D. Vaughan and B. Ord, Influence of phenolic acids on morphological changes in roots ofPisum sativum, Journal of the Science of Food and Agriculture, vol.200, issue.3, pp.289-299, 1990.
DOI : 10.1002/jsfa.2740520302

J. Balesdent and A. Mariotti, Mass Spectrometry of Soils, pp.83-111, 1996.

G. T. Felbeck and . Jr, STRUCTURAL HYPOTHESES OF SOIL HUMIC ACIDS, Soil Science, vol.111, issue.1, pp.42-48, 1971.
DOI : 10.1097/00010694-197101000-00005

S. A. Waksman and K. R. Iyer, CONTRIBUTION TO OUR KNOWLEDGE OF THE CHEMICAL NATURE AND ORIGIN OF HUMUS, Soil Science, vol.34, issue.1, pp.43-69, 1932.
DOI : 10.1097/00010694-193207000-00007

M. M. Kononova, Soil Organic Matter, Soil Science, vol.95, issue.1, 1966.
DOI : 10.1097/00010694-196301000-00017

W. Flaig, Effects of micro-organisms in the transformation of lignin to humic substances, Geochimica et Cosmochimica Acta, vol.28, issue.10-11, pp.1523-1535, 1964.
DOI : 10.1016/0016-7037(64)90003-1

P. Maccarthy, THE PRINCIPLES OF HUMIC SUBSTANCES, Soil Science, vol.166, issue.11, pp.738-751, 2001.
DOI : 10.1097/00010694-200111000-00003

S. Pal, Nature and properties of soil humic acid as influenced by incorporation of different plant materials, Plant and Soil, vol.102, issue.1, pp.75-84, 1992.
DOI : 10.1007/BF00012809

G. Almendros and J. Sanz, A structural study of alkyl polymers in soil after perborate degradation of humin, Geoderma, vol.53, issue.1-2, pp.79-95, 1992.
DOI : 10.1016/0016-7061(92)90022-Y

J. Holocher, F. Peeters, W. Aeschbach-hertig, W. Kinzelbach, and R. Kipfer, Kinetic Model of Gas Bubble Dissolution in Groundwater and Its Implications for the Dissolved Gas Composition, Environmental Science & Technology, vol.37, issue.7, pp.1337-1343, 2003.
DOI : 10.1021/es025712z

A. V. Joubert, L. Lucas, F. Garrido, C. Joulian, and M. Jauzein, Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change, Environmental Pollution, vol.148, issue.3, pp.749-758, 2007.
DOI : 10.1016/j.envpol.2007.01.031

P. Stengel, S. Gelin, and G. Editors, The chemistry of soils, 1989.

H. I. Afridi, T. G. Kazi, M. K. Jamali, G. H. Kazi, M. B. Arain et al., Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry, Toxicology and Industrial Health, vol.205, issue.3, pp.381-393, 2006.
DOI : 10.1177/0748233706073420

M. S. Masoud, M. I. El-samra, and M. M. Sadawy, Heavy-metal distribution and risk assessment of sediment and fish from El-Mex Bay, Alexandria, Egypt, Chemistry and Ecology, vol.105, issue.3, pp.201-216, 2007.
DOI : 10.1016/S0048-9697(02)00396-0

F. Oesterholt, G. Martijnse, G. Medema, and D. Van-der-kooij, Journal of Water Supply: Research and Technology--AQUA 56, pp.171-179, 2007.

M. Vahter, A. Aakesson, C. Liden, S. Ceccatelli, and M. Berglund, Gender differences in the disposition and toxicity of metals, Environmental Research, vol.104, issue.1, pp.85-95, 2007.
DOI : 10.1016/j.envres.2006.08.003

P. Vernay, C. Gauthier-moussard, and A. Hitmi, Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L., Chemosphere, vol.68, issue.8, pp.1563-1575, 2007.
DOI : 10.1016/j.chemosphere.2007.02.052

M. Havas, in Soft Water at Low pH, Canadian Journal of Fisheries and Aquatic Sciences, vol.42, issue.11, pp.1741-1748, 1985.
DOI : 10.1139/f85-218

C. Juste, P. Chassin, A. Gomez, M. Lineres, B. Mocquot et al., Adème : Connaître pour Agir, Guides et cahiers techniques 1799, Journal -American Water Works Association, vol.91, pp.84-93, 1995.

B. Bocca, A. Alimonti, G. Bomboi, F. Giubilei, and G. Forte, Alterations in the level of trace metals in Alzheimer??s disease, Trace Elements and Electrolytes, vol.23, issue.10, pp.270-276, 2006.
DOI : 10.5414/TEP23270

A. C. Miu, The silicon link between aluminium and Alzheimer's disease, Journal of Alzheimer's Disease, vol.10, issue.1, pp.39-42, 2006.
DOI : 10.3233/JAD-2006-10107

B. J. Alloway, Heavy Metals in Soils, 1995.

R. P. Wedeen, Bone lead, hypertension, and lead nephropathy, Environmental Health Perspectives, vol.78, pp.57-60, 1988.
DOI : 10.1289/ehp.887857

H. Fu and P. Boffetta, Cancer and occupational exposure to inorganic lead compounds: a meta-analysis of published data., Occupational and Environmental Medicine, vol.52, issue.2, pp.73-81, 1995.
DOI : 10.1136/oem.52.2.73

S. Lin, S. A. Hwang, E. G. Marshall, R. Stone, and J. Chen, Fertility rates among lead workers and professional bus drivers: A comparative study, Annals of Epidemiology, vol.6, issue.3, pp.201-208, 1996.
DOI : 10.1016/1047-2797(96)00010-5

A. Kabata-pendias, H. Pendias, and R. K. Chandra, Trace Elements in Soils and Plants. 45, JAMA, the Journal of the American Medical Association, vol.252, pp.1443-1446, 1984.

