
HAL Id: tel-00362751
https://theses.hal.science/tel-00362751

Submitted on 19 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluid Models for Content Distribution Systems
Florence Clévenot-Perronnin

To cite this version:
Florence Clévenot-Perronnin. Fluid Models for Content Distribution Systems. Networking and Inter-
net Architecture [cs.NI]. Université Nice Sophia Antipolis, 2005. English. �NNT : �. �tel-00362751�

https://theses.hal.science/tel-00362751
https://hal.archives-ouvertes.fr

Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Spécialité : Informatique

par

Florence Clévenot-Perronnin

Équipe d’accueil : MAESTRO – INRIA Sophia Antipolis

Fluid Models for Content Distribution Systems

Soutenue publiquement à l’INRIA le 3 octobre 2005 devant le jury composé de :

Directeur : Dr. Philippe Nain INRIA

Rapporteurs : Pr. R. Srikant University of Illinois, Urbana-Champaign

Pr. Don Towsley University of Massachusetts, Amherst

Examinateurs : Pr. Ernst Biersack Institut Eurécom

Pr. Keith Ross Polytechnic University, New York

Dr. Jean-Marc Vincent Université Joseph Fourier, Grenoble

Fluid Models for Content Distribution Systems

Florence Clévenot-Perronnin

Titre de la thèse en français :

Modèles Fluides pour l’Analyse des Systèmes de
Distribution de Contenu

Acknowledgments

I would like to express my deepest gratitude to my advisor Philippe Nain for his ded-

ication and guidance. I have been extremely fortunate to work with such a talented

researcher, and his total confidence in my work has always been encouraging especially

at the most critical moments.

During the course of this thesis I have been fortunate to work with external

researchers. I am particularly indebted to Keith Ross for our fruitful collaboration on

several chapters of this thesis, and for always pushing me to focus on the latest “killer

problems”. I also thank Marwan Krunz for asking the right question that helped me

change the destiny of a so far unfortunate paper.

I wish to thank the members of my PhD defense committee for accepting this

responsibility: R. Srikant and Don Towsley who reviewed my thesis, Ernst Biersack

who presided the jury, and Keith Ross and Jean-Marc Vincent.

I would like to express my gratitude to all the present and past members of the

MISTRAL/MAESTRO team at INRIA with whom I shared numerous discussions. In

particular, I wish to thank Maria Ladoue and Urtzi Ayesta for their true friendship.

Among the others I would also like to thank Robin Groenevelt, Nidhi Hegde, Sujay

Sanghavi, Nicolas Bonneau, Victor Ramos and Rabea Boulifa for their help, advice,

support, cheerfulness and kindness. Special thanks also to Ephie Deriche for her effi-

ciency and helpful assistance.

I am grateful to my parents for letting me choose my own path and for helping

me gain self-confidence. From them I have learned the value of work. To them and to

my brother Pierre, thanks for making my life so cheerful.

Last but definitely not least, all my love and thanks to my husband Florent,

without whom I would never even have started a PhD. Not only has he helped me

in many practical aspects by reviewing my work and sharing his ideas, but he has

i

ii

also given me the taste for research from the beginning and has patiently, endlessly

encouraged me throughout these years. He fills my life with pride and happiness, and

has always been my most important motivation. I did this thesis for him and thanks

to him.

Table of Contents

Acknowledgments i

Résumé – Abstract 1

1 Introduction 3

I A Document-Based Fluid Model 9

2 A Document-Based Fluid Model 11

2.1 Introduction . 11

2.2 Caching Systems . 11

2.2.1 Cache clusters . 13

2.2.2 Hierarchical architectures . 18

2.2.3 Peer-to-peer architectures . 19

2.3 Related Work on Performance Analysis of Distributed Caching Systems 23

2.4 A General Stochastic Fluid Model . 25

2.4.1 Review of fluid modeling . 25

2.4.2 General framework . 26

2.5 Conclusion . 30

3 Application to Cache Clusters 33

3.1 Introduction . 33

3.2 Specializing the Model to Cache Clusters 34

3.3 Hit Probability Analysis . 36

3.4 Application . 41

3.4.1 Qualitative behavior . 41

iii

iv Table of Contents

3.4.2 Comparison of partition hashing and winning hashing 44

3.5 Experimental Validation . 44

3.6 Finite Capacity Case . 48

3.7 Conclusion . 49

4 Performance of the Squirrel P2P Caching System 51

4.1 Introduction . 51

4.2 Specific Model . 52

4.3 Analysis . 53

4.3.1 Hit probability analysis . 54

4.3.2 Latency reduction . 58

4.3.3 Discussion and extensions . 58

4.4 Qualitative insight in the Squirrel system 60

4.5 Experimental Validation . 62

4.6 Conclusion . 64

5 Extension to Large Networks and Zipf-Like Popularity 67

5.1 Introduction . 67

5.2 A M/M/∞-Modulated Fluid Model . 68

5.3 Hit Probability: Uniform Popularity Case 70

5.4 Hit Probability: Zipf-like Popularity Case 74

5.5 Application to Qualitative and Quantitative problems 76

5.5.1 Experimental setup . 76

5.5.2 Impact of the popularity distribution on the performance 77

5.5.3 Utility of announced departures 78

5.6 Experimental Validation . 79

5.6.1 Uniform popularity case . 80

5.6.2 Zipf-like popularity . 81

5.7 Conclusion . 81

II A Client-Based Fluid Model 83

6 A Multiclass Model for P2P Networks 85

6.1 Introduction . 85

6.2 Related Work . 87

6.3 Multiclass Model . 89

6.4 Resource Allocation Policy for Service Differentiation 93

Table of Contents v

6.4.1 Equilibrium . 94

6.4.2 How can we achieve a target QoS ratio k? 98

6.4.3 What if users stay connected after the download? 100

6.5 Bandwidth Diversity . 101

6.5.1 How can we minimize the highest download cost? 105

6.6 Conclusions and Perspectives . 107

7 Conclusion 109

7.1 Summary and Contributions . 109

7.2 Perpectives . 112

A Stationary Distribution of the Node Process at Jump Times 115

A.1 Stationary Distribution π of the Engset Model at Jump Times 115

A.2 Stationary Distribution π of the M/M/∞ Model at Jump Times 116

B Uniqueness of the solution of the tridiagonal systems (3.15) and (4.10)119

B.1 Uniqueness of the solution of (3.15) . 119

B.2 Uniqueness of the solution of (4.10) . 120

C Proof of equation (4.14) 121

D Proof of equation (4.17) 123

E Proof of Proposition 5.3.1 125

F Engset and M/M/∞ Models 129

G Service Differentiation in BitTorrent-like networks: Type-2 Equilib-

rium 131

H Présentation des Travaux de Thèse 133

H.1 Introduction . 133

H.1.1 Systèmes de distribution de contenu 133

H.1.2 Analyse de Performance . 135

H.1.3 Organisation et contributions de la thèse 136

H.2 Un modèle fluide générique pour les caches distribués 137

H.2.1 Etat de l’art des systèmes de caches distribués 137

H.2.2 Modèle fluide générique . 138

H.3 Application aux Grappes de Caches . 139

vi Table of Contents

H.3.1 Spécialisation du modèle . 139

H.3.2 Résultats Expérimentaux . 140

H.4 Application au système Squirrel de cache P2P 142

H.4.1 Spécialisation du modèle . 142

H.4.2 Résultats Expérimentaux . 143

H.5 Extension aux grands réseaux et à d’autres distributions de popularité . 144

H.5.1 Adaptation du modèle . 145

H.5.2 Résultats Expérimentaux . 146

H.6 Un Modèle Multiclasses pour les Réseaux P2P 147

H.6.1 Présentation de BitTorrent . 147

H.6.2 Modèle Multiclasses . 148

H.6.3 Différentiation de service . 149

H.6.4 Accès hétérogènes . 150

H.7 Conclusion et Perspectives . 151

List of Abbreviations 155

Bibliography 166

List of Figures

1.1 Logical representation of Content Distribution Systems 4

3.1 Sample path of {(N(t), X(t))} for cache clusters. 37

3.2 Impact of ρ, γ and α on the hit probability for small clusters. 42

3.3 pH as a function of γ and α for ρ = 1 . 43

3.4 Comparison of winning hashing and partition hashing for N = 4, α = 0

and ρ = 1 . 44

3.5 Comparison of winning hashing and partition hashing for N = 4, α = 0

and γ = 1 . 45

3.6 Fluid model vs simulation: impact of γ (with N = 10 and ρ = 1). 47

3.7 Fluid model vs simulation: impact of ρ (with N = 10 and γ = 10). . . . 47

3.8 Impact of cache size B on the hit probability when α = 0. 49

4.1 Sample path of {(N(t), X(t))}. 55

4.2 Impact of ρ (with N = 3, α = 1 and γ = 2). 61

4.3 Impact of γ and α on the hit probability (with N = 3 and ρ = 1) 62

4.4 Fluid model vs discrete-event simulation. (N = 10, ρ = 1 and α = 1). . 63

4.5 Hit probability for large networks (N = 2000 and α = 1000). 64

5.1 Hit probability of Squirrel for various document popularity distributions. 78

5.2 Hit probability for announced/unannounced departures vs network size 79

5.3 Hit probability for announced/unannounced departures vs online time . 80

5.4 Validation of the multiclass M/M/∞ model for a Zipf-like popularity . . 82

6.1 General model for a two-class P2P file dissemination system 90

6.2 Two-class deterministic model for service differentiation 94

vii

viii List of Figures

6.3 Download cost tradeoff . 99

6.4 Selection of α for a target cost ratio k 99

6.5 Minimum of maximum download cost achieved for α ≈ 0.78 106

6.6 Minimum of maximum download cost achieved for a whole interval . . . 107

H.1 Probabilité de hit d’une grappe de caches en fonction de γ et α (ρ = 1) 141

H.2 Validation du modèle fluide par simulation: probabilité de hit en fonction

de γ (N = 10 et ρ = 1). 141

H.3 Probabilité de hit du système Squirrel en fonction de γ et α(N = 3 and

ρ = 1). 143

H.4 Validation du modèle fluide de Squirrel par simulation: probabilité de

hit en fonction de γ (N = 10 et ρ = 1) 144

H.5 Gain de performance entre départs annoncés et départs imprévus pour

Squirrel. 147

H.6 Illustration de la méthode de l’enveloppe pour minimiser le plus grand

temps moyen de téléchargement. 151

List of Tables

2.1 Notation . 30

3.1 Parameters for Cache Clusters . 35

3.2 Hit probability (%) for γ = 2 and ρ = 1. 46

4.1 System Parameters . 54

ix

Résumé

Les systèmes de distribution de contenu comme les caches web et les réseaux d’échanges de fichiers

doivent pouvoir servir une population de clients à la fois très grande (centaines de milliers) et fortement

dynamique (temps de connexion très courts). Ces caractéristiques rendent leur analyse très coûteuse

par les approches traditionnelles comme les modèles markoviens ou la simulation. Dans cette thèse nous

proposons des modèles fluides simples permettant de s’affranchir de l’une des dimensions du problème.

Dans la première partie, nous développons un modèle stochastique fluide pour les systèmes de

caches distribués. Les documents stockés sont modélisés par un fluide augmentant avec les requêtes

insatisfaites. Nous appliquons ce modèle aux “clusters” de caches et à Squirrel, un système de cache

pair-à-pair. Dans les deux cas notre modèle permet de calculer efficacement et avec précision la prob-

abilité de hit, et de mettre en évidence les paramètres clés de ces systèmes. Nous proposons également

une approximation multiclasses pour modéliser la popularité des documents.

Dans la seconde partie de cette thèse nous étudions BitTorrent, un système d’échange de fichiers

pair-à-pair. Nous proposons un modèle fluide multiclasses qui remplace les usagers par un fluide. Nous

considérons deux classes d’usagers pour modéliser les différences de débits d’accès ou de qualité de

service. Nous obtenons une formule close pour le temps de téléchargement dans chaque classe. Nous

montrons également comment allouer la bande passante a chaque classe pour offrir un service différencié.

Abstract

Content distribution systems (CDS) such as web caches and file sharing systems are large-scale dis-

tributed systems that may serve hundreds of thousands of users. These highly dynamic systems exhibit

a very large state space which makes them difficult to analyze with classical tools such as Markovian

models or simulation. In this thesis we propose macroscopic fluid models to reduce the complexity

of these systems. We show that these simple models provide accurate and insightful results on the

performance of CDS.

In the first part we propose a generic fluid model for distributed caching systems. The idea is

to replace cached documents with fluids that increase with unsatisfied requests. Caches may go up

and down according to a birth-death process. We apply this model to study two caching systems:

cache clusters and a P2P cooperative cache system called Squirrel. We derive an efficient and accurate

expression for their hit probabilities and show how the model identifies the key tradeoffs of these

systems. We also propose a multiclass approximation for taking into account document popularity.

In the second part of the thesis we consider file sharing systems such as BitTorrent. We propose

a two-class fluid model which replaces downloaders with fluids. This simple deterministic model may

reflect the problem of service differentiation or bandwidth diversity for instance. We provide a closed-

form expression of the average download time for each class under the worst-case assumption that users

leave the system immediately after completing their download. We also show how to allocate peers

bandwidth between classes to achieve service differentiation.

Chapter 1

Introduction

Let us consider a collection of documents such as HTML pages, images, multimedia

content offered by a set of web servers to a plurality of interested clients through a

network. A Content Distribution System (CDS) is a system designed to facilitate the

distribution of documents to the clients from the web servers, according to a target

performance metric. The origin Web servers are sometimes also considered to belong

to the class of CDS systems [SGD+02]. However, using our afore mentioned definition

we will restrict a CDS to being a logical intermediary between Web clients and servers

as shown in Figure 1.1.

Note that the representation in Figure 1.1 is purely logical. In its physical in-

stantiation, a CDS may be implemented directly at the clients, as in a peer-to-peer

network such as Kazaa [Kaz] or Gnutella [Gnu], or at the server level as in a content

distribution network like Akamai [Aka, DMP+02]. It may also consist of a dedicated

set of intermediary servers as in the caching paradigm. Therefore, the concept of a

content distribution system overcomes the traditional client-server architecture which

used to prevail in many Internet applications (FTP, Telnet, Web browsing...).

Having defined a content distribution system, we now classify them. Currently,

there exist mainly three types of architecture designed to alleviate the load on origi-

3

4 Chapter 1. Introduction

Content Distribution System

Web Servers

Web Clients

Figure 1.1: Logical representation of Content Distribution Systems

nating Web servers and/or facilitate the diffusion of content by bringing the desired

documents closer to the set of users, where the notion of closeness may include geo-

graphical, topological or delay factors [KWZ01].

The first type of CDS is the class of Web caching sytems. These systems are

widely used and easy to implement at proxy servers of virtually any existing private

or institutional network. They rely on the simple observation that a recently accessed

document is likely to be accessed again in the near future, especially given the skewness

of the popularity distribution of objects [BCF+99]. Typically, cache servers are phys-

ically placed between end users and web servers. They keep a copy of each accessed

file to answer directly the future requests for these files, and save the users the delay

of contacting the originating server.

A second class of CDS is the class of file sharing systems. The idea is that a

popular file downloaded by a given client ci may also be of interest for another client

cj of the same local network. If cj can get the file directly from ci, its latency is greatly

reduced while also reducing the load on the originating server. This is the essence of

the peer-to-peer (P2P) concept where clients (peers) also act as local servers for their

neighbors. In this case the CDS is physically part of the client network. These peer-

to-peer file sharing systems have recently become the main source of internet traffic

(see, for instance, [AG04, KBB+04]), mainly by making easily available highly popular

multimedia content such as music files and video clips. In peer-to-peer systems, every

peer keeps a number of documents that are made available to other peers. An object

5

may be localized through a variety of techniques, such as request flooding as in Gnutella

[Gnu], the use of hash tables as in Chord [SMK+01] for instance, or even through a

request to a centralized server as in the first version of Napster (see for instance [SGG03]

for a description of Napster’s architecture).

The third and last category of CDS is the class of Content Distribution Networks

(CDNs). These networks are designed to speed up content delivery and reduce the

load on Web servers by replicating their content and making it available to clients.

The principle of a content distribution network is slightly different from the caching

paradigm in the two following aspects. First, CDNs are privately owned networks

that provide their service to Web servers, whereas a cache system is typically locally

administrated by the client LAN or the Web server network. The typical CDN service

includes strategic locations worldwide, server availability and handling of dynamical

content, while caching systems only offer a local service and a limited range of cacheable

document types. Second, content may be pushed by the Web server into the CDN

replicas, whereas in the caching paradigm the copy is generally made upon a client

request. A CDN may be a worldwide network of shared servers, which physically

reflects the logical architecture of Figure 1.1, or it may be a server farm located at the

server place, in which case it physically belong to the “server” entity from a network

point of view.

Analyzing the performance of these CDSs is critical, for many reasons. First,

regarding emerging technologies such as new P2P architectures for instance, it is crucial

to evaluate the performance and scalability of the system early in the development

process to avoid deploying inadequate systems and to anticipate possible causes of

latency or overload. Performance analysis of these systems also allows one to identify

the important tradeoffs and to dimension these systems properly. Finally, performance

analysis is helpful, even for already deployed systems, for designing new features and

services, or concurrent systems that may bring significant improvement. It may also

be used for pricing problems.

However, CDSs exhibit an intrinsic complexity which makes their performance

analysis a difficult problem. Indeed, these systems deal with highly dynamic, hetero-

geneous and increasingly numerous users, servers and documents. To give an order of

magnitude of the typical dimension of a CDS, let us consider a few qualitative figures.

For instance, institutional caching systems must be able to serve tens of thousands

of users [WVS+99, DMF97] with total requests rates ranging from 12 to 178 requests

6 Chapter 1. Introduction

per second in large systems [WVS+99, DMF97], in a Web that contains billions of

documents (about 8 billion pages referenced by Google in June 2005). Regarding

CDNs, these systems are used by a significant fraction of the most popular web sites

[KWZ01] and therefore need to face high request rates for rapidly changing sets of

documents. P2P systems typically involve thousands to millions of users (statistics

available at [Edo, Sly, IUKB+04]) that frequently interrupt and resume their download

[IUKB+04]. The total traffic generated by these systems account for more than half of

the total internet traffic [AG04]. In addition, hosts may fail and be repaired, which can

modify both the cache, servers and user population, at nonnegligible rates: according

to [LMG95], many hosts stay up for about a week begore going down, and then go

back up after a short time. Though these figures were observed in 1995, churn rates

have not decreased and are even increasing due to users joining and leaving the system

several times a day in P2P systems for instance [BSV03].

For these reasons, classical analysis tools such as discrete Markovian models or

discrete-event simulation, suffer from a too large state space and often require costly

numerical methods or model simulations [ZA03, GFJ+03].

Inspired by the seminal work by Anick, Mitra and Sondhi in 1982 [AMS82] and the

subsequent success of fluid modeling of packet networks (see for instance [EM92, EM93,

KM01a, LZTK97, BBLO00, RRR02, LFG+01] and references therein), the central axis

of this thesis is to propose a fluid approach for modeling content distribution systems,

where the fluid approximation allows to reduce the discrete state space dimension of

these systems.

The outline of this dissertation is as follows.

• In the first part we propose to replace content with a fluid for modeling distributed

caching systems. This part is decomposed into four chapters:

– in Chapter 2 we review existing work and introduce a generic fluid framework

for modeling caching systems.

– in Chapter 3 we apply the model to a cache cluster system. We show how the

model exhibits some key properties of this system and quantitatively com-

pare two possible request direction schemes as an illustration of the mean-

ingfulness of the model. We then validate the model through a comparison

with discrete-event simulation.

7

– in Chapter 4 we apply the model to a novel cooperative web caching system

called Squirrel [IRD02]. We use an Engset model [Kel79] to model the

user behaviour. We underline the analytical differences with Chapter 3 and

compute the expected hit probability of this new system. Again, we outline

the important tradeoffs of this system and show how it can be expected to

scale with the number of users.

– in Chapter 5 we show how to overcome some limitations of the previous

two chapters. We first address a scalability problem by using an M/M/∞
user model instead of an Engset model. This new model provides the same

numerical results as the Engset model but now allows us to cope with realistic

network sizes (even millions of users). We then address the probability

distribution of requested documents by a clustering approximation.

− In the second and last part, we propose a second fluid model designed for peer-to-

peer file sharing systems. The idea is to take into account document replication

among the CDS by considering the sharing of a single file, and modeling the

downloaders by fluid. This part is composed of a unique chapter:

– in Chapter 6 we propose a multiclass model of users based on [QS04]. Our

approach allows us to evaluate and propose a service differentiation feature

in BitTorrent-like networks. We also show how it is possible to optimize the

protocol in presence of heterogeneous users.

Finally, Chapter 7 concludes this thesis.

Part I

A Document-Based Fluid Model

9

Chapter 2

A Document-Based Fluid Model

2.1 Introduction

In this chapter we propose a generic framework for modeling distributed caching sys-

tems. We first present an overview of caching systems and highlight the key features of

these systems. Then we review existing work on the performance analysis of distributed

caching systems. We finally introduce our generic fluid framework for modeling these

systems: a document-based stochastic fluid model.

2.2 Caching Systems

Web caching systems are designed to save bandwidth and reduce Web latency by keep-

ing copies of popular documents in servers (caches) that are “closer” to the end-users

than the Web servers, where the notion of closeness ideally means a low latency.

The basic mechanism of caching is as follows. Let us take the common example

of a proxy server located at the edge of a local area network (LAN). This proxy server

11

12 Chapter 2. A Document-Based Fluid Model

monitors all accesses of local clients to the Internet: it forwards requests to remote

servers and sends the replies to the appropriate client. Since many clients are likely to

request common documents (especially the most popular ones), the proxy server may

keep (or cache) a copy of each requested document when it is first sent by the remote

server. Thus, the proxy server will be able to answer directly all future requests for these

documents and will save external bandwidth as well as external latency for the client.

This event is called a “cache hit” and its frequency is one of the main performance

indicators of caching systems. When a document is requested and is not in the proxy

cache, the event is called a “cache miss”. In this case, the proxy contacts the originating

server, downloads the document and copies it into its cache before forwarding it to the

requesting client.

Note that a cached object cannot be served forever to the requesting clients with-

out running the risk of the original document having been updated since the first time

it was requested. Therefore, cache systems need to know how long a document may be

cached. In the absence of such an information, they typically use a heuristic to compute

the time-to-live (TTL) of each cached document. In the typical freshness calculation

heuristic, the lifetime is min(CONF MAX, CONF PERCENT×(Date-LastModified))

where CONF PERCENT is a fraction typically limited to 10% and CONF MAX is a

default TTL value typically equal to a day, since HTTP/1.1 specifies that a cache must

attach a warning to any response whose age is more than 24 hours [FGM+99]. When

a cached document reaches it TTL, it is not necessarily immediately removed from the

cache. Upon the next request for this document, the cache system attempts to validate

its copy as follows. The cache issues a conditional GET request to the origin server,

which answers with either a Not-Modified message or the document itself depending on

whether the document has been changed since the cache downloaded it. This event is

called a freshness miss, and typically incurs a latency close to that of a complete miss

even if the document has not been modified [CK01a].

There are many issues involved in the caching paradigm. Designing a cache

system needs to address many issues, including the following ones [Moh01]:

− Which documents should be cached? For instance, which types of objects, among

Web pages, embedded objects, large files, dynamic pages (SQL query results for

instance), and so on.

− Where should these objects be cached?

2.2. Caching Systems 13

– locally at the client host (local cache),

– at a site proxy (e.g., attached to a LAN)

– on an organizational proxy server : global server for universities, companies,

government agencies, ...

– at a national or larger level (Internet service providers (ISPs) for instance)

– locally at web servers

− How should the cache servers be dimensioned and what replacement policy should

be used (FIFO, LFU, LRU...)?

− How long should a document be kept in cache? Hit rate vs. freshness tradeoff

− How to anticipate requests (prefetching, refreshment) to avoid miss latencies?

− How to prevent the proxy server to be a single point of failure (availability, band-

width, CPU...)?

− In case of multiple proxy servers, how to coordinate servers?

As a result, there exists a number of caching technologies and systems. In this section

we will present an overview of distributed caching systems, i.e., caching systems using

several servers. An exhaustive review is out of the scope of this dissertation due to the

large and rapidly evolving body of existing work in the area. The interested reader can

refer to other surveys [Wan99, RS02]. We will thus focus on the most significant decen-

tralized architectures and on some interesting novel approaches. We will particularly

emphasize the description of two caching systems (hash routing schemes and Squirrel)

that will be the target applications of the three next chapters.

2.2.1 Cache clusters

A single cache proxy may be simultaneously a bottleneck and a single point of failure

for a network. To address this issue, a simple idea is to use a cluster of servers, which

increases availability as well as hardware resources. In this architecture, all cache servers

are at an equal level and are called “siblings” or “neighbors”. They may go up and

down at random times, due to disk failures, software bugs, updates, or misconfigurations

[BSV03, LMG95]. Several schemes have been proposed for this distributed architecture,

in particular to decide to which cache server an incoming request needs to be routed.

14 Chapter 2. A Document-Based Fluid Model

In the remainder of this section we will consider the cache cluster to be built at an

LAN or organizational level. In particular, we will not present Web server side caching

and mirroring systems such as Backslash [SMB02] or Seres [VR02] for instance.

2.2.1.1 ICP

A first protocol for coordinating Web caches is the Internet Cache Protocol (ICP) which

is described in [WC97c, WC97b]. This protocol allows communication between Web

caches through ICP queries and replies. The ICP protocol uses UDP as a transport

layer protocol. In the context of a cluster of equal web caches, the ICP caching system

globally works as follows. A request for a document is sent to one of the caches. In case

of a hit the document is simply sent by this cache to the requesting user. In case of a

miss, the cache first queries all other caches in the cluster with ICP query messages.

If one of the sibling caches has the document, the first cache retrieves the document

from that sibling (e.g., the first to respond with an ICP hit message). Then it stores

a copy of the document and sends it to the client. If no cache in the cluster has the

document, the first cache retrieves it from the remote Web server, keeps a copy in its

cache and sends it to the client.

Potential problems can arise from this protocol. First, the most popular docu-

ments will be replicated among many caches, which results in a waste of storage space.

Second, in the case of a miss, the latency seen by the client is increased as the first cache

has to wait for all ICP replies before concluding to a miss and fetching the document

from the originating server. Third, ICP messages consume processing resources of all

siblings. On the other hand, with ICP the stored content of the cache cluster is only

lightly affected in the event of a cache failure, thanks to the replication feature of the

protocol.

2.2.1.2 Hash routing schemes

Another approach for using web cache clusters is to use a hash function at clients which

maps URLs to a hash space which is then divided among the caches.

The detailed behavior of hash routing schemes is as follows. When a client in the

organization makes a request for an object, the request is sent to one of the up caches.

2.2. Caching Systems 15

If the up cache receiving the request has the object, it immediately sends a copy to

the client. Otherwise, the cache retrieves a copy of the object from the origin server,

stores a copy, and sends a copy to the client. Because caches are going up and down

at relatively slow time scales compared to requests, we assume that each client always

knows which caches are up, that is, each client tracks the set of active caches. (This is

typically done by configuring each browser to retrieve a proxy automatic configuration

(PAC) file each time the browser is launched. The PAC file indicates which caches

are currently up, and also implements the direction policy as discussed later in this

section.)

It remains to specify how a client requesting a particular object determines to

which cache it should direct its request. This is specified by the direction policy. Ideally,

to avoid object duplication across caches, we want requests from different clients for

the same object to be directed to the same cache in the cluster. This ensures that

at most one copy of any object resides in the cache cluster. Also, we would like the

request load to be evenly balanced among the caches in the cluster. These two goals

are often achieved by using a common mapping at all the clients. When a client wants

an object, it maps the object name (typically a URL) to a specific cache in the cluster,

and directs its request to the resulting cache. This mapping can be created with a

hash function as follows. Let h(·) be a hash function that maps object names to the

set [0, 1). Let i be the number of up caches. Partition [0, 1) into i intervals of equal

length, Ψ1 = [0, 1/i), Ψ2 = [1/i, 2/i), . . ., Ψi = [1−1/i, 1). Associate one up cache with

each of these intervals. Then when a client makes a request for object o, it calculates

h(o) and determines the interval Ψj for which h(o) ∈ Ψj . It then directs its request

for object o to the jth cache. We refer to this direction policy as partition hashing. If

the hash function has good dispersion properties, partition hashing should balance the

load among the caches in a more-or-less equitable manner.

Partition hashing has a serious flaw, however. When a new cache is added or

goes down, approximately 50% of all the cached objects are cached in the wrong caches

[Ros97]. This implies that after an up/down event, approximately 50% of the requests

will be directed to the wrong up cache, causing “misses” even when the object is present

in the cluster. Furthermore, partition hashing will create significant duplication of

objects after an up/down event. Because the caches employ cache replacement policies,

such as least recently used (LRU), this duplication will eventually be purged from the

system.

16 Chapter 2. A Document-Based Fluid Model

To solve this problem, independent teams of researchers have proposed refined

hashing techniques, including CARP and consistent hashing, which route requests to

their correct caches with high probability even after a failure/installation event [VR97,

KSB+99]. Such robust hashing techniques have been used in Microsoft and Netscape

caching products, and also appear to have been implemented in the Akamai content

distribution network. We now briefly describe CARP; consistent hashing is similar.

CARP uses a hash function h(o, j) that is both a function of the object name o and the

cache name j. When the client wants to obtain object o, it calculates the hash function

h(o, j) for each j, and finds the cache j∗ that maximizes h(o, j). We henceforth refer

to this technique as winning hashing. The principal feature of winning hashing is that

relatively few objects in the cluster become misplaced after an up/down event [Ros97].

Specifically, when the number of active caches increases from j to j + 1, only the

fraction 1/(j + 1) of the currently correctly-placed objects become incorrectly placed;

furthermore, when the number of up nodes decreases from j + 1 to j, none of the

currently correctly-placed objects become misplaced.

Globally, hash routing has been shown to be more efficient than ICP for single-

level cache clusters [Ros97], regarding both client-perceived latency and processing

overhead for caches.

2.2.1.3 Other systems

Apart from the ICP communication protocol and the hash routing scheme, there exist

many other creative proposals for cache clusters architectures.

The Cachemesh [WC97a] architecture resembles hash routing schemes in the sense

that cache servers try not to replicate content. The key difference is that request

routing to the corresponding cache is now done using routing tables instead of hash

functions: each cache server maintains a routing table with a list of Web sites and

the corresponding cache to which it should forward requests. As a result, since only

cache servers are equipped with routing tables, a client may first send its request to a

cache which is not responsible for the document. The choice of a designated cache for

a given Web site is also made through the use of the routing table, including a default

route for unknown sites. It is also possible for a cache server to indicate a list of Web

sites it wants to be responsible for. As a result, Cachemesh is flexible but requires

the potentially heavy cost of maintaining routing tables for Web sites, and does not

2.2. Caching Systems 17

provide load balancing features among the caches in the cluster. The Relais Project

[Gro98] proposes a very similar architecture in which each node maintains a shared

directory of the documents stored by all other caches. This directory is updated each

time a cache server notifies an addition or removal of document in its own cache, which

generates update messages between cache servers in addition to the request messages

(similar to ICP messages). Unlike ICP however, this protocol generates little overhead

in comparison since only one server is queried instead of the whole cluster. This protocol

mainly suffers from very high memory consumption for the maintenance of the directory

at each node.

The architecture of the CRISP cache system [GRC97] lies midway between hash

routing and cache routing tables as in Cachemesh. A client sends its request for an

object to one of the caches, which is determined by the browser by using a Proxy Au-

tomatic Configuration (PAC) file for instance. This cache belongs to the cache cluster

and forwards the request to a central authority called a “mapping server”. This map-

ping server maintains a directory which indicates for any URL which cache server of

the cluster holds a copy of the document. In case of a hit at the peer cache, the cache

server that was contacted in first place directly retrieves the document from the peer

cache and forwards it to the requesting client. In case of a miss, when a document has

never been requested for instance, the chosen cache server which will store a copy is

determined using a partition of the URL space, for instance with a hash function. To

ensure consistency of the directory table, all caches in the cluster notify the mapping

server each time they add or remove an object in their local cache. The single point

of failure arising at the mapping server is not so damaging as in the case of a unique

centralized proxy because only the cache feature becomes unavailable, while Internet

access is still provided by the proxies of the cluster. However, this architecture also ex-

hibits the cost of maintaining a directory table, introduces additional processing delays

at each step (first proxy, mapping server, then home node) and especially, requires a

strong geographical locality to exhibit acceptable latencies in the proxy/mapping server

communications.

Another architecture maintains locally at each cache a summary representation

of other caches in the cluster which is updated periodically with a modified ICP. This

architecture is the core of the Summary Cache [FCAB98] and of the Cache Digest

[RW98] proposals that were developed independently in 1998. We briefly describe the

Summary Cache protocol; Cache Digest is based on the same principle and only dif-

fers in small details such as the update mechanism. Cache servers keep a summary of

18 Chapter 2. A Document-Based Fluid Model

all other cache servers’ content through the compact representation of Bloom Filters.

This representation is an efficient compression of the complete directory and provides

very low false hit probabilities. The main advantage of this representation is that it

saves both local memory as well as bandwidth consumption during periodical directory

updates between nodes of the cluster. These updates typically happen when a prede-

fined fraction of the total locally cached objects have been modified/added/removed.

Therefore the Summary Cache saves both the ICP overhead and the replication cost

of Cachemesh and Relais. The remaining cost is the consistency tradeoff between up-

date messages overhead and false hits/misses, as well as the compression tradeoff in

the Bloom filters between memory consumption and false hit probability. Note that

in this system, the partition of the URL space is not done a priori but in an ad-hoc

fashion: the cache server responsible for a given object will be the first server to receive

a request for that object.

