Y. E. Lozovik, A. V. Minogin, and A. N. Popov, Nanomachines based on carbon nanotubes, Physics Letters A, vol.313, issue.1-2, pp.112-121, 2003.
DOI : 10.1016/S0375-9601(03)00649-2

W. Y. Choi, J. W. Kang, and H. J. Hwang, Bucky shuttle memory system based on boron-nitride nanopeapod, Physica E: Low-dimensional Systems and Nanostructures, vol.23, issue.1-2, pp.135-140, 2004.
DOI : 10.1016/j.physe.2004.01.012

H. J. Hwang, K. R. Byun, and J. W. Kang, Carbon nanotubes as nanopipette: modelling and simulations, Physica E: Low-dimensional Systems and Nanostructures, vol.23, issue.1-2, pp.208-216, 2004.
DOI : 10.1016/j.physe.2004.03.006

[. I. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.1391, pp.59-61, 1998.

W. G. Overney, D. Zhong, and . Tomanek, Structural rigidity and low frequency vibrational modes of long carbon tubules, Zeitschrift f???r Physik D Atoms, Molecules and Clusters, vol.358, issue.1, pp.93-96, 1993.
DOI : 10.1007/BF01436769

B. S. Yu, S. Files, R. S. Arepalli, and . Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, pp.5552-5555, 2000.
DOI : 10.1103/PhysRevLett.84.5552

H. W. Yao, L. Postma, and C. Balents, Dekker ''Carbon nanotube intramolecular junctions, Nature, vol.402, pp.273-276, 1999.

[. I. Berber, Y. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes'' Physical Review Letters, pp.4613-4616, 2000.

[. I. Che, T. 9agin, and W. A. Goddard, Thermal conductivity of carbon nanotubes, Nanotechnology, vol.11, issue.2, pp.65-69, 2000.
DOI : 10.1088/0957-4484/11/2/305

[. I. Small, L. Shi, and P. Kim, Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes, Solid State Communications, vol.127, issue.2, pp.181-186, 2003.
DOI : 10.1016/S0038-1098(03)00341-7

[. I. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi et al., Measuring the Thermal Conductivity of a Single Carbon Nanotube, Physical Review Letters, vol.95, issue.6, p.65502, 2005.
DOI : 10.1103/PhysRevLett.95.065502

N. Yasuda, W. Kawase, and . Mizutani, Carbon-Nanotube Formation Mechanism Based on in Situ TEM Observations, The Journal of Physical Chemistry B, vol.106, issue.51, 2002.
DOI : 10.1021/jp020977l

[. I. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao et al., Model of carbon nanotube growth through chemical vapour deposition, Chem.Phys.Lett, vol.315, pp.1-225, 1999.

S. H. Jung, M. R. Kim, S. H. Jeong, S. U. Kim, O. J. Lee et al., High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen, Applied Physics A: Materials Science & Processing, vol.76, issue.2, pp.285-286, 2003.
DOI : 10.1007/s00339-002-1718-8

[. I. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

[. I. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. E. Smalley, Catalytic growth of single walled nanotubes by laser vaporization, Chem Phys Lett, vol.243, pp.1-249, 1995.

M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi et al., Mechanism of effect of NiCo, Ni and Co catalyst on the yield of single wall carbon nanotubes formed by pulsed Nd : YAG Laser ablation, J. Phys. Chem.B, vol.103, pp.306224-6229, 1999.

[. I. Eklund, B. K. Pradhan, U. J. Kim, Q. Xiong, J. E. Fischer et al., Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser, Nano Letters, vol.2, issue.6, pp.561-566, 2002.
DOI : 10.1021/nl025515y

W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G. F. De-la-fuente et al., Production of high-density single-walled nanotube material by a simple laser-ablation method, Chemical Physics Letters, vol.292, issue.4-6, pp.4-6587, 1998.
DOI : 10.1016/S0009-2614(98)00776-3

[. I. Bolshakov, S. A. Uglov, A. V. Saveliev, V. I. Konov, A. A. Gorbunov et al., A novel CW laser???powder method of carbon single-wall nanotubes production, Diamond and Related Materials, vol.11, issue.3-6, pp.3-6927, 2002.
DOI : 10.1016/S0925-9635(01)00641-0

