.. Adsorption-des-lipides-sur-les-nanotubes, 52 II.3.1. Méthode employée pour l'auto-organisation, 54 III. Interaction de sels métalliques avec les nanotubes et formation de nanoparticules, p.56

.. Méthode-d-'imprégnation, 56 III.2. Formation et caractérisation des nanoparticules, p.59

I. 5. Conclusion and .. , 68 IV. Application des nanohybrides à la catalyse, p.70

.. Nanocomposites-À-base-de-palladium, 72 IV.2.2. Exemple d'application : électrocatalyse de l'oxydation de l'éthanol, 72 IV.2.1. Propriétés électrochimiques du, p.75

.. Stratégie-employée, 88 II, p.89

L. Généralités-sur, 89 II.1.1. Structure des anticorps, p.91

.. Synthèse-et-greffage-de-molécules-hétéro-bifonctionnelles, 92 III.1. Vers une fonctionnalisation non covalente des nanotubes93 III.1.1. Nature des groupements chélatants93 III.1.2. Groupements A permettant l'interaction avec la surface des nanotubes, 96 III.1.4. Contrôle du ?-stacking sur les nanotubes, p.97

.. La-fonctionnalisation, 101 III.3. Détermination du taux de chargement en nickel sur les nanotubes 102 IV. Détection d'un anticorps par un hybride NT 103 IV.1. Méthode générale 103 IV.2. Détection d'Ellman via l'acétylcholinestérase, III.2.3. Contrôle de, p.106

I. 5. Conclusion and .. , 110 V. Approche pour la détection de la protéine, Prion, p.111

I. Introduction and .. , 118 II. Conception d'un agent clivant de l, p.118

.. Stratégie-suivie, 122 III Association covalente de SWNTs avec un dérivé de l'acridine et clivage de l 123 III.1. Synthèse d'un analogue greffable de l'acridine et fonctionnalisation de nanotubes SWNTs, Spectroscopie UV-Vis-NIR, p.127

.. Clivage-de-l-'adn, 128 III.3.2. Les différentes formes de l'ADN plasmidique128 III.3.3129 IV. Fonctionnalisation des nanotubes MWNTS avec les dérivés de l'acridine et clivage de l, p.133

V. Uv-visible and .. , 175 VI.2. Combinaison de nanotubes MWNTs et de nanoparticules d'or, p.177

.. Stratégie-adoptée and .. Carbone-mwnts, 188 IV. Association d'aptamères et de nanotubes, IV.1.2. Fonctionnalisation des nanotubes, 0190.

.. Synthèse-organique, 210 I.1. Résultats expérimentaux du chapitre II, p.243

W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, p.354, 1990.
DOI : 10.1038/347354a0

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.56, 1991.
DOI : 10.1038/354056a0

D. S. Bethune, C. H. Klang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, p.605, 1993.
DOI : 10.1038/363605a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603, 1993.
DOI : 10.1038/363603a0

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, p.49, 1995.
DOI : 10.1016/0009-2614(95)00825-O

P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki et al., 17 Chiang, I, Nature Chem. Mater. J. Phys. Chem. B J. Phys. Chem. B J. Phys. Chem. B J. Phys. Chem. B C. B Chem. Phys. Lett, vol.362, issue.282, pp.522-538, 1157.

B. Zhao, H. Hu, S. Niyogi, M. E. Itkis, M. A. Hamon et al., Chromatographic Purification and Properties of Soluble Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.123, issue.47, p.11673, 2001.
DOI : 10.1021/ja010488j

B. Q. Wei, R. Vajtai, P. M. Ajayan, M. Kociak, A. Y. Kasumov et al., Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-53, 2001.
DOI : 10.1063/1.1396632

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Nanotube Nanodevice, Science, vol.278, issue.5335, p.100, 1997.
DOI : 10.1126/science.278.5335.100

W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, vol.75, issue.20, p.3129, 1999.
DOI : 10.1063/1.125253

M. J. Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano et al., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, issue.5581, p.593, 2002.
DOI : 10.1126/science.1072631

