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Résumé 
Cette thèse vise à contribuer à l’amélioration des méthodes d’évaluation des systèmes de détection 

d’intrusions (en anglais, Intrusion Detection Systems ou IDS). Ce travail est motivé par deux problèmes 
actuels : tout d’abord, l'augmentation du nombre et de la complexité des attaques que l’on observe 
aujourd’hui nécessite de faire évoluer les IDS pour leur permettre de les détecter. Deuxièmement, les 
IDS actuels génèrent de trop fréquentes fausses alertes, ce qui les rend inefficaces, voir inutiles. Des 
moyens de test et d’évaluation sont donc nécessaires pour déterminer la qualité de détection des IDS et 
de leurs algorithmes de détection. Malheureusement, aucune méthode d’évaluation satisfaisante n'existe 
de nos jours. En effet, les méthodes employées jusqu’ici présentent trois défauts majeurs : 1) une absence 
de méthodologie rigoureuse d'évaluation, 2) l’utilisation de données de test non représentatives, et 3) 
l’utilisation de métriques incorrectes. 

Partant de ce constat, nous proposons une démarche rigoureuse couvrant l’ensemble des étapes de 
l’évaluation des IDS. Premièrement, nous proposons une méthodologie d’évaluation qui permet 
d’organiser l’ensemble du processus d’évaluation. Deuxièmement, afin d’obtenir des données de test 
représentatives, nous avons défini une classification des types d’attaques en fonction des moyens de 
détection utilisés par les IDS. Cela permet non seulement de choisir les attaques à inclure dans les 
données de test, mais aussi d’analyser les résultats de l’évaluation selon les types d’attaques plutôt que 
pour chaque attaque individuellement. Troisièmement, nous avons analysé un grand nombre d’attaques 
réelles et de programmes malveillants (communément appelés maliciels) connus, tels que les virus et les 
vers. Grâce à cette analyse, nous avons pu construire un modèle générique de processus d’attaques qui 
met en évidence la dynamique des activités d’attaque. Ce modèle permet de générer un nombre important 
de scénarios d’attaques, qui soient le plus possible représentatifs et variés. 

Pour montrer la faisabilité de notre approche, nous avons appliqué expérimentalement les étapes de 
notre démarche à deux systèmes différents de détection d’intrusions. Les résultats montrent que 
l’approche proposée permet de surmonter les deux défauts principaux des évaluations existantes, à savoir 
l’absence de méthodologie et l’utilisation de données non représentatives. En particulier, elle permet de 
mieux gérer le processus d’évaluation et de choisir les cas de test les plus adaptés à l'IDS sous test et les 
plus pertinents vis-à-vis des objectifs de l’évaluation en cours, tout en couvrant une large partie de 
l’espace d’attaques. 

Ce manuscrit de thèse est divisé en deux parties rédigées respectivement en français et en anglais. 
Les deux parties suivent la même structure ; la première étant un résumé étendu de la deuxième. 

Mots clés : Sécurité, Système de détection d’intrusions (IDS), Évaluation, Test, Attaque, Maliciel. 
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Abstract 
This thesis contributes to the improvement of intrusion detection system (IDS) evaluation. The work 

is motivated by two problems. First, the observed increase in the number and the complexity of attacks 
requires that IDSes evolve to stay capable of detecting new attack variations efficiently. Second, the 
large number of false alarms that are generated by current IDSes renders them ineffective or even 
useless. Test and evaluation mechanisms are necessary to determine the quality of detection of IDSes or 
of their detection algorithms. Unfortunately, there is currently no IDS evaluation method that would be 
unbiased and scientifically rigorous. During our study, we have noticed that current IDS evaluations 
suffer from three major weaknesses: 1) the lack of a rigorous methodology; 2) the use of non-
representative test datasets; and 3) the use of incorrect metrics. 

From this perspective, we have introduced a rigorous approach covering most aspects of IDS 
evaluation. In the first place, we propose an evaluation methodology that allows carrying out the 
evaluation process in a systematic way. Secondly, in order to create representative test datasets, we have 
characterized attacks by classifying attack activities with respect to IDS-relevant manifestations or 
features. This allows not only to select attacks that will be included in the evaluation dataset but also to 
analyze the evaluation result with respect to attack classes rather than individual attack instances. Third, 
we have analyzed a large number of attack incidents and malware samples, such as viruses and worms. 
Thanks to this analysis, we built a model for the attack process that exhibits the dynamics of attack 
activities. This model allows us to generate a large number of realistic and diverse attack scenarios. 

The proposed methods have been experimented on two very different IDSes to show how general is 
our approach. The results show that the proposed approach allows overcoming the two main weaknesses 
of existing evaluations, i.e., the lack of a rigorous methodology and the use of non-representative 
datasets. Moreover, it allows to better manage the evaluation process and to select representative attack 
test cases in a flexible manner while providing a better coverage of the attack space. 

This dissertation is divided into two parts: in French and in English respectively. Both parts follow 
the same structure where the first is an extended summary of the second. 

Keywords: Security, Intrusion detection system (IDS), Evaluation, Test, Attack, Malware. 
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Évaluation des Systèmes de 
Détection d’Intrusion 

Introduction 

Les systèmes de détection d'intrusion (IDS)1 sont parmi les outils de sécurité les plus récents. On 
peut les classer en différents types selon leurs caractéristiques, par exemple selon leurs techniques de 
détection, leur architecture ou la portée de détection {Debar00}, {Debar05}. Malheureusement, malgré 
leur utilité, en pratique la plupart des IDS souffrent plus ou moins de deux problèmes : le nombre 
important de faux positifs et de faux négatifs. Les faux positifs (c’est-à-dire les fausses alertes) sont 
générés lorsque l’IDS identifie des activités normales comme des intrusions, alors que les faux négatifs 
correspondent aux attaques ou intrusions qui ne sont pas détectées (aucune alerte n'est générée). 

Les concepteurs des IDS essayent de surmonter ces limitations en développant de nouveaux 
algorithmes et architectures. Il est donc important pour eux d’évaluer les améliorations apportées par ces 
nouveaux dispositifs. De même, pour les administrateurs réseau et systèmes, il serait intéressant d'évaluer 
les IDS pour pouvoir choisir celui qui répond le mieux à leurs besoins avant de l’installer sur leurs 
réseaux ou systèmes, mais aussi de continuer à évaluer son efficacité en mode opérationnel. 

Malheureusement, un nombre élevé de faux positifs et de faux négatifs persiste dans les nouvelles 
versions des IDS, ce qui laisse à penser que les améliorations apportées ne sont pas à la mesure des 
efforts continus de recherche et développement dans le domaine de la détection d'intrusion. Ceci est 
essentiellement dû à l'absence de méthodes efficaces d'évaluation des outils de sécurité en général, et des 
IDS en particulier. 

Il est vrai que ces dernières années, de nombreuses tentatives d'évaluation ont eu lieu {Puketza96}, 
{Puketza97}, {Lippmann00a}, {Lippmann00b}, {Debar98}, {Debar02}, {Alessandri04}. Cependant, 
elles souffrent pour la plupart de limitations sérieuses {Mell03}, {McHugh00a}. En particulier, le 
comportement de l'IDS pendant la phase de l'évaluation est souvent très différent de son comportement 
en environnement réel. Les conclusions qui peuvent être tirées sont donc incorrectes ou tout au moins 
biaisées. 

Il n'est donc pas étonnant de constater que plusieurs études menées dans le domaine de la détection 
d'intrusion ont clairement identifié l'évaluation des IDS comme une thématique de recherche prioritaire 
{Mukherjee94}, {Axelsson98a}, {Jones00}, {Allen00}, {Lundin02}. 

Malheureusement, l'évaluation des systèmes de détection d'intrusion s'avère une tâche difficile, qui 
exige notamment une connaissance profonde de techniques relevant de disciplines différentes, en 
particulier la détection d’intrusion, les méthodes d'attaques, les maliciels2, les réseaux et systèmes, les 
techniques de test et d'évaluation, etc. 

La tâche est d'autant plus difficile que les IDS doivent non seulement être évalués en conditions  
normales, mais aussi et surtout en environnement malveillant, en tenant compte notamment de modes 
d'utilisation inattendus et parfois même inconnus (ceci est également vrai pour pratiquement tous les 
outils dédiés à la sécurité comme les pare-feux, les IPS3 et les antivirus). Toutes ces considérations 
rendent difficile la tâche de construction de données représentatives pour l'évaluation. 

Dans ce contexte, l'objectif ultime de ce travail est d'améliorer la qualité des systèmes de détection 
d'intrusions en fournissant des procédures rigoureuses d'évaluation, mais aussi des outils de génération de 
données représentatives de test. Notons que les outils d'évaluation que nous proposons seront non 
seulement au service des développeurs d’IDS, mais également des utilisateurs d'IDS pour leur permettre, 

                                                      
 
1  Pour Intrusion Detection Systems en anglais. 
2  Programmes malveillants, ou malware en anglais. 
3  Pour Intrusion Prevention Systems en anglais. 
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par exemple, de comparer différents IDS et de choisir le plus adapté à leur réseau ou système. Nous nous 
concentrons essentiellement sur l'amélioration de la procédure d'évaluation elle-même et sur la création 
de données représentatives. Ceci aidera notamment à réduire le temps nécessaire à la construction des 
données d'évaluation tout en privilégiant leur représentativité, et permettra à l’évaluateur d’accorder plus 
d'attention à la conception et la mise en place des expérimentations. 

En suivant la même structure que la partie en anglais, le reste de ce résumé en français est organisé 
comme suit : la section I discute l’état de l’art. La section II présente notre méthodologie d’évaluation. 
Les sections III et IV sont dédiées à la caractérisation et la modélisation des données réelles traitées par 
les IDS. Dans notre contexte, ces données sont de deux natures : des données de fond qui correspondent à 
des activités normales d’opération (ex. trafic réseau) et des données d’attaques qui correspondent à des 
actions exécutées par les attaquants. Nous concentrons notre étude sur la génération des données 
d’attaques, même si nous avons également abordé le problème de la génération de trafic de fond. Nous 
introduisons une nouvelle classification des attaques et nous développons des approches 
complémentaires destinées à la sélection des attaques pour évaluer les IDS. Ensuite, nous présentons un 
nouveau modèle de processus d’attaques. La Section V décrit notre approche pour générer des données 
représentatives d’évaluation en nous appuyant sur le modèle présenté dans la section IV. Enfin, nous 
présentons la conclusion ainsi que les perspectives de ce travail. 

I. État de l’art : Techniques d’évaluation des IDS 

On peut distinguer deux grandes classes d’évaluation des IDS : l’évaluation analytique et 
l’évaluation par test. Généralement, la première technique se base sur une modélisation du système 
étudié, et peut être appliquée à toute étape du cycle de développement, tandis que la deuxième injecte des 
données réelles à une implémentation (ex. un prototype) du système sous test. Ces deux techniques sont 
détaillées dans le reste de cette section. 

I.1. Évaluation par test 
Nombreux sont les travaux antérieurs qui se sont intéressé à l’évaluation par test des IDS. Citons, à 

titre d’exemple, l’un des plus anciens, celui de Puketza et al. {Puketza96}, {Puketza97}. Ce travail 
utilise un ensemble de scripts pour simuler des cas de test (pour des sessions normales et intrusives) en se 
basant sur la politique de sécurité de l’organisation. Il met en œuvre, non seulement des intrusions 
séquentielles provenant d’une seule session d’attaque, mais aussi des intrusions simultanées provenant de 
plusieurs sessions. La procédure de test suivie vise trois objectifs majeurs : identification des intrusions, 
utilisation des ressources et test aux limites ou stress testing. 

Un autre travail important a été réalisé par IBM Zurich en vue d’une évaluation comparative de 
plusieurs IDS. Pour cela, une plateforme de test générique a été créée en utilisant plusieurs clients et 
serveurs contrôlés par une station unique. Le trafic de fond (trafic normal sur le réseau et événements non 
intrusifs du système) est généré en utilisant des suites de tests construits par les développeurs du système 
d’exploitation, tandis que les attaques sont sélectionnées dans une base de données propre à IBM. Le 
rapport publié indique seulement que quatre IDS intégrés sur hôte (Host-based Intrusion Detection 
Systems) ont été testés contre des attaques FTP, mais ne dit rien sur les métriques utilisées ni sur les 
détails des résultats obtenus. 

L’un des projets les plus ambitieux a été celui sponsorisé par la DARPA (en 98 et 99), en 
collaboration avec le laboratoire Lincoln du MIT {Lippmann00a}, {Lippmann00b}. Le but était de 
fournir un ensemble significatif de données de test, comprenant trafic de fond et activités intrusives 
(c’est-à-dire du trafic intrusif ou des événements systèmes causés par des attaques). Le trafic de fond 
était déduit des données statistiques collectées sur le réseau des bases de l’Air Force alors que les 
attaques étaient générées par des scripts créés spécialement, mais aussi par des scripts collectés à travers 
des sites spécialisés et des listes de diffusion. Les données collectées concernaient à la fois des HIDS (par 
exemple données d’audit de stations Solaris, disk dump de machines UNIX et BSM « Sun Basic Security 
Module ») et des IDS dédiés réseau, communément appelés NIDS, pour Network IDS. 

Le jeu de test DARPA’98 utilisait environ 300 attaques (classées en 38 types d’attaques), tandis que 
DARPA’99 utilisait environ 50 types d’attaques. 
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John McHugh a fortement critiqué les évaluations de la DARPA. Il a surtout insisté sur trois 
problèmes essentiels respectivement liés à la génération des données de test, aux métriques utilisées et à 
la présentation des résultats {McHugh00a}. 

I.2. Évaluation analytique 
Contrairement à l’évaluation par test, l’évaluation analytique porte sur la définition de méthodes 

permettant de maîtriser le modèle. Le travail le plus important dans ce domaine est celui d’Alessandri, 
qui a proposé un modèle descriptif de l’IDS {Alessandri04} visant à pallier les problèmes cités 
précédemment et à fournir une documentation aux concepteurs. L’évaluation consiste à : 

- classifier les attaques selon leurs caractéristiques observables par l’IDS ; 
- décrire le comportement de l’IDS, et notamment la manière de collecter et d’analyser les 

informations ; 
- déterminer si un certain type d’attaques sera détectable par l’IDS ou pas. 

Notons que globalement, chaque catégorie d'évaluation des IDS, qu'elle soit analytique ou par test, 
possède des avantages mais aussi des inconvénients. Le tableau suivant dresse une comparaison globale 
des principales caractéristiques des deux techniques d’évaluation des IDS. 

Table 1 : Caractéristiques principales des techniques d’évaluation des IDS 

 Évaluation par test Évaluation analytique 

Phase du cycle de vie Après l’implémentation Spécification et conception 

Cible Prototype, implémentation Modèle de l’IDS 

Entrées Données réelles ou synthétisées Modèle et classes d’attaques 

Activités normales de fond Peuvent être considérées Ne sont pas considérées 

Caractéristiques évaluées 
Performances, capacités de 
détection 

Capacités de détection 

Effets de l’environnement Peuvent être considérés Ne sont pas considérés 

Niveau de connaissance requis 
Connaissance sur l’IDS non 
obligatoire, compatible avec une 
évaluation boîte noire 

Bonne connaissance sur la structure et 
la conception de l’IDS, correspond à 
une évaluation boîte blanche 

I.3. Discussion 
Globalement, nous identifions plusieurs faiblesses dans les méthodes classiques d’évaluation. Le 

premier point à noter est l’utilisation d’approches non systématiques. En effet, la plupart des méthodes 
de test des IDS sont des approches plutôt ad hoc : la sélection des paramètres du système, des facteurs, 
des métriques et des données de test est souvent arbitraire et non justifiée. 

Le deuxième point est la non représentativité des données de test. Ni le trafic de fond, ni les données 
d’attaques ne correspondent à la réalité d’Internet. L’IDS évalué se comporte ainsi différemment sous 
test et quand il est déployé dans un environnement réel. Si on prend, par exemple, les données de test de 
la DARPA, le trafic généré (de quelques Kbits/s) est considérablement plus faible que celui attendu 
(plusieurs Mbits/s). De plus, les données de test (trafic de fond) ont été basées sur des statistiques prises 
dans différents réseaux, mais leurs caractéristiques, en particulier celles liées à la génération de fausses 
alertes, n’ont pas été validées. 

Le troisième point est la sensibilité des données de test aux variations de l’environnement. 
Malheureusement, le comportement des algorithmes de détection d’anomalies (basés sur des méthodes 
probabilistes, des réseaux de neurones, des arbres de décision, etc.) est étroitement lié à l’environnement. 
Par conséquent, la nature, la régularité et la variation des données collectées lors de la phase 
d’apprentissage (ou des données de test) auront un impact important sur les performances de l’IDS. 

La dernière faiblesse que nous soulevons est la non-pertinence des métriques. On a souvent tendance 
à sélectionner des métriques faciles à mesurer, sans voir l’étendue réelle de leur efficacité. Parmi les 
métriques qui sont souvent utilisées dans l’évaluation des IDS, on peut citer le taux de détection, le 
rapport de détection (detection ratio), le taux de fausses alertes, le rapport de fausses alertes (false alarm 
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ratio), etc. Clairement, ces métriques ne sont pas toujours adéquates. Si on prend le taux de fausses 
alertes par exemple, il peut avoir plusieurs définitions selon la nature du dénominateur. Selon les 
différentes études, ce taux peut être défini comme le nombre de fausses alertes divisé par le nombre total 
d’alertes, ou par le nombre de sessions, ou par le nombre de paquets. Néanmoins, même si le taux de 
fausses alertes par paquet peut avoir un sens pour un IDS qui applique une simple analyse de chaque 
paquet, il n’en a pas de même pour un IDS qui analyse des sessions et contrôle l’état de connexion. 

Dans les sections suivantes nous proposons des solutions pour pallier ces limitations. Dans cette 
optique, la section suivante commence par proposer une nouvelle méthodologie systématique 
d’évaluation des IDS. 

II. Nouvelle méthodologie pour l’évaluation des IDS 

II.1. Vue globale 
La figure 1 présente, de manière globale, notre méthodologie, dont l’objectif principal est le 

développement d’une évaluation systématique suivant des étapes bien structurées. Deux grandes phases 
peuvent être identifiées : une phase de préparation et une phase d’expérimentation. 

La procédure commence par identifier les besoins de l’utilisateur final (crédibilité, taux de détection, 
réactivité, facilité de mise en œuvre, adaptabilité, performances, diversité des canaux d'alerte, etc.). 
Ensuite il conviendrait d’identifier les caractéristiques de l’environnement et du contexte de test (dans 
lequel l'IDS sera déployé) ainsi que celles de l’IDS cible de l’évaluation. 
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Figure 1 : Notre méthodologie pour l’évaluation des IDS 

Après ces étapes, l’évaluateur sera en mesure de sélectionner la technique d’évaluation la plus 
appropriée : évaluation analytique ou par test. Les facteurs (paramètres contrôlables et ajustables par 
l’évaluateur) du système et des données de test sont également spécifiés. Par exemple, la bande passante 
et les tailles de paquet de trafic de fond sont des facteurs liés aux données de test des NIDS4. Bien 
évidemment, les facteurs ainsi que la technique d’évaluation ont un impact sur la sélection des métriques 
et des données de test. 

Il est important de noter que, souvent, il suffit de quelques modifications mineures pour pouvoir 
réutiliser dans plusieurs évaluations les mêmes besoins des utilisateurs ainsi que les caractéristiques de 
l’environnement et/ou de l’IDS. Une partie des étapes précédentes peut donc être factorisée et réutilisée 
moyennant quelques paramétrages mineurs. 

                                                      
 
4  Pour Network-based Intrusion Detection System en anglais. 
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Ensuite, vient la deuxième phase, la phase d’expérimentation, qui consiste à : 
- préparer et exécuter les expériences ;  
- prendre les mesures et calculer les résultats ; 
- analyser et interpréter les résultats obtenus ; et finalement 
- présenter les résultats. 

Les étapes de la figure 1 seront détaillées dans la suite de cette section. 

II.2. Besoins des utilisateurs et objectifs de l’évaluation 
Les IDS s'intègrent dans un contexte et une architecture qui impose des contraintes pouvant être très 

diverses. C'est pourquoi il n'existe pas de grille d'évaluation unique pour ce type d'outils. Pourtant 
l’utilisateur peut dégager un certain nombre de critères, qui devront nécessairement être pondérés en 
fonction du contexte de l'étude. On peut distinguer :  

- les besoins fonctionnels, qui concernent essentiellement la qualité de la détection ; 
- les besoins de performances, qui traitent des aspects liés à la vitesse, l’utilisation de la mémoire, la 

charge CPU ; 
- les besoins d’utilisation, qui concernent les problèmes liés à la facilité de configuration, la mise à 

jour et utilisation, l’ergonomie, etc. 
Les besoins des utilisateurs doivent être traduits en exigences pour les IDS. Une exigence pourrait 

être par exemple : 
- avoir une bonne détection (détecter toutes les attaques connues, mais aussi certaines attaques non 

encore connues) ; 
- générer peu de fausses alertes ; 
- résister aux attaques visant l’IDS lui-même, notamment les attaques par déni de service ; 
- nécessiter peu de ressources ; 
- tolérer les fautes (avec redondance de certains composants de manière à continuer à fonctionner 

même en cas d’intrusions). 
On peut également approfondir l’analyse en spécifiant l’objectif de l’évaluation : s’agit-il d’une 

évaluation pour des administrateurs de systèmes ou pour des développeurs d’IDS. En effet, un 
administrateur pourrait tout simplement viser une étude comparative afin de sélectionner un IDS ou pour 
comparer les IDS déployés dans son propre système, tandis que le développeur pourrait exiger plus de 
détails et chercher à comprendre et interpréter le comportement de l’IDS. Ainsi, si une évaluation du type 
« boîte noire » peut suffire à une évaluation orientée utilisateur, elle ne peut pas satisfaire les besoins du 
développeur. 

II.3. Environnement 
Bien évidemment, l’environnement peut différer d’une évaluation à une autre. Par exemple, les 

caractéristiques d’un réseau académique sont différentes de celle d’un réseau militaire, elles-mêmes 
différentes d’un environnement commercial. Des connaissances sur le système d’exploitation, les 
serveurs, les plateformes, les fichiers ainsi que les bases de données spécifiques à chaque environnement, 
peuvent être pertinentes pour la procédure d’évaluation, par exemple, pour aider à choisir le type de trafic 
de fond, les attaques à considérer ou à injecter à l'IDS sous test. 

II.4. Caractéristiques de l’IDS 
Les caractéristiques architecturales, algorithmiques ou les caractéristiques d’implémentation peuvent 

influencer la méthode d’évaluation. 
Au niveau architectural, la plupart des IDS obéissent au modèle CIDF (Common Intrusion Detection 

Framework) de l’IETF {Chen98}. En effet, un IDS peut être un programme monolithique installé sur une 
seule machine ou distribué sur plusieurs hôtes qui gèrent plusieurs processus : captures et prétraitement 
d’événements, analyse et génération des alertes. Plusieurs sondes peuvent être déployées sur le réseau ou 
dans différents hôtes. 

Concernant les algorithmes et l’implémentation, on distingue plusieurs implémentations des 
algorithmes de détection, par exemple les algorithmes statistiques, les réseaux de neurones, les 
algorithmes génétiques. Si l’IDS étudié est basé sur des agents, d’autres caractéristiques comme 
l’intelligence, l’autonomie et la mobilité peuvent être prises en considération. 
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II.5. Paramètres du système et des données de test 
Étant donné qu’il est pratiquement impossible de calculer tous les aspects liés à l’environnement, les 

évaluateurs ne peuvent ajuster et modifier que les paramètres contrôlables, nommés ici facteurs. Parmi 
l’ensemble des facteurs, il faut en identifier ceux qui vont nous aider à comprendre le système évalué. 
Par exemple, pour les NIDS, ces facteurs peuvent être : la composition du trafic (type de trafic, longueur 
des paquets, contenu de la charge utile, utilisation de la bande passante). Pour les HIDS5, on peut 
identifier des facteurs comme le système (plateforme, version, …) où l'IDS est déployé, les applications 
et services qui tournent sur la machine, les vulnérabilités non encore corrigées, etc. 

On peut également considérer des facteurs spécifiques à l’IDS lui-même, notamment les règles de 
signature, l'algorithme de détection, etc. Le type d’algorithme d’apprentissage ainsi que le seuil du profil  
sont deux exemples de facteurs associés aux IDS basés sur la détection d’anomalie. 

II.6. Techniques d’évaluation 
Le choix de la technique d’évaluation (analytique ou par test) dépend de l’objectif de l’évaluation 

ainsi que de l’étape dans laquelle on l’applique. En effet, comme indiqué dans Table 1, alors que 
l’évaluation analytique peut être appliquée dès les phases avancées de conception, le test n’est possible 
que sur des IDS déjà implémentés. Par ailleurs, l’évaluation analytique nécessite une bonne connaissance 
de la structure et du fonctionnement de l’IDS, tandis que le test peut se contenter de considérer l’IDS 
comme une boîte noire. 

II.7. Sélection des données de test 
Le choix et la construction des données de test (activités normales et intrusives) peuvent prendre en 

considération plusieurs points notamment : 
- le type des fonctions et services qui seront testés, par exemple, la capacité du NIDS à détecter les 

attaques par fragmentation ; 
- le niveau de détail : en effet, certains algorithmes de détection sont plus sensibles au contenu de la 

charge des paquets {Antonatos04} ; 
- l’impact des composants externes : par exemple, si un pare-feu est installé derrière l’IDS, il 

bloque une partie du trafic et l’IDS ne reçoit donc plus ce trafic pour l’analyser (puisqu’il est déjà 
bloqué par le pare-feu) ; 

- la reproductibilité : les résultats doivent être facilement reproductibles. 
Notons, qu’en plus des données de la DARPA, d’autres générateurs plus performants (de trafic de 

fond et d’attaques) sont actuellement disponibles {Sommers04}, {Marty02}. Néanmoins, ces outils 
doivent être bien choisis, configurés, ajustés et adaptés au système étudié. 

II.8. Sélection des métriques 
La définition des métriques est la pierre angulaire du processus d’évaluation. En effet, si elles sont 

mal définies, les résultats de l’évaluation peuvent être faux ou biaisés. Dans la table 2, nous proposons et 
nous décrivons un ensemble de métriques pouvant être utilisé dans ce domaine. 

Ce tableau propose et classifie les métriques selon qu’elles sont reliées aux ressources ou à la 
détection. Cette dernière classe est divisée en métriques microscopiques (reliées aux composants) et 
macroscopiques (au niveau système). La première sous-classe donne une idée globale sur les fonctions 
de l’IDS ; tandis que la deuxième vise à mesurer les capacités de l’IDS selon les types d’attaques et les 
fonctionnalités des composants de l’IDS, par exemple, pour mesurer les capacités des sondes à capturer 
les événements, nous suggérons la métrique « Intrusive event drop ratio ». 

Bien entendu, certaines hypothèses générales doivent être prises en compte dans cette étape de la 
procédure, en l’occurrence : 

- il n’y a pas de métriques absolues, mais seulement des métriques relatives à l’ensemble des cas de 
test ; l’importance des métriques dépend de l’objectif et de la cible de l’évaluation ; 

                                                      
 
5 Pour Host based Intrusion Detection System en anglais 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

31 
 

- pour plus d’expressivité, les résultats de l’évaluation doivent être spécifiés à travers plusieurs 
métriques ; 

- on ne considère que les métriques mesurables et ayant un sens contribuant à la compression, nous 
évitons donc les métriques dénuées de sens (ex., taux de détection) ou génériques et ambiguës 
(ex., résistance aux attaques de déni de service) ; 

- pour les métriques microscopiques, il est important de tracer les événements intrusifs dans les 
données de test. 

Table 2 : Proposition et caractérisation de métriques 

Métriques macroscopiques reliées à la détection Définition 

Ratio de détection nombre d’attaques détectées / nombre total d’attaques  

Ratio de fausse alarme 
nombre de fausses alertes générées / nombre total d’alertes 
générées 

Métriques microscopiques reliées à la détection Définition 

Ratio de détection par type d’attaque 
nombre d’attaques détectées d’un certain type / nombre 
total d’attaques de ce type 

Ratio de fausse alarme par type d’attaque 
nombre de fausses alertes générées pour un certain type 
d’attaques / nombre total de fausses alertes générées pour 
ce type 

Evénements capturés / attaques non détectées 
nombre d’attaques non détectées dont les événements ont 
été capturés / nombre total d’attaques non détectées  

Evénements non capturés / attaques détectées 
nombre d’attaques dont les événements n’ont pas été 
capturés / nombre total d’attaques non détectées  

Ratio d’événements intrusifs non capturés 
nombre d’événements intrusifs non capturés / nombre total 
des événements intrusifs 

Métriques reliées à l’utilisation des ressources Définition 

Utilisation CPU Pourcentage du CPU utilisé par IDS  

Utilisation de la mémoire Pourcentage de la mémoire utilisée par IDS 
 

La méthodologie ainsi développée sera recentrée dans la section suivante sur les besoins des 
développeurs. En effet, dans ce cas, la première étape de notre méthodologie – l’identification des 
besoins de l’utilisateur et du but de l’évaluation – fournira la possibilité d’identifier et d’éliminer les 
erreurs introduites dans la phase d’expérimentation (ceci, en vue de l’amélioration de la capacité de 
détection, des performances, etc.). 

II.9. Évaluation diagnostique 
Afin d’aider le développeur à évaluer son IDS, à interpréter son comportement, à découvrir les 

causes de défaillance et à les localiser au niveau des composants, nous proposons dans cette section une 
évaluation diagnostique. En effet, cette tâche nous paraît importante, d’autant plus qu’actuellement, 
excepté quelques travaux s’intéressant aux algorithmes de détection, très peu de travaux se sont 
intéressés à relier le comportement de l’IDS au composant défaillant. 

L’idée principale est de combiner les techniques d’évaluations (par test et par analyse du modèle) et 
les méthodes de sûreté de fonctionnement, en particulier, les arbres de défaillance, appelés aussi arbres 
de fautes (AdF ou AdD). 

Un AdF n’est rien d’autre qu’un diagramme logique utilisant une structure arborescente pour 
représenter les causes de défaillances et leurs combinaisons conduisant à un événement redouté (racine 
de l'arbre). La réduction des arbres de faute à partir du calcul des coupes minimales, permet d'identifier 
les chemins critiques. On en déduit les éléments matériels et logiciels du système dont la défaillance 
contribue le plus à la réalisation de l'événement redouté. Les arbres de faute peuvent être quantifiés, 
permettant ainsi de calculer la disponibilité et la fiabilité du système modélisé. 

Ci-dessous, nous construisons un AdF générique des IDS qui pourrait aider à mieux interpréter le 
comportement de l’IDS et de localiser la source de défaillance ; les fautes d’implémentation peuvent 
ainsi être découvertes et corrigées. Par ailleurs, l’AdF pourrait guider la sélection des cas de test et le 
processus d’expérimentation. 
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II.9.1. Modèle de défaillance de l’IDS 

De manière globale, quelque soit la technique de détection ou l’architecture de l’IDS, les composants 
sont similaires et donc le processus de détection peut être décrit comme suit : 

- une ou plusieurs sondes (du même type ou pas) pour capturer les événements douteux ; 
- un ou plusieurs préprocesseurs pour prétraiter et extraire les informations pertinentes à partir des 

données collectées par les sondes ; 
- un ou plusieurs détecteurs pour analyser les informations fournies par le préprocesseur et 

éventuellement générer des alertes ; 
- une base de données contenant les signatures (pour les IDS à base de signatures) ou les profils 

(pour les IDS à détection d’anomalies). 
Dans cette section, nous allons analyser cette structure générique afin de chercher les causes des 

défaillances. La figure 2 montre le modèle de défaillance de l’IDS, où nous considérons la faute comme 
étant : 

- l’introduction d’une action intentionnelle (ex. déni de service, fragmentation) afin de contourner 
l’IDS ou le désactiver ; ou 

- l’occurrence d’une activité bénigne non-malveillante qui affecte l’IDS, ex. une 
surcharge/saturation ; ou 

- une faute d’implémentation ou de configuration (absence d’une signature, par exemple). 

Figure 2 : Modèle de défaillance des IDS 

L’IDS est donc défaillant si un de ses composants l’est ou s’il y a une rupture de communication 
entre les composants de l'IDS. Ceci pourrait se traduire par une fausse alerte, la non-détection d’une 
attaque (faux négatif) ou une mauvaise identification de l’attaque détectée. 

Une analyse qualitative des défaillances de l’IDS peut être effectuée par l’Analyse des Modes de 
Défaillances et de leurs Effets (AMDE). L’AMDE est une méthode d’élimination et de prévision de 
faute. Elle vise principalement à faire l’analyse qualitative de la fiabilité d’un système par la définition, 
en termes de gravité, des effets de chaque mode de défaillance (leur criticité) sur d’autres éléments et/ou 
fonctions du système {Avizienis04}, {Bouti94}. 

Ainsi, dans notre étude, l’AMDE permettrait d’identifier les défaillances potentielles de chaque 
composant de l’IDS et de donner une idée sur la cause, alors qu’une analyse par arbre de fautes (AdF) 
facilite l’identification des combinaisons de défaillances des composants qui pourrait conduire à une 
défaillance totale de l’IDS. 

La table 3 fournit une structure générique de l’AMDE pour les IDS où les défaillances, les causes, les 
effets ainsi que les actions correctives possibles sur chaque composant sont identifiées. 

Par ailleurs, étant donné que la construction de l’arbre de défaillance repose sur l’étude des 
événements entraînants un événement redouté, nous avons réalisé les étapes suivantes : 

- dans un premier temps, il faut définir l'événement redouté et l’analyser en spécifiant ce qu’il 
représente et dans quel contexte il peut apparaître ; 

- puis dans un deuxième temps, il faut représenter graphiquement les relations de cause à effet par 
des portes logiques (ET, OU) qui permettent de spécifier le type de combinaison entre les 
événements intermédiaires qui conduisent à l’événement analysé. 

Le résultat de ces deux étapes est présenté par la figure 3, qui montre que l’événement redouté 
(défaillance de l’IDS) survient quand l’IDS ne détecte pas l’attaque ou s’il génère de fausses alertes ; la 
détection de l’attaque sans l’identifier correctement peut également être considérée comme une 
défaillance.

Activité 
malveillante

Activité 
bénigne 

significative

Faute 
d’implémentation ou 

de configuration

Fausses alertes 
(Faux positifs )

Faux négatifs

Attaque 
détectée mal 

identifiée

Défaillance 
Système

Défaillance 
composant

Erreur



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

33 
 

 
Figure 3 : Arbre de faute générique pour les IDS basés signature. 
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La défaillance de l’IDS peut être due à une défaillance de la sonde, du préprocesseur, du détecteur ou 
du générateur d’alertes. 

Comme indiqué dans la table 3, la sonde défaille si elle ne capture pas l’événement, c’est-à-dire si 
l’événement est hors de la portée de la sonde ou si l’attaquant arrive à masquer le caractère malveillant 
de l’attaque et faire en sorte qu’elle passe inaperçue. Néanmoins, l’invisibilité de l’événement n’est pas 
la seule chose qui peut conduire à la défaillance de la sonde, elle peut également défaillir si elle est 
saturée, suite à une attaque par déni de service, mais aussi suite à une surcharge du réseau par des 
activités normales. 

La défaillance du préprocesseur survient si les informations pertinentes (pour le traitement et la 
détection) sur les événements sont supprimées, omises ou manquantes. 

Le détecteur peut défaillir s’il ne détecte pas les intrusions dont les événements ont été capturés, s’il 
identifie une activité normale comme intrusive ou s’il n’identifie pas correctement l’attaque détectée.  

Bien évidemment, l’arbre de fautes de l’annexe A peut être développé davantage, par exemple, le 
déni de service dans la branche de la sonde peut être étendu pour inclure les attaques par déni de service 
distribué ou non, etc. Par manque d’espace, nous nous restreignons dans ce manuscrit à ce niveau 
d’abstraction. 

Table 3 : AMDE générique des IDS 

Composant Mode de défaillance Cause Effet 

Sonde/Capteur 
Non capture des 
événements intrusifs 

• Événements malicieux hors 
de la portée de la sonde 

• Événements masqués 
Intrusion non vue 

Suppression d’événements 
Intrusion non vue ou vue 
partiellement 

Préprocesseur 
Suppression d’informations 
utiles 

• Format non approprié 
• Information insuffisante de la 

part de la sonde 
Défaillance du détecteur 

Détecteur 

Non-détection des 
événements intrusifs 
capturés 

• Défaillance du préprocesseur 
• Défaillance de l’algorithme 

de détection 
Faux négatif 

Événements non intrusifs 
considérés comme intrusifs Défaillance de l’algorithme de 

détection 
Faux positif 

Mauvaise identification Rapport incorrect 

Générateur 
d’alerte  

Alerte non générée Mauvaise configuration Faux négatif 

 
Notons par ailleurs que l’exploitation de l’AdF est basée sur le calcul des coupures minimales 

(minimal cut sets), c’est-à-dire l’ensemble minimal des événements (nœuds) qui, s’ils se produisent, 
peuvent conduire à l’événement redouté (racine).  
En notation algébrique on a : 

Défaillance IDS = A+B+C+D 
A = Défaillance dans la capture des événements 
B = Défaillance du préprocesseur 
C = Défaillance du détecteur 
D = Défaillance du générateur d’alertes 

En substituant les portes du niveau supérieur par le niveau en dessous, on obtient la formule : 
Défaillance IDS =  (A3.A6) + (A3.E1) + (A3.E2) + (E3.E4) + (E5.E6) + A5 + (B1.B2) + (B1.B3) + E7 + E8 + E9 + E10 + E11 
+ E12 + D1 + D2 

La coupure minimale est donc : 
(A3.A6), (A3.E1), (A3.E2), (E3.E4), (E5.E6), A5, (B1.B2), (B1.B3), E7, E8, E9, E10, E11, E12, D1, D2 

Une simple analyse des résultats précédents (en particulier, la coupure minimale) indique qu’une 
attaque peut passer inaperçue seulement en cas de défaillance d’un ou deux composant au plus. Ceci 
confirme la nécessité de diversifier les techniques de capture et de détection ou même la combinaison et 
le déploiement de plusieurs IDS sur un même système ou réseau et d’utiliser les techniques de tolérance 
aux intrusions dans les IDS eux-mêmes. En fait, les conclusions tirées de cette analyse sont abstraites et 
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déjà connues car l’analyse est portée sur un arbre de faute générique. Cependant, en prenant l’arbre de 
faute détaillée d’un IDS particulier on peut en sortir des conclusions plus fines. 

Il est important de rappeler qu’il s’agit ici d’une évaluation qualitative dont le but est d’identifier et 
de visualiser les combinaisons d’événements qui peuvent mener à la défaillance de l’IDS. Pour une 
évaluation quantitative, ce travail peut bien évidemment être enrichi par les probabilités d’occurrence des 
événements basiques (par exemple, en exploitant des statistiques fournies par les réseaux de pots de miel 
à grande échelle). 

Dans les sections précédentes, nous avons identifié les limites des évaluations existantes des IDS et 
nous avons proposé notre méthodologie d'évaluation comme une première étape pour pallier ces 
limitations. Dans la section suivante, nous améliorons notre processus d'évaluation en proposant une 
nouvelle classification des attaques, que nous avons identifiée comme nécessaire à l'évaluation des IDS. 

III.  Caractérisation des attaques élémentaires : classification des 
attaques 

Le nombre et la complexité des attaques ont connu une augmentation significative au cours des 
dernières années. Ceci pose de sérieux problèmes pour les évaluateurs des IDS. En effet, comment tester 
efficacement et avoir la certitude (prouver) que l’IDS se comporte correctement (par exemple, génération 
d’une alarme pour toute tentative d’intrusion, pas de fausse alarme, etc.) pour toutes les attaques 
existantes voir inconnues ? 

Puisqu’il est impossible de tester les IDS vis-à-vis de toutes les attaques, il est indispensable de 
trouver une manière de sélectionner un ensemble des cas de test représentatifs. 

Une solution qui peut paraître triviale consiste à construire des classifications pertinentes et 
représentatives de toutes les attaques. L’idée est basée sur le concept de classe d’équivalence bien connu 
dans le domaine du test de logiciel. Il consiste de réduire considérablement les cas possibles en 
construisant des classes d’attaques de telle manière qu’un scénario de test ne prendra qu’un élément de 
chaque classe. Cette technique part du principe que n’importe quelle instance d’attaque d’une classe 
donnée produira les mêmes effets, et donc génèrera les mêmes résultats. 

Pour traiter ce problème, il nous semble nécessaire de commencer par une analyse approfondie des 
classifications existantes, ceci est l'objet de la section suivante. 

III.1. Analyse des classifications d’attaques existantes 
Le but de cette section est de dresser un état de l’art des taxonomies existantes, mais surtout de voir 

(cf. section suivante) si elles peuvent être pertinentes pour l’évaluation des IDS. 
Commençons par la taxonomie de Bishop {Bishop99} ; même si celle-ci concerne les vulnérabilités 

plutôt que les attaques, il peut être intéressant de regarder les attributs (également appelés axes dans cette 
taxonomie) qu’elle considère : nature de la faille (ex. débordement de tampon), phase de l’introduction 
de la vulnérabilité (ex. pendant l’étape de conception ou d'implémentation), domaine d’exploitation 
(c’est-à-dire comment l’exploiter), domaine des effets (ce qui est affecté), nombre minimum des 
composants nécessaires à l’exploitation de cette vulnérabilité et source de son identification (le site ou la 
liste de diffusion où la vulnérabilité a été publiée). 

Kumar a proposé une classification des attaques selon quatre attributs du schéma ou de la signature 
de l’attaque : existence, séquence, intervalle et durée {Kumar95}. 

La taxonomie de Hansman considère quatre dimensions reliées aux attaques : ce qu’il appelle le 
vecteur ou le type (c’est-à-dire le moyen utilisé par l’attaquant pour arriver à ses fins, comme les virus, 
les vers, le déni de service), la cible (ex. système d’exploitation, protocole réseau), les effets de l’attaque 
ainsi que la vulnérabilité exploitée {Hansmann03}. 

Un autre travail intéressant est celui de Lindqvist et Jonsson {Lindqvist97} qui étendent la 
taxonomie de Newman et Parker {Neumann89}. Ces derniers considèrent une seule dimension, la 
technique, tandis que Lindqvist et Jonsson ajoutent le résultat comme dimension supplémentaire. Cette 
classification s’inscrivait dans le cadre d’expériences menées par des utilisateurs internes (étudiants 
d’une classe d’informatique) afin d’améliorer les capacités de détection d’IDS qui utilisent le filtrage par 
reconnaissance de forme (pattern matching, en anglais). D’ores et déjà, on remarque que ce travail ne 
considère que des attaques lancées par des étudiants. On peut ainsi constater qu’elle ignore une grande 
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partie de l’espace des attaques, notamment des attaques plus sophistiquées (non imaginées ou non 
accessibles aux étudiants de cette classe). 

Weber a présenté une taxonomie basée sur trois dimensions : le niveau de privilège requis pour 
mener l’attaque, le moyen utilisé par l’attaquant (ex. exploitation d’un bug logiciel) ainsi que l’effet 
souhaité (ex. déni de service) {Weber98}. 

La taxonomie de la DARPA est en fait une version réduite de celle de Weber. Elle ne considère que 
l’effet de l’attaque comme dimension. Les attaques sont divisées en cinq catégories : "distant vers local" 
(ou R2L pour Remote to Local), "utilisateur vers super-utilisateur" (ou U2R pour User to Root), 
“sondeur” (scan) et “déni de service” {Kendall99}, {Lippmann00a}. Là encore, on peut remarquer que 
cette classification considère des niveaux différents d’abstraction, ce qui pose des problèmes, notamment 
l’exclusion mutuelle des classes résultantes. 

À la différence des classifications déjà citées, la taxonomie de Howard est centrée sur le processus de 
l’attaque, plutôt que sur l’attaque elle même {Howard98}. Elle tient compte de l’attaquant (qui est-il ?), 
de l’outil qu’il a utilisé, de la vulnérabilité exploitée, de l’accès obtenu, des résultats de l’attaque (c’est-
à-dire divulgation, altération) ainsi que ses objectifs (c’est-à-dire obtenir ou détruire une information). 

Un autre travail intéressant{Killourhy04} présente une taxonomie prenant un point de vue défensif. 
Le but était de fournir des informations pour aider les administrateurs à mieux défendre leurs systèmes. 
Les attaques ont ainsi été classifiées selon leurs manifestations (opérations visibles) telles qu’elles sont 
vues par des HIDS (Anomaly Host-based IDS, en anglais). Les quatre dimensions de cette taxonomie 
sont : 

1- signes extérieurs : il s’agit d’appels systèmes qui apparaissent suite à l’exécution de l’attaque, 
mais qui n’apparaissent jamais dans les opérations normales (c’est-à-dire dans les activités non 
intrusives) ; 

2- séquence minimale : c’est la plus petite séquence qui apparaît dans l’attaque, mais qui n’apparaît 
jamais dans des opérations normales ; 

3- séquence dormante : c’est une séquence qui correspond (partiellement) à une sous-séquence 
d’opérations normales ; 

4- séquence normale : c’est une séquence dans l’attaque qui ne se distingue pas des activités non 
intrusives. 

 
Enfin, regardons de plus près l’importante taxonomie d’Alessandri {Alessandri04}. Celle-ci a été 

élaborée à des fins d’analyse des modèles d’IDS. Au lieu de catégoriser directement les attaques, elle 
classifie plutôt toutes les activités (de manière plus globale) qui peuvent être pertinentes pour l’IDS. Une 
évaluation analytique a été ensuite établie pour déterminer les capacités de détection de l’IDS vis-à-vis 
de telle ou telle classe d’attaques. 

Plus concrètement, le modèle correspondant à cette classification fait la différence entre les 
caractéristiques dynamiques et les caractéristiques statiques d’une activité observable par l’IDS. Les 
activités statiques sont divisées en caractéristiques reliées aux objets-interfaces6 et en celles reliées aux 
objets affectés (corrompus) par l’attaque. Les caractéristiques dynamiques sont développées selon trois 
critères : caractéristiques de la communication (ex. unidirectionnelle, bidirectionnelle), méthode 
d’invocation (ex. création, suppression, lecture) ainsi que d’autres attributs additionnels qualifiés de 
mineurs (ex. l’attaque provient de plusieurs origines ou elle contient des événements répétitifs).  

L’attaque, quant à elle, est décrite selon cinq paramètres : l’objet-interface, l’objet affecté, la 
communication, la méthode d’invocation ainsi que d’autres attributs mineurs. Au total, cette taxonomie 
contient 25 objets-interfaces, 10 objets affectés, 3 caractéristiques reliées à la communication, 5 
méthodes d’invocations ainsi que 4 attributs additionnels mineurs. 

Il faut constater que chacune des classifications existantes a été développée dans un but particulier 
(par exemple, comprendre les vulnérabilités pour renforcer les mesures correctives et défensives, 
appréhender les processus d’attaque ainsi que le comportement des attaquants, etc.). Il en résulte que les 
attributs identifiés dans une étude ne sont pas forcément pertinents pour une autre ayant un objectif 
différent. 