Z. P. Ren, J. W. Huang, J. H. Xu, P. Wang, M. P. Bush et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, vol.282, issue.5391, 1998.
DOI : 10.1126/science.282.5391.1105

M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.103, issue.31, pp.6484-6492, 1999.
DOI : 10.1021/jp990957s

[. I. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu et al., Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot, Applied Physics Letters, vol.75, issue.8, pp.1086-1088, 1999.
DOI : 10.1063/1.124605

R. Yudasaka, T. Kikuchi, Y. Matsui, S. Ohki, E. Yoshimura et al., Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition, Applied Physics Letters, vol.67, issue.17, pp.2477-2479, 1995.
DOI : 10.1063/1.114613

R. Yudasaka, Y. Kikuchi, E. Ohki, S. Ota, and . Yoshimura, Behavior of Ni in carbon nanotube nucleation, Applied Physics Letters, vol.70, issue.14, pp.1817-1818, 1997.
DOI : 10.1063/1.118700

D. Z. Huang, J. G. Wang, M. Wen, H. Sennett, Z. F. Gibson et al., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.74, issue.3, pp.387-391, 2002.
DOI : 10.1007/s003390101186

M. Chen and C. Chen, Preparation of high yield multi walled carbon nanotubes by microwave plasma chemical vapour deposition at low temperature, Journal of Materials Science, vol.37, issue.17, pp.3561-3567, 2002.
DOI : 10.1023/A:1016544001173

[. I. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

[. I. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.1-291, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.4, pp.1800-1805, 2001.
DOI : 10.1116/1.1380721

W. E. Kitiyanan, J. H. Alvarez, D. E. Harwell, and . Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co???Mo catalysts, Chemical Physics Letters, vol.317, issue.3-5, pp.497-503, 2000.
DOI : 10.1016/S0009-2614(99)01379-2

[. I. Sorin, D. Cojocaru, D. Kim, J. Pribat, and . Eric, Dourée ''Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma enhanced chemical vapour deposition, Proceeding of the third international conference on Hot-Wire (Cat-CVD) Process, V.501, ISS.1-2, pp.227-232, 2005.

A. Laha, T. Agarwal, S. Mckechnie, and . Seal, Encyclopedia of nanoscience and nanotechnology. American Scientific Publisher [I.43Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminium composite, Materials Science and Engineering, pp.381-249, 2004.

C. Peigney, E. Laurent, and A. Flahaut, Rousset ''Carbon nanotubes in novel ceramic matrix nanocomposite, Ceramic Internationnal, pp.677-683, 2000.

[. I. Rul, F. Lefevre-schlick, E. Capria, . Ch, and A. Laurent, Peigney ''Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, pp.1061-1067, 2004.

[. I. Cadek, J. N. Coleman, and V. Barron, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Applied Physics Letters, vol.81, issue.27, pp.5123-5125, 2002.
DOI : 10.1063/1.1533118

S. Young and J. R. Youn, Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element methos, Carbon, vol.44, pp.710-717, 2006.

[. I. Cai and M. Song, Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube, Carbon, 2008.

[. I. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent et al., Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes???Epoxy Resin Composites, Macromolecules, vol.36, issue.26, pp.369678-9680, 2003.
DOI : 10.1021/ma030399m

URL : https://hal.archives-ouvertes.fr/hal-00920397

[. I. Sandler, J. E. Kirk, I. A. Kinlocj, M. S. Shaffer, and A. H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer, vol.44, issue.19, pp.5893-5899, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

[. I. Kortschot and R. T. Woodhams, Electromagnetic interference shielding with nickel-coated mica composites, Polymer Composites, vol.29, issue.4, pp.296-303, 1985.
DOI : 10.1002/pc.750060414

K. Dragoman, D. Grenier, L. Dubuc, E. Bary, R. Fourn et al., Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes, Applied Physics Letters, vol.88, issue.15, p.3108, 2006.
DOI : 10.1063/1.2193464

URL : https://hal.archives-ouvertes.fr/hal-00474863

S. Valentin, J. Auvray, J. Goethals, L. Lewenstein, A. Capes et al., Patillon ''High density selective placement methods for carbon nanotubes, Microelectronic Engineering, pp.61-62491, 2002.