L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Journet et al., Single-wall carbon nanotubes for optical limiting, Chemical Physics Letters, vol.307, issue.5-6, p.317, 1999.
DOI : 10.1016/S0009-2614(99)00528-X

D. Ugarte, A. Chatelain, and W. A. De-heer, Nanocapillarity and Chemistry in Carbon Nanotubes, Science, vol.274, issue.5294, p.1897, 1996.
DOI : 10.1126/science.274.5294.1897

J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu et al., Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chemical Physics Letters, vol.329, issue.1-2, p.61, 2000.
DOI : 10.1016/S0009-2614(00)00998-2

Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology, vol.47, issue.1, p.47, 2007.
DOI : 10.1038/nnano.2006.170

Z. Liu, X. Sun, N. Nakayama-ratchford, H. Dai, N. W. Kam et al., Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano, vol.1, issue.1, pp.50-92, 2005.
DOI : 10.1021/nn700040t

J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley et al., Fullerene Pipes, Science, vol.280, issue.5367, p.1253, 1998.
DOI : 10.1126/science.280.5367.1253

H. Li, M. E. Kose, L. Qu, Y. Lin, R. B. Martin et al., Excited-state energy transfers in single-walled carbon nanotubes functionalized with tethered pyrenes, Journal of Photochemistry and Photobiology A: Chemistry, vol.185, issue.1, p.94, 2007.
DOI : 10.1016/j.jphotochem.2006.05.017

R. K. Saini, I. W. Chiang, H. Peng, R. E. Smalley, W. E. Billups et al., Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes, Journal of the American Chemical Society, vol.125, issue.12, p.3617, 2003.
DOI : 10.1021/ja021167q

D. M. Guldi, G. M. Rahman, N. Jux, D. Balbinot, U. Hartnagel et al., Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems, Journal of the American Chemical Society, vol.127, issue.27, p.9830, 2005.
DOI : 10.1021/ja050930o

M. Melle-franco, F. Zerbetto, S. Campidelli, M. Prato, B. Z. Tang et al., 142 Calvert, P. Nature, J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed, vol.128, issue.124, pp.210-143, 1999.

J. Gao, B. Zhao, M. E. Itkis, E. Bekyarova, H. Hu et al., Chemical Engineering of the Single-Walled Carbon Nanotube???Nylon 6 Interface, Journal of the American Chemical Society, vol.128, issue.23, pp.7492-147, 2005.
DOI : 10.1021/ja057484p

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, vol.104, issue.10, p.4245, 2004.
DOI : 10.1021/cr020730k

R. F. Service, CHEMISTRY: Platinum in Fuel Cells Gets a Helping Hand, Science, vol.315, issue.5809, p.172, 2007.
DOI : 10.1126/science.315.5809.172

C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. Baker, Graphite Nanofibers as an Electrode for Fuel Cell Applications, The Journal of Physical Chemistry B, vol.105, issue.6, p.1115, 2001.
DOI : 10.1021/jp003280d

Z. Liu, X. Y. Ling, B. Guo, L. Hong, and J. Y. Lee, Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation, Journal of Power Sources, vol.167, issue.2, p.272, 2007.
DOI : 10.1016/j.jpowsour.2007.02.044

J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, and . Liang, Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.110, issue.11, p.5245, 2006.
DOI : 10.1021/jp0567063

J. J. Wang, G. P. Yin, and J. Zhang, High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell, Electrochimica Acta, vol.52, issue.24, p.7042, 2007.
DOI : 10.1016/j.electacta.2007.05.038

K. Jeng, C. Chien, N. Hsu, S. Yen, S. Chiou et al., Performance of direct methanol fuel cell using carbon nanotube-supported Pt???Ru anode catalyst with controlled composition, Journal of Power Sources, vol.160, issue.1, pp.97-129, 2006.
DOI : 10.1016/j.jpowsour.2006.01.057

W. Li, C. Liang, W. Zhou, J. Qiu, Z. H. Zhou et al., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.107, issue.26, p.6292, 2003.
DOI : 10.1021/jp022505c