2.2.2 Hierarchical architectures

Designed to alleviate the load on access links and to take advantage of the large band-

widths available in the core portions of the Internet, hierarchical cache structures have

been proposed. The most widespread hierarchical scheme is the Harvest architecture

[CDN+96], or its derivative Squid [Wes98]. In this hierarchical structure, caches are

placed at different levels of the Internet, for example: local level (browser cache), in-

stitutional level (proxy server), regional and national level [RSB01]. When a request is

not satisfied by the local browser cache, it is forwarded to the institutional cache, which

in turn either answers with the document of forwards the request to the regional cache.

The latter finally forwards the request to the national cache in case of a miss, and the

national cache will in the end contact the origin Web server if it does not hold a copy

of the object. When the document is sent from the origin server, it travels down the

hierarchy and a copy is made at every level for future requests. A cache at a given level

is said to be the child (respectively the parent) of the cache of the upper (respectively

lower) level. Several caches of the same level are said to be siblings, as in the case of

cache clusters. The interest of the hierarchical architecture also lies in the fact that

a high level cache may pool documents that can serve a number of children that may

share common interests. An additional feature of this architecture is that at each level

(except the local browser cache), a cache that does not have a copy of a requested ob-

ject will contact all other siblings, typically through an ICP query message, in parallel

2.2. Caching Systems 19

to the request to the parent cache. The protocol inside a given level cache group is

exactly the ICP protocol for cache clusters described in Section 2.2.1.1. In case of a hit

at a parent or sibling cache, the first queried cache retrieves the object from the first

cache that responded with a hit, i.e. chooses the closest cache based on ICP latency.

Some of the main drawbacks of this architecture are [RSB01]:

− every level of hierarchy introduces additional latency

− upper level caches may become a bottleneck

− documents are replicated at various levels, resulting in a waste of storage space.

Several modifications to this hierarchical system have been proposed. In par-

ticular, to save memory consumption, two hierarchical directory schemes have been

proposed [PH97, TDVK99]. In [PH97] the authors propose that caches do not store

copies of objects but only location hints as to where the object can be found. When

a client requests an object, the first queried cache looks in a directory table whether

it is aware of another client that might hold a copy of the object. If this is the case,

it returns the address of that client to the requesting client which will in turn directly

download the document from the peer client. Otherwise, the request is forwarded to

upper levels until either a hit is found and a client address is returned, or the request

results in a miss and the requesting client directly contacts the origin Web server. This

scheme is therefore half way between hierarchical caching and peer-to-peer caching that

will be described in the next section. In [TDVK99], the directory principle is the same

except that it is translated one level higher. Indeed, all caches of the hierarchy hold

directory tables, except the institutional caches which act as the CRISP cache system,

in which the mapping server would be replaced by parent caches.

2.2.3 Peer-to-peer architectures

Peer-to-peer architectures take advantage of the individual resources of clients, which,

though small if considered separately, may outperform any powerful centralized archi-

tecture, when pooled together in a large scale distributed system. In addition, these

resources are often already present in any network and simply represent unutilized re-

sources of clients, for instance overprovision in memory or CPU at idle times. The result

20 Chapter 2. A Document-Based Fluid Model

of this observation is that a peer-to-peer system may implement large scale functional-

ities, including content distribution, at a very low cost, with no dedicated hardware to

purchase or maintain. This paradigm has been already applied to a number of appli-

cations, in particular distributed computing and file sharing. Regarding web caching,

several systems have been developed to take advantage of peer-to-peer architectures.

Indeed, a few megabytes (e.g., 10MB) of storage space available at each client of an

organization, when organized in a completely decentralized cache, can perform as well

as a dedicated cache system with sufficiently large storage capacity [IRD02] in terms

of external bandwidth usage, but without the cost of creating and administrating a

dedicated cache cluster.

We first present a hybrid scheme which is a mix between a centralized proxy

server, the CRISP architecture, and a peer-to-peer design. Then we will turn to com-

pletely decentralized systems which are purely peer-to-peer in their design. There

exist several proposals for a peer-to-peer caching system: Squirrel [IRD02], BuddyWeb

[WNO+02] and a P2P caching application based on the Kelips overlay [LGB03]. We

will describe Squirrel in detail in Section 2.2.3.2. Differences in the two other designs

will be given at the end of the section.

2.2.3.1 Browsers-aware proxy server

A first (partially) peer-to-peer architecture is the Browsers-Aware Proxy Server [XZX02].

Though equipped with a central proxy and therefore not purely peer-to-peer, this

caching system relies on its own clients to improve the performance by sharing their

own private browser caches. The principle is the following one. The proxy server works

as any centralized cache server, but also maintains a directory table of its clients indi-

vidual browser caches. When a request cannot be satisfied from the proxy’s cache, the

proxy looks for a corresponding entry in the directory table. In case of a hit, the proxy

replies with the address of the client that holds a copy of the object, and the requesting

client directly retrieves the object from its peer client. This system is therefore very

similar in principle to [PH97] except for the hierarchical structure at upper levels. In

case of a miss, the proxy contacts the remote Web server and sends the file back to the

requesting client upon reception. Clients may update the directory table of the proxy

server either periodically or upon changes in their browser cache. Note that the authors

of [XZX02] also propose a scheme in which, in the event of a hit in the directory table,

the proxy itself downloads the file from the client and forwards it to the requesting

2.2. Caching Systems 21

client. This alternative scheme does not present a peer-to-peer aspect anymore since

the clients do not communicate directly together and all management of objects is done

by the proxy server.

2.2.3.2 Overview of Squirrel

Squirrel [IRD02] is a decentralized, peer-to-peer Web cache that uses Pastry [RD01] as

a location and routing protocol. When a client requests an object it first sends a request

to the Squirrel proxy running on the client’s machine. If the object is uncacheable then

the proxy forwards the request directly to the origin Web server. Otherwise it checks

the local cache, like every Web browser would do, in order to exploit locality and reuse.

If a fresh copy of the object is not found in this cache, then Squirrel tries to locate

one on another node. To do so, it uses the distributed hash-table and the routing

functionalities provided by Pastry. First, the URL of the object is hashed to give a

128-bit object identity (a number called object-Id) from a circular list. Then the routing

procedure of Pastry forwards the request to the node with the identity (called node-Id;

this number is assigned randomly by Pastry to a participating node) which is the closest

one to object-Id. This node then becomes the home node for this object. Squirrel then

proposes two schemes from this point on: home-store and directory schemes.

In the home-store scheme, objects are stored both at client caches and at their

home nodes. The client cache may either have no copy of the requested object or a

stale copy. In the former case the client issues a GET request to its home-node, and

it issues a conditional GET (cGET) request in the latter case. If the home-node has

a fresh copy of an object then it forwards it to the client or it sends a not-modified

message to the client depending on which action is appropriate. If the home-node has

no copy of the object or has a stale copy in its cache, then it issues a GET or a cGET

request, respectively, to the origin server. The origin server then either forwards a

cacheable copy of the object or sends a not-modified message to the home-node. Then,

the home-node takes the appropriate action with respect to the client (i.e. sends a

not-modified message or a copy of the object).

In the directory scheme the home-node for an object maintains a small directory

of pointers to nodes that have recently accessed the object. A request for this object

is sent randomly to one of these nodes. We will not go deeper into the description of

this scheme since from now on we will only focus on the home-store scheme. We do so

22 Chapter 2. A Document-Based Fluid Model

mainly because the latter scheme has been shown to be overall more attractive than

the directory scheme [IRD02].

In a Squirrel network (a corporate network, a university network, etc.), like in

any peer-to-peer system, clients arrive and depart the system at random times. There

are two kinds of failures (or departures): abrupt and announced failures. Each failure

has a different impact on the performance of Squirrel. An abrupt failure will result in

a loss of objects. To see this, assume that node i is the home-node for object O. If

node i fails, then a new home-node for object O has to be found by Pastry, as explained

above, the next time object O is requested. Assume that the copy of object O was fresh

when node i failed and consider the first GET request issued for O after the failure of

node i. The GET request is therefore forwarded to the new home-node for object O

(say node j). This request will result in a miss if j has no copy of O or if its copy is

stale. In this case, the failure of node i will yield a degradation in the performance

since node j will have to contact the origin server to get a new copy of object O or a

not-modified message, as appropriate. If a node is able to announce its departure and

to transfer its content to its immediate neighbors in the node-Id space before leaving

Squirrel (announced failure), then no content is lost when the node leaves.

When a node joins Squirrel then it automatically becomes the home node for some

objects but does not store those objects yet (see details in [IRD02]). In case a request

for one of those objects is issued, then its two neighbors in the node-Id space transfer

a copy of the object, if any. Therefore, we can consider that there is no performance

degradation in Squirrel due to a node arrival, since the transfer time between two nodes

is supposed to be at least one order of magnitude smaller than the transfer time between

any given node and the origin server.

2.2.3.3 Other peer-to-peer proposals

We now briefly compare BuddyWeb and the Kelips-based architecture proposed by

Linga et al. [LGB03]. In BuddyWeb, routing is based on similarity of interest between

peers. The P2P network dynamically reconfigures itself based on periodical information

sent by peers to name-lookup servers which contain a representation of their interest

(keywords, <title> HTML field of browsed pages...). This system also provides a

keyword search functionality.

2.3. Related Work on Performance Analysis of Distributed Caching Systems 23

The Linga proposal [LGB03] is closer to the Squirrel system in the architecture.

However, this system is based on the Kelips overlay, in which nodes lie in affinity

groups (which are initially arbitrarily computed with a consistent hashing function).

Each node keeps a structured view of the network as follows: a node has a complete

view of its affinity group (with various information on peers such as topology concerns,

trust, round-trip times...) and the name of a contact node in each other group. When

a document is added into the local cache of a peer, it is assigned an affinity group

(by hashing the document name). The name and location of the document is then

advertised to the corresponding affinity group contact node. Each affinity group thus

maintains a directory table for each cached object belonging to its own group. When

the object is requested again, the request is sent by the client to the contact node

of the object’s affinity group - or itself if the node’s affinity group is the same as the

client’s. The contact node then looks up the directory table for a valid entry for that

object. If such an entry is found, the contact node sends the location of the object to

the requesting node, which will in turn directly retrieve the object from that location.

We conclude this section by mentioning Pseudoserving [KG97, KG99]. When

first presented in 1997, this proposal was an early peer-to-peer solution for content

distribution, in which clients obtain the desired file in exchange from serving it, in

turn, to other clients. However, though the proposal is presented as based on caching

principle, its management at the Web server side, as well as its file-centric model, make

it a file-sharing system rather than a caching system in our CDS classification.

2.3 Related Work on Performance Analysis of Distributed

Caching Systems

We now briefly review related work on performance analysis of caching systems. Many

early studies purely concern centralized proxy caching but lay the basis for later per-

formance studies of distributed caching schemes. Therefore, we will first review these

works.

Most performance studies of Web caching systems are trace-based simulations

[Dav99]. For Web proxy caching, Kroeger et al. try to quantify bounds on latency

savings due to caching and prefetching techniques [KLM97]. While the results are quite

impressive – only 26% latency reduction achievable with caching, although external

24 Chapter 2. A Document-Based Fluid Model

latency accounts for 77% of the total latency – we must keep in mind that trace-based

conclusions are valid for a traffic pattern which may change as fast as Internet usage,

and which may be site dependent. In [FCD+99], the trace-based simulation focuses on

low-level details such as cookies, aborted connections and their effect on latency and

bandwidth. In [DFKM97], caching is not directly modeled or simulated, but several

key factors are estimated in a proxy log analysis. The idea is to extract the main traffic

patterns that can strongly impact cache performance: for example, the frequency of

reaccess or the rate of change of documents. A very important work on Web caching

performance is [BCF+99] in which Breslau et al. exhibit the Zipf-like distribution of

Web object popularity, and derive a discrete analytical model of proxy caching that

computes the hit ratio for a finite cache or a finite request stream.

Cooperative caching has also been given some attention. Several trace-driven

simulations of hierarchical caches [DMF97, CK01a] observe a number of performance

factors, including cache size, request rates, and consistency mechanisms. Analytical

models have also been derived. In [RSB01], the authors develop a discrete model of

hierarchical (without cooperation inside a given level), distributed (ICP cluster at in-

stitutional level) and hybrid (hierarchical scheme with ICP cooperation at each level)

schemes. They compare these schemes according to three metrics: latency, bandwidth

usage and required capacity. Their model is simple and tractable but does not account

for object expiration nor cache churn rates (i.e., join and leave rate). In [Ros97], Ross

proposes an analytical model designed to compare cache processing overhead and la-

tency for two cache cluster schemes: ICP and hash routing. This study shows that

hash routing outperforms ICP in the absence of a hierarchy, because of the complete

replication of objects among ICP caches and because of their numerous signaling mes-

sages. The model does not take into account document expiration nor the caches churn

rates. Finally, in [WVS+99], Wolman et al. propose a double performance analysis

of cooperative caching systems: they first investigate potential benefits of cooperative

caching through a trace-driven simulation. While the authors conclude that cooperative

caching is particularly efficient for small populations where a single proxy could suffice,

they acknowledge that these conclusions are specific to the Web characteristics of their

trace (1 week in 1990 and 1999). Then they propose an analytical model based on

Breslau’s model [BCF+99] with some enhancements: their model supports cooperative

caching (namely, Squid, CARP and Summary Cache), takes into account document

rate of change, and focuses on the steady-state instead of finite streams. They use

the model to compare the latency reduction and required storage capacity for all three

cooperative architectures over various client population sizes.

2.4. A General Stochastic Fluid Model 25

We observe that few studies have developed an analytical model for performance

evaluation of distributed cache systems, and in particular, none of them addresses the

crucial issue of churn rates. This issue which was introduced by the distributed design of

these cooperative schemes, is particularly challenging. Indeed, cache join/leave events

occur at a much slower time scale (e.g., once a day) than requests (typically hundreds

per second). As a consequence, the state space of discrete models becomes very large

which renders classical tools such as Markovian analysis and simulation untractable.

In the next section, we propose a novel analytical fluid model for distributed caching,

which is designed to reflect the impact of cache nodes joining and leaving the system.

2.4 A General Stochastic Fluid Model

Our generic framework for modeling dynamic distributed cache systems is essentially

based on the observation that requests occur at a much faster time scale (typically hun-

dreds per second) than node join/leave events (e.g. once a day or even less frequently).

Therefore we can approximate the request process by a fluid flow when considering the

system at the slowest time scale. We expect the long-run average performance of the

fluid model to be similar to that of the real, discrete-time system, where requests occur

with any distribution.

2.4.1 Review of fluid modeling

Beginning with the seminal work of Anick, Mitra and Sondhi in 1982 [AMS82], stochas-

tic fluid models have been successfully applied to a variety of packet-switching systems

over the past 20 years (e.g., see [EM92, EM93, KM01a, LZTK97, BBLO00, RRR02]).

In these papers, detailed models of system behavior, which involve random arrivals

of packets of discrete size to network nodes, are replaced by macroscopic models that

substitute fluid flows for packet streams. The rates of the fluid flows are typically

modulated by a stochastic process (such as a Markov process), thereby resulting in a

“stochastic fluid model”. Although the resulting stochastic fluid models ignore the de-

tailed, packet-level interactions, they are often mathematically tractable and accurate,

and provide significant insight into the qualitative properties of the original system.

In the past years, fluid approximations have also been used for efficient simulation

26 Chapter 2. A Document-Based Fluid Model

of networks [KM01b, LFG+01, KSCK96]. Discrete-event fluid simulations of packet

networks replace the packet flows by fluid streams, smoothing the cell-level behavior

at buffers for instance to a piecewise-linear occupancy [KM01b]. [KSCK96] proposes a

Markov-modulated fluid simulation of ATM networks. In [LFG+01], Liu et al. compare

the performance of fluid simulation and packet-level simulation. They show that the

event-rate gain of using fluid simulation is not systematic and depends on a mechanism

called ripple effect, which in turn depends on the network scenario and on the source

sending rates.

Work on TCP modeling also frequently uses fluid models regarding the window

size evolution. In particular, our fluid approach was partly inspired by [AAB00], which

uses linear fluid models for the window size, modulated by a stationary ergodic loss

process.

2.4.2 General framework

We now introduce an original fluid model for distributed caching. Our model assumes

a single level of caching, and therefore is best suited for cache clusters and peer-to-peer

cooperative caching schemes. Two important assumptions are required for this model.

First, we assume good load balancing between cache nodes. Second, we assume that a

cached document is present at only one node of the system, i.e., the distributed caching

system does not replicate documents across the participating nodes. In particular, ICP

based cache clusters do not satisfy this assumption because they duplicate already

cached documents. However, these assumptions are verified by a number of caching

systems, such as hash routing schemes, CRISP, or Squirrel.

2.4.2.1 Modeling the node dynamics

We first address the macroscopic event of the model, i.e., the node join/leave events.

These events may be due, for instance, to host failures (e.g., software crash), software

updates, or user disconnection in the case of peer-to-peer schemes.

We assume that nodes go up and down independently of each other. We denote

by N(t) the number of active nodes at time t. The model assumes that participating

nodes follow a general birth-death process N(t). We respectively denote by λi and µi

2.4. A General Stochastic Fluid Model 27

the birth and death rates of N(t) when i nodes are active, i.e., when N(t) = i. The

sequence of jump times of this process is denoted by Tn, n ≥ 1.

Let us denote by N∞ the stationary number of participating nodes. The sta-

tionary distribution of N(t) is
�

[N∞ = i]. We also introduce Nn
def
= N(T+

n), the sta-

tionary number of participating nodes just after the occurrence of the n-th event/jump

(i.e. join or leave of a node). The stationary distribution of Nn will be denoted by

πi
def
= lim

n→∞

�
[Nn = i], i ≥ 0. Note that a priori πi 6=

�
[N∞ = i].

2.4.2.2 Modeling the document dynamics

We replace the discrete set of cached objects with fluid. Specifically, let xj denote the

number of objects currently stored in node j. Between up/down events we suppose

that xj grows at a continuous rate. This growth corresponds to a request directed to

node j and not being immediately satisfied. Node j then retrieves the object from the

origin server and stores a copy, causing xj to increase. This growth is slowed down by

object expirations, which can also be modeled as a fluid flowing out of the system.

We further simplify the fluid model by supposing that the caching protocol bal-

ances the load across all of the up nodes in the cluster. As a result, the amount of fluid

at each node is an equal share of the total fluid in the system, thereby allowing us to

summarize this distributed state by a single variable X(t): the global amount of fluid

in the system. With this simplified description, the state becomes (N(t), X(t)), Also,

c denotes the total amount of fluid in the universe (i.e., the total number of documents

in the universe). Therefore we have, for all t, 0 ≤ X(t) ≤ c. Similarly to Nn, we define

Xn as the total amount of cached fluid just after the occurrence of the n-th event/jump

of the node process {N(t)}.

This quantity of fluid will increase when objects are downloaded in the network

from the origin server and added to their home node, i.e. whenever there is a cache miss.

It may happen that two concurrent requests for the same document will generate two

misses but only one cached copy. This event is assumed rare enough to be neglected. We

validate this claim in the experimental section of the three following chapters. Cache

misses occur at a rate proportional to the global request rate σ(t) seen by the caching

system at time t, and to the miss probability.

28 Chapter 2. A Document-Based Fluid Model

On the other hand, the amount of fluid decreases as cached objects become stale.

We assume that cached objects have the same constant time-to-live in cache, given by

1/θ. This assumption is made both for the sake of simplicity and because most caches

use a time-to-live calculation heuristic for objects without any specified expiration date

(about 70% of requested objects [CK01a]), which is generally subject to a default

maximum value. The usual default value is 24 hours (see [CK01a] for more details).

We now make an additional assumption regarding cache storage capacity. We

assume that each node can store an unlimited number of objects. Indeed, disk storage

capacity is abundant for most caching systems, and capacity misses are very rare as

compared to freshness misses. In peer-to-peer systems, though individual nodes would

probably not dedicate too much memory to the collaborative cache, even reasonable

cache sizes are sufficient to avoid losses due to a full cache. One reason for this is that

cached objects become stale fast enough to avoid continuous increase of the content.

For centralized caches, the largest size needed to avoid most capacity misses is dictated

by the clients request rates [DMF97] and is fairly small.

2.4.2.3 Characterizing the evolution of fluid

Let us now describe the evolution of the fluid in the model introduced in Sections 2.4.2.1

and 2.4.2.2.

We have already observed that between two consecutive jumps, the amount of

fluid grows (continuously) with miss events, and decreases as cached copies expire.

At jump times on the other hand, a node is added or removed from the cooperative

system. When a node leaves the system, its content may be lost for the global system.

This results in a brutal loss of fluid. Similarly, when a node joins the system, it may

become suddenly responsible for caching a fraction of objects (such as in DHT schemes:

CARP, Squirrel...), while these objects may be already cached in another node which

was formerly responsible for them. If the new node joins with an empty cache, this

may also result in a decrease of fluid: even if these objects are still physically present

in one of the nodes, the fact that this node will no more be requested for these objects

results in an apparent decrease of the total available fluid. Let us now translate this

behavior into a mathematical model.

For the sake of generality we introduce two mappings, ∆u(i) and ∆d(i), that give

2.4. A General Stochastic Fluid Model 29

the fluid reduction generated by a node up and down event, respectively, given that i

nodes were connected before this event. In other words, if the amount of fluid is x and

that i nodes are connected before a leave (resp. join) then the amount of fluid just

after this event will be x∆d(i) (resp. x∆u(i)). Note that it is theoretically possible at

this stage that ∆u(i) and ∆d(i) exceed unity, which would mean jump events might

actually add fluid into the system. This will be discussed for each specific application

to which we apply our model.

Between two consecutive jumps, fluid increases continuously, provided that at

least one node is active. When Nn = 0 (all nodes are inactive in (Tn, Tn+1)), then

the amount of fluid remains constant and equal to zero in this time-interval, namely

X(t) = 0 for Tn < t < Tn+1 when Nn = 0. In particular, the hit probability is

equal to zero during such a time-interval. Let us denote
�

[hit|i, x] as the steady-state

hit probability when there are i connected nodes containing the fluid x. (We shall

indicate how
�

[hit|i, x] is modeled shortly.) The content increases whenever there is a

miss event. Therefore, a natural model for the rate at which the fluid increases in the

system between up/down events is σ(t)[1− �
[hit|i, x]]. However, we have seen that the

content decreases at the constant rate θ due to object expirations. Then the variation

rate of the amount of fluid is

dx

dt
= σ(t) (1 − �

[hit|i, x]) − θx (2.1)

The resulting fluid process {X(t)} is therefore a piecewise-continuous process.

We now define an appropriate model for the hit probability function
�

[hit|i, x].
Recall that c is the total number of objects that can ever be requested (i.e., the total

amount of existing fluid in the universe). Since x is the quantity of cached fluid, a very

simple model for the hit probability is

�
[hit|i, x] =

x

c
(2.2)

However, this linear function does not take into account the fact that some objects

may be requested more often than others and thus are more likely to be present in the

network. Since the popularity of Web objects follows a Zipf-like distribution [BCF+99],

we can also model
�

[hit|i, x] as a concave function of the type

�
[hit|i, x] =

(x

c

)β
(2.3)

which reflects the fact that:

30 Chapter 2. A Document-Based Fluid Model

− When the amount of fluid is low, popular documents are quickly retrieved, re-

sulting in a fast increase of the fluid.

− When most popular objects are present in the system, the fluid can then only

increase with requests for rare objects.

For easy reference, the main definitions and notation have been collected in Table

2.1.

Table 2.1: Notation

N(t) Number of active nodes at time t

Tn Jump times of the {N(t)} process

Nn = N(T+
n) Number of active nodes just after the n-th jump

X(t) Total amount of cached fluid at time t

Xn=X(T+
n) Total amount of fluid just after the n-th jump.

λi Birth rate of the node process when N(t) = i

µi Death rate of the node process when N(t) = i

π Stationary distribution of {Nn}n
σ(t) Total request rate at time t

θ Expiration rate of cached objects

c Total number of objects in the universe

(i.e. total amount of fluid)

∆d(i) Fluid reduction after a node departure

when there were i ≥ 1 connected nodes.

∆u(i) Fluid reduction after a node join

when there were i ≥ 0 connected nodes.
�

[hit|i, x] hit probability when N(t) = i and Xt = x

2.5 Conclusion

In this chapter, we have reviewed the major approaches for cooperative caching system.

We classified them into 3 categories: cache clusters, multi-level hierarchies, and peer-

to-peer schemes. We have also reviewed existing work on performance analysis of such

systems, and found that most performance studies rely on trace-driven simulation -

2.5. Conclusion 31

which generally restrict the applicability of conclusions to a given traffic profile that may

evolve rapidly. More importantly, performance studies of distributed caching systems

do not estimate the impact of nodes joining and leaving the system (churn rates).

We propose a general stochastic fluid framework for modeling single-level cooperative

caching systems that takes into account churn rates. Our fluid model will be used in

the next two chapters to analyze the performance of two different caching systems.

Chapter 3

Application to Cache Clusters

3.1 Introduction

In this chapter, we specialize the model introduced in Chapter 2 to analyze the per-

formance of cache clusters. We consider a hash routing scheme such as CARP (cf.

Section 2.2.1.2) and show how to compute the expected hit probability in the presence

of cache dynamics.

Section 3.2 shows how to specialize our generic framework to model cache clus-

ters. Section 3.3 provides the principal contributions of the chapter. We describe the

evolution of fluid and show that the hit probability can be easily obtained from a tridi-

agonal linear system of dimension N where N is the number of caches in the cluster.

We provide explicit, closed-form expressions for N = 2 in Section 3.4, which provide

insight into performance issues of cache clusters. Our analysis shows that two key

systems parameters largely determine the performance of the system. We also use the

results of the stochastic fluid model to compare two natural direction policies, namely,

“partitioning” and “winning”. In Section 3.5 we compare the theoretical results from

our fluid model with a discrete-event simulation of a CARP based cache cluster. We

find that the fluid model is largely accurate and has the same qualitative behavior as

33

34 Chapter 3. Application to Cache Clusters

the detailed model.

3.2 Specializing the Model to Cache Clusters

First of all, note that hash routing satisfies the main assumptions of our generic model.

First, the hash function generally provides the load balancing of requests among active

nodes. Second, each cached object is available in at most one cache of the cluster.

Indeed, even if at some time a node joins the cluster and becomes responsible for a

number of objects that are already stored elsewhere, these objects are no longer seen by

clients at their former locations. Therefore, once they have been requested again after

the node join event, and retrieved from the new node, they are considered to be only

present at this new node. Therefore, our fluid model only takes into account effectively

available documents, which are unique, instead of those actually stored in all of the

node caches, which may include useless duplicates.

We now refine our fluid model to fit the behaviour of cache clusters. Let N denote

the maximum size of the cluster, i.e., the total number of caches, including inactive ones.

We assume that nodes go up and down independently of each other, and that the time

until a given up (respectively down) node goes down (respectively up) is exponentially

distributed with rate µ (respectively λ). The resulting process N(t) ∈ {0, 1, . . . , N} is

a particular birth-death process, known in the literature as the Engset (or Ehrenfest)

model. Setting

ρ
def
=

λ

µ
(3.1)

we have [Kel79, p. 17]

�
[N∞ = i] =

(

N

i

)

ρi

(1 + ρ)N
. (3.2)

In particular, the expected number of caches which are up in steady-state is

�
[N∞] =

Nρ

1 + ρ
. (3.3)

Recall that πi = limn↑∞
�

[Nn = i] is the steady-state probability that there are i active

3.2. Specializing the Model to Cache Clusters 35

caches just after a jump. We show in appendix A.1 that

π0 =
1

2(1 + ρ)N−1
(3.4)

πi =
i+ ρ(N − i)

2i(1 + ρ)N−1

(

N − 1

i− 1

)

ρi−1, 1 ≤ i ≤ N. (3.5)

We now characterize the fluid dynamics of the system. We assume that the cache

cluster handles a global, constant request flow with rate σ. We also assume a linear

hit probability model (2.2). Our goal is to determine the steady-state hit probability

of the system. Let us denote by pH this probability.

It remains to determine ∆d(i) and ∆u(i), the performance degradation factors

that affect the amount of fluid when a node leaves or joins the system. As discussed in

Section 2.2.1.2, for partition hashing it is natural to define ∆d(i) = 1/2 for i = 1, . . . , N

and ∆u(i) = 1/2 for i = 0, . . . , N − 1. For winning hashing, it is natural to define

∆d(i) = (i − 1)/i when i > 0 and ∆u(i) = i/(i + 1) for i < N . In the next section we

will determine the hit probability for general ∆d(i) and ∆u(i), and use this to compare

partition hashing with winning hashing.

We summarize the newly introduced parameters as well as affected values in

Table 3.1.

Table 3.1: Parameters for Cache Clusters

N Maximum number of active nodes

λ Birth rate of each node

µ Death rate of each node

ρ λ/µ

σ Total request rate seen by the cluster

∆d(i) (i− 1)/i for winning hashing

1/2 for partition hashing

∆u(i) i/(i+ 1) for winning hashing

1/2 for partition hashing
�

[hit|i, x] x/c

pH stationary hit probability of the cache cluster

36 Chapter 3. Application to Cache Clusters

3.3 Hit Probability Analysis

In this section we compute the hit probability associated with the fluid model. Using

the specific model detailed in Section 3.2, the fluid arrival process described by (2.1) is

now defined by:

d

dt
X(t) = σ

(

1 − X(t)

c

)

− θX(t) = σ −
(σ

c
+ θ
)

X(t) (3.6)

for Tn < t < Tn+1 and Nn ∈ {1, 2, . . . , N}.

Let us now introduce two parameters that will play a role in understanding the

system behavior.

α
def
=

θc

σ
and γ

def
=

σ

µc
. (3.7)

For the sake of convenience we also introduce

η
def
=

c

1 + α
. (3.8)

Integrating (3.6) gives

X(t) = η + (Xn − η) e−(t−Tn)σ/η (3.9)

for Tn < t < Tn+1 provided that Nn ∈ {1, 2, . . . , N}. Clearly, if Nn = 0 then X(t) = 0

for Tn < t < Tn+1. At time Tn a jump occurs in the process {X(t)} as described in

Section 2.4.2.3. Note that from (3.9), X(t) satisfies 0 ≤ X(t) < η for all t > 0 as long

as 0 ≤ X0 < η.

If Tn corresponds to a node join or leave event then the amount of cached fluid

is reduced respectively as follows

join event: Xn = ∆u(Nn)X(Tn−) (3.10)

leave event: Xn = ∆d(Nn)X(Tn−) (3.11)

Therefore, {X(t)}t is a piecewise (exponential) process, with randomness at jump times

{Tn}n. A sample path of the process {(N(t), X(t))}t is represented on Figure 3.1.

From now on we will assume without loss of generality that N0 = 0 and X0 = 0.

Under the aforementioned assumptions {(N(t), X(t))} is an irreducible Markov process

3.3. Hit Probability Analysis 37

Figure 3.1: Sample path of {(N(t), X(t))} for cache clusters.

on the set {0, 0} ∪ {{1, 2, . . . , N}× [0, η)}. Let us denote by X∞ the stationary regime

of X(t).

Our objective in this section is to compute the hit probability pH , defined as

pH =

�
[X∞]

c
(3.12)

Proposition 3.3.1 below gives an expression for pH . (Note that vT denotes the transpose

vector of the vector v.)

Proposition 3.3.1 Assuming that

0 ≤ ∆u(i)∆d(i+ 1) ≤ 1, for i = 0, 1, . . . , N − 1, (3.13)

the hit probability pH is given by

pH =
1

(1 + α)(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi vi (3.14)

where the vector v = (v1, . . . , vN)T is the unique solution of the linear equation

Av = b (3.15)

with b = (b1, . . . , bN)T a vector whose components are given by bi = γ(1 + α) for

i=1,2,. . . ,N, and A = [ai,j]1≤i,j≤N a N×N tridiagonal matrix whose non-zero elements

38 Chapter 3. Application to Cache Clusters

are

ai,i = γ(1 + α) + i+ ρ(N − i), 1 ≤ i ≤ N (3.16a)

ai,i−1 = −i∆u(i− 1), 2 ≤ i ≤ N (3.16b)

ai,i+1 = −ρ(N − i)∆d(i+ 1), 1 ≤ i ≤ N − 1. (3.16c)

�

Proof. The idea of the proof is to first compute the expected amount of cached fluid

just before a jump in the process {N(t)} conditioned on the value of N(t) just before

this jump, and then to invoke Palm calculus to deduce the expected amount of cached

fluid at any time. Let Yn be the amount of correctly cached fluid just before the

(n+ 1)-th event, i.e.,

Yn = XT−n+1

(3.17)

The quantities Xn and Yn are illustrated on Figure 3.1.

We first compute
�

[Yn|Nn = i] for 1 ≤ i ≤ N . With (3.9) we have

�
[Yn |Nn = i] =

�
[

η + (Xn − η) e−(Tn+1−Tn)σ/η |Nn = i
]

(3.18)

= η
γ(1 + α) + (ρ(N − i) + i) η−1 �

[Xn |Nn = i]

ρ(N − i) + i+ γ(1 + α)
(3.19)

To derive (3.19) we have used the fact that, given Nn = i, the random variables Xn and

Tn+1 −Tn are independent, and Tn+1 −Tn is exponentially distributed with parameter

(N − i)λ+ µi.