C. Neill and J. Gignoux, Soil organic matter decomposition driven by microbial growth: A simple model for a complex network of interactions, Soil Biology and Biochemistry, vol.38, issue.4, pp.803-811, 2006.
DOI : 10.1016/j.soilbio.2005.07.007

H. Schulten and P. Leinweber, Characterization of humic and soil particles by analytical pyrolysis and computer modeling, Journal of Analytical and Applied Pyrolysis, vol.38, issue.1-2, pp.1-53, 1996.
DOI : 10.1016/S0165-2370(96)00954-0

F. Bartoli and R. Philippy, AL-ORGANIC MATTER ASSOCIATIONS AS CEMENTING SUBSTANCES OF OCHREOUS BROWN SOIL AGGREGATES, Soil Science, vol.150, issue.4, pp.745-751, 1990.
DOI : 10.1097/00010694-199010000-00010

H. B. Bradl, Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, vol.277, issue.1, pp.1-18, 2004.
DOI : 10.1016/j.jcis.2004.04.005

G. Brunelot, P. Adrian, J. Rouiller, B. Guillet, and F. Andreux, Determination of dissociable acid groups of organic compounds extracted from soils, using automated potentiometric titration, Chemosphere, vol.19, issue.8-9, pp.1413-1419, 1989.
DOI : 10.1016/0045-6535(89)90089-1

M. Kaiser and R. H. Ellerbrock, Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment, Geoderma, vol.127, issue.3-4, pp.196-206, 2005.
DOI : 10.1016/j.geoderma.2004.12.002

T. Karlsson, K. Elgh-dalgren, E. Bjoern, and U. Skyllberg, Complexation of cadmium to sulfur and oxygen functional groups in an organic soil, Geochimica et Cosmochimica Acta, vol.71, issue.3, pp.604-614, 2007.
DOI : 10.1016/j.gca.2006.10.011

J. Sebastia, J. Labanowski, and I. Lamy, Changes in soil organic matter chemical properties after organic amendments, Chemosphere, vol.68, issue.7, pp.1245-1253, 2007.
DOI : 10.1016/j.chemosphere.2007.01.058

B. Lehmann, Mercury from gold and silver mining: a chemical time bomb?, 1998.

W. C. Ma and H. Van-der-voet, The Science of the total environment, pp.1701-1714, 1993.

I. L. Stevenson and M. Schnitzer, TRANSMISSION ELECTRON MICROSCOPY OF EXTRACTED FULVIC AND HUMIC ACIDS1, Soil Science, vol.133, issue.3, pp.179-185, 1982.
DOI : 10.1097/00010694-198203000-00007

E. Andre, J. Cornard, and C. Lapouge, Characterization of the Al(III) binding site of protocatechuic acid by electronic spectroscopy and quantum chemical calculations, Chemical Physics Letters, vol.434, issue.1-3, pp.155-159, 2007.
DOI : 10.1016/j.cplett.2006.11.095

URL : https://hal.archives-ouvertes.fr/hal-00267122

C. Lapouge, L. Dangleterre, and J. Cornard, Spectroscopic and Theoretical Studies of the Zn(II) Chelation with Hydroxyflavones, The Journal of Physical Chemistry A, vol.110, issue.45, pp.12494-12500, 2006.
DOI : 10.1021/jp064362q

URL : https://hal.archives-ouvertes.fr/hal-00268060

J. Cornard and C. Lapouge, Absorption Spectra of Caffeic Acid, Caffeate and Their 1:1 Complex with Al(III):?? Density Functional Theory and Time-Dependent Density Functional Theory Investigations, The Journal of Physical Chemistry A, vol.110, issue.22, pp.7159-7166, 2006.
DOI : 10.1021/jp060147y

URL : https://hal.archives-ouvertes.fr/hal-00267609

J. Cornard, A. Caudron, and J. Merlin, UV???visible and synchronous fluorescence spectroscopic investigations of the complexation of Al(III) with caffeic acid, in aqueous low acidic medium, Polyhedron, vol.25, issue.11, pp.2215-2222, 2006.
DOI : 10.1016/j.poly.2006.01.013

URL : https://hal.archives-ouvertes.fr/hal-00267613

J. P. Cornard, L. Dangleterre, and C. Lapouge, DFT and TD-DFT investigation and spectroscopic characterization of the molecular and electronic structure of the Zn(II)???3-hydroxyflavone complex, Chemical Physics Letters, vol.419, issue.1-3, pp.304-308, 2006.
DOI : 10.1016/j.cplett.2005.11.101