                                                      
 
6  Un objet interface est un objet (ex. fichier, processus) qui contient une vulnérabilité ou qui propose une fonctionnalité qui a servi 

pour attaquer d’autres objets (entités du systèmes).  
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Avant de présenter notre classification, la section suivante va d’abord discuter les limites des 
classifications présentées et va analyser les attributs qu’elles proposent afin de ne retenir que les plus 
pertinents pour l’évaluation des IDS. 

III.2. Discussion 
Les différentes taxonomies existantes adoptent différents points de vue, et sont basées sur des 

attributs liés aux attaques ou aux vulnérabilités. Même s’il est impossible de citer dans ce mémoire toutes 
les taxonomies existantes, on peut globalement identifier les attributs les plus importants : 
� type de l’attaque : virus, vers, cheval de Troie, déni de service, etc. ; 
� technique de détection de l’attaque : approche statistique, filtrage, reconnaissance de motif, etc. 
� signature de l’attaque : motif (pattern) ou séquence de motifs observés ; 
� outil utilisé par l’attaquant : boîte à outils (toolkit), script, commande utilisateur, etc. ; 
� cible de l’attaque : système d’exploitation, protocole réseau, application, service, … ; 
� résultat de l’attaque : modification illicite ou divulgation d’informations, déni de service, … ; 
� accès visé par l’attaque : accès en super-utilisateur, accès en utilisateur normal ; 
� préconditions de l’attaque : existence de versions particulières d’un certain logiciel, … ; 
� vulnérabilité exploitée par l’attaque : débordement de mémoire, mauvais choix de mot de passe, 

mauvaise configuration, etc. ; 
� objectif de l’attaque : gain financier, terrorisme, autosatisfaction, etc. ; 
� localisation de l’origine de l’attaque : interne, externe ; 
� propriété de sécurité violée ou visée par l’attaque : confidentialité, intégrité, disponibilité. 

 
On peut noter que la plupart des travaux existants souffrent d’un manque de clarté dans la distinction 

entre les attributs, et donc entre les attaques. Par exemple, certaines classifications regroupent le 
débordement de tampon et le déni de service sous le même attribut ; ce choix nous semble abusif car une 
attaque qui exploite un débordement de tampon peut aussi causer un déni de service. 

Par ailleurs, nous constatons que la plupart des classifications sont centrées sur l’attaquant, c’est-à-
dire adoptent le point de vue de l’attaquant (attacker-centric, en anglais). Or ce type d’approches souvent 
ignore (ou masque) certaines caractéristiques importantes des attaques, telles qu’elles sont vues par l’IDS 
ou les administrateurs système, alors que ces aspects sont importants dans notre contexte. 

À l’inverse, la classification d’Alessandri a été principalement créée pour l’analyse des modèles 
d’IDS {Alessandri04}. Elle considère plus de détails reliés à l’attaque en termes de caractérisation des 
IDS, ce qui la rend plus pertinente pour l’évaluation et le test des IDS. Néanmoins, elle présente quelques 
limites. Tout d’abord, elle s’est centrée sur les manifestations des activités intrusives qui peuvent être 
observables par l’IDS, mais elle ignore certains attributs intéressants pour l’évaluation des IDS, 
notamment les privilèges requis ou obtenus, les conséquences, etc. 

De plus, nous trouvons son niveau de dimensionnement très fin, au point que le niveau de détail 
atteint n’est pas nécessairement très utile pour le test des IDS. Pour ne prendre qu'un exemple simple, 
analysons la dimension "object-interface" ; celle-ci contient 24 types dont cinq sont directement reliés à 
la couche "application" : App. layer-connectionless ; App. Layer single-connection single-transaction ; 
App. layer single-connection multiple-transaction ; App. layer multiple-connection single-transaction ; 
et App. layer-multiple-connection multiple-transaction. Avec ce niveau fin de granularité, il n’est pas 
rare de trouver des classes contenant seulement une ou deux attaques, alors que le résultat d'un point de 
vue de l'analyse de l'IDS est pratiquement le même. 

Par ailleurs, les combinaisons des différents cas possibles (compte tenu de cette classification très 
fine) conduit à 9600 cas de test, alors que, par exemple, la fusion des classes reliées au niveau de 
l’application, permet de réduire ce nombre à 8000. On peut donc obtenir un gain considérable de temps, 
sans pour autant pénaliser la procédure de test. En effet, le niveau de détail caché lors du regroupement 
(proposé dans l’exemple) peut être investi ultérieurement à travers une analyse complémentaire, si l'IDS 
sous test est sensible à certains types de communication au niveau applicatif. 

Pour résumer cette discussion, force est de constater que les taxonomies existantes ne sont pas 
réellement adaptées pour l’évaluation des IDS. Les raisons peuvent globalement être résumées dans les 
points suivants : 
� dans leur majorité, elles considèrent la vision de l’attaquant et non celle de l’IDS ; il n’est donc pas 

étonnant que les attributs résultants soient moins pertinents pour le test des IDS ; 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

38 
 

� parfois, la définition des attributs est quelque peu ambiguë voir incohérente ; ceci peut poser des 
problèmes d’exclusion mutuelle, et donc de classification ; 

� le nombre de classes résultantes est parfois très grand, sans que la complexité qui en résulte soit 
justifiée par une efficacité accrue du test des IDS ; 

� ces classifications ne sont malheureusement pas accompagnées de schéma de sélection et 
génération des cas de test. 

 
Dans la section suivante, nous proposons une nouvelle classification qui cherche à dépasser ces 

limites. 

III.3. Nouvelle classification 
Nous nous baserons sur les attributs que nous avons identifiés dans la section précédente, en 

éliminant ceux qui sont ambigus ou qui ne sont pas pertinents pour l’évaluation des IDS. Les attributs 
retenus seront accompagnés par une définition claire. 

La définition d’une taxonomie systématique devrait passer, en réalité, par une identification 
judicieuse des principaux objectifs à respecter. 

Tout d’abord, la classification, au même titre que la sélection des cas de test, doit être réfléchie et 
bien structurée. En effet, dans une sélection plus ou moins "aléatoire" des cas de test, les évaluateurs 
testent souvent leurs systèmes de manière ad hoc en utilisant quelques scripts disponibles sur Internet ou 
dans des listes de diffusion. Néanmoins, les scripts récupérés ne couvrent pas certains types d’attaques 
critiques et ne reflètent pas une distribution cohérente des attaques. 

En outre, l’expression des résultats de l’évaluation en termes de classes d’attaques peut contribuer 
certainement à une meilleure compréhension de l’évaluation ainsi qu’à une représentation et 
interprétation plus précises de ses résultats. En effet, il est plus intéressant de dire que l’IDS est faible (ou 
robuste) vis-à-vis de la détection de tel ou tel type d’attaques. Au contraire, lorsqu’on on exprime les 
résultats en distinguant chaque attaque prise individuellement (et non de manière générique à travers les 
classes d’attaques), les conclusions peuvent être interprétées de manière biaisée. 

Ceci étant, les classes résultantes ainsi que le processus de classification doivent respecter autant que 
possible les propriétés suivantes : 

1. complétude (c’est-à-dire exhaustivité) : un schéma de catégorisation doit tenir compte de toutes les 
attaques possibles (connues et inconnues) ; 

2. extensibilité : quand de nouvelles attaques apparaissent, le schéma de catégorisation doit permettre 
de les classifier. 

3. clarté des critères : le schéma et les règles de classification doivent être bien établies de manière à 
ce qu’une attaque puisse être classifiée en prenant une et une seule classe à partir de chaque 
dimension ; 

4. répétitivité : la ré-application du processus de classification doit toujours produire les mêmes 
résultats ; autrement dit, si on répète les étapes suivies pour la classification d’une certaine attaque, 
on doit toujours la placer dans la même catégorie ; 

5. conformité avec les standards et terminologies existants, notamment avec les bases de données et 
dictionnaires des vulnérabilités comme CVE {Cve08} et OSVDB {Osvdb08}, qui sont 
actuellement largement utilisés ; 

6. exclusion mutuelle : être sûr qu’une attaque ne fait pas partie de deux catégories différentes, une 
dimension n’aura donc que des classes mutuellement exclusives ; 

 
Dans le cas de notre étude, il faudrait, en plus, garder une vision "évaluateur" (et non "attaquant") 

tout au long du processus de classification. Ceci va considérablement influencer la procédure de sélection 
de cas de tests nécessaires. 

Commençons par analyser les attributs mentionnés dans la section précédente, afin de n’en retenir 
que les plus pertinents d’un point de vue "évaluateur", ceux qui sont invisibles par l’IDS ou dénués de 
sens étant donc écartés. 

Par exemple, des dimensions comme l’objectif de l’attaquant, ne seront pas considérés dans notre 
classification, d’autant plus qu’il est à la fois difficile et inutile dans notre contexte d’imaginer l’intention 
de l’attaquant. Dans notre vision, toute tentative d’attaque est considérée comme une menace, quelque 
soit l’objectif visé (terrorisme, vandalisme, vol ou autre). 
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Dans le même sens, des dimensions comme le résultat de l’attaque ou la propriété de sécurité sont 
également peu pertinents dans notre étude. En effet, une fois que l’attaquant prend la main dans un 
système (en particulier s’il obtient l’accès root), il peut généralement modifier, détruire ou divulguer les 
informations, et donc porter atteinte à la fois aux propriétés de confidentialité, d’intégrité et de 
disponibilité. Par ailleurs, nous estimons que les dimensions "type" et "technique de détection" ne servent 
pas à définir une catégorisation claire. 

Après avoir écarté toutes les dimensions non-pertinentes pour notre étude et adapté celles qui 
peuvent être utiles, nous avons abouti à la classification de la figure 4. Notre classification repose sur 
cinq dimensions. Ces dimensions sont sélectionnées de manière à couvrir les sources, les cibles et les 
manifestations des attaques, informations qui nous semblent nécessaires et suffisantes pour le test et 
l'évaluation des IDS. Nous définissons ces dimensions comme suit : 
� Source : indique l’endroit d’où l’attaque a été lancée. Elle possède deux classes : locale et distante. 
� Privilège obtenu : nous distinguons cinq classes de privilèges visés par l'attaquant, les classes 

"root" et "utilisateur" signifient respectivement que l’attaquant a réussi à obtenir l’accès 
"root/administrateur" ou "utilisateur" ; la classe "système" qui permet l’exécution de processus 
avec les privilèges "systèmes" ; la quatrième classe "variable" identifie les attaques qui fournissent 
l’accès en fonction des privilèges de l’utilisateur de l’application vulnérable exploitée. La classe 
"aucun" couvre les attaques qui n’ont besoin d’aucun privilège d'accès au système, comme les 
attaques de reconnaissance (scans). 

� Vulnérabilité : du point de vue de l’évaluateur, il est intéressant de cibler le système de test le plus 
pertinent, de bien paramétrer la plateforme de test, d’exprimer la relation entre les attaques et les 
vulnérabilités exploitées ; ceci va en particulier aider à choisir (lors de la phase de test) les attaques 
qui peuvent exploiter ces vulnérabilités (et qui sont d’ailleurs répertoriées et disponibles dans des 
bases de données standardisées de vulnérabilités), mais aussi à identifier les failles du système pour 
une éventuelle correction. 

� Porteur ou moyen par lequel l’attaque est lancée : il peut s'agir du trafic réseau ou d'action 
exécutée directement sur la machine cible et qui n’apparaît donc pas sur l’interface réseau. 

� Cible : ce peut être la mémoire, le système d’exploitation, la pile réseau, le système de fichier ou 
un processus. 
 

Remarquons que contrairement aux classifications existantes, notre taxonomie tient compte, non 
seulement des caractéristiques observables de l’attaque (comme c’est le cas des classifications orientée 
IDS {Alessandri04} ou orientée défense {Killourhy04}), mais aussi des aspects opérationnels, qui sont 
importants pour l’évaluateur. 

En effet, la classification que nous proposons fournit les informations essentielles pour la génération 
des attaques et l’analyse des cas de test. Par exemple, la dimension "source" donne une idée sur l’endroit 
d’où l’attaque doit être générée pour le test ; de même, la dimension "vulnérabilité" donne une 
information sur la configuration à avoir (ou à l’inverse, à éviter) pour le test. Dans le même sens, la 
sévérité des attaques est implicitement décrite à partir de la dimension "privilège". 

Il est également important de noter que notre classification respecte les objectifs (règles de bonne 
pratique) déjà identifiés ci-dessus : 

- Tout d'abord, les cinq attributs que nous proposons sont choisis de façon à avoir une 
caractérisation exhaustive, couvrant différentes facettes des attaques. Ainsi, n'importe quelle 
attaque peut être caractérisée, c.-à-d. classifiée [propriété 1: complétude]. 

- Par ailleurs, l'extensibilité des dimensions "cible" et "moyen" permet de classifier les 
nouvelles attaques (ex. notamment celles qui utilisent de nouveaux moyens ou visent de 
nouvelles cibles) [propriété 2 : extensibilité]. 

- De plus, les définitions des dimensions que nous proposons aident amplement à déterminer 
(facilement) la classe de chaque attribut qui caractérise l'attaque à inclure dans l’ensemble 
des cas de test [propriété 3 : clarté des critères]. 

- Cette clarté des critères aide également à placer une certaine attaque dans la même catégorie 
si on réapplique le schéma de classification [propriété 4: répétitivité]. 

- En outre, la dimension "vulnérabilité" peut établir un lien direct entre l’attaque et une ou 
plusieurs entrées dans les bases des données standardisées des vulnérabilités (ex. CVE ou 
OSVDB) [propriété 5 : conformité aux standards]. 
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- Enfin, puisque les attributs de notre classification sont mutuellement exclusifs,  une attaque 
ne peut, a priori, faire partie de deux catégories différentes [propriété 6 : exclusion 
mutuelle] ; cette propriété sera davantage démontrée lors de la classification d’attaques 
réelles existantes. 

 
Figure 4 : Nouveau schéma de classification d’attaque. 

III.4. Schéma pour la sélection des cas de test 
Dans cette section nous présentons un schéma de sélection de cas de test basé sur l'arbre de 

classification (CTM pour Classification-Tree Method) qui a été développé par Grochtmann et Grimm 
dans le domaine du génie logiciel {Grochtmann95}. Comme son nom l’indique, cette méthode représente 
graphiquement les partitions du domaine d’entrée sous forme d’arbre. Dans notre cas, le but est de 
pouvoir former des cas de test en combinant des classes appartenant à différentes dimensions. 

Dans une première étape, le domaine des entrées du test est d’abord considéré selon divers aspects ; 
pour chaque aspect, des classifications complètes et disjointes sont formées. Les classes résultantes sont, 
à leur tour, divisées en sous-classes. Dans la deuxième étape, une grille est dressée au-dessous de l’arbre. 
Chaque colonne de la grille contient les feuilles de l’arbre de classification (figure 5). 

Un cas de test correspond en fait à une sélection d’une seule classe-fille de chaque attribut/dimension 
de niveau supérieur ; en d’autres termes, chaque ligne de la grille indique un cas de test distinct. 
Néanmoins, tous les cas de test possibles théoriquement par cette méthode ne sont pas forcément valides 
ou intéressants. La personne qui planifie le test doit donc identifier les cas valides et éliminer les autres, 
en se basant notamment sur les contraintes déjà définies ainsi que d’autres informations concernant le 
système comme l’explique l'exemple de la section suivante. 

L'arbre de classification, présente plusieurs avantages. Tout d’abord, l’identification de tous les cas 
possibles ainsi que la sélection des cas de test pertinents se fait de manière systématique, ce qui facilite sa 
gestion et aide à réduire ou éliminer certaines erreurs. De plus, sa représentation graphique améliore la 
visualisation et facilite la communication entre les personnes qui font la spécification, celles qui 
s’occupent du développement et celles qui gèrent les tests. 
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Figure 5 : Schéma de sélection d’attaque basée sur l’arbre de classification. 

III.4.2. Exemple de sélection des cas de test 

Une fois tous les cas de test possibles énumérés, il faut identifier les cas de test pertinents. Pour cela, 
nous avons utilisé l’outil CTE, pour Classification Tree Editor {Cte08}. Cet outil permet, entre autres, 
l’automatisation de la génération et l'identification des cas de test. 

Ainsi, à partir de notre schéma de classification et en utilisant la CTM, l’outil CTE génère toutes les 
combinaisons possibles des sous-classes. Ces combinaisons représentent les cas de tests d’attaques 
possibles.  

Afin de couvrir l’espace des attaques, le nombre de combinaisons possibles sans considérer les 
contraintes est 3500 (dont 3400 combinaisons valides), au lieu de 9600 si on utilise la classification 
d’Alessandri {Alessandri04}. 

L'outil CTE permet l'application des contraintes sur l'arbre de classification. Cela aide à réduire 
davantage, à regrouper ou à réordonner les cas de test afin de n’en retenir que les plus pertinents pour 
l’évaluation en cours. Plus précisément, CTE offre un formalisme simple et puissant pour l’expression 
des contraintes en combinant des règles contenant des sous règles entre parenthèses (sous formes de 
prédicats), des connecteurs interpropositionnels tels que et (*), ou (+), non (NOT), etc. 

Par exemple, la contrainte suivante : 
Distante * (root + système) * Vul_configuration * Trafic réseau  * (Sys. de fichier + App) 
génère des cas de test qui fournissent des accès "root" OU "système", ET qui concernent les attaques 

distantes pouvant exploiter des vulnérabilités introduites lors de la configuration, ET qui sont visibles sur 
le trafic réseau, ET qui visent des applications OU le système de fichiers.  

Comme indiqué dans la figure 5, l'application de cette contrainte réduit les cas de test de 3400 à 20 
seulement. Par exemple, le premier cas de test concerne les attaques qui : 
� sont lancées à distance, 
� fournissent des accès "système", 
� sont visibles sur le trafic réseau au niveau transport, 
� modifient les variables de l’environnement, 
� exploitent des vulnérabilités introduites lors de la configuration, et 
� visent des applications. 
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Dans cette section, nous avons présenté une classification qui caractérise chacune des attaques au 
niveau élémentaire. Or, dans les cas réels, le test de l'IDS devrait tenir compte de scénarios qui peuvent 
être composées de plusieurs attaques élémentaires. La section suivante s'intéresse aux scénarios 
d'attaques. 

IV. Caractérisation et modélisation des scénarios d’attaque 

Ces dernières années ont vu une augmentation massive du nombre des virus, vers et autres 
programmes malveillants (maliciels). Et même si les rapports se contredisent parfois, on parle d'une 
multiplication par cinq en 2007 par rapport à l’année précédente. Pour ne citer qu'un exemple 
représentatif, le très sérieux projet AV-Test (15 ans d'expérience dans l'analyse des programmes 
malveillants) a répertorié en 2007, 5,5 millions d'échantillons de programmes malveillants nouveaux, 
contre moins d’un million en 2006 {Avtest08}. Ce nombre est non-cumulatif, il ne tient pas compte des 
programmes malveillants précédemment détectés. 

Cette analyse est alarmante pour ce qui concerne la détection d'intrusions. En effet, une légère 
modification d’un programme malveillant connu suffit pour tromper la plupart des mécanismes de 
détection à base de signature. De plus, le processus de génération de signatures est généralement 
fastidieux, même pour des variantes de maliciels connus, alors qu’il est facile de le modifier 
automatiquement. Il n'est donc pas étonnant de voir de nouvelles mutations d’un cheval de Troie chaque 
jour, voire parfois chaque heure. 

De toute façon, la croissance actuelle du nombre de maliciels ne peut que provoquer l’effondrement 
des performances des outils de sécurité qui ont besoin d’une signature spécifique du maliciel, que ce soit 
un nouveau programme malveillant ou une variante d’un maliciel connu. Il est donc important de trouver 
une solution efficace pour ce problème, plus que jamais d'actualité. Pour aider à le résoudre, le travail 
présenté dans cette section propose de modéliser les processus d'attaque sous forme de scénarios 
composés de séquences de primitives d'exécution. La définition de ce modèle repose sur l’analyse 
d’incidents de sécurité résultant aussi bien d’outils d’attaque automatiques que d’attaques interactives. 
Ce modèle peut alors servir à générer automatiquement des scénarios d’attaques représentatifs des 
attaques réelles, et ces scénarios peuvent être utilisés pour tester les outils de détection d’intrusion (IDS) 
et en évaluer l’efficacité. 

IV.1. Approche 
Afin de traiter cette question de la multiplication des variantes d’attaques, et contrairement à d’autres 

travaux qui visent à générer une signature pour chaque variante, notre approche vise plutôt à décrire les 
attaques par des caractéristiques qui soient moins sensibles au polymorphisme des variantes. 

Pour cela, nous avons analysé les modèles d’attaques {Cheung03}, {Dacier94}, {Dahl06}, 
{Schneier99}, {Templeton00} qui décrivent le comportement des utilisateurs et programmes 
(potentiellement malveillants) accédant à et/ou s'exécutant sur un système. Mais nous avons constaté que 
ces modèles sont généralement spécifiques de l'environnement d'exécution, et nécessitent donc une 
connaissance précise et détaillée de l'architecture, de la topologie et des vulnérabilités du réseau et du 
système considérés. De plus, ces modèles se basent essentiellement sur les vulnérabilités connues et 
ignorent les attaques susceptibles d'exploiter des vulnérabilités encore inconnues. 

Dans notre contexte, ceci constituerait une limite sérieuse, dans la mesure où la robustesse des IDS 
dépend également des vulnérabilités inconnues et des nouvelles attaques. De plus, le modèle qui 
répondrait à nos attentes devrait être facilement adaptable et extensible notamment lors de l'ajout ou de la 
suppression d'un utilisateur ou d’une machine, lors de l'installation ou la mise à jour d'un logiciel, ou 
encore lors de l’application de rustines (patches) pour corriger ses vulnérabilités. 

Pour pallier ces limites, nous proposons dans ce travail un modèle suffisamment abstrait pour couvrir 
un maximum de classes ou de types d'attaques, et qui soit le plus possible indépendant de 
l'environnement. 

Pour établir un tel modèle, il s'avère nécessaire d'analyser un nombre suffisant de données sur les 
attaques réelles, ce qui constitue en soi un problème car les données disponibles pour la communauté 
scientifique sont limitées, voire parfois biaisées et non représentatives. 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

43 
 

C'est pour cela que nous avons basé notre analyse préliminaire sur les attaques de type virus et vers 
les plus répandues. En effet, étant donné que les vers sont autonomes, ils doivent comporter toutes les 
étapes d’un processus d’attaque. De plus, les virus comme les vers peuvent être vus comme une classe 
d'attaques automatiques développées par des attaquants habiles ; cela peut donc aider à comprendre 
comment les attaques interactives peuvent être menées. 

Dans la section suivante, nous présentons le résultat de l’analyse d’environ 40 virus, vers, chevaux 
de Troie ainsi que d'autres incidents liés à des attaques, dans le but d'identifier les types et séquences 
d'actions qu'un attaquant exécute. Une description plus détaillée de cette analyse peut être trouvée dans 
{Gadelrab08a} ou dans l’annexe A. 

IV.2. Analyse de maliciels 
Nous avons analysé les primitives d'exécution des 39 maliciels de la liste CME (Mitre’s Common 

Malware Enumeration list) {Cme08}, qui sont représentatifs des attaques les plus dangereuses et les plus 
répandues. Nous avons également utilisé d'autres données intéressantes disponibles sur des sites 
spécialisés comme http://research.eeye.com, et http://www.viruslist.com. 

Le premier résultat surprenant que nous avons pu constater est que, malgré la diversité de ces 
maliciels, les étapes suivies pour ces attaques peuvent être classées en seulement 8 primitives. Nous 
avons identifié chaque primitive par un symbole, comme indiqué ci-dessous : 
� R: Reconnaissance 
� VB: Fouille des machines ou des réseaux victimes (Victim Browsing) 
� EP: Exécution de programme (Execute Program) 
� GA: Gain d'accès (Gain Access) 
� IMC: Implantation de code malveillant (Implant Malicious Code) 
� CDI: Compromission de l'intégrité (Compromise Data Integrity) 
� DoS: Déni de service (Denial of Service) 
� HT: Effacement des traces (Hide Traces) 

 
Notons qu'au lieu d’analyser les détails des commandes et des instructions de bas niveau, nous nous 

sommes plutôt intéressés au processus d'attaque dans sa globalité. Cela nous permet d’identifier les 
primitives communes aux différents types d’attaques et être le plus indépendant possible de la plateforme 
ou de l’environnement. 

D’ailleurs, pour ne pas biaiser l'étude et afin d'avoir des résultats plus généraux, nous prêtons peu 
d'attention à l'aspect propagation, caractéristique plutôt spécifique aux vers. En réalité, nous considérons 
l’étape de propagation comme un gain d’accès (GA) ou une implantation de code malveillant (IMC). 

De plus, étant donné que plusieurs étapes d’attaques peuvent être considérées, de manière globale, 
comme une exécution de programme (EP), nous préférons les différencier en considérant une relation 
d'ordre partielle (dénoté par >), le but étant ainsi de déterminer (et ne considérer que) la primitive qui 
exprime et reflète le mieux l’étape de l’attaque en cours. Ainsi, nous considérons que : 

� IMC > CDI > EP 
� HT > CDI > EP 
� [R|VB] > EP 
� HT > DoS 

Ces relations peuvent être interprétées de la manière suivante : 
� Si l'étape d'attaque exécutée contribue à l'installation d'un code malveillant, elle est classifiée 

comme IMC. Sinon, si elle modifie le système de fichiers, les fichiers de configuration, les clefs 
d'enregistrement (Windows registry), ou les variables d'environnement, on la considère plutôt 
comme un CDI. Autrement, on la considère comme EP. 

� Si l'étape d'attaque exécutée cache des informations ou bloque l'accès aux informations qui 
montrent l’existence d'un code malveillant, elle est considérée comme HT. Sinon, si elle modifie 
le système de fichiers, les fichiers de configuration, les clefs d'enregistrement (Windows 
registry), ou les variables d'environnement, sans cacher des informations liées à l’attaque, on la 
considère comme un CDI. Autrement, nous la considérons comme EP. 

� La recherche à distance des informations reliées aux victimes potentielles est une étape de 
reconnaissance (R). Si l’attaquant cherche des informations localement stockées sur la victime 
on l’identifie comme une étape d’exploration (VB). 
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� Si l'étape d'attaque conduit à bloquer/arrêter/compromettre l'accès aux services qui fournissent 
des informations reliées aux activités malveillantes, il s'agit en fait d'une étape d’effacement des 
traces (HT). Sinon, si le service bloqué/arrêté/compromis ne cache pas des informations sur les 
activités malveillantes, nous le considérons comme une étape de déni de service (DOS). 

Dans la suite de cette section, nous construirons progressivement un modèle de processus d'attaques. 

IV.3. Modèle de processus d'attaques 
Cette analyse nous a permis de construire le modèle décrit par la figure 6. Le premier résultat 

surprenant que nous pouvons souligner est que, quelque soit la nature de l'attaque et l'expérience des 
attaquants, ces derniers suivent généralement le même type de processus (étapes), le niveau de l'attaquant 
se reflètent à travers la sophistication et la finesse de l'attaque, la qualité du code, les effets et les 
dommages causés, etc. En général, les attaquants expérimentés utilisent des techniques plus avancées et 
des outils plus personnalisés, alors que les débutants (script kiddies) utilisent des exploits et des outils 
souvent développés par d'autres. 

Notre modèle distingue les étapes suivantes (figure 6) : 
� Reconnaissance : il est logique pour un attaquant de chercher les informations nécessaires sur les 

victimes potentielles avant de les cibler avec les outils d’attaques les plus appropriés (codes 
d'exploits, toolkits, etc.). 

2) Gain d'accès (Gain Access) : afin d'atteindre leurs objectifs, les attaquants ont généralement 
besoin d'avoir un accès aux ressources des victimes ; le niveau d'accès requis dépend 
évidemment de l'attaque. Notons toutefois que certains types d'attaques, comme les attaques en 
déni de service, n’ont pas, en général, besoin d’accès sur la machine victime. 

3) Augmentation de privilèges (Privilege Escalation) : l'accès obtenu initialement par l'attaquant est 
parfois insuffisant pour réaliser l'attaque ; dans ce cas, l'attaquant essaie d'augmenter ses 
privilèges pour avoir plus de pouvoir (par exemple, passer du mode utilisateur au mode 
administrateur pour pouvoir accéder aux ressources systèmes). 

4) Fouille de la machine victime (Victim browsing) : après avoir acquis suffisamment de privilèges, 
l'attaquant essaie généralement d'explorer la machine ou le réseau cible (par exemple, en 
fouillant les fichiers et les répertoires), pour rechercher un compte particulier (comme un compte 
invité ou un compte ftp anonyme), pour identifier les composants matériels, pour identifier les 
programmes installés, pour rechercher les hôtes de confiance (typiquement, ceux ayant des 
certificats installés sur la machine de la victime), etc. 

5) Actions principales (Principal Actions) : comme indiqué dans la figure 6, cette étape peut 
prendre différentes formes ; par exemple, l'attaquant peut exécuter une attaque en déni de 
service, installer un code malveillant, compromettre l'intégrité des données ou exécuter un 
programme. 

6) Cacher les traces (Hiding Traces) : les attaquants les plus expérimentés utilisent généralement 
cette dernière étape pour effacer leurs traces et rendre ainsi la détection plus difficile. 

 
Il est important de noter que, du point de vue de la détection d’intrusion, le nombre d'étapes qui 

apparaît dans une certaine session d'un processus d'attaque est arbitraire. En effet, afin d'empêcher la 
détection, les attaquants peuvent procéder lentement, en plusieurs étapes, sur plusieurs jours, voir même 
sur plusieurs semaines. Ainsi, quand ils reprennent leur attaque avec les étapes qui suivent, cela pourrait 
apparaître comme une nouvelle attaque pour l'outil de détection d’intrusion (IDS) ; le plus souvent, 
l'attaquant recommence directement par une augmentation de privilège ou par exécuter des actions 
intrusives sans reproduire les étapes précédentes (telles que la reconnaissance, la fouille, etc.). Par 
ailleurs, dans bien des cas, l'attaquant peut être un utilisateur interne qui possède un compte valide et qui 
a déjà suffisamment d'information et de privilège ; il n'a donc pas besoin de passer par certaines étapes 
comme la reconnaissance. D'un autre côté, un processus d'attaque peut être interrompu délibérément par 
une simple décision de l'attaquant, par exemple s’il estime qu'il est difficile de réussir son attaque ou s'il 
a trouvé une autre cible plus facile ou plus intéressante. 

Notons également que même si notre modèle ne tient pas compte directement des attaques dites 
multi-sauts (multi-hop attacks) qui passent par plusieurs victimes, il est tout à fait possible de représenter 
ces attaques par une concaténation de plusieurs scénarios (c’est-à-dire avec un scénario pour chaque 
victime). 
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Figure 6. Modèle de processus d’attaque 

V. Génération des scénarios d’attaque 

Dans notre contexte, c’est-à-dire l'évaluation des IDS, notre modèle de processus d'attaque (figure 6) 
est simplifié par la machine à états illustré par la figure 7. Ce graphe permet de générer des scénarios 
d'attaques à un niveau abstrait. En appliquant des contraintes sur les chemins entre les nœuds et la 
répétition consécutive de la même action (les boucles), nous pouvons trouver un ensemble des scénarios 
abstraits valides, comme par exemple : 

Scén_1 = (R, GA, VB, CDI, EP, HT) 
Scén_2 = (R, DoS) 
Scén_3 = (GA, IMC, EP) 
 

Néanmoins, il est clair que cette vue "de haut niveau" n'est pas suffisante pour générer des traces 
réelles d'attaques. C’est pourquoi nous l'utilisons conjointement avec deux autres modèles: un modèle 
pour le comportement des attaquants et un autre qui classifie les outils d’attaques (en particulier, nous 
avons répertorié les outils et commandes qui permettent de réaliser chacune des primitives de la figure 
7). L’ensemble de ces trois modèles nous permet d’instancier les scénarios abstraits, et donc de générer 
des scénarios exécutables réels. 

En particulier, la transformation est faite en associant les étapes abstraites avec des commandes 
concrètes ou des instances d'exécution d'outils qui réalisent et implémentent ces étapes. Par exemple,  
� R est associé avec (c’est-à-dire peut être exécuté de manière concrète par) : nessus, nmap, ping, 

traceroute, etc. 
� VB peut être exécuté de manière concrète par : ls, ps, uname, etc. 
� AG peut être associé avec : SSH, telnet, exécuter/exploiter une vulnérabilité metasploit, etc. 
� CDI peut être associé avec : cp, rm, mv, éditer un fichier de configuration, changer les variables 

d'environment, etc. 
� EP peut être associé avec : crontab, lynx, nc, etc. 
� HT peut être associé avec : rm log, kill syslog, tuer un processus antivrirus, etc. 
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� DoS peut être associé avec : shutdown -halt, crash system, arrêt d'un service (stop service), etc. 
� IMC peut être associé avec : scp malveillant, ftp malveillant, exécution de  metasploit avec une 

charge utile malveillante, etc. 

Figure 7 : Machine à état représentante le processus d’attaque 

Un scénario abstrait est donc transformé en scénarios exécutables par la traduction de ces actions 
primitives à des séquences d'actions exécutables. Chaque action primitive est remplacée par une ou 
plusieurs commandes capables de la réaliser. La transformation peut faite selon différentes techniques : 
de manière exhaustive, en choisissant aléatoirement une des commande qui peuvent implémenter chaque 
étape du scénario, ou en utilisant des algorithmes de transformation plus sophistiqués qui prennent en 
considération des paramètres comme les résultats des étapes précédentes et le contexte de l'attaque. 

On peut éventuellement paramétrer la transformation par un modèle de compétence de l'attaquant. 
Pour cela, nous caractérisons l’attaquant par son niveau de compétence (Débutant, Intermédiaire, 
Avancé), son profil (Hésitant, Agressif), l’ensemble d’outils qu’il possède, et son adresse IP. Un 
attaquant peut être donc représenté comme suit : 

Attaquant ≡  (Niveau, Profil, {outils}, IP) 
Notons qu'il peut également être intéressant de paramétrer les scénarios d'attaques selon des 

statistiques issues des données collectées à partir de réseaux de pots de miel. Ces statistiques peuvent 
fournir des informations intéressantes telles que la fréquence d’utilisation de certains outils d’attaques, la 
fréquence d’occurrence de chaque attaque, les adresses IP les plus utilisées comme source d’attaques, 
etc. 

Il est important de noter que cette approche itérative de génération des scénarios d'attaques nous a 
permis de pallier le problème de l’explosion combinatoire, problème intrinsèque aux approches 
classiques de génération des scénarios d’attaques. En effet, dans notre modèle, le nombre de cas 
possibles est fortement réduit, grâce notamment à des contraintes sur les boucles et les relations de 
précédence (déduites à partir de notre graphe). 

VI. Mise en œuvre et expérimentation 

Les idées et modèles présentés dans les sections précédentes constituent la base d’un ensemble 
d’outils que nous avons développés pour l’évaluation des IDS. Notre implémentation consiste en trois 
parties principales : un gestionnaire d’évaluation, un générateur d’attaques et un générateur de trafic de 
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fond. Dans la version actuelle, ce dernier est implémenté séparément comme un logiciel Java. Nous 
avons opté pour une implémentation du gestionnaire d’évaluation et du générateur d’attaques (en 
utilisant le langage Ruby) comme un plugin de metasploit. D’ailleurs, nous avons développé un autre 
plugin de metasploit qui fait l’interface avec la base de données dans laquelle nous stockons les 
informations reliées à la classification des attaques élémentaires. L’architecture globale de notre outil 
toolkit d’évaluation et des interactions entre les différents outils sont illustrées dans la figure 8. 

 

 
Figure 8 : L’architecture globale de nos outils d’évaluation 

Contributions et prospectives 

Les principales contributions de ce travail peuvent être résumées par les points suivants : 
1) Nous avons proposé une méthodologie systématique pour l'évaluation et le test des IDS. 
2) Nous avons fait une analyse profonde pour caractériser les données d'entrées traitées par les IDS. 

Cette analyse nous permet de concevoir, construire et produire des données d'évaluation qui 
soient le plus possible représentatives des données réelles. 

3) Nous avons créé un schéma de classification des attaques qui peut être employé pour choisir les 
cas de test représentatifs d'attaques, mais aussi pour analyser et présenter les résultats 
d'évaluation. 

4) Nous avons conçu et développé des outils d'évaluation qui permettent l'injection des attaques et 
la génération du trafic de fond. Ces outils peuvent être adaptés selon les besoins des évaluateurs, 
les caractéristiques de l'IDS évalué ou l'environnement d'évaluation. 

5) Finalement, en appliquant notre approche et en utilisant les outils d'évaluation que nous avons 
développés, nous avons illustré comment produire des données représentatives d'attaques. 

Il est également important de noter que ce que nous proposons dans ce mémoire ne représente qu’une 
petite partie des applications possibles de notre approche. Le fait de travailler sur un sujet très riche nous 
a inspiré beaucoup d’idées qui augurent d’une suite prometteuse sur l’évaluation des IDS. Les travaux 
futurs consistent non seulement à améliorer les outils développés, mais aussi à approfondir travail de 
recherche initié dans ce domaine à travers cette thèse. À court terme nous envisageons de : 

1) raffiner le schéma de classification 
2) classifier plus d'outils d'attaques 
3) raffiner le modèle de processus d'attaques 
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4) faire des évaluations plus exhaustives des IDS 
5) développer une interface graphique unique pour gérer le processus d'évaluation et afficher les 

résultats 
6) améliorer l'intégration entre les différents composants de notre plateforme de test 
7) étudier la possibilité d'utiliser les plateformes d'émulation de réseaux, tels que ReAssure et 

PlanetLab. 
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I. Chapter 1: Introduction 
In a highly connected world, people worry about the security of their connected devices. In order to 

protect information circulating on networks or stocked on storage media, several defense lines have to be 
put in place. Examples include access control mechanisms, firewalls, encrypted communication 
channels, antivirus tools, etc. Each of such tools contributes to the enforcement of security policies 
defined by the organization or the computer system owner. Unfortunately, even with the implementation 
of several lines of defense, a perfect security cannot be guaranteed. For this reason, complementary 
mechanisms have been added: the Intrusion Detection Systems (IDSes). The philosophy behind intrusion 
detection is that even with the use of several protection mechanisms, attacks as well as intrusion 
incidents are always possible. Therefore, if we cannot provide a complete protection to our networks and 
computer systems, we should at least be aware of the occurrence of attacks, to react with appropriate 
responses and take corrective actions. The detection of intrusion occurrences is as important as protection 
because ignoring security breaches may result in a continuous leakage of information and thereby a 
continuous significant loss. 

Nevertheless, even if detecting intrusions is an interesting concept, for the moment, implementations 
of the intrusion detection concept stay far below the expectations. Many ideas and algorithms were 
proposed since the creation of the first IDS, and several of them could be innovative. Unfortunately, the 
value of these ideas cannot be fairly assessed because IDS researchers and developers lack for effective 
methods and tools that allow evaluating IDS precisely. 

1.1. Motivation 
Intrusion detection systems are relatively recent. There are different types of IDS that are 

characterized by various detection techniques, architectures and scope {Debar00}, {Debar05}. Almost 
all IDS types suffer, with different degrees, from two common problems: the huge number of false 
positives and of false negatives. A false positive occurs when the IDS signals an intrusion for normal 
activities (false alarm), while false negatives occur when attacks or intrusions pass without detection (i.e., 
no alarm is generated). 

IDS developers try to overcome these limitations of IDSes by developing new algorithms and 
architectures. However, they need to evaluate the improvements provided by these new features. 
Similarly, network administrators and security analysts need to evaluate IDSes either to select the best 
ones before acquisition or to assess their efficiency after the installation in the heart of their networks. 
Unfortunately, the enhancements of IDS are often disappointing, since large numbers of false positives 
and false negatives persist in new versions of IDS with little improvement over previous versions. 
Although we see continuous research and development effort {Mé01}, changes do not appear to 
represent significant breakthroughs, neither in technology nor in usability. This is partially due to the 
lack of effective evaluation and testing methods for such type of tools. 

Several evaluation attempts took place in the last years {Puketza96}, {Puketza97}, {Lippmann00a}, 
{Lippmann00b}, {Debar98}, {Debar02} and {Alessandri04}. However, they have serious shortcomings 
and unfortunately, most of them suffer from serious limitations {Mell03}, {McHugh00a}. Consequently, 
under evaluation, IDSes exhibit a behavior that is different from their behavior when installed in real 
environments, which thus leads to misleading conclusions. 

Many surveys of the research on intrusion detection, ancient ones as well as the more recent, have 
reported IDS evaluation and testing as a high-priority open research area {Mukherjee94}, 
{Axelsson98a}, {Jones00}, {Allen00} and {Lundin02}. 

Contrarily to what may be thought, evaluating Intrusion Detection Systems is a non-trivial task, 
because it requires a deep understanding of the evaluated tool (i.e., the IDS) as well as of attacks and 
malware, to find out the best way to evaluate these tools. Furthermore, security-related tools such as 
firewalls, IDS, IPS, antivirus, etc., have special particularities, as they should deal with unexpected and 
probably unknown use patterns, with abuse of the tools themselves and with vulnerabilities of the 
surrounding systems. These considerations make the construction of appropriate (i.e., representative) 
evaluation datasets extremely tedious and time-consuming. 
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In addition to that, evaluating security-related tools such as IDSes involves issues from various domains, 
such as networking, operating systems, software testing and, of course, security. Having a good 
knowledge of all these areas is essential to be able to evaluate or test such tools properly. 

Since IDS evaluations have intersections with the aforementioned domains, we have dived into 
several sub domains to pickup techniques and methods that can be applicable for the evaluation of 
security-related tools in general and more particularly of intrusion detection systems. This allowed us to 
benefit from advances in other fields that are more mature and helped us in not reinventing the wheel. 

1.2. Research goal 
The ultimate goal of this work is to improve the quality of intrusion detection systems by providing 

enhanced evaluation procedures, datasets, tools and metrics. This is expected to serve not only IDS 
developers, but also IDS users in comparing different IDS products. We focus mainly on the 
improvement of the evaluation process itself and on the creation of realistic datasets. This will hopefully 
reduce the time required by the evaluator (either as an IDS developer, a network administrator, or third 
party assessor) to construct datasets of good quality and allows giving more attention to the 
experimentation design. 

1.3. Approach 
IDS research has often focused on autonomous response and other “advanced” issues, at the expense 

of addressing how to detect and diagnose attacks more accurately. Improving these features is 
meaningless unless the underlying mechanisms of analysis and detection become reliable and credible. 
For this reason, we focus mainly on the detection and diagnostic capabilities of IDSes as opposed to 
some previous evaluations that have distracted the attention towards organizational and non-technical 
issues such as cost of acquirement ease of installation and ease of use. We do not deny the importance of 
organizational aspects and ease of deployment, but given the current state of intrusion detection systems, 
we believe that these have a lower priority. 

Figure I.1 illustrates the roadmap and the milestones of the work presented in this thesis. First, we 
surveyed the literature to establish the state of the art in intrusion detection and to analyze the previous 
evaluations as well as their limitations. This allowed us to draw a map of the field, and to identify the 
problem and the mistakes committed in previous evaluations. Amongst those, the most critical are the 
following: (1) the use of ad-hoc approaches, (2) the use of non-representative datasets without sensitivity 
analysis and finally (3) the use of incorrect metrics. 

Our prime objective when addressing the IDS-evaluation problem is to correct and avoid these 
mistakes or reduce their effects. Thus, the first part of our approach relies on improving the evaluation 
process itself, to provide a well-established and systematic evaluation. The second step is to characterize 
the data inputs of an IDS and determine their main features. As a result, we can make an idea about 
datasets representativeness and how they should be constructed to match real-world data. Besides that, 
we treated the last part (i.e., the metrics) by defining various new metrics that measure specific aspects or 
functionalities of IDSes. The broad range of the suggested metrics allows evaluators to select those 
metrics that fit the best their evaluation goal. 

1.4. Contributions 
The main contributions of this work can be summarized in the following points:  
� We propose an engineered approach to make systematic evaluations, 
� We made a thorough analysis and characterization of IDS input/workload that, consequently, 

allows us to design, construct and generate evaluation datasets as close as possible to the 
reality. 

� We created a classification scheme of attacks that can be used for the selection of 
representative attack test cases as well as the analysis and the presentation of evaluation 
results. 

� The design and the implementation of a flexible evaluation tool that provides attack injection 
as well as background traffic generation. Both can be customized to fit the evaluator’s needs 
concerning the characteristics of the evaluated IDS and of the target system environment. 
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� Finally, by applying our approach and by using the evaluation tools that we developed, we 
have illustrated how effective attack datasets can be generated. 

The chapters of this document are dedicated to detailed descriptions of each of these contributions. 

1.5. Thesis Outline 
The remainder of the dissertation is organized as follows: 

Chapter 2 introduces the main concepts of security while focusing on those related to intrusion detection. 
It begins by describing briefly some of the common attack threats, security countermeasures and 
concludes by a detailed description of intrusion detection systems: their types, input data sources, 
detection methods as well as their strengths and weaknesses. 
We present in Chapter 3 a brief survey of the literature that describes the current state of the art in IDS-
evaluation as well as an overview of existing evaluations: describing the most important ones, 
distinguishing the evaluation types and discussing the limitations of such evaluations. Then, we draw the 
outlines of a global evaluation framework and its main parts, which include an engineered evaluation 
methodology and the underlying models of our approach and explain the benefits of using such a 
framework. Finally, we identify the main challenges inherent in IDS evaluation that hinder break through 
improvements in this field. 
Chapter 4 is dedicated to the characterization of IDS workloads because we identified the 
representativeness of evaluation datasets as one of the most significant limitations and any attempt to 
generate a representative dataset requires first to characterize the real-world datasets (i.e, workloads). 
Therefore, we describe both the attack and the background components that exist in the real-world 
workloads. We give more focus to the attack component, which we describe it in more details at two 
levels: the elementary attack level and the attack-scenario level. Moreover, we characterize metasploit, 
which is one of the tools that are increasingly used by IDS evaluators, in attempt to figure out whether it 
is representative of the real-world attacks and if it can be sufficient to perform a rigorous IDS evaluation. 
Finally, we close the chapter by discussing the limitations that may persist in attack generation and 
selection approach. 
In Chapter 5, we propose a model-driven approach for generating evaluation datasets. We explain how 
the theoretical concepts and models presented in the previous chapters can be transformed into a 
consistent method to generate representative datasets. Moreover, we outline the architecture and some 
implementation details of the tools that we have developed to implement the discussed ideas. Mainly, 
there are two tools: one for generating attack scenarios and the other for replaying captured network 
traffic. A third tool is concerned with the management and the configuration of the whole evaluation 
platform that allows the customization of evaluation environments to produce datasets with various 
characteristics. 
Chapter 6 presents the experimentations that we made with the tools and an explanatory case study on 
how to apply our evaluation approach. 