Let us now evaluate
�

[Xn |Nn = i]. We define

vi
def
=

limn→∞
�

[Yn |Nn = i]

η
(3.20)

3.3. Hit Probability Analysis 39

Conditioning on Nn−1 and using (3.5) and the definition of vi, we have

lim
n↑∞

�
[Xn|Nn = i] =

lim
n↑∞

�
[Xn|Nn= i,Nn−1 = i−1]P (Nn−1 = i−1|Nn = i)

+ lim
n↑∞

�
[Xn|Nn = i,Nn−1 = i+1]P (Nn−1 = i+ 1|Nn = i) � [i<N] (3.21)

= ∆u(i− 1) lim
n↑∞

�
[Yn−1|Nn−1 = i− 1]

πi−1

πi

ρ(N − i+ 1)

ρ(N−i+1)+i−1

+∆d(i+ 1) lim
n↑∞

�
[Yn−1|Nn−1 = i+1]

πi+1

πi

i+ 1

ρ(N−i−1)+i+1
� [i<N] (3.22)

= η
∆u(i− 1)vi−1 i+ ∆d(i+ 1)vi+1 ρ(N − i)

ρ(N − i) + i
(3.23)

Finally, introducing (3.23) into (3.19) yields

(

ρ(N − i)+ i+γ(1+α)
)

vi = γ(1+α)+ i∆u(i−1)vi−1 +ρ(N − i)∆d(i+1)vi+1 (3.24)

for i = 1, 2, . . . , N , or equivalently (3.15) in matrix form with v = (v1, . . . , vN). The

uniqueness of the solution of (3.15) is shown in Appendix B.1 using assumption (3.13).

The vector v in (3.15) gives the expected conditional amount of fluid just before

jump epochs (up to a multiplicative constant) in stationary state. However, the hit

probability pH in (3.12) is defined in terms of the stationary expected amount of fluid

correctly cached at an arbitrary epoch. The latter metric can be deduced from the

former one by using Palm calculus, through the identity (see e.g. [BB94, Formula

(4.3.2)])

�
[X∞] = Λ

� 0

[∫ T1

0
X(t)dt

]

(3.25)

where
� 0 denotes the expectation with respect to the Palm distribution, i.e. assuming

that a jump occurs at time 0 and that the system is in steady-state at time 0, T1

denotes the time of the first jump after 0, and Λ denotes the global rate of the Engset

model, i.e.

Λ =
1

�
0[T1]

. (3.26)

From now on we assume that the system is in steady-state at time 0. Under the Palm

distribution we denote by N−1 and Y−1 the number of up caches and the amount of

correctly cached fluid respectively, just before time 0 (i.e. just before the jump that

occurs at time 0).

40 Chapter 3. Application to Cache Clusters

We first compute 1/Λ. using (3.4)-(3.5) we have

1

Λ
=

N
∑

i=0

πi
� 0[T1 |N0 = i] =

1

µ

N
∑

i=0

πi
ρ(N − i) + i

=
1 + ρ

2Nρµ
(3.27)

Let us now determine
�

[X∞]. From (3.25), (3.9), (3.27) we find

�
[X∞] = Λ

N
∑

i=1

πi
� 0

[∫ T1

0

(

η + (X0 − η) e−tσ/η
)

dt |N0 = i

]

(3.28)

= Λη

[

N
∑

i=1

πi
� 0[T1|N0 = i] +

1

σ

N
∑

i=1

πi
� 0
[

(X0 − η)
(

1− e−T1σ/η
)

|N0 = i
]

]

(3.29)

= Λη

[

� 0[T1] − π0
� 0[T0 |N0 = 0] +

1

σ

N
∑

i=1

πi
(� 0[X0 |N0 = i] − η

)

×
(

1 − � 0
[

e−T1σ/η |N0 = i
])

]

(3.30)

= Λη

[

1

Λ
− 1

2Nρµ (1 + ρ)N−1
+

1

µ

N
∑

i=1

πi
η−1 � 0[X0 |N0 = i] − 1

ρ(N − i) + i+ γ(1 + α)

]

(3.31)

=
c

1 + α

[

1 − 1

(1 + ρ)N
+

2Nρ

(1 + ρ)

N
∑

i=1

πi
η−1 � 0[X0 |N0 = i] − 1

ρ(N − i) + i+ γ(1 + α)

]

(3.32)

By definition,
� 0[X0 |N0 = i] = limn↑∞

�
[Xn |Nn = i], which has been computed in

(3.23). By combining (3.23) and (3.24) we obtain

� 0[X0 |N0 = i] = η
(ρ (N − i) + i+ γ(1 + α))vi − γ(1 + α)

ρ(N − i) + i
(3.33)

Plugging this value of
� 0[X0 |N0 = i] into the right hand side of (3.32), and using (3.5),

yields after some straightforward algebra

�
[X∞] =

c

1 + α

[

1 − 1

(1 + ρ)N
+

Nρ

(1 + ρ)N

N
∑

i=1

(

N − 1

i− 1

)

ρi−1

i
(vi − 1)

]

(3.34)

=
c

(1 + α)(1 + ρ)N

N
∑

i=1

(

N

i

)

ρivi (3.35)

According to (3.12) it remains to divide both sides of (3.35) by c to get (3.14). This

concludes the proof. �

3.4. Application 41

The set of conditions (3.13) in Proposition 3.3.1 ensure that the system (3.15)

has a unique solution (see proof in Appendix B.1). They are satisfied for both winning

hashing (since ∆u(i)∆d(i+1) = (i/(i+1))2 for i < N) and for partition hashing (since

∆u(i)∆d(i+ 1) = 1/4 for all i < N) schemes (see Section 3.2).

Remark 3.3.1 Since A is a tridiagonal matrix, (3.15) can be solved in only O(N)

operations, once the mappings ∆u and ∆d are specified.

3.4 Application

In this section we use Proposition 4.1 to analyze cache clusters. First, we show how

the result provides qualitative insight on the hit probability. We then use the result to

compare the hit probabilities of partition hashing and winning hashing.

3.4.1 Qualitative behavior

For small N , we can compute the hit probability in closed-form. We do this now for

winning hashing. For N = 2 we have

pH = 2γ
ρ

(1 + ρ)2
2γα+ ργα+ 2γ + ργ + ρ2 + 4 + 3ρ

2γ2 + 4γ2α+ 6γ + 2γ2α2 + 6γα+ 4 + 2ργ + 2ργα+ 3ρ
(3.36)

We observe that the hit probability only depends on the parameters α and γ, defined

in Section 3.3 (see (3.7)), and ρ. This result actually holds for any value of N since

a glance at Proposition 3.3.1 indicates that the components of A and b depend on

the model parameters only through α, ρ and γ. Interestingly enough, the fact that

the hit probability for a given rate of change depends on the parameters σ and c only

through the ratio σ/c was observed in [WVS+99] in a slightly different context. This is

an indication that our fluid model is able to capture some of the main features of the

caching system.

Figure 3.2 shows how the hit probability depends on γ, ρ and α for small clusters

(i.e. when N is small). The concave shapes on Figure 3.2(a) shows that increasing

γ (through σ, for instance) can offer a large performance gain in the smaller range,

42 Chapter 3. Application to Cache Clusters

in this case when γ ≤ 20. This can be related to empirical observations in [CI97,

GB97, WVS+99]: for small client population sizes, the authors found that the hit

probability increases in a log-like1 fashion of the population size. Our model exhibits

similar shapes, although the hit probability is a rational function of γ rather than a

logarithmic function of γ. Moreover, it explains analytically these properties, and also

includes the caches dynamic behavior through µ in the γ definition.

0 50 100
0

0.2

0.4

0.6

0.8

1

γ

hi
t r

at
e

impact of γ (ρ=1,α=0)

N=2
N=3
N=4

0 10 20
0

0.2

0.4

0.6

0.8

1

ρ

hi
t r

at
e

impact of ρ (γ=1,α=0)

N=2
N=3
N=4

10
0

0

0.1

0.2

0.3

0.4

0.5

α

hi
t r

at
e

impact of α (ρ=1,γ=1,log scale)

N=2
N=3
N=4

Figure 3.2: Impact of ρ, γ and α on the hit probability for small clusters.

Parameter ρ is fairly new in cache cluster analysis. It typically represents one

aspect of the dynamic behavior of the system, as apparent in (3.2) and (3.3).

Figure 3.2(b) represents the hit probability as function of ρ. The hit probability

converges rapidly to its maximum value (≈ 40% in Figure 3.2b) as ρ increases. The

curves flatten to become almost constant for high values of ρ; the larger N the quicker

the curve flattens. Therefore, except for very small values, in which case the hit prob-

ability drops very quickly, ρ has very little influence on the hit probability. This can

be easily explained. Indeed, we see from (3.2) that with probability 1/(1 + ρ)N , all

caches are down. Therefore, all caches are down with very high probability when ρ

is small, yielding a very low hit probability, as shown in Figure 3.2(b). On the other

hand, when ρ is large there is always at least one cache up with a high probability

which prevents the hit probability from dropping to zero. Under these circumstances,

the limiting factor for the hit probability will be the removal of documents in caches,

modeled by parameters γ (as described above) and α.

Figure 3.2(c) shows how α impacts the hit probability for ρ = 1 (which is large

1The hit probability is either a logarithm or a small power of the population size.

3.4. Application 43

enough to avoid long periods of total unavailability since in this case 50% of the caches

are up on the average as shown in (3.3)) and γ = 1. The curve is obviously decreasing

since α is proportional to the rate of change (or expiration) of cached documents. The

highest hit probability is therefore obtained with α = 0. Also observe that the hit

probability drops significantly as α increases.

From Figure 3.2 we infer that the key parameters of the system are γ and α, which

almost determine the hit probability as long as ρ is not too close to zero. This can be

explained by the fact that for high values of ρ, γ and α capture the main interactions

between object population, request rate, document rate of change and cache dynamics

— which correspond to document losses and misplacements in the cluster.

020406080100

0

5

10

0

0.2

0.4

0.6

0.8

1

α

Hit rate for N=4 and ρ=1

γ

H
it

ra
te

Figure 3.3: pH as a function of γ and α for ρ = 1

Since γ and α are the two only limiting factors for realistic systems (where

P (N∞ = 0) ≈ 0), we may want to compare their influence on the system. In Fig-

ure 3.3 we observe that the domain where the hit probability is high (above 40%) is

very small (α ≤ 1, γ ≥ 10). In fact, γ has a real impact on the hit probability when

α ≤ 1. The concave shape observed in Figure 3.2(a) for α = 0 is still present for posi-

tive values of α but it is less and less pronounced as α increases. This can be explained

analytically from the fact that X(t) ≤ η for all t > 0 (provided that X0 < η) as already

observed in Section 3.3, which implies that pH is bounded from above by 1/(1 + α).

44 Chapter 3. Application to Cache Clusters

3.4.2 Comparison of partition hashing and winning hashing

Figures 3.4 and 3.5 compare the hit probability for partition hashing with that of

winning hashing when α = 0, i.e. when documents do not expire. The performance

difference is obvious, especially for small γ and ρ > 1: for any set of parameters, winning

hashing always exhibits a much higher hit probability than does partition hashing. For

instance, at ρ = 50 and γ = 1 (see Figure 3.5), the hit probability for winning hashing

is 36%, which is 50% higher than that for partition hashing, i.e., 24%.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

γ

H
it

ra
te

 (
%

)

Winning vs Partition hashing with N=4 and ρ=10

Winning hashing
Partition hashing

Figure 3.4: Comparison of winning hashing and partition hashing for N = 4, α = 0

and ρ = 1

3.5 Experimental Validation

In this section, we compare quantitatively our macroscopic fluid model with a discrete-

event driven simulation of the cache cluster for N = 10 caches. Throughout this section

we use winning hashing. The CARP hash function [VR97] is implemented in the sim-

ulator while the corresponding values of ∆u and ∆d are used in the fluid model. The

simulation uses the Engset model for cache dynamics and a Poisson process for request

arrivals. Object TTLs in caches are assumed to be constant and identical for all objects.

The simulation also assumes caches are cleared upon failure. The simulator implements

3.5. Experimental Validation 45

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

ρ

H
it

ra
te

 (
%

)

Winning vs Partition hashing with N=4 and γ=1

Winning hashing
Partition hashing

Figure 3.5: Comparison of winning hashing and partition hashing for N = 4, α = 0

and γ = 1

the detailed behavior of cache clusters, including concurrent requests (almost simulta-

neous requests for the same object that will count for two misses if the object is not

in cache due to external latency). Experimental results are given with 99% confidence

intervals.

The fluid model estimation is computed using Proposition 3.3.1. We begin with

a validation of parameter γ. Table 3.2 shows results for various values of the (σ, µ, c)

triple with a constant ratio γ = 2, and ρ = 1. Of course, the fluid model provides

identical values, i.e., 50.9%, for all experiments (see Section 3.4). We observe that the

discrete-event simulation is almost insensitive to variations in the number of documents,

request arrival rate, or failure rate when γ is constant: even when they vary by several

orders of magnitude, the hit probability remains between 50% and 52%, which is close

to the fluid model value. This validates our finding that the system is characterized by

parameters ρ and γ. Of course, when σ becomes of the same order of magnitude as µ,

which is highly unlikely to happen in real systems, discrete-event simulation does not

see enough requests to create reliable statistics.

We now consider the impact of γ on the hit probability. Figure 3.6 displays the

hit probability as a function of γ with ρ = 1, for two different values of α. We observe

that the predictions made by the fluid model agree well with those made by discrete-

46 Chapter 3. Application to Cache Clusters

Table 3.2: Hit probability (%) for γ = 2 and ρ = 1.

c 2000 20,000

σ 0.2 2 20 0.2 2 20

µ 5×10−5 5×10−4 5×10−3 5×10−6 5×10−5 5×10−4

Simulation 50.0±1.5 50.8±1.9 51.8±1.7 51.0±1.2 50.3±2.4 50.4±1.9

Fluid Model 50.9 50.9 50.9 50.9 50.9 50.9

event simulation, and therefore mimics the discrete system behaviour very accurately.

An important feature appearing in Figure 3.6 is the range of pH when α = 0 and ρ is

not too small: pH increases with γ from zero to almost 1. Although this observation

is not true for very small values of N , as shown in Figure 3.2, the upper bound of the

hit probability seems to increase with N and is already very close to 1 for N = 10.

Therefore, for small values of α and ρ ≥ 1, it is possible to reach almost any desired hit

probability by increasing γ accordingly. This validates our finding that γ determines

the hit probability of the system when α = 0. Also, the curves comparing our fluid

model to discrete-event simulation when α = 1 clearly show how this second parameter

limits the hit probability even for large values of γ, which is rather intuitive. Indeed, α

represents the time needed for the system to cache all existing documents (filling time)

divided by the time-to-live of the cached documents, while γ is the ratio of the average

lifetime of a cache and this filling time. It is clear that if the document modification

rate is high with regard to the filling time, fewer documents will become misplaced

upon failure events.

Finally, we examine the influence of ρ on the hit probability. Figure 3.7 shows

that both the fluid model and the simulation exhibit a steep slope for small values of

ρ and an almost flat shape for ρ ≥ 1. This validates the fact that ρ has very little

influence on the hit probability except when it is close to zero.

We conclude that the fluid model provides an accurate approximation for the

actual hit probability of the discrete system and more importantly, highlights the key

parameters and properties of the system. Furthermore, we also would like to emphasize

the computational gain of our fluid model compared to simulation. The simulation C

code, though probably not fully optimized, typically runs for several hours on a 2GHz

Pentium 4 with 768MB of RAM, even for small clusters as simulated in this section. In

comparison, our Maple implementation of Proposition 3.3.1 produces the hit probability

almost instantaneously (in less than a second).

3.5. Experimental Validation 47

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

γ

hi
t r

at
e

(in
 %

)

impact of γ on the hit rate (N=10,ρ=1)

simulation α=0
fluid model α=0
simulation α=1
fluid model α=1

Figure 3.6: Fluid model vs simulation: impact of γ (with N = 10 and ρ = 1).

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

ρ

hi
t r

at
e

(in
 %

)

impact of ρ on the hit rate (N=10,γ=10)

simulation α=0
fluid model α=0
simulation α=1
fluid model α=1

Figure 3.7: Fluid model vs simulation: impact of ρ (with N = 10 and γ = 10).

48 Chapter 3. Application to Cache Clusters

3.6 Finite Capacity Case

In this section we briefly explore the case where each cache has a limited storage

capacity. Let us assume the amount of fluid in each cache cannot exceed a given

constant B. More specifically, we assume that X(t) ≤ BN(t) for all t ≥ 0. In this

setting the time-evolution of X(t) between two consecutive jump times of the process

{N(t), t ≥ 0} is given by

X(t) = min
(

BNn, η + (Xn − η) e−(t−Tn)σ/η
)

(3.37)

for Tn < t < Tn+1. When B = ∞ then the previous equation turns into (3.9).

Unfortunately, when B is finite the computation of
�

[Yn|Nn = i] introduces a

non-linearity due to the minimum operator in (3.37). Therefore, unlike the case when

B = ∞, it is not possible to find a closed-form expression for the hit probability pH . An

alternative approach to computing pH is to use a hybrid equation-based/discrete-event

simulator that uses (3.37). This can be done as follows. First, run a discrete-event

driven simulation of the process {(Nn, Tn), n ≥ 1}. Then, use {(Nn, Tn), n ≥ 1} in

(3.37) to evaluate
�

[X∞]. We expect this solution to be much more time-efficient

than a classical discrete-event driven simulation of the entire system since the hybrid

approach will only have to simulate events (up/down events) on a slow time-scale. This

method is discussed below.

Figure 3.8 compares the results obtained with the equation-based simulator that

uses (3.37) with that of a discrete-event driven simulator as a function of the average

storage capacity NmeanB for γ = ρ = 1 and α = 0, where Nmean = Nρ/(1 + ρ) is the

mean number of active caches (see (3.3)).

We observe from Figure 3.8 that when α = 0, the hit probability no longer

increases when the average storage capacity exceeds a threshold around 1.5c, where c

is the total number of documents (see Table 2.1). This indicates that increasing buffer

capacity beyond a certain value does not improve the cache performance, limited by

other factors such as cache dynamics. This phenomenon is even more obvious when

α > 0, because object expirations happen faster than cache filling, and justifies the

infinite capacity assumption used in the generic model of Section 2.4.2.

Figure 3.8 shows that the equation-based simulator results not only exhibits the

3.7. Conclusion 49

same shape as the discrete system hit probability, but also provides an accurate nu-

merical approximation. This strengthens the conclusion that the fluid model is able to

capture the main features of the discrete system.

Moreover, the equation-based simulator is a much faster tool than the discrete-

event driven simulation of the system, especially for large values of request rates. In

addition to an obvious efficiency gain, it provides higher accuracy by allowing the

simulation of a much larger number of up/down events, thereby approaching more

closely the stationary state. Also, the equation-based simulation method can easily be

extended to other equations than (3.37), for instance to take into account document

popularity as discussed in Section 2.4.2.3.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

N
mean

B/c

H
it

pr
ob

ab
ili

ty
 (

in
 %

)

discrete−event simulation
equation−based simulation
B = ∞

Figure 3.8: Impact of cache size B on the hit probability when α = 0.

3.7 Conclusion

In this chapter we have considered a complex caching system consisting of multiple

nodes that randomly go up and down and which store new objects arriving randomly

from origin servers. The system exhibits randomness on two time scales: object arrivals

on a fast time scale, and cache up/down events on a slower time scale. To analyze this

complex system, we have approximated the system with a stochastic fluid model using

50 Chapter 3. Application to Cache Clusters

the framework introduced in Chapter 2, which, though non-trivial, turns out to be

mathematically tractable. Comparison with discrete-event simulation has shown that

the hit probability provided by the solution to the model is a accurate approximation

of the actual hit probability. Also, the solution highlights the key characteristics of the

actual system.

Chapter 4

Performance of the Squirrel P2P Caching

System

4.1 Introduction

In this chapter we use our stochastic fluid model to investigate the performance of a

peer-to-peer caching system, namely, Squirrel (cf. Section 2.2.3.2).

The fluid model specifics for Squirrel are introduced in Section 4.2. We use the

resulting model in Section 4.3 to compute the main performance metrics of Squirrel: hit

probability and average latency. In particular, we provide a simple expression for the

hit probability. We show in Section 4.4 that our model provides substantial insight into

performance issues of P2P cooperative Web caches such as Squirrel. Our analysis shows

that two key parameters largely determine the performance of the system, especially the

ratio of the document expiration rate to the per-document and per-node request rate.

In Section 4.5 we compare results obtained with the fluid model to those obtained from a

discrete-event simulation of Squirrel. We find that the fluid model is both qualitatively

and quantitatively accurate. We conclude in Section 4.6 with possible extensions of our

fluid model.

51

52 Chapter 4. Performance of the Squirrel P2P Caching System

Note that, since the analysis is based on the same model and method as intro-

duced in Chapter 3, the structure of the present chapter will globally resemble that of

Chapter 3. However, note that because the Squirrel architecture is very different from

CARP, all equations are different and require a specific analysis.

4.2 Specific Model

We first check that the Squirrel system satisfies the main assumptions of our generic

model. First, the Pastry substrate (request routing protocol used by Squirrel - see

Section 2.2.3.2) provides sufficient load balancing among nodes so that we can assume

that the total fluid in the system is equally divided among the nodes. Second, as we did

when we analyzed cache clusters (cf. Section 3.2) we consider the fluid to be equal to the

number of available documents which are in a unique node in the home-store scheme.

This means that we neglect the presence of possible duplicates which may appear when

a node goes up and becomes home node for a few objects that are not necessarily

removed immediately from their previous home node. Indeed these duplicates do not

affect the performance of the system, except when a request hits the client local cache

before being sent to the home node. This event is assumed to be rare compared to the

global Squirrel system hit events, and is therefore neglected. We validate this claim

experimentally in Section 4.5.

The assumption that each node can store an unlimited number of objects has

already been explained in Section 2.4.2.1 by the fact that even moderate individual

cache sizes are enough to avoid capacity misses. This claim is supported by several

trace-based simulations in [IRD02] which show that with an individual storage capacity

of 100MB a Squirrel network can achieve a performance similar to that of a sufficiently

large centralized cache.

We now specialize our generic fluid model to capture the behavior of a Squirrel

network. Similar to the cache cluster case, we assume the behavior of nodes in the

network to follow an Engset model of maximum size N , with birth rate λ and death

rate µ. We also use ρ = λ/µ. The stationary distribution and expectation of this

process are already given in Section 3.2 by equations (3.2) and (3.3). We also recall

that the stationary distribution of the number of nodes just after a jump is given by π

defined in (3.4)-(3.5).

4.3. Analysis 53

Unlike the cache cluster case in Chapter 3, the request rate now depends on the

number of active nodes N(t) since nodes are now both clients and servers. As a result,

throughout this chapter we assume a constant request rate σ for each client, which

gives

σ(t) = σN(t) (4.1)

The hit probability model is again chosen to be the linear function (2.2), i.e. we assume

that all objects are all equally popular. Although somewhat unrealistic, this assumption

leads to a clear analysis and highlights the effect of different parameters on the system

performance. We show how this assumption can be relaxed in Chapter 5. We also

denote by pH the stationary hit probability of the Squirrel system.

The model is complete once we define of ∆u(i) and ∆d(i). We have seen in Sec-

tion 2.2.3.2 that join events probably do not affect the performance of the system. On

the other hand, we consider all failures (leaves) to be abrupt failures; this assumption

is discussed in Section 4.3.3. Therefore, when a node leaves, its share of objects is lost

to the system. If we assume that the requests are well balanced across all nodes of the

network (a property of the Pastry hashing technique), then a fraction 1/i of the total

amount of fluid is lost when a leave occurs when i nodes are connected prior to this

leave event. This value has been confirmed empirically in [IRD02]. As a result we have:

∆u(i) = 1 and ∆d(i) = (i− 1)/i.

A glossary of the Squirrel specific parameters is provided in Table 4.1 which can

be compared to Table 3.1: note that the definition of σ and the value of ∆u(i) differ

significantly from those in Chapter 3.

4.3 Analysis

In this section we provide a simple closed-form expression for the hit probability of

the Squirrel system. The end-to-end latency reduction offered by the Squirrel system,

which might be a more meaningful metric than the hit probability, can easily be derived

from the following results as shown in Section 4.3.2. Finally, we discuss the possible

sources of inaccuracy of this model in Section 4.3.3 and try to identify remedies where

possible.

54 Chapter 4. Performance of the Squirrel P2P Caching System

Table 4.1: System Parameters

N Maximum number of nodes

λ Birth rate of each Squirrel node

µ Death rate of each Squirrel node

ρ λ/µ

π Stationary distribution of {Nn}
σ Request rate per client

∆d(i) (i− 1)/i

∆u(i) 1
�

[hit|i, x] x/c

pH stationary hit probability of the Squirrel network

4.3.1 Hit probability analysis

Our first task is to characterize the fluid process {X(t)}. The fluid process is defined

as follows (see Section 4.2): between two consecutive jumps (Tn, Tn+1) of {N(t)} the

fluid increases at rate

d

dt
X(t) = σNn

(

1 − X(t)

c

)

− θX(t) (4.2)

provided that Nn > 0. Note that unlike the cache cluster case in Chapter 3, the

evolution of the fluid between two jumps now depends on Nn. Integrating (4.2) gives

X(t) =
σNn

σNn

c + θ
+

(

Xn −
σNn

σNn

c + θ

)

e−(t−Tn)(θ+ σNn
c

) (4.3)

for Tn ≤ t < Tn+1 provided that Nn > 0. If Nn = 0 then X(t) = 0 for Tn ≤ t < Tn+1.

We now reuse some parameters introduced in Chapter 3. While the analytic

expressions of these parameters do not change, note that the new definition of parameter

σ (individual request rate instead of global request rate) changes the physical meaning

of these parameters:

α =
θc

σ
and γ =

σ

µc
(4.4)

We now introduce a new parameter ηi, which is analog to η (see Section 3.3) that now

depends on the number of active nodes:

ηi
def
=

c

1 + θc
iσ

, 1 ≤ i ≤ N. (4.5)

4.3. Analysis 55

We can now re-write the solution of (4.2) as

X(t) = ηNn + (Xn − ηNn) e
−(t−Tn)σNn

ηNn , Tn ≤ t < Tn+1 (4.6)

Similar to Chapter 3, by definition if Tn corresponds to a node leave or join

event then the amount of cached fluid changes by Xn = ∆d(Nn)X(Tn−) and Xn =

∆u(Nn)X(Tn−) respectively. Therefore, {X(t)} is again a piecewise (exponential) pro-

cess, with randomness at jump times {Tn}, but with different evolution parameters

than in Chapter 3. A sample path of the process {(N(t), X(t))} is represented on

Figure 4.1.

300 400 500 600 700 800 900 1000 1100 1200 1300
0

1

2

3

4

5

6

7

8

9

10

time

C
on

ne
ct

ed
 n

od
es

300 400 500 600 700 800 900 1000 1100 1200 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
ac

he
d

flu
id

 (
no

rm
al

iz
ed

)X
n

Y
n

Figure 4.1: Sample path of {(N(t), X(t))}.

As in the previous chapter, the process {(N(t), X(t))} is an irreducible Markov

process on the set {0, 0} ∪ {{1, 2, . . . , N}× [0, c)} and we denote by X∞ the stationary

regime of {X(t)}.

Recall that under the assumption that all objects are equally popular, the steady-

state hit probability pH is defined as

pH =

�
[X∞]

c
(4.7)

We give a simple formula for the Squirrel value of pH in Proposition 4.3.1.

56 Chapter 4. Performance of the Squirrel P2P Caching System

Proposition 4.3.1 Assuming that for i=0, ..., N−1,

0 ≤ ∆u(i)∆d(i+ 1) ≤ 1, (4.8)

the hit probability pH is given by

pH =
1

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi vi (4.9)

where the vector v = (v1, . . . , vN)T is the unique solution of the linear equation

Av = b (4.10)

with b = (b1, . . . , bN)T a vector whose components are given by bi = γi for 1 ≤ i ≤ N ,

and A = [ai,j]1≤i,j≤N a N ×N tridiagonal matrix whose non-zero elements are

ai,i = αγ + (γ + 1)i+ ρ(N− i), 1 ≤ i ≤ N (4.11a)

ai,i−1 = −i∆u(i− 1), 2 ≤ i ≤ N (4.11b)

ai,i+1 = −ρ(N − i)∆d(i+ 1), 1 ≤ i ≤N−1. (4.11c)

�

Proof. As with Proposition 3.3.1, we first compute the expected amount of cached

fluid just before a jump in the process {N(t)} and then use Palm calculus to deduce

the expected amount of cached fluid at any time. Therefore, we also use Yn as the

amount of cached fluid just before the (n+ 1)-th jump in the process {N(t)}:

Yn = XT−n+1

(4.12)

We first compute a new parameter vi which is slightly different from the vi defined in

Chapter 3:

vi
def
= lim

n→∞
(1/c)

�
[Yn |Nn = i] (4.13)

for 1 ≤ i ≤ N . The vector v = (v1, . . . , vN)T also gives the conditional stationary

expected amount of cached fluid just before jump epochs, up to a multiplicative constant

that is now simply the total number of existing documents. We show in Appendix C

that vi satisfies the following recursive equation:

vi (ρ(N−i) + αγ + (γ + 1)i) = i∆u(i−1)vi−1 + ρ(N − i)∆d(i+ 1)vi+1 + iγ (4.14)

4.3. Analysis 57

for i = 1, 2, . . . , N , or equivalently (4.10) in matrix form with v = (v1, . . . , vN). The

uniqueness of the solution of (4.10) is shown in Appendix B.2.

We now compute the hit probability pH in (4.7) in terms of the stationary ex-

pected amount of cached fluid at arbitrary epochs. To this end we use Palm calculus

as in Chapter 3, with

�
[X∞] = Λ

� 0

[∫ T1

0
X(t) dt

]

(4.15)

where we recall that
� 0 denotes the expectation with respect to the Palm distribution

(the Palm distribution is the distribution of the process {X(t)} assuming that a jump

occurs at time 0 and that the system is in steady-state at time 0), T1 denotes the time

of the first jump after 0, and that Λ denotes the global rate of the Engset model, i.e.

Λ =
1

�
0[T1]

(4.16)

From now on we assume that the system is in steady-state at time 0. Under the Palm

distribution we denote by N−1 and Y−1 the number of connected nodes and the amount

of cached fluid respectively, just before time 0 as in Chapter 3.

Since Λ is the global rate of the Engset model its expression is given by (3.27).

We then show in Appendix D that

�
[X∞] =

c

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρivi (4.17)

Dividing both sides of (4.17) by c, we get (4.9), which concludes the proof. �

The set of conditions (4.8) in Proposition 4.3.1 ensures that the system (4.10) has

a unique solution (see Appendix B.2). It is satisfied for the home store scheme since

∆u(i)∆d(i+ 1) = i/(i+ 1).

Remark 4.3.1 A tridiagonal N ×N linear system can be solved in only O(N) opera-

tions. We see from (4.11) that matrix A is tridiagonal, so that (4.10) can be solved in

O(N) operations once the mappings ∆u and ∆d are specified.

58 Chapter 4. Performance of the Squirrel P2P Caching System

4.3.2 Latency reduction

In this section we show how to estimate the latency seen by clients based on the hit

probability given by Proposition 4.3.1.

The latency can be divided into two quantities, the external latency Te and the

internal latency Ti, which are defined as follows. The external latency represents the

average delay between a proxy server of a corporate network, and the originating Web

server. Therefore, this latency is only seen in case of a cache miss. This external latency

is caused by network bottlenecks and Web server delays outside the organization. The

internal latency is intrinsic to the local network and can be for instance the average

delay between a proxy cache and a client, or in the case of Squirrel, the average latency

induced by the network between two randomly chosen clients. The internal latency

has to be small since it is experienced by clients even in case of a cache (home node)

hit. Typically, the external latency Te accounts for most of the total retrieval delay in

the absence of caching (e.g. 77%, and up to 88% for a geographically located network

[KLM97]).

The expected delay to fetch a document can easily be derived from the hit prob-

ability as follows. The total expected delay T with Squirrel is

�
[T] = Ti pH + (Ti + Te) (1 − pH) (4.18)

The Squirrel cache system reduces the average delay by saving the external latency

whenever there is a hit. The relative latency reduction observed with Squirrel is thus

Ti + Te −
�

[T]

Ti + Te
= pH

Te
Ti + Te

(4.19)

4.3.3 Discussion and extensions

We now discuss some specific features that were not explicitly taken into account in

the analysis of Section 4.3.1, apart from the popularity of documents.

The first remark is that the model assumes that every requested object is saved

in the cooperative cache when downloaded a first time from the origin server. However,

a non-negligible fraction (around 28%, cf. [CK01a]) of the requested objects is in

4.3. Analysis 59

practice non-cacheable (mainly, expiration date before current date, but also explicitly

non-cacheable). We can take into account the uncacheability in our model as follows:

let u be the fraction of objects that are uncacheable. So far, we have considered that

the fluid increases after each miss, thereby implicitly assuming that all objects are

cacheable. The uncacheability can be incorporated in our model by considering that

only a fraction 1−u of misses will yield a fluid increase. This gives rise to the following

equation

d

dt
X(t) = (1 − u)σNn

(

1 − X(t)

c

)

− θX(t) (4.20)

= (1 − u)σNn −
(

(1 − u)σNn

c
+ θ

)

X(t) (4.21)

for Tn < t < Tn+1 and Nn ∈ {1, 2, . . . , N}, since only requests for cacheable objects

will lead to a fluid increase. Therefore, uncacheable objects can be added to the model

simply by modifying the request rate accordingly.

