R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, vol.75, 1988.
DOI : 10.1063/1.2916250

J. Steven and . Altschuler, A geometric heat flow for one-forms on three-dimensional manifolds, Illinois J. Math, vol.39, issue.1, pp.98-118, 1995.

I. Vladimir, B. A. Arnold, and . Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol.125, 1998.

D. Asimov and H. Gluck, Morse-smale fields of geodesics, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ, pp.1-17, 1979.
DOI : 10.1016/0022-4049(78)90046-4

D. Bennequin, Entrelacements etéquationset´etéquations de Pfaff, Third Schnepfenried geometry conference, pp.87-161, 1982.

E. Bishop, Differentiable manifolds in complex Euclidean space. Duke Math, J, vol.32, pp.1-21, 1965.

R. Brooks, Some Riemannian and dynamical invariants of foliations, Differential geometry, pp.56-72, 1981.

R. Brooks, The Spectral Geometry of Foliations, American Journal of Mathematics, vol.106, issue.4, pp.1001-1012, 1984.
DOI : 10.2307/2374330

Y. Ghys, Relations d'´ equivalence moyennables sur les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math, vol.300, pp.677-680, 1985.

M. Daniel and . Cass, Minimal leaves in foliations, Trans. Amer. Math. Soc, vol.287, issue.1, pp.201-213, 1985.

J. Cheeger, A Lower Bound for the Smallest Eigenvalue of the Laplacian, Problems in analysis, pp.195-199, 1969.
DOI : 10.1515/9781400869312-013

A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems, vol.199, issue.04, pp.431-450, 1981.
DOI : 10.2307/1968693

R. Georges-de, Variétés différentiables. Formes, courants, formes harmoniquesTroisì emé edition revue et augmentée, Publications de l, 1222.

T. Dombre, U. Frisch, J. Greene, M. Hénon, A. Mehr et al., Chaotic streamlines in the ABC flows, Journal of Fluid Mechanics, vol.23, issue.-1, pp.353-391, 1986.
DOI : 10.1063/1.525721

N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, 1988.

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Annales de l???institut Fourier, vol.42, issue.1-2, pp.165-192, 1992.
DOI : 10.5802/aif.1288

Y. Eliashberg and W. P. Thurston, Confoliations, volume 13 of University Lecture Series, 1998.

B. A. David and . Epstein, Periodic flows on three-manifolds, Ann. of Math, vol.95, issue.21, pp.66-82, 1972.

B. A. David, E. Epstein, and . Vogt, A counterexample to the periodic orbit conjecture in codimension 3, Ann. of Math, vol.108, issue.23, pp.539-552, 1978.

J. Etnyre and R. Ghrist, Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture, Nonlinearity, vol.13, issue.2, pp.441-458, 2000.
DOI : 10.1088/0951-7715/13/2/306

J. Etnyre and R. Ghrist, Contact topology and hydrodynamics. II. Solid tori. Ergodic Theory Dynam, Systems, vol.22, issue.3, pp.819-833, 2002.

H. Federer, Geometric measure theory Die Grundlehren der mathematischen Wissenschaften, 1969.

E. Følner, On groups with full Banach mean value, MATHEMATICA SCANDINAVICA, vol.3, pp.243-254, 1955.
DOI : 10.7146/math.scand.a-10442

L. Garnett, Foliations, the ergodic theorem and Brownian motion, Journal of Functional Analysis, vol.51, issue.3, pp.285-311, 1983.
DOI : 10.1016/0022-1236(83)90015-0

E. Ghys, Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg) Astérisque, Séminaire Bourbaki, vol.5, issue.227 785, pp.283-30794, 1993.

L. Viktor and . Ginzburg, An embedding S 2n?1 ? R 2n , 2n ? 1 ? 7, whose Hamiltonian flow has no periodic trajectories, Internat. Math. Res. Notices, issue.2, pp.83-97, 1995.

L. Viktor and . Ginzburg, A smooth counterexample to the Hamiltonian Seifert conjecture in R 6, Internat. Math. Res. Notices, issue.13, pp.641-650, 1997.