URL : https://hal.archives-ouvertes.fr/hal-00267605

L. Dangleterre and J. Cornard, Interaction of lead (II) chloride with hydroxyflavones in methanol: A spectroscopic study, Polyhedron, vol.24, issue.12, pp.1593-1598, 2005.
DOI : 10.1016/j.poly.2005.04.019

URL : https://hal.archives-ouvertes.fr/hal-00268194

J. Cornard, . Rasmiwetti, and J. Merlin, Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV???visible, Raman, DFT and TD-DFT calculations, Chemical Physics, vol.309, issue.2-3, pp.239-249, 2005.
DOI : 10.1016/j.chemphys.2004.09.020

URL : https://hal.archives-ouvertes.fr/hal-00268186

J. P. Cornard, L. Dangleterre, and C. Lapouge, Computational and Spectroscopic Characterization of the Molecular and Electronic Structure of the Pb(II)???Quercetin Complex, The Journal of Physical Chemistry A, vol.109, issue.44, pp.10044-10051, 2005.
DOI : 10.1021/jp053506i

J. Cornard and J. Merlin, Spectroscopic and structural study of complexes of quercetin with Al(III), Journal of Inorganic Biochemistry, vol.92, issue.1, pp.19-27, 2002.
DOI : 10.1016/S0162-0134(02)00469-5

URL : https://hal.archives-ouvertes.fr/hal-00276609

J. P. Cornard and J. C. Merlin, Complexes of aluminium(III) with isoquercitrin: spectroscopic characterization and quantum chemical calculations, Polyhedron, vol.21, issue.27-28, pp.2801-2810, 2002.
DOI : 10.1016/S0277-5387(02)01288-3

J. Cornard and J. Merlin, Structural and spectroscopic investigation of 5-hydroxyflavone and its complex with aluminium, Journal of Molecular Structure, vol.569, issue.1-3, pp.129-138, 2001.
DOI : 10.1016/S0022-2860(01)00433-1

URL : https://hal.archives-ouvertes.fr/hal-00280594

J. Cornard, A. Boudet, and J. Merlin, Complexes of Al(III) with 3???4???-dihydroxy-flavone: characterization, theoretical and spectroscopic study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.57, issue.3, pp.591-602, 2001.
DOI : 10.1016/S1386-1425(00)00412-1

URL : https://hal.archives-ouvertes.fr/hal-00280595

A. Boudet, J. Cornard, and J. Merlin, Conformational and spectroscopic investigation of 3-hydroxyflavone???aluminium chelates, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.56, issue.4, pp.829-839, 2000.
DOI : 10.1016/S1386-1425(99)00284-X

D. L. Richman, C. L. Tucker, and P. G. Koehler, Influence of Portland cement amendment on soil pH and residual soil termiticide performance, Pest Management Science, vol.32, issue.12, pp.1216-1223, 2006.
DOI : 10.1002/ps.1274

W. C. Vosburgh and G. R. Cooper, Complex Ions. I. The Identification of Complex Ions in Solution by Spectrophotometric Measurements, Journal of the American Chemical Society, vol.63, issue.2, pp.437-442, 1941.
DOI : 10.1021/ja01847a025

H. Gampp, M. Maeder, C. J. Meyer, and A. Zuberbühler, Calculation of equilibrium constants from multiwavelength spectroscopic data???IV Model-free least-squares refinement by use of evolving factor analysis, Talanta, vol.33, issue.12, p.943, 1986.
DOI : 10.1016/0039-9140(86)80233-8

M. Maeder and A. D. Zuberbühler, Nonlinear least-squares fitting of multivariate absorption data, Analytical Chemistry, vol.62, issue.20, p.2220, 1990.
DOI : 10.1021/ac00219a013

B. Valeur, Invitation à la fluorescence moléculaire, 2004.

L. Yue, F. Wu, C. Liu, W. Li, P. Fu et al., Relationship between fluorescence characteristics and molecular weight distribution of natural dissolved organic matter in Lake Hongfeng and Lake Baihua, China, Chinese Science Bulletin, vol.33, issue.118, pp.89-96, 2006.
DOI : 10.1007/s11434-004-5384-4

M. M. Sierra, M. Giovanela, E. Parlanti, and E. J. Soriano-sierra, 3D-fluorescence spectroscopic analysis of HPLC fractionated estuarine fulvic and humic acids, Journal of the Brazilian Chemical Society, vol.17, issue.1, pp.113-124, 2006.
DOI : 10.1590/S0103-50532006000100017

W. Susetyo, L. A. Carreira, L. V. Azarraga, and D. M. Grimm, Fluorescence techniques for metal-humic interactions, Fresenius' Journal of Analytical Chemistry, vol.61, issue.9, pp.624-635, 1991.
DOI : 10.1007/BF00325549

M. N. Clifford, Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism, Journal of the Science of Food and Agriculture, vol.72, issue.7, pp.1033-1043, 2000.
DOI : 10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T

J. Méndez and M. I. Lojo, Spectral behavior of some cinnamic acids, Microchemical Journal, vol.13, issue.2, pp.232-235, 1968.
DOI : 10.1016/0026-265X(68)90011-8