Second, the impact of node join and leave events, modeled through the mappings

∆u and ∆d, may differ slightly from the values described in Section 4.2. Indeed, in

the two following cases we need to re-estimate these factors. Though Proposition 4.3.1

provides an expression for general values of ∆d(i), we need to ensure that condition

(4.8) is still satisfied in both cases:

− Some nodes may announce their intention to disconnect, thereby avoiding a per-

formance degradation (see Section 2.2.3.2). This requires a change to ∆d(i), which

may reach unity if all nodes are able to announce their departures. If ∆d(i) = 1

and if ∆u(i) < 1 is unchanged, then (4.8) is still satisfied.

− The individual Squirrel caches may be stored either on disk or in memory. In

the first case, the local cache may not be erased when a node i goes down or

disconnects. When node i goes back up, it may therefore join the system with a

set of previously stored documents. This can possibly add fluid into the network,

if the three following conditions are satisfied simultaneously: node i has not

announced its last departure, the corresponding objects have not been retrieved

by the system while i was down, and node i is still home node for these documents.

If this happens, the problem is not only how to re-estimate ∆u(i), but also that

∆u(i) might be greater than one, making condition (4.8) more difficult to verify.

However, we expect that node i will stay down for a minimum time that will be

60 Chapter 4. Performance of the Squirrel P2P Caching System

orders of magnitude greater than request inter-arrival times (the reboot time is

typically a few minutes). Meanwhile, most of the objects stored in node i will be

requested again and added to their new home nodes. As a result, when node i

goes back up it will probably not add any fluid in the system, thereby ensuring

∆u(i) ≤ 1 and the validity of (4.8).

Finally, formula (4.9) involves binomial coefficients
(

N
i

)

and an exponential in

N . Therefore, computing pH accurately for very large values of N may prove diffi-

cult. Nonetheless, we would like first to mention that though we have occasionally

encountered such problems, Proposition 4.3.1 is tractable for an order of magnitude of

several thousands of nodes, where a simulation would be untractable for high-confidence

results. In addition, for much larger values of N , the node dynamics can be approxi-

mated by an M/M/∞ model instead of an Engset model. This extension is presented

in Chapter 5.

4.4 Qualitative insight in the Squirrel system

Proposition 4.3.1 shows that the performance of the Squirrel system exhibits only four

degrees of freedom: N , ρ, γ, and α while our model introduced six parameters: N , λ,

µ, σ, θ, and c. We now examine the relative importance of these new parameters and

how they characterize the Squirrel system behavior.

We first examine the influence of ρ on the hit probability. Figure 4.2 shows that

while there is a sharp drop of the hit probability for very small values of ρ (smaller that

one), the performance is almost constant when ρ exceeds one. Therefore, except when

it is close to zero, ρ has very little influence on the performance of the Squirrel system.

It is unlikely that ρ will be really small, since it would mean that the event that all

nodes are down would occur with nonnegligible probability. In this circumstance, the

limiting factors for the hit probability will be parameters N , γ and α.

In Figure 4.3 we examine the influence of γ and α on the hit probability. We find

that, for fixed α, the hit probability is a concave function of γ, and can reach almost

one when α = 0. This is consistent with our observation that ρ does not limit the

hit probability when it is greater or equal to one. Recall that γ = σ/(µc) where σ is

the individual request rate of the nodes. This concave shape in γ reminds us of the

4.4. Qualitative insight in the Squirrel system 61

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

H
it

pr
ob

ab
ili

ty

Figure 4.2: Impact of ρ (with N = 3, α = 1 and γ = 2).

log-like (i.e., the hit rate is either a logarithm or a small power of the global request

rate) performance of a centralized Web cache (or Web cache cluster) as described in

[WVS+99, GB97, DMF97].

However, we observe that the hit probability is high only when α ≤ 1, γ ≥ 10.

Indeed, α has a strong impact on the hit probability, hence γ has a significant impact

on the performance of the Squirrel system only when α is small.

These observations suggest possible methods to improve the performance of the

Squirrel system. The best possible improvement would be to reduce parameter α =

θc/σ. Since the total number of existing objects, c, cannot be modified, there are two

options:

− Reduce the expiration rate θ as much as possible: increase the default value of the

maximum allowed value (denoted by CONF MAX) in the freshness calculation

heuristic for example (see Section 2.2) especially since most cGET requests (e.g.

90%) are responded with Not-Modified message [CK01a]. Another solution can

be the refreshment policy proposed by Cohen and Kaplan in [CK01b].

− Increase the request rate σ, for instance by using prefetching techniques. We

believe that prefetching can be incorporated into the fluid model, which will allow

us to quantify the gain of using it. Intuitively, although increasing the request

62 Chapter 4. Performance of the Squirrel P2P Caching System

Figure 4.3: Impact of γ and α on the hit probability (with N = 3 and ρ = 1). (Note

that α is decreasing.)

rate will increase the load in the system, it will also increase the rate at which

objects are retrieved to the Squirrel network. This phenomenon is already known

in the context of centralized caches [DMF97].

Finally, if the global shape of the hit probability does not depend on N , the optimal

values of γ and α vary with N . As a result any optimization of the system requires a

realistic estimation of the maximum number of nodes in the network.

4.5 Experimental Validation

In this section we compare our macroscopic fluid model with a discrete-event driven

simulation of the Squirrel home-store system. Request arrivals are Poisson and object

time-to-live are taken to be all constant and all identical. We also assume that nodes

follow the same time-evolution as in the fluid model, i.e. an Engset model. The

external latency is taken into account whereas the internal latency is considered to be

4.5. Experimental Validation 63

zero (corresponding to instantaneous internal transfers). Simulation results are given

with 99% confidence intervals.

γ

H
it

pr
ob

ab
ili

ty

Impact of γ on hit probability (N=10,ρ=1)

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fluid model
Simulation

Figure 4.4: Fluid model vs discrete-event simulation. (N = 10, ρ = 1 and α = 1).

Figure 4.4 displays the hit probability as a function of γ with ρ = 1 and α = 1. We

observe that the fluid model curves closely follow the same shapes as the discrete-event

simulations and therefore mimics the simulated system behavior very accurately. We

conclude that the model is robust to assumptions such as the request rate distribution

(which we assumed constant in Section 4.3.1), and although microscopic features such

as objects replication and local hits (requests not forwarded to home node) are being

ignored, the fluid model provides an accurate approximation for the actual performance

of the Squirrel system.

Moreover, as for cache clusters the discrete-event simulation (implemented in C)

of the Squirrel system is very slow and limited to very small network sizes. Even

with the restrictions mentioned in Section 4.3.3, Proposition 4.3.1 provides an efficient

estimation of the Squirrel hit probability up to the order of 10,000 nodes, and even

provides an immediate result for smaller network sizes.

We show in Figure 4.5 how the hit probability would look like for large networks,

since simulation of such systems would be either too slow or statistically irrelevant.

Since Figure 4.4 validated the accuracy of our model for small network sizes, we expect

the results for large networks to be as relevant – though we do not have simulation re-

64 Chapter 4. Performance of the Squirrel P2P Caching System

sults to demonstrate it. We observe the same shape as in Figure 4.4, though on a larger

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

hi
t p

ro
ba

bi
lit

y

Figure 4.5: Hit probability for large networks (N = 2000 and α = 1000).

range (thanks to the low complexity of the model), which suggests that Squirrel scales

with the same type of behavior, and that the characteristics observed in Section 4.4

should be valid for large networks.

4.6 Conclusion

In this chapter we used our stochastic fluid model to analyze the performance of the

Squirrel cooperative cache system. Our resulting stochastic fluid model turns out to

be mathematically tractable, and has allowed us to provide a simple and very low-

complexity procedure for computing the hit probability. Moreover, the analysis has

emphasized the key characteristics of the Squirrel system and allows a better under-

standing of its performance. Comparison with simulation results has shown that the

hit probability provided by the solution to the model is an accurate approximation of

the actual hit probability and has validated the qualitative conclusions driven by the

model results.

It is worth observing that our analysis is not strictly limited to Squirrel, but

can also be applied to other P2P systems based on distributed hash tables such as

4.6. Conclusion 65

Chord, CAN or Tapestry ([SMK+01, RFH+01, ZKJ00]). The necessary conditions are

the load balancing (provided by Pastry), and above all the absence of replication that

characterizes the home-store scheme.

Future work will focus on extending the model to handle prefetching techniques.

We also address larger populations of peers and quantify the accuracy of the approach

for the Zipf-like popularity model in the next chapter.

66 Chapter 4. Performance of the Squirrel P2P Caching System

Chapter 5

Extension to Large Networks and Zipf-

Like Popularity

5.1 Introduction

In Chapter 4 we developed a model for the quantitative analysis of Squirrel using the

stochastic fluid framework introduced in Chapter 2. We derived the hit probability

under the assumption that all documents are equally popular. The node dynamics

were modeled by a Engset process, a N -state Markov process, where N is the number

of nodes in the Squirrel network. As to the request process, we assumed that each

active Squirrel node generated requests at a constant rate. We then showed that the

total number of available documents in the Squirrel network was accurately modeled

by a piecewise deterministic fluid process.

The aim of the present chapter is to extend the analysis of Chapter 4 in two

directions. First, we replace the Engset model by an infinite-state Markov process,

the M/M/∞ queuing model (see Section 5.2), which yields a dramatic decrease in the

complexity of computing the hit probability. Indeed, solving the Engset model requires

a computational effort that grows exponentially with N , the size of the network, due

67

68 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

to the presence of binomial coefficients and exponentials in the hit probability formula

(4.9). This restricted the performance analysis to the order of 10,000 nodes. Our new

M/M/∞ model allows us to easily handle real size networks (e.g., a million nodes for a

large corporate network). Second, we relax the assumption made in Chapter 4 that all

documents are equally popular, and provide an efficient method for computing the hit

probability in realistic situations (i.e. with Zipf-like document popularity distribution).

Numerical comparisons with discrete-event simulations validate these extensions.

The rest of the chapter is organized as follows. In Section 5.2 we introduce the

new model for the node dynamics and recall the document model used in Chapter 4.

We then show in Section 5.3 how to compute the hit probability at a constant cost in

the number of nodes under the assumption that all objects are equally popular. The

latter assumption is relaxed in Section 5.4, where we incorporate a Zipf-like object

popularity distribution in our model, and show how to compute the hit probability in

this more general setting. These models are used in Section 5.5 to make a number

of qualitative observations on Squirrel performance, related to the impact of unequal

document popularity and of announced/unannounced departures (see 5.5.3) on Squirrel

performance. Section 5.6 is devoted to the experimental validation of our approach,

and concluding remarks are given in Section 5.7.

5.2 A M/M/∞-Modulated Fluid Model

In Chapter 4 we modeled the node dynamics by a finite-state birth and death process,

with birth (resp. death) rate λ(N − i) (resp. µi) when there are i = 0, 1, . . . , N nodes

up, where parameters N (the number of nodes), λ and µ are given. In the literature

this Markov process is referred to as the Engset model. This model has two main

problems. First, it requires the existence of a bound on the number of nodes which

can simultaneously be active (the parameter N). In general there does not exist such a

bound and, if it did, it would be very difficult to determine. Second, the calculation of

the hit rate induced by the Engset model poses serious computational complexity issues

as N becomes very large. As an illustration, it took more than one day to compute

the hit probability (given in Proposition 4.3.1, using a realistic value of ρ = 100) on a

2GHz Pentium 4 with 768MB RAM for 10,000 nodes, a relatively small population for

a corporate network.

5.2. A M/M/∞-Modulated Fluid Model 69

To overcome the shortcomings of using the Engset model (i.e. the need to have a

bound on the number of users and the scalability issue), in this chapter we model the

node dynamics by a M/M/∞ queuing system [Kle75, p. 101]. In the M/M/∞ setting,

nodes become active according to a Poisson process with intensity λ (referred to as the

arrival process) and each node remains active for an exponentially distributed amount

of time, with mean 1/µ. It is a natural model since it assumes nodes join the system at

arbitrary times, independently of each other. At the end of its activity period a node

disappears, an event which corresponds to a departure in the M/M/∞ queue. Node

activity periods are assumed to be mutually independent, and furthermore independent

of the arrival process. Therefore, in our stochastic framework introduced in Chapter 2,

the M/M/∞ model corresponds to λi = λ and µi = iµ for i ∈ � .

Remark 5.2.1 The M/M/∞ queuing system can be seen as a limit case of the Engset

model, in the sense that their steady-state distributions are equivalent when the mean

number of nodes goes to infinity (cf. Appendix F).

We now look at the stationary distribution of this new {N(t)} process. We re-

define parameter ρ as:

ρ
def
=

λ

µ
(5.1)

where λ now denotes the total birth rate and no longer the birth rate of an individual

node. It is known that N∞ has a Poisson distribution with parameter ρ [Kle75, p.

101], namely

�
[N∞ = i] =

ρi

i!
e−ρ, i ≥ 0. (5.2)

In particular, the expected number of active nodes in steady-state is given by

�
[N∞] = ρ (5.3)

which now gives a very intuitive meaning to parameter ρ. Recall that πi is the steady-

state probability that there are i nodes active just after a jump (see Chapter 2). We

show in Appendix A.2 that

π0 =
e−ρ

2
(5.4)

πi =
i+ ρ

i!
ρi−1 e

−ρ

2
, i ≥ 1. (5.5)

70 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

Apart from the M/M/∞ node process, the rest of the model is identical to the

model in Chapter 4. We now recall the main parameters of the fluid model. As in

Chapter 4 we assume that each active node produces a continuous and deterministic

stream of requests with rate σ, so that σNn is the total request rate in (Tn, Tn+1).

Hence, in the time-interval (Tn, Tn+1), X(t) satisfies the following first-order differential

equation

d

dt
X(t) = σNn(1 − �

[hit|Nn, X(t)]) − θX(t) (5.6)

if Nn > 0. In this chapter we will compute the hit probability for the two possible

expressions (2.2) and (2.3) of
�

[hit|Nn, X(t)] depending on whether or not documents

are equally popular (see Chapter 2).

We now provide the values of ∆u(i) and ∆d(i) for the Squirrel system. As dis-

cussed in Chapter 4 there is no loss of content when a new node joins Squirrel. Also,

we assume that a node joining Squirrel does not bring any document with it (see Sec-

tion 4.3.3). This again gives ∆u(i) = 1 for i ∈ � . On the other hand, there is no loss

of content if a departure is announced, so that ∆d(i) = 1 (i ≥ 2) when such an event

occurs. In the case of an abrupt departure the content of the departing node is totally

lost, which was assumed in Chapter 4 then we have ∆d(i) = (i− 1)/i for i ≥ 1. In the

following we will analyze both the situations where ∆d(i) = 1 and ∆d(i) = (i − 1)/i,

with ∆u(i) = 1 in both cases.

5.3 Hit Probability: Uniform Popularity Case

In this section we assume that all objects are equally popular, which implies that

the probability that a given object o is requested is 1/c. This assumption is relaxed

in Section 5.4, where a more realistic Zipf-like popularity distribution is considered.

Under the uniform document popularity assumption, the (conditional) hit probability

at time t,
�

[hit|Nn, X(t)], is a simple linear function of X(t), given by (2.2). Therefore,

as in Chapter 4 the fluid evolution is given by (4.2) and its solution (4.3) in the interval

(Tn, Tn+1). We also use the same parameters α and γ as in Chapter 4 (given in (4.4)).

A first expression for the hit probability pH is derived in the following proposition.

5.3. Hit Probability: Uniform Popularity Case 71

Proposition 5.3.1 The hit probability is given by

pH = e−ρ
∞
∑

i=1

ρi

i!
vi (5.7)

where the constants v1, v2, . . . satisfy the infinite linear recursion

(ρ+ αγ + (γ + 1)i) vi = γi+ i∆u(i− 1)vi−1 + ρ∆d(i+ 1)vi+1, i ≥ 1, (5.8)

with v0 = 0. �

Proof. The proof of Proposition 5.3.1 is given in appendix E. It is shown in this proof

that vi is the stationary hit probability just before a jump epoch given that i nodes are

active.

The expression in (5.7) is not amenable to efficient computation, since it involves

the solution of an infinite system of linear equations and the computation of an infinite

series. Building on Proposition 5.3.1, the next result provides an alternative expression

for the hit probability, which will turn out to be more amenable to numerical compu-

tation than (5.7). This is done for the cases (i) ∆d(i) = (i − 1)/i, ∆u(i) = 1 and (ii)

∆d(i) = ∆u(i) = 1.

Proposition 5.3.2 Assume that ∆u(i) = 1 (no loss of content at node arrival).

If node departures are not announced (i.e. ∆d(i) = (i− 1)/i) then

pH = e−
γρ

γ+1 γ−(1+κ)

∫ 1

1

γ+1

γρe
γρt

γ+1 (t(γ + 1) − 1)κ dt (5.9)

where κ
def
= γ(α(γ + 1) + ρ)/(γ + 1)2.

If node departures are announced (i.e. ∆d(i) = 1) then

pH = ρe−
ργ

γ+1 γ−ν
∫ 1

1

γ+1

(γteρt − v1)e
− ρt

γ+1 ((γ + 1)t− 1)ν−1 dt (5.10)

with v1
def
=

∫ 1/(γ+1)
0 γte

ργt

γ+1 (1 − (γ + 1)t)ν−1 dt
∫ 1/(γ+1)
0 e

ρt

γ+1 (1 − (γ + 1)t)ν−1 dt
and ν

def
= αγ(γ+1)+ρ

(γ+1)2
. �

72 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

Proof. For 0 ≤ z ≤ 1 introduce the generating function

F (z) =
∞
∑

i=1

ρi

i!
viz

i. (5.11)

Observe that 0 ≤ F (z) ≤ exp(ρz) since 0 ≤ vi ≤ 1 for all i ≥ 1. With (5.11) the hit

probability pH given in (5.7) can be rewritten as

pH = e−ρF (1) (5.12)

It remains to determine F (1). Assume first that ∆d(i) = (i − 1)/i. Multiplying both

sides of (5.8) by ρizi/i! and summing the resulting equation over all values of i ≥ 1

yields, after easy algebra,

(

ρ+ αγ − ρz +
1

z

)

F (z) + ((γ + 1)z − 1)
d

dz
F (z) = γρzeρz, for z ∈ (0, 1) (5.13)

Equation (5.13) defines an ordinary differential equation for F (z), with the initial con-

dition F (0) = 0. Letting z = 1/(γ + 1) in (5.13) we see that necessarily

F

(

1

γ + 1

)

=
γ ρ e ρ/(γ+1)

(γ + 1)(γ + 1 + αγ + γρ/(γ + 1))
(5.14)

Since we only need to compute F (1) (see (5.12)), it is enough to solve (5.13) for

z ∈ (1/(γ + 1), 1], with the initial condition (5.14), and then to use the continuity of

the function F (z) at point z = 1/(γ + 1).

We first solve the standard homogeneous equation, then use the method of vari-

ation of constant. The homogeneous equation writes

d

dz
F (z) =

ρ+ αγ − ρz + 1
z

1 − (γ + 1)z
F (z) (5.15)

=

[

ρ

γ + 1
+

1

z
− (γ + 1)2 + αγ(γ + 1) + γρ

(γ + 1) (z(γ + 1) − 1)

]

F (z) (5.16)

Its solution is

F (z) = Ce
ρz

γ+1 z (z(γ + 1) − 1)−(1+κ) (5.17)

where κ is defined in the statement of the proposition, and where C is an integration

constant. Considering C as a function of z, we routinely find from (5.13) and (5.17)

that C = C(z) satisfies the equation

d

dz
C(z) = γρe

γρ

γ+1
z
(z(γ + 1) − 1)κ

5.3. Hit Probability: Uniform Popularity Case 73

Solving for C(z) gives

C(z) =

∫ z

1

γ+1

γρe
γρt

γ+1 (t(γ + 1) − 1)κ dt+ C0 (5.18)

where C0 is a constant to be determined from the initial condition (5.14). Since the

exponent −(1+κ) of (z(γ+1)−1) in (5.17) is strictly negative, and since F (1/(γ+1))

is finite from (5.14), we conclude that necessarily C(1/γ + 1)) = 0, which implies that

the constant C0 in (5.18) must be equal to zero. Therefore, given (5.17) and (5.18), we

get

F (z) = e
ρz

γ+1 z (z(γ + 1) − 1)−(1+κ)

∫ z

1

γ+1

γρe
γρt

γ+1 (t(γ + 1) − 1)κ dt (5.19)

for z ∈ (1/(γ + 1), 1). Letting z → 1 in (5.19) and using (5.12) finally gives (5.9).

Assume now that ∆d(i) = 1. In this case F (z) satisfies the ordinary differential

equation

(ρ(1 − z) + αγ)F (z) + ((γ + 1)z − 1)
d

dz
F (z) = ρ(zeρz − v1), for z ∈ (0, 1) (5.20)

We only sketch the derivation of F (z) as it does not offer any difficulty. The first step

is to solve (5.20) separately for z ∈ (0, 1/(γ + 1)) and for z ∈ (1/(γ + 1), 1), with the

initial condition F (0) = 0 and F (1/(γ + 1)) = ρ(e−ρ/(γ+1)/(γ + 1) − v1)/(ρ + αγ),

respectively (the latter condition is obtained by setting z = 1/(γ + 1) in (5.20)). The

second and last step is to use the continuity of F (z) at point z = 1/(γ+1), which gives

a linear equation to be satisfied by v1, from which we find v1 and ultimately (5.10).

This concludes the proof. �

Proposition 5.3.2 provides a low-complexity formula for the computation of pH .

The only difficulty lies in the evaluation of the various exponentials, especially when

ρ is large or equivalently (see (5.3)) when the expected number of active nodes is

large. In this case, a good accuracy can be achieved by rewriting pH in the form

pH =
∫ 1
1/γ+1 e

f(t,ρ,α,κ)dt, where the mapping f can easily be identified from (5.9) (resp.

(5.10)). Using this method, the average CPU time needed to compute the hit proba-

bility using (5.9) or (5.10) is typically less than a second with an Intel 4 2GHz/768Mo

workstation, even for networks as large as a million nodes.

74 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

5.4 Hit Probability: Zipf-like Popularity Case

We now relax the assumption that all objects have equal popularity. Following [BCF+99]

we assume that the popularity of documents follows a Zipf-like distribution. This im-

plies that the probability ψn that the n-th most popular object is requested, is given

by

ψn =
Ω

nβ
for n = 1, . . . , c (5.21)

with 0 < β ≤ 1, where Ω
def
= 1/

∑c
i=1 i

−β is a normalization factor. When β = 1 then

we have the Zipf’s law. (For the sake of comparison, note that ψn = 1/c under the

homogeneous popularity assumption – see analysis in Section 5.3.)

The next step is to replace (2.2) by an expression that takes into account the

popularity of the documents. We now use a concave hit probability model as suggested

by (2.3) in Chapter 2, or even a more refined model using (5.21). If we assume that the

X(t) cached objects at time t are the most popular ones, then using the approximation
∑bxc

i=1 i
−β ≈

∫ x
1 t

−βdt = (x1−β−1)/(1−β) for x ≥ 1, a natural choice for
�

[hit|Nn, X(t)]

is (with bxc the largest integer less than or equal to c)

�
[hit|Nn, X(t)] =

bX(t)c
∑

i=1

Ω

iβ
≈ X(t)1−β − 1

c1−β − 1
(5.22)

Unfortunately, with this hit probability function equation (5.6) has no closed-form

solution, which does not allow us to develop the same kind of analysis as in Section 5.3.

Instead, we approximate the hit probability by dividing the set of c documents into K

popularity classes of size ck, 1 ≤ k ≤ K (
∑K

k=1 ck = c) and to assume that documents

belonging to the same class have the same popularity. By doing this, the hit probability

within each class can be computed by using Proposition 5.3.2. This approximation is

validated in Section 5.6.2.

More specifically, assume that the K classes are ordered according to the popu-

larity of their documents, with class 1 containing the most popular documents, class 2

the second most popular documents, etc. We define the global hit rate pH as a weighted

sum of the intra-class hit probabilities, that is,

pH =
K
∑

k=1

qk p
k
H (5.23)

5.4. Hit Probability: Zipf-like Popularity Case 75

with pkH the hit rate for documents of class k, and qk the probability that a document

of class k is requested. From (5.21) we see that

qk =
�

[request for class k] =

cK
∑

i=1

Ω

(
∑k−1

l=1 cl + i)β
, k = 1, 2, . . . ,K. (5.24)

This formula is obtained by summing the popularities of all documents in class k, with

Ω/(
∑k−1

l=1 cl + i)β the popularity of the i-th most popular document of class k.

The intra-class hit probability pkH is obtained from Proposition 5.3.1 by replacing

the parameters α and γ in (5.9) and (5.10) by αk = θck/(σqk) and γk = σqk/(µck),

respectively.

It remains to specify how to choose the number of classes K and the number of

objects assigned to each class. We first select the number of classes K. This number has

to be low enough for computational efficiency, but large enough to capture the effect

of the skew factor β on the hit probability. Clearly, the accuracy of this approximation

will only increase with the number of classes. As a result, we simply choose the highest

value of K that leads to an affordable computation. In Section 5.6.2 we will search for

an acceptable number of classes through a comparison with a simulation of the real

system.

Once K is chosen, we need to calculate the number of objects ck assigned to

each class k, 1 ≤ k ≤ K. This is a classical clustering problem that can be solved

with a scalar quantization algorithm (see e.g. [GG92]), which also readily provides the

qk coefficients. Given the initial popularity vector (ψ1, ..., ψc), the vector quantization

algorithm aims at finding the class vector (φ1, ..., φK) that minimizes

E =
c
∑

n=1

d(ψn, Q(ψn)) (5.25)

where d(.) is a distance measure (in our case the Euclidean distance) and Q(ψn) the

quantified version of ψn in the set {φ1, ..., φK}, namely,

Q(ψn) = arg min
φk

d(ψn, φk) (5.26)

The quantity φk can be understood as the average popularity of documents in class k.

Therefore the qk coefficients are given by

qk = ckφk, 1 ≤ k ≤ K. (5.27)

76 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

In order to determine the set {φ1, ..., φK} we used the Lloyd algorithm [GG92, page 189]

that can be seen as an application of the Expectation-Maximization (EM) algorithm

(cf. [Bil98]). This algorithm is composed of the following four steps:

S1: Initialize (φ, . . . , φK) (for example by using random sampling);

S2: For n = 1, ...N , estimate Q(ψn) from (5.26): for each φk we obtain ck correspond-

ing objects;

S3: For k = 1, 2, . . . ,K, re-estimate φk: φk = (1/ck)
∑

n:Q(ψn)=φk

ψn;

S4: Go back to step 2 (S2) until convergence.

Since this algorithm is based on EM, the error will decrease at each iteration so that the

set {φ1, ..., φK} will converge to a local optimum. In practice, this algorithm provides

the optimal vector (φ1, ..., φK) along with the corresponding (c1, ..., cK) values.

5.5 Application to Qualitative and Quantitative problems

In this section we investigate the impact on the hit probability of the document popu-

larity distribution (Section 5.5.2) and of announced/unannounced departures (Section

5.5.3).

5.5.1 Experimental setup

We used Matlab to compute the hit probability from (5.9), (5.10) and (5.23) with the

following parameters























c = 107 files

σ = 10−3 requests per second and per user

θ = 10−6 s−1 (corresponding to a 11-day TTL)

µ = 10−7 s−1 (corresponding to 3 failures/departures per year and per user)

5.5. Application to Qualitative and Quantitative problems 77

With the above values, we see from the definition of γ (4.4) that

{

γ = 10−3

α = 104.

For the Zipf-like distribution we used β = 0.7 (cf. [BCF+99]) and an approximation of

K = 10 classes for 107 documents (cf. Section 5.6.2 for a discussion on the choice of

K).

We also investigate the role of the mean online time on the hit probability in

Section 5.5.3 by setting ρ = 105 and varying µ instead. This case will be explicitly

mentioned.

5.5.2 Impact of the popularity distribution on the performance

Using our M/M/∞ model, we provide in Figure 5.1 the hit probability for the Squirrel

system with unannounced departures as a function of the expected number of active

nodes ρ, for uniform and Zipf-like document popularity distributions. In both cases,

the hit probability is an increasing function of the size of the network (i.e. ρ), which

reflects the self-scaling nature (and therefore the scalability) of the Squirrel system.

We can see from Figure 5.1 that the document probability distribution has an

important impact on the hit probability. More specifically, the Zipf-like document pop-

ularity distribution generates a higher hit probability than the uniform popularity for

small and medium-sized networks (say up to 104-105 active nodes on average). This is

rather intuitive since when the popularity is skewed, many requests can be served with

only a few popular cached documents. From this, we conclude that the document prob-

ability distribution is a crucial performance factor, which must be carefully modeled.

One can also use Figure 5.1 to determine the minimum network size necessary

for an acceptable performance. For instance, with the experimental setting in Section

5.5.1, 8000 nodes must be active on the average with the Zipf-like distribution if one

wants the hit probability to exceed 1/2.

78 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average number of peers (ρ)

H
it

pr
ob

ab
ili

ty

P
H

 for uniform popularity
P

H
 for Zipf popularity

Figure 5.1: Hit probability of Squirrel for various document popularity distributions.

5.5.3 Utility of announced departures

In this section we evaluate the benefit of announcing departures on Squirrel perfor-

mance. We compare the hit probability of the Squirrel system in the case of abrupt

failures and announced departures. We do this for the uniform popularity case, using

(5.9)-(5.10).

In Figure 5.2 we show the hit probability as a function the the network size. As

expected (cf. Section 2.2.3.2 and 5.2), the hit probability is improved when users are

able to announce their departure. However, the improvement that this feature brings is

rather small, typically a 5% improvement over the abrupt failure case. Therefore, the

benefit of announcing departures has to be balanced against the overhead cost that this

feature induces, due to departing nodes transferring their content to their neighbors.

We can expect this tradeoff to depend strongly on the mean online time of peers

1/µ. In particular, if peers disconnect much more often than 3 times a year as assumed

in Figure 5.2, the cost of not announcing departures may be much more important

- as well as the overhead cost. In Figure 5.3 we compare the hit probability of the

Squirrel system for announced departures and abrupt failures for various departure

5.6. Experimental Validation 79

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average number of users ρ (log scale)

H
it

pr
ob

ab
ili

ty

With abrupt failures: ∆
d
(i) = (i−1)/i

With annonced departures: ∆
d
(i) = 1

Figure 5.2: Hit probability of Squirrel for announced and unannounced node departures

as a function of the network size.

rates, ranging from 10−7 (3 departures per year) to 1−5 (around 1 departure per day).

For this experiment we used a network size of ρ = 105 nodes and θ = 10−5 (24 hours

TTL).

We observe that the performance of the system does not depend on γ (i.e., on

µ in this experiment) when nodes are able to announce their departure. While this

property is not directly visible from the expression in (5.10), it is fairly intuitive since

an announced departure does not generate performance degradation, unlike abrupt

failures. We also observe that the performance degradation due to abrupt failures only

becomes significant for γ ≤ 10−4, corresponding to µ ≥ 10−6, or a mean online time of

11 days at most.

5.6 Experimental Validation

The goal of this section is to validate the fluid model approximation of requests, as

well as the clustering approximation of document popularity, against a discrete-event

simulation of the Squirrel system.

80 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

10
−5

10
−4

10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ (log scale)

H
it

pr
ob

ab
ili

ty

With abrupt failures: ∆
d
(i)=(i−1)/i

With announced departures: ∆
d
(i)=1

Figure 5.3: Hit probability of Squirrel for announced and unannounced node departures

as a function of the mean online time. (network of 100,000 nodes.)

5.6.1 Uniform popularity case

We compared the hit probability when the node dynamics are modeled as the number

of customers in a M/M/∞ queuing system, given in (5.9), to the corresponding formula

(4.9) when node dynamics are represented by the Engset model. To do so we fixed the

mean number of active nodes to the same value in both models and varied it between

1 and 11000 nodes (range of tractability of the hit probability obtained via the Engset

model). The hit probability with the Engset model was computed using Maple V.

We found that both models consistently predict the same hit probability over all

range of loads (i.e. mean number of active nodes), even for very small networks. The

relative error was always smaller than 10−4. Therefore, we can expect both models to

describe the Squirrel system with the same accuracy.

In Chapter 4, we compared the theoretical results obtained via the Engset model

to a discrete-event simulation of the Squirrel system with uniform popularity distribu-

tion. The simulation validates the fluid model approximation by using Poisson arrivals

for requests and by allowing concurrent requests. We found that the theoretical hit

probability was remarkably close to the hit probability obtained through simulations

5.7. Conclusion 81

(see Chapter 4 for details).

We can therefore safely conclude from the above that the hit probability computed

via the M/M/∞ model offers the same accuracy as the one obtained via the Engset

model, at least in the uniform popularity case (the analysis in Chapter 4 was only carried

out for uniformly popular objects). In particular, we can reasonably extrapolate that

the model developed in this chapter is a good approximation of the Squirrel behavior

when deployed on large networks (say larger than 10,000 users), a situation where both

discrete-event simulations and the model in Chapter 4 fail to work.

5.6.2 Zipf-like popularity

In Figure 5.4 we compare our multiclass approach (see 5.4) to a discrete-event simu-

lation of the Squirrel system with a Zipf-like popularity distribution. The parameters

were

c = 40, 000 files, ρ = 9.99 nodes, θ = 10−3 s,−1 µ = 10−7 s,−1 β = 0.7

and we varied the request rate σ. Simulation results are subject to a 99% confidence

interval of width 0.2%.

Figure 5.4 shows that our multiclass model is able to approximate very closely

the hit probability of the simulated system: with 10 classes the curve follows already

closely the same shape as the curve obtained by simulation, and with 100 classes the

relative error amounts to 1%. We conclude that the combination of the M/M/∞ model

for node dynamics and of the multiclass approach for modeling the different document

popularities provides a very accurate estimation of Squirrel behavior and performance.