Finally, Chapter 7 states the conclusions and the future work including some ideas to further improve 
the evaluation of intrusion detection systems as a pursuit to the work on such a rich subject. 
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Figure I.1: The roadmap of the thesis. 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

55 
 

II. Chapter 2: Background 
In this chapter, we introduce the basic concepts related to intrusion detection and to the security 

problem that we are addressing, in order to provide a casual reader with the background necessary for 
this dissertation. 

The evaluation of IDSes spans several domains such as information security, software testing, 
networking, and performance modeling and analysis. Sometimes, the same term may have different or 
even inconsistent uses in the different domains. To prevent confusion, we explicitly define, where 
necessary, these terms to clarify what we mean by each term. We have adopted in most cases the 
definitions stated by the project MAFTIA {Maftia03}, with some additions and slight modifications, as 
we find MAFTIA’s work strongly relevant to our context (i.e., IDS evaluation). In the second part of this 
chapter, we present the security problem we are addressing, as well as the most common attacks and the 
main security tools that may have a relation with intrusion detection. Then, we dedicate a separate 
section to IDSes with their types, detection techniques, limitations, etc. All this background is necessary 
to introduce the next chapter, which will present a brief overview of the most significant work previously 
done on IDS evaluation and testing. 

2.1. Introduction 
Security of computers, networks and information has become an important subject both as a research 

topic and in the public media where we hear terms such as cyber attacks, intrusions, cybercrimes, etc. 
This is a natural consequence to the spread and the implication of computers and computer-based 
systems in all details of our modern life. The dependence on computers and on the Internet to process, 
exchange and store huge amounts of personal, public or business information makes the protection of 
such systems and of their data a very critical mission. 

Indeed, security is defined in the ITSEC {ITSEC91} as a composite notion, namely the 
“combination of confidentiality, integrity and availability”,  with confidentiality defined as “the 
prevention of unauthorized disclosure of information”, integrity defined as “the prevention of 
modification or unauthorized suppression of information” and availability defined as “the prevention of 
unauthorized retention of information”. Accordingly, a computer system or a network is assumed secure, 
if these properties are maintained. 

As explained in {Maftia03}, other security properties, such as privacy, non-repudiation and 
authentication, can be derived from confidentiality, integrity and availability of data or meta-data. For 
example, privacy means respecting the liberty of individuals and protecting their private lives. It has a 
direct relation to the confidentiality of personal data and meta-data such as the identity of users who 
carried out particular operations or transactions. 

Authenticity is the property of being true. The authenticity of a message, by example, is equivalent to 
the integrity of the message contents (data integrity) and the integrity of its origin (meta-data) and 
optionally the integrity of other meta-data such as transmission date and time. The non-repudiation 
property guarantees that the person who carried out an action within the system cannot deny this fact. 
Thus, it corresponds to the availability and the integrity of meta-data such as the identity of users (e.g., 
who sent the message). 

To protect computer systems against hackers and malicious users, various security mechanisms have 
been implemented to maintain security properties according to some predefined security policy7. In 
particular, a part of the security policy, namely the authorization policy, determines who is authorized to 
do what. A security policy does not provide protection by itself; it needs security mechanisms to be 
enforced. The policy can be described by various forms of access control models (e.g., MAC, DAC, 
RBAC, etc.) and enforced by access control mechanisms such as hardware implemented capabilities 
{Abouelkalam03}. 

Unfortunately, access control can often be subverted or bypassed by attackers because the underlying 
security policy can be sometimes incomplete, imprecise or badly implemented. Therefore, other 

                                                      
 
7 A security policy is a description of 1) the security properties to be fulfilled by a computing system; 2) the 

rules according to which the system security state can evolve. 
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countermeasures such as firewalls, antivirus tools, intrusion detection and prevention systems, etc. have 
been invented but none of these techniques is perfect. 

Indeed, computer intrusions8 have been occurring since at least the 1960s and continue to occur 
despite of the deployed counter-measures. With industry and governments are becoming increasingly 
dependent on networks for doing business, computer intrusions with the goals of obtaining 
economic/competitive advantage, political/military intelligence, and financial gain have become more 
prevalent. 

The growth of incidents on the Internet reflects the growth of the Internet itself as well as the number 
of attackers but it also indicates how attacking culture and tools had become more accessible. Figure II.1 
illustrates this growth of the number of incidents reported to US CERT/Coordination Center {Cert08} 
over the years from 1993 to 2003. By the end of 2003, they have stopped counting the number of 
incidents because “Given the widespread use of automated attack tools, attacks against Internet-
connected systems have become so commonplace that counts of the number of incidents reported provide 
little information with regard to assessing the scope and impact of attacks. Therefore, we stopped 
providing this statistic at the end of 2003” {Cert08}. 

The continuously growing number of attack9 incidents as well as their severity can be explained by 
the increased connectivity and complexity and by the increased publicity of vulnerability10 information 
and attack scripts via the Internet. Figure II.2 shows the number of vulnerabilities discovered during the 
period from 1995 to 2007. 

Consequently, much more viruses, worms and other malware than ever have appeared in the last 
years. Reports vary, but some estimates suggest that there were five times as many variants of malicious 
programs in circulation in 2007 as compared with 2006. For example, the security software testing 
organization AV Test {Avtest08} reported that it identified 5.49 million unique samples of malicious 
software in 2007 – over five times more than the 972,606 in 2006, (see Figure II.3). 

Even if many samples do indeed correspond to the same malware11, the broad trend shows a steep 
rise. Variants are often created to defeat security tools. For instance, the same Trojan can mutate 
sometimes hourly or daily just to try to escape detection by virus scanners. It follows that security 
analysts cannot cope with the frequent discovery of new malware instances to produce the corresponding 
signatures for each new variant. Moreover, creating variants of variants will result, shortly, in new 

                                                      
 

8 Intrusion: a malicious, externally or internally induced fault resulting from an attack that has succeeded in 
exploiting a vulnerability. A fault is the adjudged or hypothesised cause of an error, which cause is intended 
to be avoided or tolerated. {Maftia03} 

9 Attack: a malicious technical interaction fault aiming to exploit a vulnerability as a step towards achieving the 
final aim of the attacker. {Maftia03} 

10 Vulnerability: a fault created during development of the system, or during operation, that could be exploited to 
create an intrusion. {Maftia03} 

11 AV-Test counted the number of files with different MD5 hashes (fingerprints). This includes many samples of 
the same malware that is packed using a different run-time packer or that is differently encrypted. 

Figure II.1: Growth in the number of incidents handled by US-CERT from 1993 to 2003. 
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malware instances that have less common features with the original ones. Nevertheless, whether an 
attack instance is a variant or a completely new malware, security tools could lose the fight against 
malware producers if they continue to use one signature per variant. 

In the next section, we describe briefly various forms of the most common attacks. Then, in Section 
2.3, we discuss security countermeasures that are supposed to provide protection against attack threats. 

2.2. Examples of Common Attacks 
Attacks take several forms to break one or more of the security properties. The attack space consists 

of a wide range of attack activities that enable attackers to achieve their goals. Attacks differ in scope, 
complexity and popularity. They can be grouped according to their functionality as described in the 
following subsections. 

2.2.1. Gathering Security-relevant Information 

Before experiencing an attack, a hacker tries to obtain necessary information that is probably sensible 
about the targeted system, which can be employed later to obtain access to this system. Useful 
information can be obtained by different ways such as network scanning and vulnerability scanning or 
even by using public search engines such as Google or social engineering methods. 

A) Network Scanning 

A port scanner is a piece of software designed to search for network hosts with open ports. Some port 
scanners only scan the most common or the most commonly vulnerable port numbers on a given host or 
a set of hosts or sub networks. The information gathered by a port scan may have many legitimate uses, 
including the ability to verify the configuration of a network by administrators. Port scanning can 

Figure II.3: The continuous growth of the number of captured malwares. 

Figure II.2: Growth in number of vulnerabilities catalogued by US CERT. 
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however be used by those who intend to compromise security. Automatic malware such as viruses and 
worms rely also on embedded port scanners to find open ports. Nmap {Nmap08} is an example of 
network scanner. It can scan a network and print various information such as a list of all live hosts, the 
open ports (i.e., services), as well as the type of operating systems running on these machines. 

B) Vulnerability Scanners 

A vulnerability scanner goes a step further. It searches for open ports and checks whether they 
correspond to vulnerable services. In order to get over the problems related to firewalls and low 
bandwidth connections, a distributed vulnerability scanner can have agents on various networks, 
controlled by (and reporting to) a central server. Further, a large-scale vulnerability scan can be divided 
across multiple distributed scanners. For example, Nessus {Nessus08} can work in client-server mode: 
clients can analyze a part of a network and send all information to the server. Many malware programs 
incorporate a scanning engine in order to scan the local network after infection for a specific vulnerable 
service. An attacker can connect back to retrieve the scan result, or the malware itself can post it via an 
IRC connection by example. 

C) Social Engineering 

Social engineering {Anderson08} is the practice of obtaining confidential information by 
manipulating legitimate users. A social engineer will commonly use the telephone or mail to trick people 
into revealing sensitive information or getting them to do something against typical policies. Rather than 
exploiting technical computer security vulnerabilities, social engineering exploits the natural tendency of 
a person to trust people. It is generally agreed upon that "users are the weakest link" in security and this 
principle is what makes social engineering possible. 

By this means, malicious individuals could penetrate into well-designed, secure computer systems by 
taking advantage of the carelessness of trusted individuals, or by deliberately deceiving them. Perhaps 
the simplest, but still effective attack is tricking a user by impersonating an administrator and requesting 
a password for various alleged purposes. 

2.2.2. Access Gain Attacks 

With information gathered by the above methods, attackers try to obtain a privileged access on a 
system by exploiting vulnerabilities in the services or the applications installed on this system or a bad 
configuration of the network. This kind of attacks primarily grants unauthorized access to the targeted 
system. 

For example, one of the configuration problems is the use of weak passwords in systems where a bad 
policy of password definition allows users to choose simple and easy guessable passwords. Otherwise, an 
attacker can use cracking tools such as “john the ripper” {John07} to obtain passwords by brute-force. 
Buffer-overflow attacks are another example that allows attackers to execute arbitrary code on the 
targeted hosts. 

2.2.3. Denial of Service 

Denial of service (DoS) attacks differ slightly from those listed above, in that they are not primarily 
intended to gain unauthorized access or control of a system. Instead, they are designed to overload or 
disable the capabilities of a machine or a network, and thereby render it unusable or inaccessible (i.e., 
compromise the availability of the service(s) provided by this system or network). 

A) Traditional Denial of Service  

A denial of service typically leads to a complete loss or degradation of services by consuming the 
bandwidth of the victim network or by overloading the computational resources of the victim host. Smurf 
attacks, for example, consist in sending ICMP requests to the broadcast address of badly configured 
networks, with the faked, or spoofed, IP source address of the targeted victim. As a result, all hosts 
reached by the broadcast address will send their ICMP replies to the victim. Another classic example is 
SYN flooding, in which too frequent bogus SYN requests to a service (often HTTP) cause a server to 
exhaust its open connection table entries. In both cases, if the packets received by the victim exceed its 
capability of processing, it will get slow or even crash. 
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B) Distributed Denial of Service  

Distributed DoS attacks (DDoS) consist in deploying coordinated denial-of-service attacks through 
hosts that have been previously compromised by viruses, worms or Trojan horse programs. In such 
attacks, the perpetrator controls the attack process remotely from the infected machines (called zombies) 
typically through IRC or peer-to-peer channels. Such an array of infected computers is called a botnet. 
With a large enough number of such zombie hosts, the services of even the largest and most well 
connected websites can be disrupted. A single attacker can carry out a DDoS alone, but the effect of the 
attack is greatly multiplied by the use of many zombies. 

The simplest form of a DDoS attack is merely to send a very large quantity of request packets, to a 
service on the victim machine. Unless something (e.g., a firewall) between the attacking machines and 
the victim drops those packets, the victim will spend resources attempting to receive and properly handle 
the requests. With a sufficient number of such packets, all of the machine's resources will be spent trying 
to serve fake requests. 

2.2.4. Malware Attacks 

This category of attacks is used for several purposes and has variable consequences. They can result 
in damages as simple as displaying a simple flicker to catastrophic damages such as completely 
formatting hard disks. 

A) Virus and Worm 

A virus is a sequence of instructions that attach itself to programs. When an infected program is run, 
the virus is executed and tries to replicate itself by creating (possibly modified) copies of itself in other 
programs. The main criterion for classifying a piece of executable code as a virus is that it spreads by 
“contaminating an host program” in analogy to biologic viruses. A virus can only spread from one 
computer to another when its hosting program is executed on another, previously uninfected computer, or 
when the hosting program is able to modify remote programs. Virus infections usually occur by sending 
infected program files over a network or carrying them on removable storage media. Viruses are 
sometimes confused with worms. However, they differ in replication and propagation methods. 

Worms are standalone programs that spread themselves to other computers without needing to be 
hosted by another program. Since many personal computers are frequently connected to the Internet or to 
local-area networks, worms can spread quickly. A worm such as Slammer {Slammer07} can infect 
thousands of hosts all over the globe just within a few minutes. 

B) Trojan horse 

A Trojan horse is a computer program that performs some illicit activity without the user knowledge 
when it is run to perform an apparently useful function. It secretly runs commands, and usually enables 
attackers to access the infected computer running it by opening a backdoor. A Trojan horse is not 
necessarily a virus, as its primary goal is not to reproduce itself to infect other machines. However, some 
viruses may have Trojan features (i.e., they might spread like viruses and perform illicit actions on 
infected machines). An anti-malware program can detect Trojans if it recognizes their signatures. Also, 
as for worms and viruses, firewalls can help to protect from them by restricting access to the only needed 
services and ports. 

C) Spyware 

The word spyware refers to programs that gather information on users of the computer on which they 
are installed and then send the gathered information to the software provider so that Internet users can be 
profiled and in some cases they can even contribute to identity theft. It gathers interesting data such as 
the URLs of the visited websites, keywords entered in search engines, passwords, payment information 
(credit/debit cards), or any other personal information.  

Spyware programs are generally installed along with other software (mostly freeware or shareware). 
This enables the creators of such software to gain money by selling gathered information or statistical 
information about users.  

Although some spyware could be legal as the license of the accompanying software may state clearly 
that third party programs are installed, divulging personal information and degrading the performance of 
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the infected machines makes it, at least, annoying. Performance degradation is due to overloading host 
and network resources (e.g., RAM, disk space, taking up processor cycles, network bandwidth, etc.). 

D) Rootkit 

According to Hoglund et. al. {Hoglund05}, “a rootkit is a set of programs and code that allows a 
permanent or consistent, undetectable presence on a computer”. Rootkits have two main features, namely 
hiding code and data, and providing remote access. They can employ various tricks and techniques to 
hide code and data on a system. For example, many rootkits use hidden files and directories. Other 
rootkit features are implemented for remote access and eavesdropping (e.g., for sniffing packets from the 
network). 

E) Spam 

Spamming is the use of any electronic communication medium to send unsolicited messages in bulk. 
While its definition is usually limited to bulk mailing and not targeted marketing, the term "spam" can 
refer to any commercially oriented, unsolicited bulk messages perceived as being excessive and 
undesired.  

Messaging spam makes use of instant messaging systems, such as AOL instant messenger or ICQ. 
Newsgroup spam targeting Usenet newsgroups predates email spam, which is currently the most 
important vector of spam. Mobile phone spam is directed at the text messaging service of a mobile 
phone. Spamdexing (a combination of spamming and indexing) refers to the practice on the World Wide 
Web of deliberately modifying HTML pages to increase the chance of being ranked high on search 
engine relevancy lists. 

2.3. Security Countermeasures 
In order to eliminate or reduce the exposure to security threats, a set of security countermeasures are 

recommended. These countermeasures are not only technical solutions but also cover user awareness and 
training as well as clearly defined practices. A wide range of technical countermeasures and 
administrative tools can be employed to enforce security. This includes log analyzers, password auditors, 
network sniffers, antispyware, port scanners, vulnerability scanners, storage and communication 
encryption, etc. Describing all these tools and techniques is out of the scope of this chapter. However, we 
present, hereafter, a brief description of some of the most common security tools that have a direct 
relation with intrusion detection. We will provide more details about Intrusion Detection Systems 
throughout the next section (2.4) because this dissertation is dedicated to their evaluation. 

2.3.1. Firewalls 

A firewall is a system that allows users to protect a computer from unauthorized connections from 
the network or to protect a LAN from attacks from an external network or the Internet). It also allows 
controlling connections made by applications installed on local machines to outside networks or the 
Internet. Filtering network connections in both directions can be based on different criteria such as source 
and destination IP addresses, transport protocols, application protocols, etc. 

2.3.2. Antivirus 

Antivirus (AV) tools are programs that can detect the presence of viruses, worms or Trojans on a 
computer and remove them. Eradicating a virus is the term used for cleaning out a computer. There are 
several methods of eradication: (1) Clean the infected file by removing the malicious code from it; (2) 
Removing the infected file entirely; and (3) Quarantining the infected file, which involves moving it to a 
location where it cannot be run. Antivirus tools often apply signature-based detection techniques and 
have many similarities with intrusion detection systems. Both tools (IDS and AntiVirus) are eligible for 
more convergence in the near future {Morin07}. 

2.4. Intrusion detection systems 
According to {Mukherjee94}, {Debar05}, and {Debar04} intrusion detection is the process of 

detecting and identifying malicious and unauthorized use, misuse, and abuse of computer systems. Thus, 
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it concerns the set of practices and mechanisms that contributes to the diagnosis of attacks and/or the 
detection of errors that may lead to security failure12 (adapted from the definition found in {Maftia03}). 

An Intrusion Detection System (IDS): is an implementation of practices and mechanisms of intrusion 
detection. IDSes include all software or hardware systems that automate the process of monitoring events 
occurring in a computer system or network and analyzing them for clues of security breaches (i.e., 
compromising confidentiality, integrity, or availability, or bypassing security mechanisms of a computer 
or network). 

Early IDS implementations have appeared since the beginning of 1980s {Anderson80}, 
{Denning87}. Since then, a number of research and open source IDSes were created such as: STAT 
family (USTAT, NSTAT, NetSTAT) {Ilgun95}, {kemmerer98}, {Vigna99}, EMERALED {Porras97}, 
Bro {Paxson99}, and Snort {Roesch99}. Commercial IDSes started to emerge starting from 1990s, for 
example, Cisco secure IDS (previously known as NetRanger) {Earl01} and ISS RealSecure 
{Realsecure08}. 

Despite different implementations, all intrusion detection systems’ major task is to collect data from 
computer systems or computer networks; analyze them to find security-relevant events and raise alarms 
if they find any. According to the Common Intrusion Detection Framework (CIDF) model {Chen98}, 
any IDS is composed of the following components: 

� E-Box: Event-box, which collects data from the information source (e.g., network traffic, 
host logs), and feeds interesting data to the IDS. 

� D-Box: Database-box in which the relevant events are stored after some preprocessing (e.g., 
normalization of different logs in a common format). 

� A-Box: Analysis-box, the core unit of any IDS that manipulates the event data and contains 
the detection engine. 

� R-Box: Response-box, this component is concerned with responsive actions that can be taken 
upon detection of intrusions. The response can be an administrative action such as modifying 
the firewall rules to block the intruder traffic, ending the TCP connection or simply 
generating an alert. 

IDSes have evolved much in the last decade and now they tend to be architecturally distributed and 
can integrate various sensors from different sources. Furthermore, centralized management consoles, 
correlation engines and reporting front ends have been proposed to facilitate the use of several 
heterogeneous but complementary IDSes. We have derived the model shown in Figure II.4 that reflects 
the new tendencies in modern IDSes. Through the dissertation, we base our discussion and analysis on 
this model, which focuses more on the functional units of the IDS. According to this model, an IDS 
consists mainly of at least one detector unit, at least one alarm/report generator, one or more sensor units 
and optionally includes preprocessing and correlation units. An IDS must have at least one sensor either 
of its own or it must import information from other sources such as IDS audit. 

Normally, the intrusion detection process, shown in Figure II.5, starts by collecting events. It then 
passes them either to a preprocessing unit to normalize data or directly to the detector unit. The later 
analyzes the gathered data and decides whether they correspond to signs of an attack or not. If this is the 
case, the reporter unit generates an alarm indicating the occurrence of the attack. If the IDS includes a 
correlation unit, it aggregates alarms that belong to the same scenario, or extracts more information from 
the gathered data. 

We consider Intrusion Prevention System (IPS) as a kind of IDS that not only detects attacks but also 
prevents their occurrence. It extends the functionality of IDS by a response unit to prevent attacks or 
limit their effects. Typical responses to intrusions may include reconfiguring the firewall to drop 
suspicious traffic, denying user access to resources that exhibit anomalous behavior, etc. The following 
section presents different types of IDS. 

                                                      
 

12 Security failure: violation of a security goal of the intended security policy {Maftia03}. 
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2.4.1. IDS types 

There are several taxonomies of IDSes such as that of Debar et al {Debar99}, {Debar00} and 
Axelsson et al {Axelsson00} based on various criteria. Examples of criteria include: 
� The time of detection: Two main groups can be identified: those that analyze events on line and 

attempt to detect intrusions in real-time or near real-time, and those that process audit data with 
some delay or offline (non-real-time), which in turn delays the time of detection. 

� The granularity of data processing: this criterion distinguishes IDSes that process data 
continuously from those that process event data in batch mode. 

� The source of event data: there are two major categories: (1) network-based IDSes (NIDSes), 
which typically read event data directly off a multicast network such as Ethernet and (2) host-
based IDSes (HIDSes), which collect and analyze event data collected on the host. The host data 
are typically logs such as operating system kernel logs, application program logs or even 
firewalls logs, etc. 

� The detection method or technique: Two categories can be distinguished: (1) behavior-based 
(also known as anomaly detection) and (2) knowledge-based (namely signature-based or misuse 
detection). Both types will be described in more details in upcoming sections. 

� The behavior on detection (response to detected intrusions): an IDS can be classified as passive 
or active. Passive systems notify the proper authority, and they do not try to mitigate the damage 
by themselves. Contrarily, active IDS react to stop the attack (e.g., terminates the attack session) 

� The location of data collection: audit data for the processor/detector can be collected from many 
different sources in a distributed manner, or from a single point using a centralized approach. 

� The location of data processing: collected data can be processed and analyzed centrally even if it 
was collected from many different sources. Otherwise, it can be processed and analyzed at the 
same place where it was collected. 

In the next section, we concentrate on the basic IDS features regarding the source of event data, the 
detection approach and the location of data collection and processing. 

Figure II.4: IDS components. 

Figure II.5: Intrusion Detection process. 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

63 
 

2.4.2. The source of event data 

The events analyzed by an IDS can take several forms. Generally, event sources include network 
traffic, log files and audit data gathered locally on the host machine. Accordingly, we have two 
categories of IDS: Host-based IDS (HIDS) and Network-based IDS (NIDS). 

A) Host-based IDS 

A host-based intrusion detection system monitors the host on which the sensor is installed. The event 
stream can be system call sequences, log records from one or more services, operating system logs, or 
any other log for activities within the monitored machine. Normal activities as well as intrusions may 
consist of a single event or of a series of events. For example, an ftp session might generate log records 
on the host that runs the FTP server indicating the start of the session, successful authentication, 
transferred files, examined directories and termination of the session. These records may be mixed with 
the records of other simultaneous ftp sessions as well as records from other services.  

The main advantage of HIDS is that it can theoretically detect intrusions where a local legitimate 
user tries to perform some illegal actions and can help detecting attacks such as Trojan or other attacks 
that may involve software integrity breaches without leaving traces on network traffic. Although the 
HIDS has the advantage of not requiring additional hardware, it can cause a significant degradation in the 
performance of its host due to the overhead of the HIDS operations. Another limitation is the difficulty to 
port it from one platform to another. A large variety of host-based IDS ranges from integrity checkers 
such as Tripwire {Tripwire08} to multi-platform HIDS such as samhain {Samhain07} and OSSEC 
{Ossec08} that perform log analysis, integrity checking, Windows registry monitoring, rootkit detection, 
real-time alerting and active response. 

For systems or applications that use logs as the primary source of information, security log analysis 
can also be called LID - Log-based Intrusion Detection. 

B) Network-based IDS 

A network-based IDS is an appliance that monitors the whole traffic that passes on the network 
segment or monitors only the traffic directed to or from the host on which it is installed. This type of IDS 
has the advantage that a single sensor, properly placed, can detect attacks that target multiple hosts. 
However, it has its own limitations. For example, it cannot detect attacks carried out locally that have no 
manifestations on the network card (e.g., attacks executed by a local user from the console). Besides that, 
it is difficult to analyze encrypted connections and impossible to see traffic that does not pass on the 
monitored segment or that use other links such as modem connections. Moreover, on high-speed 
networks, analyzing all packets in real-time may require processing capacities that exceed those available 
on most computers. 

To overcome these limitations, network-based IDSes are often organized as a set of single-purpose 
sensors or hosts placed at various points in the network. These units monitor network traffic, perform 
local analysis of that traffic and report attacks to a central management console. That way, a few well-
placed network-based IDSs can monitor a large network. 

Snort {Roesch99}, Bro {Paxson99}, and Cisco Secure IDS {Earl01} are examples of network-based 
IDS. 

2.4.3. Detection method 

The detection method is the technique used by an IDS to determine whether an intrusion has 
occurred or not. There are two broad categories of detection methods: anomaly-based or signature-based 
(also known as behavior-based and misuse-based respectively). 

A) Signature-based IDS (Misuse detection) 

Misuse or signature-based detectors analyze system activities, looking for events (or sets of events) 
that match a predefined pattern of events describing a known attack. This implies the analysis of 
signatures that represent a known pattern of attack. A signature can be the interpretation of series of 
packets or a piece of data contained in those packets. It may also manifest in audit records, logs, or in 
changes in files or memory of the compromised system. 
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This type of IDSes can only detect previously known attacks. Therefore, they must be constantly 
updated with signatures of new attacks. Signature definition is a critical task. If signatures are loosely 
defined, the IDS will detect a broader range of attacks at the expense of generating more false alarms. On 
the other hand, if signatures are tightly defined, this will reduce the number of false alarms but the IDS 
will be unable to detect variants of common attacks. 

B) Behavior-based IDS (Anomaly detection) 

Anomaly detection identifies any unacceptable deviation from the expected behavior on a host or a 
network. It assumes that attacks are different from “normal” (legitimate) activity and can therefore be 
detected by systems that identify these differences. Expected behaviors of users, hosts or network 
connections are constructed, in advance. Profiles can be created manually or automatically based on 
historical data collected over a period of normal operation (supposed free of attacks). An automatically 
developed profile is created by software that collects and processes characteristics of system behavior 
over time and forms a statistically valid sample of such behavior. Note that unexpected behavior is not 
necessarily an attack; it may represent new, legitimate behavior that needs to be included in the profile. 

The measured features that may comprise a profile include the number of failed login attempts to the 
system, the time or location of login, the number of files accessed by a user in a given period of time, etc. 
Several techniques are used to determine whether the behavior is abnormal such as statistical techniques, 
rule-based techniques, genetic algorithms, neural networks as well as immune system models 
{Somayaji98}. 

Unfortunately, behavior-based IDSes often need a training period and are sensitive to the training 
dataset. Therefore, they often produce a large number of false alarms, as normal patterns of user and 
system behavior can vary widely. Despite this shortcoming, researchers assert that behavior-based IDSes 
are able to detect new attack forms, unlike signature-based IDSes that rely on matching patterns of past 
known attacks. Contrarily, alarms generated by behavior-based IDSes are less precise than those 
generated by its signature-based counterpart. The later often identifies the detected attack and provides 
rich information such as references to the exploited vulnerabilities and even advices to correct them. 

2.4.4. Locations of data collection and data processing 

A monolithic network IDS deployed on a single host cannot see or handle all traffic passing, neither 
on switched LANs nor on networks with high data rates. Moreover, it is no longer able to treat massive 
volumes of heterogeneous security data. For these reasons, Distributed Intrusion Detection Systems such 
as DIDS {Snapp91}, EMERALD {Porras97}, GrIDS {Staniford-Chen96} have been created to monitor 
more hosts and several points within the network. 

Basically, two architectures of distributed IDSes have to be considered: first, an architecture with 
distributed sensors but centralized analysis like DIDS {Snapp91} and Prelude {Prelude08} where 
sensors that support different detection techniques could be integrated. For example, Prelude integrates 
Snort {Snort08} as a NIDS, prelude-lml as a HIDS that analyzes system log files and Samhain as another 
HIDS that checks file integrity. Although this architecture allows monitoring several points, it exhibits a 
single point of failure once an intruder manages to get the central analyzer down. It suffers also from the 
poor scalability due to the limited capacity of the analyzer and the excessive data transmission between 
sensors and analyzers.  

The second architecture is hierarchical where the IDS is structured in several layers and redundant 
components such as EMERALD or GrIDS. Thus, there is no single point of failure and the scalability is 
improved as the analysis burden is distributed over many hosts. However, reconfiguring such systems is 
difficult and not flexible. Distributed IDSes can be implemented following the client/server model as 
well as by using agent-based approaches. 

2.5. Limitations of Intrusion Detection Systems 
As partially seen in the previous sections, each IDS type has its own strengths and weaknesses. 

However, intrusion detection, in general, suffers from common limitations, which we summarize in the 
following points: 

1) The excessive number of false alarms is the most persistent obstacle that prevents intrusion 
detection systems from playing effectively the expected role in preventing attacks. Generally, the 
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number of false alarms generated by behavior-based IDSes is higher than the number of false 
alarms generated by signature-based IDSes. 

2) Weak and imprecise identification: even when IDSes detect attacks, they sometimes badly 
identify them. Consequently, this affects the diagnosis capability, which is essential for restoring 
the compromised systems as well as for taking corrective and preventive actions {Debar02}. 
This problem is more obvious in behavior-based IDSes. 

3) Limited correlation : alarm correlation had become better in recent versions of either HIDS or 
NIDS. Simple alarm correlations (e.g., alarm aggregation by source IP address) are now possible 
in most IDSes. However, both correlation of various events by one IDS and heterogeneous 
correlation of alarms generated by different IDSes (including both HIDS and NIDS) are still 
limited{Debar04}. 

4) Evasion techniques: in addition to the limitations that are inherent to the nature of attack events, 
evasion techniques aim to make detecting attacks more difficult or impossible. To avoid 
detection, attackers develop novel methods to render their activities stealthier, invisible or not 
analyzable by the IDS. 

5) Novel attacks (also known as zero-day attacks) are attacks that have never been seen before or 
are unknown previously. These attacks exploit either newly discovered vulnerabilities or old 
ones in a new way. A signature-based IDS assumes a minimum knowledge about how the attack 
manifests in the information source. It requires a signature or some kind of model that describes 
this attack to be included in the knowledge base. This implies that the attack is already “known” 
for the IDS. On the other hand, behavior-based IDS is supposed to detect zero-day attacks 
because they observe any deviation of the normal behavior profile not the manifestations of 
particular attacks. Unfortunately, not all new attacks deviate significantly from normal behavior, 
and in any case it is difficult to test behavior-based IDSes against unknown attacks! 

6) Attack variation: as we have seen in Section 2.1, this is a serious challenge to the intrusion 
detection technology that is directly related to (and amplifies) the previous limitations. In the 
near future, we can expect a significant impact on signature-based IDSes, due to the rise we have 
seen in the variety of captured malware. Even if the number of completely new malware has 
increased, most new attacks are variations of already existing malware. Even with minor 
variations, it requires a new signature to be added for signature-based IDS. Fortunately, 
behavior-based IDSes are less sensitive to attack variations if they can detect the original 
malware and if the new variation causes similar deviations from the normal behavior. 

2.6. Conclusion 
Given the increased cyber threats, we need to find more effective and efficient security counter-

measures either by creating new security-mechanisms or by improving existing technologies. 
Otherwise, security countermeasures present so serious limitations that they might lose the fight 

against attackers. Limitations of current intrusion detection technology prevent both automatic responses 
and strong forensics to be practically feasible. Unless they produce more accurate and consistent alarms, 
outputs from intrusion detection systems will lack enough credibility to initiate post-detection actions 
(i.e., attack prevention, active responses or forensics). 

Of course, there is no miraculous solution for these problems. These limitations are not only due to 
weaknesses in implementations of existing tools but also due to fundamental problems inherent to 
detection algorithms and underlying attack models. The bad news is that aggressors can take advantage 
of these limitations to make detection fail. 

We aim by this work to promote the improvement of intrusion detection technology. We opted to 
work on the evaluation of intrusion detection systems because testing and evaluation of systems is a 
central activity in the development or the amelioration of systems. We believe that whenever we want to 
examine the correctness or the effectiveness of designs, implementations or detection algorithms of 
IDSes, IDS evaluation is the key tool. This is why, throughout the next chapters, we will try to create an 
adequate evaluation methodology. 
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III. Chapter 3: An Evaluation Framework for 
Intrusion Detection Systems 

This is an introductive part for the evaluation of intrusion detection systems. In this chapter, we treat 
the evaluation as a whole process. First, we present some definitions and we explain why we need to 
evaluate intrusion detection systems and how such an evaluation can be carried out. Then, we present 
briefly the state of the art on the most relevant IDS evaluations and analyze them to find out what goes 
wrong with these evaluations. From this point, we can identify their limitations and consequently 
determine the requirements for a satisfactory IDS evaluation. Accordingly, we propose a systematic 
methodology to evaluate intrusion detection systems independently from their types. Finally, we give an 
overview of the main components of this methodology, which will be sharpened in the next chapters and 
thereby applied in Chapter 6. 

3.1. Introduction 
The evaluation phase is a fundamental activity in the development and the acquirement of computer 

systems and products. It allows both developers and users to judge the effectiveness, the efficiency and 
the robustness of their systems. Generally, progressive enhancements in evolving technologies are often 
the result of unbiased evaluation methodologies and techniques. Inversely, fields that have a slow 
progress often lack of robust evaluation methodologies, tools and/or metrics. Instead, they often use 
heuristic assessment methods and/or unclear metrics. The intrusion detection field represents a clear 
example for the lack of well-established evaluation methods and tools. This may explain why intrusion 
detection systems are still failing to play effectively their expected role in detecting and preventing 
computer and network attacks. We argue that this is partially due to the absence of trusted evaluation 
methodologies. Even worse, a biased evaluation could be misleading for both developers and users. 

Before discussing existing IDS evaluation techniques, let us first recall some important definitions. 
The aim here is to clarify common ambiguities and to help understanding this chapter. 

The term Evaluation is generally defined as “the act of placing a value on the nature, character, or 
quality of something” {Webster}. Evaluation may take several forms, use different techniques and aim at 
various goals. Considering the techniques applied to evaluate computing systems13 {Jain91}, we can cite 
three main techniques: 

1) Analytical evaluation: is usually based on some abstract model of the system under study (not 
the system itself) and can be performed at any stage during the development cycle. 

2) Simulation: is defined as “the imitative representation of the functioning of one system or 
process by means of the functioning of another. It usually refers to: (a) computer simulation of 
an industrial process, (b) examination of a problem often not subject to direct experimentation by 
means of a simulating device” {Webster}. This technique is applicable at any stage when system 
behavior, interactions between system components and system inputs/outputs can be represented 
in the simulation, 

3) Test or measurement by which an actual implementation or a prototype of the system is 
evaluated against real or synthetic inputs (workloads or test dataset) in order to study system 
behaviors and reactions. Benchmarking is a specific kind of test: it is the process of obtaining 
representative measurements to compare two or more systems. Alternatively, a series of 
experiments can be performed on one system using a reference set of benchmarks 
(datasets/programs). 

Each of these three techniques involves the presence of three elements, a Target of Evaluation (ToE) 
(i.e., the system to be evaluated), an evaluation methodology that provides a detailed plan describing all 
the steps of the evaluation process and some metrics that correspond to the criteria used to evaluate and 
judge the system. Any metrics should have both a definition and a unit of measure. For example, the 

                                                      
 

13 By “computing system”, we mean any computer system or computer-based system that is comprised either in 
software, hardware or in both forms. 
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throughput of CPUs is a metric defined as the rate (i.e., number of instructions per unit of time) at which 
instructions can be executed; the unit of measure is MIPS (Millions of Instructions per Second). 

The term measure (noun) has several different meanings: in metrology and performance evaluation 
literature, it refers to the output of the measurement process, whereas quite often in security it represents 
means or mechanisms used to enforce security, such as firewalls, IDSs, etc. To avoid any confusion, we 
prefer using the term countermeasure for security mechanisms while keeping the term “measure” for its 
original use in metrology or use it as a verb that stands for the action of taking measures or 
measurements. In the case of empirical evaluations (i.e., test or benchmarking), two more elements are 
also involved: a Test-bed or workbench and test datasets. The test-bed comprises the platform of test 
(software/hardware/network architecture) on which the test will be carried out, and the test dataset 
consists of the inputs that will be fed to the evaluated system (i.e., the ToE). 

3.2. An Overview of Existing IDS Evaluations 
According to the definitions stated above, most of the previous IDS evaluations such as the 

evaluation that was carried out by Puketza et al at University of California-Davis {Puketza96}, 
{Puketza97}, the early evaluations by IBM Zurich {Debar98} or the evaluations DARPA98 
{Lippmann00a} and DARPA99 {Lippmann00b} are considered as evaluations by test or simply IDS 
testing. 

By contrast, the evaluation of Alessandri that is described in {Alessandri04} is an evaluation by 
analysis. As far as we know, this is the only analytic evaluation found in the literature of IDS. 

In addition to that, there are magazine evaluations and other evaluations carried out by vendor-
independent laboratories {Nss08}. In this section, we will focus more on “academic” evaluations rather 
than “commercial” evaluations, because more information is usually available in technical reports or 
research papers published by academic evaluators. In the following, we will present a brief description of 
the most significant evaluations. First, test evaluations will be briefly described: their procedures, 
metrics, workloads (attacks and normal activities), test case selection, etc. Then, the analytic evaluation 
will be described to show its strengths and shortcomings when compared to test evaluations. Then, we 
identify the problems and the common mistakes found in existing IDS evaluations of both types. 

3.2.1. Evaluation by Test 

1) Evaluation by University of California-Davis (USA) 

Even if there have been some unpublished comparison experiments between several early IDS 
prototypes, the test made by Puketza et al at California-Davis University {Puketza96} is, to our 
knowledge, the first published IDS evaluation. The authors claimed that the selection of test cases was 
based on the organization’s security policy. The test procedures were crafted to address three 
performance objectives: intrusion identification, resource usage and stress testing. They took into account 
both sequential intrusions that are executed over a single session and concurrent intrusions originating 
from several sessions either from the same attacking machine or from different attacking machines. 

A simple software platform based on TCL-DP14 programming package and Expect15 package was 
developed to launch attack sessions automatically by means of a limited set of scripts that simulate a 
number of selected test cases for both normal and intrusive sessions. Besides, some highly interactive 
attacks and sessions for GUI applications were executed manually. 

2) IBM Evaluation 

Another real-time test was carried out by IBM Zurich research Division {Debar98}. Its goal was 
mainly to create a generic test-bed suitable for comparative evaluations of IDSes using several client and 
server machines controlled by a single workstation. The authors found that modeling users’ behavior by 
using generic session generators would be more complex. Therefore, they decided to generate the 
background traffic by using test suites developed by operating system developers and pre-recorded “live 

                                                      
 
14 TCL-DP is an extension of TCL/TK programming language. It provides a suite of commands for creating 
client-server systems. 

15 Expect package provides commands for controlling interactive programs.  
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data”. Attack test cases were selected from the vulnerability database, which is maintained internally by 
IBM. The published report {Debar98} indicates that only host-based IDSes (HIDS) were tested and only 
against FTP attacks. The workbench was developed using scripts written in Expect and Perl languages to 
record user sessions. Four HIDS were compared but unfortunately, the report details neither which 
metrics were used nor which results were obtained. 

3) DARPA Evaluations 

In 1998 and 1999, DARPA sponsored an ambitious project for IDS evaluation in cooperation with 
MIT's Lincoln laboratory. These evaluations are known as DARPA 1998 and DARPA 1999 evaluations. 
Both DARPA evaluations share the main objective: to provide a dataset or "corpora" for testing and 
comparing IDSes and to analyze their strengths and weaknesses easily. 

To achieve this, a network test-bed was implemented to create live traffic, which contained various 
traffic types similar to what may be generated by hundreds of users on thousands of hosts. Seven weeks 
of training data, containing background traffic and labeled attacks, plus two weeks of unlabeled test data 
were recorded. 

The background traffic was synthesized according to statistics collected from computer networks in 
several air force bases (about 50 air bases). The attack part of the dataset was generated by attack scripts 
collected from specialized sites and mailing lists on the Internet or written by hand. In addition to that, 
some live attacks were executed manually during the evaluation. 

As an evaluation criterion, two metrics were defined and used: Detection Rate and False Alarm Rate. 
The results were presented in the form of Receiver Operational Curves (ROC). The ROC curves were 
initially used in domains and applications concerned with signal detection such as communication and 
radar and then applied successfully to other fields. To draw the ROC curve, the false alarm rate is plotted 
on the horizontal axis and the detection rate on the vertical axis, as illustrated in Figure III.1. 

DARPA evaluations were criticized on several points {Mell03}, {McHugh00a}, {Zanero07}, which 
can be summarized in three groups: 1) critiques related to dataset generation (background and attack), 2) 
those related to metrics and 3) the presentation of results by ROC curves. As we will see later, these 
critiques similarly hold for other evaluations and in some cases more severely. 

Beside DARPA evaluations, the DARPA datasets have been frequently used by IDS evaluators as a 
de facto standard dataset. Because of the importance of DARPA evaluations and the impact they had on 
subsequent evaluations, we will further discuss the characteristics of their datasets in more details in 
Chapter 4. 

4) Evaluation by University of Notre Dame (USA) 

The aforementioned evaluations have often focused on the quality of the detection provided by 
IDSes. On the contrary, the evaluation made by Schaelicke et al {Schaelicke03} is an effort to study the 
performance requirements of signature-based NIDS sensors across a variety of platforms. Performance 

Figure III.1: An example of a ROC curve for two IDSes. 
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bottlenecks were then attributed to specific system features. In particular, they measured the effects of 
the number of rules (signatures) and the packet size. 

The results showed that the required processing load is constant for header-related rules but are very 
payload-dependent for payload-related rules. In both cases, processing load is highly dependent on NIDS 
algorithms. Moreover, the results showed also that a combination of factors contributes to the overall 
performance. In particular, memory, bandwidth and interrupt handling mechanisms of the OS have a 
more significant effect than processor speed. 

5) Evaluation by France Telecom 

As explained in {Debar02}, the authors aimed to evaluate the diagnostic capabilities of network-
based IDSes. Four commercial NIDSes were compared with each other and with respect to Snort as a 
baseline. The comparison was established on measured false positive and false negative rates. Attack test 
cases included IP denial of service attacks, Trojans and various HTTP-based attacks. The HTTP attacks 
were generated by the Whisker tool {Whisker08}, which allows the application of various evasion 
techniques. The importance of this evaluation stems from its result as it showed the very poor diagnostic 
quality of the evaluated IDSes and surprisingly Snort, which is an open source tool, outperforms 
commercials IDSes in several tests. 

6) Maxion’s Evaluation  

Maxion et. al. have evaluated probabilistic algorithms that are often used in anomaly-based IDS 
{Maxion00}. The goal of this evaluation was to test the hypothesis that the intrinsic regularity of the 
dataset influences the performance of probabilistic-based anomaly detectors. The conditional relative 
entropy was defined as a metric for characterizing the structure of data environments. 

A series of experiments was carried out on an anomaly-detection algorithm using a suite of 165 
anomaly-injected datasets of varying structures. Results showed a strong relationship between detector 
accuracy and regularity. The authors observed that the false-alarm rate rises as the regularity index grows 
(i.e., the data become more and more random). They concluded that, in contrast to current practice, an 
anomaly detector should not be evaluated by using a single dataset of the same regularity because it 
behaves differently on datasets of different regularities. 

3.2.2. Evaluation by analysis 

Ideally, this technique consists in analyzing some kind of model that describes the behavior of the 
evaluated system (ToE). It does not require the ToE to be really implemented and can be applied during 
the early stages of IDS development. The advantage of this approach is that we can avoid the difficulties 
that inherently exist in IDS testing (e.g., construction and generation of test datasets). The only work that 
can be cited here is the one performed by Alessandri {Alessandri04}. 

In his PhD dissertation, Alessandri states the main goal of the evaluation as being to "provide 
guidance to IDS designers by predicting the detection capabilities of intrusion detection systems", 
{Alessandri04}. Thus, instead of testing or analyzing a behavioral model of the IDS, a descriptive-model 
was depicted and analyzed. 

Indeed, this evaluation is carried out through: 1) Classifying attacks according to their characteristics 
that could be observed by an IDS; 2) Describing the IDS in terms of its characteristics and particularly 
those related to the way by which the IDS gathers and analyzes the information; 3) Describing attack 
classes in terms of the IDS characteristics that are necessary for detecting a given type of attack; 4) Once 
attack classes and IDS are described, simple inspection of both can determine whether a given type of 
attack will be detected by the evaluated IDS or not and decide accordingly whether "generalized alarms" 
will be generated or not. Generalized alarms are described separately by determining the necessary and 
sufficient conditions that are required for an alarm to be generated {Alessandri04}. 

Attack variations were also considered by applying some predefined variation rules on attack classes 
that may result in new attack classes. Attack classification and attack selection was based on VulDA, the 
vulnerability and attack database maintained internally by IBM {Dacier99}. Noting that VulDA is not 
publicly available for IBM outsiders, classification and description of attacks, which is a principal step in 
this approach, is a nontrivial task. 

This technique is well adapted for "white-box" analysis but it is not suitable for black box 
evaluations where IDS internals are unknown for the evaluators. Moreover, as one can expect, an IDS is 
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examined only against attacks without taking into account background activities and environment-
specific effects. Therefore, the performance of an actual implementation of the same IDS may 
significantly deviate from the predicted one. Deviations may also arise from implementation flaws or bad 
configurations. However, analytic evaluations give deeper and clearer insight of the expected behavior of 
IDSes and hence we can obtain a better comprehension of IDS behavior. 

Table III.1 summarizes the main features of the evaluations just presented above. In the next section, 
we will discuss the common mistakes related to these evaluations. 
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Table III.1: A comparison of IDS evaluations. 

 
Evaluation 
Technique 

Test bed & environment Metrics 
Workload 

Attacks Background 

University 
of 

California-
Davis 

Real-time 
Testing 

A software platform to 
generate attack by scripts 
written in “expect” and 
TCL-DP 

No clearly 
defined metrics 

Single and multi session 
attacks and concurrent 
attacks 

Simulated non 
intrusive user 
sessions 

DARPA 
1998 

Off-line 
Testing 

� A test bed with an  
emulation of thousands 
of workstations & 
websites (external) and 
hundreds of emulated 
PCs and workstations 
(internal) 
� Attacks against UNIX 

victim hosts (SunOS, 
Solaris, Linux) 
� Attack generator based 

on “expect”  

� Detection Rate 
� False alarm 

rate 
� Detection + 

False alarm + 
ROCS 

� Seven weeks of training data that contain 
background data & labeled attacks. 