V. Auvray, M. Derycke, A. Goffman, O. Filoramo, J. Jost et al., Chemical Optimization of Self-Assembled Carbon Nanotube Transistors, Nano Letters, vol.5, issue.3, p.451, 2005.
DOI : 10.1021/nl048032y

V. Dujardin, M. F. Derycke, R. Goffman, J. P. Lefèvre, and . Bourgoin, Ast/ast_visu.php?id_ast=140 [I.63Self-assembled switches based on electroactuated multiwalled nanotubes, Applied Physics Letters, vol.87, p.3107, 2005.

A. Le-louarn, F. Kapche, J. Bethoux, H. Happy, G. Dambine et al., Intrinsic current gain cutoff frequency of 30GHz with carbon nanotube transistors, Applied Physics Letters, vol.90, issue.23, p.903108, 2007.
DOI : 10.1063/1.2743402

URL : https://hal.archives-ouvertes.fr/hal-00255760

[. I. Pirio, . Legagneux, K. Pribat, M. Teo, G. Chhowalla et al., Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode, Nanotechnology, vol.13, issue.1, pp.1-4, 2002.
DOI : 10.1088/0957-4484/13/1/301

L. Gangloff, E. Minoux, K. B. Teo, P. Vincent, V. T. Semet et al., Self-Aligned, Gated Arrays of Individual Nanotube and Nanowire Emitters, Nano Letters, vol.4, issue.9, pp.1575-1579, 2004.
DOI : 10.1021/nl049401t

M. A. Guillorn, A. V. Melechko, V. Merkulov, D. K. Hensley, M. L. Simpson et al., Self-aligned gated field emission devices using single carbon nanofiber cathodes, Applied Physics Letters, vol.81, issue.19, pp.3660-3662, 2002.
DOI : 10.1063/1.1517718

[. I. Nathan, R. Franklin, Q. Wang, T. W. Tombler, and A. Javey, Moonsub Shim, and Hongjie Daia '' Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Applied Physics Letters, vol.81, issue.5, 2002.

[. Bibliographie, . K. Ii.-1-], D. Grenier, L. Dubuc, J. Mazenq et al., Polymer baser technologies for microwave and millimeterwave applications, pp.545-548, 2004.

S. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent et al., Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes???Epoxy Resin Composites, Macromolecules, vol.36, issue.26, pp.369678-9680, 2003.
DOI : 10.1021/ma030399m

URL : https://hal.archives-ouvertes.fr/hal-00920397

S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley et al., Purification of Single-Wall Carbon Nanotubes by Microfiltration, The Journal of Physical Chemistry B, vol.101, issue.44, pp.8839-8842, 1997.
DOI : 10.1021/jp972026r

A. Flahaut, . Peigney, . Ch, A. Laurent, and . Rousset, Synthesis of single-walled carbon nanotube???Co???MgO composite powders and extraction of the nanotubes, Journal of Materials Chemistry, vol.10, issue.2, pp.249-252, 2000.
DOI : 10.1039/a908593i

URL : https://hal.archives-ouvertes.fr/hal-00942779

[. J. Ii.-5-], R. K. Zimmerman, C. B. Bradley, R. H. Huffman, J. L. Hauge et al., Gas-phase purification of single-wall carbon nanotubes, Chem. Mater, vol.12, pp.1361-1366, 2000.

B. E. Chiang, R. E. Brinson, J. L. Smalley, R. H. Margrave, and . Hauge, Purification and Characterization of Single-Wall Carbon Nanotubes, The Journal of Physical Chemistry B, vol.105, issue.6, pp.1157-1161, 2001.
DOI : 10.1021/jp003453z

R. Flahaut, A. Bacsa, . Peigney, . Ch, and . Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chemical Communications, issue.12, pp.1442-1443, 2003.
DOI : 10.1039/b301514a

URL : https://hal.archives-ouvertes.fr/hal-00926035

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, Elimination of D-Band in raman spectra of double carbon nanotubes by oxydation, Chem. Phys. Lett, vol.402, issue.422, 2005.

H. Mcbride, E. Hulricht, and . Flahaut, Spectroscopy of single and double carbon nanotubes in different environments, Nano Lett, vol.5, pp.511-514, 2005.

[. J. Ii, L. Colomer, E. Henrard, . Flahaut, A. A. Van-tondeloo et al., Rings of double walled carbon nanotube bundles, Nano Lett, vol.3, pp.685-689, 2003.