5.7 Conclusion

In this chapter, we modeled the Squirrel peer-to-peer cooperative caching system with

a new stochastic fluid model that is tractable for very large networks (i.e., the order

of a million nodes). This model, based on M/M/∞ node dynamics, can be viewed as

a scalable extension of our previous Engset-based fluid model. The new model turns

out to be tractable for any network size and is also more convenient than our previous

82 Chapter 5. Extension to Large Networks and Zipf-Like Popularity

request rate σ (requests per second per user)

H
it

pr
ob

ab
ili

ty

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulation
Fluid Model with uniform popularity
Fluid Model with 3 classes
Fluid Model with 5 classes
Fluid Model with 10 classes
Fluid Model with 100 classes

Figure 5.4: Comparison of the multiclass M/M/∞ model with a discrete-event simula-

tion of Squirrel under a Zipf-like popularity distribution.

model. In addition, the model also allowed us to study the effect of nodes announcing

their departure on the resulting hit probability.

Furthermore, we proposed, implemented and evaluated a multiclass approach to

take variable object popularity into account. We found that this method gives accurate

results even with a small number of classes.

Part II

A Client-Based Fluid Model

83

Chapter 6

A Multiclass Model for P2P Networks

6.1 Introduction

In a traditional client-server content distribution system, a large number of clients

download content from a single server. If the single server cannot keep up with the

demand from all the clients, the load can potentially be handled by replacing the server

with a server farm and increasing the access bandwidth from the server farm. Although

it is possible in theory to match any demand with a sufficient number of servers and

sufficiently wide access pipes, the cost can easily become prohibitive.

BitTorrent is a content-distribution booster which enables a content provider to

distribute popular content to a large number of clients without the need of large server

farms and expensive high-speed Internet connections. The idea in essence is to split the

file into small chunks, distribute different chunks to different downloading peers, and

then have the peers obtain their missing chunks from each other. In this manner, the

clients become servers, each of them contributing bandwidth to the content-distribution

system. This approach has proved to be a highly successful mechanism to distribute

popular content at low cost. In BitTorrent terminology, the servers that make available

the entire file are called “seeds”. The clients that are collecting and sharing chunks are

85

86 Chapter 6. A Multiclass Model for P2P Networks

called “leechers”. Once a leecher has downloaded the entire file, it becomes a seed for

as long as it continues to distribute chunks to other clients. The BitTorrent protocol

includes a “tit-for-tat” mechanism to ensure that leechers not only download content

but also upload content [Coh]. BitTorrent is a peer-to-peer system since clients (peers)

upload chunks directly to each other.

Qiu and Srikant [QS04] developed a tractable fluid model for BitTorrent-like con-

tent distribution systems. The model sheds insight on throughput, average download

times, and stability of these systems. Although the model is elegant and tractable,

it has limited applicability. First, the model assumes that all peers are homogeneous,

with all peers having the same upload and download capacity. In reality, peers have

diverse bandwidth characteristics, including dial-up modem access, broadband access

(cable and ADSL), and high-speed Ethernet access. Second, the model does not allow

for the exploration of distribution systems that provide application-layer differentiated

services. Indeed, it is natural to conceive of a BitTorrent-like system in which there are,

say, first-class peers and second-class peers. The first-class peers pay more (in some

sense) and should receive better service – that is, shorter average download times – than

the second-class peers. This is a form of “application-layer differentiated-service” as

the service differentiation would be provided by the BitTorrent-like application rather

than by the core of the Internet. Intuitively, BitTorrent-like systems could provide

differentiated service by having the seeds and leechers allocate more of their upload

bandwidth to first-class peers.

In this chapter we propose a deterministic multiclass fluid model for BitTorrent-

like content distribution systems. The new fluid model can model both heterogeneous

peer access and multiple differentiated service classes. Our multiclass fluid model re-

sults in a system of differential equations which generalize the single-class equations in

[QS04]. The equations are significantly more complex and difficult to solve, as they

explicitly distinguish between the various classes. The system of differential equations

are so-called “linear switched systems” which are nonlinear differential equations with

special structure (see e.g. [Lib03]). Nevertheless, for a number of important special

cases, we explicitly solve the equations, obtaining closed-form solutions for average

download times for each of the classes.

In particular, we consider the special case where downloaders leave the system

immediately after completing their download. This is a worst-case scenario since altru-

istic seeds could instead stay in the system when they have completed their download,

6.2. Related Work 87

contributing bandwidth and providing any missing chunk to other peers. For the service

differentiation problem we prove that the system of differential equations governing the

system dynamics admits a unique stable equilibrium that we compute in closed-form.

From this result, we find the average download time for each class of peers and show

how this result can be used to achieve service differentiation among the peers. We also

indicate to what extent our results remain valid when seeds stay in the system for a

non-negligible amount of time.

In the second part of the chapter, we address the bandwidth diversity problem.

We show that the system of differential equations has a stable stationary state that may

depend on the initial conditions. We identify all stationary solutions and compute the

average download time associated with each solution. Last, we minimize the maximum

average download time of both classes, regardless of the initial conditions.

The chapter is organized as follows. In Section 6.3 we introduce the multiclass

model and derive the equations governing the system dynamics. Sections 6.4 and 6.5

provide results for the service differentiation problem and bandwidth diversity problem,

respectively. Section 6.6 concludes the chapter.

6.2 Related Work

Peer-to-peer systems, like other content distribution systems, have been the object of

few performance studies, perhaps because of their relative novelty, their constantly

changing technology and popularity, as well as their intrinsic complexity. Among the

few works that address performance issues of peer-to-peer systems, many studies rely

on traffic measurement [IUKB+04, PGES04, SGP04, SGG02] and simulation [Qur04,

FB04].

One of the pioneer works in peer-to-peer analytical modeling was [GFJ+03]. The

authors propose a closed queing system which is sufficiently general to be able to model

various P2P architectures such as distributed hash tables (DHT), flooding architectures

and central index schemes, and to study the effect of various parameters such as the

number of peers, the presence of freeloaders, or the request rates, by using an ap-

proximate numerical resolution of the model. In [BRF04], Biersack et al. propose a

deterministic model of peer-to-peer systems for various peer organization topologies

88 Chapter 6. A Multiclass Model for P2P Networks

(chain, tree and a more complex architecture connecting several trees). They derive

bounds on the service capacity.

Finally, several models of BitTorrent-like systems have been successively pro-

posed, beginning with [YD04] where both the transient and steady-state regime have

been analyzed using respectively branching processes and numerically-solved Markov

chains. Then, inspired by [YD04], [QS04] proposed a simple fluid model, as described

in Section 6.1, and obtained closed-form expressions of the downloading delay instead

of requiring numerical resolutions. More recently, Massoulié and Vojnović proposed a

large population asymptotic analysis of BitTorrent systems [MV05]. They considered

open and closed systems, the latter being appropriate for the flash crowd transient be-

havior. Their paper shows many interesting properties such as the stability conditions

of BitTorrent systems as well as an explicit expression of equilibrium points. In partic-

ular, they show that the performance of BitTorrent systems is not critically dependent

on the goodwill of users to stay in the system after completing their download.

A first multiclass fluid model of BitTorrent-like networks based on [QS04] was

proposed in [LNB04]. The authors study the specific bandwidth diversity problem

through a comparison with the single-class homogeneous model in [QS04]. This is done

in the case of symmetric access links and focuses on parallel download, using max-min

fairness to numerically compute connexion rates. Besides these detailed assumptions

which make the work [LNB04] very different from this chapter, we can outline the fol-

lowing important differences. In this chapter, we propose a generic framework designed

to study, for instance, the resource allocation problem at individual peers. We then

apply our general model to two important problems, including bandwidth diversity, but

from an optimization point of view. Second, as a result of these different objectives, the

theoretical aspect of our work is very different. In particular, our search for a generic

model leads us to address stability issues for each problem, which is not the case in

[LNB04]. We also study carefully the boundaries between the working regions defined

by the system and show that in some cases the steady-state bottleneck depends on

initial conditions.

6.3. Multiclass Model 89

6.3 Multiclass Model

In this chapter we consider a BitTorrent-like system with two classes of peers, with the

classes denoted by i = 1 and i = 2. All peers in both classes want to obtain the single

file F . Without loss of generality, we take the file size to be equal to 1. Each class has

seeds and downloaders (leechers). Seeds have all of the file, whereas downloaders have

only portions of the file. When a downloader obtains the whole file, it immediately

becomes a seed. Let yi(t) and xi(t) denote the number of seeds and downloaders,

respectively, for class-i peers at time t. Since we consider a deterministic fluid model as

in [QS04], yi(t) and xi(t) are continuous variables. In this chapter, we are particularly

interested in the steady-state behavior of yi and xi, i = 1, 2. We need to also define

the following:

− Let λi be the constant rate at which new class-i downloaders arrive. Whenever a

new class-i downloader arrives, xi is incremented by 1.

− Let µi be the upload bandwidth of a peer from class i.

− Let ci be the download bandwidth of a peer from class i. We make the realistic

assumption that ci ≥ µi, which is consistent with the current access technologies.

Whenever a class-i peer has fully downloaded the file, xi is decremented by 1 and

yi is incremented by 1.

− As in [QS04], we allow downloaders to abort downloading before fully obtaining

the file. Let θi be the rate at which class-i downloaders abort. Whenever a class-i

downloader aborts, xi is decremented by 1.

− Let γi denote the rate at which class-i seeds leave the system. Whenever a class-i

seed leaves the system, yi is decremented by 1.

− Let ηi ∈ (0, 1) denote the efficiency of class-i downloaders, which is the average

amount of a downloader’s upload bandwidth that is being used for content distri-

bution. This parameter was first introduced in [YD04] in a Markov chain model,

then used in [QS04] in the single-class case.

We now discuss the resource allocation policy. A peer (seed or downloader) will

upload chunks to multiple peers simultaneously. The aggregate rate at which a class-i

seed peer uploads is µi; the aggregate rate at which a class-i downloader peer uploads

90 Chapter 6. A Multiclass Model for P2P Networks

is ηiµi. A peer will allocate its upload rate between the two classes of peers. For a

class-i peer, let αi(x1, x2) (resp. 1 − αi(x1, x2)) be the fraction of its upload rate that

is allocated to class-i peers, that is, to peers in its own class (resp. to peers in the

other class) when there are x1 class-1 downloaders present and x2 class-2 downloaders

present. Thus, αi(x1, x2) lies between 0 and 1. We refer to (α1(x1, x2), α2(x1, x2))

as a dynamic allocation policy. To implement such a resource allocation, peers

only need to know to which class the other peers belong, and also the population in

each class for the dynamic policy. This information may be provided, for instance, by

the tracker server which is used in BitTorrent as a bootstrap to help incoming peers

discover seeds and other downloaders.

In this chapter we limit our attention to static allocation policies, namely,

policies of the form αi(x1, x2) = αi for all x1 and x2 for i = 1, 2.

Our deterministic model of the two-class multiclass P2P network is now complete.

Figure 6.1 summarizes the states and rates in the system.

1

1−

1− 2

1y 2y

1−
2 1−

γ
21

γ

21 xx

2

λ 1
λ 2

α 1

θ

2α
α 1

α

2αα 1 α α 1

θ

Figure 6.1: General model for a two-class P2P file dissemination system. Solid arcs

represent migrations of users (connections, migrations from downloaders to seeds, dis-

connections). Dashed arcs represent the fraction of allocated upload bandwidth from

users of one class to downloaders of another class.

6.3. Multiclass Model 91

We now develop a system of differential equations for the fluid-version of the

above multiclass model. At time t, the total upload rate provided by class-i peers to

peers of class i is

αiµi(ηixi(t) + yi(t)) (6.1)

and to peers of the other class

(1 − αi)µi(ηixi(t) + yi(t)) (6.2)

Therefore, the total upload rate provided by class-i peers is

µi(ηixi(t) + yi(t)) (6.3)

Let k = 3 − i, i = 1, 2 designate the other class. The total download rate provided to

peers of class i cannot exceed cixi(t) so that the total flow rate out of state xi(t) is

min(cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))) (6.4)

to which we must add θixi(t), the total flow rate at which downloaders leave the system

without having downloaded the entire file. By definition, the flow rate into state xi(t)

is λi. Hence, the time-evolution of (x1(t), x2(t)) is governed by the following differential

equations

dxi(t)

dt
= λi − θixi(t) − min

(

cixi(t), αiµi(ηixi(t) + yi(t))

+ (1 − αk)µk(ηkxk(t) + yk(t))
)

(6.5)

for i = 1, 2 and k = 3 − i.

Similarly, we find that the total flow rate into state yi(t) is given by the total rate

at which downloaders become seeds, namely µi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) +

yk(t)) as explained above, while the total flow rate out of state yi(t) is simply γiyi(t).

This gives the following equations for the time-evolution of (y1(t), y2(t))

dyi(t)

dt
= min

(

cixi(t), αiµi(ηixi(t) + yi(t))

+(1 − αk)µk(ηkxk(t) + yk(t))
)

− γiyi(t) (6.6)

for i = 1, 2 and k = 3 − i. Equations (6.5)-(6.6) fully define the system dynamics.

We will be particularly interested in the case where downloaders leave the system

at once when they have completed their download, namely 1/γ1 = 1/γ2 = 0. There

92 Chapter 6. A Multiclass Model for P2P Networks

are two reasons why we consider this situation. First, it will yield much more tractable

equations, as shown next. Second, this case represents a worst-case situation, where

peers are not willing to cooperate, and leave the system just when they are the most

useful to the system, being able to provide chunks and bandwidth without having to

consume resources. In this case, they never become seeds, which implies yi(t) = 0 for

all t > 0. As a result, system (6.5) reduces to

dxi(t)

dt
= λi − θixi(t) − min (cixi(t), αiβixi(t) + (1 − αk)βkxk(t)) (6.7)

for i = 1, 2 and k = 3 − i, where

βi
def
= µiηi. (6.8)

Note that

ci > βi, i = 1, 2 (6.9)

since we have assumed that c ≥ µi and 0 < ηi < 1. In matrix form (6.7) writes

ẋ(t) = Aσ(x(t)) x(t) + b (6.10)

with x(t)
def
= (x1(t), x2(t))

T and b = (−λ1,−λ2)
T (as usual vT denotes the transpose

vector of the vector v, and ẋ(t) denotes the derivative of vector x(t) with regard to t).

In (6.10) σ is an integer-value mapping, taking values in σ ∈ {1, 2, 3, 4}, given by

σ(x) = 1 + 2 × � (c1x1 ≥ α1β1x1 + (1 − α2)β2η2x2)

+ � (c2x2 ≥ α2β2η2x2 + (1 − α1)β1η1x1) (6.11)

for x = (x1, x2), where � (A) denotes the indicator function of the event A (i.e. � (A) = 1

if A holds and zero otherwise). The mapping σ is called a switching condition and a

system like (6.10) is called a switched system [Mor97, Lib03]. The 2-by-2 matrices Ai,

i = 1, . . . , 4, can easily be identified from (6.7).

The model where 1/γ1 = 1/γ2 = 0 will be referred to as the no-seed model. A

natural question is the following one: how do downloaders ever get any chunk if there

are no seeds? Here, we make a distinction between two notions of seeds. A BitTorrent-

like system needs, at startup time, at least one seed, for as long as it needs to upload

(at least) a complete copy of the file. Though this bootstrap seed is mandatory to make

the file available, it may leave long before the system reaches a steady-state. Therefore,

its role is limited to starting the torrent, and is negligible on the long-term. Note that

the general system (6.5)-(6.6), as well as the single-class model in [QS04], also neglect

6.4. Resource Allocation Policy for Service Differentiation 93

this bootstrap seed, since the system may have a nonzero solution even if yi(0) = 0 for

i = 1, 2. Downloaders which have a complete copy of the file, on the other hand, will

have an impact on the steady-state since they belong to the long-term dynamics of the

system. These regular seeds are considered in (6.5)-(6.6), whereas the no-seed model

assumes they leave the system immediately. Though the BitTorrent system kindly asks

its users to stay online as long as possible when they become seeds, the system is kept

alive by the downloaders only, since the protocol really incites them to exchange chunks

to each other. It has been shown in [QS04] and [MV05] that when η > 0 the system

does not die, no matter how short a time seeds stay in the system.

We conclude this section by introducing the cost functions that we will consider

throughout the chapter. Let φi be the download cost of peers of class i, which is defined

as the expected download time given that the peer completes the download. An analytic

expression for φi can easily be derived as follows. Assume that xi(t) has a stationary

regime, denoted by x̄i. By Little’s formula, the expected download time Ti for peers

of class i is given by Ti = x̄i/λi. On the other hand, the stationary probability pi that

a class-i peer completes its download is pi = (λi − θix̄i)/λi. Therefore, the download

cost for peers of class i takes the form

φi =
x̄i

λi − θix̄i
, for i = 1, 2. (6.12)

In the next two sections we shall address two different problems corresponding

to different subsets of (static) allocation policies: (α1, α2) = (α, 1 − α), referred to as

the service differentiation problem (Section 6.4), and (α1, α2) = (α, α), referred to as

the bandwidth diversity problem (Section 6.5). Both problems will be considered for

no-seed models.

6.4 Resource Allocation Policy for Service Differentiation

In this section we address the service differentiation problem for the no-seed model

(unless otherwise mentioned). For the sake of simplicity we further restrict the analysis

to the case where all peers have the same download/upload bandwidths and the same

efficiency parameters. In other words, we assume that 1/γi = 0, ci = c, µi = µ and

ηi = η for i = 1, 2. We define β
def
= µη.

94 Chapter 6. A Multiclass Model for P2P Networks

We recall that the service differentiation problem corresponds to the situation

where α1 = 1 − α2 = α (see end of Section 6.3). With these assumptions the generic

model described in Figure 6.1 is now simplified to the two-dimensional model (i.e. with

only two variables x1 and x2) represented in Figure 6.2.

1
2

1−

1−

λ

2

2λ1

1 xx

θ θ

α

α

α
α

Figure 6.2: Two-class deterministic model for service differentiation in BitTorrent-like

networks. Solid arcs represent migration rates of users. Dashed arcs represent the

fraction of allocated bandwidth.

Our goal is to solve the resulting system of differential equations (see below)

and determine the download cost (defined in (6.12)) of the two classes of peers. In

particular, we shall show that differential service can indeed be provided to the two

classes of peers via the allocation parameter α.

6.4.1 Equilibrium

Under the above assumptions the system of differential equations (6.7) governing the

dynamics of (x1(t), x2(t)) simplifies to

dx1(t)

dt
= λ1 − θ1x1(t)−min

(

cx1(t), αβ(x1(t) + x2(t))
)

(6.13)

dx2(t)

dt
= λ2 − θ2x2(t)−min

(

cx2(t), (1 − α)β(x1(t) + x2(t))
)

(6.14)

In matrix notation this system is given by (6.10) with the switching condition

σ(x) = 1 + 2 × � (cx1 ≥ αβ(x1 + x2)) + � (cx2 ≥ (1 − α)β(x1 + x2)) (6.15)

6.4. Resource Allocation Policy for Service Differentiation 95

We introduce the new parameters

a1
def
= max

(

0, 1 − cλ2(θ1 + β)

D

)

(6.16)

a2
def
= min

(

1,
cλ1(θ2 + β)

D

)

(6.17)

with

D
def
= β(λ1(θ2 + c) + λ2(θ1 + c)) (6.18)

Proposition 6.4.1 below computes the equilibrium point of the switched system

(6.13)-(6.14).

Proposition 6.4.1 (Equilibrium point for service differentiation) Regard-

less of the initial condition x(0), the system of equations (6.13)-(6.14) has a unique

equilibrium point x̄ given by

x̄T =



























































(

λ1 − α λ2β
θ2+c

θ1 + αβ
,

λ2

θ2 + c

)

if 0 ≤ α < a1

(

λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)

if a1 ≤ α ≤ a2

(

λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)

if a2 < α ≤ 1.

(6.19)

�

Proof. We first check that if limt↑∞ x(t) exists, then it is given by (6.19).

Assume that limt↑∞ x(t) = x̄. Letting t→ ∞ in (6.10) yields

Aσ(x̄) x̄ + b = 0 (6.20)

where σ is given in (6.15). We consider separately the four systems of linear equations

obtained from (6.20) when (a) σ(x̄) = 1, (b) σ(x̄) = 2, (c) σ(x̄) = 3 and (d) σ(x̄) = 4.

(a) When σ(x̄) = 1 or equivalently cx̄1 < αβ(x̄1 + x̄2) and cx̄2 < (1 − α)β(x̄1 + x̄2):

96 Chapter 6. A Multiclass Model for P2P Networks

the download rate is the bottleneck for both classes of peers. We find

x̄T =

(

λ1

θ1 + c
,

λ2

θ2 + c

)

(6.21)

(b) When σ(x̄) = 2 or equivalently cx̄1 < αβ(x̄1 + x̄2) and cx̄2 ≥ (1 − α)β(x̄1 + x̄2):

the bottleneck is the download rate for class-1 peers and the upload rate for

class-2 peers. We find

x̄T =

(

λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)

(6.22)

(c) When σ(x̄) = 3 or equivalently cx̄1 ≥ αβ(x̄1 + x̄2) and cx̄2 < (1 − α)β(x̄1 + x̄2):

the bottleneck is the download rate for peers of class 2 and the upload rate for

peers of class 1. In this case

x̄T =

(

λ1 − α λ2β
θ2+c

θ1 + αβ
,

λ2

θ2 + c

)

(6.23)

(d) When σ(x̄) = 4 or equivalently cx̄1 ≥ αβ(x̄1 + x̄2) and cx̄2 ≥ (1 − α)β(x̄1 + x̄2):

the bottleneck is the download rate for both classes of peers. The equilibrium

point is

x̄T =

(

λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)

(6.24)

In the following, we call “type-i equilibrium” the equilibrium found when σ(x̄) = i.

The next step is to check if a type-i equilibrium may exist, namely, if σ(x̄) = 1

(resp. σ(x̄) = 2, σ(x̄) = 3, σ(x̄) = 4) when x̄ is given by (6.21) (resp. (6.22), (6.23),

(6.24)).

It is easily seen that a type-1 equilibrium may only exist if c ≤ β. Since this

condition is never met (use (6.9) with ci = c and βi = β) we conclude that there is no

type-1 equilibrium. Recall that 0 ≤ α ≤ 1. We prove in Appendix G that a type-2

6.4. Resource Allocation Policy for Service Differentiation 97

equilibrium may only exist if a2 < α ≤ 1. The same type of analysis shows that a

type-3 equilibrium may only exist if 0 ≤ α < a1, and that a type-4 equilibrium may

only exist if a1 ≤ α ≤ a2. This concludes the proof that, if limt↑∞ x̄(t) = x̄ exists, then

x̄ is given by (6.19) (regardless of the initial condition).

We now turn to the proof that limt↑∞ x̄(t) exists. To this end, we investigate the

nature of the equilibrium of each of the linear systems ẋ(t) = Ai x(t)+b, for i = 2, 3, 4,

with

A2 =

(

−(θ1 + c) 0

−(1 − α)β − (θ2 + (1 − α)β)

)

(6.25)

A3 =

(

−(θ1 + αβ) −αβ
0 −(θ2 + c)

)

(6.26)

A4 =

(

−(θ1 + αβ) −αβ
−(1 − α)β − (θ2 + (1 − α)β)

)

(6.27)

Recall that the equilibrium of the system ẋ(t) = Ai x(t) + b is stable if and only if

all eigenvalues of the matrix Ai have strictly negative real parts [Kha92]. It is easily

seen that A2 and A3 have two strictly negative eigenvalues, given by (−(θ1 + c),−(θ2 +

(1 − α)β)) and (−(θ1 + αβ),−(θ2 + c)), respectively. The same property holds for A4.

To see this, denote by D(c, r) the closed disc of center c and radius r in the complex

plane. Recall that Geršgorin circle theorem [HJ85, p. 344] states that every eigenvalue

of a square matrix A = (ai,j), 1 ≤ i, j ≤ n lie in at least one of n the Geršgorin circles

D(ai,i, rj) (1 ≤ i ≤ n) with center ai,i and with radius ri equal to the sum of the

modulus of all the i-th line elements except the diagonal element: ri =
∑n

j=1j 6=i |ai,j |.
The direct application of this theorem gives that both eigenvalues of A4 lie in the region

D(−θ1 − αβ, αβ) ∪D(−θ2 − (1 − α)β, (1 − α)β), from which the result follows.

We have now proved the local stability of the equilibrium of each linear subsystem

of (6.13)-(6.14). However, up to now we have not yet been able to prove the global

stability of (6.13)-(6.14). The interested reader can refer to [Lib03] for the stability of

linear switched systems.

In summary, we have shown that for a given value of α, a unique equilibrium

exists, is given in (6.19), and is stable. This completes the proof. �

98 Chapter 6. A Multiclass Model for P2P Networks

6.4.2 How can we achieve a target QoS ratio k?

It is now possible to achieve service differentiation using parameter α as follows. The

goal is to differentiate the download costs φ1 and φ2 of class-1 and class-2 peers, re-

spectively. These costs are given in the next proposition.

Proposition 6.4.2 (Download costs for service differentiation)

In a no-seed model, the download cost φi of class-i peers in the service differentiation

problem is given by:

φ1 =
λ1(θ2 + c) − αλ2β

αβ(λ2θ1 + λ1(θ2 + c))
, φ2 =

1

c
if 0 ≤ α < a1

φ1 =
λ1(θ2+β)−αβ(λ1+λ2)

αβ(λ2θ1 + λ1θ2)
, φ2 =

λ2θ1 − λ1β + αβ(λ1 + λ2)

(1 − α)β(λ2θ1 + λ1θ2)
if a1 ≤ α ≤ a2

φ1 =
1

c
, φ2 =

λ2(θ1+c)−λ1β +αλ1β

(1−α)β(θ2λ1+λ2(θ1+c))
if a2 < α ≤ 1.

�

First, note that in the service differentiation problem, we considered the static

allocation policy (α, 1 − α). Since the two classes have the same bandwidth charac-

teristics (i.e. c1 = c2, µ1 = µ2) and the same efficiency parameters (η1 = η2), this

policy results in a download cost tradeoff governed by α. This tradeoff is represented

in Figure 6.3.

There are at least two ways to achieve service differentiation. The first one is to

guarantee a subscribed download cost for one class (e.g. φ1 = Φ for peers of class 1) with

no constraint on the download cost of the other class. This can be done by assigning

to the parameter α the (unique) root in [0, 1] of the linear mapping α→ φ1 −Φ, where

φ1 is given in Proposition 6.4.2.

The second one is to achieve a target download cost ratio k between first- and

second-class peers, namely

φ2

φ1
= k. (6.28)

The parameter α is then obtained as the (unique) root in [0, 1] of the (either linear

or quadratic) mapping α → φ2/φ1 − k. For a given set of parameters (see caption),

Figure 6.4 reports the value of α that satisfies (6.28) as a function of k, for k ∈ [1, 300].

6.4. Resource Allocation Policy for Service Differentiation 99

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 10

4

α

cl
as

s
co

st
 φ

i

class 1 cost
class 2 cost

Figure 6.3: Download cost tradeoff (λ1 =λ2 =10−1, θ1 =θ2 =β = 10−4, c=10−3)

0 50 100 150 200 250 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Download cost ratio k

α

σ=2
σ=4

a
2

Figure 6.4: Selection of α for a target cost ratio k (λ1 =λ2 =10−1, θ1 =θ2 =β=10−4, c=

10−3)

100 Chapter 6. A Multiclass Model for P2P Networks

We conclude that service differentiation in BitTorrent-like networks can easily be

achieved through the single parameter α.

6.4.3 What if users stay connected after the download?

All the results obtained so far in this section have been derived under the assumption

that there are no seeds in the system. As already observed this case can be seen as a

worst-case scenario, where peers are selfish and leave the system as soon as they have

downloaded the file.

In this section, we relax the no-seed assumption. In other words, we assume that

downloaders do not leave the system immediately after they have downloaded the file,

but continue to upload chunks to the other peers for some time of average duration

1/γi > 0 for class-i peers.

In this more general setting the time-evolution of the system is given by the

system of differential equations (6.5)-(6.6), with (α1, α2) = (α, 1 − α). We still assume

that µ1 = µ2, c1 = c2 and η1 = η2 (these assumptions could be relaxed). The analysis

of this system is much more complex than that of the no-seed model. While it is still

easy to compute the stationary solutions of (6.5)-(6.6) in explicit form, it is much more

complex to study the existence and stability of these solutions. However, there is no

difficulty to numerically compute the steady-state of these equations once numerical

values have been assigned to the system parameters.

This has been done for the following set of parameters: λ1 = λ2 = 10−1 peers/s,

θ1 = θ2 = µ = 10−4s−1, c = 10−3s−1, η1 = η2 = 0.9. These parameters are rounded

values of typical values estimated using the statistics in [IUKB+04] in particular. We

also assumed γ1 = γ2 = γ.

For given values of γ and α ∈ (0, 1) we have computed the ratio of download costs

R = φ2/φ1 for the seed model and the ratio of download costs r = φ2/φ1 for the no-seed

model. We have found that for γ = c, the relative error |R − r|/R averages 1%. For

γ ≥ c, this relative error rapidly decreases, making the no-seed model very-well suited

for the service differentiation problem. This is consistent with the conclusions in [MV05]

and [QS04] which indicate that altruism of users is not critical to the performance of

BitTorrent-like systems. For γ < c, the relative error rapidly increases, making a

6.5. Bandwidth Diversity 101

numerical estimation of α necessary, using (6.5)-(6.6).

6.5 Bandwidth Diversity

We now address the bandwidth diversity problem for the no-seed model (1/γi = 0

for i = 1, 2). We consider two classes of peers with different bandwidths (e.g., ADSL

users and corporate users). Recall that the bandwidth diversity problem we consider

is characterized by α1 = α2 = α (see Section 6.3).

Our first objective is to determine the download cost for each class of peers. Then,

we will find a static allocation policy (α, α) that minimizes the maximum download cost

of both classes. With a slight abuse of notation, a static allocation policy (α, α) will

simply be referred to as an allocation α from now on.

Under the aforementioned assumptions the system of differential equations (6.7)

becomes

dx1

dt
= λ1 − θ1x1−min (c1x1, αβ1x1 + (1 − α)β2x2) (6.29)

dx2

dt
= λ2 − θ2x2−min (c2x2, (1 − α)β1x1 + αβ2x2) (6.30)

In matrix notation the system (6.29)-(6.30) is given by (6.10), with the switching con-

dition

σ(x) = 1 + 2 × � (cx1 ≥ αβ1x1+(1 − α)β2x2) + � (cx2 ≥ (1 − α)β1x1 + αβ2x2) (6.31)

For the sake of compactness we introduce the new parameters

a3
def
=

λ2β2(θ1 + c1) − λ1(c1θ2 + β1β2)

λ2β2(θ1+c1)−λ1(β1θ2+2β1β2− c1β2)
(6.32a)

a4
def
=

λ1β1(θ2 + c2) − c2λ2(θ1 + c1)

λ1β1(θ2 + c2) − β2λ2(θ1 + c1)
(6.32b)

a5
def
=

λ1β1(θ2 + c2) − λ2(c2θ1 + β2β1)

λ1β1(θ2+c2)−λ2(β2θ1+2β2β1− c2β1)
(6.32c)

a6
def
=

λ2β2(θ1 + c1) − c1λ1(θ2 + c2)

λ2β2(θ1 + c1) − β1λ1(θ2 + c2)
(6.32d)

d
def
= (θ2 + αβ2)(θ1 + αβ1) − (1 − α)2β1β2 (6.32e)

102 Chapter 6. A Multiclass Model for P2P Networks

We also define the elementary conditions

(C1) : λ1(c1θ2 + β1β2) ≤ λ2β2(θ1 + c1) and 0 ≤ α < a3 (6.33)

(C2) : c2λ2(θ1 + c1) ≥ λ1β1(θ2 + c2) or a4 ≤ α ≤ 1 (6.34)

(C3) : λ2(c2θ1 + β2β1) ≤ λ1β1(θ2 + c2) and 0 ≤ α < a5 (6.35)

(C4) : c1λ1(θ2 + c2) ≥ λ2β2(θ1 + c1) or a6 ≤ α ≤ 1. (6.36)

Furthermore, let us define the following set of conditions

(D2) = (C1) ∩ (C2) (6.37a)

(D3) = (C3) ∩ (C4) (6.37b)

(D4) = (not (C1)) ∩ (not (C3)). (6.37c)

The above definitions imply that (D4) ∩ (D2) = (D4) ∩ (D3) = ∅, where ∅ denotes the

empty set. However, (D2)∩ (D3) is not necessarily empty, so that (D2) and (D3) may

hold simultaneously for some sets of parameters. Finally, we define the two-dimensional

vectors xi, i = 2, 3, 4, by

x2 =

(

λ1

c1 + θ1
,
λ2 − (1 − α)β1

λ1

c1+θ1

θ2 + αβ2

)

(6.38a)

x3 =

(

λ1 − (1 − α)β2
λ2

c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)

(6.38b)

x4 =

(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)

(6.38c)

where d is defined in (6.32e). Proposition 6.5.1 below investigates the steady-state

behavior of the switched system (6.29)-(6.30).

Proposition 6.5.1 (Equilibrium for bandwidth diversity) The system of differ-

ential equations (6.29)-(6.30) has a unique equilibrium point x̄ given by

x̄ =























xT2 regardless of x(0), if (D2) holds and (D3) does not hold

xT3 regardless of x(0), if (D3) holds and (D2) does not hold

xT4 regardless of x(0), if (D4) holds

xT2 or xT3 depending on x(0), if (D2) and (D3) hold simultaneously.