� Two weeks of unlabeled test data 

� 300 instances of 38 
different attacks from 
outside  

� Novel Unix attacks 
� Stealthy attacks 
� Attack classification: 

A.1 Probe 
A.2 Remote-2-local 
A.3 User-2-Root 
A.4 DoS 
B.1 abuse of legal 
B.2 bug 
B.3 masquerading 

� Attack selection: 
Available attacks & 
attack scripts from the 
Internet. 

� Solaris audit data 

DARPA 
1999 

Off-line and 
Real-time 

testing 

• Same as DARPA 98 
+Windows NT Victim 

Same as DARPA 
98 
+ 
� Identification 
� Error Analysis 

� Three weeks of training data. The first and the 
third weeks do not contain attacks. The second 
week contains background data & labeled 
attack. 

� two weeks of unlabeled test data 
� Stealthy attacks 

� 201 instance of about 
56 types of attacks 
inside & outside 

� Win NT attacks, Unix 
attacks 

� Solaris & NT audit 
data 
� False alarm analysis 

on actual AF traffic 

IBM 
Zurich 

 

Real-time 
Testing 

� Several machines as 
clients and servers + 
workbench controller 
� Linux, Sun AIX 

Not available 
� Scripts from internal 

Vulnerability Dbase 
� FTP attacks 

Test suites developed 
by operating system 
developers and pre-
recorded “live data” 

France 
Telecom 

Off line 
testing 

� Snort as baseline 
product and other four 
commercial NIDS 

False positive 
and false 
negative rates 

� IP denial-of-service 
attacks, Trojan horse, 
and  

� various HTTP-based 
attacks 

Profiled network 
traffic  

Alessandri 
IDS & 

Attack- class 
Analysis 

� No testbed 
� Environment 

independent 

Generalized 
alarm 

Attack-class description No Background 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

73 
 

3.3. Common Critiques of Previous Evaluations  
About 20 mistakes can be found in most computer systems performance evaluations {Jain91}. When 

we review these mistakes, we discover, surprisingly, that several of them are also present in most IDS 
evaluations and testing {Mell03}, {McHugh00a}, {Maxion98}. To be objective, some of the mistakes 
are difficult to eliminate because of the complexities inherent in IDS evaluations but we claim that most 
of them can be avoided or at least their effects can be attenuated. We cite, hereafter, the most relevant 
among these mistakes. 

The first mistake is using unsystematic approaches. One can notice that most IDS testing 
approaches are ad-hoc and the selection of system parameters, factors, metrics as well as evaluation 
datasets is often arbitrary. 

The second mistake is the use of non-representative workloads or attack test cases. Regarding 
intrusion detection systems, the workload consists of two components: background dataset (that is 
normal background network traffic in case of NIDS and normal system activity or system events for 
HIDS) and attack dataset (malicious and intrusive dataset). This mistake means that neither background 
data nor attack data correspond to those of the real world. Therefore, the evaluated IDS behaves 
differently when implemented in a real operational environment. For example, the packet rates found in 
the background traffic of DARPA datasets are much lower than what would be expected: a few Kbits/s 
whereas we would expect it to be in the range of hundreds of Kbits/s or even several Mbits/s according to 
the announced number of workstations and servers that the simulated network comprises. 

The problem of generating network traffic has been addressed for a long time by network 
researchers, who defined and used traffic models to generate synthetic traffic with various characteristics 
and rates. Such early traffic generators have helped to evaluate and to improve the performance of 
network equipments and protocols. However, network researchers have been later confronted to a serious 
problem: simple distributions cannot model Internet traffic, due to its irregularity, self-similarities and 
burst phenomena {Paxson97-a}. Even when these models can describe successfully traditional 
communication traffic, they are unfortunately unsuitable for describing the Internet traffic. 

Furthermore, poorly implemented network protocol stacks may generate many packets, which are 
legitimate but have strange characteristics, which thus could be interpreted by the IDS as intrusive traffic. 
On the other hand, some recent studies have proved that most IDSes are sensitive to packet payload 
contents {Antonatos04}, which means that simple traffic generators used for testing network devices like 
switches and router are less useful for evaluating Network-based IDSes. 

Similar problems are raised by generating system audit records, system calls or logs as a background 
dataset for HIDS evaluation. For example, audit record and log formats differ from one operating system 
to another and this implies providing an audit dataset for each OS. In addition to that, audit records 
should be validated to ensure that they represent or closely approximate the reality. Although this is also 
true for NIDS evaluation, it is more significant in evaluating HIDS. 

Regarding the attack component of the dataset, it is difficult to construct test cases for all known 
attacks and impossible to test IDS for all potential unknown attacks. For this reason, the sample of 
attacks selected for test or evaluation should cover a wide range of known attacks and should take into 
consideration the unknown attacks that may appear in the future. Otherwise, the results of test or 
evaluation would be biased towards those attacks that are included in the dataset. A potential solution can 
reside in a good classification of attacks that can aid in selecting relevant and representative attack test 
cases. However, generating attacks is still difficult and time consuming. 

Testing anomaly-based IDS, in its turn, is troublesome. This type of IDS needs often to be trained 
before being in use. Therefore, the training dataset is as important as the test dataset. Unfortunately, it 
was found that performance of anomaly detection algorithms (probabilistic, statistical, neural networks, 
decision trees, etc.) is highly sensitive to environment variations. Consequently, the nature and the degree 
of regularity of either training or test datasets will have an important impact on the performance of the 
tested IDS {Maxion00}. 

Another mistake is the use of incorrect metrics, Some people tend to select metrics that are easy to 
measure without regarding to what extent they will honestly reflect the actual IDS behavior. Worse, it 
may be intentionally tailored in a certain way to show that one system appears better than another. There 
are several metrics defined for IDSes such as detection rate, detection ratio, false alarm rate, false alarm 
ratio, expected cost metrics, etc. We only give an example of inappropriate or incorrect metrics that was 
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mentioned in {Mchugh00b}. False alarm rate has several definitions that differ in denominators. It can be 
defined as the number of false alarms divided by the number of sessions, or divided by the number of 
packets. We agree that the quantity of the analyzed or processed data (in the form of sessions or packets) 
may be relevant to illustrate the false alarm characteristics of an IDS. However, in practice, the 
credibility of alarms, i.e., the proportion of false alarms among all raised alarms, is more important. In 
that case, even if the rate of false alarms depends uniquely on the “normal” traffic (and its quantity); the 
frequency of true positives (i.e., real attacks that are detected) should also be taken into account. 

The identification of these main mistakes in previous IDS evaluations has motivated us to propose a 
new framework for IDS evaluation, which will be described in the rest of this chapter. 

3.4. Evaluation Framework 
By creating such a framework, we aim to provide methods and tools that can aid in avoiding the 

mistakes and the limitations previously discussed in this chapter. The overall goal is to render IDS 
evaluations systematic, with representative datasets, a set of comprehensive metrics and effective 
methods for selecting attack test cases. 

In fact, to achieve that and to improve the diagnostic capability of the evaluations, we have based our 
approach on six theoretical foundations, as shown in Figure III.2: 

1) An evaluation methodology that provides guidelines for engineered IDS evaluations (see 3.5). 
2) A detection model: we have established a generic detection model for IDSes and defined the 

related parameters in terms of events that can be observed, processed and analyzed by the IDS 
(see 3.6). 

3) A failure model and a fault tree model: to determine situations in which an IDS fails to provide 
its expected service (i.e., the detection). We established an IDS failure model, which is combined 
with the fault tree model to provide diagnostic capability to the evaluation (3.7). 

4) A classification of attack tools: we have thoroughly analyzed existing attack tools and 
consequently we have developed a classification scheme on those attack features that seem to be 
significant from the IDS viewpoint (see 4.4). This classification provides a solid theoretical basis 
for the selection of attack test cases. It also allows the presentation of evaluation results in an 
organized manner with respect to attack classes or features. 

5) Scenarios computing and generation methods: by analyzing human-centric attacks and attack 
procedures followed by automated malware attacks, we managed to extract a model for attack 
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Figure III.2: The foundations of the evaluation framework. 
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processes (see 4.5). We also created a model for attacker behaviors (see 5.2). Thanks to the 
attack process model and by using constraint programming, we can calculate abstract attack 
scenarios. These abstract scenarios can be transformed into executable scenarios in function of 
the attacker competence model to generate representative malicious activities (see 5.3). 

6) Background generation method: first, we have determined the security-relevant characteristics of 
the background activities (see 4.8), then, we have implemented a tool for constructing 
background dataset that edits and manipulates network traffic traces while maintaining these 
characteristics. 

These bases comprise our contribution to the evaluation of intrusion detection systems. We will 
describe each basis in the same order. The evaluation methodology and the IDS model are explained in 
the rest of this chapter. Because classifying attack tools and computing attack scenarios — which are 
closely related — are critical to our approach, we will describe them separately in Chapters 4 and 5 
respectively. 

3.5. An Engineered Evaluation Methodology 
To follow a systematic approach and to manage the complexity of the evaluation process, we have 

proposed a simple methodology that should be ideally followed by evaluators of intrusion detection 
systems {Gadelrab06}. The main objective is to obtain a systematic evaluation performed through well-
structured steps. 

As shown in Figure III.3, this can be achieved in two stages: a preparation stage (stage 1) and an 
experimentation stage (stage 2). The second stage is straight forward as it encompasses the empirical part 
in the same way as traditional evaluations. Thus, we concentrate on the first stage, which begins by 
stating the goal of the evaluation and by identifying the expected needs of users. Second, the main 
characteristics of the IDS Target of Evaluation (ToE) itself should be determined. Third, the evaluator 
should recognize the main characteristics of the environment where the tested IDS will be deployed and 
operated. 

When completing these steps and according to the goal of the evaluation, the evaluators can select an 
appropriate evaluation technique. They can also determine the parameters of both the IDS and the 
workload. However, since these parameters are not all controllable and modifiable by evaluators, we 
consider only factors (i.e., parameters that can be changed). The identified factors and the selected 
evaluation technique affect the selection of metrics and the construction of workloads (i.e., evaluation 
datasets). In the next subsections, we will explain in more details the different steps of our methodology. 

Figure III.3: IDS evaluation methodology. 
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3.5.1. User Needs and Evaluation Goals 

There are many features desired by users in their IDS. For any IDS, we distinguish three types of 
characteristics: functionality, performance and usability. While functional features include those related 
to detection efficiency, performance characteristics refer to the traditional meaning of “performance”: 
they cover the aspects related to speed, memory utilization and CPU load. Usability features concern 
issues such as the ease of use, the ease of configuration, the ease of maintenance and the availability of 
documentation. Users’ wish list or needs are usually translated into IDS requirements. For instance, an 
IDS should ideally: 

� have perfect detection (detect all known or still unknown attacks), 
� generate no false alarms, 
� be resilient against attacks targeting IDS itself as well as DoS attacks affecting the network 

or hosts where the IDS is run, 
� cause low overhead (low resource consumption), 
� be reliable. 

Evaluation goals may be different too. For example, some IDS users may simply want to make a 
comparative evaluation to select an IDS that best fits their needs, or may want to assess the efficiency of 
an IDS actually installed on their systems. By contrast, developers usually may want to calibrate their 
parameters or to improve their performance and efficiency. Therefore, they need detailed information to 
interpret and understand the behavior of their IDS. Clearly, if a black-box evaluation could be useful for 
IDS users, it would be inadequate for IDS developers. 

3.5.2. The Environment 

Regarding differences between environments, let us consider typical networks in academic, military 
and commercial domains. They exhibit different policies, types of traffic, services, etc. Moreover, 
security objectives are not of the same importance. Confidentiality is crucial for a military network with 
a stringent security policy, while integrity and availability may be primordial in a commercial network. 
As another example, gigabit networks may require specific issues to be examined, such as packet 
dropping. Moreover, important assets like servers, files, databases, etc., and platform characteristics such 
as operating systems, applications and software versions, all these should be taken into account for the 
evaluation of intrusion detection systems. More precisely, attack test cases must be selected as relevant 
as possible, according to the targeted environment. Background datasets should be made of flows of 
events that match the normal activities in the environment: e.g., on a particular commercial network, web 
traffic may be dominant, whereas burst data transfers could be more important on certain military 
networks. 

3.5.3. The Characteristics of the IDS under Evaluation 

On the architectural level, IDSes are not all identical. They are no longer those monolithic programs 
installed on a single machine that handle all the tasks: capturing, normalizing and analyzing event data, 
and finally generating alarms. Sensors, preprocessors and detectors could be distributed and deployed on 
several hosts on the network. A wide variety of techniques and algorithms are integrated within IDSes. 
Detection algorithms have been implemented in several ways such as expert systems, neural networks, 
genetic algorithms, etc. Agent-based IDSes are still different, with agents that have more or less 
intelligence, autonomy and mobility, thus requiring different issues to be evaluated. Regarding all these 
differences, an evaluation procedure suitable for some type of IDS may be inappropriate for another. 

3.5.4. System and Workload Parameters 

A complete control over the computational and networking environment is impossible. Evaluators 
and testers can only adjust and change the controllable parameters, i.e., the factors {Jain91}. However, 
not all parameters or factors affect significantly the behavior of the System Target of Evaluation (ToE). 
The identification of the interesting parameters and factors for both the system and the environment help 
to observe and understand their influence on the tested system. For example, considering the workload 
required as a dataset for testing a network-based IDS, we can identify the following potential factors: 
traffic composition with respect to protocol types, packet lengths, payload contents, bandwidth 
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utilization, etc. Similarly, workload factors for a host-based IDS might be: operating system (platform, 
version, etc.), applications and services running on the machine, etc. 

Amongst the factors related to the IDS itself one can find signature rules, detection algorithm, 
architecture, etc. On the other hand, learning algorithms and profile thresholds are two examples of 
potential factors for anomaly-based IDSes. 

3.5.5. Evaluation Technique 

The choice of an appropriate evaluation technique (i.e., evaluation by test or analytic evaluation) is 
highly dependent on the goal of the evaluation and on the stage at which it is performed. Whereas an 
evaluation by analysis could be carried out from early stages of design and development, evaluation by 
test is not possible before the implementation phase. Moreover, evaluations by analysis require a good 
knowledge of the internal structure of the IDS and of how its components work. Consequently, it is not 
suitable for black box evaluation for which evaluation by test is better fitted. Table III.2: summarizes the 
main features of analytic evaluations and evaluations by test. 

Table III.2: Main features of IDS evaluation techniques. 

 Test Analytic evaluation 

Place in IDS life cycle 
Lately, not before the implementation of at 
least a prototype of the system. 

Possible from the early phases: 
specification and design 

Target A prototype or an implemented IDS A model of IDS 

Input A real or synthesized dataset A model of attacks 

Background normal activities Can be considered Usually not considered 

Evaluated features 
Detection capabilities and performance 
issues 

Detection capabilities only 

Effects of Environment Can be considered Not considered 

Required Knowledge level 
Knowledge about IDS internals is not 
necessary; suitable for black-box evaluation 

A good knowledge of the structure 
and the design of the evaluated 
IDS. 

3.5.6. Selecting the Evaluation Workload 

Careful selection and construction of the workload (i.e. the dataset consisting of intrusive and normal 
activities) governs the quality of the evaluation. The major considerations in selecting workload datasets 
are: 

1. which IDS functions or services will be exercised by the workload. For example, the capability of a 
NIDS to detect fragmented attacks, 

2. which level of details should be assigned to the evaluation dataset (e.g., it was discovered that some 
detection algorithms are highly sensitive to payload contents {Antonatos04}), 

3. representativeness: the characteristics of the test workload should match those of the real workload, 
4. temporal characteristics: the distribution of the test workload over time should reflect the real 

distribution, 
5. repeatability: a workload should be such that the evaluation can be easily reproduced without too 

much variance in the results. 

It is expected that the previously discussed steps of the evaluation methodology will affect and help 
to refine the selection of evaluation datasets and the design of experimentations. For example, some users 
search for an IDS that is efficient in detecting a particular type of attacks (a specific user’s need), then 
datasets should cover more specially these attacks. Similarly, a developer who comes to add a new type 
of sensors (IDS characteristics) would probably be more interested in testing the new features of these 
sensors. Thus, the number of experimentations and test cases should be more focused than for a general 
IDS evaluation. 

In the next chapter, we will discuss the characterization of IDS workloads in the real world and 
explain how a representative evaluation dataset can be constructed. 
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3.5.7. Selecting Metrics 

Defining appropriate metrics is a corner stone of any evaluation processes. Without well-defined 
metrics, conclusions based on the evaluation results would be biased or might be completely wrong. 

Actually, several metrics have been defined for IDS, including detection rate, detection ratio, false 
alarm rate, false alarm ratio, expected cost metrics, etc. Rather than adopting particular metrics a priori, 
we believe that metrics should be defined under the following assumptions: 

1. There is no absolute metrics but relative metrics with respect to selected test cases (normal 
activities, attack classes) within the dataset. 

2. Expressing the evaluation results by a single number or metrics (e.g., a ROC curve) is not 
sufficient to present results. 

3. We should search only meaningful and measurable metrics and we should avoid meaningless, 
measureless or too generic and ambiguous metrics (e.g., the false alarm rate, as discussed in 
Section 3.3). 

4. A defined metrics may be more or less important to the evaluators depending on their goal and 
on the ToE. 

In the metric set that we suggest in Table III.3, we make a distinction between detection-related 
metrics and resource utilization metrics or performance-related metrics. Furthermore, detection-related 
metrics are further divided into macroscopic metrics (system-level metrics) and microscopic metrics 
(component-level metrics). 

The steps of the second stage of the methodology, i.e., experiments and result analysis, correspond to 
the empirical part of the evaluation. Because they are self-explanatory, they will not be described here, 
and we will describe in the next few sections the other elements of the evaluation framework, beginning 
by the detection model of the IDS. 

Table III.3: Example of suggested metrics. 

Detection Related Metrics Definition 

 Macroscopic:  

Detection Ratio DR= (Number of detected attacks/ Total number of attacks included in the dataset) 

False Alarm ratio FAR= (Number of generated false alarms/ total number of generated alarms) 

 Microscopic: 

Detection Ratio per attack Type Number of Detected attacks of a particular type/ total number of attacks of this type 

False Alarm Ratio per Attack Type Number of generated false alarm for a particular attack type/ total number of generated 
false alarms 

Captured Events/Non Detected Attacks 
Number of undetected attacks whose events are captured / Total number of undetected 
attacks (pro-sensor failure) 

Non Captured Events/Detected Attacks Number of attacks whose events were not captured / total number of undetected attacks 

Intrusive Events Drop Ratio Number of non captured intrusive events /Total number of intrusive events 

Resource-Utilization Metrics:  

CPU Utilization Percentage of CPU used by IDS  

Memory Utilization Percentage of memory used by IDS 

3.6. A Detection Model 
We need to define the boundaries of the evaluated IDS to determine explicitly what belongs to the 

ToE and what lies outside. A detection model of IDS can help in this regard. Moreover, such a model 
helps us to characterize the IDS (since this is a primordial step in our evaluation methodology). 

As we have adopted the structural model shown in Figure III.4, we can accordingly define the 
properties that an IDS must have to provide a good functioning. We do that in terms of attack events with 
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respect to four main issues: Visibility, Analyzability, Detectability and Alertability, which we called the 
VADA Model. It represents the least necessary functions to detect an attack. 

Definition 1 (Attack event): Ea is the set of atomic events ea produced by the attack A, that occur in 
sequence or in parallel, where each attack event ea can be a malicious event eam (eam ∈ Eam) or a benign 
(i.e., apparently normal) event ean (ean ∈ Ean). 

Ea = ∪ ea with Ea = Eam + Ean and Eam ∩ Ean = ∅ 

Definition 2.1 (Visibility): Given a set E of atomic events captured by an intrusion detection system 
(ids), an attack A is visible with respect to this particular ids if and only if all of its own atomic events ae  

(either malicious or benign) are captured by at least one sensor of the ids. Then: 

A is visible IFF ∀ea ∈ Eaea ∈ E 

where E is the set of all events captured by all the sensors: E = ∪ Esensor 

Definition 2.2 (Partial Visibility): An attack A is partially visible if at least one of its own malicious 
events were captured by at least one sensor of the ids. Then 

A is partially visible IFF )( EEe amam ∩∈∃ , 

where ame  is a malicious event that has been produced by the attack A.  

Definition 3.1 (Analyzability): Given a set E of atomic events captured by an intrusion detection system 
(ids), an attack A is analyzable by this particular ids if: 1) it is visible (see definition 2.1), 2) its events 
can be handled by the detector.  

The second condition implies that all attack events (either malicious or benign) have been captured and 
have not been omitted by the preprocessing: 

aE (after preprocessing) = aE (before preprocessing) 

Definition 3.2 (Partial Analyzability): An attack is partially analyzable if at least one malicious event is 
delivered to the detector, even if some of attack events have been omitted. This means that A is partially 
analyzable IFF: 

∃eam ∈ Ea (after preprocessing) and Ea (after processing) ⊆ Ea(before preprocessing) 

Definition 4 (Detectability): Given a set of atomic events E captured by an intrusion detection system 
(ids), an attack A is detectable by this particular ids: 1) if it is visible or partially visible, 2) if it is 
analyzable or partially analyzable, and 3) if the detection unit of the ids can recognize at least one of its 
own malicious events or a malicious sequence of benign events. 

Definition 5 (Alertability): Given a set of atomic events E captured by an intrusion detection system 
(ids), an attack A is alertable by this particular ids if it is detectable by the ids, and if the reporting unit 
can generate at least one alert corresponding to the attack malicious events or malicious sequences. 

3.7. IDS Failure Model 
Generally, according to {Avizienis04}, a failure is an event that occurs when the delivered service 

deviates from correct service. An error is the part of the system state that may lead to its subsequent 
service failure and a fault is the adjudged or hypothesized cause of an error. Regarding the context of 
IDS evaluation, we consider in particular the following faults: 

- implementation or configuration flaws: for example, the lack of signatures or anomaly model for 
known attacks, a bug in the detection algorithm, a bad configuration parameter, etc., 

- intentionally malicious activities (e.g., DoS, illusion and evasion techniques) mainly intended to 
bypass the IDS or disable it, 

- benign, non malicious activities that affect the efficacy of the IDS, e.g., system overload. 

Considering errors, the above faults may produce errors within an IDS component and hence a 
component failure. An error may propagate to further produce failures/errors in other components until it 
causes a failure at system level.  
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An IDS failure occurs when the IDS fails to deliver its expected service (i.e., to detect attacks). In 
other words, if it generates a false alarm, does not detect an attack (i.e., a false negative) or if it badly 
identifies the detected attack. An IDS failure may be also a security failure, i.e. the violation of a security 
property of the intended security policy. This includes any violation of the confidentiality, the integrity or 
the availability {Maftia03}. 

A False negative is an IDS failure corresponding to the occurrence of an error that may lead to 
security failure and that is not detected as such. This means that no alarm is raised – also called a miss. 

A False positive is an event corresponding to an alarm generated in the absence of any error that may 
lead to a security failure – also called false alarm. 

A True positive is an event corresponding to the correct decision to rate an activity  as being 
malicious – also called a hit. 

A True negative is an event corresponding to the correct decision to not rate an activity as being 
malicious. 

Figure III.4 shows the failure model of an IDS. According to this model, we will analyze the generic 
structure of IDSes, searching for the root causes of IDS failures. We begin with a qualitative analysis of 
IDS failures by applying a Failure Modes and Effects Analysis (FMEA), which allows identifying 
potential failures of each component and their causes. Further, we run a complementary Fault Tree 
Analysis (FTA), which facilitates the identification of component-failure combinations that may lead to 
an overall system failure. 

3.7.1. Failure Modes and Effects Analysis 

FMEA is an inductive method that analyzes the consequences of potential errors for each component 
in order to identify systematically the set of failure modes of this component and the consequences of 
these failures at the system level. FMEA is generally applied, after identifying components failure 
modes, by constructing a table that contains, for each failure mode, the following attributes: the probable 
causes, its effects, the methods used to detect this failure and corrective actions {Avizienis04}, 
{Bouti94}. 

Table III.4: Generic FMEA for IDS. 

Component Failure Mode Causes Effects 

Sensor 
Not capturing intrusive 
events 

1- Out of scope malicious events 
2- Intentionally masked events 

Intrusions become completely 
invisible false negative 

3- Dropping events 
Intrusions become completely or 
partially invisible false negative 

Preprocessor 
Suppression of useful 
information 

1- Inappropriate format 
2- Insufficient information supplied by 

the sensor 
Detector failure 

Detector 

Unable to detect captured 
intrusive events 

1- Preprocessor failure 
2- Detection algorithm failure 

False negative 

Considering non intrusive 
events as intrusive 

Detection algorithm failure False positive 

Bad identification Detection algorithm failure Incorrectly reported attacks  

Reporter 
No generated Alarm or 
wrong alarms 

Bad configuration False negative 

Figure III.4: IDS failure model. 
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In Table III.4 we have constructed a generic structure-based FMEA for intrusion detection systems, 
where failures, probable causes, and effects for each component are identified. 

3.7.2. Fault Tree Analysis 

Fault Tree Analysis is a deductive method that allows searching for combinations of events that may 
lead to an undesirable event (i.e., a system failure). It is often used with FMEA in a complementary 
manner, where it considers failure combinations that escape from FMEA. A Fault Tree Analysis (FTA) is 
conducted by constructing a tree of consecutive levels of events (nodes) connected by logic gates (AND, 
OR, etc.). The undesirable event is situated at the root level. The tree is constructed by composing each 
event, starting from the root until we obtain elementary events that cannot be further decomposed. 

Fault tree analysis is based on the calculation of the minimal cut-set. A cut-set is the set of 
elementary events that, when they occur, will lead to the occurrence of the undesirable event at the root. 
A cut-set is minimal if it is independent and does not contain any other cut-set. The study of these 
minimal cut-sets illustrates the critical events that cause the occurrence of the universal undesirable 
events {Avizienis04}. By contrast, while fault tree analysis was suggested for analyzing IDS 
requirements {Helmer01}, we use it in the following section to analyze the failures of the IDS itself. 

A) Constructing Generic Fault Tree for ID Systems 

Ideally, an IDS is supposed to detect and identify all attacks and generates no false alarm. It fails if 
when it does not detect attacks or when it generates false alarms. Another failure – however less severe – 
occurs if it detects the occurrence of an attack/intrusion but cannot identify it correctly. While the Fault 
Tree that we constructed is a generic one, it could be instantiated to describe a particular IDS. Moreover, 
it can be extended by adding implementation specific issues in order to be more comprehensive. 

Figure III.5 shows the fault tree for a signature-based IDS. The undesirable root event, an IDS failure 
(i.e., a false positive or a false negative) may be due to a sensor failure, a preprocessor failure, a detector 
failure or a reporter failure. 

According to Table III.4, a sensor fails if it cannot capture events. Usually, events pass completely 
unseen if they are out of the scope of this type of sensor. It could be also unseen by the IDS, if attackers 
manage to hide events or change their appearance to mask their intrusiveness. However, the invisibility 
of events is not the only way sensors fail. They also fail if they are overloaded to the degree at which 
they can no longer handle events and begin dropping them. The overload can be either a consequence of 
some malicious activity such as DoS attacks or due to normal activities at a rate too high for the sensors. 

Regarding the preprocessor, it fails if relevant information about events is suppressed — assuming 
that the sensor had captured the events. The detector in its turn fails in three cases: 1) if it does not detect 
an intrusion whose events were captured, 2) if it identifies a normal event as an intrusive event or 3) if it 
does not identify correctly a detected attack. 

It is valuable to note that the analysis made here is a qualitative analysis to find out and visualize 
combinations of events that may lead to IDS failures. Unfortunately, there is no sufficient available 
information on attack incidents to make quantitative analysis at this moment. Although a precise 
assessment of these probabilities might not be possible for now, future advances in the domain may lead 
to reasonable estimations of such probabilities (e.g., by using statistics extracted from data gathered by 
large scale Honeypot networks). A quantitative analysis might be performed in the future if, for example, 
we manage to obtain the probabilities of occurrences of basic events. We believe that this is feasible by 
deploying customized IDS on a large honeynet, with monitoring components able to account for IDS 
component failures. 

B) Identification of Cut-set and Minimal Cut-set Nodes (Single Points of Failure) 

Leaf nodes shown in Figure III.5 could be further developed until we reach basic events. For 
instance, the DoS in the sensor branch could be extended to include DDoS and to include attack types or 
attack instances that are used for DoS. However, we prefer keeping the generality of our analysis in order 
to be applicable for different IDSes and against different attacks. 

To reduce the fault tree of Figure III.5 to a mathematical statement, we use boolean algebra (The “+” 
sign means OR and the “.” dot sign means AND): 

IDS failure = A + B + C + D Where  



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

82 
 

A = Event-capture failure 

B = Preprocessing Failure 

C = Detector Failure 

D = Reporter Failure 

By substituting the values of the gates in upper levels by the equivalent gates from subsequent lower 
level we obtain the following boolean statement: 

IDS Failure = (A3.A6) + (A3.E1) + (A3.E2) + (E3.E4) + (E5.E6) + A5 + (B1.B2) + (B1.B3) + E7 + E8 + E9 + E10 
+ E11 + E12 + D1 + D2 

Thus the minimal cut sets are: 

(A3.A6), (A3.E1), (A3.E2), (E3.E4), (E5.E6), A5, (B1.B2), (B1.B3), E7, E8, E9, E10, E11, E12, D1, D2 

A simple inspection of this result indicates that these cut sets are single points of failure (i.e., one-
event failures or two-event failures at maximum). It is highly probable that attacks pass undetected upon 
the occurrence of one event or two events at maximum with little effort from attackers. For example, it is 
sufficient that an attack manifestation appear out of the sensor’s scope (A5) or out of the analyzer’s 
scope (E8) to be undetectable. An example of the two-event failure (E5.E6) where fragmented attacks 
cannot be detected if the IDS does not support fragments reassembly. This result confirms the necessity 
of reinforcing IDSes by a diversity of capturing and detection techniques. It also confirms the usefulness 
of using different IDSes to complement each other and overcome limitations found in individual IDS. 

In Chapter 6, when we perform an explanatory evaluation of an IDS, we will show how all these 
pieces of our framework (IDS detection model, failure model and FTA model) can be assembled together 
to perform robust evaluations. 
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Figure III.5: Generic fault tree analysis for intru sion detection systems. 
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3.8. Benefits of the Evaluation Framework 
Evaluating intrusion detection systems has proved to be an effort intensive and error prone task. As 

shown in Figure III.6, a traditional evaluation process usually consists of selecting and constructing the 
evaluation datasets and defining metrics, in addition to designing and carrying the experimentation and 
analyzing results. 

The provision of a shared dataset has been highly recommended {Mell03}, {McHugh00a}. Using 
Datasets-Off-The-Shelf (DOTS) and Metrics-Off-The-Shelf (MOTS) where metrics and datasets could 
be selected – in function of previous steps – from a set of predefined metrics and pre-constructed 
datasets. DOTS need more effort to provide many datasets with different characteristics. This can be 
achieved by implementing dataset generators that are able to generate varieties of realistic workloads. 
DARPA datasets is an example of a widely used DOTS, though it is quite obsolete. 

Following our approach and given a set of DOTS and MOTS the evaluation process could be carried 
out with less time and effort. The first stage will be reduced to a simple selection of existing DOTS and 
MOTS according to the evaluation goal and user needs, as shown by Figure III.7. Therefore, most of the 
effort will be dedicated to experimentation design to be well fitted and unbiased. We further treat the 
problem of dataset generation in Chapters 4, and 5. 

3.9. Challenging Issues in IDS Evaluation 
To illustrate how evaluating IDS is a nontrivial task, we summarize here some of the challenging 

issues involved in IDS evaluation: 
1. Collecting exploit scripts and attack tools: One of the main issues in setting up a testing 

experiment consists in collecting exploits. While it may be relatively easy to find attack scripts 
on the Internet, these scripts are often proof-of-concept implementations for particular 
vulnerabilities. They usually require more effort to be tested and to be made reutilizable. It may 
also take some time for the user to figure out how the attack script works and how to fix 
occasional problems (e.g., the correct return address for buffer overflow attacks). 

2. Generating the evaluation dataset is an important problem related to the generation of both 
background and malicious datasets. We will discuss this problem and its consequences on the 
design of testing experiments in more details in the next chapter. 

ResultsResults

Evaluation ProcessEvaluation Process

IDS IDS 
MetricsMetrics

Dataset Dataset 
Experimentation Experimentation 

Figure III.6: Process of IDS evaluation. 
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Figure III.7: Enhanced process for IDS evaluation. 
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3. Constructing evaluation platforms: In addition to constructing hardware and network 
facilities, we should collect and install software systems that correspond to vulnerable services in 
order to verify the efficiency of attacks. Procuring the corresponding target applications can be 
very difficult since, most of the time, only the current (and already corrected) version is publicly 
available. Moreover, most of the vulnerable software is only available under commercial licenses 
and may require a large budget to be acquired. 

4. Configuring the evaluated IDS properly: evaluators should decide whether to evaluate the IDS 
out-of-the-box without any previous tuning or, alternatively, to modify the default configuration 
before the evaluation. This approach of testing “default” installations can lead to unfair results. 
On the other hand, tuning many different IDSes properly can be very difficult and the results can 
still be biased because some systems can be configured better than others. 
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IV. Chapter 4: Characterization of IDS Workload 

One of the most important issues in evaluating intrusion detection systems is related to generating 
test datasets. Actually, this process is an art and depends heavily on the experience of evaluators who 
spend most of their effort and time for this purpose. In the absence of a solid theoretical basis, the 
produced datasets are likely to be ad-hoc and of low quality. One reason for the failure of previous IDS 
evaluations is the use of poor quality or badly constructed datasets. Moreover, using such datasets 
without caution is risky because ignoring their characteristics leads to invalid assumptions. 
Consequently, people often make incorrect interpretations, improper analysis and erroneous conclusions. 
For this reason, we need to identify the basic components of IDS workload and identify their main 
features. 

This chapter is divided into three main parts: the first one describes related work, the second part is 
dedicated to the characterization of attack activities (Sections from 4.3, to 4.7) while the third part 
characterizes background activities (Section 4.8). 

4.1. Introduction 
 In IDS evaluation, traditional ad-hoc approaches jump directly to the experimentation phase, taking 

measures and presenting results. Although this is possible for performance evaluation in well-established 
domains, it is unacceptable for IDS evaluation because we actually lack enough knowledge about IDS 
workloads and attack processes. Therefore, we believe that any robust evaluation of intrusion detection 
systems should be preceded by the following steps: 

As we mentioned in Chapter 2, any IDS observes and analyzes some kind of activities searching for 
suspicious actions. An IDS is very similar to a human security guard or a police officer who watches 
over a building and its surrounding areas. He is responsible for the security of the building, its doors, 
parking area, etc. He should observe activities occurring within the area under his supervision. 
Thousands of events occur every day by hundreds or thousands of people who are entering, exiting, 
walking, talking, driving their cars in and out, etc. All these actions are supposed to be normal and 
innocent unless they are followed or preceded by a suspicious action or if it is itself an obviously illegal 
or criminal act. 

In the previous context, although it seems easy for a security guard to distinguish between the two 
types of actions: the innocent actions (e.g., walk, talk) and the criminal acts (e.g., force open a closed 
door, break a car window), it is not that easy in practice. Let us consider the following scenario: some 
person enters the monitored parking area, walks normally, looks like someone searching for his car, and 
suddenly stops beside a particular car and tries to open the driver door but does not manage to open it. 
Then he makes a call from his mobile telephone. Finally, he breaks a car window, opens the car and 
drives the car out. 

This scenario can be simply a car theft, while the first part, up to breaking the car window, comprises 
only innocent actions. Imagine a scenario where the owner of the car has lost his car keys. He calls his 
office mate in the building to look for the keys on his desk but he does not find them. Suddenly, he sees 
the keys on the driver seat inside the car and decides to break the car window. For an observer, nothing 
distinguishes this scenario from a car theft. The security agent would have no suspicion on this person’s 
activities, until he breaks the window, which the guard would probably consider as a criminal offense. 

Returning to intrusion detection systems, they observe events that may be a result of actions carried 
out by legitimate users as well as by attackers. The dividing line between the actions carried by the two 
parties is often blur rather than clear-cut, and some confusing intersections between the actions of the 
two parties can be identified. Moreover, an action carried out by a legitimate user does not mean that the 
action itself is legitimate since a registered user can be an insider attacker. Moreover, an innocent user 
can unintentionally carry out illegitimate actions (e.g., a user enters a wrong password by mistake). On 

Characterizing real workload � Identifying relevant test-cases � Designing test dataset � 
Generating test dataset 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

88 
 

the other hand, a significant portion of attacker actions is identical or similar to the actions of normal 
users (e.g., after getting access to a victim machine, an attacker executes commands to browse and 
explore the file system). The Venn diagram of Figure IV.1 illustrates the intersection between the two 
event types. 

The ambiguity lies in the intersection between attack and normal use activities. This is where false 
alarms and false negatives often take place. The problem arises from the fact that some actions (correct 
or incorrect) can be carried by both parties. Contrarily, purely malicious actions (e.g., executing a buffer 
overflow exploit) should have no ambiguity and should be always identified as malicious by any good 
IDS. 

For simplicity, we divide IDS workloads into two components: the background component (i.e., 
events that occur due to normal use or normal operation of computers and networks) and the attack 
component (events due to attacks). Correspondingly, an evaluation dataset consists of events that are 
generated by background activities and attack or intrusive activities. 

In order to characterize both components, we identify, in this chapter, the main features of each 
component while giving more focus to the attack component. The remainder of the chapter is organized 
as follows: First, we present an overview of related work. Starting from Section 4.3, we characterize 
attack activities found in the real world. Real-world attacks are analyzed and classified with respect to 
elementary attack features (Section 4.4) as well at scenario-level (Section 4.5). Examples on attack 
characterization are detailed in Sections 4.6 and 4.7. Then, we characterize background activities in 
Section 4.8 and draw out conclusions in Section 4.9. 

4.2. Related Work 
Before presenting our work on the characterization of attack activities, it seems necessary to discuss 

related work on attack models, malicious dataset generation techniques as well as attack description 
languages. Discussing the research work in these areas will be helpful to understand and situate our 
work. In the following we present briefly the most relevant ones. 

4.2.1. Attack Models 

Several models of attacks have been proposed in the last few years {LiChen03}, {Cheung03}, 
{Garg06}, {Tidwell01}, {Schneier99}, {Sheyner02}, {Templeton00}, {McDermott00}, {Dahl06}, 
{Dacier94}, {Kaaniche06}. Hereafter, we briefly present some of the models that seem to be relevant for 
our objective. 

A) Attack Trees 

Attack trees are intended to model security threats {Schneier99}. Actually, an enterprise security 
breach (the final goal of an attack) is first identified as the root of the tree. Then, the steps by which this 

Figure IV.1: Intersection between attack and normal use activities. 
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breach could be accomplished by an attacker are iteratively added as branches and leaves of the tree. In 
this respect, each path through an attack tree represents a unique attack scenario. Attack trees are similar 
to fault trees where they are frequently used in system dependability analysis (see 0). 

An enhanced approach for the attack trees was introduced in {Tidwell01}, where a dual specification 
language to express exploits and network characteristics was proposed. The model developed in 
{Moore01} is also based on the attack tree model. Its main purpose is to provide means for documenting 
intrusions. Therefore, it tends to be a pure descriptive approach. 

B) Attack graphs 

Attack graphs are mainly used to analyze and assess vulnerabilities {Sheyner02}. A typical 
vulnerability analysis of a network proceeds as follows: first, gather vulnerabilities of individual hosts, 
e.g., by using tools such as nessus {Nessus08}; then, obtain information about the network topology and 
host interconnections; finally construct attack graphs. Each path in an attack graph represents a sequence 
of atomic attacks or exploits that may lead to a final insecure state of the network. Upon the constructed 
attack graph, a set of analysis can be carried out, such as: shortest path analysis, reliability analysis, and 
risk assessment analysis. Attack graph analysis is frequently used in system dependability analysis. 

C) Requires/Provides 

The "requires/provides" model was derived in order to describe complex scenarios and to generalize 
them to unknown attacks rather than considering single exploit vulnerabilities {Templeton00}. Instead of 
describing attacks by the specific sequence of actions that an attacker uses to reach a specific goal, this 
approach describes attacks by using abstract components. Each concept is defined locally without 
determining which other concept it will work with. Only, the capabilities required and the capabilities 
provided by a concept are defined. Capabilities are the information required or the situation that must 
exist for a particular aspect of an attack. Consequently a linkage can be done through a require/provide 
model. Therefore, a complete attack can be composed of these components that serve as building blocks 
for single-point attacks. The advantage of this model is that it needs no prior knowledge of a particular 
scenario and thus numerous unknown attacks can be described implicitly. 

D) Attack Petri Nets 

Attack Petri nets or simply attack nets were introduced firstly in {McDermott00} and mainly used 
for modeling the process of penetration testing. It uses disjunctive Petri nets to describe attack processes. 
Attack Petri nets can be directly derived from attack trees by mapping the nodes and arcs of attack tree 
into places and transitions of a Petri net. Places represent interesting states of the system or other security 
relevant entities. This state could be the acquisition of knowledge by the attacker or the gain of control. 
Transitions represent input events, data or commands that cause a change of system or entity state. The 
move of tokens between places indicates the attack progress. Using Petri nets for modeling attack 
processes is beneficial as it enables the modeling of concurrency with tokens as well as commands and 
inputs, which are modeled by the transitions. 

An extended version of general attack nets was presented in {Dahl06}. It is mainly based on Interval 
Timed Colored Petri Nets (ITCPN). This allows the modeling of multi-agent interactions and time-
dependent attacks. It provides also a sufficient level of details for the simulation and the execution of 
attacks since the resulting attack net could be mapped directly onto an execution element of an attack. 

E) Privilege graphs 

The privilege graph approach is amongst the first attempts to model security weaknesses {Dacier94}, 
{Ortalo99}. It models vulnerabilities existing in computer systems that, when exploited, raise the current 
level of privileges and through which attackers can compromise the system. A node in the privilege graph 
represents a set of privileges owned by a user or a set of users. The arc between nodes X and Y represents 
a possibility for a user owning the privilege set X to gain the privileges corresponding to node Y; thus, 
each arc represents a specific attack opportunity (an elementary attack action). A weight can be assigned 
to each elementary action, corresponding to the effort an attacker must spend to exploit the vulnerability. 
A security breach corresponding to an attack scenario can occur when a path exists between one node 
representing a possible attacker's privileges to another node representing an attack target. Privilege 
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graphs were invented principally as a basis for quantitative security assessment. Once the privilege graph 
constructed and according to a predefined security policy (which helps to define the attacker and the 
target nodes), different metrics can be computed, in particular the METF (Mean Effort To Failure), with 
various attacker behaviors (ranging from memory-less to total memory). As indicated by its name, this 
model concentrates on the access gain and privilege escalation attacks. 

F) Statistical attack models 

The purpose of statistical models is quite different from those presented above. They aim to study 
distributions of attacks over time. For example, to determine which systems/applications or IP address 
zones are the most targeted, the frequency of attack occurrences, etc. The information for such type of 
models is usually extracted from data captured and recorded by honeypots or honey networks such as 
those deployed on the Leurrecom data collection platform {Leurrecom08}. 

An example of statistical models can be found in {Kaaniche06} where two statistical models of 
attack behavior were formulated from data collected by many low-interaction honeypot platforms during 
320 days. The first describes the evolution of attack numbers over time by means of a linear regression 
model. The second describes the distribution of time between attacks, using a mixture of Pareto and 
exponential distributions, which proved to produce the best fit. 

G) Discussion 

Unfortunately, the majority of attack-related models were developed to enable security analysts and 
red teams understanding and analyzing their networks, and they are not necessarily adequate for IDS 
evaluation. Other models are focusing only on simple attack patterns such as signatures of elementary 
attack instances, which might not be sufficient to evaluate all the capabilities of IDSes. For example, to 
evaluate state-full IDSes or to test the correlation function of multi-sensor IDSes, it is necessary to run 
sequences of events that correspond to complex scenarios rather than isolated elementary attacks. 

Furthermore, almost all the models, cited above have poor scalability and suffer from combinatory 
explosion when the size of the analyzed network exceeds tens of hosts. Another hindering limitation is 
that the creation of these models is strongly dependent on the specifics of the analyzed network. 
Therefore, they are not suitable for analyzing other networks. Even worse, any slight modification of the 
analyzed network may induce significant modifications in the model or may even require recreating it. 

A few models, such as those presented in {Templeton00}, {Futoransky03}, {Coreimpact08} and 
{Jonsson97}, adopt the attacker viewpoint and can serve to mimic the attack process. The Rapid 
Penetration Test (RPT) model described in {Futoransky03} and {Coreimpact08} focuses only on attacks 
for penetration testing. It splits the penetration process into six steps: (1) information gathering, (2) attack 
and penetration, (3) local information gathering, (4) privilege escalation, (5) clean up and (6) report 
generation. The model of {Jonsson97} divides the intrusion process, according to attackers' behavior, 
into three phases: learning phase, standard attack phase and innovative phase. Although such models 
describe well some important features of the attack process, they fail to express or capture other 
important ones. For example, the RPT model ignores DoS attacks that represent a significant proportion 
of security incidents. Additionally, this method pays less attention to post-access activities that attackers 
execute after they gain an appropriate access. This can be advantageous for penetration testing where we 
intend to test how easy it can be to break in a targeted system. However, it may be a drawback for IDS 
evaluation because it ignores a significant part of attack attempts. 

For all these reasons and because a non-biased evaluation requires generating various attack 
scenarios that correspond to different attacker profiles and covers a wide range of the attack space, we 
ought to create our own models. Therefore, we propose in Section 4.5.3 a model for the attack process, 
which will be completed in Chapter 5 by a model characterizing attacker skills and a statistical 
parameterization based on honeypot data. In the following, we expose the related work on attack 
generation techniques. 

4.2.2. Attack Generation Techniques 

Many tools have been used for IDS testing {Athanasiades03}. A non-exhaustive list includes: network 
scanning tools such as nmap {Nmap08}, vulnerability scanning tools (e.g., nessus {Nessus08}), tools for 
testing web sites such as Nikto {Nikto08} and httperf {Httperf08}, network traffic generators such as D-
ITG {Itg08}, etc. Quite often, such tools have been developed to test a very specific security function, or 
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even for purposes other than security. Besides that, we can cite snot {Snot07}, a tool for testing IDS 
signatures, which uses snort rules to generate corresponding attack packets and does not generate attack 
scenarios. 

Expect (a TCL-based tool) has been used to generate both attack and user sessions for IDS testing 
{Puketza97}. It provides some level of interactivity with the victim machines during attack sessions, 
where a priori written scripts are used to automate command execution. An interactive execution of 
commands according to the reactions of the normal user or the attacker is advantageous but writing 
automation scripts manually is tedious, and limited to the expected responses of victim machines only. 