[. M. Ii, B. Sagnes, B. Raquet, J. M. Lassagne, E. Broto et al., Probing the electronic properties of individual carbon nanotube in 35T pulsed magnetic field, Chem. Phys. Lett, vol.372, issue.733, 2003.

. Flahaut, Gate dependant magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett, vol.94, issue.066801, 2005.

C. J. Chen, R. Xue, H. Ramasubramaniam, and . Liu, A new method for the preparation of stable carbon nanotube organogels, Carbon, vol.44, issue.11, pp.2142-2146, 2006.
DOI : 10.1016/j.carbon.2006.03.011

[. S. Ii, P. Barrau, A. Demont, C. Peigney, and C. Laurent, Lacabanne '' DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules, vol.36, pp.5187-5194, 2003.

E. Islam, D. M. Rojas, A. T. Bergey, A. G. Johnson, and . Yodh, High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, vol.3, issue.2, pp.269-273, 2003.
DOI : 10.1021/nl025924u

[. I. Ii, . Roscaf, M. Watari, T. Uo, and . Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, vol.43, pp.3124-3131, 2005.

[. S. Ii, P. Barrau, E. Demont, A. Perez, C. Peigney et al., Effect of palmitic acid on the electrical conductivity of carbon nanotubes epoxy resin composites, Macromolecules, vol.36, pp.9678-9680, 2003.

[. K. Ii, Z. Ziegler, J. Gu, Z. Shaver, E. L. Chen et al., Cutting single walled carbon nanotube, Nanotechnology, vol.16, pp.539-544, 2005.

[. Ii, . C. Liesbeth, J. W. Venema, H. L. Wildoer, C. Temminck-tuinstra et al., Lengh control of individual carbon nanotubes by nanostructuring with a scanning tunneleing microscope, Appl. Phys. Lett, vol.71, issue.18, pp.2629-2631, 1999.

[. L. Ii, X. J. Chen, Q. T. Pang, and . Zhang, Cutting of carbon nanotubes by a two-roller mill, Materials Letters, vol.60, pp.241-244, 2005.

[. S. Ii, N. Seok, P. Rolland, and . Rolland, Packaging methodology for RF devices using a BCB membrane transfer technique, J. Micromech. Microeng, issue.16, pp.2384-2388, 2006.

[. S. Ii, N. Seok, P. Rolland, and . Rolland, Mechanical and electrical characterization of benzocyclobutene membrane packaging'', Electronic Components and technology conference, Proceedings 57th, pp.1685-1689, 2007.

[. J. Ii and . Busquère, Développement et intégration de MEMS RF dans les architectures d'amplificateur faible bruit reconfigurable, Manuscrit de thèse de l'institut National des Sciences Appliqués de Toulouse, 2005.

D. A. Kern and . Puotinen, Cleaning solution based on hydrogen peroxide for use in semiconductor technology'', RCA review, p.187, 1970.

[. A. Ii, . Peigney, . Ch, E. Laurent, R. R. Flahaut et al., Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, vol.39, issue.4, pp.507-514, 2001.

[. B. Ii, M. Bianco, and . Parodi, Determination of the propagation constant of uniform microstrip lines, Alta Frequenza, vol.2, pp.135-142, 1976.

D. Stauffer and A. Aharony, Introduction to percolation theory, 1994.

[. S. Ii, P. Barrau, A. Demont, C. Peigney, and C. Laurent, Lacabanne '' DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules, vol.36, pp.5187-5194, 2003.

[. F. Ii, J. E. Du, K. I. Fischer, and . Winey, Coagulation method for preparing single-walled carbon nanotube/Poly(methyl methacrylate) composite and their modulus, electrical conductivity, and thermal stability, Journal of Polymer Science, pp.413333-3338, 2003.

. Douglas, Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration'', Polymer, pp.471-481, 2003.

. Smalley, Fullerene Pipes'' Science 22 may, pp.1253-1256, 1998.

R. S. Deniard, J. E. Lee, and . Fischer, Large scale production of single walled carbon nanotube by electric arc technique, Nature, vol.388, pp.756-758, 1997.

C. Zhang, S. Jabs, and . Iijima, Effect of an organic polymer in purification and cutting of single wall carbon nanotubes, Appl. Phys.A: Materials Science & Processing, vol.71, issue.4, pp.449-451, 2000.