(6.39)

�

6.5. Bandwidth Diversity 103

Proof. As in Section 6.4, we first assume that limt↑∞ x(t) exists and check that it is

given by (6.39). Letting t→ ∞ in (6.10) yields (6.20), where σ is now given by (6.31).

We consider separately the four systems of linear equations obtained from (6.20)

when (a) σ(x̄) = 1, (b) σ(x̄) = 2, (c) σ(x̄) = 3 and (d) σ(x̄) = 4.

(a) When σ(x̄) = 1 or equivalently c1x̄1 < αβ1x̄1+(1−α)β2x̄2 and c2x̄2 < (1−α)β1x̄1+

αβ2x̄2:

the download rate is the bottleneck for both classes of peers. We find

x̄T =

(

λ1

θ1 + c1
,

λ2

θ2 + c2

)

(6.40)

(b) When σ(x̄) = 2 or equivalently c1x̄1 < αβ1x̄1+(1−α)β2x̄2 and c2x̄2 ≥ (1−α)β1x̄1+

αβ2x̄2:

the bottleneck is the download rate for class-1 peers and the upload rate for

class-2 peers. We find

x̄T =

(

λ1

θ1 + c1
,
λ2 − (1 − α)β1

λ1

c1+θ1

θ2 + αβ2

)

(6.41)

(c) When σ(x̄) = 3 or equivalently c1x̄1 ≥ αβ1x̄1+(1−α)β2x̄2 and c2x̄2 < (1−α)β1x̄1+

αβ2x̄2:

the bottleneck is the download rate for peers of class 2 and the upload rate for

peers of class 1. In this case

x̄T =

(

λ1 − (1 − α)β2
λ2

c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)

(6.42)

(d) When σ(x̄) = 4 or equivalently c1x̄1 ≥ αβ1x̄1+(1−α)β2x̄2 and c2x̄2 ≥ (1−α)β1x̄1+

αβ2x̄2:

the bottleneck is the download rate for both classes of peers. The stationary

solution is

x̄T =

(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)

(6.43)

104 Chapter 6. A Multiclass Model for P2P Networks

where d is defined in (6.32e).

The next step is to check if a type-i equilibrium may exist, namely, if σ(x̄) = 1

(resp. σ(x̄) = 2, σ(x̄) = 3, σ(x̄) = 4) when x̄ is given by (6.40) (resp. (6.41), (6.42),

(6.43)).

It is easily seen that a type-1 equilibrium may only exist if c1λ1 + c2λ2 ≤
β1λ1 + β2λ2. Since ci > βi for i = 1, 2 (see (6.9)) we conclude that there is no type-

1 equilibrium, where both classes would saturate their download capacity. A simple

analysis, similar to that in Appendix G, shows that a type-2 equilibrium only exists

if (6.33) and (6.34) are true, and that a type-3 equilibrium only exists if (6.35) and

(6.36) are true. For the existence conditions of a type-4 equilibrium, we also use the

stability condition (6.49) below, in addition to σ(x̄) = 4, to get the following condition:

(not (6.33)) and (not (6.35)). It happens that conditions for σ = 2 and σ = 3 are not

mutually exclusive. When they are simultaneously satisfied (i.e., (D2) ∩ (D3) holds)

then the steady-state is given either by (6.41) or by (6.42) depending on the initial

conditions.

We now turn to the proof that limt↑∞ x̄(t) exists. Namely, we investigate the

nature of the equilibrium of each of the linear systems ẋ(t) = Ai x(t)+b, for i = 2, 3, 4,

with

A2 =

(

−θ1 − c1 0

−(1 − α)β1 −θ2 − αβ2

)

(6.44)

A3 =

(

−θ1 − αβ1 −(1 − α)β2

0 −θ2 − c2

)

(6.45)

and

A4 =

(

−θ1 − αβ1 −(1 − α)β2

−(1 − α)β1 −θ2 − αβ2

)

(6.46)

It is easily seen that the matrices A2 and A3 have two strictly negative eigenvalues.

The eigenvalues of the matrix A4 are the roots in λ of the polynomial

det(A4 − λI) = (θ1 + αβ1 + λ)(θ2 + αβ2 + λ) − (1 − α)2β1β2 (6.47)

= λ2 + λ(θ1 + αβ1 + θ2 + αβ2) + d (6.48)

where I denotes the 2 × 2 identity matrix. The roots of this polynomial have strictly

negative real parts if and only if their product is strictly positive and their sum is

6.5. Bandwidth Diversity 105

strictly negative, which is equivalent to

d > 0 (6.49)

This shows that all equilibria are stable, which concludes the proof. �

We now compute the download costs φ1 and φ2 associated with each equilibrium

point found in Proposition 6.5.1. In order to simplify the notation, we introduce the

following two-dimensional vectors

ϕ2 =

(

1

c1
,

λ2(θ1 + c1) − (1 − α)λ1β1

θ2λ1β1 + α(λ2β2(θ1 + c1) − λ1β1θ2)

)

(6.50a)

ϕ3 =

(

λ1(θ2 + c2) − (1 − α)λ2β2

θ1λ2β2 + α(λ1β1(θ2 + c2) − θ1λ2β2)
,

1

c2

)

(6.50b)

ϕ4 =

(

(λ1θ2 − λ2β2 + αβ2(λ1 + λ2))

β2(λ2θ1 − λ1β1) + α(λ1β1(θ2 + 2β2) − θ1λ2β2)
, (6.50c)

λ2θ1 − λ1β1 + αβ1(λ1 + λ2)

β1(λ1θ2 − λ2β2) + α(λ2β2(θ1 + 2β1) − θ2λ1β1)

)

(6.50d)

The next proposition partially characterizes the download costs φ1 and φ2.

Proposition 6.5.2 (Download costs for bandwidth diversity) In a

no-seed model, the vector of download costs (φ1, φ2) in the bandwidth diversity problem

is given by

(φ1, φ2) =























ϕ2 regardless of x(0), if (D2) holds and (D3) does not hold

ϕ3 regardless of x(0), if (D3) holds and (D2) does not hold

ϕ4 regardless of x(0), if (D4) holds

ϕ2 or ϕ3 depending on x(0), if (D2) and (D3) hold simultaneously.

�

Proof. The proof directly follows from Proposition 6.5.1 and (6.12). �

6.5.1 How can we minimize the highest download cost?

In the bandwidth diversity problem, several optimization problems could be considered.

For instance, one may wish to find an allocation α that yields the same download costs.

106 Chapter 6. A Multiclass Model for P2P Networks

Another objective could be to minimize a linear combination of the download costs.

However, as shown in Proposition 6.5.2, it is difficult to analytically determine φ1 and

φ2 whenever (D2) ∩ (D3) 6= ∅, and thereby to solve the above optimization problems.

Instead, we will seek to minimize the maximum download cost over all initial

states and over all classes. To this end, we introduce the mapping α → E(α), called

the envelope function, defined by

E(α) = max
σ∈{2,3,4}

max
i∈{1,2}

φi (6.51)

Our objective is to minimize the envelope function as a function of α.

We now use Proposition 6.5.2 to calculate the value of α that minimizes E(α). In

Figures 6.5 and 6.6, the envelope function is represented along with the possible values

of (φ1, φ2) for α in (0, 1), for two different set of physical parameters.

0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

α

C
la

ss
 c

os
t φ

i

Class 2, σ=2
Class 1, σ=2
Class 1, σ=3
Class 2, σ=3
Class 1, σ=4
Class 2, σ=4
Maximum cost

Minimum of
 envelope

Figure 6.5: Minimum of maximum download cost achieved for α ≈ 0.78. (λ1 = λ2

2 =

10, β1 = β2

2 =10−2, c1 = c2
2 =400, θ1 =θ2 =10−5)

In Figure 6.5, we observe that E(α) is minimal for a single value of α, when σ = 4

and φ1 = φ2. In this case, the exact value of α that minimizes the maximum download

cost can be found by solving φ1 = φ2 using Proposition 6.5.2. Note that in Figure 6.5,

we have both type-2 and 3 equilibria for α ≤ 0.32. The steady-state is then determined

by initial conditions.

6.6. Conclusions and Perspectives 107

0 0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

α

C
la

ss
 c

os
t φ

i

Class 2, σ=2
Class 1, σ=2
Class 1, σ=4
Class 2, σ=4
Maximum cost

Envelope is
 minimal on
 interval

Figure 6.6: Minimum of maximum download cost achieved for a whole interval

[0.5502, 0.8207]. (λ1 = λ2

4 =10−1, θ1 =2θ2 = β1 = β2

20 =10−4, c1 = c2
2 =10−3)

In Figure 6.6, E(α) is minimal on a whole interval on which it is equal to the

constant download cost φ1 when σ = 2. In this case, the interval can also be determined

using Proposition 6.5.2, by solving φ1 = φ2 for σ = 2 for the lower bound, and by de-

termining the maximum value of α that satisfies (6.33) and (6.34) for the upper bound.

Note that in Figure 6.6, condition (6.35) and (6.36) are never satisfied simultaneously

with this set of physical parameters, since we do not have a type-3 equilibrium.

In any case, finding the value of α that minimizes the worst download cost,

amounts to solve a linear or quadratic equation φ1 = φ2 using the appropriate expres-

sion in Proposition 6.5.2. We conclude that for a given physical set of parameters,

it is possible to account for bandwidth diversity in BitTorrent-like networks through

parameter α.

6.6 Conclusions and Perspectives

In this chapter we presented a simple multiclass fluid model for BitTorrent-like distribu-

tion systems. We successfully applied this model to account for two specific problems:

service differentiation and bandwidth diversity. We mainly focused our attention to

the special case where peers selfishly leave the system immediately after their down-

108 Chapter 6. A Multiclass Model for P2P Networks

load (“no-seed case”). For both the service differentiation and bandwidth diversity

problems, we have defined a single parameter α that defines a resource allocation strat-

egy. We showed how this parameter affects the steady-state of the system and provided

closed-form expressions for the successful download time in each case. In addition, we

showed how this parameter α can be chosen so as to achieve a target quality of service

ratio (download time ratio) for the service differentiation problem. We also quantified

the impact of the no-seed assumption on this result through a numerical resolution of

the general problemand showed that when users stay for a reasonably short time in the

system, the no-seed model gives accurate results and the performance of the system is

not affected by the altruism of users. This last property is consistent with the findings

in [MV05] and [QS04]. For the bandwidth diversity problem, we also showed how it is

possible to choose parameter α so as to minimize the highest download time between

two classes of peers.

Many open problems remain. For instance, though we have proved the local

stability of each equilibrium, the global stability of the system has been observed rather

than proved. Also, though the fluid approximation was experimentally validated in

[QS04], we intend to compare the results of our multiclass model to a simulation of a

real P2P file dissemination system. Another problem for further research is the study

of dynamic resource allocation, where α would depend on the class population.

Chapter 7

Conclusion

7.1 Summary and Contributions

In this thesis we proposed tractable fluid models for analyzing the performance of

several content distribution systems. The fluid approximation reduces drastically the

complexity of these highly dynamic systems and offers simple means to accurately esti-

mate their performance. It also provides significant insight of the qualitative behavior

of these systems.

In the first part of the thesis we considered distributed caching systems. We

proposed in Chapter 2 a generic stochastic fluid framework which replaces the total

cached content by a quantity of fluid, under the main assumption that each document

is cached at a single place in the system. This framework is able to model various

architectures of distributed caching systems.

We then applied this model in Chapter 3 to analyze the performance of CARP-

like cache clusters. We modeled the number of active caches by an Engset model.

We found an explicit expression of the hit probability in the case of homogeneous

document popularity. Our formula proves very accurate when compared to discrete-

109

110 Chapter 7. Conclusion

event simulation and is much more tractable than simulation (i.e. several orders of

magnitude faster to compute). Our analytical model is able to capture the key tradeoffs

of the cache cluster system, in particular the utmost importance of the time-to-live and

number of documents versus the total request rate. The model also allowed us to

compare quantitatively two direction policies of the caching system.

In Chapter 4 we used the fluid framework introduced in Chapter 2 to study a peer-

to-peer caching system called Squirrel. Although similar in spirit to the mathematical

analysis in Chapter 3, the calculation of the hit probability is different for two main

reasons: the total request rate now depends on the number of active nodes, and the total

amount of cached fluid is not degraded when a node goes up. We provided an efficient

mean for computing the hit probability in the case of a uniform document popularity

distribution, within a limit of 10,000 nodes. Similarly to Chapter 3 we identified two

critical parameters which represent the major tradeoffs for Squirrel performance. We

also validated the accuracy of the model as well as the observed degrees of freedom

through a comparison with discrete-even simulation

In Chapter 5 we extended our analysis of Squirrel to relax the 10,000 nodes

tractability restriction on the size of the network and to account for a more realistic

popularity distribution of objects. We also considered the possibility of announced de-

partures and not only abrupt failures. To this end, we first replaced the Engset model

by an M/M/∞ queuing model for the number of active nodes. This allowed us to find

a closed-form expression for the hit probability which is now tractable (and immediate)

even for very large networks (e.g., a million nodes). This modified model also allowed

us to evaluate quantitatively the benefit of announcing departures. Then, we relaxed

the uniform popularity assumption and used a more realistic Zipf-like popularity dis-

tribution. Since this distribution makes the evolution equation nonlinear, we opted

for a clustering approximation where the set of documents is divided into a number

of popularity classes. We explained how to dimension these classes and validated this

approximation through a comparison with discrete-event simulation.

In the second part of this thesis, we used a second fluid model which relaxes

the assumption that a document is not replicated in several locations of the content

distribution system. This new model does not replace documents with fluid but instead

replaces users (nodes) with fluid.

Based on the fluid model in [QS04], in Chapter 6 we proposed a multiclass fluid

7.1. Summary and Contributions 111

approximation which is designed to model peer-to-peer file sharing systems like Bit-

Torrent. Our multiclass model is a complex extension of [QS04] since the evolution

equations are nonlinear and may admit several stationary solutions. Due to the com-

plexity of these models we considered a practical worst-case in which users leave the

system immediately upon download completion, instead of staying alive and contribut-

ing additional data and bandwidth to the system. We used this model to address two

practical problems: service differentiation and bandwith diversity, for a static band-

width allocation strategy. In the first problem we showed the existence of a unique

stable equilibrium and gave a closed-form expression of the expected download time.

Our model also gives a simple means to compute the bandwidth allocation strategy

which achieves a target service differentiation ratio. Furthermore we have quantified

the impact of our worst-case approximation and found that under reasonable circum-

stances the altruism of users does not modify the performance of the system. For the

bandwidth diversity problem, we showed that the equilibrium may depend on initial

conditions. We provided closed-form expressions of the possible values of this equi-

librium and showed that the bandwidth allocation parameter can be chosen so as to

minimize the worst download time.

These contributions have led to the following publications:

[CNR05b] F. Clévenot, P. Nain and K.W. Ross. Stochastic fluid models for cache clusters.

Performance Evaluation, 59(1):1-18, January 2005.

[CN04] F. Clévenot and P. Nain. A simple model for the analysis of the Squirrel peer-to-

peer caching system. In Proceedings of IEEE Infocom 2004, Hong-Kong, March

2004.

[CN05] F. Clévenot-Perronnin and P. Nain. Stochastic fluid model for P2P caching evalu-

ation. I Proceedings of the 10th International Workshop on Web Content Caching

and Distribution (WCW’05), Sophia Antipolis, September 2005. To appear.

[CNR05a] F. Clévenot-Perronnin, P. Nain and K.W. Ross. Multiclass P2P networks: static

resource allocation for service differentiation and bandwidth diversity. In Proceedings

of the 24th International Symposium on Computer performance, Modeling, Mea-

surements and Evaluation (Performance 2005), Juan-les-Pins, October 2005. To

appear.

112 Chapter 7. Conclusion

7.2 Perpectives

We already outlined several possible extensions and improvements of our work at the

end of Chapters 3 to 6. We now propose more general research directions.

Our work focused on two types of CDS, namely, caching systems and peer-to-

peer file sharing systems. A natural question is whether simple macroscopic models,

as used in this thesis, would apply to the third type of CDS described in Chapter 1,

the content distribution networks (CDNs), and what insight they could bring on their

performance. Unlike caching systems studied in the first part of this thesis, CDNs

rely on document replication at strategic locations worldwide. This makes the model

of Cha[pter 2 unsuited for these systems. Nor can the client-based fluid model used

in Part II be directly applied since a CDN differentiates between clients and servers

(unlike P2P file sharing), so the server dynamics also need to be taken into account.

As a result, CDNs would require a specific model. Their instrinsic complexity pleads

for simple macroscopic models, since detailed models would soon become untractable.

However, CDNs exhibit novel complexity issues and performance factors. For in-

stance, the mapping of requests to content servers depends on several criteria such

as network conditions, server load, topological location and content of the server

[DMP+02]. Several measurement and simulation studies of CDNs have evaluated their

performance regarding the hit ratio [SGD+02] and TCP connexion times [JCDK01,

KWZ01]. However, in [KWZ01] the authors show that, though CDNs can signifi-

cantly reduce reponse times compared to origin servers, the additional DNS redirection

latencies introduced by these systems are significant and may introduce noticeable per-

formance degradation. These DNS costs are due to several factors and are inherent to

distributed systems. First, the embedded objects of a single HTML page may be stored

at different locations. One reason for this is the frequent inclusion of one dynamic (and

uncacheable) object while all other objects are static and may be stored in the system

[DMP+02]. This results in additional DNS queries and may overload DNS servers.

Note that this DNS bottleneck problem has also been observed in the deployment of

Squirrel [Rod04]. Another cause of DNS overhead is the load balancing feature. For

instance, Akamai uses DNS servers to redirect requests when the load on a given server

reaches a threshold [DMP+02]. Since these DNS costs may actually degrade the per-

formance of CDNs [KWZ01], an interesting problem would be to incorporate the DNS

costs with a specific model to the analysis of CDNs hit rate or reponse time.

7.2. Perpectives 113

On a more general perspective, we believe our methodology may also be applied to

cooperative systems other than CDS. In particular, the Grid is a natural candidate for

this type of large-scale analysis since it involves large number of cooperative computers

and exhibits performance issues which may be similar to P2P systems [LSSH03]. In

particular, grid computing not only involves the pooling of computational resources,

but focuses on the large-scale sharing of various resources, including storage space and

sets of files.

114 Chapter 7. Conclusion

Appendix A

Stationary Distribution of the Node Pro-

cess at Jump Times

A.1 Stationary Distribution π of the Engset Model at

Jump Times

In this section we compute the limiting distribution of the Markov chain {Nn, n ≥ 1}.
Let P = [pi,j]0≤i,j≤N be its transition probability matrix. We have pi,i+1 = ρ(N −
i)/(ρ(N − i)+ i) for i = 0, 1, . . . , N − 1, pi,i−1 = i/(ρ(N − i)+ i) for i = 1, 2, . . . , N and

pi,j = 0 otherwise.

Since this Markov chain1 has a finite-state space and is irreducible, it is positive

recurrent Therefore, it possesses a unique stationary distribution π = (π0, · · · , πN)

given by the (unique) solution of the equation πP = π such that
∑N

i=0 πi = 1 [GS92,

page 208].

We proceed by induction to compute π. From the equation πP = π we find that

1Note that this chain is period (with period 2).

115

116 App. A Stationary Distribution of the Node Process at Jump Times

π1 = (ρ(N − 1) + 1)π0 and π2 = ρ(N−2)+2
2 ρ(N − 1)π0. This suggests that

πj =
ρ(N − j) + j

j

ρj−1

(j − 1)!

(N − 1)!

(N − j)!
π0 (A.1)

for j = 1, 2, . . . , N . Let us assume that (A.1) holds for j = 1, 2, . . . , i < N − 1. Let us

show that it still holds for j = i+ 1. We have

πi+1 =
ρ(N − (i+ 1)) + i+ 1

i+ 1

(

πi −
ρ(N − (i− 1))

ρ(N − (i− 1)) + i− 1
πi−1

)

(A.2)

=
ρ(N − (i+ 1)) + i+ 1

i+ 1

(

(ρ(N − i) + i) ρi−1

i!(N − i)!

− ρ(N− (i−1))

ρ(N− (i−1))+ i−1

(i−1 + ρ(N−i+1)) ρi−2

(i−1)(i−2)!(N−i+1)!

)

(N−1)!π0 (A.3)

=
ρ(N − (i+ 1)) + i+ 1

i+ 1

ρi(N − 1)!

i!(N − (i+ 1))!
π0

where (A.3) follows from the induction hypothesis. The constant π0 is computed by us-

ing the normalizing condition
∑N

i=0 πi = 1; we find π0 = 1/(2(1+ρ)N−1) as announced

in (3.4). Plugging this value of π0 into (A.1) gives (3.5). �

A.2 Stationary Distribution π of the M/M/∞ Model at

Jump Times

In this section we compute the invariant distribution of the Markov chain {Nn, n ≥ 1}.
Let P = [pi,j]i,j≥0 be its transition probability matrix. We have : pi,i+1 = ρ/(ρ+ i) for

i ≥ 0, pi,i−1 = i/(ρ+ i) for i ≥ 1 and pi,j = 0 if |j − i| 6= 1.

Note that this chain is periodic with period 2. Since this Markov chain has a

finite-state space and is irreducible, it is positive recurrent [Ç75, Cor. 5.3.19, 5.3.22].

Therefore, it possesses a unique stationary distribution π = (π0, π1 · · ·) given by the

(unique) solution of the equation πP = π such that
∑∞

i=0 πi = 1 [GS92, page 208].

We proceed by induction to compute π. From the equation πP = π we find that

π1 = 1
1+ρπ0 and π2 = ρ+2

2 ρπ0. This suggests that

πj =
ρ+ j

j!
ρj−1 π0 (A.4)

A.2. Stationary Distribution π of the M/M/∞ Model at Jump Times 117

for j = 1, 2, . . . , N . Let us assume that (A.4) holds for j = 1, 2, . . . , i, with i ≥ 2. We

now show that it still holds for j = i+ 1. We have

πi+1 =
ρ+ i+ 1

i+ 1

(

πi −
ρ

ρ+ i− 1
πi−1

)

(A.5)

=
ρ+ i+ 1

i+ 1

(

ρ+ i

i!
ρi−1 − ρ

ρ+ i− 1
× i− 1 + ρ

(i− 1)!
ρi−2

)

π0 (A.6)

=
ρ+ i+ 1

i+ 1

ρi

i!
π0 (A.7)

where (A.6) follows from the induction hypothesis. The constant π0 is computed by

using the normalizing condition
∑N

i=0 πi = 1; we find π0 = e−ρ/2 as announced in (5.4).

Plugging this value of π0 into (A.4) gives (5.5). �

Appendix B

Uniqueness of the solution of the tridiag-

onal systems (3.15) and (4.10)

B.1 Uniqueness of the solution of (3.15)

The linear system (3.15) defined in Proposition 3.3.1 admits a unique solution if and

only if det(A) 6= 0. Since A is a tridiagonal matrix we can use the LU decomposition

[HJ85, Sec. 3.5] A = LU with

L =















l1 0 · · · 0

β2
. . .

. . . 0
...

. . .
. . .

...

0 · · · βn ln















U =















1 u1 · · · 0

0
. . .

. . . 0
...

. . .
. . . un−1

0 0 · · · 1















(B.1)

where li’s and ui’s are defined as follows:

a1,1 = l1

ai,i = li + ai,i−1ui−1, i = 2, . . . , N

liui = ai,i+1, i = 1, . . . , N − 1.

(B.2)

119

120 App. B Uniqueness of the solution of the tridiagonal systems (3.15) and (4.10)

Both matrices L and U being bidiagonal matrices it follows that det(A) 6= 0 if and only

if li 6= 0 for i = 1, 2, . . . , N .

We use an induction argument to show that li 6= 0 for i = 1, 2, . . . , N . We have

l1 = γ + ρ(N − 1) + 1. Assume that li > γ + ρ(N − i) for i = 1, 2, . . . , n < N − 1 and

let us show that ln+1 > γ + ρ(N − n− 1). We have

ln+1 = an+1,n+1 −
an+1,nan,n+1

ln
(B.3)

= γ + ρ(N − n− 1) + (n+ 1)
ln − ρ(N − n)∆u(n)∆d(n+ 1)

ln
(B.4)

> γ + ρ(N − n− 1) (B.5)

by using the induction hypothesis along with the fact that 0 ≤ ∆u(n)∆d(n+1) ≤ 1. �

B.2 Uniqueness of the solution of (4.10)

We use an induction argument to show that li 6= 0 for i = 1, 2, . . . , N . We have l1 =

ρ(N−1)+1+γ(1+α). We assume that li > γ(i+α)+ρ(N−i) for i = 1, 2, . . . , n < N−1.

Let us show that ln+1 > γ(n+ 1 + α) + ρ(N − n− 1). We have

ln+1 = an+1,n+1 −
an+1,nan,n+1

ln
(B.6)

= γ(n+ 1 + α) + ρ(N − n− 1) (B.7)

+(n+ 1)
ln − ρ(N − n)∆u(n)∆d(n+ 1)

ln
(B.8)

> γ(n+ 1 + α) + ρ(N − n− 1) (B.9)

by using the induction hypothesis along with the fact that 0 ≤ ∆u(n)∆d(n+1) ≤ 1. �

Appendix C

Proof of equation (4.14)

Recall that vi = lim
n→∞

�
[Yn |Nn = i]

c
for 1 ≤ i ≤ N . With (4.6) we have

vi =
1

c
lim
n→∞

�
[Yn |Nn = i] (C.1)

=
1

c
lim
n→∞

�
[

ηi + (Xn − ηi) e
−(Tn+1−Tn)σi

ηi |Nn = i
]

(C.2)

=
1

c
lim
n→∞

(

ηi ×
αγ + γi

αγ + γi+ ρ(N − i) + i

(ρ(N − i) + i)
�

[Xn |Nn = i]

ρ(N − i) + i+ αγ + γi

)

(C.3)

To derive (C.3) we have used the fact that, given Nn = i, the random variables Xn and

Tn+1 −Tn are independent, and Tn+1 −Tn is exponentially distributed with parameter

(N − i)λ+ µi.

Let us now evaluate limn→∞
�

[Xn |Nn = i] for 1 ≤ i ≤ N . Conditioning on Nn−1

121

122 App. C Proof of equation (4.14)

we have

lim
n→∞

�
[Xn |Nn = i] = lim

n→∞

�
[Xn|Nn = i,Nn−1 = i−1]

�
[Nn−1 = i−1|Nn = i]

+ lim
n→∞

�
[Xn |Nn = i,Nn−1 = i+1]

�
[Nn−1 = i+1 |Nn = i] � [i<N] (C.4)

= ∆u(i−1) lim
n→∞

�
[Yn−1|Nn−1 = i−1]

πi−1

πi

ρ(N − i+ 1)

ρ(N−i+1)+i−1

+∆d(i+1) lim
n→∞

�
[Yn−1|Nn−1 = i+1]

πi+1

πi

i+ 1

ρ(N−i−1)+i+1
� [i<N] (C.5)

= c
i∆u(i−1)vi−1+∆d(i+1)vi+1ρ(N−i)

ρ(N−i) + i
(C.6)

by using (3.5) and the definition of vi. Finally, dividing both sides by c and introducing

(C.6) into (C.3) yields (4.14). �

Appendix D

Proof of equation (4.17)

Let us determine
�

[X∞] from the vis. We use the Palm formula and condition on the

value of N0. From (4.15), (4.6), (3.27) we find

�
[X∞] = Λ

N
∑

i=1

πi
� 0

[∫ T1

0

(

ηi+(X0−ηi)e−t
σi
ηi

)

dt|N0 = i

]

(D.1)

= Λ

[

N
∑

i=1

πiηi
� 0[T1|N0 = i] +

N
∑

i=1

πiηi
σi

� 0
[

(X0− ηi)
(

1−e−T1
σi
ηi

)

|N0 = i
]

]

(D.2)

= Λ

[

N
∑

i=1

πiηi
1

λ(N − i) + µi

+
N
∑

i=1

πiηi
σi

(� 0[X0|N0 = i] − ηi
)

(

1 − � 0
[

e
−T1

σi
ηi |N0 = i

])

]

(D.3)

=
Λ

µ

[

N
∑

i=1

πiηi
1

ρ(N − i) + i

N
∑

i=1

πi

� 0[X0 |N0 = i] − ηi
ρ(N − i) + i+ αγ + γi

]

(D.4)

=
2Nρ

1 + ρ

N
∑

i=1

πi

[

ηi
1

ρ(N − i) + i

� 0[X0 |N0 = i] − ηi
ρ(N − i) + αγ + (γ + 1)i

]

(D.5)

123

124 App. D Proof of equation (4.17)

By definition,
� 0[X0 |N0 = i] = limn→∞

�
[Xn |Nn = i], which has been computed in

(C.6). By combining (C.6) and (4.14) we obtain

� 0[X0 |N0 = i] = c
(ρ(N − i) + i+ αγ + iγ)vi − iσµ

ρ(N − i) + i
(D.6)

Plugging this value of
� 0[X0 |N0 = i] into the r.h.s. of (D.5), and using (3.5), yields

after some straightforward algebra:

�
[X∞] =

c

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρivi (D.7)

which is nothing but (4.17). �

Appendix E

Proof of Proposition 5.3.1

We compute the stationary hit probability which is given by (4.7). As in Chapters 3

and 4 the idea of the proof is to first compute the expected amount of cached fluid just

before a jump in the process {N(t)} conditioned on the value of N(t) just before this

jump, and then to invoke Palm calculus to deduce the expected amount of cached fluid

at any time. Therefore we use Yn again as the amount of cached fluid just before the

(n+ 1)-st jump in the process {N(t)}

Yn = X(Tn+1−) (E.1)

We first compute vi as defined by (4.13) (i.e. vi = limn→∞(1/c)
�

[Yn |Nn = i] for

i ≥ 1). We use the fact that, given Nn = i, the random variables Xn and Tn+1 − Tn

are independent, and Tn+1 − Tn is exponentially distributed with parameter λ+ µi:

lim
n↑∞

�
[Yn|Nn = i] = lim

n↑∞

�

[

σNn

σNn

c + θ

+

(

Xn −
σNn

σNn

c + θ

)

e−(Tn+1−Tn)(θ+σNn/c)|Nn = i

]

(E.2)

= lim
n↑∞

(

σi
σi
c

+θ

)

(

θ
µ + σi

µc

)

θ
µ + σi

µc + ρ+ i
+

(ρ+ i)
�

[Xn |Nn = i]

ρ+ i+ θ
µ + σi

µc

(E.3)

125

126 App. E Proof of Proposition 5.3.1

We now evaluate limn↑∞
�

[Xn |Nn = i] for i ≥ 1. Conditioning on Nn−1 we have

lim
n↑∞

�
[Xn|Nn = i]= lim

n↑∞

�
[Xn|Nn = i,Nn−1 = i−1]P (Nn−1 = i−1|Nn = i)

+ lim
n↑∞

�
[Xn |Nn = i,Nn−1 = i+ 1] P (Nn−1 = i+ 1 |Nn = i) (E.4)

= ∆u(i− 1) lim
n↑∞

�
[Yn−1 |Nn−1 = i− 1]

πi−1

πi

ρ

ρ+ i− 1

+∆d(i+ 1) lim
n↑∞

�
[Yn−1, |Nn−1 = i+ 1]

πi+1

πi

i+ 1

ρ+ i+ 1
(E.5)

= c
i∆u(i− 1)vi−1 + ∆d(i+ 1)vi+1 ρ

ρ+ i
(E.6)

by using (5.5) and the definition of vi. Finally, dividing both sides by c and introducing

(E.6) into (E.3) yields

(ρ+ i+
θ

µ
+
σi

µc
) vi =

σi

cµ
+ i∆u(i− 1)vi−1 + ρ∆d(i+ 1)vi+1 (E.7)

for i ≥ 1, or equivalently (5.8) by using (4.4).

Equation (5.8) gives the conditional stationary expected amount of fluid correctly

cached just before jump epochs. Similarly to Chapters 3 and 4 we use Palm calculus

to deduce the expected amount of fluid in stationary state at arbitrary instants. Recall

that it is given by

�
[X∞] = Λ

� 0

[∫ T1

0
X(t)dt

]

(E.8)

where
� 0 denotes the expectation with respect to the Palm distribution, T1 denotes

the time of the first jump after 0, and where Λ denotes the global rate of the M/M/∞
model:

Λ =
1

�
0[T1]

. (E.9)

From now on we assume that the system is in steady-state at time 0. Under the Palm

distribution we denote by N−1 and Y−1 the number of up caches and the amount of

correctly cached fluid respectively, just before time 0 (i.e. just before the jump to occur

at time 0).

We first compute 1/Λ for the M/M/∞ model. We have

1

Λ
=

∞
∑

i=0

πi
� 0[T1 |N0 = i] =

1

µ

∞
∑

i=0

πi
ρ+ i

=
1

2ρµ
(E.10)

127

by using (5.4)-(5.5).

We now determine
�

[X∞]. From (E.8), (4.3), (E.10) we find

�
[X∞] = Λ

N
∑

i=1

πi
� 0

[

∫ T1

0

(

σN0

σN0

c +θ
+

(

X0−
σN0

σN0

c +θ

)

e−t(θ+σN0/c)

)

dt|N0 = i

]

= Λ

[

∞
∑

i=1

πi
σi

σi
c + θ

� 0[T1 |N0 = i]

+
∞
∑

i=1

πi
θ + σi/c

� 0

[(

X0 −
σi

σi
c + θ

)

(

1 − e−T1(θ+σi/c)
)

|N0 = i

]]

(E.11)

= Λ

[

∞
∑

i=1

πi
σi

θ + σi
c

1

λ+ µi
+

∞
∑

i=1

πi
θ + σi/c

(

� 0[X0 |N0 = i] − σi
σi
c + θ

)

×
(

1 − � 0
[

e−T1(θ+σi/c) |N0 = i
])

]

(E.12)

=
Λ

µ





∞
∑

i=1

πi
σi

θ + σi
c

1

ρ+ i
+

∞
∑

i=1

πi

� 0[X0 |N0 = i] − σi
θ+ σi

c

ρ+ i+ θ
µ + σi

µc



 (E.13)

= 2ρ
∞
∑

i=1

πi





σi

θ + σi
c

1

ρ+ i
+

� 0[X0 |N0 = i] − σi
θ+ σi

c

ρ+ i+ θ
µ + σi

µc



 (E.14)

By definition,
� 0[X0 |N0 = i] = lim

n↑∞

�
[Xn |Nn = i], which has been computed in (E.6).