L. Liu, T. Wang, J. Li, Z. Guo, L. Dai et al., Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker, Chemical Physics Letters, vol.367, issue.5-6, p.747, 2003.
DOI : 10.1016/S0009-2614(02)01789-X

J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui et al., Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and Its Improved Catalytic Performance for Methanol Oxidation, The Journal of Physical Chemistry B, vol.110, issue.24, p.11775, 2006.
DOI : 10.1021/jp061045a

L. M. Ang, T. S. Hor, and G. Xu, Electroless Plating of Metals onto Carbon Nanotubes Activated by a Single-Step Activation Method, Chemistry of Materials, vol.11, issue.8, p.2115, 1999.
DOI : 10.1021/cm990078i

M. Tsai, T. Yeh, and C. Tsai, An improved electrodeposition technique for preparing platinum and platinum???ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation, Electrochemistry Communications, vol.8, issue.9, p.1445, 2006.
DOI : 10.1016/j.elecom.2006.07.003

X. Chen, N. Li, K. Eckhard, L. Stoica, and W. Xia, Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes, Electrochemistry Communications, vol.9, issue.6, p.1348, 2007.
DOI : 10.1016/j.elecom.2007.01.034

E. L. 81-muetterties, J. R. Bleeke, E. J. Wucherer, and T. Albright, Structural, stereochemical, and electronic features of arene-metal complexes, Chemical Reviews, vol.82, issue.5, pp.499-82, 1982.
DOI : 10.1021/cr00051a002

J. Amblard, J. Belloni, O. J. Platzer, . Chim, and . Phys, 95 Ferradini, C.; Pucheault, J. Biologie de l'action des rayonnements ionisants, 1973.

W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang et al., Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation, Nano Letters, vol.2, issue.4, p.311, 2002.
DOI : 10.1021/nl010095i

X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde et al., Carbon Nanotube Amplification Strategies for Highly Sensitive Immunodetection of Cancer Biomarkers, Journal of the American Chemical Society, vol.128, issue.34, p.11199, 2006.
DOI : 10.1021/ja062117e

J. J. Gooding, R. Wibowo, J. Q. Liu, W. Yang, D. Losic et al., Protein Electrochemistry Using Aligned Carbon Nanotube Arrays, Journal of the American Chemical Society, vol.125, issue.30, p.9006, 2003.
DOI : 10.1021/ja035722f

URL : http://dro.deakin.edu.au/eserv/DU:30035173/yang-proteinelectrochemistry-2003.pdf

K. Jiang, L. S. Schadler, R. W. Siegel, X. Zhang, H. Zhang et al., Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, Journal of Materials Chemistry, vol.14, issue.1, p.37, 2004.
DOI : 10.1039/b310359e

F. Rusmini and . Zhong, Protein Immobilization Strategies for Protein Biochips, Biomacromolecules, vol.8, issue.6, p.1775, 2007.
DOI : 10.1021/bm061197b

URL : http://doc.utwente.nl/71101/1/protein.pdf

C. Li, M. Curreli, H. Lin, B. Lei, F. N. Ishikawa et al., Nanowires and Carbon Nanotubes, Journal of the American Chemical Society, vol.127, issue.36, p.12484, 2005.
DOI : 10.1021/ja053761g

URL : https://hal.archives-ouvertes.fr/hal-00797753

R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. Kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, Proceedings of the National Academy of Sciences, vol.100, issue.9, p.4984, 2003.
DOI : 10.1073/pnas.0837064100

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts et al., Système immunitaire; La cellule, 1038.

E. Hochüli, H. Dobeli, A. J. Schacher, W. Liu, C. M. Halsey et al., A 1987, 411, 177. 59 Hainfeld, J. F J. Struct. Biol, vol.127, p.185, 1999.