L. Viktor, . Ginzburg, and Z. Bas¸akbas¸ak, A C 2 -smooth counterexample to the Hamiltonian Seifert conjecture in R 4, Ann. of Math, vol.158, issue.23, pp.953-976, 2003.

E. Giroux, Convexit?? en topologie de contact, Commentarii Mathematici Helvetici, vol.66, issue.1, pp.637-677, 1991.
DOI : 10.1007/BF02566670

H. Gluck, Dynamical behavior of geodesic fields, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ, pp.190-215, 1979.
DOI : 10.1016/0040-9383(70)90037-6

E. Sue, J. F. Goodman, and . Plante, Holonomy and averaging in foliated sets, J. Differential Geom, vol.14, issue.3, pp.401-407, 1979.

H. Grauert, On Levi's Problem and the Imbedding of Real-Analytic Manifolds, The Annals of Mathematics, vol.68, issue.2, pp.460-472, 1958.
DOI : 10.2307/1970257

J. W. Gray, Some Global Properties of Contact Structures, The Annals of Mathematics, vol.69, issue.2, pp.421-450, 1959.
DOI : 10.2307/1970192

M. Greenberg, Lectures on algebrain geometry, Northeastern University. W. A. Benjamin Inc, 1971.

P. Frederick and . Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, issue.16, 1969.

J. Harrison, Notes on Basic Topology of 3-Manifolds, Topology, vol.2739, issue.3, pp.249-278, 1988.

R. Michel and . Herman, Examples of compact hypersurfaces in R 2p , 2p ? 6, with no periodic orbits In Hamiltonian systems with three or more degrees of freedom (S'Agaró, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol.533, p.126, 1995.

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, vol.33, issue.2, pp.515-563, 1993.
DOI : 10.1007/BF01232679

H. Hofer, Holomorphic curves and dynamics in dimension three, Symplectic geometry and topology (Park City, pp.35-101, 1997.

H. Hofer, K. Wysocki, and E. Zehnder, The Dynamics on Three-Dimensional Strictly Convex Energy Surfaces, The Annals of Mathematics, vol.148, issue.1, pp.197-289, 1998.
DOI : 10.2307/120994

H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Annals of Mathematics, vol.157, issue.1, pp.125-255, 2003.
DOI : 10.4007/annals.2003.157.125

H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics Birkhäuser Advanced Texts: Basler LehrbücherLehrb¨Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], 1994.
DOI : 10.1007/978-3-0348-9217-9_21

M. Hutchings and C. H. Taubes, The Weinstein conjecture for stable Hamiltonian structures, Geometry & Topology, vol.13, issue.2, p.102, 2008.
DOI : 10.2140/gt.2009.13.901

A. Vadim and . Kaimanovich, Brownian motion on foliations: entropy, invariant measures, mixing . Functional Anal, Appl, vol.22, issue.4, pp.326-328, 1988.

A. Vadim and . Kaimanovich, Amenability, hyperfiniteness, and isoperimetric inequalities, C. R. Acad. Sci. Paris Sér. I Math, vol.325, issue.9, pp.999-1004, 1997.

A. Vadim and . Kaimanovich, Equivalence relations with amenable leaves need not be amenable In Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser, vol.202, issue.2, pp.151-166, 2001.

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications With a supplementary chapter, 1995.

G. Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Commentarii Mathematici Helvetici, vol.71, issue.1, pp.70-97, 1996.
DOI : 10.1007/BF02566410

K. Kuperberg, A Smooth Counterexample to the Seifert Conjecture, The Annals of Mathematics, vol.140, issue.3, pp.723-732, 1994.
DOI : 10.2307/2118623

F. Laudenbach, Reì evement linéaire des cobords, Bull. Soc. Math. France, vol.111, issue.2, pp.147-150, 1983.
DOI : 10.24033/bsmf.1982

URL : http://archive.numdam.org/article/BSMF_1983__111__147_0.pdf

S. Makar-limanov, Tight contact structures on solid tori, Transactions of the American Mathematical Society, vol.350, issue.03, pp.1013-1044, 1998.
DOI : 10.1090/S0002-9947-98-01822-4