By combining (E.6) and (5.8) we obtain

� 0[X0 |N0 = i] =
(ρ+ i+ θ

µ + i σµc)cvi − iσµ
ρ+ i

(E.15)

Plugging this value of
� 0[X0 |N0 = i] into the r.h.s. of (E.14), and using (5.5), yields

after some straightforward algebra

�
[X∞] = ce−ρ

∞
∑

i=1

ρi

i!
vi (E.16)

According to (4.7) it remains to divide both sides of (E.16) by c to get (5.7). This

concludes the proof. �

Appendix F

Engset and M/M/∞ Models

In the Engset model, every user independently goes down (resp. up) after an expo-

nentially distributed time with parameter µ (resp. λE). The total number of users

(connected or not) is N . Let us denote by NE(t) the state of the Engset model at time

t. Observe that this Engset model and the M/M/∞ model introduced in Section 5.2

have the same death rate in state i ∈ � , given by iµ. Let us define ρE = λE/µ.

We have for the Engset model [Kel79]:

P (N∞
E = i) =

(

N

i

)

ρiE
(1 + ρE)N

, 1 ≤ i ≤ N (F.1)

�
[N∞

E] = N
ρE

1 + ρE
(F.2)

as opposed to (5.2) and (5.3), respectively, for the M/M/∞ model.

In the following, for any mappings f and g, the shorthand

f(N) ∼ g(N)

will stand for

lim
N→∞

f(N)/g(N) = 1

129

130 App. F Engset and M/M/∞ Models

Proposition F.0.1 Assuming that the mean number of active users in the M/M/∞
model and in the Engset model with N nodes are the same, namely,

ρ =
NρE

1 + ρE
. (F.3)

Then, as N → ∞, the stationary distribution of the Engset model defined in (F.1) is

equivalent to that of the M/M/∞ model given in (5.2), namely

P (N∞
E = i)∼ ρi

i!
e−ρ (F.4)

for any i ∈ � .

Proof. For any fixed i ∈ � we have from (F.1) and (F.3)

P (N∞
E = i) =

N !

i!(N − i)!

(ρ
N−ρ)

i

(1 + ρ
N−ρ)

N
. (F.5)

Using the Stirling formula N ! ∼
N→∞

(N/e)N
√

2πN in (F.5) yields

P (N∞
E = i) ∼

N→∞
e−i
(

N

N − i

)N

(N − i)i
ρi

i!

1

(N − ρ)i

(

N − ρ

N

)N

(F.6)

∼
N→∞

e−i
ρi

i!

1

(1 − i
N)N

(

1 − ρ

N

)N
. (F.7)

With the identity lim
N→∞

(1 + x/N)N = ex applied to the last equation, we find (F.4),

which completes the proof. �

Appendix G

Service Differentiation in BitTorrent-like

networks: Type-2 Equilibrium

In this appendix we show that a type-2 equilibrium exists for α ∈ [0, 1] if and only if

a2 < α ≤ 1, where a2 is defined in Section 6.4.

By definition, a type-2 equilibrium exists if x̄ = (x̄1, x̄2) given in (6.22) is such

that σ(x̄) = 2, to which we need to add the condition that x̄2 ≥ 0 (note that x̄1 is

always nonnegative). Equivalently, we need to find the values of α in [0, 1] such that

cξ < αβ

(

ξ +
λ2 − (1 − α)βξ

θ2 + (1 − α)β

)

(G.1)

c
λ2 − (1 − α)βξ

θ2 + (1 − α)β
≥ (1 − α)β

(

ξ +
λ2 − (1 − α)βξ

θ2 + (1 − α)β

)

(G.2)

λ2 − (1 − α)βξ ≥ 0 (G.3)

where we have set ξ
def
= λ1/(θ1 + c). The first two conditions express the identity

σ(x̄) = 2 and the third condition expresses the constraint x̄2 ≥ 0.

Straightforward algebra shows that these conditions are simultaneously met for

131

132 App. G Service Differentiation in BitTorrent-like networks: Type-2 Equilibrium

α ∈ [0, 1] if and only if

α >
cλ1(θ2 + β)

D
and α ≥ max

(

1 − cλ2(θ1 + c)

D
, 1 − λ2(θ1 + c)

λ1β

)

(G.4)

where we recall that D = β(λ1(θ2 + c) + λ2(θ1 + c)).

Let us first compare cλ1(θ2 + β))/D to 1 − cλ2(θ1 + c))/D. We have

cλ1(θ2+β)

D
−
(

1 − cλ2(θ1 + c)

D

)

=
1

D
(cλ1(θ2 + β) + cλ2(θ1 + c) −D) (G.5)

=
1

D
(c (λ1(θ2 + β) + λ2(θ1 + c)) − β(λ1(θ2 + c) + λ2(θ1 + c))) (G.6)

=
1

D
(c− β)(λ1θ2 + λ2(θ1 + c)). (G.7)

We have observed earlier in the proof of Proposition 6.4.1 that c > β, which shows that

cλ1(θ2 + β))/D > 1 − cλ2(θ1 + c))/D.

We now compare cλ1(θ2 + β))/D to 1 − λ2(θ1 + c)/(λ1β). We have

cλ1(θ2 + β)

D
−
(

1 − λ2(θ1 + c)

λ1β

)

=
1

Dλ1β

(

cλ2
1β(θ2 + β) −Dλ1β + λ2(θ1 + c)D

)

(G.8)

=
1

Dλ1β
(λ1β(cλ1(θ2+β)−βλ1(θ2+c) −βλ2(θ1+c) +λ2(θ1+c)(θ2+c)) (G.9)

+βλ2
2(θ1 + c)2

)

(G.10)

=
1

Dλ1

(

λ1(λ1θ2(c− β) + λ2(θ1 + c)(θ2 + c− β)) + λ2
2(θ1 + c)2

)

> 0 (G.11)

since c > β.

In summary we have shown that the conditions σ(x̄) = 2 and x̄2 ≥ 0 will simul-

taneously hold for α ∈ [0, 1] if and only if α > min(1, cλ1(θ2 + β))/D) = a2, which is

the announced result. �

Appendix H

Présentation des Travaux de Thèse

H.1 Introduction

H.1.1 Systèmes de distribution de contenu

Considérons un ensemble de documents multimédia tels que des pages HTML, des

images, musiques ou clips vidéo, proposés par un ensemble de serveurs Web une pop-

ulation de clients intéressés dans un réseau. Les systèmes de distribution de contenu

(CDS) peuvent tre définis comme l’ensemble des systèmes qui facilitent la distribu-

tion de ces documents aux clients intéressés, par rapport une mesure de performance

choisie. Les serveurs Web d’origine sont parfois également considérés comme des CDS

[SGD+02]. Cependant, d’après la définition proposée ci-dessus nous limitons la classe

des CDS aux seuls intermédiaires logiques entre les clients et serveurs Web.

Notons que cette notion d’intermédiaire est purement logique. Dans leur réalité

physique, les CDS peuvent tre implémentés directement dans les clients eux-mmes,

comme par exemple dans les réseaux peer-to-peer (P2P) tels que [Kaz] et Gnutella

[Gnu], de mme que l’on peut les retrouver au niveau des serveurs comme dans cer-

tains réseaux de distribution de contenu comme Akamai [Aka, DMP+02]. Ils peuvent

133

134 App. H Présentation des Travaux de Thèse

également former un ensemble dédié de serveurs un niveau intermédiaire entre clients

et serveurs, comme c’est le cas dans le principe des caches web. Ainsi, les systèmes de

distribution de contenu dépassent le concept client-serveur qui a servi construire de

nombreuses applications Internet (FTP, Telnet, navigation sur le Web...).

Après avoir défini le concept des systèmes de distribution de contenu, nous nous

intéressons maintenant leur classification. Il existe actuellement trois grands types

d’architectures conues pour faciliter la diffusion de contenu.

La première classe de CDS est la classe des systèmes de caches Web. Ces systèmes

sont largement utilisés et peuvent aisément tre mis en œuvre sur les serveurs proxy de

pratiquement n’importe quel réseau privé ou institutionnel. Ces systèmes sont fondés

sur la simple observation suivante : un document récemment demandé a de fortes

chances d’tre nouveau demandé dans un futur proche, en particulier étant donné le

biais de la distribution de popularité des documents du Web [BCF+99]. Les serveurs

de cache Web sont typiquement placés physiquement entre les utilisateurs finaux et

les serveurs Web. Ces serveurs conservent une copie de chaque fichier demandé afin

de pouvoir répondre directement les futures requtes pour ces mmes fichier, et ainsi

économiser aux utilisateurs le temps de contacter le serveur d’origine.

Une seconde classe de CDS est la classe des systèmes d’échanges de fichiers.

L’idée principale est qu’un fichier populaire téléchargé par un client ci peut également

intéresser un autre client cj du même réseau local. Si cj peut obtenir le fihcier directe-

ment de ci, le délai perçu est fortement réduit tout en réduisant également la charge

sur le serveur d’origine. C’est l’idée essentielle du concept pair-à-pair, également ap-

pelé “peer-to-peer” (P2P), où les clients servent également de serveurs pour les noeuds

voisins. Dans ce cas, le CDS appartient physiquement au réseau client. Ces réseaux

peer-to-peer sont récemment devenus la principale source de trafic sur Internet (cf.

notamment [AG04, KBB+04]), principalement en rendant aisément disponible des con-

tenus multimédia très populaires comme des fichiers musicaux ou des films vidéo. Dans

les systèmes peer-to-peer, chaque noeud (peer) maintient un certain nombre de doc-

uments à la disponibilité des autres noeuds. Ces objets peuvent être localisés par

différentes techniques, comme la diffusion de requêtes comme dans Gnutella [Gnu],

l’utilisation de tables de hashage comme dans Chord [SMK+01] par exemple, ou même

par la consultation d’un serveur centralisé comme dans la première version de Napster

(cf. notamment [SGG03] pour une description de cette architecture).

H.1. Introduction 135

La troisième et dernière catégorie de CDS est la classe des réseaux de distribution

de contenu (CDN). Ces réseaux sont conçus pour accélérer la distribution de contenu

et pour diminuer la charge sur les serveurs Web, en dupliquant leur contenu et en le

rendant ainsi accessible sur d’autres serveurs. Ce principe est assez différent de celui

des caches Web en particulier sur les deux points suivants. Premièrement, les CDN

sont des réseaux privés qui offrent des services aux serveurs Web, tandis qu’un système

de cache est typiquement administré par le réseaux LAN client ou le réseau du serveur

Web. Le service CDN typique comprend notamment une répartition géographique à des

positions stratégiques, la disponibilité des serveurs et la gestion de contenu dynamique,

tandis que les systèmes de caches n’offrent qu’un service local et un nombre limité

de type de documents éligibles pour le cache. Deuxièmement, le contenu peut être

envoyé aux réplicas CDN sur l’initiative du serveur Web, tandis que dans le principe

du cache la copie est généralement faite sur requête d’un client. Les CDN peuvent être

un réseau mondial de serveurs partagés, auquel cas leur localisation physique reflète

leur rôle logique entre les clients et les serveurs, ou bien ils peuvent constituer une

colleciton de serveurs localisés sur le réseau du serveur Web, auquel cas ils appartiennent

physiquement au réseau du serveur bien que leur rôle logique soit inchangé.

H.1.2 Analyse de Performance

L’analyse de performance de ces CDS est cruciale pour de nombreuse raisons. Premièrement,

en ce qui concerne les technologies émergentes comme de nouvelles architectures P2P

par exemple, il est essentiel d’évaluer la performance et le passage à l’échelle au début du

processus de développement, sous peine de déployer des systèmes inadaptés. Cela per-

met également d’anticiper les causes possibles de délais ou de surcoût de signalisation.

L’analyse de performance permet également d’identifier les principaux compromis et de

dimensionner ces systèmes efficacement. Enfin, l’analyse de performance de systèmes

existants sert également pour concevoir de nouveaux services ou des systèmes concur-

rents pouvant apporter d’importantes améliorations. Elle peut également servir pour

les problèmes de détermination de prix des services.

Cependant, les CDS présentent une complexité intrinsèque qui fait de l’analyse

de leur performance un problème complexe. En effet, ces systèmes mettent en oeu-

vre un nombre croissant d’utilisateurs, de serveurs et de documents, qui en outre sont

hétérogènes et fortement dynamiques. L’ordre de grandeur de la dimension d’un CDS

136 App. H Présentation des Travaux de Thèse

peut être évalué à l’aide de quelques chiffres clés. Par exemple, des caches institu-

tionnels doivent pouvoir servir des dizaines de milliers d’utilisateurs pour un taux

de requêtes total allant de 12 à 178 requêtes par seconde dans de grands systèmes

[WVS+99, DMF97], choisis dans un Web qui contient des milliards de documents (en-

viron 8 milliards de pages référencées par Google en juin 2005). Les CDN, eux, sont

utilisés par une fraction significative des sites Web les plus populaires [KWZ01] et

doivent donc faire face à de forts taux de requêtes pour des documents très volatiles.

Quant aux systèmes P2P, ils mettent généralement en jeu des millions d’utilisateurs

(statistiques sur [Edo, Sly, IUKB+04]) qui interrompent et reprennent fréquemment

leur téléchargement[IUKB+04]. Le trafic total gèneré par ces systèmes représente plus

de la moitié du trafic internet total [AG04]. En outre, les noeuds peuvent se déconnecter

et revenir en service, ce qui peut modifier à la fois la population des caches, des clients et

des serveurs, à des fréquences non négligeables: d’après [LMG95], de nombreux postes

restent connectés une semaine et reviennent en service après une courte déconnexion.

Ces taux de volatilité sont même plus élevés dans les systèmes P2P où les utilisateurs

se connectent et se déconnectent plusieurs fois par jour [BSV03].

Pour toutes ces raisons, les outils classiques d’analyse de performance comme les

modèles Markoviens ou la simulation à événements discrets souffrent d’un trop grand

espace détat et nécessitent souvent de coûteuses méthodes de résolution numériques ou

des simulations de modèles [ZA03, GFJ+03].

S’inspirant des travaux fondateurs de Anick, Mitra et Sondhi en 1982 [AMS82]

et du succès des modèles fluides pour les réseaux de paquets (cf. notamment [EM92,

EM93, KM01a, LZTK97, BBLO00, RRR02, LFG+01]), l’axe central de cette thèse est

de proposer une approche fluide pour modéliser les systèmes de distribution de contenu,

l’approximation fluide permettant de réduire l’espace d’état de ces systèmes.

H.1.3 Organisation et contributions de la thèse

La thèse se décompose en deux parties. Dans la première partie, composée des chapitres

2 à 5, nous proposons de modéliser les systèmes de caches distribués en remplaçant le

contenu des caches par une quantité de fluide. En particulier, nous proposons un modèle

générique pour ces systèmes, que nous appliquons à deux systèmes de caches différents.

Nous montrons en particulier quelles informations qualitatives ce modèle peut apporter

sur ces systèmes. Dans la deuxième partie, constituée du chapitre 6, nous proposons de

H.2. Un modèle fluide générique pour les caches distribués 137

modéliser des systèmes P2P de partage de fichiers en remplaçant cette fois les utilisa-

teurs par une quantité de fluide, ce qui permet de prendre en compte la duplication des

fichiers dans ce type de systèmes. En particulier, nous montrons comment ce modèle

permet de concevoir une offre de service différencié pour les utilisateurs, ou encore de

tenir compte de l’hétérogénéité des utilisateurs en terme de bande passante. Dans les

sections suivantes nous présentons plus en détail les principaux résultats de chacun des

chapitres de cette thèse.

H.2 Un modèle fluide générique pour les caches distribués

H.2.1 Etat de l’art des systèmes de caches distribués

Dans le chapitre 2 nous commençons par présenter les systèmes de caches Web dis-

tribués et leurs principales caractéristiques. Notamment, nous montrons qu’il existe

trois grands types d’architectures:

− les grappes de caches (“cache clusters”), qui sont des ensembles de serveurs dédiés

à cette fonction dans un réseau institutionnel. Ces caches communiquent par

un protocole ICP, auquel cas il peuvent stocker les mêmes fichiers, ou bien les

documents à prendre en charge sont partitionnés entre les caches de manière à

optimiser l’espace de stockage et à minimiser la signalisation, comme dans CARP

[VR97].

− les systèmes hiérarchiques comme Harvest [CDN+96], dans lesquels un niveau de

cache s’adresse au niveau supérieur lorsqu’il n’est pas en mesure de satisfaire une

requête, et dans lesquels chaque document demandé est dupliqué à chaque niveau

de cache qui voit passer la requête.

− Les systèmes de caches pair-à-pair (P2P), dans lequel chaque utilisateur partage

son cache individuel pour former un système global de cache coopératif. Un

exemple de tel système est Squirrel [IRD02].

138 App. H Présentation des Travaux de Thèse

H.2.2 Modèle fluide générique

En raison de leur complexité intrinsèque, peu d’études de performance de ces systèmes

proposent un modèle analytique. En particulier, nous montrons que parmi les études

analytiques existantes, aucune ne tient compte des incidents de connexion et déconnexions

des usagers et des serveurs. Nous proposons donc un modèle fluide qui tient compte

de cet aspect important. Les principales hypothèses de notre modèle générique sont les

suivantes:

− le système permet une bonne répartition de la charge de requêtes entre les servers

− chaque document est présent à un seul noieud du système distribué. En par-

ticulier, cette hypothèse exclut les architectures commes ICP dans lesquelles

plusieurs serveurs différents peuvent répondre à une même requête.

L’idée principale du moèle est de remplacer les dcuments cachés (i.e., stockés dans le

cache) par une quantité globale de fluide. Cette quantité X(t) représente le nombre

total de documents stockés par le système de cache en fonction du temps.

Cette quantité de fluide évolue de la façon suivante. Tant que la population de

serveurs de cache est inchangée, le nombre de documents stockés augmente au fur et

à mesure des requêtes insatisfaites, i.e. de manière proportionnelle au taux global de

requêtes σ(t) et au taux de “miss” 1 − pH(X(t)) où pH(X(t)) est le taux de “hit”

(requêtes satisfaites par le cache distribués), mesure de performance du système et

dépendant bien sûr de la quantité de fluide présente. Cette quantité de fluide diminue

parallèlement, à mesure que les documents stockés arrivent à expiration. (Ces docu-

ments ont une durée de vie limitée, typiquement 24 heures, pour éviter de stocker et

de servir des documents ayant éé modifiés depuis sur le serveur Web d’origine.) Notons

par θ le taux de départ de ces documents.

Par ailleurs, cette quantité de fluide est modulée par le processus dévolution des

serveurs de cache. Nous supposons que ces derniers suivent un processus de naissance et

de mort. Nous notons N(t) le nombre de noeuds actifs du cache à l’instant t. Lorsqu’un

cache se déconnecte, la quantité de fluide qu’il contenait est perdue pour le système

global. Ainsi, lors d’une déconnexion à un instant Tn, la quantité de fluide est réduite

d’un facteur ∆d(NTn) compris entre 0 et 1. Ce facteur peut valoir 1 (aucune diminution

de fluide) si les noeuds ont la faculté de prévoir leurs déconnexion et de transférer leur

H.3. Application aux Grappes de Caches 139

contenu aux autres noeuds avant leur départ. De même, lorsqu’un cache se connecte,

il peut devenir responsable d’un certain nombre de documents qu’il ne possède pas

encore en cache, mais qui étaient déjà stockés dans les noeuds qui en étaient les anciens

responsables. Ainsi lors d’une déconnexion à TM , la quantité de fluide est réduite d’un

facteur ∆U (NTM
) compris entre 0 et 1.

Ainsi, emtre deux incidents de connexion ou déconnexion de caches, le fluide

évolue de façon continue selon l’équation différentielle du premier ordre suivante:

dX

dt
= σ(t)(1 − pH(X(t)) − θX(t) (H.1)

Lors des connexions et déconnexions, la quantité de fluide évolue de manière discontinue

selon les facteurs ∆u et ∆d.

Ce modèle est utilisé dans les Chapitres 3 à 5 pour étudier différents types de

caches distribués.

H.3 Application aux Grappes de Caches

H.3.1 Spécialisation du modèle

Dans le Chapitre 3 nous appliquons le modèle du Chapitre 2 pour étudier les grappes de

caches (clusters) basées sur CARP. Nous supposons que les noeuds du cluster de caches

suivent un processus d’Engset d’une taille maximale N , de taux de naissance individuel

lambda et de taux de mort individuel µ. Notons ρ = λ/µ. Dans tout ce chapitre nous

supposons que la popularité des documents est uniforme, i.e., la probabilité de hit est

simplement proportionnelle à la quantité de fluide: pH = Xt

c où c est le nombre total

de documents existant dans l’univers.

Nous montrons que la probabilité de hit stationnaire du système est donnée par

la formule suivante:

pH =
1

(1 + α)(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi vi (H.2)

sous la condition

0 ≤ ∆u(i)∆d(i+ 1) ≤ 1, pour i = 0, 1, . . . , N − 1, (H.3)

140 App. H Présentation des Travaux de Thèse

et où le vecteur v = (v1, . . . , vN)T est l’unique solution du système linéaire

Av = b (H.4)

avec b = (b1, . . . , bN)T un vecteur dont les composantes sont données par bi = γ(1+α)

pour i=1,2,. . . ,N, et A = [ai,j]1≤i,j≤N une matrice tridiagonale N×N dont les éléments

non-nuls sont donnés par:

ai,i = γ(1 + α) + i+ ρ(N − i), 1 ≤ i ≤ N (H.5a)

ai,i−1 = −i∆u(i− 1), 2 ≤ i ≤ N (H.5b)

ai,i+1 = −ρ(N − i)∆d(i+ 1), 1 ≤ i ≤ N − 1. (H.5c)

et où α = θc
σ et γ = σ

µc .

Nous remarquons que ce résultat analytique montre déjà que les performances

du systèmes ne dépendent plus que de 4 degrés de liberté: N, ρ, α, γ au lieu des six

paramètres initiaux N,µ, λ, σ, θ, c. C’est l’un des premiers résultats qualitatifs de notre

modèle.

H.3.2 Résultats Expérimentaux

H.3.2.1 Résultats qualitatifs

Le modèle permet de mieux comprendre le fonctionnement intrinsèque du système.

Outre le nombre restreint de degrés de liberté identifié à la section précédente, nous

montrons en particulier que le paramètre crucial est α comme le montre la figure H.1.

Cela implique en particulier que le facteur déterminant de performance est la durée

de vie des documents dans le cache 1/θ. Enfin, nous comparons deux politiques de

direction des requêtes (manière de répartir les requêtes entre les noeuds actifs) et nous

montrons que l’une des deux permet d’obtenir de largement meilleures performances

que l’autre.

H.3.2.2 Validation du modèle

Afin de valider les conclusions de notre modèle nous comparons ses prédictions avec une

simulation à événements discrets du système. La figure H.2 nous montre clairement que

H.3. Application aux Grappes de Caches 141

020406080100

0

5

10

0

0.2

0.4

0.6

0.8

1

α

Hit rate for N=4 and ρ=1

γ

H
it

ra
te

Figure H.1: Probabilité de hit d’une grappe de caches en fonction de γ et α (ρ = 1)

le modèle offre une estimation très précise de la probabilité de hit. L’un des principaux

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

γ

hi
t r

at
e

(in
 %

)

impact of γ on the hit rate (N=10,ρ=1)

simulation α=0
fluid model α=0
simulation α=1
fluid model α=1

Figure H.2: Validation du modèle fluide par simulation: probabilité de hit en fonction

de γ (N = 10 et ρ = 1).

intérêts du modèle est son faible coût de calcul: pour obtenir la figure H.2, la simlation

de 10 noeuds peut prendre plusieurs heures, tandis que les résultats du modèles sont

obtenus de façon instantanée.

142 App. H Présentation des Travaux de Thèse

H.4 Application au système Squirrel de cache P2P

H.4.1 Spécialisation du modèle

Dans le Chapitre 4 nous appliquons le modèle du Chapitre 2 pour étudier un système de

cache P2P appelé Squirrel [IRD02]. Nous supposons que les noeuds du réseau (qui sont

à la fois clients et serveurs) suivent également un processus d’Engset. Nous faisons

également l’hypothèse d’une distribution de popularité uniforme des documents, et

utilisons donc le modèle linéaire de probabilité de hit. Cette hypothèse sera levée au

Chapitre 5.

La différence essentielle par rapport au chapitre précédent est que le taux global

de requêtes dépend désormais de la population de noeuds actifs, ce qui modifie les

équations d’évolution du système.

Nous montrons que la probabilité de hit stationnaire du système est donnée par

la formule suivante:

pH =
1

(1 + ρ)N

N
∑

i=1

(

N

i

)

ρi vi (H.6)

sous la condition:

0 ≤ ∆u(i)∆d(i+ 1) ≤ 1, pour i = 0, 1, . . . , N − 1, (H.7)

et où le vecteur v = (v1, . . . , vN)T est l’unique solution du système linéaire

Av = b (H.8)

avec b = (b1, . . . , bN)T un vecteur dont les composantes sont données par bi = γi pour

1 ≤ i ≤ N , et A = [ai,j]1≤i,j≤N une matrice tridiagonale N × N dont les éléments

non-nuls sont donnés par:

ai,i = αγ + (γ + 1)i+ ρ(N− i), 1 ≤ i ≤ N (H.9a)

ai,i−1 = −i∆u(i− 1), 2 ≤ i ≤ N (H.9b)

ai,i+1 = −ρ(N − i)∆d(i+ 1), 1 ≤ i ≤N−1. (H.9c)

et où α = θc
σ et γ = σ

µc .

De même qu’au chapitre précédent nous observons la réduction du nombre de

degrés de liberté du système.

H.4. Application au système Squirrel de cache P2P 143

H.4.2 Résultats Expérimentaux

H.4.2.1 Résultats qualitatifs

Le modèle permet de mieux comprendre le fonctionnement intrinsèque du système

Squirrel. Outre le nombre restreint de degrés de liberté identifié à la section précédente,

nous montrons en particulier que le paramètre ρ exerce une très faible influence sur la

probabilité de hit, excepté lorsqu’il est trés proche de zéro - ce qui en pratique est peu

réaliste. Cette observation permet de réduire à 3 le nombre de réels degrés de liberté

du système: N,α, γ.

Par ailleurs, la figure H.3 montre que le paramètre crucial est α. Cela implique en

particulier que le facteur déterminant de performance est la durée de vie des documents

dans le cache 1/θ.

Figure H.3: Probabilité de hit du système Squirrel en fonction de γ et α(N = 3 and

ρ = 1).

H.4.2.2 Validation du modèle

Afin de valider les conclusions de notre modèle nous comparons ses prédictions avec

une simulation à événements discrets du système avec 10 noeuds. La figure H.4 nous

montre clairement que le modèle offre une estimation très précise de la probabilité de

hit. Là encore, l’un des principaux intérêts du modèle est son faible coût de calcul: pour

144 App. H Présentation des Travaux de Thèse

γ

H
it

pr
ob

ab
ili

ty

Impact of γ on hit probability (N=10,ρ=1)

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fluid model
Simulation

Figure H.4: Validation du modèle fluide de Squirrel par simulation: probabilité de hit

en fonction de γ (N = 10 et ρ = 1)

obtenir la figure H.4, la simlation de 10 noeuds peut prendre plusieurs jours, tandis

que les résultats du modèle sont obtenus de façon quasi-instantanée. Notons que cet

ordre de grandeur est valable pour de petits réseaux. Lorsque la population augmente,

le modèle continue de fournir une estimation efficace de la probabilité de hit pour des

réseaux jusqu’à 10 000 noeuds. Au-delà, la complexité du modèle lié à la présence

de coefficients binomiaux et d’exponentielles dans la formule de la probabilité de hit

nécessite une adaptation du modèle. C’est l’un des sujets du chapitre suivant.

H.5 Extension aux grands réseaux et à d’autres distribu-

tions de popularité

Dans le Chapitre 5 nous proposons une variante du modèle de Squirrel permettant

le passage à l’échelle en nombre de noeuds. Nous proposons aussi une méthode pour

prendre en compte la popularité différenciée des documents.

H.5. Extension aux grands réseaux et à d’autres distributions de popularité 145

H.5.1 Adaptation du modèle

Nous remplaçons le modèle d’Engset choisi au Chapitre 4 par un modèle M/M/∞. La

motivation pour ce changement est qu’il n’est alors plus besoin de définir un nombre

maximum N de noeuds dans le réseau, ce dernier pouvant grandir jusqu’à n’importe

quelle taille. Ce modèle permet également, comme nous le verrons, de calculer aisément

la probabilité de hit pour des réseaux pouvant aller jusqu’au million de noeuds.

Les noeuds sont donc modélisés par un processus M/M/∞ ayant pour taux de

naissance global λ et pour taux de mort individuel µ. Notons que ρ = λ/µ a une

signification différente du paramètre ρ utilisé dans les deux chapitres précédents.

H.5.1.1 Popularité uniforme

Sous l’hypothèse d’une popularité uniforme des documents (levée dans la section suiv-

ante), nous obtenons les formules closes suivantes pour la probabilité de hit :

Supposons que ∆u(i) = 1 (aucune perte de contenu lors de l’arrivée d’un noeud).

Si les noeuds ne sont pas en mesure d’annoncer leur départ (i.e. ∆d(i) = (i−1)/i)

alors

pH = e
− γρ

γ+1 γ−(1+κ)

∫ 1

1

γ+1

γρe
γρt

γ+1 (t(γ + 1) − 1)κ dt (H.10)

où κ
def
= γ(α(γ + 1) + ρ)/(γ + 1)2.

Si les noeuds sont en mesure d’annoncer leur départ (i.e. ∆d(i) = 1) alors

pH = ρe−
ργ

γ+1 γ−ν
∫ 1

1

γ+1

(γteρt − v1)e
− ρt

γ+1 ((γ + 1)t− 1)ν−1 dt (H.11)

avec v1
def
=

∫ 1/(γ+1)
0 γte

ργt

γ+1 (1 − (γ + 1)t)ν−1 dt
∫ 1/(γ+1)
0 e

ρt

γ+1 (1 − (γ + 1)t)ν−1 dt
et ν

def
= αγ(γ+1)+ρ

(γ+1)2
.

146 App. H Présentation des Travaux de Thèse

H.5.1.2 Popularité de Zipf

En réalité, les documents Web n’ont pas tous la même popularité. La distribution de

popularité est connue pour suivre une loi de type Zipf [BCF+99]. Cette distribution

revient à modéliser la probabilité de hit par une fonction concave de type pH(t) =
(

Xt

c

)β

où β est un coefficient typiquement compris entre 0 et 1.

Une telle expression de pH rend malheureusement l’équation d’état:

dX

dt
= σNt(1 − pH(X(t)) − θX(t) (H.12)

non linéaire, et qui plus est sans solution connue.

Nous proposons donc la méthode suivante. Nous divison l’ensemble des c docu-

ments existants en un nombre K de classes de popularité. A l’intérieur d’une même

classe tous les documents sont supposés avoir la même popularité. La méthode de

popularité linéaire peut donc être appliquée à chacune de ces classes.

La répartition des documents entre les classes est un problème classique de clas-

sification, et se résoud à l’aide d’un algorithme de Lloyd [GG92, page 189].

H.5.2 Résultats Expérimentaux

H.5.2.1 Résultats qualitatifs

Nous utilisons les formules obtenues par le modèle pour étudier le comportement du

système selon certains paramètres. Tout d’abord nous montrons que l’impact de la

popularité de Zipf est très important. Cette dernière augmente considérablement la

probabilité de hit par rapport à une popularité uniforme.

Par ailleurs nous étudions en figure H.5 le gain de performance obtenu lorsque

les noeuds sont capables d’annoncer leur départ. Nous constatons que ce gain existe

bien mais qu’il reste relativement faible (environ 5% pour les paramètres utilisés).

En particulier, ce gain est à comparer au coût de signalisation et de transfert induit

par le fait d’annoncer un départ. Nous montrons par exemple que la dégradation de

H.6. Un Modèle Multiclasses pour les Réseaux P2P 147

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average number of users ρ (log scale)

H
it

pr
ob

ab
ili

ty

With abrupt failures: ∆
d
(i) = (i−1)/i

With annonced departures: ∆
d
(i) = 1

Figure H.5: Gain de performance entre départs annoncés et départs imprévus pour

Squirrel.

performance dans le cas de départs imprévus a principalement lieu pour des durées de

connexion inférieures à une dizaine de jours pour les paramètres considérés.

H.6 Un Modèle Multiclasses pour les Réseaux P2P

Dans le Chapitre 6, nous nous intéressons à la modélisation d’un autre type de systèmes,

les systèmes P2P de partage de fichiers, et tout particulièrement ceux de type BitTorrent

[Coh] qui sont conçus pour faire face au succès soudain de certains fichiers.