J. S. Kim, A. C. Valencia, R. Liu, and W. Lin, Highly-Efficient Purification of Native Polyhistidine-Tagged Proteins by Multivalent NTA-Modified Magnetic Nanoparticles, Bioconjugate Chemistry, vol.18, issue.2, p.333, 2007.
DOI : 10.1021/bc060195l

L. Lebeau, F. Lach, C. Vénien-bryan, A. Renault, J. Dietrich et al., Two-dimensional crystallization of a membrane protein on a detergent-resistant lipid monolayer, Journal of Molecular Biology, vol.308, issue.4, p.639, 2001.
DOI : 10.1006/jmbi.2001.4629

X. Liang, J. A. Parkinson, M. Weishaupl, R. O. Gould, S. J. Paisey et al., Structure and Dynamics of Metallomacrocycles:?? Recognition of Zinc Xylyl-Bicyclam by an HIV Coreceptor, Journal of the American Chemical Society, vol.124, issue.31, p.9105, 2002.
DOI : 10.1021/ja0260723

F. Liang, J. M. Beach, P. K. Rai, W. Guo, R. H. Hauge et al., Highly Exfoliated Water-Soluble Single-Walled Carbon Nanotubes, Chemistry of Materials, vol.18, issue.6, p.1520, 2006.
DOI : 10.1021/cm0526967

T. Da-ros, G. Spalluto, A. S. Boutorine, R. V. Bensasson, and M. Prato, DNA-Photocleavage Agents, Current Pharmaceutical Design, vol.7, issue.17, pp.1781-1821, 2001.
DOI : 10.2174/1381612013397140

B. Armitage, Photocleavage of Nucleic Acids, Chemical Reviews, vol.98, issue.3, p.1171, 1998.
DOI : 10.1021/cr960428+

L. S. Lerman, Structural considerations in the interaction of DNA and acridines, Journal of Molecular Biology, vol.3, issue.1, p.18, 1961.
DOI : 10.1016/S0022-2836(61)80004-1

J. Joseph, N. V. Eldho, and D. Ramaiah, Control of Electron-Transfer and DNA Binding Properties by the Tolyl Spacer Group in Viologen Linked Acridines, The Journal of Physical Chemistry B, vol.107, issue.18, p.4444, 2003.
DOI : 10.1021/jp027248q

E. Kuruvilla and D. Ramaiah, Selective Interactions of a Few Acridinium Derivatives with Single Strand DNA:?? Study of Photophysical and DNA Binding Interactions, The Journal of Physical Chemistry B, vol.111, issue.23, p.6549, 2007.
DOI : 10.1021/jp071459j

J. Joseph, N. V. Eldho, and D. Ramaiah, Design of Photoactivated DNA Oxidizing Agents: Synthesis and Study of Photophysical Properties and DNA Interactions of Novel Viologen-Linked Acridines, Chemistry - A European Journal, vol.9, issue.23, p.5926, 2003.
DOI : 10.1002/chem.200304936

S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko et al., Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion with a Much Longer Lifetime and Higher Energy Than That of the Natural Photosynthetic Reaction Center, Journal of the American Chemical Society, vol.126, issue.6, p.1600, 2004.
DOI : 10.1021/ja038656q

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean et al., DNA-assisted dispersion and separation of carbon nanotubes, Nature Materials, vol.2, issue.5, p.338, 2003.
DOI : 10.1038/nmat877

R. Singh, D. Pantarotto, D. Mccarthy, O. Chaloin, J. Hoebeke et al., Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:?? Toward the Construction of Nanotube-Based Gene Delivery Vectors, Journal of the American Chemical Society, vol.127, issue.12, p.4388, 2005.
DOI : 10.1021/ja0441561

J. Chen and C. P. Collier, Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins, The Journal of Physical Chemistry B, vol.109, issue.16, p.7605, 2005.
DOI : 10.1021/jp050389i

K. Saito, V. Troiani, H. Qiu, N. Solladie, T. Sakata et al., Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides, The Journal of Physical Chemistry C, vol.111, issue.3, p.1194, 2007.
DOI : 10.1021/jp065615i

D. M. Guldi, H. Taieb, G. M. Rahman, N. Tagmatarchis, and M. Prato, Novel Photoactive Single-Walled Carbon Nanotube-Porphyrin Polymer Wraps: Efficient and Long-Lived Intracomplex Charge Separation, Advanced Materials, vol.126, issue.7, p.871, 2005.
DOI : 10.1002/adma.200400641

