : 10.1063/1.121328

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, Whispering gallery modes in high quality ZnSe???ZnMgSSe microdisks with CdSe quantum dots studied at room temperature, Applied Physics Letters, vol.89, issue.9, p.91105, 2006.
DOI : 10.1063/1.2345236

E. Peter, A. Dousse, P. Voisin, A. Lema??trelema??tre, D. Martrou et al., Highly directional radiation pattern of microdisk cavities, Applied Physics Letters, vol.91, issue.15, p.91151103, 2007.
DOI : 10.1063/1.2789956

Y. Xu, R. K. Lee, and A. Yariv, Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity, Physical Review A, vol.61, issue.3, pp.33808-33818, 2000.
DOI : 10.1103/PhysRevA.61.033808

N. C. Frateschi and A. F. Levi, The spectrum of microdisk lasers, Journal of Applied Physics, vol.80, issue.2, pp.644-653, 1996.
DOI : 10.1063/1.362873

M. Borselli, T. Johnson, and O. Painter, Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment, Optics Express, vol.13, issue.5, pp.1515-1530, 2005.
DOI : 10.1364/OPEX.13.001515

B. E. Little and S. T. Chu, Estimating surface-roughness loss and output coupling in microdisk resonators, Optics Letters, vol.21, issue.17, pp.1390-1392, 1996.
DOI : 10.1364/OL.21.001390

A. F. Levi, R. E. Slusher, S. L. Mccall, J. L. Glass, S. J. Pearton et al., Directional light coupling from microdisk lasers, Applied Physics Letters, vol.62, issue.6, pp.62561-563, 1993.
DOI : 10.1063/1.108911

M. Fujita and T. Baba, Microgear laser, Applied Physics Letters, vol.80, issue.12, pp.2051-2053, 2002.
DOI : 10.1063/1.1462867

M. Fujita, A. Sakai, and T. Baba, Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.3
DOI : 10.1109/2944.788434

L. Zhang and E. Hu, Lasing from InGaAs quantum dots in an injection microdisk, Applied Physics Letters, vol.82, issue.3, pp.319-321, 2003.
DOI : 10.1063/1.1538312

L. Zhang and E. Hu, Lasin emission of ingaas quantum dot microdisk diode, IEEE Photonics Technology Letters, vol.16, issue.1, pp.1041-1135, 2004.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter et al., Optical loss and lasing characteristics of high-qualityfactor algaas microdisk resonators with embedded quantum dots, Applied Physics Letters, issue.15, p.86151106, 2005.

S. M. Thiyagarajan, A. F. Levi, C. K. Lin, I. Kim, P. D. Dapkus et al., Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers, Electronics Letters, vol.34, issue.24, p.342333, 1998.
DOI : 10.1049/el:19981639

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch et al., High-Q whispering-gallery modes in GaAs???AlOx microdisks, Applied Physics Letters, vol.86, issue.2, p.21103, 2005.
DOI : 10.1063/1.1844033

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin et al., Quantum boxes as active probes for photonic microstructures: The pillar microcavity case, Applied Physics Letters, vol.69, issue.4, pp.449-451, 1996.
DOI : 10.1063/1.118135

B. Gayral, J. M. Gérard, A. Lema??trelema??tre, C. Dupuis, L. Manin et al., wet-etched GaAs microdisks containing InAs quantum boxes, Applied Physics Letters, vol.75, issue.13, pp.1908-1910, 1999.
DOI : 10.1063/1.124894

A. J. Tang, K. Sadra, and B. G. Streetman, Selective Etching of Al[sub x]Ga[sub 1???x]As and In(Al[sub x]Ga[sub 1???x])As Alloys in Succinic Acid- Hydrogen Peroxide Solutions, Journal of The Electrochemical Society, vol.140, issue.5, pp.140-82, 1993.
DOI : 10.1149/1.2221592

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, Extreme selectivity in the lift???off of epitaxial GaAs films, Applied Physics Letters, vol.51, issue.26, pp.512222-2224, 1987.
DOI : 10.1063/1.98946