Recently, penetration testing frameworks such as metasploit {Metasploit08}, CoreImpact 
{Coreimpact08} and CANVAS {Canvas08} have been increasingly used by security practitioners and 
developers for security assessment and security product testing. The first is an open source package 
whereas the two later are commercial products. We have little information on the commercial tools about 
the included exploits, attacking procedures, etc. Therefore, we restrict our discussion here to the publicly 
available tools. Generally, penetration-testing tools are focusing on attacks that provide access to victim 
machines, and have limited or no interest in post-access actions. In other words, they provide elementary 
access-gain attacks rather than attack scenarios. In fact, this category of tools provides a good starting 
point for testing IDS with various levels of automation. However, complementary tools are essential to 
provide a better coverage of both the attack space and attacking procedures. 

Finally, the last kind of tools or datasets relies on the replay of pre-registered attack traces that are 
collected from the wild or synthesized from previous test sessions. The famous datasets from DARPA 
{Lippmann00a}, {Lippmann00b} are clear examples of this kind. However, they are now considered 
obsolete and have been heavily criticized {McHugh00a}, {Mell03}. A more recent dataset is the one 
created by the Canadian Communications Research Center (CRC) {Massicotte06} that contains attack 
sessions against virtual victims (i.e., VMware machines). Attack sessions in the CRC dataset are mostly 
generated by using metasploit; therefore it inherits the limitations related to the metasploit dataset. 

In the commercial tool category, we can cite Traffic-IQ {Trafficiq08}. It consists of a front-end by 
which users control the evaluation process: selecting attacks, launching the corresponding attack traces, 
viewing results, etc. Despite the advantages provided by Traffic-IQ, it is not easy to change the attack 
traces/scenarios or to produce more scenario variations and integrate them in the attack traces. Moreover, 
the growth in the number of attack traces makes the approach of replaying ready-made attack traces quite 
expensive in storage size. 

For completeness, we should also mention the attack transformation tools used to test the resistance of 
IDSes against the evasion techniques used by attackers to escape detection, such as Fragroute 
{Fragroute08}, Mucus {Mutz03} and THOR {Marty02}. Based on our experience, we summarize in 
Table IV.1 our observations regarding the main features of methods and tools commonly used by IDS 
evaluators. 

From these observations, it is clear that the last decade has witnessed an explosion in the number and 
diversity of tools available for security evaluations. As the list of alternatives becomes longer, it might be 
confusing for evaluators as each tool has its own strengths and weaknesses. The fact that evaluators (or 
the audiences targeted by the evaluation) might not be aware of the characteristics of such tools and 
particularly their coverage of attack types and how attack processes take place makes the results 
seriously biased. Moreover, since some of these tools were developed for very specific purposes other 
than IDS evaluation, it would be inappropriate and probably dangerous to establish IDS evaluations 
solely on one of these tools, a penetration-testing tool, for instance. 

Table IV.1: A comparison between different evaluation tools/techniques. 

 Flexibility Effort Extensibility Reproducibility 
Coverage of attack 

space 

Script TCL/TK High High Yes Yes Variable 

Network scanning tools Low Low No Yes Limited 

Vulnerability scanning tools Low Low No Yes Limited 

Penetration Testing Tools High Medium Yes Yes Limited 

Replay of attack traces Low Medium No Yes Limited 
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Another approach is based on attack description languages, which sometimes are developed either as a 
part of tools, e.g., NASL (Nessus Attack Scripting Language) {NASL08}, or as a standalone language 
such as ADeLe {Michel01}. In the next subsection, we discuss some of these attack description 
languages. 

4.2.3. Attack description Languages 

Vigna et.al. have classified attack languages in six categories {Vigna00}: exploit, event, detection, 
correlation, reporting and response. The aim of exploit languages such as NASL (Nessus Attack Scripting 
Language) {NASL08} is to describe the steps in which an attack can be performed. The purpose of event 
languages is to describe the format of events captured during attack sessions. Accordingly, tcpdump 
{Tcpdump08} and audit trials {Bishop95} were considered as event languages. Detection languages 
such as STATL {Eckmann02} describe the manifestation or the signature of attack events. Correlation 
languages represent the probable correlation of alerts produced by different IDSes. IDMEF {Debar07} is 
an example of reporting language that aims to normalize IDS alert formats to facilitate the exchange and 
the analysis of alert messages between different IDS or correlation engines. Finally, the purpose of 
response languages is to describe the reaction that should be taken by security countermeasures to 
mitigate attacks. Languages such as ADeLe {Michel01} and LAMBDA {Cuppens00} are multipurpose 
languages and can be used, for example, as exploit, detection or correlation language. 

Generally, attack description languages require defining attack-scenarios a priori, which implies the 
definition of attackers’ actions as well as pre and post conditions. Exploit languages share the same 
objective with the work presented in this chapter (i.e., to generate attack scenarios). However, it differs 
from our work in that they provide language statements that can be used, by an expert, in a generic way 
to “program” or to “script” attacks. They can be viewed exactly as programming languages that offer 
developers a rich set of statements and libraries. 

We do not aim by our work to create another attack description language, but rather to produce 
attack-scenario “programs” and to automate the process of creating such programs. From this 
perspective, attack languages may be added to our attack-scenarios development kit. 

4.3. Characterizing Attack Activities 
To clarify the meaning of some basic concepts, we have adopted, and sometimes adapted, the 

definitions proposed by the MAFTIA project {Maftia03}. 
- Exploit (noun): a script, a program, a mechanism or other technique by which some vulnerability is 

used to realize an attack or a part of an attack. 
- Activity: an action or a set of actions that generate events in the system. 
- Malicious activity: an activity carried out by an attacker that aims to violate the security policy. 
- Normal activity: an activity carried out within the context of normal operations without the intent to 

compromise the security policy. 
- Attack scenario: a set of organized activities, including malicious activities and apparently normal 

activities, which are executed in sequence or in parallel to achieve the attacker’s goal. 

Therefore, we mean by attack activities all activities that attackers can exercise on a host or network 
victim. This includes activities that are malicious by nature (e.g., buffer overflow, DoS attacks) as well as 
normal activities that are not necessarily suspicious (e.g., using system utilities to browse the victim 
host). We prefer to talk about attack activities rather than attacks for three reasons. First, there is no 
consensus between security experts on the definition of attacks. Second, attack tools have become so 
complicated and highly customizable that a single tool can provide a wide variety of actions in many 
ways. For example, a tool such as nmap comprises several techniques to scan networks, and it can be 
parameterized to select a particular technique by modifying command options. Third, we aim to 
characterize not only simple attacks but also attack scenarios that cover various attack patterns. Simple 
attacks can have a one to one mapping to elementary attack actions, while attack scenarios usually 
consist of series of both malicious and non-suspicious actions. 

In fact, we characterize attacks at two different levels: a low level where an attack is defined as a 
single action and a high level that corresponds to attack scenarios. At the lower level, we are more 
interested in the occurrence and the manifestations of attacks, while at the scenario level, we concentrate 
on the functional characteristics. 
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In the forthcoming sections, we characterize firstly simple attack actions (i.e., activities that cannot 
be further decomposed into elementary attack actions). For this purpose, we have created a classification 
scheme for attack actions according to their manifestations observable by IDSes. Then, the potential 
characteristics of attack scenarios are described by an attack process model, which focuses on the 
functional features of attacks (the attack classification and the attack process models are presented in the 
next two sections respectively). 

4.4. Low-level Attack Characterization (Elementary Attack Action 
Classification) 

Given a particular IDS, how can we determine if it behaves as expected? Certainly, we can test it 
with various inputs, but we can never test it with every possible input or every possible interleaving 
(combination) of all possible inputs. This problem has already been addressed in software testing, which 
uses the concept of equivalence classes {Myers79} to reduce the number of inputs for which the software 
has to be tested. The idea is that input test cases belonging to the same class are assumed to stimulate 
(activate) the same parts of the software in the same conditions, and thus should produce equivalent 
results. We try here to extend this principle to IDS testing, by defining a classification for elementary 
attack actions. 

Before discussing further the classification that we propose, let us clarify what it means. 
Classification is defined as a “systematic arrangement, in groups or categories, according to established 
criteria” {Webster}, while taxonomy is defined as “the study of the general principles of scientific 
classification” {Webster}. It is worth noting that both words are often used interchangeably as synonyms 
in the security literature, and we follow the same convention in this chapter. 

In the past few years, there have been several attempts to classify vulnerabilities in a common way. 
This has enabled the construction of vulnerability databases such as MITRE’s CVE (Common 
Vulnerability and Exposure) {Cve08} and OSVDB (Open Source Vulnerability Database) {Osvdb08}. 
There have been also many attempts to classify attacks, e.g. {Alessandri04}, {Bishop99}, {Lindqvist97}, 
{Neumann89}, {Kumar95}, {Weber98}, {Kendall99}, {Howard98}, {Hansmann03}, {Lough01} and 
{Killourhy04}. However, no comprehensive and widely accepted classification has been established yet, 
probably because those who defined these classifications did not share the same objectives. Before 
elaborating our own classification scheme, we analyzed several previous attack classifications to check 
whether one can match our objective, i.e., IDS evaluation and testing. In the next section, we present a 
brief description of the classifications we analyzed. A detailed description of all classifications is beyond 
the scope of this dissertation. 

4.4.1. Analysis of Existing Attack Classifications 

Let us begin with Bishop’s vulnerability taxonomy {Bishop99}. Although this taxonomy is intended 
for classifying vulnerabilities rather than attacks, it might be useful to present it briefly because it 
proposes interesting attributes (or axes): the nature of the flaw; the time of introduction of the 
vulnerability; the exploitation domain (i.e., the consequences of exploitation); the effect domain (what is 
affected); the minimum number of components essential to exploit the vulnerability; and the source of 
identification of the vulnerability. 

Another interesting work is the two-dimension taxonomy that was introduced by Lindqvist and 
Jonsson in {Lindqvist97}. By adding the result dimension (exposure, denial of service, erroneous 
output), it extends the Neumann and Parker’s taxonomy {Neumann89} that had only the technique 
dimension (e.g., bypassing intended controls, active misuse of resources). Lindqvist and Jonsson defined 
their taxonomy from attack experiments realized by internal users (undergraduate students of a computer 
science class). This is the weak point of this classification, since it ignores a significant part of more 
sophisticated attacks that would be carried out by more experienced attackers. 

Kumar had classified attacks according to four attributes related to signature patterns: existence, 
sequence, interval and duration {Kumar95}. 

Weber’s taxonomy is based on three dimensions: the required level of privilege to conduct the attack, 
the means by which the attack proceeds (e.g., exploiting a software bug) and the intended effect (e.g., a 
denial of service) {Weber98}. DARPA evaluations were based on Weber’s taxonomy, but distinguished 
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between  effect (e.g., probe or scan and denial of service) and transition to upper privilege levels (e.g., 
remote to local, (R2L), user to root (U2R)) {Kendall99}. 

Howard’s taxonomy {Howard98} is more interested in the attack process rather than in the attack 
itself. It proposed to divide the attack process into stages: 

1. attacker (who is she/he: a simple hacker or a terrorist group), 
2. tool (what does the attacker use: a kiddy script or a specialized tool), 
3. vulnerability (in implementation, configuration or design), 
4. access (what kind of unauthorized access is obtained: to files, objects or processes), 
5. results of attack (exposure or corruption of data), and 
6. attack objectives (e.g., destroy data, collect information). 

Simon Hansmann’s taxonomy {Hansmann03} has four dimensions: the attack vector (i.e., the means 
by which the attack reaches its target: virus, worm, DoS, etc.), the attack target (e.g., OS, application, 
network protocol), the exploited vulnerability and the effects of the attack. 

After reviewing many attack and vulnerability taxonomies, Lough has established the VERDICT 
taxonomy {Lough01} that focuses on causes and effects of improper conditions that enable attack 
occurrences. It has four main dimensions: Validation (e.g., absence of input validation), Exposure (e.g., 
information provided by finger service), Randomness (e.g., poor random algorithms for cryptographic 
key generation) and De-allocation (e.g., ineffective memory management). An attack can be described or 
classified by one or more of these four improper conditions. 

The so called defense-centric taxonomy was introduced in {Killourhy04} to serve network 
administrators in defending their own systems. It classifies attacks according to attack manifestations in 
system calls as seen by anomaly host-based intrusion detection systems. The four features or dimensions 
of interest are: 

1) Foreign symbol: a system call that appears when attacks occur and never appears in normal 
operation, 

2) Minimal-formal-sequence: a sequence of manifestations that appears when attacks occur and 
never appears in the normal operation (although all its subsequences appear in the normal 
operation), 

3) Dormant sequence: a sequence of manifestations that partially matches a subsequence in the 
normal operation, and 

4) Non-anomalous sequence: a sequence of manifestations that fully matches sequences in the 
normal operation. 

Unlike the classifications presented above that takes the attacker/administrator viewpoint, the 
taxonomy presented in {Alessandri04} was created for the purpose of analyzing IDSes. It classifies 
activities that could be relevant to IDS instead of classifying attacks directly. An analytic evaluation of 
IDSes was later carried out, based on this taxonomy, to compare IDS detection capabilities with respect 
to attack classes. The underlying model of the observable manifestations distinguishes dynamic 
characteristics from static characteristics of activities. Static characteristics are further split to separate 
the characteristics related to interface objects and those related to affected objects. Similarly, dynamic 
characteristics are developed into three sub-characteristics: communication features, method invocation 
characteristics and other additional attributes. Thus, an attack can be described by five parameters: 
interface object, affected object, communication, invocation method and other minor attributes. In total, 
it distinguishes 24 interface objects, 10 affected objects, 2 communication characteristics, 5 method 
invocations and 4 minor attributes. 

In fact, even if this classification has been developed to evaluate IDSes by analysis, it is still 
inappropriate for our purpose, i.e., the evaluation of IDSes by test. For example, it is focusing on the 
manifestations of attack activities that can be observed by the IDS while ignoring other attributes that 
may be important in practical operation, such as the consequences, the privileges acquired, and the 
source of attacks. Moreover, this classification contains very fine-grained dimensions that massively 
increase the number of test-case classes while the attained level of detail has minor significance for the 
tested IDS. For instance, the dimension interface object – that contains 24 types – considers five distinct 
types related to the application layer: 

• Application layer-connectionless;  
• Application layer-single connection-single transaction; 
• Application layer-single connection-multiple transaction;  
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• Application layer-multiple connection-single transaction; 
• Application layer-multiple connection-multiple transaction. 

In practice, this aspect has very little interest to classify elementary attack actions, because this 
would lead to some classes to be under populated, while others would gather most of the real cases. 

Globally, existing classifications are inadequate for our purpose, due to several reasons. First, they 
often take either the attacker or the IDS (the defense) viewpoint but neglect the evaluator’s viewpoint. 
Second, they have attributes beyond the scope of the IDS while often ignoring or masking significant 
attack features. Third, they sometimes have ambiguous, inconsistently defined attributes. Fourth, they 
usually have a huge number of classes. Fifth, there is no accompanying scheme for test case selection. 
Despite the limitations of these classifications, it is worth analyzing their attributes to select those that 
can be relevant for our objective. We noticed that the analyzed classifications take different viewpoints 
and use inconsistent attribute names. However, they are generally based on attributes of attack and/or 
vulnerability such as the following ones: 

1. Type of attack: virus, worm, Trojan horse, denial of service, etc.; 
2. Detection technique: pattern matching, statistical approach, etc.; 
3. Signature: observed attack pattern, attack sequence pattern; 
4. Tool: physical, user command, script, tool kit, etc.; 
5. Target : OS, network protocol, application, service, process; 
6. Results: data corruption, exposure of information, DoS, etc.; 
7. Gained Access: root access, user access; 
8. Preconditions: e.g., presence of particular software versions; 
9. Vulnerability: buffer overflow, validation error, weak password, inappropriate configuration, 
10. Objective: terrorism, political/financial gain, self proving;  
11. Attacker location: external, internal; 
12. The compromised security property: confidentiality, integrity, availability. 

These attributes are the basis of the new classification of attacks that we propose in the following. 

4.4.2. Classification Requirements 

Developing a classification of attacks that takes the evaluator’s viewpoint yields many benefits. First, 
it will reduce drastically the number of necessary test cases. Second, it provides a more comprehensive 
evaluation with better coverage of the attack space than traditional IDS evaluations where the evaluators 
use a few attack scripts available in their hands or on security mailing lists, but such available attack 
scripts do not necessarily reflect real attack distributions or even do not cover some critical attack types. 
Third, expressing the results of evaluations in terms of attack types will provide a more precise image of 
the results. For example, a misunderstanding could arise from the generalization of conclusions when 
expressing results for all attacks included in the test cases whereas the tested IDS is weak in detecting 
certain types of attacks and strong in detecting others. 

In order to serve in IDS evaluations, a good classification should satisfy the following requirements 
{Alessandri04}, {Lindqvist97}: 

1. Completeness/exhaustiveness: it means that a categorization scheme should take into account all 
possible attacks (e.g., known and unknown). 

2. Clear and unambiguous criteria: if each dimension has a number of distinct classes, any attack 
belongs to one and only one class in each dimension. 

3. Mutually exclusiveness: to ensure that an attack is placed at most in one category. 
4. Repeatability: the classification procedure ensures that an attack is always placed in the same 

category. 
5. Compliance with existing standards: for example, vulnerability databases have become de-facto 

standards in security and any comprehensive attack classification should be linked to at least one 
of them. 

In addition to these general requirements, we can identify two more requirements that are important 
from the evaluation perspective: 

1. The combinations of all the classes of all the dimensions could lead to an excessive number of 
distinct classes. Consequently, there should be a method in classifying attacks to help in 
selecting only the categories of interest. 
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2. The classification should also take into account special aspects of attack generation, which are 
essential for the evaluation process (e.g., information necessary for the configuration of the test 
platform). 

4.4.3. New Classification Proposal 

We have analyzed carefully the attributes of previous classifications to determine which attributes 
and dimensions are significant from the IDS evaluation perspective. We will discard issues that are 
invisible for IDSes as well as those that are meaningless for the evaluation. For example, the attacker’s 
objective (or intention) will not be considered as a relevant dimension within this classification since it is 
both hard and useless to identify it. 

Similarly, both the type and the detection technique dimensions do not provide precise, clear-cut 
categories. The type dimension, as it was defined, includes attacks such as virus, worm, Trojan, etc. 
Letting aside the propagation features, these types of attacks have too many diverse manifestations and 
functionalities to be categorized at this level. Furthermore, they represent attack scenarios rather than 
simple attack actions (we will treat attack scenarios in the next section). On the other side, the detection 
technique is not an intrinsic feature of attacks, and a given attack can be detected by several ways and 
techniques. 

While the result and security property dimensions give an indication about the expected damage, it is 
out of the IDS scope. The three basic security properties (i.e., Confidentiality, Integrity and Availability) 
are neither visible nor measurable by the IDS. 

The preconditions and the vulnerability dimensions are closely related and can be reduced to one 
dimension. The signature dimension tends to be very specific to attack instances rather than 
characterizing attack classes. Thus, it should be discarded. 

Thanks to the analysis that we made and according to the requirements stated above, we propose a 
new classification {Gadelrab07}. As illustrated in Figure IV.2 our classification has five dimensions, 
which reflect attack manifestations as well as evaluation-relevant aspects: 

1. Firing source that indicates the place from which the attack is launched. It has two distinct 
classes: remote and local. This will determine the location from which an attack test case has 
to be launched. It can help in selecting the location and the type of IDS (e.g., on which 
network segment, host-based or network-based). It is also important to assess the capacity of 
the evaluated IDS to detect remote as well as local attacks. 

2. Privilege escalation: indicates whether the attack results in raising the privilege level. It has 
five distinct classes that correspond to the gained privilege level: root, user, system, variable 
and none. The last one covers attacks that do not need or do not result in any access to 
system resources. (e.g., remote DoS attack). The variable class denotes attacks that gain 
various privilege levels depending on the execution privileges of the exploited application. 
For example, exploiting an apache server may result in user or root privilege escalation, 
depending on whether it is run as a user service or a root service respectively. 

3. Vulnerability: expresses the relationship between attacks and vulnerability databases. It can 
point to a specific vulnerability exploited by the attack. Up to now, we keep it as abstract as 
possible: the classification indicates whether the vulnerability is due to configuration or 
design/implementation flaws. 

4. Carrier: describes the means by which the attack reaches its victim: either via network 
traffic or through an action performed locally on the machine. An attack can be carried via 
the network and needs no direct intervention on the local machine. Otherwise, an attack 
activity can be invoked and executed entirely on a local machine without appearing on the 
network interface. In other cases, attacks have observable symptoms on both the network and 
the local machine because they trigger events on both. 

5. The last dimension is the targeted object: attackers may target a service, the operating 
system, the network stack, an application or a file system object. 

Our classification does not focus solely on the observable characteristics of attacks like did the IDS-
centric {Alessandri04} and the defense-centric {Killourhy04} taxonomies. Instead, it considers also 
operational issues that are important for administrators. For example, the severity of attacks is reflected 
implicitly by privilege escalation dimension. In addition, the source of danger (i.e., the firing source and 
the vulnerability types) could suggest how the risk could be alleviated by which counter measure (e.g., 
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modify firewall rules to block a remote source or apply a missing patch). Moreover, it does not ignore the 
evaluators’ needs, providing essential information for generating attacks and analyzing test data. For 
example, the firing source dimension gives an idea about the location from which an attack should be 
generated, and the vulnerability dimension tells whether a particular configuration should be set/unset. 

We will give some classification examples of elementary attacks in Section 4.6 that explain how our 
classification can help in characterizing attack actions, but before we will explain in the next subsection 
how it can help in selecting attack test cases. 

4.4.4. Classification-based Selection of Attack Test-cases 

As always, testing can reveal errors, but it cannot demonstrate or guarantee the absence of errors. 
The equivalence-class approach can be helpful to perform better testing, but in our case, it would not be 
judicious to consider each class of each dimension as an equivalence class (see the following subsection). 
First, there is no certainty that two attacks with the same classification would necessarily lead to the same 
detection properties. Moreover, taking samples in each class of each dimension usually produces a so 
large number of attack cases that it is practically impossible to include them all in an evaluation dataset. 
A selection of test cases based on the classification can reduce the number of test cases while improving 
the predictive power of the test and giving more confidence in its results. 

In this section, we propose evaluators to select relevant attack test cases by using the Classification 
Tree Method (CTM), which was developed by Grotchamann and Grimm {Grochtmann95}. It was 
applied in testing systems in various domains and we apply it to the security-testing domain. But first, let 
us describe the method itself. 

By means of the CTM, the input domain of a test object is regarded under various aspects or 
dimensions that are assessed according to their relevance for the test. For each aspect, disjoint and 
complete classifications are formed. The stepwise partition of the input domain by means of 
classifications is represented graphically in the form of a tree. 

Figure IV.2: A classification scheme of elementary attack. 
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To construct test cases, a grid is drawn below the tree. The columns of the grid result from vertical 
lines that correspond to the leaves of the classification tree. A tester can construct a test case by selecting 
a single leaf class of each higher-level branch of the classification. Each row of the grid indicates a 
distinct category of test cases. Because not all test cases are legal or valid, the tester should eliminate the 
invalid ones. This can be done by the definition of constraints or generation rules in the Classification 
Tree Editor (CTE) tool. 

Example: Given the attack classification tree, the CTE {Systematic08} can produce all the possible 
combinations of the distinct subclasses in all the dimensions. The number of valid combinations 
produced from our classification is 3400 test cases compared to 9600 in {Alessandri04}. The test cases 
can still be reduced, grouped and reordered to a smaller number of relevant ones, by applying constraints 
or generation rules in CTE. For example, the following rule: [Remote * (root +system) * configuration 
vul * Network traffic * (FS object + OS)] will result in 20 test case categories, which represent remote 
attacks that provide root or system access by exploiting configuration vulnerabilities and that could be 
observed in network traffic, targeting the system file or the operating system (Figure IV.3). 

As we will explain in the next chapter, the classification scheme, combined with the CTM method, is 
integrated in our evaluation framework to provide a versatile selection of attack test cases. However, 
there are still some limitations in selecting attack test cases based on this classification. We will discuss 
this issue in the next subsection. 
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Figure IV.3: Test cases produced by the CTE tool. 
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4.4.5. Discussion and Limitations 

Based on the classification, we argue that we can better select attack test cases than previous IDS 
evaluations do. It may come to mind that our classification can serve merely as a basis for equivalence-
class testing. This is also known as “Equivalence partitioning” {Myers79}, which is a software testing 
related technique with the goal: (1) to reduce the number of test cases to a necessary minimum; and (2) to 
select the right test cases to cover all possible scenarios. 

This technique assumes that all inputs within a partition or a class are equivalent. Therefore, only one 
test case of each partition is needed to evaluate the behavior of the program for the related partition. In 
other words, it is sufficient to select one test case out of each partition to check the behavior of the 
program. Thus, the number of test cases can be reduced considerably. 

In the context of IDS evaluation, an IDS should behave (i.e., detect or not detect) in the same way 
against attacks that belong to the same class. However, we should distinguish between two different 
situations. On the one hand, we can assume that we have a perfect classification, and then according to 
the concept of class equivalence, the IDS will ideally behave similarly for all attack instances belonging 
to the same class. Otherwise, i.e. if the IDS behaves differently for some instances of the class, we can 
conclude that the IDS has a problem of implementation and/or configuration (e.g., lack of corresponding 
signatures). 

On the other hand, we can assume that neither the IDS nor the classification is perfect and this is 
likely the case because the classification scheme is still in a preliminary state. At this stage, it may have a 
weak equivalence relationship within its classes. Therefore, we suggest using it as a guideline for 
selecting test cases. Further, to ensure the representativeness of attacks in the test suite, evaluators should 
use several instances of attacks of the same class then elaborate statistics on the detection/non-detection 
results. This will enhance the quality of results with the price of increasing the number of test cases. In 
Chapter 6, we will explain how the classification scheme proposed in this chapter can be used to select 
relevant attack test cases and how this can facilitate and improve the analysis of the evaluation results. 

4.5. Scenario-Level Attack Characterization (Attack Process Model) 
In addition to the characteristics covered by the classification discussed above, there are functional 

features that need to be considered. To characterize attacks at a high level, our approach consists of 
analyzing known attack scenarios, and then constructing a model that can abstractly describe the series of 
actions executed by real scenarios, even those scenarios that are still unknown. 

In order to create a precise model, it is necessary to analyze a sufficient amount of information on the 
phenomena that we want to model, i.e., attack incidents. In fact, relying on insufficient data or limited-
scope data on these phenomena could result in biased or unrealistic models. 

Unfortunately, as opposed to the antivirus community that has a large corpus of data to analyze (i.e., 
captured malware), the intrusion detection community suffers from an acute lack of data about security 
incidents (attacks, intrusions, etc.). Nevertheless, despite insufficient comprehensive information about 
such security incidents, a preliminary analysis can be carried out based on the revealed ones as well as 
known viruses and worms. Since worms are self-propagating and self-contained attacks, the whole 
processes of attack can be deduced by analyzing their codes. This is relatively easy, because security 
analysts are usually able to capture worm binary code and disassemble it. Besides, if we admit that 
worms, viruses and Trojans are some kind of automated attacks that are developed by skillful attackers, 
we can anticipate how manual, human-interactive attacks could occur.  

We present in this section an attack process model that has been constructed by analyzing many 
worms, viruses, Trojans as well as other attack incidents. This analysis takes a high-level viewpoint to 
extract the type and the sequence of actions that each attack executes. In the following sections, we 
present samples of the analyzed attacks. 

4.5.1. Malware Analysis 

Most of the attacks that we have analyzed are described in the MITRE’s Common Malware 
Enumeration list (CME) {Cme08}. At the time of writing this work, the CME list contains 39 malware 
samples, representing the most famous and most dangerous ones. Furthermore, we relied on other 
information available at specialized web sites like http://research.eeye.com, and 
http://www.viruslist.com. 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

101 
 

First, we have enumerated the execution patterns of the analyzed attacks. We found that attack steps 
can be categorized in eight patterns. Each attack step is given a unique symbol as follows (the meaning 
of attack steps is further explained in Section 4.5.3): 

� R: Reconnaissance 
� VB: Victim Browsing 
� EP: Execute Program 
� GA: Gain Access 
� IMC: Implant Malicious Code 
� CDI: Compromise Data Integrity 
� DoS: Denial of Service 
� HT: Hide Traces 

It is worth noting that we are more interested in the attack process itself rather than in the fine-grain 
details such as the particular command or instruction used to overwrite a buffer or the exact code 
sequences. Moreover, to avoid the biasing effect of focusing only on worms, we give little attention to 
the self-propagation feature and sum it up as an implicit sequence of “gain access” and “implant 
malicious code” steps. To be consistent throughout the analysis of the whole attack list, we followed a set 
of predefined directives. First, it is clear that almost all attacks are a kind of program execution (EP). 
Therefore, to guide the assignment of abstract steps, we defined several partial order relations (denoted 
by >) to determine which category of execution pattern should be assigned to an attack step: 

IMC > CDI > EP 
HT > CDI > EP 
[R|VB] > EP 
HT > DoS  
This means that: 
� If the executed attack step contributes to the installation of the malicious code, it is classified as 

IMC. Else, if it modifies the file system, the configuration files, the registry keys or the 
environment variables, it should be considered as a CDI. Otherwise, it is considered as EP. 

� If the executed attack step hides or blocks access to information about the malicious code, it is 
classified as HT. Else, if it modifies the file system, the configuration files, the registry keys or 
the environment variables, without hiding information related to the attack, it will be considered 
as a CDI. Otherwise, we consider it as EP. 

� Searching information remotely from the victim or a potential victim is a reconnaissance step 
(R), while searching information locally on the victim system is a Victim Browsing step (VB). 

� If the attack step blocks/stops/compromises access to data or services that provide information 
about the malicious activity, it is a trace-hiding step (HT). If the blocked/stopped/compromised 
service does not hide such information, we consider it as a DoS step. 

With this step classification, let us analyze some typical malware scenarios. 

A) CodeRed-I 

As illustrated in Figure IV.4, the Code Red-I worm begins by hitting a vulnerable IIS web server 
with an HTTP Get request that contains the necessary code to exploit the ida vulnerability {Ida07}, 
{Eeye08}. This vulnerability allows the worm to install itself by writing the malicious code into the 
memory (Gain Access and Implant Malicious Code, denoted below GA and IMC respectively). The code 
initializes the worm variables and locates the addresses of the functions within the .dll files loaded in the 
memory (Execute Program, EP). Then, it creates 99 threads (EP) to spread further the worm by infecting 
other web servers. The 100th thread checks the language of the running windows (Victim Browsing, VB). 
If it is an English Windows NT/2000, it will proceed to deface the infected system's website 
(Compromise Data Integrity, CDI). If it is a non-English Windows, the 100th thread continues spreading 
the worm (EP). Each worm thread checks for the file C:\notworm (VB). If it exists, the worm goes 
dormant. Otherwise, it continues infecting more systems (EP). It checks the current date (VB). If the date 
is not between 1st and the 19th of the month, this worm thread tries to propagate to www.whitehouse.gov 
(denial of service attack, DoS). 

Accordingly, we can thus conclude that the attack process of CodeRed-I is represented as follows: 
GA, IMC, EP, EP, VB, [CDI, EP], VB, EP, VB, DoS. 
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B) CodeRed-II 

Code Red-II exploits the same vulnerability as CodeRed-I. However, it uses different mechanisms to 
propagate the infection and to implant a Trojan {Ida07}, {Eeye08}. The first two steps (i.e., GA and 
IMC) are similar to those of CodeRed-I, see Figure IV.5. The worm then gets the local IP address (VB), 
which will be used later to deal with subnet mask propagation. It gets also the local system language 
(VB). Moreover, it checks whether it has been executed before (VB) and if so, it proceeds to the 
propagation section (EP). The worm then creates 300 threads for non-Chinese systems and 600 for 
Chinese systems. Each thread is a new propagation thread that repeats the previous steps. After that, the 
worm searches the native systems directory (e.g., C:\winnt\system32) (VB). It copies the file "cmd.exe" 
to "inetpub/script/root.exe" and "program~1/common~1/msadc/root.exe" (CDI). An embedded binary 
within the worm is written out to explorer.exe (IMC). Finally, it reboots the infected system (EP). After 
reboot, the Trojan will be activated by modifying Windows registry keys to disable the file system 
protection and to create virtual web paths (CDI). As long as the Trojan explorer.exe is running, the 
attacker can access the infected server remotely. 

Thus, the first part of the attack process of CodeRed-II can be represented as follows: GA, IMC, VB, 
VB, VB, EP, VB, CDI, IMC, EP, CDI. 

The next time the attacker comes back and wants to connect to the infected system, it will be 
sufficient to send a request such as http://IpAddress/c/winnt/system32/cmd.exe?/c+dir, where dir could 
be any command the attacker would want to execute. The second part of the attack process is thus: GA, 
EP. 

C) SQL-Slammer (Sapphire) 

The SQL-Slammer warm exploits a multiple buffer overflow (CVE_2002-0649) in Microsoft SQL 
server 2000 {Eeye08}. After overwriting the buffer, the worm takes control (GA and IMC). It begins to 
send itself to randomly generated IP addresses on the UDP port 1434 (EP) in an infinite loop (DoS). 
Therefore, the scenario executed by SQL-Slammer is: GA, IMC, EP, DoS 
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D) Sasser 

Sasser uses a public exploit for the LSA vulnerability in order to obtain a SYSTEM-level command 
shell on its victims {Eeye08}. First, it searches for IP addresses listening to TCP port 445 
(Reconnaissance, denoted R). Once found, it tries to figure out the Windows version through SMB 
banner (R). It then sends the LSA exploit that establishes a system shell connection on TCP port 9996 
(GA). It creates a FTP script (CDI). When executed, the script connects back to the attacking host (EP) 
and downloads the worm EXE file (IMC). Finally, the worm is executed to start a FTP server thread and 
128 propagation threads (EP) before deleting the FTP script (Hide Trace, HT). As shown in Figure IV.6, 
Sasser's scenario can be represented as follows: R, R, GA, CDI, EP, IMC, EP, HT. 

E) Trinoo 

Trinoo is a distributed Denial of Service (DDoS) attack {Trinoo07}. It searches first for IP addresses 
that have vulnerable RPC services (R). Then, it infects these hosts by exploiting the discovered 
vulnerabilities to create root command shells (GA). The infected host listens to TCP port 1524 (EP). It 
creates an installation script to automate the installation of the worm (CDI), and then uses netcat to pipe 
the script to the listening shells (EP); the script executes the command rcp to download the file rcp.listen 
and stores it at /usr/sbin/ directory (IMC); finally, it schedules the installed binary code for running with 
crontab (CDI). 

The infected hosts are divided into masters and daemons. The attackers control one or more "master" 
servers, each of which can control many "daemons". The daemons are all instructed to coordinate a 
packet-based attack against one or more victim systems (DoS). The scenario corresponding to Figure 
IV.7 of Trinoo’s flowchart is: R, GA, EP, CDI, EP, IMC, CDI, DoS. 

4.5.2. Other Attacks 

From these observations, it is clear that we have identified attack step patterns that can represent 
various instances of worm attacks. An important question can be raised here: is there a generic model 
that would be also valid for attack scenarios other than those corresponding to worms? To answer this 
question, we analyze here a sample of interactive attacks, to see if they could fit well with the same 
model. 

Figure IV.7: A simplified flowchart for Trinoo. 
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Figure IV.6: A simplified flowchart for Sasser. 
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A) SYN flooding 

A SYN flood is a form of denial-of-service attack in which an attacker sends a succession of TCP 
SYN requests to a target system. The attacker ignores the SYN/ACK sent back by the server and does 
not acknowledge it. These half-open connections bind so many resources on the server that connections 
from legitimate users are no longer possible. The scenario of SYN flood is thus: DoS. 

B) Mitnick 

In fact, the Mitnick attack, which is very similar to session hijacking, consists of two parallel attacks 
against two different hosts, the two endpoints of a TCP session. Assume that there are two hosts called A 
and B that trust each other. The attacker initiates a SYN flood attack against host A to prevent it from 
responding to host B (Denial of Service, DoS). Then, the attacker sends multiple TCP SYN packets to 
host B (the target) and tries predicting the TCP sequence numbers generated by host B (Reconnaissance, 
R). The attacker then pretends to be host A by spoofing its IP address and sends a SYN packet to host B 
in order to establish a TCP session between Host A and Host B (Gain Access, GA). Host B responds with 
a SYN/ACK to host A that will not respond to this packet since its input queue is full due to the SYN 
Flood attack. The attacker, impersonating A, then responds to the SYN/ACK of host B with the right 
expected sequence number and establishes a TCP connection. Consequently, he can send data and 
execute commands on the established connection (Execute Program, EP). Therefore the attack scenarios 
against host A is: DoS, whereas the attack scenario against host B is: R, GA, EP. 

C) Cross-Site Scripting (XSS) 

Cross Site Scripting attacks are typically found in web applications that allow code injection by 
malicious web users into web pages viewed by other users. Let us consider an example of this attack. 

Example: While a user is logged into his bank account, an attacker can send an email with some 
potentially interesting content and convince the user to click on a link in the email (Gain Access, GA). 
The link points to or contains a malicious script (Implant Malicious Code, IMC), probably within an 
iFrame that mimics an actual user form submission to perform a malicious activity, such as transferring 
funds from the victim's account. The attacker can have the script embedded in, or targeted by, the link to 
perform any arbitrary action with the authenticated user’s privileges (Execute Program, EP). When this 
script is executed, the targeted application authenticates and accepts the actions based on the victims 
existing session cookie. 

The scenario can be abstracted as GA, IMC, EP. Even if a reconnaissance step should be performed 
before conducting this attack, it is not mentioned in the abstract scenario because it is often not observed 
by the IDS. For example, the attacker needs to find information about the form contents that should be 
sent back to the bank server. 

D) Phishing 

Phishing is a form of information gathering or "fishing" for information by using social engineering 
techniques. An attacker masquerades as a legitimate entity in order to prompt the user to reveal some 
confidential information such as authentication credentials. An attacker can use the gathered information 
later. After the social engineering part of the attack, the attack stages could be to gather credentials 
(Reconnaissance, R), use the gathered credentials (Gain Access, GA) and play with the account to do 
whatever subsequent action (i.e., Victim Browsing, Compromise Data Integrity, Execute Program, etc.) 

The automated-malware attack scenarios distinguish themselves from interactive scenarios by their 
propagation and spreading mechanism. The level at which the scenarios are realized is also different: 
worm steps are generally run at the level of system calls or APIs, whereas the scenarios steps of non-
automated attacks occur more frequently at the application or program-execution level. Despite these 
differences, both automated and interactive attacks follow similar steps to achieve their goals, and thus 
should fit well a common model of attack process. 

4.5.3. A Generic Attack Process Model 

In addition to malware and attacks described above, we have analyzed about 40 malware samples. 
Because of space limitation, we cannot expose them all in this dissertation but some are presented in 
Appendix A. 
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Globally, the observations we obtained from these samples as well as worms and interactive attacks 
studied previously allowed us to construct the model shown in Figure IV.8. Surprisingly, we observed 
that, in the studied samples, attackers often follow nearly the same (kind of) steps whatever their 
experience is! But of course, attacks may vary in sophistication, code quality and damaging effects, 
which indirectly reflect the level of the attacker's knowledge and competence. For example, experienced 
attackers may use more advanced techniques or customized tools, whereas newbies (e.g., script kiddies) 
are using simple exploits developed by others. 

In any case, all categories of attackers proceed with more or less steps in different orders, but all of 
them are complying with our generic attack process model (Figure IV.8): 

- Reconnaissance: it is reasonable for an attacker to search for necessary information about 
potential victims and their characteristics before targeting them. This enables attackers to select 
appropriate attack tools, exploits, etc. that can defeat or paralyze the victim. 

- Gain access: generally, attacking a victim’s system implies that it is reachable by the adversary: 
to accomplish her/his goal, the attacker often needs to gain some access to some victim 
resources. The level of the required access differs according to the chosen attack. Note, however, 
that some types of attacks, such as DoS attacks, need little or no access at all. 

- Privilege escalation: Sometimes, the access acquired initially by the attacker is not sufficient. 
Therefore, she/he performs privilege escalation activities that provide a more powerful access. 
For instance, some vulnerability may be exploited to pass from local user to root privileges. 

- Victim browsing: after having acquired sufficient access, the attacker tries to explore the victim 
internals (e.g., browse folders and files, search through user accounts, identify hardware 
components, identify installed programs, search for trusted hosts, etc.). 

- Principal actions: as shown in Figure IV.8, this stage can take different forms. For example, 
attackers can launch a DoS attack (if this is their main objective), implant/upload a malicious 
code, compromise data integrity or execute a program. 

- Hiding traces: more experienced attackers usually carry out this step to erase traces of what they 
did on the victim and to make forensics more difficult. 

Figure IV.8: Attack process model. 
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It is worth noting that multi-hop attacks (that involve attacking several victims in sequence) are not 
represented directly by this model. However, they could be represented by concatenating individual 
scenarios (i.e., one scenario for each victim). 

Actually, we developed this attack process model to help in generating high-level plans of attack 
scenarios. Of course, this “high-level” view is not sufficient to generate a real attack trace (e.g., at 
network or host level). Instead, it allows us generating abstract attack scenarios with the advantage of 
avoiding the combinatory explosion at this stage. To be able to generate executable attack scenarios, this 
generic attack model has to be complemented by the classification of attack tools (cf. Sections 4.6 for 
examples) and a model for attacker’s competence (cf. Sections 5.2.1). The complete approach will be 
explained in Chapter 5. 

We expect that a model-based generation of attack scenarios will help in generating rich variations of 
more realistic attack scenarios than traditional IDS evaluations. Therefore, we are confident that it will 
have positive implications on evaluating IDSes, thus contributing to the improvement of IDSes. 

4.6. Examples of Attack Activity Characterization 
In order to show the applicability and the versatility of our approach, let us apply it on a set of attack 

tools. We consider not only purely malicious attack tools such as buffer overflow exploitation tools and 
password cracking but also other general purpose tools (i.e., system utilities, administrative tools, file 
transfer tools, etc.), which are non-malicious but can be used within the context of an attack session. 

It is worth noting that we characterize elementary attack actions rather than composite attack 
scenarios. For example, there may be several entries corresponding to each function provided by the 
same tool for a multi-purpose attack tool that provides several functions. Similarly, when we characterize 
an attack tool that executes an attack scenario or a sequence of attack steps (according to the attack 
process model) corresponding to a partial scenario, we consider each step separately as an attack action 
even if it is carried out by the same tool. 

Characterizing elementary attacks from both the classification perspective and the scenario 
perspective is a critical task on which we base the attack test-case selection and the generation of 
executable scenarios. Achieving this task allows also the selection of elementary attacks according to 
their classification-features as well as generating executable scenarios by instantiating abstract scenarios 
by attack tools according to their attack step. The “Attack Step” in each example is the key link that 
establishes the relation between the attack process model and the classified attacks. 

In the following, we present, in more details, five examples for characterizing elementary attack 
actions. Each example represents an elementary attack activity, which is characterized by both its 
appearance (i.e., a classification perspective) as well as its attack step (i.e., a scenario perspective). 
Afterwards, we present a detailed characterization of metasploit attacks, in the next section. 

Example 1: Ping is a simple tool that is originally used for diagnosing network problems by network 
administrators. One of its common uses is to discover whether a certain IP address is in use, or a 
particular machine at this address is up. This ideally serves attackers to get valuable information about 
the potential victims. 

Name: ping 

Source: Remote Ping can be used locally by the attacker from the victim against other 
machines, either within or outside the local network. We characterize it here in 
the case when being used remotely to check a victim IP address. 

Privileges acquired: None It does not provide any privilege (if used in the common way). 

Vulnerability: Configuration Through this activity, attackers exploit networks that accept ICMP request 
packets coming from outside and allow ICMP reply. 

Network carrier: Transport 
Layer 

The network traffic that results from ping is composed of ICMP packets, which 
is a transport layer protocol. 

Local carrier: None No action is explicitly executed by the attacker on the targeted machine. 

Target: Network Stack The entity activated on the machine victim is the network stack. 

Attack step: R This particular use of ping represents a reconnaissance step as it aims to get 
information about remote machines. 
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Example 2: Connecting to a FTP server to transfer files is an example of normal activities that can 
be conducted by attackers. It can be used in two ways: (1) to connect to a victim machine if attackers 
manage to acquire valid user credentials (i.e., a user name and a password). (2) Attackers can also 
connect back from the victim machine to another machine to download a piece of malware. 

We classify the source with respect to the victim. Therefore, in the first case, which is explained by 
this example, executing an ftp command is remote while in the second case it is local. 

Name: establish ftp connection 

Source: Remote A remote attacker can connect to a victim FTP server if he has previously 
managed to obtain a valid user name and a password. 

Privileges acquired: Variable This activity may lead to different levels of privileges, depending on the used 
account (normal user or privileged user). 

Vulnerability: Configuration Generally, this attack succeeds by exploiting weak password policies or by 
exploiting a vulnerability in the configuration of an anonymous ftp server. 

Network carrier: Application 
Layer 

The main and effective elements of the activity are encapsulated in the packet 
workload reserved for the application layer. 

Native carrier: None No explicit invocation method executed on the local machine. 

Target: Service The activity targets the ftp server on the victim machine. 

Attack step: GA The purpose of executing the command ftp is to gain an ftp access to the victim 
machine. After connecting to the remote FTP server, attackers can execute 
further FTP commands, which in turn can be also characterized. 

Example 3: Exploiting vulnerabilities in software applications on the victim machines is widely used 
by attackers to obtain access to these machines. Attackers can launch exploits against a victim machine 
from a remote or local access. Remote attackers usually target the applications exposed to network as 
services via known access points such as web servers, login servers, ftp servers, etc. Exploiting service 
vulnerabilities is usually used by attackers when they fail to obtain valid user accounts. Attackers who 
have already some local access on the victim machine can exploit other applications to promote their 
privilege levels. In this example, we pick two exploits from metasploit 

A) metasploit/windows/dcerpc/ms03_026_dcom : 
OSVDB-2100 Description: Windows platforms contain a flaw that may allow a remote attacker 
to execute arbitrary code. The issue is due to a flaw in the Remote Procedure Call (RPC) 
Distributed Component Object Model (DCOM) interface that does not properly sanitize remote 
requests. If an attacker sends a specially crafted message to the server, they may be able to crash 
the service or execute arbitrary code with SYSTEM privileges. 

Name: metasploit/windows/dcerpc/ms03_026_dcom 

Source: Remote This exploit can be launched from a remote location. 

Privileges acquired: System Because the targeted service is executed with system privileges, it provides 
system privileges if the exploitation succeeds. 

Vulnerability: 
Implement/Design 

The exploit benefits from an error in validating the size or the boundaries of 
the input data. 

Network carrier: Application 
Layer 

The effective part of the attack is included in the application layer part of the 
sent packet. 

Native carrier: Instruction The exploits injects some instructions in memory to take control of the 
program execution. 

Target: Operating System Although the targeted software provides a service (RPC service), the target is 
the operating system because the RPC software module is implemented as a 
part of Microsoft windows (NT, 2K, XP, server 2003). 

Attack step: GA It provides an access gain to the machine and injects malicious code in the 
memory. 
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B) metasploit/windows/ftp/3cdaemon_ftp_user: 
CVE-2005-0277 Description: Buffer overflow in the FTP service in 3Com 3CDaemon 2.0 
revision 10 allows remote attackers to cause a denial of service (application crash) and execute 
arbitrary code via (1) a long username in the USER command or (2) an FTP command that 
contains a long argument, such as cd, send, or ls. 