[. S. Ii, F. Rul, E. Lefèvre-schlick, . Capria, . Ch et al., Peigney '' Percolation of singlewalled carbon nanotubes in ceramic matrix nanocomposites, Acta materialia, vol.52, pp.1061-1067, 2004.

/. Ti, 125 a. Contrainte en fonction de la température, II.1.1. Etudes thermiques du, p.125

I. Dispositifs-envisagés-capacité-variable, N. Rf-et-fabrication-associée, and .. , 152 III.1. Présentation des structures à fabriquer : des capacités variables, p.153

. Bibliographie, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science, vol.289, p.5479, 2000.

Y. E. Lozovik, A. V. Minogin, and A. N. Popov, Nanomachines based on carbon nanotubes, Physics Letters A, vol.313, issue.1-2, pp.112-121, 2003.
DOI : 10.1016/S0375-9601(03)00649-2

W. Y. Choi, J. W. Kang, and H. J. Hwang, Bucky shuttle memory system based on boron-nitride nanopeapod, Physica E: Low-dimensional Systems and Nanostructures, vol.23, issue.1-2, pp.135-140, 2004.
DOI : 10.1016/j.physe.2004.01.012

H. J. Hwang, K. R. Byun, and J. W. Kang, Carbon nanotubes as nanopipette: modelling and simulations, Physica E: Low-dimensional Systems and Nanostructures, vol.23, issue.1-2, pp.208-216, 2004.
DOI : 10.1016/j.physe.2004.03.006

S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas et al., Gigahertz nanomechanical oscillators based on carbon nanotubesNanoelectromechanical switches based on carbon nanotubes for microwave and millimeter waves, Nanotechnology Applied Physics Letters, vol.15, issue.90, pp.184-189, 2004.

R. Plana, High quality nanoelectromechanical microwave resonator based on carbon nanotube array, Applied Physics Letters, vol.92, issue.3118, 2008.

V. Bethoux, C. Derycke, and . Gaquière, Non linear characterization and modeling of carbon nanotube field effect transistors, IEEE MTT, vol.56, issue.7, 2008.

S. Demoustier, E. L. Minoux, M. Baillif, M. Charles, and A. Ziaei, Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches, III.10].J. Gang Guo, Y. Pu Zhao ''Influence of van der Walls and Casimir Forces on Electrostatic torsional actuators, pp.53-66, 2004.
DOI : 10.1016/j.crhy.2008.01.001

S. Ricart, D. Pacchini, K. Dubuc, and . Grenier, Modélisation électromécanique d'un nanointérupteur à base de nanotubes de carbone pour applications hyperfréquences, 2007.

[. M. Iii, P. Dimaki, and . Boggild, Frequency dependence of the structure and electrical behavior of carbon nanotube networks assembled by dielectrophoresis, Nanotechnology, pp.759-763, 2005.

[. L. Iii, . E. Gangloff, K. B. Minoux, and . Teo, Self-aligned, gated arrays of individual nanotube and nanowire emitters, Nano Letters, vol.4, issue.9, pp.1575-1579, 2004.

B. Janga, J. Ahnb, . Byeong-kwon, and . Jua, Yun-Hi LeecLateral growth of aligned mutilwalled carbon nanotubes under electric field, Solid State Comm, pp.305-308, 2003.

I. Milne, Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode, Nanotechnology, vol.09, 2002.

S. T. Pacchini, D. Idda, E. Dubuc, K. Flahaut, I. Grenier-conférence et al., ? Carbon nanotube-based polymer composites for microwave applications, International Microwave Symposium (IMS), pp.15-20, 2008.

S. Ricart, C. Pacchini, D. Cojocaru, D. Pribat, K. Dubuc et al., ? Carbon nanotubes based microwave varactor : modeling, simulation and design Th, Nanoscience + Engineering Carbon Nanotubes and Associated Devices Août, pp.10-12, 2008.
DOI : 10.1117/12.794576

C. Nationales-avec-actes, . Et, . De, and . @bullet, Etude du polymère benzocyclobutène dope à l'aide de nanotubes de carbone pour applications micro-ondes, Journées de Caractérisation Micro-ondes et Matériaux), pp.2-4, 2008.