T. Kiss, G. Nagy, M. Pecsi, H. Kozlowski, G. Micera et al., Complexes of 3,4-dihydroxyphenyl derivatives???X. Copper(II) complexes of chlorogenic acid and related compounds, Polyhedron, vol.8, issue.19, pp.2345-2349, 1989.
DOI : 10.1016/S0277-5387(00)80295-8

I. Lamy, M. Seywert, M. Cromer, and J. P. Scharff, simple and mixed ligand complexes of copper(II) with polyfunctional phenolic compounds as models of natural substances, Analytica Chimica Acta, vol.176, pp.201-212, 1985.
DOI : 10.1016/S0003-2670(00)81647-5

P. W. Linder and A. Voye, Potentiometric investigations of the equilibria between caffeic acid and copper(II), zinc(II), iron(II) and hydrogen ions in aqueous solution, Polyhedron, vol.6, issue.1, pp.53-60, 1987.
DOI : 10.1016/S0277-5387(00)81238-3

T. Nagata, M. Hayatsu, and N. Kosuge, Identification of aluminium forms in tea leaves by 27Al NMR, Phytochemistry, vol.31, issue.4, pp.1215-1218, 1992.
DOI : 10.1016/0031-9422(92)80263-E

G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, 1974.

E. B. Wilson, . Jr, J. C. Decius, and P. C. Cross, Molecular Vibrations. 15, pp.5023-5030, 1955.

K. W. Glombitza and G. Gerstberger, Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea, Phytochemistry, vol.24, issue.3, pp.543-551, 1985.
DOI : 10.1016/S0031-9422(00)80764-5

L. J. Porter, Tannins, Methods in Plant Biochemistry, vol.1, pp.389-419, 1989.
DOI : 10.1016/B978-0-12-461011-8.50017-2

M. Leopoldini, T. Marino, N. Russo, and M. Toscano, Antioxidant Properties of Phenolic Compounds:?? H-Atom versus Electron Transfer Mechanism, The Journal of Physical Chemistry A, vol.108, issue.22, pp.4916-4922, 2004.
DOI : 10.1021/jp037247d

I. Mohammed-ziegler and F. Billes, IUPAC Stability Constants for Metal-Ion Complexes, P. B, vol.618, issue.20, pp.259-265, 1979.

O. 'coinceanainn, M. Hynes, and M. J. , The kinetics and mechanisms of the reactions of aluminium(III) with gallic acid, gallic acid methyl ester and adrenaline, Journal of Inorganic Biochemistry, vol.84, issue.1-2, pp.1-12, 2001.
DOI : 10.1016/S0162-0134(00)00232-4

E. Giannakopoulos, K. C. Christoforidis, A. Tsipis, M. Jerzykiewicz, and Y. Deligiannakis, Influence of Pb(II) on the Radical Properties of Humic Substances and Model Compounds, The Journal of Physical Chemistry A, vol.109, issue.10, pp.2223-2232, 2005.
DOI : 10.1021/jp045121q

B. J. Sandmann, M. H. Chien, and R. A. Sandmann, Stability Constants of Calcium, Magnesium and Zinc Gallate Using A Divalent Ion-Selective Electrode, Analytical Letters, vol.223, issue.2, pp.149-159, 1985.
DOI : 10.1080/00032718508068758

K. S. Lo, W. F. Yang, and Y. C. Lin, Effects of organic matter on the specific adsorption of heavy metals by soil, Toxicological & Environmental Chemistry, vol.11, issue.2-4, pp.139-153, 1992.
DOI : 10.1080/02772249209357787

E. M. Larrivee, K. M. Elkins, S. E. Andrews, and D. J. Nelson, Fluorescence characterization of the interaction of Al3+ and Pd2+ with Suwannee River fulvic acid in the absence and presence of the herbicide 2,4-dichlorophenoxyacetic acid, Journal of Inorganic Biochemistry, vol.97, issue.1, pp.32-45, 2003.
DOI : 10.1016/S0162-0134(03)00239-3

R. M. Town and M. Filella, Implications of natural organic matter binding heterogeneity on understanding lead(II) complexation in aquatic systems, Science of The Total Environment, vol.300, issue.1-3, pp.143-154, 2002.
DOI : 10.1016/S0048-9697(01)01065-8

C. Lamelas, K. J. Wilkinson, and V. I. Slaveykova, Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae, Environmental Science & Technology, vol.39, issue.16, pp.6109-6116, 2005.
DOI : 10.1021/es050445t

R. Zbytniewski and B. Buszewski, Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties, Bioresource Technology, vol.96, issue.4, pp.471-478, 2005.
DOI : 10.1016/j.biortech.2004.05.018

J. D. Mao, B. Xing, and K. Schmidt-rohr, C Correlation Solid-State Nuclear Magnetic Resonance, Environmental Science & Technology, vol.35, issue.10, pp.1928-1934, 2001.
DOI : 10.1021/es0014988

M. J. Piana and K. O. Zahir, Investigation of metal ions binding of humic substances using fluorescence emission and synchronous???scan spectroscopy, Journal of Environmental Science and Health, Part B, vol.18, issue.4, pp.87-102, 2000.
DOI : 10.1080/03601230009373256