Y. Nowicki-bringuier, Fabrication etétudeetétude optique de microdisques semiconducteursàsemiconducteursà bo??tesbo??tes quantiques, 2004.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl et al., Purcell effect for CdSe???ZnSe quantum dots placed into hybrid micropillars, Applied Physics Letters, vol.87, issue.23, p.233114, 2005.
DOI : 10.1063/1.2136433

I. Robin, Croissance et contrôle de l'´ emission spontanée de bo??tesbo??tes quantiques semiconductrices CdSe/ZnSe placées en microcavités optiques, 2005.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee et al., Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities, Applied Physics Letters, vol.90, issue.5, p.90051108, 2007.
DOI : 10.1063/1.2435608

E. Peter, Couplage fort exciton-photon pour une bo??tebo??te quantique de GaAs en microdisque, 2005.

T. Rivera, J. Debray, J. M. Gérard, B. Legrand, L. Manin-ferlazzo et al., Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy, Applied Physics Letters, vol.74, issue.7, pp.911-913, 1999.
DOI : 10.1063/1.123407

P. J. Harding, T. G. Euser, Y. Nowicki-bringuier, J. Gérard, and W. L. Vos, Dynamical ultrafast all-optical switching of planar GaAs???AlAs photonic microcavities, Applied Physics Letters, vol.91, issue.11, p.91111103, 2007.
DOI : 10.1063/1.2779106

J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, Journal of Applied Physics, vol.53, issue.10, pp.123-181, 1982.
DOI : 10.1063/1.331665

B. Gayral, Controlling spontaneous emission dynamics in semiconductor microcavities, Annales de Physique No2. EDP Sciences, vol.26, 2001.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto et al., Whispering gallery resonances in semiconductor micropillars, Applied Physics Letters, vol.91, issue.7, pp.71115-71118, 2007.
DOI : 10.1063/1.2771373

H. Rigneault, J. Broudic, B. Gayral, and J. M. Gérard, Far-field radiation from quantum boxes located in pillar microcavities, Optics Letters, vol.26, issue.20, pp.1595-1597, 2001.
DOI : 10.1364/OL.26.001595

S. Cortez, O. Krebs, P. Voisin, and J. M. Gérard, Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots, Physical Review B, vol.63, issue.23, p.233306, 2001.
DOI : 10.1103/PhysRevB.63.233306

H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, C. Weisbuch et al., Confined photon systems : fundamental and applications Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators, Phys. Rev. Lett, vol.531, issue.14, pp.863168-3171, 1999.
DOI : 10.1007/BFb0104378

J. L. Jewell, A. Scherer, S. L. Mccall, Y. H. Lee, S. Walker et al., Low-threshold electrically pumped vertical-cavity surface-emitting microlasers, Electronics Letters, vol.25, issue.17, pp.1123-1125, 1989.
DOI : 10.1049/el:19890754

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin et al., Quantum boxes as active probes for photonic microstructures: The pillar microcavity case, Applied Physics Letters, vol.69, issue.4, pp.449-451, 1996.
DOI : 10.1063/1.118135

J. P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel et al., Size Dependence of Confined Optical Modes in Photonic Quantum Dots, Physical Review Letters, vol.78, issue.2, pp.378-381, 1997.
DOI : 10.1103/PhysRevLett.78.378

B. Gayral, Controlling spontaneous emission dynamics in semiconductor microcavities, Annales de Physique No2. EDP Sciences, vol.26, 2001.

I. Robin, Croissance et contrôle de l'´ emission spontanée de bo??tesbo??tes quantiques semiconductrices CdSe/ZnSe placées en microcavités optiques, 2005.

A. Yariv, Optical electronics in modern communications, 1997.

H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, Confined photon systems : fundamental and applications, 1999.
DOI : 10.1007/BFb0104378

E. Moreau, I. Robert, L. Manin, V. Thierry-mieg, J. M. Gérard et al., A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar, Physica E: Low-dimensional Systems and Nanostructures, vol.13, issue.2-4, pp.418-422, 2002.
DOI : 10.1016/S1386-9477(02)00157-1

M. Pelton, C. Santori, J. Vuc?kovi´cvuc?kovi´c, B. Zhang, G. S. Solomon et al., Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity, Physical Review Letters, vol.89, issue.23, p.233602, 2002.
DOI : 10.1103/PhysRevLett.89.233602