M. Alvaro, P. Atienzar, P. De-la-cruz, J. L. Delgado, V. Troiani et al., Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes, Journal of the American Chemical Society, vol.128, issue.20, p.6626, 2006.
DOI : 10.1021/ja057742i

D. M. Guldi, G. M. Rahman, S. Qin, M. Tchoul, and W. Ford, Versatile Coordination Chemistry towards Multifunctional Carbon Nanotube Nanohybrids, Chemistry - A European Journal, vol.123, issue.8, p.2152, 2006.
DOI : 10.1002/chem.200500933

R. Chitta, A. S. Sandanayaka, A. L. Schumacher, L. Souza, Y. Araki et al., Donor???Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer, The Journal of Physical Chemistry C, vol.111, issue.19, p.6947, 2007.
DOI : 10.1021/jp0704416

I. Chapitre, Agents oxydants de l'ADN et transfert électronique photoinduit 41

H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang et al., Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.126, issue.4, p.1014, 2004.
DOI : 10.1021/ja037142o

P. J. Boul, D. G. Cho, G. M. Rahman, M. Marquez, Z. Ou et al., Sapphyrin???Nanotube Assemblies, Journal of the American Chemical Society, vol.129, issue.17, p.5683, 2007.
DOI : 10.1021/ja069266h

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526119

B. 44-ballesteros, G. De-la-torre, C. Ehli, G. M. Aminur-rahman, F. Agullo-rueda et al., Single-Wall Carbon Nanotubes Bearing Covalently Linked Phthalocyanines ??? Photoinduced Electron Transfer, Journal of the American Chemical Society, vol.129, issue.16, p.5061, 2007.
DOI : 10.1021/ja068240n

M. Alvaro, P. Atienzar, P. De-la-cruz, J. L. Delgado, H. Garcia et al., Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube, The Journal of Physical Chemistry B, vol.108, issue.34, p.12691, 2004.
DOI : 10.1021/jp0480044

D. M. Guldi, G. M. Rahman, V. Sgobba, N. A. Kotov, D. Bonifazi et al., CNT???CdTe Versatile Donor???Acceptor Nanohybrids, Journal of the American Chemical Society, vol.128, issue.7, p.2315, 2006.
DOI : 10.1021/ja0550733

H. Kotani, K. Ohkubo, S. J. Fukuzumi, S. Fukuzumi, S. Fujita et al., 68 Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3 ème Edition, 67 Valeur, B. Molecular Fluorescence: Principles and Applications Doklady Akad. Nauk SSSR 1981, pp.1465-63, 1419.

C. Ménard-moyon, Nanotubes de carbone: Applications à la limitation optique, la nanoélectronique et développement de nouvelles méthodes de fonctionnalisation, Thèse de Doctorat, 2005.

L. Vivien, Etude des propriétés optiques non linéaires des nanotubes de carbone pour la limitation optique, Thèse de Doctorat, Ecole Polytechnique, 2001.

N. Izard, Nanotubes de carbone: Systèmes pour la limitation optique, Thése de Doctorat, 2004.

K. Mansour, M. J. Soileau, and E. W. Van-stryland, Nonlinear optical properties of carbon-black suspensions (ink), Journal of the Optical Society of America B, vol.9, issue.7, p.1100, 1992.
DOI : 10.1364/JOSAB.9.001100

L. W. Tutt and A. Kost, Optical limiting performance of C60 and C70 solutions, Nature, vol.356, issue.6366, p.225, 1992.
DOI : 10.1038/356225a0

L. Vivien, D. Riehl, and F. Hache, Optical limiting properties of carbon nanotubes, Physica B: Condensed Matter, vol.323, issue.1-4, p.233, 2002.
DOI : 10.1016/S0921-4526(02)00974-2

URL : https://hal.archives-ouvertes.fr/hal-00838168

L. Vivien, D. Riehl, J. Delouis, J. A. Delaire, F. Hache et al., Picosecond and nanosecond polychromatic pump???probe studies of bubble growth in carbon-nanotube suspensions, Journal of the Optical Society of America B, vol.19, issue.2, p.208, 2002.
DOI : 10.1364/JOSAB.19.000208

URL : https://hal.archives-ouvertes.fr/hal-00836939

L. Liu, S. Zhang, Y. Qin, Z. X. Guo, C. Ye et al., Synthetic metals, J. Phys. Chem. B, vol.853, issue.104, pp.135-136, 2000.