C. Plaza, G. Brunetti, N. Senesi, and A. Polo, Molecular and Quantitative Analysis of Metal Ion Binding to Humic Acids from Sewage Sludge and Sludge-Amended Soils by Fluorescence Spectroscopy, Environmental Science & Technology, vol.40, issue.3, pp.917-923, 2006.
DOI : 10.1021/es051687w

M. R. Provenzano, V. Orazio, M. Jerzykiewicz, and N. Senesi, Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources, Chemosphere, vol.55, issue.6, pp.885-892, 2004.
DOI : 10.1016/j.chemosphere.2003.11.040

N. Shinozuka, INTERACTION OF HUMIC ACIDS WITH SOME FLUORESCENT PROBES, Analytical Sciences, vol.7, issue.Supple, pp.1087-1090, 1991.
DOI : 10.2116/analsci.7.Supple_1087

P. Kowalczuk, J. Ston-egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy, Marine Chemistry, vol.96, issue.3-4, pp.273-292, 2005.
DOI : 10.1016/j.marchem.2005.03.002

S. Mounier, N. Patel, L. Quilici, J. Y. Benaim, and C. Benamou, Fluorescence 3D de la mati??re organique dissoute du fleuve amazone, Water Research, vol.33, issue.6, pp.1523-1533, 1999.
DOI : 10.1016/S0043-1354(98)00347-9

R. D. Holbrook, P. C. Derose, S. D. Leigh, A. L. Rukhin, and N. A. Heckert, Excitation???Emission Matrix Fluorescence Spectroscopy for Natural Organic Matter Characterization: A Quantitative Evaluation of Calibration and Spectral Correction Procedures, Applied Spectroscopy, vol.60, issue.7, pp.791-799, 2006.
DOI : 10.1366/000370206777886973

L. Yue, F. Wu, C. Liu, W. Li, P. Fu et al., Relationship between fluorescence characteristics and molecular weight distribution of natural dissolved organic matter in Lake Hongfeng and Lake Baihua, China, Chinese Science Bulletin, vol.33, issue.118, pp.89-96, 2006.
DOI : 10.1007/s11434-004-5384-4

V. Kazpard, B. S. Lartiges, C. Frochot, J. B. Espinose-de-la-caillerie, M. L. Viriot et al., Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations, Water Research, vol.40, issue.10, pp.1965-1974, 2006.
DOI : 10.1016/j.watres.2006.03.014

S. E. Cabaniss, Synchronous Fluorescence Spectra of Metal-Fulvic Acid Complexes, Environmental Science & Technology, vol.26, issue.6, pp.1133-1139, 1992.
DOI : 10.1021/es50002a018

K. Ikeya, S. Yamamoto, and A. Watanabe, Semiquantitative GC/MS analysis of thermochemolysis products of soil humic acids with various degrees of humification, Organic Geochemistry, vol.35, issue.5, pp.583-594, 2004.
DOI : 10.1016/j.orggeochem.2003.12.004

M. Fukushima, S. Tanaka, K. Hasebe, M. Taga, and H. Nakamura, Interpretation of the acid-base equilibrium of humic acid by a continuous pK distribution and electrostatic model, Analytica Chimica Acta, vol.302, issue.2-3, pp.365-373, 1995.
DOI : 10.1016/0003-2670(94)00471-W

C. Plaza, G. Brunetti, N. Senesi, and A. Polo, Proton Binding to Humic Acids from Organic Amendments and Amended Soils by the NICA-Donnan Model, Environmental Science & Technology, vol.39, issue.17, pp.6692-6697, 2005.
DOI : 10.1021/es0503377

S. Mcdonald, A. G. Bishop, P. D. Prenzler, and K. Robards, Analytical chemistry of freshwater humic substances, Analytica Chimica Acta, vol.527, issue.2, pp.105-124, 2004.
DOI : 10.1016/j.aca.2004.10.011

K. M. Elkins and D. J. Nelson, Spectroscopic approaches to the study of the interaction of aluminum with humic substances, Coordination Chemistry Reviews, vol.228, issue.2, pp.205-225, 2002.
DOI : 10.1016/S0010-8545(02)00040-1

J. D. Ritchie and E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter, Geochimica et Cosmochimica Acta, vol.67, issue.1, pp.85-96, 2003.
DOI : 10.1016/S0016-7037(02)01044-X

A. Jezierski, F. Czechowski, M. Jerzykiewicz, I. Golonka, J. Drozd et al., Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.58, issue.6, pp.1293-1300, 2002.
DOI : 10.1016/S1386-1425(01)00718-1

M. Jerzykiewicz, A. Jezierski, F. Czechowski, and J. Drozd, Influence of metal ions binding on free radical concentration in humic acids. A quantitative electron paramagnetic resonance study, Organic Geochemistry, vol.33, issue.3, pp.265-268, 2002.
DOI : 10.1016/S0146-6380(01)00158-9

I. Golonka, F. Czechowski, and A. Jezierski, EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmospheres, Geoderma, vol.127, issue.3-4, pp.237-252, 2005.
DOI : 10.1016/j.geoderma.2004.12.005

E. Giannakopoulos, K. C. Christoforidis, A. Tsipis, M. Jerzykiewicz, and Y. Deligiannakis, Influence of Pb(II) on the Radical Properties of Humic Substances and Model Compounds, The Journal of Physical Chemistry A, vol.109, issue.10, pp.2223-2232, 2005.
DOI : 10.1021/jp045121q