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on Practical Quantum Cryptography, Physical Review Letters, vol.85, issue.6, pp.1330-1333, 2000.
DOI : 10.1103/PhysRevLett.85.1330

J. M. Gérard, I. Robert, E. Moreau, and I. Abram, G??n??ration de photons uniques monomodes par une boite quantique d'InAs en microcavit??, Journal de Physique IV (Proceedings), vol.12, issue.5, 2002.
DOI : 10.1051/jp4:20020094

S. Varoutsis, S. Laurent, P. Kramper, A. Lema??trelema??tre, I. Sagnes et al., Restoration of photon indistinguishability in the emission of a semiconductor quantum dot, Physical Review B, vol.72, issue.4, pp.41303-41307, 2005.
DOI : 10.1103/PhysRevB.72.041303

T. Rivera, J. Debray, J. M. Gérard, B. Legrand, L. Manin-ferlazzo et al., Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy, Applied Physics Letters, vol.74, issue.7, pp.911-913, 1999.
DOI : 10.1063/1.123407

. Ph, J. P. Lalanne, J. M. Hugonin, and . Gérard, Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit, Applied Physics Letters, vol.84, issue.23, pp.4726-4728, 2004.

H. Rigneault, J. Broudic, B. Gayral, and J. M. Gérard, Far-field radiation from quantum boxes located in pillar microcavities, Optics Letters, vol.26, issue.20, pp.1595-1597, 2001.
DOI : 10.1364/OL.26.001595

C. Constantin, E. Martinet, D. Y. Oberli, E. Kapon, B. Gayral et al., Quantum wires in multidimensional microcavities: Effects of photon dimensionality on emission properties, Physical Review B, vol.66, issue.16, p.66165306, 2002.
DOI : 10.1103/PhysRevB.66.165306

W. L. Barnes, G. Björk, J. M. Gerard, P. Jonsson, J. A. Wasey et al., Solid-state single photon sources: light collection strategies, The European Physical Journal D - Atomic, Molecular and Optical Physics, vol.18, issue.2, p.197, 2002.
DOI : 10.1140/epjd/e20020024

J. Gerard and B. Gayral, Toward high-efficiency quantum-dot single-photon sources, Quantum Dots, Nanoparticles, and Nanoclusters, pp.88-95, 2004.
DOI : 10.1117/12.543168

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon et al., AlAs???GaAs micropillar cavities with quality factors exceeding 150.000, Applied Physics Letters, vol.90, issue.25, pp.251109-251112, 2007.
DOI : 10.1063/1.2749862

R. Hahner, Fabrication an optical study of a high efficiency single photon source, 2006.

S. Varoutsis, S. Laurent, I. Sagnes, A. Lemaitre, L. Ferlazzo et al., Reactive-ion etching of high-Q and submicron-diameter GaAs???AlAs micropillar cavities, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.6, p.2499, 2005.
DOI : 10.1116/1.2131084

L. G. Schulz, The Optical Constants of Silver, Gold, Copper, and Aluminum I The Absorption Coefficient k, Journal of the Optical Society of America, vol.44, issue.5, p.357, 1954.
DOI : 10.1364/JOSA.44.000357

R. A. Waldron, Theory of guided electromagnetic waves, 1970.

F. C. Nix and D. Macnair, The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron, Physical Review, vol.60, issue.8, pp.597-605, 1941.
DOI : 10.1103/PhysRev.60.597

T. F. Smith and G. K. White, The low-temperature thermal expansion and Gruneisen parameters of some tetrahedrally bonded solids, Journal of Physics C: Solid State Physics, vol.8, issue.13, pp.2031-2042, 1975.
DOI : 10.1088/0022-3719/8/13/012

A. R. Goni, K. Syassen, and M. Cardona, Effect of pressure on the refractive index of ge and gaas, Phys. Rev. B, issue.14, pp.4110104-10110, 1990.