R. T. Arnold, O. C. Elmer, R. M. Dodson, R. D. Bach, and C. Canepa, Thermal Decarboxylation of Unsaturated Acids, Journal of the American Chemical Society, vol.72, issue.10, p.4359, 1051.
DOI : 10.1021/ja01166a007

V. Chapitre, Nanotubes de carbone et aptamères pour le ciblage de cellules tumorales de manière non invasive et quantitative. Elle permet également d'étudier en parallèle la biodistribution in vivo des " nanotubes-aptamères

V. Chapitre, Nanotubes de carbone et aptamères pour le ciblage de cellules tumorales 19

T. R. Cech, RNA finds a simpler way, Nature, vol.428, issue.6980, p.263, 2004.
DOI : 10.1038/428263a

A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, vol.346, issue.6287, p.818, 1990.
DOI : 10.1038/346818a0

D. L. Robertson and G. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, vol.344, issue.6265, p.467, 1990.
DOI : 10.1038/344467a0

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, issue.4968, p.505, 1990.
DOI : 10.1126/science.2200121

R. Green, A. D. Ellington, and J. W. Szostak, In vitro genetic analysis of the Tetrahymena self-splicing intron, Nature, vol.347, issue.6291, p.406, 1990.
DOI : 10.1038/347406a0

H. J. Thiesen and C. Bach, Target Detection Assay (TDA): a versatile procedure to determine DNA blinding sites as demonstrated on SP1 protein, Nucleic Acids Research, vol.18, issue.11, p.3203, 1990.
DOI : 10.1093/nar/18.11.3203

T. K. Blackwell, L. Kretzner, E. M. Blackwood, R. N. Eisenman, and H. Weintraub, Sequence-specific DNA binding by the c-Myc protein, Science, vol.250, issue.4984, p.1149, 1990.
DOI : 10.1126/science.2251503

T. K. Blackwell and H. Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection, Science, vol.250, issue.4984, p.1104, 1990.
DOI : 10.1126/science.2174572

R. Pollock and R. Treisman, A sensitive method for the determination of protein-DNA binding specificities, Nucleic Acids Research, vol.18, issue.21, p.6197, 1990.
DOI : 10.1093/nar/18.21.6197

J. Wang, H. Jiang, F. Liu, E. N. Brody, L. Gold et al., 18 Eyetech Study Group Retina 2002, 22, 143. 19 Eyetech Study Group Ophthalmology, Cerchia, L. Aptamers selected from live tumor cells and the use thereof; Patent WO2005093097, pp.571-979, 2000.

L. 26-cerchia, F. Duconge, C. Pestourie, J. Boulay, Y. Aissouni et al., Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase, PLoS Biology, vol.261, issue.4, p.123, 2005.
DOI : 10.1371/journal.pbio.0030123.g006

A. A. Bianco, K. Kostarelos, and M. Prato, Expert Opin, Drug Delivery Curr. Opin. Chem. Biol, vol.1, issue.9, p.674, 2004.

N. W. Kam, H. Dai, N. W. Kam, H. P. Dai, S. M. Bachilo et al., Carbon Nanotubes as Intracellular Protein Transporters:?? Generality and Biological Functionality, Proc. Natl. Acad. Sci. U.S.A, pp.6021-6070, 2004.
DOI : 10.1021/ja050062v

URL : http://arxiv.org/abs/cond-mat/0503005

D. Cai, J. M. Mataraza, Z. Qin, Z. Huang, J. Huang et al., Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nature Methods, vol.109, issue.6, p.449, 2005.
DOI : 10.1021/nl0485399