M. Jerzykiewicz, Formation of new radicals in humic acids upon interaction Pb(II) ions, Geoderma, vol.122, issue.2-4, pp.305-309, 2004.
DOI : 10.1016/j.geoderma.2004.01.017

S. Hiradate and N. U. Yamaguchi, Chemical species of Al reacting with soil humic acids, Journal of Inorganic Biochemistry, vol.97, issue.1, pp.26-31, 2003.
DOI : 10.1016/S0162-0134(03)00242-3

J. T. Ashley, Adsorption of Cu(II) and Zn(II) by estuarine, riverine and terrestrial humic acids, Chemosphere, vol.33, issue.11, pp.2175-2187, 1996.
DOI : 10.1016/0045-6535(96)00324-4

N. Dupuy and F. Douay, Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.57, issue.5, pp.1037-1047, 2001.
DOI : 10.1016/S1386-1425(00)00420-0

URL : https://hal.archives-ouvertes.fr/hal-00279876

A. K. Pandey, S. D. Pandey, V. Misra, and P. N. Viswanathan, Formation of Soluble Complexes of Metals with Humic Acid and Its Environmental Significance, Chemistry and Ecology, vol.5, issue.4, pp.269-282, 1999.
DOI : 10.1016/S0045-6535(97)00315-9

P. N. Linnik, Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies, Analytical and Bioanalytical Chemistry, vol.8, issue.3, pp.405-412, 2003.
DOI : 10.1016/S0039-9140(98)00249-5

L. Weng, E. J. Temminghoff, S. Lofts, E. Tipping, and W. H. Van-riemsdijk, Complexation with Dissolved Organic Matter and Solubility Control of Heavy Metals in a Sandy Soil, Environmental Science & Technology, vol.36, issue.22, pp.4804-4810, 2002.
DOI : 10.1021/es0200084

G. Abate and J. C. Masini, Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models, Organic Geochemistry, vol.33, issue.10, pp.1171-1182, 2002.
DOI : 10.1016/S0146-6380(02)00087-6

A. K. Pandey, S. D. Pandey, and V. Misra, Stability Constants of Metal???Humic Acid Complexes and Its Role in Environmental Detoxification, Ecotoxicology and Environmental Safety, vol.47, issue.2, pp.195-200, 2000.
DOI : 10.1006/eesa.2000.1947

M. Filella and R. M. Town, Heterogeneity and lability of Pb(II) complexation by humic substances: practical interpretation tools, Fresenius' Journal of Analytical Chemistry, vol.370, issue.4, pp.413-418, 2001.
DOI : 10.1007/s002160100812

V. Misra, S. D. Pandey, and P. N. Viswanathan, Environmental Significance of Humic Acid in the Sequestration of Metals, Chemistry and Ecology, vol.23, issue.2, pp.103-112, 1996.
DOI : 10.1016/0043-1354(85)90036-3

E. Tipping, C. Rey-castro, S. E. Bryan, and J. Hamilton-taylor, Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimica et Cosmochimica Acta, vol.66, issue.18, pp.3211-3224, 2002.
DOI : 10.1016/S0016-7037(02)00930-4

C. Gueguen, B. Koukal, J. Dominik, and M. Pardos, Competition between alga (Pseudokirchneriella subcapitata), humic substances and EDTA for Cd and Zn control in the algal assay procedure (AAP) medium, Chemosphere, vol.53, issue.8, pp.927-934, 2003.
DOI : 10.1016/S0045-6535(03)00719-7

T. D. Gauthier, E. C. Shane, W. F. Guerin, W. R. Seitz, and C. L. Grant, Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials, Environmental Science & Technology, vol.20, issue.11, pp.1162-1166, 1986.
DOI : 10.1021/es00153a012

K. Ohga, T. Tsuruhara, N. Egashira, and T. Kuroi, Determination of equilibrium constants for binding of acridine orange and its 10-alkyl derivatives to dissolved humic substances by a fluorescence quenching method., Analytical Sciences, vol.6, issue.6, pp.837-842, 1990.
DOI : 10.2116/analsci.6.837

M. M. Puchalski, M. J. Morra, and R. Von-wandruszka, Fluorescence quenching of synthetic organic compounds by humic materials, Environmental Science & Technology, vol.26, issue.9, pp.1787-1792, 1992.
DOI : 10.1021/es00033a012

J. Peuravuori, Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement, Analytica Chimica Acta, vol.429, issue.1, pp.65-73, 2001.
DOI : 10.1016/S0003-2670(00)01258-7

Y. Laor and M. Rebhun, Evidence for Nonlinear Binding of PAHs to Dissolved Humic Acids, Environmental Science & Technology, vol.36, issue.5, pp.955-961, 2002.
DOI : 10.1021/es001996g

B. Valeur, Invitation à la fluorescence moléculaire, 2004.

D. K. Ryan and J. H. Weber, Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid, Analytical Chemistry, vol.54, issue.6, pp.986-990, 1982.
DOI : 10.1021/ac00243a033

. La-fixation-d, Al(III) a été également étudié en compétition avec le Fe(III) Ces études soulignent la forte perturbation que provoque Al(III) sur la complexation de Fe(III) sans que l'inverse ne soit vérifié