Name: metasploit/windows/ftp/3cdaemon_ftp_user 

Source: Remote This exploit can be launched from a remote location. 

Privileges acquired: Variable The provided privileges depend on the privileges of the execution privileges of 
the exploited service. 

Vulnerability: 
Implement/Design 

The exploit benefits from an error in validating the size or the boundaries of 
the input data. 

Network carrier: Application 
Layer 

As the effective part of the attack is included in the application layer part of the 
sent packet. 

Native carrier: Execute 
Command 

Exploit occurs when executing FTP commands with long arguments. 

Target: Service The exploited software is 3Com 3CDaemon which is an FTP service. 

Attack step: GA It provides an access gain to the machine and allows injecting malicious code 
in the memory. 

Example 4: The SYN Flood attack is a type of denial of service attack in which a large number of 
TCP SYN packets (the first packet in a TCP/IP connection), usually with spoofed source IP addresses, 
are sent to a target. The target system replies with the corresponding ACK packets and waits for the final 
packet of the TCP/IP three-way handshake. Because the source IP address of the initial packet was 
spoofed, the target never will receive the final packet, leaving it to hold TCP/IP sessions open until they 
time out. A SYN flood causes so many TCP/IP open sessions that the system becomes overwhelmed and 
cannot handle any more network traffic. A simple tool that implements a SYN flood attack can be 
characterized as follows: 

Name: SYN Flood Tool 

Source: Remote SYN flood attacks can only be launched from outside the victim system. 

Privileges acquired: None No privileges neither required nor provided upon the execution of this attack 
only. 

Vulnerability: 
implementation/design 

Machines are vulnerable for this type of attack because the early design of the 
TCP/IP protocols was for a friendly Internet. Later implementations of the TCP 
protocol have reduced the queue length or the connection timeouts to prevent 
such attacks from succeeding. 

Network carrier: Transport 
Layer 

The effective part of the attack can be found at the transport layer (the SYN 
field of the TCP header) of the sent packet. 

Native carrier: None No native action is explicitly invoked on the local machine, except opening a 
TCP connection. 

Target: Network stack It targets directly a feature of the network stack. 

Attack step: DoS The objective of SYN flood is to cause a denial of service. 
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Example 5: Attacks that result from automatic malware such as those we have analyzed in Section 
4.5 are different from the attack tools we have analyzed above because they are not simple attack 
activities. Rather, they are attack scenarios comprised of several elementary activities. Therefore, we 
cannot characterize the entire attack at once but we should characterize each elementary activity 
separately. For example, a Slammer attack that corresponds to the scenario (GA, IMC, EP, DoS) can be 
characterized as follows: 

Name: Slammer_GA, IMC 

Source: Remote The worm can propagate from infected machines to other remote ones. 

Privileges acquired: System Slammer targets Microsoft SQL service that is executed with system privileges, 
it provides system privileges. 

Vulnerability: 
Implement/Design 

The vulnerability is due an improper handling of data by SQL. 

Network carrier: Application 
Layer 

The worm code is transmitted through the application layer part of the sent 
packet. 

Native carrier: Instruction The exploits injects some instructions into the memory to take control of the 
program execution. 

Target: Service It targets server software (i.e., MS SQL server). 

Attack step: GA,IMC It provides an access gain to the machine and injects malicious code in the 
memory. 

 
Name: Slammer_EP 

Source: Local After implanting malicious code of the worm in the previous step, the worm 
can be executed locally. 

Privileges acquired: None The worm execution keeps the system privilege without any new escalation. 

Vulnerability: None It exploits no specific vulnerability at this stage. 

Network carrier: None The worm generates no network traffic while it calculates pseudo-random IP 
addresses that will be attacked in the next step. 

Native carrier: Instruction The worm executes instructions to retrieves the address of GetProcAddress and 
Loadlibrary from the IAT in sqlsort.dll. It then can obtain necessary library 
base addresses and functions entry-points. 

Target: Service It continues targeting dll libraries loaded in the memory. 

Attack step: EP The core actions of the worm are executed in this step. 

 
Name: Slammer_DoS 

Source: Local We take the point of view of the infected machine, which executes Slammer 
and sends a flood of requests to another remote victim. 

Privileges acquired: None The worm gains no new escalation. 

Vulnerability: Configuration The exploit benefits from an error in validating the size or the boundaries of 
the input data. 

Network carrier: Application 
Layer 

The worm payload is sent in a SQL Server Resolution Service request to the 
pseudo-random target address. 

Native carrier:  
Socket Communication 

The worm creates a UDP socket on the port 1434. 

Target: Network stack It targets software that is a part of the operating systems. 

Attack step: DoS The excessive load due to the request flood gets down the infected machine 
and consumes the network bandwidth. 
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4.7. Metasploit Characterization 
After identifying the main characteristics of attack incidents and malware that exist in the wild, an 

important question may arise: to what extent evaluation datasets currently used in IDS evaluations match 
the characteristic of real-world attacks. To answer this question, we have characterized the attacks 
present in Metasploit {Metasploit08}. 

We focus on Metasploit because of its popularity as a penetration-testing tool that is increasingly 
employed by IDS evaluators and we need to know if its attacks comply with real-world attacks. 
Moreover, we have implemented a proof-of-concept of our approach based on metasploit. Thus, 
describing it in more details is important to understand the solution that we propose in the next chapter. 

4.7.1. An Overview of Metasploit Framework 

The main purpose of Metasploit framework is to facilitate developing and executing exploit code 
against a remote target machine. It consists of several modules that together constitute a powerful 
exploitation framework. The main modules are the Exploit module and the payload module. The first is a 
particular code module responsible for exploiting a specific vulnerability. An exploit simply triggers the 
vulnerable condition and does not provide any shellcode16 (shell for short) or advanced encodings. 
Shellcode, encodings and NOP sleds17 are provided by other pluggable modules. The second is the 
Payload module, which is sent along with the exploit. It encapsulates the desired functionality of the 
attack. 

Once the vulnerability has been triggered by the exploit, the payload performs some actions on the 
victim computer, such as yielding access to a command shell or downloading a backdoor installer. 

The attacks carried out by Metasploit are highly configurable. Both exploits and payloads may have 
options available to configure their behavior. For example, an exploit might provide different variants 
based on the RPORT (Remote Port) or TARGET options. Similarly, a payload might allow choosing the 
port to open a shell using the LPORT (Local Port) option. Another special type of options is the “Evasion 
option”, which tweaks various settings to evade detection by an IDS or IPS. Moreover, Encoders can be 
used to bypass filters imposed by security countermeasures. For example, common limitations are the 
need to avoid null (0X00) characters, or the need to use only alphanumeric characters. Metasploit’s 
provides several encoders that circumvent these limitations while preserving the exploit and its payload. 

Decoupling vulnerabilities and payloads is one of the core purposes of Metasploit. In general, 
Metasploit tries to make all payloads available to all exploits. However, depending on the nature of the 
particular vulnerability and target host, certain payloads may not be available for certain exploits. 

The number of available exploits and payloads increases within the new versions. At this moment, 
the Metasploit 3.1 contains 258 exploits and 117 different payloads. This may seem a lot, but there are 
really only seven types of payloads. The large number of payloads is due to the small changes required in 
the actual shellcode in order to handle various use cases or target platforms. The seven payload types that 
Metasploit provides for each platform are shown in Table IV.2. 

Table IV.2: Available payloads for each platform (metasploit version 3.1). 

 Windows Linux MacOS X BSD Solaris Unix 

VNC injection X      

File execution X      

Interactive shell X X X X X X 

Meterpreter X      

Command execution X X X X X X 

DLL injection X      

Add user X X     

                                                      
 
16 Low-level machine instructions specific to a particular operating system and CPU 
17 No-Operation instructions inserted in shellcodes 
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Some payload types may have several variants. For example, windows shell payload has the variants 
shown in Table IV.3. The difference between the payload variants shown in this table is the type of 
network connection used to relay the shell commands. Depending on the network topology in place 
around the target computer, some payload variants may succeed where others may fail. 

Table IV.3: Variants of shell payloads for Windows (metasploit version 3.1). 

Payload name Description 

windows/shell/bind_tcp Windows Command Shell, Bind TCP Stager 

windows/shell/find_tag Windows Command Shell, Find Tag Ordinal Stager 

windows/shell/reverse_http Windows Command Shell, PassiveX Reverse HTTP 

windows/shell/reverse_ord_tcp Windows Command Shell, Reverse Ordinal TCP Stager 

windows/shell/reverse_tcp Windows Command Shell, Reverse TCP Stager 

windows/shell_bind_tcp Windows Command Shell, Bind TCP Inline 

windows/shell_reverse_tcp Windows Command Shell, Reverse TCP Inline 

4.7.2. Exploit Characterization 

In order to be able to select attack test cases and to generate attack scenarios, we need to characterize 
tools that can be used by attackers during their attack sessions. Metasploit, is one of such tools that we 
have characterized. To achieve that, we have classified all exploits according to our classification scheme 
and the step they realize in the attack process model. 

From the scenario viewpoint, it is clear that all exploits aim to benefit from some vulnerability to 
enable attackers to access vulnerable hosts and run a payload. An exploit cannot be executed without a 
payload, which complements its functionality, and the payloads available in the metasploit framework 
provide different kinds of access gain (i.e., bind_tcp, reverse http, etc). Therefore, we can consider all 
attacks issued from metasploit as “GA” attacks.  

On the other hand, we have classified about 258 exploits that are available in the current version of 
metasploit framework (at the time of this work). According to our classification scheme, we found that 
the exploits belong to 16 categories. Figure IV.9 illustrates the categories and their percentages. The 
largest four categories contain 103 exploits (39.92%), 81 exploits (31.4%), 17 exploits (6.59%) and 15 
exploits (5.81%) respectively. There are two categories with 9 exploits (3.49%) each. Three categories 
have 4 exploits (1.55 %) and four categories with only one exploit (0.39%). We give, hereafter, the 
description of the largest category and one of the smallest categories: 

Name: Cat 1127 
• Firing source: Remote 
• Vulnerability: Implementation/Design 
• Privilege escalation: Variable 
• Carrier: 

o Network: Application Layer 
o Native action: None 

• Target: Service 

Name: Cat 1429 
• Firing source: Remote 
• Vulnerability: Implementation/Design  
• Privilege escalation: System 
• Carrier: 

o Network: Application Layer 
o Native action: None 

• Target: Operating System 

A limited number of categories can be found in metasploit. According to our classification scheme, 
only 16 categories out from 3400 (the number of all valid combinations, see Section 4.4.4), have been 
observed. This is perfectly consistent with the nature of the exploits included in the metasploit 
framework, which is mainly a tool for penetrating into vulnerable machines from a remote location. 
Thus, it is not strange to find almost all categories have a remote firing source and 
implementation/design vulnerability. Moreover, this confirms the risk of using metasploit as a single 
source of attack test cases in IDS evaluations. 

Furthermore, we have, surprisingly observed a limited diversity in the network carrier attribute. It 
often lies in the application layer with few instances in the data link layer. The diversity comes from the 
privileges and the target attributes where exploits distributes well on almost all types within these two 
attributes (i.e., user, system, root, etc. and OS, service, application, etc.). 
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Having described how elementary attacks that comprise attack scenarios (that in turn, comprises the 
attack dataset) can be characterized, we proceed to the characterization of the background dataset. 

4.8. Characterizing Background Activities 
Background activities are composed of normal, benign activities that present no security risk. Such 

activities may generate several forms of event data: the most common forms are either network packet 
flows in the case of a network-based-IDS (NIDS) or log entries in the case of a host-based IDS (HIDS). 

In this section, we identify the security-relevant characteristics of background activities in both 
network traffic traces as well as log file entries. 

4.8.1. Network Activity Characterization 

The Internet exhibits a wide range of different behaviors that are continuously changing. 
Consequently, it is difficult to characterize packet dynamics. This is the reason why the notion of a 
“typical” Internet traffic does not exist {Paxson97-a}. 

However, when we examine traffic traces of TCP/IP networks, we can observe many features at 
different levels. Some of these features are related to the design or the implementation of the network 
layers, protocols, routing algorithms, congestion and retransmission mechanisms, etc. Other features can 
be environment dependent and closely related to the nature of the network use (i.e., academic, 
commercial, military, etc.) or to the network state (e.g., servers or routers breakdowns or 
malfunctioning). 

All these features could be important when characterizing the generated traffic within a particular 
network. This has been the subject of hundreds of papers on networking, especially those issued from 
network metrology projects such as the CAIDA project {Caida08}. In the following, we are interested 
only in security-relevant characteristics amongst these features. More details about network traffic 
characteristics are out-of-the-scope of this chapter but can be found in {Paxson97} and {Thompson97} 
for example. 

A) Overall Characteristics 

A network-based IDS (NIDS) continuously observes packet flows that compose the network traffic. 
During NIDS evaluation experiments, we need to feed the NIDS in its experimental environment with 

Figure IV.9: Classification-based characterization of metasploit's exploits. 
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packet flows that are similar to those observed during the real IDS operation. These packet flows can be 
traces of traffic previously recorded on a real network, or synthetic traffic traces produced by a traffic 
generator, or some mix between both. These traces can be described according to different 
characteristics, such as 

- Traffic rate: number of packets per second 
- Number of packets: the number of packets recorded within a trace. 
- Number of sessions: the number of sessions embedded within the trace. 
- Traffic composition: what protocols and applications have generated the packets present in 

the traffic trace and in which proportions? What are the dominant protocols or applications 
(e.g., web, data transfer). 

- Packet retransmission ratio: the number of retransmitted packets divided by the number of 
all packets in the trace. 

A recent study of current trends in enterprise traffic {Pang05} showed that internal traffic has a 
higher volume (about 80 % of the overall traffic) with a richer set of applications when compared to the 
WAN traffic. Moreover, it was observed that the traffic corresponding to network file systems and 
backup applications dominates the internal traffic whereas email and web applications dominate the wide 
area traffic. Despite the fact that this study was limited to a single enterprise network, it shed some light 
on the traffic composition on medium-sized enterprise networks. 

B) Temporal Characteristics 

This set of characteristics regroups all features related to time. This may include: 
- Packet inter-arrival time: distribution of time intervals between subsequent packets in the 

same flow (i.e., sent by the same IP address and destined for the same IP address in the same 
session). 

- Packet delays: distribution of time delays to transmit packets from source to destination. 
- Session durations: distribution of the time elapsed between the first packet in a session and 

the last packet in the same session. 

C) Protocol Characteristics 

Amongst the features related to protocols, we can enumerate the following: 
- Traffic types: flows of packets produced by particular protocols present in the trace. 
- Sessions: corresponds to TCP sessions, or sets of UDP packets exchanged between two IP 

addresses in a limited period of time. 
- Flags: state of the flags in packet headers. 
- Packet length: size of packet in bytes. 
- Payload: type and contents of data sent in the packet payload. 

D) Addressing Characteristics 

Addressing features can be found at different layers of network protocols, such as the data link layer, 
the network layer and the transport layer. We can find different forms of addressing such as: 

- MAC address: physical address of the network connection device. 
- IP address: logical address used for routing in the network layer. 
- Netmask: determines the sub-networks by using CIDR (Classless Inter-Domain Routing). 
- Internal/external address: an address is internal if it belongs to the address space of the 

user’s network (determined by the user) or if it is a reserved private address (non routable 
addresses: 10.0.0.0/8 CIDR block, i.e. 10.0.0.0 to 10.255.255.255, 172.16.0.0/9, i.e. 
172.16.0.0 to 172.31.255.255, 192.168.0.0/16, i.e.192.168.0.0 to 192.168.255.255) 

- Ports can help identifying services provided by hosts connected to this segment as well as 
distinguishing servers and clients. 

We do not intend to give an exhaustive list of all network traffic characteristics that can affect the 
operation of security tools, i.e., IDSes. Rather, we cited above the most relevant ones that have proved to 
be as such by empirical studies {Schaelicke03} or that are involved in the analysis and detection process 
carried out by NIDS. For example, modern NIDSes have protocol analyzers that search for anomalies in 
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packet headers at different layers. Therefore, we classify header fields as very significant data. Similarly, 
anomaly-based NIDSes that use learning techniques can easily detect inconsistencies in timing or 
sequence numbers. 

4.8.2. Host Activity Characterization 

Unlike NIDSes that have a unique source of event data (i.e., network traffic), host-based IDS (HIDS) 
can monitor and analyze a wide range of event-data sources such as operating system logs, application 
logs, web server logs, system calls, resource utilization, process invocations, etc. Moreover, HIDS are 
usually hybrid tools that monitor several activities. For example, OSSEC and Samhain monitor not only 
logs but they also perform integrity checking, Windows registry monitoring, rootkit detection, etc. 
{Samhain07}, {Ossec08}. This makes the characterization of HIDS workload more difficult. 

Most of the event-data cited above can be reported to and recorded by a central syslog (or alike) 
server. Therefore, we concentrate here on the characterization of log files collected by syslog daemon as 
a typical workload of HIDS, because of its popularity and availability for several heterogeneous 
platforms, UNIX systems, switches and routers, firewalls, printers, windows NT/2K/XP (with tools like 
Ntsyslog), etc. 

However, even if we limit our scope to logs recorded by syslog, their characterization is not trivial 
because logs come from many applications of different types and purposes. Consequently, as we will see 
in the next section, log contents and formats are not necessarily the same for all entries, even if they 
share some common characteristics. 

For this reason, we look only at the common characteristics and the structure of syslog entries. 
Characterizing more precisely some logs of particular types (e.g., web server logs) is left to HIDS 
evaluators, if they are more interested in certain application types, as this is out of our scope in this 
chapter. 

A) Common Structure of Syslog Entries 

Syslog is a consolidated audit mechanism that is designed to simplify the task of system analysts and 
application developers by providing a single point of management for collecting and distributing audit 
data. It permits both local and remote log collection. 

Most users create syslog messages through one of the standard syslog interfaces. For example, there 
is a C library contained within libc to create message strings. The syslog library behaves somewhat like 
the standard printf () interface. Alternatively, one can invoke the command logger to create syslog 
messages from the command line or within a shell script. 

A syslog message is an ASCII string that consists of a header and a message string. The header 
consists of a message priority and a timestamp. The message priority is an ordered pair <Facility, Level>. 
The facility part identifies the originating subsystem of the message. There is up to 32 facilities. Some 
are reserved for the OS and the others are available for users and application developers as shown in 
Table IV.4. Each syslog message is assigned one of a set of possible levels corresponding to its priority 
as shown in Table IV.5. 

Table IV.4: List of some available facilities. 

FACILITY DESCRIPTION 
LOG_KERN kernel messages 
LOG_USER random user-level messages 
LOG_MAIL mail system 
LOG_DAEMON system daemons 
LOG_AUTH security/authorization messages 
LOG_SYSLOG messages generated internally by syslogd 
LOG_LPR line printer subsystem 
LOG_NEWS messages generated by the news system 
LOG_UUCP messages generated by the UUCP system 
LOG_CRON messages generated by the cron daemon 
LOG_LOCAL[0-7] reserved for local use 

The message part of syslog messages that are emitted by devices or applications are typically in a 
plain text form. The message format is specified in “syslog.h” where its content is arbitrarily defined by 
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the emitting device or application. There is no common standard for message contents. Each log emitter 
uses its own format for message contents. Thus, it is common that different versions of the same emitter 
may produce different message contents. 

Table IV.5: List of possible logging levels. 

LEVEL CODE DESCRIPTION 
LOG_EMERG  0 kernel panic 
LOG_ALERT  1 condition needing immediate attention 
LOG_CRIT  2 critical conditions 
LOG_ERR  3 errors 
LOG_WARNING  4 warning messages 
LOG_NOTICE  5 not an error, but may need attention 
LOG_INFO  6 informational messages 
LOG_DEBUG  7 when debugging a system 

Within the same category, there are two orthogonal differences with respect to the message string. 
The first is related to the kind of data or information logged by applications or appliances (OS events, 
firewalls, etc.) where nearly the same kind of data is reported. The second is related to variations due to 
the level of reporting details, the order and the organization of the reported data, etc. 

Syslog messages received by the syslogd daemon can be written directly to the console or to a log file 
after stripping out message priority and adding the name of the system (equivalent to uname -n) that 
originates the message. This can be the local system if the message was locally generated, or a remote 
system communicating over an Internet domain socket. As an example, Figures IV.10 and IV.11 
illustrate sample syslog entries generated by an apache server. 

In order to be analyzed by a HIDS, for each log category (e.g., kernel logs, web server logs, firewall 
logs, etc.) a normalization or preprocessing step is usually carried out on the logs. This allows identifying 
and extracting the identical types of log entries regardless of their position or their form in the original 
log. 

At the end of the preprocessing stage, we have a set of well-defined log entries for each category of 
applications or devices. In addition to well-defined name/value pairs of properties that are specific to the 
kind of log, there are some common properties for each log entry such as the timestamp (date and time of 
generating the entry), the originating device, the process name and the process ID. 

For example, web server logs, as defined in the W3C standard, consist of a single line for each 
request and that single line contains all information about the web request (The IP source, the request 

[Mon Mar 8 14:54:56 2004] [info] [client 64.242.88.10] (104)Connection reset by peer: client stopped 
connection before send body completed 
[Tue Mar 9 13:49:05 2004] [info] [client 81.226.63.194] read request line timed out 
[Wed Mar 10 11:45:51 2004] [info] [client 24.71.236.129] (104)Connection reset by peer: client stopped 
connection before send body completed 
[Thu Mar 11 02:27:34 2004] [error] [client 200.174.151.3] File does not exist: 
/usr/local/mailman/archives/public/cipg/2003-november.txt 
[Thu Mar 11 07:39:29 2004] [error] [client 140.113.179.131] File does not exist: /usr/local/apache/htdocs/M83A 

Figure IV.11: An extract from apache error-log entries (source: www.monitorware.com). 

10.0.0.153-[12/Mar/2004:12:23:41-0800] "GET /dccstats/stats-hashes.1month.png HTTP/1.1" 200 1636 
10.0.0.153-[12/Mar/2004:12:23:41 -0800] "GET /dccstats/stats-spam.1year.png HTTP/1.1" 200 2262 
10.0.0.153-[12/Mar/2004:12:23:41-0800]"GET /dccstats/stats-spam-ratio.1year.png HTTP/1.1" 200 1906 
10.0.0.153-[12/Mar/2004:12:23:41 -0800] "GET /dccstats/stats-hashes.1year.png HTTP/1.1" 200 1582 
216.139.185.45-[12/Mar/2004:13:04:01 -0800] "GET /mailman/listinfo/webber HTTP/1.1" 200 6051 
pd95f99f2.dip.t-dialin.net -[12/Mar/2004:13:18:57 -0800] "GET /razor.html HTTP/1.1" 200 2869 
d97082.upc-d.chello.nl-12/Mar/2004:13:25:45 -0800] "GET /SpamAssassin.html HTTP/1.1" 200 7368 

Figure IV.10: An extract from apache access-log entries (source: www.monitorware.com). 
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method (e.g., POST or GET), etc. In addition to the common properties, it contains the URL being 
requested as well as the number of bytes received and sent while serving the request (see Figure IV.10). 

B) Common Characteristics of Log Entries 

From the previous section, we can distinguish three types of characteristics: time, amount and 
composition characteristics: 
� Time characteristics are related to the time of event occurrence or to occurrence frequency. For 

example, during normal operation, there are often routine events that happen periodically or 
aperiodically. This may include events that happen every 5 minutes, but it may also cover events that 
happen only once a month or once a week. For example, a virus scan of the local disk can be 
scheduled for execution every Sunday afternoon. 

� Amount characteristics describe how many events in general, or events of specific types, occur 
within a given period. 

� Composition characteristics are related to the diversity of the events recorded in the log file, in 
particular sequences of events that usually occur together as a block corresponding to the same 
activity. For example, a normal operation of an FTP server may consist of a log entry for the 
connection initiation, other entries for the successful log in, file transfer and connection release. 

The background component is very important for the evaluation of IDS and particularly for the 
evaluation of false positives. However, we will concentrate more on the attack activities, as the work in 
this area still needs more effort, whereas we can benefit from the work in other areas such as network 
metrology for the generation of background datasets. 

4.9. Conclusion on attack workload characterization 
We have identified the lack of representativeness of datasets as one of the serious limitations in 

existing evaluations of IDS. This problem is common for both the attack as well as the background 
components of the evaluation dataset. However, it is more serious for the attack component as it has a 
more direct and significant influence on the quality of detection provided by intrusion detection systems. 
To address this problem of the poor representativeness and to enable an easy selection of relevant attack 
test cases, we ought to characterize IDS workloads in the real world. First, we have characterized the 
main features of simple attack activities at a low level. As a result, we have proposed a new classification 
scheme that builds on previous classifications by keeping only evaluation-relevant attributes and 
discarding any ambiguous or useless attributes. 

Moreover, when we began to characterize attack scenarios, we were confronted with the lack of 
sufficient information about attack incidents. To overcome this limitation, we have analyzed many 
automatic malware attacks as well as human-centric attack incidents. Analyzing attacks is not as easy as 
it may appear because of several obstacles that prevent a wide-scope analysis. This may not only affect 
the cross-vendor deployment of security tools such as IDS but also their evaluations. These obstacles are 
mainly due to the huge number of vulnerabilities and captured malware samples and the lack of a 
common nomenclature scheme that would be accepted by all experts. 

Actually, there are no agreed-upon naming conventions for computer attack tools and malware 
instances. This complicates the analysis and the comparison of alarms generated by different IDSes 
because different IDSes often generate different alarms for the same type of attacks. This also makes the 
use of various types of IDSes and the correlation of their alarms more difficult. 

Fortunately, there are fruitful efforts within the network security community to derive a common 
nomenclature for computer vulnerabilities. The most popular of these is the Common Vulnerabilities and 
Exposures List (CVE) {Cve08}, which is maintained by MITRE with inputs from a variety of security 
professionals worldwide. Another one is the OSVDB {Osvdb08}. Both are publicly available and 
searchable with different search options. 

A still underway but less mature effort is also carried out by MITRE Corporation to create 
standardized repertories for attack patterns and malware instances. The Common Attack Pattern 
Enumeration and Classification (CAPEC) list {Capec08} considers attack patterns at a high level 
whereas the Common Malware Enumeration (CME) list {Cme08} considers malware instances with 
references to different names attributed by different vendors to the same piece of malware. 
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Despite these obstacles, we managed to define a model of attack process that describes the dynamics 
of attack scenario executions from a functional viewpoint. Both the classification and the attack process 
model contribute to the characterization of intrusion detection workload and both are intended to serve in 
generating representative attack scenarios. 

To achieve that, we have analyzed and characterized many tools that may be used by attackers, with 
respect to the classification scheme and the attack process model, as explained in Section 4.6. Further, we 
have created a repository with a user-friendly front-end interface to store the information issued from the 
characterization in addition to other important information about the particular vulnerability exploited 
(i.e., CVE and OSVDB if any) and the particular product concerned by the attack (e.g., apache server 
version 2.2, IExplorer version 6) about the classified attack tools. This repository will be integrated with 
other components for generating and recording datasets within our evaluation kit that will be presented in 
the next chapter. 

The characterization of attack activities that we have described in this chapter is an angular brick in 
our approach. It is both critical for the selection of attack test cases, for the execution of attack scenarios 
as well as for the presentation of results. A detailed description of the complete approach to generate 
attack scenarios will be presented in the next chapter. 
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V. Chapter 5: Model-driven Dataset Generation 
In the previous chapter, we have analyzed the input workloads for different IDS types. Since IDS 

workloads consist of attacks as well as normal activities, we divided the problem of generating test 
datasets into two subtasks: generating attack dataset and generating background dataset. 

A typical attack dataset contains “pure” malicious activities that are supposed to be harmful by 
nature (i.e., using intrusive tools such as buffer-overflow exploits) or that abuse legitimate functions 
(e.g., launching a SYN flood attack). These are the activities that any good IDS should never miss and 
should properly identify and report. Beside the pure malicious activities, attacks often include activities 
that are apparently innocent such as using commands like ls, pwd, who, etc. to browse the victim 
machine. These activities may seem to be less dangerous, but they may be very significant for the 
detection process. Modern IDSes are becoming more state-full and are often equipped by correlation 
engines where their detection capabilities as well as the correlation accuracy depend heavily on the 
context. Therefore, to evaluate IDSes correctly, we should generate not only pure malicious attack 
actions but also other innocent-like actions that may be executed by attackers (in addition to the 
background traffic). 

We tackle, in this chapter, the problem of generating evaluation datasets, and specially attack 
datasets. Based on the characterization of attack activities that we have presented in the previous chapter, 
we explain how the classification scheme and the attack process model can be combined with other 
models (attacker competence and statistical parameterization models) to generate workloads that are 
representative of real attack scenarios that contain both malicious and innocent-like activities. Moreover, 
we will discuss some important issues related to the generation of background datasets. 

5.1. Introduction 
Generating malicious activities that are representative of real attacks is very crucial to support 

evaluating and testing security tools. There are two ways to generate attacks for the purpose of IDS 
testing: real and virtual. Virtual attacks can be generated by tools that create sequences of crafted packets 
such that attack signatures will be identified. A possible use of this type of malicious traffic is in testing 
false alarm rates or the ability of NIDSes to distinguish real attacks from normal packets. IDS stimulators 
such as Snot {Snot07} belong to this category. The virtual attack method should be used with care in IDS 
evaluation because it generates only a small part of malicious attack activities, those that can correspond 
to specific signatures. For example, an attack dataset may be reduced to one packet that carries attack 
symptoms coded in an IDS signature while omitting the rest of attack traffic: it does not need to create 
complete TCP transactions, it can limit the traffic generation to one side of the communication, etc. 

On the other hand, generating real attacks may be closer to the reality. However, it is a nontrivial task 
and unfortunately consumes a significant part of evaluator’s effort and time. To our knowledge, there is 
no systematic way to generate realistic attack scenarios automatically with a good coverage of real world 
attacks. Attacks are often generated manually in an ad-hoc manner. 

The quality of the generated attacks, their complexity and their representativeness have a strong 
impact on the results of the evaluation, the correctness of its conclusions as well as the credibility of the 
evaluators. The best solution, in our opinion, is to automate the attack generation process while keeping 
it as flexible and as extensible as possible. The key method in this solution is to create a model of the 
attack process with robust theoretical basis that can express real attack scenarios. 

Therefore, the first step in the solution is to find a suitable model for generating attack scenarios. 
Modeling attack scenarios can be difficult due to the large number of involved actors. They may have 
many diverse characteristics and opposite or even contradictory objectives (e.g., attacker vs. defender, or 
attacking tools vs. security countermeasures). They also have different relationships and dependencies 
with the surrounding systems and environment where they operate and interact with each other. This is 
why modeling such complex environments in a single model may be unsuitable to capture and to 
represent all the involved elements as well as their security-relevant behaviors. 
In Chapter 4IV, we have analyzed several models of attacks found in the literature. This analysis shows 
that these models are unsuitable for our purpose (i.e., generating representative attack datasets) for three 
main reasons: 
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1- They have been often developed for analyzing a particular network, and thus they are too 
network-specific or environment-specific: such a model cannot be used for analyzing other 
networks or even other configurations of the same network, requiring to recreate the model for 
each evaluation. 

2- They suffer from the combinatory explosion problem and from poor scalability. Almost all 
models suffer from this problem because they try to express all necessary features of the 
playground and players in a single model. This results in large-size models with poor scalability 
that are impractical for generating attacks. 

3- They generally focus on particular parts of the attack process (i.e., gaining access, escalating 
privileges) while ignoring post-access activities. 

This is why we propose a multi-model approach where various models represent specific issues from 
different views that are related to different entities involved in the attack process. The models are treated 
iteratively, starting from a high level of abstraction down to detailed, concrete attack actions. The 
iterative approach reduces the severity of the combinatorial explosion and the separation allows the 
resulting models to be of reasonable complexity. Furthermore, the modularity of this approach facilitates 
the modification and the refinement of models individually without affecting the other models. That way, 
we avoided the oversimplifying assumptions used previously to reduce the complexities inherent in a 
single large model. 

In the following section, we will present an overview of our approach and the underlying models. 
Moreover, we present a brief survey of attack generation techniques. Then, in Section 5.3, we detail the 
main steps to transform these theoretical models into concrete attack scenarios. Section 5.4 describes the 
tool kit that we have implemented to generate evaluation datasets and Section 5.5 presents the 
conclusions on the generation of evaluation datasets. 

5.2. Model-driven Attack-scenario Generation 
As stated above, running real attack scenarios is more suitable to generate realistic attack datasets for 

IDS evaluations. Nevertheless, this requires a lot of effort in setting up a live network on which real 
exploits can be executed against real vulnerable servers. Moreover, only gathering attack tools and attack 
exploits is not sufficient to generate attack scenarios with characteristics close to real-world attacks. 

To avoid these limitations, rather than developing a single large model we propose three models: 1) 
an attack process model, 2) an attacker competence model and 3) a statistical parameterization model. 
These models are intended to be sufficiently generic to allow generating attacks for different networks or 
systems; to be iterative, to avoid the combinatory explosion; and to represent attack scenarios that cover 
the whole process of attack. 

In what remains of this chapter, we explain how the models that we propose for the attack process 
and attacker competence can be combined to generate realistic attack scenarios in a flexible and 
extensible manner, these scenarios can be instantiated with temporal and addressing characteristics issued 
from the statistical model. 

5.2.1. Underlying Models 

Our approach is based on three main models: the attack process model, the attacker competence 
model and the statistical model. The attack process model is derived by analyzing malware behavior and 
real attack incidents. The attacker competence model governs the instantiation of executable attack 
scenarios from the attack process model. Finally, the statistical model helps us to determine the 
frequency by which particular tools and commands may occur during attack sessions and accordingly 
generate evaluation datasets. In the following subsections, we describe each of these models. 

A) Attack Process Model 

This is the key model that aims to reproduce abstract attack scenarios similar to the scenarios that we 
encounter in the real world. The objective of considering firstly abstract scenarios is to alleviate the 
combinatory explosion inherent in scenario and graph computing. We have described the attack process 
model in Section 4.5.3 and we will explain in Section 5.3 how we use it to generate abstract scenarios. 

B) Model of Attacker Competence 
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Security testing differs from other testing activities in that security testers are dealing with intelligent, 
creative attackers who often use systems in unexpected or unfamiliar ways. This has several 
implications: most importantly, an attacker might do things that an ordinary user would not do, such as 
entering thousands of characters to overflow buffers or embed commands or scripts in http request where 
simple textual fields are expected. Security testers should not only consider normal activities that can be 
carried out by attackers, but also actions that are far beyond the range of normal activities. Moreover, 
because IDS/IPS are increasingly going state-full, testers should also consider the context or the way by 
which these activities are carried out. 

In addition, even if attackers can have many things in common, their behaviors may vary according 
to many factors such as their background, level of experience, skills, how much information they can 
obtain about the targeted system, etc. {Alata06}, {Alata07}. 

Consequently, the model of attack process alone is not sufficient to capture all the features relevant to 
IDS evaluations; it should be coupled with a model of attacker competence. The attacker competence has 
a significant impact on the generated attack scenarios since it has a direct effect on: 

- the nature of attack steps (e.g., trace hiding is generally made only by skillful attackers); 
- the sequencing of attack events (e.g., an experienced attacker who knows what he does and what 

he searches, executes directly actions that achieve his goal and makes less victim browsing lately 
in the attack process); 

- the tools used and implicitly the targeted vulnerabilities. Skillful attackers, by example, might 
use their own tools or customized versions of existing tools; 

- the execution and typing of erroneous commands or bad command options; and 
- the stealth execution of attacks to make detection more difficult where attackers apply several 

evasion techniques such as fragmentation, encoding, etc. Moreover, they can change intra-attack 
timing; concretely, it corresponds to the time of thinking or the stealthy execution over wide time 
slices. 

Thus, we model attackers in terms of their skill-level (L), the set of tools in their possession {Tools}  
and their IP address (IP): an attacker is represented by the tuple ATR = (Level, {Tools} , IP). Attacker 
Level can have one of three values: beginner (B), intermediate (I) and skillful (S). 

C) Statistical Parameterization Model 

Honeypots provide invaluable information about attacks such as attack arrival rate, most-attacked 
ports and services, etc. {Leurrecom08}, {Kaaniche06}. Such information can be used to generate attacks 
with similar statistical characteristics in the evaluation datasets. Furthermore, honeypots provide 
information about the most frequent sources of attacks, which may guide the assignment of attacking IP 
addresses in the evaluation dataset. Low-interaction honeypots are useful for collecting data about attack 
sources and most targeted services, whereas high-interaction honeypots provide more information on 
how attacks occur, which tools are used and how attackers behave {Honeynet04}. 

High-interaction honeypots provide a wealth of information about post-compromise activities 
{Raynal04}. Other studies such as {Ermopoulos06} give indications about the usage frequency of 
normal commands. This allows the parameterization of frequencies in executing normal activities during 
attacks. For example, during the victim-browsing phase, the commands ls and cd are used more 
frequently than commands like ps. 

To extract such statistical information, we relied on data recorded in the context of the study 
presented in {Alata07}. It is based on high-interaction honeypots developed at LAAS to experiment with 
SSH vulnerabilities such as easily guessable passwords. Mechanisms for monitoring attack activities 
were transparently implemented via a customized linux kernel. Other mechanisms were added to keep 
control over attack actions and to prevent multi-hop attacks against other systems. 

Data were collected over approximately 27 months starting from 2006 where about one-milion 
connection attempts and two thousand successful connections were observed. Even though the all attack 
sessions result from SSH connections, the collected data gives a clear insight of attackers’ behaviors after 
obtaining access to victim machines. Moreover, the observations can be generalized for attack session 
other than SSH where the only difference is how the victim machines were initially accessed (GA step). 

Figures V.1 and V.2 show the evolution in the number of commands executed during the observation 
period on two honeypot machines. Command numbers range from one command to 268 commands per 
session. Several interpretations may be proposed. For example, short sessions may be due to the use of 
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automatic tools in brute force dictionary attacks or a unintended connection that results from an error in 
typing the IP address and once discovering the error logging out {Ramsbrock07}, {Alata06}. 

 

Figure V.1: Evolution in the number of executed commands during attack sessions on the 1st machine. 

Total 3285 
Average 25,47 
Median 12,00 
std dev. 43,19 
min 1,00 
max 268,00 

Figure V.2: Evolution in the number of executed commands during attack sessions on the 2nd machine. 

Total 1795 
Average 25,28 
Median 14,00 
std dev. 39,46 
min 1,00 
max 220,00 

 

Table V.1: Most frequently used usernames and passwords. 

Rank User name Password 
1 test test 
2 admin admin 
3 root root 
4 guest guest 
5 root 123456 
6 user user 
7 root password 
8 mysql mysql 
9 richard richard 
10 oracle oracle 
11 sales sales 
12 test 123456 
13 web web 
14 ftp ftp 
15 michael michael 
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Useful information about usernames and passwords that were used can be also extracted. Table V.1 
shows the most frequently attempted username and passwords. Similarly, we have analyzed the 
commands executed during attack sessions. 

As illustrated by Figure V.3, the most executed commands in this sample are cd, ls, cat, rm and wget. 
Furthermore, from the viewpoint of our attack process model, we noticed that almost all attackers browse 
intensively the victim machines (VB) to gain knowledge about their next steps. The second activity is the 
execute program (EP) and then comes the compromise of data integrity (CDI). When we closely 
examined the data, we discovered that this ranking was a bit biased because of the massive execution of 
./john command, which invokes a password cracking program (John the ripper) {John07}. Accordingly, 
the rank can be modified as follows: VB, CDI, IMC and then EP. Figure V.4 shows the percentages of 
each attack-step in the sample. We noticed that all the eight steps of the attack process are present in the 
sample. Besides that, there are 2.49 percent of the commands correspond to errors in typing commands 
(Typos). The End corresponds to session termination commands such as exit and logout. 

 

Figure V.3: Most frequently executed commands. 

Figure V.4: Percentage of commands as attack steps. 

Based on honeypot data, each attack tool or command can be assigned a weight value that reflects its 
usage frequency, its popularity as well as its obsolescence (e.g., in the case of vulnerability-exploiting 
attack tools, the weight decreases if the vulnerability is corrected by largely distributed patches or new 
software versions). The weight of a normal-activity command (Wc) corresponds to its utilization 
frequency in the real world (Wc = fc) whereas the weight of malicious attack tools Wt can be computed 
as follows: Wt = ft/dt, where ft is the frequency of utilization in the real-world and dt is the number of 
months since the discovery date of the vulnerability exploited by this tool.  
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Now that the underlying models have been described, it is time to explain how we use them together 
to generate attack scenarios. 

5.3. Novel Approach for Attack-scenario Generation 
Let us recall from Chapter IV that IDS evaluation should inevitably pass through the following steps: 
• characterizing real environment datasets, by analyzing the target environment where the IDS will 

be deployed as well as the characteristics of the evaluated IDS itself, 
• identifying interesting test-cases, 
• designing experimentations, 
• generating test dataset and executing test-cases, and finally, 
• analyzing results. 

In the previous chapter, we have already characterized the real-world datasets and we have suggested 
a classification-based approach for selecting attacks and identifying interesting test cases. In the 
following subsections, we explain how we can generate evaluation datasets and specifically attack 
datasets, i.e., the one representing activities carried out by attackers. 

5.3.1. An overview of Attack Scenarios 

Let us imagine how an attacker carries out an attack. Suppose that (for some reason), an attacker has 
decided to target a certain computer system. Our interest is beyond his intentions and motivations (e.g., 
to gain money, fame, revenge, vandalism, terror, etc.). At this point, the attacker has more or less 
information about the victim machine. If he has no information or insufficient information, he inevitably 
searches for additional information, to increase his chance of success. Various information-gathering 
methods can be used starting from social engineering and search engine harvest, which cannot be 
observed by the IDS, to network and vulnerability scanning tools, which contrarily can be seen by the 
IDS. 

From the perspective of IDSes, the number of attack steps that appear in one session of an attack 
process is relatively arbitrary because attackers may proceed slowly during several days or weeks to 
avoid detection. Therefore, when they resume their attack later for subsequent steps, it appears to the IDS 
as a new attack (e.g., if the attacker begins directly to perform intrusive actions, e.g., privilege escalation, 
without going through the previous steps). Moreover, the attacker could be an insider who has already 
sufficient information and/or has a valid account to begin; he thus does not need to pass through the 
reconnaissance step. Inversely, an attack process could be stopped deliberately because the attacker has 
decided to abandon it definitively, for example, because it is too difficult to succeed or he has found a 
more interesting target. In all these cases, the effect for the IDS is the same: only a part of the attack 
scenario is observable for the IDS. 

Attackers are generally equipped with an arsenal of “weapons” of different types, purposes and with 
different munitions that can be used during the attack cycle. The richness of this arsenal depends on 
attackers’ experience and skills. A particular weapon is fired in each attack step according to the current 
situation. Attackers often cannot acquire a comprehensive and complete knowledge of all vulnerabilities 
and all possible ways to exploit them because either their competence is insufficient, or because such 
information is unavailable for the attacker, because security mechanisms prevent the information leakage 
and/or the attacker’s privileges are too low. Similarly, they generally have access to only a limited 
number of attack tools. 

The notions of “partial knowledge” and “finite number” of attack tools are crucial for our approach. 
This is why we suggest using these notions in conjunction with the attacker competence model and the 
attack-process model to draw the details of attack scenarios while reducing the effect of combinatory 
explosion. Hence, we can determine what to execute, which sequence of execution, when to execute and 
against which victim machine. In fact, we can summarize the underlying assumptions for this work as 
follows: 

1. An attack process does not always follow a complete cycle (i.e., reconnaissance, access gain, 
privilege escalation, etc.). Instead, it can be abandoned, suspended or even blocked. 

2. An attacker has a partial knowledge about the targeted system. The amount of knowledge that 
can be acquired varies from one attacker to another and from one targeted machine or network to 
another. 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

125 
 

3. Attackers have different skills and experience levels. They may use tools that are publicly 
available or tools distributed only within a closed community, or they may develop their own 
tools. However, the number of tools available to an attacker is generally limited. 

4. The kind of tools as well as the sequence of using them depend on the main objective of the 
attack, attackers experience as well as the knowledge acquired about the targeted system. 

5.3.2. Scenario Computing 

Attack scenarios can be viewed as plans carried out by attackers. Moreover, because the resources 
available for the evaluation are limited, it is necessary to schedule the execution of different attacks on 
the available machines. This, in turn, is similar to the traditional scheduling problem. Fortunately, both 
the planning and the scheduling problems can be solved easily by constraint-programming languages. 
Once an appropriate model of the problem is created, and the constraints are defined, built-in search 
algorithms can be applied to find valid solutions. 

Process planning is a typical problem in artificial intelligence and operational research. It aims to 
find suitable plans to perform a series of intermediate tasks to achieve a final goal while satisfying 
predefined constraints. It looks for valid solutions in a huge number of nodes in search tree or search 
space. 

The art of constraint programming lies in finding an appropriate model for the problem and a 
distribution strategy that yield a computationally feasible search tree. In our context, we represent the 
problem of computing attack scenarios in finite domain as a path-finding problem. In order to do that, we 
transformed the attack process of Figure IV.8 into the graph shown in Figure V.5. It consists of eight 
nodes labeled as: R, GA, DoS, VB, CDI, EP, IMC, HT, which corresponds to: Reconnaissance, Gain 
Access, Denial of Service, Victim Browsing, Compromise of Data Integrity, Execute Program, Implant 
Malicious Code and Hide Trace respectively. 

Marking nodes as start or final as well as the connections between different nodes have been deduced 
from our observations on attack scenarios embedded in malware (cf. Chapter 4) and honeypot data (cf. 
the previous section), which also coincide with common sense. For example, an attacker cannot begin 
browsing a victim host without gaining first access to that host. As another example, the node DoS can 
be a start node as well as a final node because some types of denial of service attacks do not require any 
access to the victim machine. The DoS node is also a sink node since it often results in crashing the 
system or making it unavailable, and thus further attack steps on this victim become impossible. 

In fact, this representation is so flexible that the underlying attack process model can be radically 
changed: modifications in the attack process model can be applied easily by modifying the connection 
matrix and the constraints. For example, we can add a new abstract action by adding an entry for the new 

Figure V.5: Graph representing connections and possible paths between attack steps (i.e., attack cycle). 
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node, defining its connection with other nodes and stating the assumed constraints (e.g. whether it can be 
a start or end step in the scenario, whether it can have self loops, etc.). The desirable solution corresponds 
to all possible paths (i.e., scenarios) that satisfy predefined constraints. For example, we assume that 
scenarios must satisfy the following constraints: 

� Scenarios can begin only from nodes: R, GA, or DoS. 
� Scenarios terminate only in one of the following nodes: DoS, CDI, HT or EP. 
� Self-loops are allowed only at nodes R, GA, and VB. 
� A node should not be traversed more than “MaxLoop” times (neither as self-loop nor as re-

pass) in the same scenario. The MaxLoop parameter is chosen explicitly by the evaluator. 
� Nodes are connected as shown by Figure V.5 or by the connection matrix of Table V.2. 