H.6.1 Présentation de BitTorrent

Le principe de ces systèmes est le suivant. Un fichier est découpé en un grand nombre

N fragments de petite taille. Une source initiale répond aux requête des clients en

diffusant les différents fragments aléatoirement aux clients, qui ensuite s’échangent

leurs fragments directement entre eux. Ce principe permet d’utiliser la bande passante

passante des clients eux-mêmes pour faire face à la demande, et donc d’obtenir un

service dont la capacité s’accrôıt avec la demande. Les clients sont mis en contact les

uns les autres par l’utilisation d’un serveur central de mise en relation appelé “tracker”

148 App. H Présentation des Travaux de Thèse

qui fait le suivi des différents téléchargements. Afin d’éviter que des clients obtiennent

des fragments sans partager ceux qu’ils possèdent déjà, un mécanisme de réciprocité

est mis en œuvre : chaque utilisateur envoie des fragments en priorité aux quatre pairs

qui lui fournissent des fragments avec le meilleur débit. Ainsi, un client qui voudrait

ne rien transmettre aurait beaucoup de mal à obtenir des fragments.

H.6.2 Modèle Multiclasses

S’appuyant sur le modèle de Qiu et Srikant [QS04], nous proposons le modèle fluide

multiclasses suivant.

Il y a deux classes d’utilisateurs (classe de bande passante par exemple, ou de

qualité de service). Dans chaque classe i, les clients possédant entre 0 et N−1 fragments

sont appelés “leechers” et sont représentés par une quantité de fluide xi(t); les clients

possédants N fragments sont appelés “seeds” et sont modélisés par une quantité de

fluide yi(t). Les leechers rejoignent le système à un taux constant λi. Les seeds le

quittent à un taux γi, i.e., il restent un temps 1/γi après avoir fini de télécharger le fichier

complet. Typiquement, γi est très élevé si les utilisateurs sont individualistes. Les

leechers abandonnent leur téléchargement à un taux θi qui peutêtre élevé [IUKB+04].

Enfin, chaque utilisateur est connecté avec un débit ascendant µi et un débit descendant

ci.

Les clients de la classe i consacrent une fraction αi de leur débit ascendant aux

clients de leur propre classe et une fraction 1 − αi aux clients de l’autre classe. Le

paramètre ηi représente l’efficacité du système, soit la fraction de bande passante totale

des leechers qui contribue à la diffusion des fragments. Idéalement ce paramètre doit

être proche de 1.

L’évolution du fluide est la suivante. Les leechers de la classe i deviennent seeds

à mesure qu’ils terminent leur téléchargement: ce téléchargement se fait aux taux

max(ci, αiµi(ηixi + yi) + (1 − αj)µj(ηjxj + yj)) (H.13)

H.6. Un Modèle Multiclasses pour les Réseaux P2P 149

H.6.3 Différentiation de service

Le modèle ci-desus peut-être utilisés pour différents problèmes d’allocation de bande

passante (détermination des paramètres α1 et α2).

Nous proposons d’étudier comment offrir un service différencié de téléchargement,

i.e., par exmple, que la classe 1 puisse télécharger le document dans un temps k fois

plus court que la classe 2.

Nous faisons donc les simplifications suivantes. Chaque classe favorise la classe 1

donc α1 = 1 − α2 = α. Par ailleurs, nous faisons l’hypothèse (légèrement pessimiste)

que les seeds quittent immédiatement le système, donc à tout instant yi = 0, i = 1, 2.

Nous considérons aussi que tous les clients ont la même bande passante, soit µ1 = µ2

et c1 = c2.

Nous montrons que sous la condition réaliste µi ≤ ci, le système admet un unique

équilibre stable quel que soit les conditions initiales du système, et que le temps de

téléchargement complet moyen φi est donné par les formules closes suivantes:

φ1 =
λ1(θ2 + c) − αλ2β

αβ(λ2θ1 + λ1(θ2 + c))
, φ2 =

1

c
si 0 ≤ α < a1

φ1 =
λ1(θ2+β)−αβ(λ1+λ2)

αβ(λ2θ1 + λ1θ2)
, φ2 =

λ2θ1 − λ1β + αβ(λ1 + λ2)

(1 − α)β(λ2θ1 + λ1θ2)
si a1 ≤ α ≤ a2

φ1 =
1

c
, φ2 =

λ2(θ1+c)−λ1β +αλ1β

(1−α)β(θ2λ1+λ2(θ1+c))
si a2 < α ≤ 1.

(H.14)

où a1 et a2 sont des constantes dépendant des paramètres du systèmes, données par les

équations (6.16)-(6.17).

Pour atteindre la différentiation de service voulue, il suffit alors de résoudre en α

l’équation φ2/φ1 − k = 0.

Nous calculons aussi numériquement l’impact de l’hypothèse de départ immédiat

des seeds sur le ratio de temps de téléchargement entre les deux classes.

150 App. H Présentation des Travaux de Thèse

H.6.4 Accès hétérogènes

Dans cette section nous utilisons le modèle multiclasse pour déterminer la politique

idéale d’allocation de bande passante (α1, α2) lorsque les clients souscrivent la même

qualité de service, d’où α1 = α2 = α (noter que α n’a pas la même définition que

dans la section précédente) mais que leurs débits d’accès sont hétérogènes: µ1 6= µ2 et

c1 6= c2. Nous supposons à nouveau que µi ≤ ci, i = 1, 2.

Notre objectif dans cette section est de minimiser le pire temps moyen de téléchargement

parmi les deux classes.

Les résultats de cette section sont plus complexes car l’équilibre atteint par le

système peut parfois dépendre des conditions initiales. Nous définissons donc un en-

semble de conditions (D2), (D3) et (D4) sur les paramètres. Ces définitions impliquent

que (D4) ∩ (D2) = (D4) ∩ (D3) = ∅, mais que (D2) ∩ (D3) n’est pas nécéssairement

vide.

Nous montrons que le système admet un unique équilibre stable qui est connu

lorsque l’un des conditions (D2), (D3) ou (D4) est satisfaite à l’exlusion des deux autres.

Lorsque (D2) et (D3) sont satisfaite simultanément alors l’équilibre atteint dépend des

conditions initiales du système.

En raison de cette incertitude sur le point d’équilibre atteint, nous proposons

de choisir l’allocation α qui minimise l’enveloppe du temps de téléchargement, i.e. le

maximum du temps ,moyen φi observé sur les deux classes et pour chaque équilibre

possible selon les paramètres.

Notons σ le type déquilibre possible, défini ainsi:

− σ = 2 si la classe 1 est saturée en voie descendante et la classe 2 en voie ascendante

− σ = 3 si la classe 1 est saturée en voie ascendante et la classe 2 en voie descendante

− σ = 3 si les deux classes sont saturées en voie ascendante.

Notons que le cas σ = 1 où les deux classes seraient saturée en voie descendante n’admet

pas d’équilibre stable en raison de l’hypothèse µi ≤ ci.

H.7. Conclusion et Perspectives 151

Notre méthode est illustrée en figure H.6. La figure représente les temps de

téléchargement des deux classes selon l’équilibre atteint, et trace la fonction enveloppe.

Le minimum est ainsi atteint pour α ≈ 0, 78 pour les paramètres choisis.

0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

α

C
la

ss
 c

os
t φ

i

Class 2, σ=2
Class 1, σ=2
Class 1, σ=3
Class 2, σ=3
Class 1, σ=4
Class 2, σ=4
Maximum cost

Minimum of
 envelope

Figure H.6: Illustration de la méthode de l’enveloppe pour minimiser le plus grand

temps moyen de téléchargement.

H.7 Conclusion et Perspectives

Dans cette thèse nous avons proposé des modèles fluides efficaces pour analyser différents

systèmes de distribution de contenu. L’approximation fluide réduit largement la com-

plexité de ces systèmes fortement dynamiques et permettent une estimation simple et

précise de leur performances. Ces modèles offrent aussi une compréhension qualitative

des paramètres clés de ces systèmes.

Dans la première partie de cette thèse nous nous sommes intéressés aux systèmes

de caches distribués. Nous avons proposé en Chapitre 2 un modèle fluide générique

remplaçant le nombre global de documents stockés par une quantité de fluide, sous

l’hypothèse que chaque document ne soit stocké qu’en un seul exemplaire. Ce modèle

générique est capable de représenter différentes architectures de caches distribués.

Nous avons ensuite appliqué ce modèle aux grappes de caches dans le Chapitre 3.

152 App. H Présentation des Travaux de Thèse

L’évolution des noeuds fut représentée par un modèle d’Engset. Nous avons trouvé une

formule explicite de la probabilité de hit dans le cas d’une popularité homogène des

documents. Notre formule donne des résultats très proches de la simulation du système,

pour un temps de calcul très inférieur (de plusieurs ordres de grandeur). Notre modèle

analytique permet aussi d’identifier les principaux compromis du système, en particulier

l’importance cruciale de la durée de vie des documents dans le cache. Ce modèle nous

a également permis de comparer quantitativement deux politiques de direction des

requêtes.

Dans le Chapitre 4 nous avons appliqué le modèle fluide du Chapitre 2 à un

système P2P de cache Web coopératif appelé Squirrel. Bien que l’analyse suive la

même méthodologie qu’au Chapitre 3, les calculs de la probabilité de hit sont différents

pour les raisons suivantes: le taux de requêtes dépend désormais du nombre de noeuds

actifs, et la quantité total de fluide dans le cache n’est pas dégradée quand un noeud

se connecte au système. Nous avons donné une expression permettant de calculer

efficacement la probabilité de hit dans le cas d’une distribution uniforme de popularité

des documemts, pour des réseaux pouvant aller jusqu’à l’ordre de 10 000 noeuds. De

même qu’au Chapitre 3, nous avons identifié deux paramètres critiques qui représentent

les compromis essentiels pour la performance de Squirrel. Nous avons également validé

la pertinence du modèle en le comparant à une simulation à événements discrets.

Dans le Chapitre 5 nous avons étendu l’analyse de Squirrel pour dépasser la limite

de 10 000 noeuds imposée par la complexité du premier modèle, ainsi que pour perme-

ttre de prendre en compte une distribution de popularité des objets plus réaliste. Nous

avons également considéré la possibilité de départs annoncés et non plus simplements

les pannes imprévues. Pour ce faire, nous avons remplacé le modèle d’Engset par une

modèle M/M/∞ pour représenter la population des noeuds actifs. Nous avons ainsi

trouvé une formule close pour la probabilité de hit, ce qui nous permet désormais de

calculer instantanément cette probabilité même pour des réseaux allant jusqu’au mil-

lion de noeuds. Ce modèle nous a également permis de quantifier le gain obtenu lorsque

les noeuds sont en mesure d’annoncer leur départ. Nous avons ensuite levé l’hypothèse

de distribution uniforme de popularité des objets en considérant une popularité de Zipf,

plus réaliste. Étant donné que ce modèle rend l’équation d’évolution non linéaire et

sans solution connue, nous avons choisi une approximation multiclasse, dans laquelle

l’ensemble des documents est divisé en un certain nombre de classes de popularité.

Nous avons montré comment dimensionner ces classes et validé cette approximation en

la comparant à une simulation de Squirrel utilisant une popularité de Zipf.

H.7. Conclusion et Perspectives 153

Dans la seconde partie de la thèse, nous avons utilisé un second modèle fluide

qui permet cette fois de tenir compte de la duplication des documents dans le système.

Ce nouveau modèle remplace cette fois les utilisateurs (et non les documents) par une

quantité de fluide.

Le Chapitre 6 propose un modèle fluide multiclasses pour l’analyse de systèmes

de partage de fichiers comme BitTorrent. Notre mod̀le est une extension complexe du

modèle de [QS04], car l’aspect multiclasse rend les équations d’évolution non linéaires

et pouvant admettre plusieurs solutions stationnaires. En raison de la complexité de ces

modèles nous avons considéré un cas pessimiste et réaliste dans lequel les utilisateurs

quittent immédiatement le système après avoir terminé leur téléchargement, au lieu

de rester connectés et de participer aux ressources du système. Nous avons utilisé ce

modèle pour résoudre de manière statique deux problèmes pratiques: la différenciation

de service et la diversité de bande passante, avec deux classes d’utilisateurs. Dans le

premier problème nous avons montré l’existence d’un unique équilibre stable et donné

un formule close pour le temps de téléchargement des deux classes. Notre modèle

permet ainsi de calculer simplement la stratégie d’allocation de bande passante qui

réalise un ratio prédéfini de qualité de service entre les deux classes. De plus nous

avons quantifé l’impact de l’hypothèse pessimiste et montré que dans des cas réalistes

l’altruisme des utilisateurs avait peu d’impact sur les performances du système. Pour

le problème de diversité de bande passante nous avons montré que l’équilibre peut

parfois dépendre des conditions initiales du système. Nous avons donné les formules

closes des valeurs possibles de ces équilibres et nous avons montré comment choisir le

paramètre d’allocation de bande passante de manière à minimiser le temps moyen de

téléchargement le plus long entre les deux classes.

Plusieurs extensions possible de nos travaux ont été soulignées dans les conclusions

des Chapitres 3 à 6. Nous proposons maintenant des directions de recherche plus

générales.

Nos travaux se sont concentrés sur deux types de CDS: les systèmes de caches

Web et les réseaux de partage de fichiers P2P. Il est donc naturel de se demander

si des modèles macrocopiques simples comme ceux utiliés dans cette thèse pourrait

permettre de modéliser le troisième type de CDS, à savoir les réseaux de distribution

de contenu (CDN). À la différence des systèmes de cache étudiés dans la première partie

de la thèse, les CDN s’appuient sur la duplication des documents en des emplacements

stratégiques à l’échelle mondiale, ce qui rend le modèle du Chapitre 2 inadapté pour

154 App. H Présentation des Travaux de Thèse

ce type de systèmes. Le modèle de la partie II ne peut pas non plus être appliqué tel

quel car les CDN différencient les clients des serveurs (contrairement au principe P2P),

ce qui impose de tenir compte des dynamiques des serveurs. Un modèle spécifique

devrait donc être défini. La complexité intrinsèque des CDN plaide en faveur de moèles

macroscopiques car des modèles détaillés deviendraient vite trop complexe à calculer.

Or, les CDN mettent en œuvre de nouveaux facteurs de complexité et de nou-

veaux critères de performance. Notamment, la redirection des requêtes vers les serveurs

de contenu dépend de plusieurs critères comme l’état du réseau, la charge des serveurs,

la localisation topologique et le contenu du serveur. Plusieurs études de mesures et de

simulation de CDN se sont intéressées au taux de hit [SGD+02] et au temps de con-

nexion TCP [JCDK01, KWZ01]. Cependant, dans [KWZ01] les auteurs montrent que,

bien que les CDN réduisent considérablement le temps de réponse par comparaison aux

serveurs d’origine, les délais supplémentaires de redirection DNS qu’ils induisent sont

significatifs et peuvent provoquer d’importantes dégradations de performance. Ces

coûts DNS sont induits par différents facteurs et sont inhérents aux systèmes dis-

tribués. Premièrement les objects inclus dans une seule page HTML peuvent être

stockés à différents endroits. En effet, il arrive souvent que l’un des objets inclus soit

dynamique (et donc incachable) tandis que tous les autres objets sont statiques et peu-

vent être stockés dans le système [DMP+02]. Cela provoque donc des requêtres DNS

additionnelles et risque de surcharger les serveurs DNS. Remarquons que ce goulot

d’étranglement DNs a aussi été observé lors du déploiement de Squirrel [Rod04]. Une

autre cause de délai DNS est la fonction de répartition de charge. Notamment, Aka-

mai utilise des serveurs DNS pour rediriger des requêtes lorsque la charge d’un serveur

donné dépasse un seuil [DMP+02]. Puisque ces coûts DNS peuvent réellement affecter

la performance des CDN, un problème intéressant serait d’incorporer ces coûts DNS

dans un modèle spécifique des CDN.

D’un point de vue plus général nous pensons que notre méthode peut être ap-

pliquée à d’autres systèmes coopératifs que les CDS. En particulier, les grilles de calcul

sont un candidat naturel pour ce type d’analyse à grande échelle, car elles impliquent un

grand nombre de machines coopérant et présentent des problèmes de performance qui

peuvent être similaires aux systèmes P2P [LSSH03]. En effet, non seulement les grilles

de calcul impliquent la mise en commun de ressources de calcul, mais elles posent

le problème du partage à grande échelle de différentes ressources comme l’espace de

stockage et des ensembles de fichiers.

List of Abbreviations

BT BitTorrent

CARP Cache Array Routing Protocol

CDS Content Distribution System

CDN Content Distribution Network

DHT Distributed Hash Table

DNS Domain Name Server

FIFO First In First Out

HTTP Hypertext Transfer Protocol

ICP Internet Caching Protocol

IP Internet Protocol

ISP Internet Service Provider

LAN Local Area Network

LFU Least Frequently Used

LRU Least Recently Used

MAESTRO Models for Performance Analysis and Control of Networks

PAC Proxy Automatic Configuration

P2P Peer-to-Peer

QoS Quality of Service

TCP Transmission Control Protocol

TTL Time-to-Live

UDP User Datagram Protocol

URL Uniform Resource Locator

WWW World Wide Web

155

Bibliography

[AAB00] E. Altman, K. Avrachenkov, and C. Barakat. A stochastic model of

TCP/IP with stationary random losses. In Proceedings of ACM SIG-

COMM, Stockholm, Sweden, August 2000.

[AG04] N. Ben Azzouna and F. Guillemin. Impact of peer-to-peer applications on

wide area network traffic: an experimental approach. In Proceedings of

Globecom 2004, Dallas, Texas, November 29 - December 3 2004.

[Aka] Akamai. http://www.akamai.com/.

[AMS82] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of data-handling

systems with multiple sources. Bell Systems Technical Journal, 61:1871–

1894, 1982.

[BB94] F. Baccelli and P. Brémaud. Elements of Queueing Theory: Palm-

Martingale Calculus and Stochastic Recurrences. Springer Verlag, 1994.

[BBLO00] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statisti-

cal service assurances for traffic scheduling algorithms. IEEE Journal on

Selected Areas in Communications, Special Issue on Internet QoS, 18:2651–

2664, December 2000.

[BCF+99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

Zipf-like distributions: Evidence and implications. In Proceedings of IEEE

INFOCOM ’99, pages 126–134, New York, 1999.

[Bil98] J.A. Bilmes. A gentle tutorial of the em algorithm and its application

to parameter estimation for gaussian mixture and hidden markov models.

Technical Report TR-97-021, UC Berkeley, April 1998.

157

158 Bibliography

[BRF04] E. Biersack, P. Rodriguez, and P. Felber. Performance analysis of peer-to-

peer networks for file distribution. In Proceedings of the 5th International

Workshop on Quality of future Internet Services (QofIS’04), 2004.

[BSV03] R. Bhagwan, S. Savage, and G.M. Voelker. Understanding availability. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS), pages 256–267, Berkeley, California, February 2003.

[Ç75] E. Çinlar. Introduction to Stochastic Processes. Prentice Hall, 1975.

[CDN+96] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M F. Schwartz, and J. Wor-

rell. A hierarchical internet object cache. In Proceedings of the USENIX

Annual Technical Conference, January 1996.

[CI97] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In

Proceedings of USENIX Symposium on Internet Technologies and Systems,

pages 193–206, Monterey, California, 1997.

[CK01a] E. Cohen and H. Kaplan. The age penalty and its effect on cache perfor-

mance. In Proceedings of the 3rd USENIX Symposium on Internet Tech-

nologies and Systems (USITS), pages 73–84, San Francisco, California,

2001.

[CK01b] E. Cohen and H. Kaplan. Refreshment policies for web content caches. In

Proceedings of IEEE INFOCOM’01, Anchorage, Alaska, April 2001.

[CN04] F. Clévenot and P. Nain. A simple model for the analysis of the Squirrel

peer-to-peer caching system. In Proceedings of IEEE INFOCOM 2004,

Hong Kong, March 2004.

[CN05] F. Clévenot and P. Nain. Stochastic fluid model for P2P caching evalua-

tion. In Proceedings of the 10th International Workshop on Web Content

Caching and Distribution (WCW’05), Sophia Antipolis, September 2005.

To appear.

[CNR05a] F. Clévenot, P. Nain, and K. W. Ross. Multiclass p2p networks: Static re-

source allocation for service differentiation and bandwidth diversity. In Pro-

ceedings of the 24th International Symposium on Computer Performance,

Modeling, Measurements and Evaluation (Performance 2005), Juan-Les-

Pins, October 2005. To appear.

Bibliography 159

[CNR05b] F. Clévenot, P. Nain, and K. W. Ross. Stochastic fluid models for cache

clusters. Performance Evaluation, 59(1):1–18, January 2005.

[Coh] B. Cohen. BitTorrent. http://www.bitconjurer.org/BitTorrent/.

[Dav99] B. Davison. A survey of proxy cache evaluation techniques. In Proceedings

of the 4th International Web Caching Workshop, San Diego, California,

March 31 - April 2 1999.

[DFKM97] F. Douglis, A. Feldmann, B. Krishnamurthy, and J.C. Mogul. Rate of

change and other metrics: a live study of the world wide web. In Proceed-

ings of the USENIX Symposium on Internet Technologies and Systems,

Monterey, California, December 1997.

[DMF97] B. Duska, D. Marwood, and M. Feeley. The measured access characteris-

tics of World Wide Web client proxy caches. In Proceedings of USENIX

Symposium on Internet Technologies and Systems, pages 23–35, Monterey,

California, 1997.

[DMP+02] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl.

Globally distributed content delivery. IEEE Internet Computing, 6(5):50–

58, September 2002.

[Edo] Edonkey. http://www.edonkey.com/.

[EM92] A. Elwalid and D. Mitra. Fluid models for the analysis and design of

statistical multiplexing with loss priorities on multiple classes of bursty

traffic. In Proceedings of IEEE INFOCOM’92, pages 415–425, Florence,

Italy, 1992.

[EM93] A. Elwalid and D. Mitra. Effective bandwidth of general markovian traffic

sources and admission control of high speed networks. IEEE/ACM Trans-

actions on Networking, 1:329–343, June 1993.

[FB04] P. Felber and E.W. Biersack. Self-scaling networks for content distribu-

tion. In Proceedings of the International Workshop on Self-* Properties in

Complex Information Systems (Self-*), Bertinoro, Italy, May-June 2004.

[FCAB98] L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary cache: A scal-

able wide-area web cache sharing protocol. In Proceedings of the ACM

SIGCOMM ’98 conference on Applications, Technologies, Architectures,

160 Bibliography

and Protocols for Computer Communication, pages 254–265, Vancouver,

British Columbia, Canada, September 1998.

[FCD+99] A. Feldmann, R. Cáceres, F. Douglis, G. Glass, and M. Rabinovich. Per-

formance of web proxy caching in heterogeneous bandwidth environments.

In Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol – – HTTP/1.1. RFC 2616,

June 1999.

[GB97] S. Gribble and E. Brewer. System design issues for internet middleware

services: Deductions from a large client trace. In Proceedings of USENIX

Symposium on Internet Technologies and Systems, pages 207–218, Mon-

terey, California, 1997.

[GFJ+03] Z. Ge, D. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley. Modeling

peer-peer file sharing systems. In Proceedings of IEEE INFOCOM 2003,

San Francisco, California, April 2003.

[GG92] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Com-

pression. Kluwer Academic Publishers, 1992.

[Gnu] Gnutella. http://www.gnutella.com/.

[GRC97] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle: An ap-

proach to building large internet caches. In Proceedings of the 6th Work-

shop on Hot Topics in Operating Systems (HotOS-VI), page 93, Cape Cod,

Massachusetts, May 1997. http://www.cs.duke.edu/ari/cisi/crisp/crisp-

recycle/.

[Gro98] The Relais Group. Relais: cooperative caches for the world-wide web.

http://www-sor.inria.fr/projects/relais/, 1998.

[GS92] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford

University Press, 1992.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, 1985.

[IRD02] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized, peer-to-

peer Web cache. In Proceedings of of ACM Symposium on Principles of

Bibliography 161

Distributed Computing (PODC 2002), pages 213–222, Monterey, Califor-

nia, 2002.

[IUKB+04] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and

L. Garcés-Erice. Dissecting bittorrent: Five months in a torrent’s lifetime.

In Proceedings of Passive and Active Measurement Workshop (PAM2004),

Antibes, France, April 2004.

[JCDK01] K.L. Johnson, J.F. Carr, M.S. Day, and M.F. Kaashoek. The measured

performance of content distribution networks. Computer Communication,

24(2):202–206, February 2001.

[Kaz] Kazaa. http://www.kazaa.com.

[KBB+04] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. Is

p2p dying or just hiding? In Proceedings of Globecom 2004, Dallas, Texas,

November 29 - December 3 2004.

[Kel79] F. P. Kelly. Reversibility and Stochastic Networks. Wiley, Chichester, 1979.

[KG97] K. Kong and D. Ghosal. Pseudo-serving: A user-responsible paradigm for

internet access. In Proceedings of of the Sixth International World Wide

Web Conference, pages 546–557, Santa Clara, California, April 1997.

[KG99] K. Kong and D. Ghosal. Mitigating server-side congestion in the in-

ternet through pseudoserving. IEEE/ACM Transactions on Networking,

7(4):530–544, August 1999.

[Kha92] Hassan K. Khalil. Nonlinear systems. MacMillan, 1992.

[Kle75] L. Kleinrock. Queueing systems, volume 1. J. Wiley and sons, 1975.

[KLM97] T. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the bounds

of web latency reduction from caching and prefetching. In Proceedings of

USENIX Symposium on Internet Technologies and Systems, pages 13–22,

Monterey, California, 1997.

[KM01a] K. Kumaran and M. Mandjes. Multiplexing regulated traffic streams: de-

sign and performance. In Proceedings of IEEE INFOCOM 2001, pages

527–536, Anchorage, Alaska, April 2001.

162 Bibliography

[KM01b] K. Kumaran and D. Mitra. Performance and fluid simulations of a novel

shared buffer management system. ACM Transactions on Modeling and

Computer Simulation, 11(1):43–75, January 2001.

[KSB+99] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,

K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with

consistent hashing. In 8th International WWW Conference, Toronto, May

1999.

[KSCK96] G. Kesidis, A. Singh, D. Cheung, and W.W. Kwok. Feasibility of fluid

event-driven simulation for atm networks. In Proceedings of IEEE GLOBE-

COM’96, London,UK, November 1996.

[KWZ01] B. Krishnamurthy, C.E. Wills, and Y. Zhang. On the use and performance

of content distribution networks. In Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement, pages 169–182, San Francisco, Cali-

fornia, USA, November 1-2 2001.

[LFG+01] B. Liu, D. Figueiredo, Y. Guo, J. Kurose, and D. Towsley. A study of

networks simulation efficiency: Fluid simulation vs. packet-level simulation.

In Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[LGB03] P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-to-peer web

caching system. In Proceedings of the 1st ACM Workshop on Survivable

and Self-Regenerative Systems, Fairfax, Virginia, October 2003.

[Lib03] Daniel Liberzon. Switching in systems and control. Birkhäuser, 2003.

[LMG95] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host

reliability. Technical Report UCSC-CRL-95-16, University of California,

Santa Cruz, 1995.

[LNB04] Francesca Lo Piccolo, Giovanni Neglia, and Giuseppe Bianchi. The effect

of heterogeneous link capacities in bittorrent-like file sharing systems. In

Proceedings of of the Int. Workshop on Hot Topics in Peer-to-Peer Systems

(HOT-P2P 2004), pages 40–47, Volendam, The Nederlands, Oct. 2004. In

conjunction with MASCOTS 2004.

[LSSH03] J. Ledlie, J. Shneidman, M. Seltzer, and J. Huth. Scooped, again. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS 2003), Berkeley, California, February 2003.

Bibliography 163

[LZTK97] F. Lo Presti, Z. Zhang, D. Towsley, and J. Kurose. Source time scale and

optimal buffer/bandwidth trade-off for regulated traffic in an ATM node.

In Proceedings of IEEE INFOCOM ’97, pages 676–683, Kobe, Japan, 1997.

[Moh01] C. Mohan. Caching technologies for web applications. Tutorial at the 27th

International Conference on Very Large Data Bases (VLDB’01), September

2001. Rome, Italy.

[Mor97] A. S. Morse, editor. Control Using Logic-Based Switching. London:

Springer-Verlag, 1997.

[MV05] L. Massoulié and M. Vojnović. Coupon replication systems. In Proceedings

of ACM Sigmetrics, Banff, Alberta, Canada, June 2005.

[PGES04] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. A measurement study of

the bittorrent peer-to-peer file-sharing system. Technical Report 2004-003,

Delft University of Technology Parallel and Distributed Systems Report

Series, April 2004.

[PH97] D. Povey and J. Harrison. A distributed internet cache. In Proceedings

of the 20th Australian Computer Science Conference, Sydney, Australia,

February 1997.

[QS04] D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-

like peer-to-peer networks. In Proceedings of ACM Sigcomm, Portland,

OR, Aug 2004.

[Qur04] A. Qureshi. Exploring proximity based peer selection in a bittorrent-

like protocol. MIT 6.824 Student Project Report, May 2004.

http://pdos.csail.mit.edu/6.824-2004/reports/asfandyar.pdf.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable distributed object loca-

tion and routing for large-scale peer-to-peer systems. In Proceedings of

Int. Conf. on Distributed Systems Platforms (Middleware), Heideberger,

Germany, November 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content-addressable network. In Proceedings of ACM SIGCOMM 2001, San

Diego, California, August 2001.

[Rod04] P. Rodriguez. Personal communication, May 2004.

164 Bibliography

[Ros97] K. W. Ross. Hash-routing for collections of shared Web caches. IEEE

Network Magazine, 11:37–45, Nov.-Dec 1997.

[RRR02] M. Reisslein, K. W. Ross, and S. Rajagopal. A framework for guarantee-

ing statistical QoS. IEEE/ACM Transactions on Networking, 10(1):27–42,

February 2002.

[RS02] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison-

Wesley, 2002.

[RSB01] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of web caching archi-

tectures: Hierarchical and distributed caching. IEEE ACM Transactions

on Networking, 9(4):404–418, august 2001.

[RW98] A. Rousskov and D. Wessels. Cache digests. Computer Networks and ISDN

Systems, 30(22-23):2155 – 2168, November 1998. Selected papers of the 3rd

international WWW caching workshop.

[SGD+02] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy.

An analysis of internet content delivery systems. In Proceedings of the 5th

Symposium on Operating Systems Design and Implementation (OSDI ’02),

Boston, MA, December 9-11 2002.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of

peer-to-peer file sharing systems. In Proceedings of Multimedia Computing

and Networking 2002 (MMCN’02), San Jose, California, January 2002.

[SGG03] S. Saroiu, P. K. Gummadi, , and S. D. Gribble. Measuring and analyzing

the characteristics of napster and gnutella hosts. ACM Multimedia Systems

Journal, 9(2):170–184, August 2003.

[SGP04] K.A. Skevik, V. Goebel, and T. Plagemann. Analysis of bittorrent and its

use for the design of a p2p based streaming protocol for a hybrid CDN.

Technical report, Delft University of Technology Parallel and Distributed

Systems Report Series, June 2004.

[Sly] Slyck. http://www.slyck.com/stats.php.

[SMB02] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes to

address flash crowds. In Proceedings of of the 1st International Workshop

on Peer-to-Peer Systems (IPTPS 2002), Cambridge, MA, USA, March

2002.

Bibliography 165

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of ACM SIGCOMM 2001, pages 149–160, San Diego, Califor-

nia, August 2001.

[TDVK99] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considerations for

distributed caching on the internet. In 19th IEEE International Conference

on Distributed Computing Systems, pages 273–284, Austin, Texas, May

1999.

[VR97] V. Valloppillil and K. W. Ross. Cache array routing protocol (CARP).

Internet Draft, June 1997.

[VR02] D. Villela and D. Rubenstein. A queuing analysis of server sharing col-

lectives for content distribution. Technical Report EE200412-1, Columbia

University, April 2002.

[Wan99] J. Wang. A survey of web caching schemes for the internet. ACM Computer

Communication Review, 29(5):36–46, October 1999.

[WC97a] Z. Wang and J. Crowcroft. Cachemesh: A distributed cache system for

world wide web. In NLANR Web Cache Workshop, Boulder, Colorado,

June 1997. Extended Abstract.

[WC97b] D. Wessels and K. Claffy. Application of internet cache protocol (icp),

version 2. RFC 2187, September 1997.

[WC97c] D. Wessels and K. Claffy. Internet cache protocol (icp), version 2. RFC

2186, September 1997.

[Wes98] D. Wessels. Squid internet object cache. http://www.squid-cache.org/,

1998.

[WNO+02] X. Wang, W. Ng, B. Ooi, K.-L. Tan, and A. Zhou. Buddyweb: A p2p-based

collaborative web caching system. In Revised Papers from the NETWORK-

ING 2002 Workshops on Web Engineering and Peer-to-Peer Computing,

pages 247–251, Pisa, Italy, May 2002.

[WVS+99] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy.

On the scale and performance of cooperative Web proxy caching. In 17th

ACM Symposium on Operating Systems Principles (SOSP ’99), pages 16–

31, Kiawah Island, South Carolina, 1999.

166 Bibliography

[XZX02] L. Xiao, X. Zhang, and Z. Xu. On reliable and scalable peer-to-peer

web document sharing. In Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS’02), Fort Lauderdale, Florida,

April 2002.

[YD04] X. Yang and G. De Veciana. Service capacity of peer-to-peer networks. In

Proceedings of IEEE INFOCOM 2004, Hong Kong, March 2004.

[ZA03] L. Zou and M. Ammar. A file-centric model for peer-to-peer file sharing

systems. In Proceedings of ICNP 03, Atlanta, Georgia, USA, November

2003.

[ZKJ00] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for

fault-tolerant wide-area location and routing. Technical Report UCB/CSD-

01-1141, UCB, April 2000.