. Enfin, de nombreux travaux essaient de prédire l'état des systèmes humiques par des modèles calculatoires; notamment entre des alcalino-terreux (type Ca 2+ ) et des métaux lourds sur la base de données d'analyses voltamétriques (12)

. La-complexation-de-zn, II) avait montré précédemment un certain nombre de complication : contrairement à l'ajout d'Al(III) et Pb(II) qui génèrent une diminution de l'intensité de fluorescence du spectre de l'acide humique dans les zones 2

P. N. Linnik, Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies, Analytical and Bioanalytical Chemistry, vol.8, issue.3, pp.405-412, 2003.
DOI : 10.1016/S0039-9140(98)00249-5

A. K. Pandey, S. D. Pandey, and V. Misra, Stability Constants of Metal???Humic Acid Complexes and Its Role in Environmental Detoxification, Ecotoxicology and Environmental Safety, vol.47, issue.2, pp.195-200, 2000.
DOI : 10.1006/eesa.2000.1947

M. R. Provenzano, V. Orazio, M. Jerzykiewicz, and N. Senesi, Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources, Chemosphere, vol.55, issue.6, pp.885-892, 2004.
DOI : 10.1016/j.chemosphere.2003.11.040

V. Misra, S. D. Pandey, and P. N. Viswanathan, Environmental Significance of Humic Acid in the Sequestration of Metals, Chemistry and Ecology, vol.23, issue.2, pp.103-112, 1996.
DOI : 10.1016/0043-1354(85)90036-3

S. Hiradate and N. U. Yamaguchi, Chemical species of Al reacting with soil humic acids, Journal of Inorganic Biochemistry, vol.97, issue.1, pp.26-31, 2003.
DOI : 10.1016/S0162-0134(03)00242-3

N. Dupuy and F. Douay, Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.57, issue.5, pp.1037-1047, 2001.
DOI : 10.1016/S1386-1425(00)00420-0

URL : https://hal.archives-ouvertes.fr/hal-00279876

A. M. Mota, A. Rato, C. Brazia, and M. L. Goncalves, :?? A Comparative Study with Other Ions, Environmental Science & Technology, vol.30, issue.6, pp.1970-1974, 1996.
DOI : 10.1021/es9507123

D. G. Kinniburgh, W. H. Van-riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti et al., Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.151, issue.1-2, pp.147-166, 1999.
DOI : 10.1016/S0927-7757(98)00637-2

J. P. Pinheiro, A. M. Mota, and M. F. Benedetti, Effect of Aluminum Competition on Lead and Cadmium Binding to Humic Acids at Variable Ionic Strength, Environmental Science & Technology, vol.34, issue.24, pp.5137-5143, 2000.
DOI : 10.1021/es0000899

E. Tipping, C. Rey-castro, S. E. Bryan, and J. Hamilton-taylor, Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimica et Cosmochimica Acta, vol.66, issue.18, pp.3211-3224, 1995.
DOI : 10.1016/S0016-7037(02)00930-4

E. M. Larrivee, K. M. Elkins, S. E. Andrews, and D. J. Nelson, Fluorescence characterization of the interaction of Al3+ and Pd2+ with Suwannee River fulvic acid in the absence and presence of the herbicide 2,4-dichlorophenoxyacetic acid, Journal of Inorganic Biochemistry, vol.97, issue.1, pp.32-45, 2003.
DOI : 10.1016/S0162-0134(03)00239-3

A. Porquet, J. F. Duval, and J. Buffle, Random Computer Generation of 3D Molecular Structures: Theoretical and Statistical Analysis, Macromolecular Theory and Simulations, vol.34, issue.2, pp.147-162, 2006.
DOI : 10.1002/mats.200500049

D. Effectivement and . La-situation-où-ac-complexe-un-maximum-de-plomb, AH devrait en complexer un minimum. La fluorescence montre ici un comportement particulier car au lieu que l'expérience où le plomb (II) est ajouté en dernier donne une concentration C Pb(AH) maximum, celle-ci révèle le moins d'acide humique complexé des trois manipulations, Cette expérience est aussi celle qui à la fois possède les plus faibles quantités d'acide humique et chlorogénique impliqués dans la complexation

. En, spectral entre les trois manipulations sont très nettes (Figure 11) Le quenching résultant de la complexation entre AH et Al(III) est le plus important dans le cas où l'acide gallique est ajouté en dernier (manipulation AH Al AG), et minimum dans le cas où l'acide humique est apporté en troisième

/. L. and C. =. Ag, Pourcentages d'ion métallique Al(III) fixé sur l'acide chlorogénique (UV-visible) et sur l'acide humique (fluorescence) Les abréviations sont représentatives de l'ordre dans lequel les réactifs ont été introduits, Tableau, vol.3, issue.6

. En-fluorescence, AH) est maximum quand l'acide gallique est ajouté en dernier et minimum quand c'est AH qui l'est. L'ordre des expériences selon la quantité d'acide humique complexé (% Al(AH) ) est toujours