Table V.2: Connection matrix. 

\  From: R GA DoS VB CDI EP IMC HT 

To:          

R  1 1 1 0 0 0 0 0 

GA  0 1 1 1 1 1 1 0 

DoS  0 0 0 0 0 0 0 0 

VB  0 0 1 1 1 1 1 0 

CDI  0 0 0 1 1 1 1 1 

EP  0 0 1 1 1 0 1 1 

IMC  0 0 0 1 1 1 0 1 

HT  0 0 0 0 0 1 0 0 

In essence, to obtain a detailed plan of attacks or executable scenarios, the following five questions 
should be answered: 

� What sequence of execution?  
� What to execute? 
� Executed on which machine? And against which victim? 
� When to execute?  

Since the answers to these questions require searching in a huge (potentially infinite) space of 
possible solutions, we answer the above questions in an iterative manner. First, we generate a finite 
number of possible scenarios (what sequence of execution?) at a high level, according to the graph of 
Figure V.5. The produced abstract scenarios are in the form:  

[ ]nSSSSScenario ,....,, 32,1= , where: { }DoSGARS ,,1 ∈  and }{ HTEPCDIDoSSn ,,,∈  

For example, a four-step scenario could be (R, GA, VB, EP). 

In addition to that, constraints related to the attacker's profile can be applied at the same level to 
refine the generated scenarios. For example, if we are interested only in attacks performed by newbies, 
we add the constraint nSHT ∉ . Therefore, the possible scenario space will be further reduced by 

excluding all scenarios that contain a hide trace step. 
The last task in generating attack scenario dataset is to translate abstract scenarios into concrete, 

executable scenarios, as explained in the next subsection. 

5.3.3. Transformation into Concrete Scenarios 

To answer the "what to execute?" question, abstract scenarios are taken and instantiated from a 
database of tools/commands according to their corresponding steps as well as their statistical occurrences 
extracted from honeypot data (statistical parameterization model). In the command database, an arsenal 
of tools/commands is categorized by our classification scheme and mapped to a particular attack step that 
it realizes. For example, tools such as nmap, nessus and ping are mapped to the reconnaissance  step (R); 
commands like ls, pwd and uname are mapped to victim browsing (VB); ssh and telnet are mapped to 
Gain Access (GA), and so on. 
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Accordingly, we have categorized many commands related to Unix/Linux environment, as well as 
many attack tools. Table V.3 presents some examples of the categorized commands where each entry 
represents an elementary attack action, which is characterized by both its appearance (i.e., a classification 
perspective) as well as its attack step (i.e., a scenario perspective). Moreover, commands are also 
associated to level of competence. For instance, executing the command nmap with the option -sF can be 
associated to skillful profile. 

Launching attack on which machine and against which victims machine of the evaluation platform 
(the answer to the “against which victim?” question) can be introduced explicitly by the evaluator either 
as a pool of single IP addresses or sub-networks and by determining which OS by example. 

Finally, the answer to the “When to execute?” question has two factors: one is related to attacker 
profiles, e.g., whether they apply a stealthy technique, and the other one depends on the resources 
available for the evaluation. The first timing concern is estimated in rough time units according to the 
attacker profile, while the later is determined in time ordering for the scheduled execution on the 
evaluation platform. Both "time ordering" and "machine attribution" questions (i.e., executed on which 
machine) are answered by the scheduler. 

We present, in the following section, the evaluation kit that we have developed to implement the 
ideas discussed in this dissertation. 
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Table V.3: Examples of attack tool characterization. 

Attack Tool Source Privilege Acquired Vulnerability Network Carrier Native-Carrier Target  Step 

ping Remote Configuration None Transport layer None Network stack Reconnaissance 

nmap Remote None None Transport/App. layer None Network stack Reconnaissance 

nessus Remote None None Application layer None Network stack Reconnaissance 

rlogin Remote variable None Application layer None Service GA 

telnet Remote variable None Application layer None Service GA 

ftp Remote variable None Application layer None Service GA 

ssh Remote variable None Application layer None Service GA 

get/put (FTP) Local None None None Command Execute File system IMC 

cron Local None None None Command Execute Application EP 

Su –u root Local Root None None Command Execute OS GA 

ls Local None None None Command Execute File system VB 

ps Local None None None Command Execute Process/Application VB 

grep Local None None None Command Execute File system VB 

Vi Local None None None Command Execute File system CDI 

rm Local None None None Command Execute File system CDI/HT 

touch Local None None None Command Execute File system HT 

kill syslogd Local None None None Command Execute Service HT 

kill httpd Local None None None Command Execute Service DoS 

Gcc malware src Local None None None Command Execute File system IMC 

Execute downloaded malware Local None None None Command Execute Application EP 

Ping-of death Remote None Configuration Transport layer None Network stack DoS 

Metasploit/dcerpc/ms03_026_dcom Remote System Implement/Design Application layer instruction OS GA 

Metasploit/ftp/3cdaemon_ftp_user Remote variable Implement/Design Application layer Execute Command Service GA 

Dictionary brute force attack Remote Variable Configuration Application layer None Service GA 

unshadow (John-the-ripper) Local None None None Command Execute File system VB 
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5.4. Development of the Evaluation Kit 
In order to produce attack-scenarios automatically and to generate background network traffic, we 

have implemented a prototype evaluation kit that integrates the aforementioned ideas. The key 
components of the kit are the Attack Injection Tool (AIT), the Background Traffic Injector (BTI) in 
addition to the evaluation manager. In this section, we describe each one of these components. Figure 
V.6 shows the overall structure of the evaluation kit. 

5.4.1. Evaluation Manager 

The evaluation manager, as illustrated in Figure V.6, is composed of a user interface (UI), the 
planner and the scheduler. The UI can be used by evaluators to control the experiment and to customize 
or configure the other components. The planner module produces abstract scenarios while the scheduler 
module generates scheduled executable scenarios and distributes them to attack generators. It also 
schedules replaying background traffic. 

As we have discussed in Section 5.3.2 (Scenario Computing), attack scenarios can be viewed as a 
planning and scheduling problem, which can be easily solved by constraint programming languages. For 
this reason, we decided to develop the planner and the scheduler by using Mozart system, which is based 
on Oz language {Mozart08}. It provides the salient features of logic programming and constraint 
programming by providing logic variables, disjunctive constructs and programmable search strategies. 
Furthermore, Oz is a concurrent language where users can dynamically create a large number of 
sequential threads that can interact with each other.  

The concurrent logic-programming paradigm of Mozart is an advantage as it facilitates building 
reactive programs where the generated scenarios can be interactive. Moreover, we can generate 
concurrent attacks or attack scenarios. In addition to that, it supports agent programming. The constraint 
programming and the logic programming beside the programmable search strategies allowed us to 
implement easily the planner and the scheduler of attacks. Thanks to all these features, the whole kit, 
including the planner, the scheduler as well as attacking agents can be implemented, in future versions, 
by the same language. 

Figure V.6: An overview of the evaluation kit structure. 
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We preferred Mozart rather than other constraint solving toolkits such as ILOG Solver {Ilog08} or 
JaCoP {Jacop08} that integrates constraint programming into a host imperative programming language 
like C++  or Java. The reason for this decision is the difficulty of controlling dynamically the addition of 
constraints, as in our context, the constraints may change quite often. Moreover, debugging and 
optimization in this type of toolkits is done at the level of the host language rather than at the level of the 
constraints programming, which leads to easier development. 

A) Planner 

Scenario planning is transformed into a constraint satisfaction problem (CSP). After the definition of 
variables and constraints over these variables, a constraint solver (e.g., SearchAll, or ExploreAll) is 
applied to find solutions. The constraint solver expects a CSP in the form of a script. A script is a 
procedure whose only argument is the solution of the solved CSP. The variable is often called the root 
variable of the script (here an anonymous procedure with the root variable called Scenario). 

The Data structure that represents the step nodes and their connections is shown in Figure V.7. A new 
node called “end” is added to model the finishing nodes. 

A portion of the code that implements the planner module is illustrated in Figure V.8. The 
anonymous procedure proc {$ Scenario} is wrapped by the function AttackScenario that receives the 
above data structure. This script produces all the possible scenarios with different lengths that 
correspond to all possible paths of Figure V.5. It begins by mapping the input Data structure into two 
records one for the steps and one for their connections. It then maps the steps symbols into integers 1 to 8 
and the END step to 9 because we use the finite domain solver (FD). The maximum length is calculated 
in terms of self-loops and the repetition of same attack step (if allowed). 

Table V.4: Information on the size of search space. 

 # of choice points # of failed points # of success points (Solutions) Tree depths 

MaxLoop = 1 2989 2703 287 32 

MaxLoop = 2 196650 179775 16886 67 

 

Note that in Oz scripts, we should define explicitly a search strategy (or, more specifically the 
distribution strategy). The procedure FD.distribute expects a specification of a distribution strategy and a 
record or list of the constrained variables. The distribution strategy specifies in which order variables are 
visited during the search process. The specification 'ff' stands for first-fail and means that always the 
variable with the smallest domain is visited next. The selection of a suitable distribution strategy is vital 
for the performance of the search process. Table V.4 demonstrates how explosive the number of possible 
combinations in the search tree is when we equate MaxLoop to 2. For this reason and to reduce the 
severity of the combinatorial explosion problem we decided to treat the repetition of steps at the time of 
scenario-execution according to the attacker's profile. 

Data = [ r # [ga dos end] 

   ga # [dos ep imc cdi vb] 

   dos # [end] 

   vb # [cdi imc dos ep] 

   cdi # [ep imc ht vb end] 

   ep # [imc ht vb dos cdi end] 

   imc # [vb ht cdi ep] 

   ht # [ep end] 
   end # nil] 

Figure V.7: Data structure that stores the information of 
the graph described in Figure V.5. 
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declare 

fun {AttackScenario Data MaxLoop}     %Beginning of the wrapper function that calculates the scenarios 

   StepsSymb = {List.mapInd Data fun {$ I S#_} I#S end}    %Extract the steps symbols from Data 
   StepsRec = {List.toRecord sr StepsSymb} 

   Steps = {Record.arity StepsRec}                         %transform step symbols into integers 

   Connections = {List.mapInd Data fun {$ I _#Cs} I#Cs end}   %Extract connectivity 
relationships from Data 
   ConRec = {List.toRecord cr Connections}                       
   NbSteps = {Length Steps}                                      

   MaxLength = MaxLoop +  NbSteps                       %Determine the MaxLength of scenarios 
   %%This Procedure tests whether element X belongs to list Ys  
   proc {BelongsTo X Ys ?B} 
      if {List.member X Ys} then B = 1  
      else B = 0 
      end 
   end 
in 
   %The main procedure that calculates scenarios 
   proc {$ Scenario} 

      ScenarioLength = {FD.int 2#MaxLength}   %ScenarioLength is declared to an integer from 2 to 
MaxLength 
   in 

      {FD.distribute ff [ScenarioLength]}  %Find all possible values of ScenarioLength 

      %%Scenario: Step ---> Step_number 
     %Create the root variable Scenario in which solutions will be stored 
      {FD.tuple scenario ScenarioLength 1#NbSteps Scenario} 

      %******************************************** *** 
      %                        %Scenario Constraints 
      %******************************************** *** 
      %% Constraint: Starting Steps should be R, GA or DoS 
      Scenario.1 =<: 3 
      {For 2 ScenarioLength 1 
       proc {$ I} 
   J K L 
       in 
   thread 
      J = Scenario.I 
      K = I-1 
      L = Scenario.K 

      %% Constraint: ensures that transitions occur only between adjacent steps 
      {FD.impl I=<: ScenarioLength {BelongsTo StepsRec.J ConRec.L} 1} 
   end 

   %%Constraint: Last step should always be "end" 
   {FD.impl I=:ScenarioLength Scenario.I=:NbSteps 1} 
       end} 

      %% Constraint: At most times a step could repeated 
      {For 1 NbSteps 1 
       proc {$ I} 
   {FD.atMost MaxLoop Scenario I} 
       end} 

      {FD.distribute ff Scenario}   %Search strategy 
   end      
end 

Figure V.8: An excerpt from the scenario calculation script written in Mozart language. 
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B) Scheduler 

The scheduler takes the abstract scenarios produced by the planner module in addition to the 
following parameters: the number of attacking agents, the interference mode of attack sessions (i.e., 
several attack sessions in parallel or just one session per time slot), the attack arrival rate and the 
injection period. It assigns attack sessions to attacking agents and produces a schedule for attack 
execution. For simplicity, the scenario assigned to an agent is completely carried out by the agent, even 
in case of a coordinated or distributed attack scenario. Agents are able to launch attacks originating from 
different IP addresses. The scheduler is also coded in Mozart but its code size is quite large to be 
included here. 

5.4.2. Attack Injection Tool (AIT) 

AIT is the core component that, beside the tool database and repository, implements the models that 
we have presented earlier. An effective attack generation tool should eliminate the biasing effect of the 
limitations inherent in existing attack generation approaches (see Section 4.2.2). In other words, it should 
satisfy the following requirements: 
�  Flexible: It should enable evaluators to customize the evaluation dataset to match their own 

specific environment. This implies the possibility to vary sequences of attack scenarios, to generate 
different types of attacks as well as different variations of the same attack instances.  
�  Automated: to reduce the effort and time required for the evaluation. This allows evaluators to 

spend more of their time on improving the experiment design and the quality of the dataset, rather 
than loosing time on the dirty work of carrying out the experiments required for the evaluation. 
�  Extensible: Because of the rapid evolution of both software releasing, vulnerability discovery as 

well as attack development, if the tool or the dataset was neither extensible nor flexible (i.e., to 
include new attacks and add new environment features), it will be out-of-date very soon. 
�  Reproducible: It is important to repeat experiments under the same conditions to allow the 

confirmation of results and as well as the comparison between different products. 

We have developed the AIT in a manner that satisfies the requirements cited above. It is flexible 
since evaluators can select particular attack test cases; adjust scenarios by selecting attacker's level of 
experience, the address pool of victims and the scope of targeted vulnerabilities (e.g. targeting only 
Windows XP victims). Moreover, it can be extended easily where new attack tools and scripts can be 
added easily to the tools arsenal and by updating the arsenal database. It has also a possibility to record 
attack sessions either as abstract scenarios or as network traffic. Thus, evaluation experiments can be 
reproduced. 

In addition to that, attack scenarios can be generated automatically without any intervention from 
evaluators. It can be launched in two modes: (1) an exhaustive mode where all the attack tools available 
in the arsenal are considered or (2) a customized mode, if evaluators are interested only in attacks against 
particular types. Moreover, attack timing can be adjusted to determine attack arrival times, intra-attack 
delays and whether attack sessions interference is allowed. 

A) Architecture 

The main components of AIT that correspond to key entities involved in the attack process are shown 
in Figure V.9. These entities interact between them as well as they can interact with the tool arsenal 
database and the tool store where attack tools are installed or stored. Sometimes an entity by itself is 
directly implementing one of the underlying models and sometimes the model implementation is 
distributed over several classes. For example, the attacker class implements attacker competence model 
whereas the attack process model is implemented by the AttackScenario and the AttackStep classes. 

Indeed, the most important classes correspond to attacker, victim machine, attack tool, attack 
scenario, attack session and vulnerability, which can respectively be represented as follows: 

Attacker = (attacker_id, level, ip_address, {tools}) 

Victim = (victim_id, platform, ip_address, {vulnerabilities}) 

AttackTool = (level, commands, options, step, testcase_id, requirement, exploited_vulnerability) 

AttackScenario = (scenario_id, {steps}) 

AttackSession = (session_id, attacker_id, victim_id, scenario_id, start_time, end_time, current_step) 
Vulnerability = (vul_id, platform, software, date) 
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Figure V.9: Main components of AIT that correspond to main entities involved in attack scenarios generation. 
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B) Implementation 

We have implemented AIT in Ruby {Ruby08}, the programming language that was used in 
developing Metasploit. The decision to use Ruby is evident in order to benefit from its REX library that 
provides a wide range of classes and methods to manage exploitation. Moreover, AIT can be simply used 
as a plug-in of metasploit. To achieve that, we have applied some modifications in metasploit source 
codes extending its functionality to support executing automatic scenarios. The modified components of 
metasploit as well as a portion of important REX libraries that we have used are shown in Figure V.10. 

5.4.3. Traffic Trace Replayer (TrTR) 

IDS can be evaluated without any background activities at all. However, background dataset is 
essential for two reasons: (1) to measure the capability of the IDS to distinguish normal activities from 
attacks and to ensure that the IDS does not generate too many false alarms, (2) to measure the 
performance of the IDS when it falls under heavy loads (i.e., stress test). 

We have two main options to generate background datasets for IDS evaluations: either using a 
synthetic dataset or using real datasets. DARPA datasets are an example of synthetic background dataset 
that is artificially generated. Several tests still use synthetic traffic and new papers proposing better 
approaches to generate fake traffic are published every year {Antonatos04}. This could be a great 
solution if the background generation methods effectively produce reliable datasets that are closely 
similar to the real datasets. However, these methods, even the more sophisticated ones, failed to produce 
such realistic datasets. 
Real datasets are usually captured from real operational networks or hosts. They are then replayed on the 
evaluation platform. Because the dataset in this case is a real trace, they keep nearly all the characteristics 
of the environment from where it originates. However, when such dataset is used for evaluations carried 
out in different environments, it might be no longer representative of the real activities of the new 
environment. 
More importantly, the real traces contain data that contains itself sensitive information or indirect 
information that can be inferred from the trace (e.g., inferring the network topology from IP addresses in 
the network traffic). The use of real traces has several organizational and legal restrictions to protect 
confidential data and the privacy of users. This may interpret why no such real traces are publicly 
available. A sanitization process of the real traces to remove or hide the sensitive information can be a 
good solution. However, sanitization should be done carefully to avoid destroying the original 
environment characteristics. 

Figure V.10: Modified components and classes used of metasploit/REX. 
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Another big problem of using real datasets is the difficulty to ensure that it is clean (i.e., it does not 
contain attacks). In fact, since the main hypothesis regarding the background dataset is that it is “normal” 
and contains no attack, the presence of malicious events can distort the results of the evaluation. For 
example, a clean background dataset is often used to train anomaly-based algorithms. An attack in the 
training dataset would be learned as “normal behavior”, making the intrusion detection system 
ineffective against that type of attacks. 

Those who are working on network simulation or network emulation know how it is difficult to 
generate network traffic that closely reflects the characteristics of real networks {Paxson97-a}. 
Analyzing network security or testing network-based security mechanisms is more difficult because they 
are sensitive to both the context, the traffic content as well as low-level characteristics (volume, packet 
sizes, etc.), while in network performance analysis and evaluation, other parameters are more significant, 
such as delays, congestion control, packet loss, etc., on which the content and context have minor effects. 

Using real traces and replaying them on the test bed seems to be a candidate solution. Although this 
solution has the advantage to keep the characteristics of the original traffic, it also has some limitations. 
First, it is difficult to collect a sufficient number of traces or a sufficient diversity of traces to test security 
mechanisms against various network profiles that correspond to different environments. Therefore, we 
need to merge several traces that, unless merged carefully, could present inconsistent characteristics. 
Second, we need to inject attack traces into the background traffic. The injected attack may be easily 
detectable if they are artificially inserted without taking into account the characteristics of the 
background traffic. 

To overcome these weaknesses while evaluating network-based IDS (e.g., Snort {Roesch99}), we 
naturally have surveyed the literature for any tool that allows the manipulation of traffic traces. We found 
tools that allow the fabrication of customized individual packets from scratch such as Packit {Packit08}. 
The closest tool to our needs is TcpRewrite, which is a part of the Tcpreplay suite {Tcprewrite08}. It 
allows several modifications at layers 2-4 either trace-wide or at the session-level. 

Unfortunately, almost none of the tools allow fine-grained modifications (e.g., session-level, or 
payload contents) as well as trace-wide modifications (e.g., replace an IP address by another in the whole 
trace) while providing, at the same time, packet insertion functions. More importantly, in our context, we 
need a tool that keeps all the security-relevant characteristics such as timing issues and addressing issues. 
Therefore, the main goal of this work is to fill the gap by providing a security-guided manipulation. 

In the previous chapter (Section 4.8), we have identified the most security-relevant characteristics of 
network traffic. In this section, we describe a traffic manipulation and replaying tool that we have 
developed to be used in the context of IDS evaluation. We first outline the basic requirements that we 
want the tool to fulfill, and then we describe briefly its architecture and its implementation. 

A) Requirements 

In our context, the expected tool should provide the following functions: 
1) Trace analysis functions: 
� Analyze IP traffic and sort it according to source/destination. 
� Report on sessions found in the trace by size, duration, address source and destination, port, etc. 
� Report the trace duration. 
� Report the internal and the external addresses. 
� Distinguish between servers and clients IP addresses. 

2) Trace manipulation functions: 
� Apply user defined modifications, consistently with the characteristics of the rest of the trace, at 

the packet, the session and the whole trace levels. Possible modifications include: 
- MAC Address 
- IP source and destination addresses  
- Source and destination ports 
- Time to Live (TTL) 
- Time stamps 

� Produce a larger trace from several existing traces by merging and harmonizing the 
characteristics of traces in a consistent manner while keeping the temporal characteristics. 

� Expand an existing trace by replicating sessions while keeping the original temporal 
characteristics as much as possible. Replicated sessions can be modified according to user 
parameters or simply repeated without modification except the time stamps. 
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� Inject attack packets and attack sessions created by the user consistently into an existing trace. 
� Recalculate the checksum field whenever the packet is modified. 

B) Design and architecture 

Given that the existing tools do not correspond to our expectations where we need to combine the 
analysis, the modification and the insertion of packets in the same tool, we had to write our own. 

We kept the design of the tool as simple as possible while maximizing the use of classes and 
methods provided by the Jpcap {Jpcap08}. As shown in Figure V.11, the tool consists of 3 modules: the 
Preprocessor, the Analyzer and the Modifier. The Preprocessor module, reads the trace, extracts the 
basic information (i.e, IP addresses, time stamps, and other header fields) in an indexed data structure (to 
be easily accessible later). From this data structure, the Analyzer computes measurements, such as 
session duration, traces duration, and extracts information such as IP addresses, MAC addresses and 
other useful information from the data structure and displays them in an organized manner. The Modifier 
receives the new parameters that the user wants to modify or the storage path of another trace or another 
packet she/he wants to inject. The modifier module edits the trace by applying the user-supplied 
parameters or injects the new attack trace into the original trace and produces a new trace. 

The class diagram shown in Figure V.12 presents the main classes that we have used. We decided to 
use Java for the implementation of TrTR for portability reason, to be OS and platform independent. We 
used the Jpcap library, which is the equivalent of LibPcap {Tcpdump08}, the main C library for traffic 
capturing and manipulation. Note that although Jpcap is not as powerful as LibPacap, we managed to 
satisfy nearly all the requirements presented above. 

Figure V.11: Architecture of TrTR. 

Figure V.12: A simplified class diagram for classes used in TrTR. 
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Basically, in our implementation, a trace (T) is a file containing a set of packets (P) = {p1, p2, p3,.., 
pm}, which were captured from a network interface by using traffic capturing tools such as TCPdump 
{Tcpdump08} or Jpcap itself. 

The packet format is already defined in the library Jpcap, thus we can directly obtain not only the 
header’s fields as well as the payload but also the time stamp. The later corresponds to the moment of 
capturing the packet. The time stamp t(pi) is an essential information as far as it determines in which 
order the packets were sent and this allows replaying trace on a network interface while respecting the 
delays between the consecutive  packets. 

The library Jpcap also defines several types of packets organized by their layer protocol. In 
particular, we can access all the fields dedicated to the protocols IP, ICMP and ARP (at the network 
level) as well as the header fields of TCP and UDP packets (at the level of the transport layer). Therefore, 
according to the type of a packet we can consult and modify the addresses, the ports, the TTL (Time To 
Live), etc. 

C) Implementation 

The library Jpcap supplies adequate methods to open a trace file in the format pcap. We read the 
totality of the file and register all the packets in a vector structure, which allows us to access easily any 
packet in the trace. 

1) Trace Analysis 
We can determine easily the number of packets of the trace and calculate the duration of this trace by 

comparing the time stamps of the first and the last packets. We can also extract the IP addresses of all the 
packets. 

By comparing the IP addresses with the non routable addresses and by analyzing the requests ARP 
packets we can determine the internal and external IP addresses. 

The extraction of the sessions is made by filtering all the TCP packets and tracking down the 
connection establishment and tear down procedures. We can then associate a TCP packet to its session 
by using the sequence number. 

For each session, we can list the addresses and the ports for sources and destinations. We also record 
all the packets belonging to the same session Thereby, we can find the number of packets and calculate 
the session duration from the time stamps of the first and the last packets of the session. 

2) Trace Modification 
We implemented three different levels of modification. The first one (a) offers global modifications 

by processing (manipulating) the totality of a trace. The second level (b) allows working on some 
existing sessions, thereby fine grain modifications. Finally, the third level of modifications (c) 
corresponds to the insertion of new elements (packets or sessions) in a trace. 

Global modifications: It is possible to replace single IP addresses of all the packets in the entire 
trace with different addresses. We can also change the TTL of all the packets by supplying a new value. 
Further, we can modify addresses in the trace based on ranges of IP addresses instead of single addresses. 

Session-level modifications: The analysis phase creates a list of all the sessions of a trace. 
According to the session number, it is possible to extract the corresponding session object from the data 
structure. We can then apply transformations that concern only the packets of this particular session. 

Packet insertion: To insert a packet into a trace, it is necessary to define its position in the trace and 
to shift all the subsequent packets. In addition, the time stamp of the packet that we insert has to be 
compatible with the chronological order of the precedent and subsequent packets in the trace. 

It is thus preferable to insert a packet into an existing session. If the packet is inserted into a TCP 
session, it is necessary to be careful to the organization of packets within the session. Furthermore, we 
should initialize the header of the new inserted packet to match the addresses and the ports corresponding 
to this session. Besides that, the acknowledged sequence numbers of the session packets must be also 
updated. It is worth mentioning that inserting a packet in a way totally disconnected from the context of a 
trace could have negative side-effects on the detection methods of the evaluated IDS. 

3) Saving trace modifications 
The major problem of the library Jpcap is that it is not possible to save the modifications made on a 

trace: it does not allow rewriting directly on a pcap file. Consequently, to overcome this limitation, we 
made a work-around solution, which is presented in Figure V.13. 
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As the Jpcap allows capturing packets and saving them in pcap format, we have to replay all the 
packets of the trace on the network interface, listen to this local interface in order to capture packets and 
write them in a new pcap file. To ensure that traces that we have to replay are not mixed with other 
external packets, we send the packets on the loopback network interface (127.0.0.1), present on every 
machine. 

To keep the temporal characteristics as close as possible to the original trace, a time-recording phase 
is completed before sending packets, which allows replaying packets with nearly the same inter-packet 
times. Since the period between the consecutive packets has been computed from their time stamps, it is 
easy to reproduce the temporal constraints of the traffic as present when the trace was recorded. 

The advantage of this work-around solution is that all time stamps of the modified file will 
necessarily be correctly ordered and consistent. However, the time required for recording turns out to be 
the main inconvenience of this process given that it needs to replay the totality of a trace to produce the 
modified file. 

5.5. Conclusion on Dataset Generation 
Ready-made datasets such as DARPA datasets are relatively easy to replay for evaluating IDS. 

However, it is hard to maintain them because of the rapid evolution of existing products as well as the 
frequent arrival of new products. Besides, new attacks and variants of old attacks occur frequently. 
Therefore, these datasets become obsolete and outdated shortly after their appearance. 

Attack dataset generators such as Sploit {Balzarotti06}, Mucus {Sommers04}, Thor {Marty02} and 
Snot {Snot07} represent a relatively better solution, as their updates allows the integration of recent 
attacks to design and implement different evaluation experiments. The main problem of these tools is that 
the characteristics of the synthesized datasets differ from real datasets. Moreover, they either focus on 
existing signatures such as Snot or focus on applying variation or mutation techniques on existing attacks 
such as Sploit, Mucus and Thor. Therefore, each tool covers only a small part of the attack space (i.e., 
attack types) and it is often difficult to combine several tools in a consistent manner. Moreover, they 
generate elementary attacks rather than attack scenarios. 

Upon studying the related work in this area, we have realized that developing an attack “generator” 
tool can be more convenient and more flexible than gathering and replaying attack traces. Therefore, we 
proposed, in this chapter, a new approach to generate attack scenarios that alleviates the inherited 
limitations of ready-made datasets and traditional attack generation tools. Besides generating attack 
scenarios automatically, being flexible and extensible, it avoids the limitations of trace replaying 
approaches such as the storage cost and the rapid obsoleteness. 

We described, in this chapter our approach for generating attack dataset, which is mainly based on 
the models that we proposed in Chapter 4, and how the theoretical models were rendered “alive” in the 
Attack Injection Tool (AIT). Moreover, we presented another tool for replaying network traffic to serve 
as background dataset. We explained the architecture and the implementation of both tools. 

Thanks to these tools, we argue that we can generate more realistic, more flexible and more 
representative attack scenarios than ready-made datasets or the synthetic datasets produced by traditional 
attack generators. 

We intend by this tool to facilitate security testing and particularly to promote the performance of 
intrusion detection systems. By doing this, we hope to advance the state of knowledge and by no means 
intend to enable infringement. In the next chapter, we describe some experimentation performed by our 
proof-of-concept tool kit. 

Figure V.13: The work-around solution for limitation  in jpcap. 
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VI. Chapter 6: A Proof-of-Concept Evaluation 

The philosophy behind the approach presented in the previous chapters can be better illustrated by an 
experimental evaluation. We believe that once evaluators have flexible tools for selecting attack test 
cases and generating evaluation datasets, they can set up their evaluations more easily and then spend 
more time on the design of experiments, the experimental evaluation itself and the analysis of the 
experiment results. 

The main objective of this chapter is to report on the main features of our toolkit by making use of its 
main functions (i.e., selecting and generating representative attack test cases). This kind of exercise is 
very important, not only to figure out the implementation problems, but also to check if the tools can 
reach their expectations, i.e., in our case whether the characteristics of the generated datasets conform to 
the characteristics of real world workloads. 

To explain how our approach can help in performing IDS evaluations more effectively and more 
efficiently, we opted to organize this chapter by following the steps of the evaluation methodology 
proposed in Chapter 3. We aim by this chapter to give a simple example18 of an IDS evaluation rather 
than a thorough one. Therefore, we present, hereafter, an illustrative evaluation of intrusion detection 
systems while focusing on how well the toolkit works. 

6.1. Evaluation Goal / User Needs 
In this simple experiment, the evaluation goal is to assess the detection capabilities of snort and Bro. 

We assume that the user or the client of the evaluation in this case is an administrator who intends to 
deploy a NIDS solution in his network and wants to benchmark the detection capabilities of snort and 
Bro to decide which one is more suitable for his own particular network. 

6.2. System and Workload Parameters 
We can enumerate many parameters that can be tuned for the evaluation: 
� Attack source: we can launch attacks from a remote source or from within the attacked machine. 

We concentrate here on remote attacks. 
� Attack target: corresponds to the piece of software that is directly targeted by the attack. 
� Attack carrier: this parameter indicates how the attack reaches its target or how it is invoked. 
� Vulnerabilities: The vulnerability that is exploited by attacks. This parameter can have a global 

value as implementation or configuration vulnerability, or can take specific values corresponding 
to particular CVE/OSVDB vulnerabilities. 

� IP addresses: this parameter concerns the IP addresses that can be assigned to both victim 
machines and attacking machines. It can either be arbitrary random addresses, or specified 
individual addresses or address ranges. 

� OS platforms: obviously this can take a value amongst the well-known operating systems and 
their variations (e.g., Windows XP, Windows 2000, Sun Solaris, Mac OS, Free BSD, Linux, 
etc), as well as “universal”, which corresponds to cross-platform vulnerabilities. Here, we 
consider only windows and Linux variations. 

� Attack level: this parameter reflects the attacker competence level and thus, the attack 
severity; it helps in defining some constraints when instantiating executable scenarios from 
abstract scenarios. 

It may be noticed that several of these parameters correspond either to the classification attributes or 
issues from the other models (Chapters 4 & 5). Evaluators can define their values in the evaluation 
manager by invoking the command “eval_config” at the command prompt of metasploit framework 
(MSF). Figure VI.1 shows metasploit console after loading our tool plug-in and Figure VI.2 illustrates 
the configuration panel of our evaluation manager. 

                                                      
 
18 This evaluation is so simple that some steps of the evaluation methodology are deliberately shorten or even 

bypassed completely. 
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6.3. Evaluation Technique  
To perform such a benchmark evaluation, we need a test bed. We kept the design of the test bed as 

simple as possible to lower the cost and to simplify the management of its resources. We describe 
hereafter the main components that comprise the test bed. 

Figure VI.1: A screenshot of metasploit console after loading our plugin. 

Figure VI.2: The configuration panel of the evaluation manager. 
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6.3.1. Hardware Equipment 

From the hardware viewpoint, our test bed consists of a network hub and three to five PC machines 
with moderate capabilities. They have no additional hardware option except a second network card that 
can be dedicated to control purpose. The machines are simply connected to the hub as shown in Figure 
VI.3. A first machine is used for managing the evaluation and generating attacks. The A second machine 
is used as a background generator. Victim machines can be installed as virtual machine guests on two 
virtual host machines. On a fifth machine we can install the evaluated IDS. The test bed can be 
minimally comprised of only three machines by using a single computer to host all victim virtual 
machines and by running the background generator on the same computer as the attack generator and 
evaluation manager, but this requires the use of more powerful machines. 

 

6.3.2. Software Equipment 

� Evaluation toolkit and attack tools: 
The main advantage of the design of our evaluation toolkit is that we can use existing attack tools in 

a natural way to generate attack scenarios (cf. previous chapter). Currently, we can use metasploit, nmap, 
as well as common-use utilities such as ftp, ping, wget, etc. 

2. Vulnerable software: 
In order to allow complete and successful scenario execution, we have ensured the existence of 

working vulnerable applications. This is not an easy task because most of vulnerable applications are 
either proprietary or ancient versions that are no longer available. Moreover, it would require 
downloading and installing a large number of vulnerable applications. For these reasons, we have only 
installed a few vulnerable applications, since this test bed is to be used just as a just a proof-of-concept of 
our approach. 

In real life evaluations, this may be less difficult for administrators who want to evaluate IDSes on a 
test bed representative of their real environment because they often have installation CDs of software 
versions installed on their systems. Furthermore, the trend is now to intensively deploy servers and 
workstations as virtual machines. Therefore, administrators can clone working virtual machines and use 
their images directly in the evaluation platform. 
� Virtualization software: 

As stated above, victims are installed as virtual machines (VM). Thanks to the easiness of managing 
VM images (creating deploying, cloning, etc) and the possibility of managing them (e.g., starting, 
stopping and reverting to a previous snapshot), we can clean up the test bed after any compromise due to 

Figure VI .3: The evaluation test bed. 
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Firing source: Remote 

Vulnerability: 
Implementation/Design 

Privilege Escalation: System 

Network Carrier: All 

Local carrier: None 

Target: All 

attacks. We use for this purpose both Sun's VirtualBox {Vbox08} , which is a free and open source 
solution and VMware server {Vmware08}. 
� Evaluated IDSes: 

The last piece of software is the IDS target of evaluation. In this case, we have deployed snort 
version 2.8 and Bro 1.4 on a standalone real machine. It is worth noting that we make an out of-the-box 
installations of snort 2.8 and Bro 1.4 without making any tuning to their signature rules. 

6.4. Evaluation Metrics 
Given the evaluation goals stated above, we use the detection related metrics presented in Chapter 3 

(Section 3.5.7). More precisely, we compute the Overall Detection Ratio (DR) and the detection ratio per 
attack type (DRPAT). Let us recall that these two metrics are defined as follows:  

DR = (Number of detected attacks/ Total number of attacks included in the dataset) 

DRPAT = (Number of Detected attacks of a particular type/ total number of attacks of this type) 

Both metrics are calculated in Table VI.1, based on baseline experimentations as explained bellow. 

6.5. Design of Experiments for Selective Evaluation 
As stated above, in addition to the main objective of the experimentation (to test the features that 

have been already implemented within the toolkit), we aim also to illustrate the applicability of our 
approach and the versatility of using such a toolkit. To achieve that, we carried out a set of experiments 
to test specific functionalities of our tool. In particular, we are interested in the following issues: 

- Testing the evaluation management console and whether the generated attacks correspond to the 
desired ones (according to the entered parameters). 

- Testing attack traffic generation and whether it reaches the victim machine. 
- Testing attack success or failure (limitation: currently, this is done manually; it would be 

interesting to develop an automatic tool to verify attack success). 
- Testing the victim part of the platform, e.g., if they are managed as they should be (started, 

stopped, restored, etc. at the scheduled time) 
To stay consistent with the evaluation methodology, we have run two broad sets of experiments: the 

first set launches attacks selectively against the IDS without background traffic, whereas the second 
launches a set of selected attacks with background traffic to test the IDS false alarm issues. 

6.5.1. Selecting Attack Test-cases 

First of all, we verify the ability of snort to correctly detect the baseline attacks without background 
traffic; then, we calculate DR and DRPAT. Afterwards, we repeat the experiment against the same set of 
attacks but this time with a representative background traffic; then we calculate FAR and FARPAT in 
addition to DR and DRPAT. 

Let us remind that our evaluation toolkit supports attack selection 
based on various criteria, including by OS, by vulnerability (by its CVE 
or OSVDB identifiers) or by date. In the following, we give some 
examples for attack selection. 

Let us assume that the evaluator is more specifically interested in 
remote attacks that provide system access by exploiting 
implementation/design vulnerabilities and come over network traffic 
without triggering any native action. By using the command 
“eval_config -i” we can define the classification parameters shown the 
opposite box. The command “eval_auto -l -t” will display all the 
matched elementary attacks (corresponding to metasploit exploits). In 
our configuration, this command produces 19 attacks as shown in 
Figure VI.4 

Selecting attacks by “vulnerability” or by “operating system” is simpler. It will be sufficient to enter 
a particular vulnerability id or a particular OS name after executing “eval_auto” while using either “-v”  
or “-o” , respectively. Supposing that we are interested in attacks against linux and bsd platforms, 
executing the command “eval_auto -e -o” produces 12 attacks (see Figure VI.5). 
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6.5.2. Baseline Experiments 

During the experiment, we use the test cases corresponding to the attributes shown in the above 
section (Remote, Implementation/Design, System, All, None, All).  

The results presented in Table VI.1 show that snort (with the out-of-box configuration), surprisingly, 
detects one attack out of the 19 test cases. On the other hand, Bro has correctly detected more than half of 
the attacks included in the dataset. This does not mean that Bro is better than snort but rather this may be 
due to the default configurations, with more modules or signatures activated by default in Bro. Further 
investigation is required to determine if one is really outperforming the other. Here, the IDS fault tree 
technique, which we have proposed in Section 3.7.2, comes into mind since it can aid in interpreting and 
diagnosing the causes of such behavior for both IDSes. Another interpretation can be consistent with our 
expectations, i.e., that signature-based IDS are dependent on the existence of the signature of an 
individual attack instance. For reference, a full list of the 19 attacks included in the experiment and their 
detection status is given in Table VI.2. 
 

Table VI.1: Example of calculated metrics. 

Attack category 
DRPAT 
(Bro) 

DRPAT 
(Snort) 

DR (snort) DR (Bro) 

Category 746 1/1 0/1 

1/19 12/19 
Category 1565 8/14 1/14 

Category 3494 0/1 0/1 

Category 3798 3/3 0/3 

6.5.3. Background Experiments 

At the time of carrying out this experiment, we have no reliable traffic traces that can be manipulated 
and replayed by our tool. In order to generate background traffic, we have used the Distributed Internet 
Traffic Generator (D-ITG) {Botta07}. The advantage of such tools is that it can produce traffic at packet 
level that accurately replicate appropriate stochastic processes for both IDT (Inter Departure Time) and 
PS (Packet Size) random variables, conforming with exponential, uniform, Cauchy, normal, Pareto or 
other distributions. It can also generate traffic at network, transport, and application layer. This 
experiment gave results very similar to the one without background traffic, with very few false alarms. 
This may be due to the regularity of the synthesized background traffic. 

Figure VI.5: An example of attack selection by category. Figure VI.4: An example of attack selection by OS. 
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Table VI.2: List of attacks (metasploit exploits) included in the evaluation dataset and their detection status. 

Attackname Category 
Detection status 

Bro Snort 

windows/http/edirectory_imonitor 746 Detected  

windows/iis/ms03_007_ntdll_webdav 1565 Detected Detected 

windows/smb/ms03_049_netapi 1565   

windows/smb/ms04_007_killbill 1565 Detected  

windows/smb/ms04_011_lsass 1565 Detected  

windows/smb/ms04_031_netdde 1565 Detected  

windows/smb/ms05_039_pnp 1565 Detected  

windows/smb/ms06_025_rasmans_reg 1565   

windows/smb/ms06_025_rras 1565   

windows/smb/ms06_040_netapi 1565   

windows/smb/ms06_066_nwapi 1565 Detected  

windows/smb/ms06_066_nwwks 1565   

windows/smb/msdns_zonename 1565 Detected  

netware/smb/lsass_cifs 1565 Detected  

windows/ssl/ms04_011_pct 1565   

linux/madwifi/madwifi_giwscan_cb 3494   

windows/http/trendmicro_officescan 3798 Detected  

windows/mssql/ms02_056_hello 3798 Detected  

windows/wins/ms04_045_wins 3798 Detected  

6.6. Results 
The test results show that the tool kit implementation comprises several of the desired features. Table 

VI.3 compares our toolkit with other broad categories of evaluation tools. However, the experiments 
have also revealed some limitations, either as technical problems or as a lack of desired features in the 
current implementation, which leave additional room of improvements. 

For example, we discovered that single-criterion selection is not sufficient because there are more 
sophisticated situations where evaluators need to select very specific attacks, based on combined criteria. 
Furthermore, we need sometimes to select attacks based on a particular application type (e.g., web 
servers) or a particular application product (e.g., Apache2) rather than on the platform specificities. 

Another example of missing features is the automatic generation of evaluation reports that combine 
and correlate information about generated attack scenarios and the IDS alerts, and accordingly calculate 
metrics. These tasks have proved to consume as much time and effort as the selection and generation of 
datasets and the construction of the test bed. It would also be interesting to build a user-friendly graphical 
user interface that unifies parameterization and management of the entire evaluation. This implies 
grouping a configuration panel for both attack and background traffic generation; a control panel for 
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starting, stopping and monitoring the evaluation process; and a report panel for displaying and analyzing 
results. 

Regarding the technical problems, the most annoying one is related to receiving outputs from victim 
machines over communication pipes when executing commands that correspond to attack actions. 
Apparently, the current implementation of IO pipe (e.g., IO::popen) streams in Ruby is problematic as it 
often blocks if the stream buffer is empty or even becomes broken if the sent data goes beyond the buffer 
size. The Metasploit team has developed some classes such as BidirectionalPipe and sessions classes that 
partially resolve some of pipe communication problems. However, receiving data is still tricky as we 
often need to know a priori how much data will be received. 

Unfortunately, these problems have, up to now, prevented us from testing the generated scenarios 
effectively because we cannot analyze commands outputs, which is necessary for building sophisticated 
scenarios. Moreover, we cannot execute interactive programs correctly. Consequently, we cannot check 
attack success or failure automatically and have to do this manually. Moreover, the limitations of reading 
and writing from pipes have negative effects on the management of virtual victims. According to our 
design (Chapter 4), we use virtual machines as targets of the generated attacks. To reduce the cost of the 
test bed, we dynamically allocate a virtual machine to an attack session. Therefore, we only start the 
selected victim machine during a window of time corresponding to the estimated time of attack session. 
Then, we need to stop it and revert it to a clean snapshot. 

We have surveyed existing virtualization products but unfortunately, remote operations such as 
starting, stopping, reverting virtual machines, which is necessary for managing evaluation automatically, 
are hardly supported. There are some products that do not support remote management of guest machines 
at all, whereas others, such as VirtualBox or Vmware workstation, partially support a command line 
console management after having established an ssh connection. The only one that we found fully 
supporting remote management with its own commands is Vmware server. However, it is very heavy and 
requires a powerful machine. There is another limitation of using virtual victims: some operating 
systems, such as Mac OS, cannot be virtualized (i.e., installed as guest machines). 

Another important limitation is related to the number and the diversity of attack tools already 
classified and included in the evaluation toolkit. They are currently very limited when compared with the 
number of available signatures. The current version of snort (2.8), for example, has about 9000 rules 
while the number of attacks that we have classified is about 300. Even with the assumption that an attack 
can have many signatures; the number of classified attacks is so limited that it does not allow performing 
reliable evaluations. 

In what concerns our tool for manipulating and replaying traffic traces, the traffic analysis function 
works well with small-size traces but it has shown a poor scalability when using large ones. The 
characteristics of the generated trace globally conform to the desired characteristics, but it needs deeper 
analysis for special issues such as timing and addressing characteristics and whether it keeps the 
characteristics of the original trace. 

Returning to the comparison with other approaches reported in Table VI.3, we observe that almost no 
individual tool provides all features that are critical for the evaluation. Fortunately, we managed to 
implement most of the desired features in our toolkit to fill this gap in the field. Moreover, it is worth 
noting that the automatic generation of executable attack scenarios which is present in our toolkit was 
completely missing in all the others. 

As will be discussed in the next chapter, the shortcomings of our tool kit give a solid basis for 
enhancements, which we can plan in the near future. 
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Table VI.3: Comparison of the main features between our toolkit and the other tools. 
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Network scanners 
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Vulnerability 
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Penetration testing 
tools 
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Attack mutation 
tools 

�      �  �   

Our toolkit � � � � � �  � �  � 

6.7. Conclusion on our experiments 
Our preliminary experiments show that the ideas presented in the previous chapters are applicable 

and implementable by using existing technologies. However, it shows also that the evaluation toolkit still 
needs more tweaking to be more robust and more user-friendly. 

Even though limited, the experiment presented above shows to which extent our approach and 
evaluation toolkit can facilitate the evaluators' tasks. It allows performing selective evaluation based on 
various criteria where interesting attack test cases can be selected according to our classification's 
attributes (an approach similar to CTM described in Chapter 4): according to specific vulnerabilities, by 
operating system, etc. Accordingly, an evaluation dataset will be generated either in scenario mode 
evaluation or elementary attack mode. 

Because of some technical problems (described above), the scenarios generated during this 
evaluation are quite superficial as they consist of sequential executions of commands without regarding 
the output of the executed commands and whether the attack was successful or not. However, the effects 
of this limitation are concealed by two facts. First, recent studies such as {Alata07} have shown that 
attacker actions are not necessarily executed successfully all the time. Attack scenarios contain misused 
or misspelled commands, or are even sometimes attempted in a trial and error manner. Second, the 
objective of this work is not to launch attacks, penetrating into and compromising systems or networks. It 
rather aims to generate attack datasets similar to what may be seen in the real world. The analysis of 
honeypot data proved that real world attacks consist of both successful, complete attack scenarios as well 
as incomplete, failing scenarios. 