R. Cottam and G. Saunders, The elastic constants of GaAs from 2 K to 320 K, Journal of Physics C: Solid State Physics, vol.6, issue.13, pp.2105-2118, 1973.
DOI : 10.1088/0022-3719/6/13/011

J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, Journal of Applied Physics, vol.53, issue.10, pp.123-181, 1982.
DOI : 10.1063/1.331665

M. Borselli, T. Johnson, and O. Painter, Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment, Optics Express, vol.13, issue.5, pp.1515-1530, 2005.
DOI : 10.1364/OPEX.13.001515

P. J. Harding, T. G. Euser, Y. Nowicki-bringuier, J. Gérard, and W. L. Vos, Dynamical ultrafast all-optical switching of planar GaAs???AlAs photonic microcavities, Applied Physics Letters, vol.91, issue.11, p.91111103, 2007.
DOI : 10.1063/1.2779106

. Fig, 3 ? Schéma de la structure planaire utilisée pour la fabrication des fils photoniques

]. E. Bibliographie1, I. Moreau, J. M. Robert, I. Gérard, L. Abram et al., Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett, vol.79, pp.2865-2867, 2001.

C. Santori, D. Fattal, J. Vukovi´cvukovi´c, G. S. Solomon, and Y. Yamamoto, Indistinguishable photons from a single-photon device, Nature, vol.65, issue.6907, pp.594-597, 2002.
DOI : 10.1016/S0038-1098(98)00461-X

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff et al., A Quantum Dot Single-Photon Turnstile Device, Science, vol.290, issue.5500, pp.2902282-2285, 2000.
DOI : 10.1126/science.290.5500.2282

Y. Nowicki-bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne et al., A novel high-efficiency single-mode single photon source, Annales de Physique, vol.32, issue.2-3, 2007.
DOI : 10.1051/anphys:2008030

G. Lecamp, P. Lalanne, and J. P. Hugonin, The electromagnetic properties of light emission into semiconductor waveguides, Nanophotonics, p.61950, 2006.
DOI : 10.1117/12.664089

E. Silberstein, P. Lalanne, J. Hugonin, and Q. Cao, Use of grating theories in integrated optics, Journal of the Optical Society of America A, vol.18, issue.11, pp.182865-2875, 2001.
DOI : 10.1364/JOSAA.18.002865

URL : https://hal.archives-ouvertes.fr/hal-00867923

J. Paul-hugonin and P. Lalanne, Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization, Journal of the Optical Society of America A, vol.22, issue.9, pp.1844-1849, 2005.
DOI : 10.1364/JOSAA.22.001844

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi et al., Photonic-Wire Laser, Physical Review Letters, vol.75, issue.14, pp.752678-2681, 1995.
DOI : 10.1103/PhysRevLett.75.2678

K. H. Drexhage, Progress in Optics, volume XII, page 165, 1974.

M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander et al., One-dimensional heterostructures in semiconductor nanowhiskers, Applied Physics Letters, vol.80, issue.6, pp.1058-1060, 2002.
DOI : 10.1063/1.1447312

H. Michael, S. Huang, H. Mao, H. Feick, Y. Yan et al., Room-Temperature Ultraviolet Nanowire Nanolasers, Science, issue.5523, pp.2921897-1899, 2001.

E. Moreau, I. Robert, L. Manin, V. Thierry-mieg, J. M. Gérard et al., A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar, Physica E: Low-dimensional Systems and Nanostructures, vol.13, issue.2-4, pp.418-422, 2002.
DOI : 10.1016/S1386-9477(02)00157-1

A. V. Maslov and C. Z. Ning, Far-field emission of a semiconductor nanowire laser, Optics Letters, vol.29, issue.6, pp.572-574, 2004.
DOI : 10.1364/OL.29.000572

. Ph, J. P. Lalanne, J. M. Hugonin, and . Gérard, Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit, Applied Physics Letters, vol.84, issue.23, pp.4726-4728, 2004.

D. Marcuse, Radiation losses of step-tapered channel waveguides, Applied Optics, vol.19, issue.21, p.3676, 1980.
DOI : 10.1364/AO.19.003676

D. E. Bossi, W. D. Goodhue, L. M. Johnson, and R. H. Rediker, Reduced-confinement GaAlAs tapered waveguide antennas for enhanced far-field beam directionality, IEEE Journal of Quantum Electronics, vol.27, issue.3, pp.687-695, 1991.
DOI : 10.1109/3.81378

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Suzaki, H. Fukano et al., Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices, Journal of Lightwave Technology, vol.14, issue.7, pp.141714-1720, 1996.
DOI : 10.1109/50.507949