L. 'expérience-dans-le, Al(III) complexés par l'acide gallique sont plus élevés que ceux complexés par l'acide humique pour toutes les concentrations d'Al(III) ajoutées. Al(III) se fixe donc préférentiellement sur l'acide gallique, Ceci est confirmé au vu des pourcentages d'Al(III) complexé par AG plus grands que ceux complexés par AH dans le sens AG Al AH

. Al and . Iii, acide chlorogénique, nous avions montré que c'était l'acide humique, dans cette configuration qui fixait plus facilement Al(III) par rapport à AC. On peut ainsi classer les trois molécules organiques selon leur pouvoir de fixer des ions Al(III) : AG > AH > AC, Cet ordre est cohérent avec les études effectuées précédemment (chapitre V) sur les molécules isolées de AC ou AG où l'acide gallique avait montré une capacité plus grande que AC pour piéger Al(III)

A. Montré-que, A. Fixent-le-plomb-les, A. Pb, A. Pb, >. Ah-pb et al., II) avec plus de difficultés que l'aluminium (III)

L. Spectres-de-fluorescence, Figure 13) témoignent d'une différence moins importante dans la quantité de métal complexé par AH entre chaque type d'expérience

L. Quantité-de-pb, II) complexé par AH n'atteint jamais 100% (contrairement à AG) et les taux calculés pour les expériences dans lesquelles on ajoute en dernier l'acide gallique ou le plomb (II) sont proches de ceux déterminés pour la troisième expérience (où l'acide humique est amené en dernier), Cette dernière montre moitié moins de Pb(II) complexé par AH

%. Au-vu-des-valeurs-de and . Pb, AG) calculés à partir des spectres UV-visible, la quantité de Pb(II) fixé à l'acide gallique est toujours supérieure quand l'acide humique est ajouté en dernier et elle est minimum lorsque l'acide gallique est additionné au final, Cet ordre selon % Pb(AG) des trois expériences (AG Pb AH > AH AG Pb > AH Pb AG) est le même que celui trouvé précédemment

. La-complexation-de-l, acide gallique quant à elle met en évidence que AG chélate plus facilement que AH les cations Al(III) et Pb(II) (sans interactions spécifiques) mais que de la même manière que pour AC, la complexation de Zn(II)

V. Chapitre, Etude de la compétition entre l'acide humique et une molécule organique 252

B. J. Alloway, Heavy Metals in Soils, 1995.

H. B. Bradl, Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, vol.277, issue.1, pp.1-18, 2004.
DOI : 10.1016/j.jcis.2004.04.005

A. Kabata-pendias and H. Pendias, Trace Elements in Soils and Plants, 1989.

M. M. Kononova, Soil Organic Matter, Soil Science, vol.95, issue.1, 1966.
DOI : 10.1097/00010694-196301000-00017

P. Maccarthy, THE PRINCIPLES OF HUMIC SUBSTANCES, Soil Science, vol.166, issue.11, pp.738-751, 2001.
DOI : 10.1097/00010694-200111000-00003

P. J. Dycus, K. D. Healy, G. K. Stearman, and M. J. Wells, Diffusion Coefficients and Molecular Weight Distributions of Humic and Fulvic Acids Determined by Flow Field-Flow Fractionation, Separation Science and Technology, vol.21, issue.7-9, pp.1435-1453, 1995.
DOI : 10.1039/an9881301253

C. Gueguen, B. Koukal, J. Dominik, and M. Pardos, Competition between alga (Pseudokirchneriella subcapitata), humic substances and EDTA for Cd and Zn control in the algal assay procedure (AAP) medium, Chemosphere, vol.53, issue.8, pp.927-934, 2003.
DOI : 10.1016/S0045-6535(03)00719-7

G. A. Martinez, S. J. Traina, and T. J. Logan, Characterization of Metal Complexation in Multiligand Systems with Lanthanide Luminescence, Journal of Colloid and Interface Science, vol.204, issue.1, pp.33-44, 1998.
DOI : 10.1006/jcis.1998.5573

E. J. Kalis, E. J. Temminghoff, L. Weng, and W. H. Van-riemsdijk, EFFECTS OF HUMIC ACID AND COMPETING CATIONS ON METAL UPTAKE BY LOLIUM PERENNE, Environmental Toxicology and Chemistry, vol.25, issue.3, pp.702-711, 2006.
DOI : 10.1897/04-576R.1

K. S. Lo, W. F. Yang, and Y. C. Lin, Effects of organic matter on the specific adsorption of heavy metals by soil, Toxicological & Environmental Chemistry, vol.11, issue.2-4, pp.139-153, 1992.
DOI : 10.1080/02772249209357787

K. Mackenzie, A. Georgi, M. Kumke, and F. Kopinke, Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 2. Solid-Phase Microextraction (SPME) and Fluorescence Quenching Technique (FQT) as Analytical Methods, Environmental Science & Technology, vol.36, issue.20, pp.4403-4409, 2002.
DOI : 10.1021/es010310x

E. M. Larrivee, K. M. Elkins, S. E. Andrews, and D. J. Nelson, Fluorescence characterization of the interaction of Al3+ and Pd2+ with Suwannee River fulvic acid in the absence and presence of the herbicide 2,4-dichlorophenoxyacetic acid, Journal of Inorganic Biochemistry, vol.97, issue.1, pp.32-45, 2003.
DOI : 10.1016/S0162-0134(03)00239-3