Generally, the results are encouraging and seem to be promising but this approach requires a close 
cooperation of the community because some activities such as the classification should be a collective 
work and cannot be done individually. We have already discussed with the Metasploit team about adding 
more classification attributes to their module description. Similarly, integrating the classification process 
in the main work stream of creating exploits or analyzing malware would be very beneficial. We suggest, 
in the next chapter, some directions to improve both the approach and our toolkit. 
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VII. Chapter 7: Conclusions 
In this last chapter, we draw our conclusions of the whole work carried out throughout the thesis. 

First, we present a brief overview of the subject and the carried work. Then, we enumerate the 
contributions of our work. Finally, to give a clear insight of our future vision about the subject, we 
outline the possible research and empirical work directions that can be a pursuit of our work. 

7.1. An Overview 
Although the research domain was very active in the last few years, enhancements in intrusion 

detection and prevention are not proportional to the efforts and the budgets dedicated to this purpose. 
One of the main reasons for this issue is the lack of effective methods and tools for evaluating new 
detection techniques and algorithms. 

Generally, security-related evaluation is a delicate subject because it raises several challenges. In 
particular, IDS evaluation should consider not only its normal use during usual operation or its 
predictable abnormal use, but it should consider also the operation under unpredictable or even unknown 
conditions. Rather than using systems and networks by following usage instructions of the accompanying 
manual, attackers usually use them in unfamiliar ways and by entering unexpected inputs. Moreover, the 
evaluation of such systems is multi disciplinary by nature since it requires various knowledge from 
different domains such as security basics and tools; attack techniques and tools; software testing; 
performance evaluation; reverse engineering; operating system and network administration; etc. 

However, because we believe that any significant improvement in the intrusion detection and 
prevention field must pass through careful evaluation either performed by IDS developers or IDS users. 
This thesis aims at helping with such evaluations. 

Before proposing any solution for the problem of evaluating intrusion detection systems, we have 
analyzed most of the previous published evaluation experiments to identify their strengths, weaknesses 
and why they often produce biased results. We have identified some common problems in these 
evaluations, the most significant ones being the lack of a systematic methodology and the use of non-
representative datasets. Consequently, we have defined two main objectives for this work: (1) providing 
a systematic methodology and (2) creating representative evaluation datasets. The first allows evaluators 
to perform IDS evaluations easily in a well-structured manner, and the second allows performing non-
biased and more comprehensive evaluations. 

While working on the evaluation methodology, we were confronted with several questions that are 
closely related and should be answered in order to achieve the aforementioned broad objectives. For 
example, what are the properties of the real workload of IDSes? And how can we provide representative 
datasets? 

To answer the first question we have carried out a thorough analysis of real workloads of different 
IDS types to figure out their main characteristics. To simplify the analysis, we divided IDS workload into 
two main parts: an attack dataset and a background dataset. We have characterized both components, but 
with more emphasis on the attack dataset. 

Regarding the question of providing representative datasets, two sub questions are raising: how can 
we characterize such a representative dataset? Then, how to generate it? In fact, characterizing pertinent 
attack datasets is a non-trivial task because of the huge number of attacks, the unpredictable behavior of 
attackers, and the ambiguity related to attack tools and methods. Furthermore, even if we can identify 
relevant attack test cases, generating an attack dataset that correspond to such representative attack test 
characteristics is also a difficult task by itself. 

In order to characterize representative attack test cases, we have proposed a classification scheme 
accompanied by a selection scheme based on the classification tree method (CTM). The new 
classification scheme was created by analyzing the characteristics of elementary attacks as well as 
studying existing classifications to avoid their limitations. The objective from creating such a new 
classification is to enable performing classification-based selections of attack test cases. The idea is not 
new, since it was inspired from a software testing concept known as “equivalence classes”. Even if this 
approach has been already suggested for IDS evaluation by Puketza et al. {Puketza97} and there was an 
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attempt to evaluate IDSes based on attack classes {Alessandri04}, it remained as a theoretical suggestion 
and had not been applied yet for security testing. 

Then we tackled the problem of generating evaluation datasets. The background datasets were briefly 
treated by identifying their security-relevant characteristics that may affect evaluation results. By 
contrast, we concentrated on attack datasets by working on two axes: (1) characterizing real attacks and 
(2) analyzing the output of existing attack generation tools. Therefore, we continued analyzing attack 
characteristics, this time as scenarios not as elementary attacks. For this purpose, we have analyzed 
attack information available in high-interaction honeypot logs, malware analysis reports as well as attack 
incident reports. We managed to derive a model for attack processes that describes attacker actions 
abstractly. 

On the other hand, we have noticed that almost all attack generation tools generate fictitious datasets 
with characteristics far away from real attacks. For example, attack datasets were often composed by 
forging network packets containing the very specific signature part that invokes the alerts while ignoring 
the rest of an attack trace. Therefore, to make the attack traffic more representative, we decided to create 
attack datasets by using attack tools similar to those that may be used by attackers. 

Better solutions to generate attacks can be based on penetration testing tools such as metasploit. 
However, we are sometimes interested not only in breaking (penetrating) into systems but also we are 
interested in post-access actions, which can be very significant for security analysis or evaluation (in 
evaluating state-full IDSes by example). Therefore, we decided also to generate attack scenarios that 
correspond to the different scenarios enabled by such tools. 

In order to generate scenarios automatically, we have derived some theoretical models (an attacker 
competence model and a statistical parameterization model) added to the attack process model. Then, we 
proposed an approach that integrates all these models in addition to a constraint-based approach to 
transform the abstract scenarios into executable scenarios that are adapted to the targeted system. 

Finally, we have developed a proof-of-concept implementation of the whole approach for selecting 
and generating attack datasets. The implementation is based on metasploit, which already contains 
"access" actions as well as other useful auxiliary attack tools (e.g., DoS, scanners, etc.). Actually, our 
implementation extends metasploit framework by a new plugin module to imitate (and automate) post-
penetration actions that can probably be carried out by attackers. For example, executing a sequence of 
commands to browse the victim machine, upload a piece of malware, connect back to another machine, 
etc. 

7.2. Summary of Contributions 
Despite the challenges inherent in IDS evaluation, we managed to identify several directions that can 

lead together to a plausible solution. The contributions of this work complement each other with an 
ultimate goal to improve IDS evaluation and consequently the IDSes themselves. Although the 
techniques we have developed are mainly intended for IDS evaluations, they can be used to test or 
evaluate other security tools (e.g., intrusion prevention systems). Furthermore, they can be used for 
global security assessment of systems and networks. 
Our main contributions can be summarized as follows: 

� We have elaborated an evaluation methodology that considers IDS evaluation as a systematic 
process. The aim is to improve the whole evaluation process and to render it more structured and 
well engineered. 

� In an attempt to apply the concept of equivalence classes, we have established a classification 
scheme for elementary attacks combined with a test case selection mechanism to select relevant 
attack test cases. Both the classification scheme and the selection mechanism will help in 
converting class-based evaluation from abstract notions to concrete, representative and suitable 
attacks. 

� Based on the characterization and focusing on the attack dataset, we have constructed an attack 
process model to represent attack scenarios. The advantage of this model is that it can be used in 
generating representative attack scenarios in a manner that is practically feasible. In our approach, 
the selected scenarios can be refined by constraints related to the targeted environment, the attacker 
behavior, the most likely attacks, etc. 
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� We have developed a set of tools that support the different tasks of the evaluation process (i.e., 
dataset characterization, test-case selection and dataset generation): 

� A classification database to store information about elementary attacks. Evaluators can access and 
modify the database via its front-end. 

� A program to automate the analysis of data provided by high interaction honeypots. Thanks to this 
program, we can extract commands and carry out scenario-based analysis (according to the attack 
process model). It produces a list of executed commands and tools, statistics about commands 
themselves and their sequences. 

� An attack injection tool (AIT), which integrates the ideas that we have proposed. It benefits from 
the above tools to extract information necessary for the selection of attack test-cases (attack 
classification) and attack test-case generation (using the attack process model as well as the 
statistical parameterization model). 

� A network traffic manipulator for background datasets that allows the analysis of recorded traffic 
traces. It provides information about addresses ports, sessions, timing, etc. Moreover, it allows the 
modification of these fields. Therefore, we can maintain the consistency between the attack dataset 
and the background datasets. For example, to keep address consistency, we can either use 
addresses extracted from the trace in the attack dataset or replace addresses in the trace according 
to the addresses used in the attack dataset, which may be deduced from honeypot data or explicitly 
specified by the evaluator. 

� We have also implemented an evaluation platform that, in addition to AIT, contains a scheduler 
and a mechanism for managing platform resources (i.e., creating and destroying virtual machine 
victims). 

7.3. Future work 
This subject is so rich that we can suggest many ideas while yet leaving room for improvements. 

Hereafter, we cite some future research and work directions that can be immediately initiated or 
implemented. Although we have proposed several ideas in this dissertation, this is just the beginning and 
there are still many future works that can be established in both short and long-term as a pursuit of our 
work. For clarity, we divided the future work section into two main parts: future research and future 
development and empirical work. Such a separation is not clear-cut as both are closely related and we 
can find in the following lists some works that lies in between. 

7.3.1. Research Work 

We can distinguish three research axes related to attack datasets, background datasets, and the 
platform respectively: 

A) Attack Dataset: 

� Attack classification: The classification is in its early version and may require more 
refinement. To achieve it, we need to consolidate the classification scheme as well as 
classifying more instances of elementary attacks. Having a solid and rigorous classification 
scheme can encourage the integration of this scheme into existing tools such as metasploit 
and into de-facto standards such as CME, or even the creation of a new standard 
classification for elementary attacks. At long term, a stable classification can allow class-
based scores to evaluate security tools, (e.g., how many classes can be detected by an IDS). 
Furthermore, we can elaborate standard benchmarking suites for the same purpose (e.g., a 
suite of elementary attacks that contains a representative instance from each attack class). 

� Refine and improve the attack process model: The proposed model needs to be updated, 
validated and refined on a regular basis because attack trends, tools and techniques vary with 
time. Moreover, although we have analyzed many malware and attack incidents in order to 
produce the current version of the model, it may still be incomplete or inaccurate. Therefore, 
we should extend the analysis to cover more attack scenarios in order to answer the 
following questions: 
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o Are there additional attack steps that are not taken into account in the current model? 
o Are there attack actions that are so significant that they need to be considered as a 

separate step? For example, establishing a back connection can be very important. 
o Do we need to split steps into finer-grain steps? For example, the step EP (execute 

program) can be split further to distinguish executing a malicious program from 
executing normal commands. Moreover, studying the convergence of our model 
with other malware behavioral models such as {Jacob08a} may lead to a modified 
model with finer grained steps or perhaps result in a completely new model for 
malware attack process. 

o Should we need to explicitly distinguish between server-side and client-side actions? 
o Should we consider separately attack steps that are particular to specific attacks such 

as Cross Site Scripting (XSS)? 
� Extend scenario computing to include multi-hop attack scenarios: Our current approach 

supports single-hop attacks that often comprise a single victim or several victims starting 
from outside attack machines. However, attackers may attack more victim machines that are 
accessible from the first victim. 

� Refine and improve attacker competence and statistical parameterization models 
o Regarding the attacker competence model, it may be useful to search in some other 

related domains such as psychology, ergonomics, artificial intelligence, etc. 
o Unfortunately, the statistical model that we have used is a simplistic one because of 

the limited amount of available data. Nevertheless, when sufficient data are gathered 
by honeypots, we should analyze their characteristics against known statistical 
model or create another suitable model. 

� Consider detection avoidance techniques: In order to be sufficiently representative, the 
attack dataset must contain different forms of attacks that result from applying evasion and 
illusion techniques. Unless these techniques are considered, the representativeness of attack 
datasets could be questionable. However, for the sake of simplicity, we preferred to 
postpone applying detection avoidance techniques into attack datasets as future research. 

B) Background Dataset: 

� A deeper characterization is required for the HIDS background dataset that considers not 
only the common features such as addressing and timing, but also the contents and the nature 
of background activities run by the host. 

� Providing mechanisms to distinguish and isolate benign activities from malicious ones in 
both network traffic and host based datasets. This will not only lead to gather good datasets 
of malicious and benign traffic but may lead also to a good detection mechanism. 

C) Platform: 

� Study the possibility of using available test beds such as PlanetLab {Planetlab08}, ReAssure 
{Reassure08}, EMULAB {Emulab08} and DETERlab {Deterlab08} for the purpose of 
testing security. 

� Study the side effects of using virtual machine victims rather than real victims. 

7.3.2. Development and Empirical Work 

Regarding the evaluation tool kit, there are several enhancements either to improve the tools that we 
have already developed or creating more tools. Improvement examples include but are not limited to the 
following: 

A) Data Analysis: 

� Honeypots: 
o Improve the data capture mechanism currently installed on the LAAS high-

interaction honeypot. The current mechanism allows recording commands executed 
by attackers but it is not aware of commands output or the subsequent data typed 
into interactive programs (e.g., editing a file into vi or even simply typing back the 
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password after executing the command passwd). 
o Implement more vulnerabilities in the high-interaction honeypot as a source of data 

for scenario-based analysis in addition to the dictionary attack against weak ssh 
passwords that is actually implemented. 

o Integrate attack process analysis mechanisms into the high-interaction honeypot of 
LAAS and perhaps into the honeynet of Leurrecom. 

� Malware analysis: 
o Automate the analysis of malware programs according to our scenario-based 

approach. An automatic analysis will dramatically reduce the time and effort 
required for this task. 

B) Dataset Selection and Generation: 

� Attack dataset: 
o Currently, our tool supports attack selection based on a single criterion (either 

classification-based, by operating system, by vulnerability or by date). The next 
version is intended to enable multi-criteria selection. 

o Up to now, we have focused on generating human-interactive scenarios. Actions 
executed in malware scenarios differ in the level of granularity since they are often 
executed at system call or instruction levels. We believe that generating scenarios 
with low level interactions corresponding to malware scenarios is very important for 
evaluating not only intrusion detection systems but also to evaluate other security 
tools such as antivirus tools. 

o Improve the transformation of abstract scenarios into concrete executable scenarios. 
Actually, the transformation is rudimentary and might be quite superficial. For 
example, more sophisticated algorithms to chain commands can produce more 
intelligent command sequences or associate a block of commands to an abstract 
attack step. 

� Background dataset:  
o Implement tools for analyzing and generating background datasets for host-based 

IDS evaluations. There is a severe lack in this area as it needs more effort to be 
done. 

C) Evaluation Platform 

• Extend the current implementation to support large scale evaluations in terms of the 
network size, the number of attacks and victim machines. 

• Add more vulnerable software and attack tools beside metasploit to the tools repository. 
• Develop a graphical user interface to manage and configure the whole process 

evaluation; to monitor attack sessions progress and to view results. 
• Enhance logging capabilities and add automatic analysis of IDS alerts to our evaluation 

toolkit. 

D) Experimental Evaluation 

• Perform more comprehensive IDS evaluations: During this work, we have concentrated 
on the analysis of evaluation problems and how to find appropriate solutions. This 
results in the creation of procedures and tools help in performing more robust 
evaluations. However, this was -unfortunately- at the cost of time left for carrying out 
IDS evaluations. We have already performed some exploratory evaluations but the next 
step is to perform more serious evaluations that cover different issues of intrusion 
detection. The time spent in characterizing attacks and developing tools is fruitful 
because thanks to the evaluation toolkit, evaluations are expected to take much less 
effort and time. 

• Evaluate IPSes and other security tools: We kept our approach as general as possible to 
be applicable to other security tools, which often share similar input workloads even 
though they have different purposes. As an evaluation target, the first candidate would 
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be intrusion prevention systems that have underlying techniques closely similar to 
detection techniques. However, an IPS has substantially different focuses from an IDS, 
and therefore its evaluation ought to be handled quite differently. 

E) Simulation-based Evaluations: 

The theoretical models that we have proposed can be used as a basis for simulating the attack 
process, which can be useful for educative purposes or limited security tool evaluation. We have already 
some ideas for implementing this. Moreover, at long term it can be enriched by other models to 
characterize networks and hosts, in order to simulate the whole network. 
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Appendix A: Malware Analysis 

At the time of writing, CME list contains 39 malware representing the most famous and most dangerous ones. We 
present, hereafter a brief description of attack steps followed by each malware. In addition to MITRE’s site, we 
relied on information from other security sites on the Internet such as: www.ca.com and www.viruslist.com. 

Each attack step is given a unique symbol as follows (The meaning of attack steps is further 
explained in Section 4): 
�  R: Reconnaissance 
�  VB: Victim Browsing 
�  EP: Execute Program 
�  GA: Gain Access 
�  IMC: Implant Malicious Code 
�  CDI: Compromise Data Integrity 
�  DoS: Denial of Service 
�  HT: Hide Traces 

We recall the directives that we have mentioned in Chapter 4 for abstracting attack steps: 
- In fact all attack steps can be viewed as a program execution (EP). To guide the assignment of abstract 

steps, we define a partial order relation to determine which abstract step should be assigned to an attack 
step:  

o IMC > CDI > EP 
o TH > CDI > EP 
o VB > EP 
o TH > DoS  

- If the executed attack step contributes to the installation of the malicious code, therefore it is classified as 
IMC. Else, if it modifies the file system, the configuration files, the registry keys, or the environment 
variables it should be considered as a CDI. Otherwise, it is considered as EP. 

- If the executed attack step hides information or block access to information about the malicious code, 
therefore it is classified as TH. Else, if it modifies the file system, the configuration files, the registry keys, 
or the environment variables it should be considered as a CDI. Otherwise, we consider it as EP. 

- Searching information remotely from the victim or a potential victim is a reconnaissance step (R). On the 
other hand searching information locally on the victim is a victim browsing step (VB). 

- If the attack step blocked/stops/compromises access to services that provides information about the 
malicious activity, it is considered as a trace hiding step (TH). If the blocked/stopped/compromised service 
does not hide information, consider it as a DoS step. 
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CME-245:  2004-11-22 
CA: Win32.Bagle.AR 
Kaspersky: Email-Worm.Win32.Bagle.au 
Description: Win32.Bagle.AR is a worm that spreads via e-mail attachment and peer-to-peer file sharing. The worm 
harvests addresses from the local address book and installs a proxy server. This Bagle variant spreads either as 
Windows PE EXE file or a Windows Control Panel Applet (CPL) file, both about 20 KB in size. 
 

Description of Attack Steps Abstracted Step of attack process  
1. received as attachment or put in shared P2P directories Implicit AG, IMC 
2. Wait until executed by the user EP 
3. Query operating system to determine the location of the 

current System folder 
VB 

4. Copy itself to %system%\wingo.exe where %system% is 
the installation directory of the windows operating system. 
There are several variations of the copied file (i.e., 
wingo.exe) 

IMC 

5. Modify register to ensure that this copy is executed at each 
Windows start 

CDI 

6. It searches for files with e-mail addresses, as well as any 
directories whose names contain the string "shar". 

VB 

7. Listen on TCP port 81 (open Backdoor) EP 
8. Delete registry files belonging to security tools such 

Antivirus and firewall tools to avoid detection. 
TH 

9. Terminate processes whose name contains strings that may 
exist in security tools. 

TH 

10. Download arbitrary files from pre-specified URLS IMC 
11. Execute downloaded files EP 
12. Send itself to collected email addresses EP 

 
CME-473:  2004-11-22 
CA: Win32.Bagle.AQ 
Kaspersky: Email-Worm.Win32.Bagle.at 
Description: A variant of the Bagle worm.. 
 

Description of Attack Steps Abstracted Step of attack process  
1. received as attachment or copied to shared P2P directories Implicit AG, IMC 
2. Wait until executed by the user EP 
3. Query operating system to determines the location of the 

current System folder 
VB 

4. Copy itself to %system%\wingo.exe where %system% is 
the installation directory of the windows operating system. 
There are several variations of the copied file (i.e., 
wingo.exe) 

IMC 

5. Modify register to ensure that this copy is executed at each 
Windows start 

CDI 

6. It searches for files with e-mail addresses, as well as any 
directories whose names contain the string "shar". 

VB 

7. Listen on TCP port 81 (open Backdoor) EP 
8. Delete registry files belonging to security tools such 

Antivirus and firewall tools to avoid detection. 
TH 

9. Terminate processes whose name contains strings that may 
exist in security tools. 

TH 

10. Download arbitrary files from pre-specified URLS IMC 
11. Execute downloaded files EP 
12. Send itself to collected email addresses EP 
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CME-901: 2005-02-28 
CA: Win32.Mydoom.AZ 
Kaspersky: Email-Worm.Win32.Mydoom.am 
Description: A variant of the Mydoom worm. It spreads via email through SMTP, gathering target recipients from 
the Windows Address Book, the Temporary Internet Files folder, and certain fixed drives. Notably, it skips email 
addresses that contain certain strings. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Use search engines such as Google and yahoo to collect 

email addresses 
R 

2. Received as email attachment Implicit AG, IMC 
3. Wait until executed by the recipient user EP 

4. Query operating system to determines the location of the 
current System folder VB 

5. It copies itself to %windows%\java.exe IMC 
6. Modify windows registry to ensure that it will be 

executed at each windows startup 
CDI 

7. drops the file %windows%\service.exe IMC 
8. Modify windows registry to make execute service.exe at 

startup 
CDI 

9. Searches the local fixed drives for email addresses VB 
10. 10. Save the collected addresses in a temp file CDI 
11. 11. attempt to download arbitrary malicious files IMC 
12. Execute the downloaded file EP 
13. It sends itself via email attachment EP 

 
CME-414: 2005-04-21 
CA: Win32.Sober.M 
Kaspersky: Email-Worm.Win32.Sober.n 
Description: A mass-mailing worm arrives in an email messages that is designed to trick users into thinking that 
someone else is receiving their email. It has been distributed as a 73,541-byte, UPX packed Win32 executable or as 
a 73,699 byte ZIP archive. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received as email attachment Implicit AG, IMC 
2. waits until executed by the recipient EP 
3. Query the operating system for the location of the 

directory of temporary files %Temp% 
VB 

4. Once launched, it creates a txt file CDI 
5. opens the txt file in windows notepad EP 
6. Queries the operating system for the location of 

windows directory %windows% 
VB 

7. It copies itself to %windir%\config\system\services.exe IMC 
8. Modifies windows registry to load itself every time the 

system is rebooted 
CDI 

9. Creates auxiliary files and drop them in 
%windows%\config\system folder 

CDI 

10. Searches email addresses in local files VB 
11. Saves harvested addresses at maddys.xyz file CDI 
12. Terminates the process mrt.exe TH 
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CME-456: 2005-05-02 
CA: Win32.Sober.N 
Kaspersky: Email-Worm.Win32.Sober.p 
Description: 
A mass-mailing worm that sends itself as an email attachment to addresses gathered from the compromised 
computer. It uses its own SMTP engine to spread. The email may be in either English or German. It has been 
distributed as a 53,554-byte, UPX packed Win32 executable and as a 53,728 byte ZIP archive. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received as email attachment Implicit AG, IMC 
2. waits until executed by the recipient EP 
3. Displays a message box EP 
4. Queries the operating system for the location of 

windows directory %windows% 
VB 

5. copies itself  in to %Windows%\Connection 
Wizard\Status in three files : csrss.exe, smss.exe, 
services.exe 

IMC 

6. executes services.exe which than runs smss.exe and 
csrss.exe 

EP 

7. Modifies windows registry to load itself every time the 
system is rebooted 

CDI 

8. Searches email addresses in local files VB 
9. deletes files on the infected system, with names 

matching the following criteria: a*.exe, luc*.exe, 
ls*.exe, luu*.exe 

CDI 

10. Terminates the process mrt.exe TH 
11. displays a message box titled "AntiVirus- 

AntiSpyware", with the message "No Viruses, Trojans 
or Spyware found! Status: OK" 

EP 

12. drops auxiliary files in the directory: 
"%Windows%\Connection Wizard\Status and the 
directory %System% 

CDI 

 
CME-766: 2005-06-01 
CA: Win32.Glieder.AG 
Kaspersky: Email-Worm.Win32.Bagle.bo  
Description: 
A Trojan that interferes with the operation of security software by ending processes, stopping services, removing 
registry entries, and deleting files. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received as email attachment Implicit AG and IMC 
2. Waits for execution by recipient EP 
3. Copies itself to %System%\winshost.exe or the file 

wiwhost 
IMC 

4. Modifies windows registry to ensure it will be executed 
when Windows is started 

CDI 

5. Download arbitrary files IMC 
6. Execute the malicious downloaded files EP 
7. Kill processes associated with antivirus and other 

security-related applications 
TH 

8. Modify windows registry to disable or lowering security 
setting 

TH 

9. Rename files related to antivirus and other security-
related applications 

TH 

10. alters the %System%\drivers\etc\hosts so that users of 
the infected machines will be unable to access hard 
coded url of security-related sites to prevent users from 
removing the worm 

DoS 

 



Evaluation of Intrusion Detection Systems  Mohammed S. Gadelrab 
 

157 
 

CME-978: 2005-07-04 
Trend Micro: TROJ_DLOADER.UX 
Description:  
A Trojan downloader that downloads malware from several different Internet addresses. A Trojan application is a 
malware with no capability to spread into other systems. They are usually downloaded from the Internet and 
installed by unsuspecting users. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Downloaded from the Internet or installed by 

unsuspecting users 
Implicit AG, IMC 

2. Waits for execution by some user EP 
3. Copies itself to windows folder IMC 
4. Waits for an active Internet connection to download the 

file HHTZ.EXE from a particular site. 
IMC 

5. Modifies windows registry to ensure its automatic 
execution at every system startup: 

CDI 

6. Executes the downloaded file which provides a 
backdoor 

EP 

 
CME-402: 2005-07-04 
CA: Win32.DlWreck 
Description: A Trojan that downloads and executes other malware (adware and spyware 
programs) on the infected system. They also inject their main functionality into Internet 
Explorer in an attempt to hide their presence and bypass some personal firewalls. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Downloaded by the user AG, IMC 
2. executed by user EP 
3. queries the following registry key to determine the 

location of Internet Explorer: 
HKLM\Software\Microsoft\Windows\CurrentVersion\App 
Paths\IEXPLORE.EXE 

VB 

4. executes an instance of Internet Explorer without 
displaying any windows 

EP 

5. It injects code into this process CDI 
6. downloads files which are usually other malware from 

different domains 
IMC 

7. Executes the downloaded files EP 
 
CME-746: 2005-07-08 
CA: Win32.SillyDl.RW 
Description: A Trojan downloader that downloads an executable from a malware Web site. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received by email or downloaded by the user AG, IMC 
2. executed by user EP 
3. downloads a file from the domain "distributed-

****.com" and saves it to the file location 
"C:\temp\tmp.exe" 

IMC 
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CME-323: 2005-07-08 
CA: Win32.Conferox 
Kaspersky: Trojan-Downloader.Win32.Small.arf 
Description: A password stealing trojan that downloads a dll, which is used to intercept user keystrokes. The 
collected data is posted to another web site. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received and downloaded via email AG, IMC 
2. Executed by user EP 
3. the trojan copies itself to the %System%/service folder 

as “explorer.exe” 
IMC 

4. queries the operating system to determine the location of  
'%System%' 

VB 

5. Registers itself as a service (on Windows NT/2K/XP) or 
modifies the registry in order to execute at the next 
reboot (on Windows 9.x) 

CDI 

6. drops a 20,380-byte DLL file called “dll.dll” and uses it 
to intercept an affected user's keystrokes 

IMC 

7. collects some sensitive and confidential data, such as. 
user e-mail account details, OS details, IP address, 
cached passwords, banking details, etc  

R 

8. Posts the collected information to an external site. EP 
 
CME-875: 2005-07-15 
CA: Win32.Reatle.A 
Kaspersky: Net-Worm.Win32.Lebreat.c 
Description: A mass-mailing worm that opens a back door and attempts to propagate by exploiting the Microsoft 
Windows Local Security Authority Service (LSASS) Remote Buffer Overflow (as described in Microsoft Security 
Bulletin MS04-011) on TCP port 445. 
 

Description of Attack Steps Abstracted Step of attack process 
1. Received as email attachment Implicit AG and IMC 
2. Waits for execution by the recipient EP 
3. Query the operating system for the location of the 

directory of temporary files %system% 
VB 

4. Copies itself to %System%\windows.exe also copies 
itself to %System%\attach.tmp 

IMC 

5. modifies the registry so that this copy is executed at each 
Windows start: 

CDI 

6. Search all fixed drives for email addresses VB 
7. Save the gathered addresses on the local file system CDI 
8. Sends itself to the collected emails EP 
9. Runs an FTP server to upload copies of the worm EP 
10. Modifies system registry to lower or disable security 

settings 
TH 

11. Download arbitrary files IMC 
12. Perform a DoS attack against www.symantec.com DoS 
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CME-540: 2005-08-17 
CA: Win32.Tpbot.A 
Kaspersky: Net-Worm.Win32.Bozori.a 
Description: A worm that opens an IRC controlled backdoor and exploits the Microsoft Windows Plug and Play 
Buffer Overflow Vulnerability (described in Microsoft Security Bulletin MS05-039 at 
http://www.microsoft.com/technet/security/Bulletin/MS05-039.mspx) on TCP port 445. 

 
Description of Attack Steps Abstracted Step of attack process 

1. Checks the vulnerability of randomly generated IP 
addresses  

R 

2. Exploits the vulnerability AG, IMC 
3. Instructs the target to connect back to the source system  EP 
4. Downloads the worm using TFTP IMC 
5. Executes the worm EP 
6. creates a mutex file on the local system CDI 
7. Query the operating system for the location of the 

directory of temporary files %system% 
VB 

8. Copies itself to %System% directory as wintbp.exe IMC 
9. modifies the registry to execute this copy at each 

Windows start: 
CDI 

10. Creates a batch file CDI 
11. Launches the batch file to delete the original executables CDI 
12. connects to an IRC server EP 

 
CME-702: 2005-08-25 
CA: Win32.Drugtob.A 
Kaspersky: Backdoor.Win32.IRCBot.et 
Description: A worm that opens a back door and exploits the Microsoft Windows Plug and Play Buffer Overflow 
Vulnerability (described in Microsoft Security Bulletin MS05-039 
http://www.microsoft.com/technet/security/Bulletin/MS05-039.mspx) on TCP port 445. The worm also acts as an 
IRC-controlled backdoor, allowing a controller unauthorized access to the infected machine. 

 
Description of Attack Steps Abstracted Step of attack process 

1. searches random IP addresses for potential targets, 
checking for vulnerable systems via port 445. 

R 

2. If it successfully exploits this vulnerability, the worm 
opens a remote shell on the target system 

AG 

3. instruct the target to connect back to the source system 
and download the worm using the Windows TFTP client 

EP 

4. It downloads the worm using a file name in the form 
run<number>exe 

IMC 

5. Run the downloaded worm file  EP 
6. When initially executed, Drugtob checks if the following 

registry entry exists: HKLM\Software\Drudgebot\Halt, 
if it exists then displays a message box and exit 

VB 

7. determines the location of the current Program Files 
folder and the windows folder by querying the operating 
system 

VB 

8. The worm terminates processes related to other malware 
and adware 

TH 

9. deletes folders and files from the %Program Files% and 
%System% directories 

CDI 

10. Deletes Registry Values CDI 
11. Connect to IRC server EP 
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CME-637: 2005-08-25 
CA: Win32.Drugtob.B 
Descriiption: A worm that opens a back door and exploits the Microsoft Windows Plug and Play 
Buffer Overflow Vulnerability (described in Microsoft Security Bulletin MS05-039 at 
http://www.microsoft.com/technet/security/Bulletin/MS05-039.mspx) on TCP port 445. 
 

Description of Attack Steps Abstracted Step of attack process 
1. searches random IP addresses for potential targets, 

checking for vulnerable systems via port 445 
R 

2. opens a remote shell on the target system AG 
3. uses this shell to instruct the target to connect back to 

the source system 
EP 

4. downloads the worm using a file name in the form 
'run<number>exe 

IMC 

5. Runs the downloaded file EP 
6. checks if the following registry entry exists: 
HKLM\Software\Drudgebot\Halt 

VB 

7. If its value is "TRUE", the worm displays a message box 
and then exits 

EP 

8. determines the location of the current Program Files 
folder by querying the operating system and the system 
directory 

VB 

9. copies itself to "%System%\wbev\windrg32.exe"  IMC 
10. sets registry value so that this file is executed at each 

Windows start 
CDI 

11. acts as a very basic FTP server on the originating 
system, listening on port 24463 

EP 

12. creates the mutex "windrg322" to avoid running multiple 
copies of the worm at the same time 

CDI 

13. executes a simple batch file that deletes it from the path 
it was originally executed from 

TH 

14. terminates processes, which are related to other malware 
and adware 

TH 

15. deletes folders from the %Program Files% directory CDI 
16. deletes files from the %System% directory CDI 
17. Deletes registry values CDI 
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Appendix B: Datasets and Dataset Generation 
Tools 

1. Ready-made Datasets 

A)  DARPA’s Datasets 

The background traffic was synthesized according to statistics collected from different networks in 
several Air Force bases (about 50 air bases). The attack component consists of attack scripts collected 
from specialized sites and mailing lists on the Internet or written by hand in addition to some live attacks. 

A network test-bed was implemented to create a live traffic, which contains various types of traffic 
similar to that may be generated by hundreds of users on thousands of hosts. Seven weeks of training 
data, which contains background traffic and labeled attacks in addition to two weeks of unlabeled test 
data was recorded. 

Table B.1 Main features of evaluation datasets 

Dataset Main Features Advantages Disadvantages 

DARPA dataset 
{Kendall99}, 
{Lippmann00a}, 
{Lippmann00b} 

• background + attack traces 
• dataset in tcpdump, system log 

formats 
• network traffic + Host-based 

logs 
• 1998 version: (32 attack types, 

120 instance, No windows 
logs) 

• 1999 version: (56 attacks, win 
NT) 

• simulated human users on real 
machines 

• victims are real machines 

• established and 
consolidated the main 
concepts of dataset 
generation 

• envisaged anomaly 
based as well as 
signature based, HIDS 
and NIDS 

• contains attack scenarios 

• quite obsolete (not 
updated since 2000) 

• non representative 
[Mchu] 

CRC Dataset 
{Massicotte06} 

• traces in tcpdump format 
• only attack traces, no 

background traffic 
• contains traces for successful 

and failed attack attempts 
• Vmware machines  
• Especially for testing 

signature-based NIDS 
• 128 exploit corresponds to 92 

vulnerability & 108 target 
configuration 

• 10446 traces result from 
combinations  of Vul, Config 
and target + 3549 result from 
applying evasion on succeful 
attacks 

• quite recent (2006) 
• well documented 
• apply evasion techniques 
• large number of traces 
• large number of victim 

systems configuration 
(About 200 OS versions) 

• about 2343 attack traffic 
traces 

• only elementary attacks 
launched by VEP 
(Vulnerability Exploit 
program) 

Karalon's Traffic 
IQ 
{Trafficiq08} 

• security audit tool 
• test packet filtering security 

devices 
• traffic library containing more 

than 1000 standard protocol 
and threat traffic files 

• background and malicious 

• highly configurable 
through a GUI 

• The traffic library is 
updated regularly with 
approximately 50 new 
threat traffic files added 
each month 

• only NIDS 
• attack insertion only via 

threat traffic files. 
• commercial tool 
• non flexible addition of 

attack scenarios 

 

There were two groups of datasets: the first consists of network traffic for testing Network Intrusion 
Detection Systems (NIDS). It was collected by sniffing packets from certain points on the test bed. The 
other group was particularly gathered to test host-based intrusion detection systems (HIDS). It consists of 
audit data from Solaris hosts, full disk dumps from UNIX victim machines and sun basic security module 
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(BSM). All were obtained from victim hosts. 
About 300 instances of 38 different attack types were used in DARPA 1998 and 201 instances of 56 

attack types in 1999 version {Kendall99}. They were categorized mainly in four categories: Probe or 
scanning, Remote to local (R2L), User to Root (U2R), and Denial of Service (DoS). Attacks and attack 
scenarios were selected according to the following rules: 

1- Use a transcript of an actual intrusion if available to develop attack scenarios 
2- Otherwise, use the publicly known attacks, which can be found on the specialized sites or 

mailing lists. 
3- The novel attacks were created by taking yet unexploited vulnerabilities or weaknesses. 

Generated packets artificially result in “perfect” traffic that does not contain broken or strange 
packets not conforming to protocol specifications. This kind of spurious packet is quite common in the 
Internet traffic {Coredump08}. 

Moreover, it was noticed that packets are more regular than expected in the reality {Mahoney03}. 
For example:  

- SYN packets have always a 4-byte set of options whereas in reality it ranges from 0 to 28 bytes 
of options. 

- TCP window size has seven fixed values. However, it usually ranges from 512 to 32120. 
- 29 distinct source addresses account for 99.9% of the traffic. In real world networks with similar 

characteristics, over 24,000 unique addresses were counted. 
- TTL values are similar in most of the packets where 9 values out of 256 were used. In reality, 

177 different values can be observed. 
Similarly, for the TOS there only four different values were used whereas in real traffic about 40 

values can be observed. 

2. Dataset Generation Tools 

A) Background Traffic Generators 
Generic traffic generators such as IPERF, SmartBits and ttcp generate IP, TCP and UDP packets 

using pseudo-random techniques. This works well for network devices (e.g., routers, switches, bridges) 
because they often do not care about the packet payload. Unfortunately, intrusion detection systems do 
care about the packet payload contents. Thus, randomly generated sequences of bytes are not suitable for 
testing IDS. When the IDS encounters such sequence of bytes, it can decide to report it as anomalous or 
just drop the packet without any further analysis. 

More intelligent traffic generators have been created to solve this problem. Harpoon {Sommers04}, 
by example, generates TCP and UDP traffic based on real parameters (i.e., packet lengths, temporal and 
spatial characteristics) automatically extracted from routers in live environments. Other tools are are 
aware of network protocols and use protocol automata to, for instance, to generate an emulated traffic 
that corresponds to what a real user would generate {Barford98}. This category of tools can create 
HTTP, FTP, Telnet and mail sessions that look syntactically correct. Unfortunately, this approximated 
representation of protocols is quite idealistic and does not correspond to what real users do. 

B) IDS Stimulators 

Table B.2: IDS stimulators. 

Tool Main Features Advantages Disadvantages 
IDS Stimulators 
Snot & Stick 

• generate attacks from existing 
IDS signatures to test other IDS 

• IDS Inter-comparison 
• relies only on publicly 

available signatures 

IDSwakeup 

• a suite of tools to generate false 
attacks that mimics well known ones 
• a bournshell script that allow the 
execution of hping2 and iwu 

• TTL, source and 
destination addresses are 
changeable 
• Iwu can sends a buffer as 
datagram 

 

Mucus • signature-based stimulator 

• provides a cross-testing 
technique by using signature 
of one NIDS to test another 
NIDS 

• lack of publicly 
available signature 
sets 
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C) Vulnerability Scanners and Network Mappers 
In addition to the previous list, scanning tools such as Nessus {Nessus08} and Nmap {Nmap08} are 

often used to supply the reconnaissance attacks. 
Nmap: 
Nmap ("Network Mapper") is a free and open source (license) utility for network exploration or 

security auditing. Many systems and network administrators also find it useful for tasks such as network 
inventory, managing service upgrade schedules, and monitoring host or service uptime. Nmap uses raw 
IP packets in novel ways to determine what hosts are available on the network, what services (application 
name and version) those hosts are offering, what operating systems (and OS versions) they are running, 
what type of packet filters/firewalls are in use, and dozens of other characteristics. It was designed to 
rapidly scan large networks, but works fine against single hosts. Nmap runs on all major computer 
operating systems, and both console and graphical versions are available. 

Nessus: 
The free open source Nessus vulnerability scanner has become the de facto standard. Nessus risk 

assessments are powered by its robust database of vulnerability checks called Nessus Attack Scripting 
Language (NASL) scripts. NASL is a powerful scripting language for writing security checks for Nessus 
to perform. 

The vulnerability database is updated daily. Administrators can access the database simply by 
running a command-line tool that ships with Nessus (nesssus-update-plugins). This tool connects to the 
Nessus site and downloads all of the latest attack plugins available. Unlike commercial off-the-shelf 
vulnerability scanners, Nessus scans devices and identifies remote flaws in the system. In addition, it 
checks the host for vulnerabilities and identifies missing patches. 

D) Penetration Testing Frameworks 
Immunity’s CANVAS {Canvas08} and Core Impact {Coreimpact08} from Core Security 

Technologies are even more sophisticated. They include in a single application a network mapper, a 
vulnerability scanner, an exploit execution environment, and a report generator. They also contain some 
basic functionalities to perform “stealth” attacks, i.e., to apply some form of obfuscation to the executed 
attacks. On the open source side, we find metasploit, which we have described in details in Section 4.7. 

Table B.3: Penetration testing tools 

Tool Main Features Advantages Disadvantages 

Metasploit 
{Metasploit08} 

• a framework for penetration 
testing, IDS signature 
development, and exploit research 
• written in Ruby language 
• Current version (v. 3.0) 
contains: 
o 177 exploits 
o 104 payloads 
o 17 encoders 
o 5 NOPs 
o 30 aux 

• Free Open source 
• Extensible tool: new 
exploits and features can be 
added as modules and plugins 
• Maintained updates 
• Has a web interface and a 
GUI 

• scheduling the whole test 
is quite fastidious and 
• attack scenarios should be 
programmed separately 

Core Impact 
{Coreimpact08} 

• automated penetration testing 
tool 
• automates steps of attack 
process 
• automatic report generation 
• - automatic clean up after test 

• has a GUI frontend 
regular updates of well-tested 
exploits 
• fully customizable 
• possibility of integration 
with other security tools 

• Commercial 

CANVAS 
{Canvas08} 

• Automated exploitation 
system 
• over 150 exploits (by 
november 2007) 
• 4 exploits/month, in average 

• ability to add custom 
exploits 
• Has a GUI 

• Commercial 
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E) Attack Mutation Tools 
Attackers want to be invisible by any mean to avoid detection. In addition to creating new variations 

of their malicious code, they also follow several evasion and illusion techniques to render the IDS either 
blind or confused {Ptacek98}. 
The use of variations of attacks to test intrusion detection systems and other security mechanisms has 
recently received considerable attention. These tools combine the functionalities of an exploit execution 
environment with one or more IDS evasion techniques. One of the earliest works that systematically 
considered attack variations as a way to test intrusion detection systems was Raffael Marty’s Thor 
{Marty02}. Thor’s design included the possibility to generate variations at both the network and the 
application layers using mutant modifier to generate several variations of the network traffic from the 
same attack exploit. However, Thor’s implementation is limited and the only mentioned result is the 
application of an evasion technique based on IP fragmentation to an HTTP-based attack. 
Another interesting work is MACE {Sommers04}. MACE is a toolkit for malicious traffic generation 
written in Python. The malicious traffic is created according to three models: an exploit model that 
describes the parts of the attack, an obfuscation model that defines the obfuscation elements at both 
network and application layer, and the propagation model that controls the order in which the victim 
hosts will be attacked. 
The tool AGENT {Rubin04} relies on a formal, logical induction of mutations. It generates variations of 
a single instance of attack automatically using inference rules. A more powerful tool called Sploit 
{Vigna04} that generates attack variations  by applying mutant operators to an exploit template. 
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Appendix C: Glossary 
Activity An action or a set of actions that generates events in the system. 

Malicious 
activity 

An activity carried out by an attacker that aims to violate the 
security policy. 

Normal activity An activity carried out within the context of normal operations 
without the intent to compromise the security policy. 

Analytical 
evaluation 

It is usually based on some model of the system under study not the 
system itself and can be done at any stage during the development 
cycle. 

Attack A malicious technical interaction that attempts to exploit some 
vulnerability as a step towards achieving the final goal of the 
attacker. 

Attack scenario A set of organized activities, including malicious activities and 
apparently normal activities, which are executed in sequence or in 
parallel to achieve the attacker’s goal. 

Availability The prevention of unauthorized retention of information. 

Benchmarking Is a specific kind of test; it is the process of comparing the 
performance of two or more systems by measurements. Often, a 
series of experiments are performed on systems using a reference 
set of benchmarks (datasets/programs). 

Classification Systematic arrangement, in groups or categories, according to 
established criteria 

Confidentiality The prevention of unauthorized disclosure of information. 

Counter-
measures 

To avoid any confusion we prefer using the term "counter measure" 
for security mechanisms while keeping the term "measure" for its 
original use in metrology. 

Evaluation Is generally defined as “the act of placing a value on the nature, 
character, or quality of something”. 

Evaluation 
Methodology 

Is a detailed plan that describes all the steps of the evaluation 
process. 

Evaluation 
Technique 

We can identify three main techniques that can be applied to 
evaluate computer-based systems or applications  

Event A thing that happens or takes place; a change in system state. 

Exploit (noun) A script, a program, a mechanism or other technique by which 
some vulnerability is used to realize an attack or a part of an attack. 

False negative An event corresponding to the incorrect decision to rate an activity as being 
not erroneous; also called a “miss”. 

False positive An event corresponding to the incorrect decision to rate an activity 
as being erroneous; also called a “false alarm”. 

Integrity The prevention of modification or unauthorized suppression 
of information. 

Intrusion A malicious fault externally induced resulting from an attack that 
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has succeeded in exploiting some vulnerability. 

Intrusion 
Detection 

The set of practices and mechanisms used towards detecting errors 
that may lead to security failure, and diagnosing intrusions and 
attacks. 

Intrusion 
Detection 
System (IDS) 

An implementation of practices and mechanisms of intrusion 
detection. 

Intrusion 
Prevention 
System (IPS) 

A kind of IDS that prevents occurrence of attacks rather than 
simply detecting errors due to attacks. It extends the functionality of 
IDS by a response unit to prevent attacks and / or limit their effects. 
Typical responses to intrusions may include dropping suspicious 
traffic at the firewall, denying user access to resources as they 
exhibit anomalous behavior, etc. 

Malicious 
activity 

An activity carried out by an attacker that aims to violate the 
security policy. 

Measure (noun) This term has several different meaning 

Metrics The criteria used to evaluate the system. Any metric should have 
both a definition and a unit of measure. By example 

Normal activity An activity carried out within the context of normal operations 
without the intent to compromise the security policy. 

Security failure Any violation of a security property of the intended security policy. 
This includes any violation of the confidentiality, the integrity or 
the availability. 

Security policy A description of 1) the security properties to be fulfilled by a 
computing system; 2) the rules according to which the system 
security state can evolve. 

Simulation This technique is applicable at any stage too. System behaviors, 
interactions between system components and the inputs/outputs are 
simulated, 

Taxonomy The study of the general principles of scientific classification 

Test or 
measurement 

An actual implementation or a prototype of the system is evaluated 
against real or synthetic inputs (workloads or test dataset) in order 
to study the system behavior and its reactions.  

Test-bed or 
workbench 

The platform of test (software/hardware/network architecture) on 
which the test can be carried out. 

True negative The event corresponding to the correct decision to rate an activity  
as being not erroneous. 

True positive The event corresponding to the correct decision to rate an activity  
as being erroneous; also called a “hit.” 

Vulnerability A fault created during development of the system, or during operation, that 
could be exploited to create an intrusion. 
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