R. Mã-né, Introduçãò a teoria ergódica, Instituto de Matemática Pura e Aplicada (IMPA), 1983.

J. Martinet, Formes de Contact sur les Vari??t??s de Dimension 3, Proceedings of Liverpool Singularities Symposium, II, pp.142-163, 1969.
DOI : 10.1007/BFb0068901

D. Mcduff, The local behaviour of holomorphic curves in almost complex 4-manifolds, Journal of Differential Geometry, vol.34, issue.1, pp.143-164, 1991.
DOI : 10.4310/jdg/1214446994

F. Morgan, Geometric measure theory A beginner's guide, 1988.

. Moser, On the volume elements on a manifold, Transactions of the American Mathematical Society, vol.120, issue.2, pp.286-294, 1965.
DOI : 10.1090/S0002-9947-1965-0182927-5

P. Gabriel and . Paternain, Geodesic flows, Progress in Mathematics Birkhäuser Boston Inc, vol.180, 1999.

J. F. Plante, Foliations With Measure Preserving Holonomy, The Annals of Mathematics, vol.102, issue.2, pp.327-361, 1975.
DOI : 10.2307/1971034

H. Paul and . Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math, vol.31, issue.2, pp.157-184, 1978.

R. and C. Robinson, A global approximation theorem for Hamiltonian systems, Global Analysis (Proc. Sympos, pp.233-243, 1968.
DOI : 10.1090/pspum/014/0268915

M. Samuélidès, Tout feuilletage ?? croissance polynomiale est hyperfini, Journal of Functional Analysis, vol.34, issue.3, pp.363-369, 1979.
DOI : 10.1016/0022-1236(79)90082-X

L. Schwartz, Théorie des distributions Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvellé edition, entiérement corrigée, refondue et augmentée, 1966.

A. Paul and . Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math, vol.100, issue.2, pp.386-400, 1974.

A. Paul and . Schweitzer, Codimension one foliations without compact leaves, Comment. Math. Helv, vol.70, issue.2, pp.171-209, 1995.

H. Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer, pp.287-302, 1950.

C. Series, Foliations of polynomial growth are hyperfinite, Israel Journal of Mathematics, vol.15, issue.3, pp.245-258, 1979.
DOI : 10.1007/BF02760886

J. Sikorav, Growth of a primitive of a differential form, Bulletin de la Société mathématique de France, vol.129, issue.2, pp.159-168, 2001.
DOI : 10.24033/bsmf.2390

D. Sullivan, A counterexample to the periodic orbit conjecture, Publications math??matiques de l'IH??S, vol.47, issue.1, pp.5-14, 1976.
DOI : 10.1007/BF02684317

D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Mathematicae, vol.66, issue.1, pp.225-255, 1976.
DOI : 10.1007/BF01390011

D. Sullivan, A foliation of geodesics is characterized by having no ???tangent homologies???, Journal of Pure and Applied Algebra, vol.13, issue.1, pp.101-104, 1978.
DOI : 10.1016/0022-4049(78)90046-4

C. H. Taubes, The Seiberg???Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field, Geometry & Topology, vol.13, issue.3, 2007.
DOI : 10.2140/gt.2009.13.1337

D. Tischler, On fibering certain foliated manifolds overS1, Topology, vol.9, issue.2, pp.153-154, 1970.
DOI : 10.1016/0040-9383(70)90037-6

C. Viterbo, A proof of Weinstein???s conjecture in ??? 2n, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.4, issue.4, pp.337-356, 1987.
DOI : 10.1016/S0294-1449(16)30363-8

A. W. Wadsley, Geodesic foliations by circles, Journal of Differential Geometry, vol.10, issue.4, pp.541-549, 1975.
DOI : 10.4310/jdg/1214433160

URL : http://projecteuclid.org/download/pdf_1/euclid.jdg/1214433160

A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, Journal of Differential Equations, vol.33, issue.3, pp.353-358, 1979.
DOI : 10.1016/0022-0396(79)90070-6

H. Whitney, Complex analytic varieties, 1972.

F. W. Wilson and J. , On the Minimal Sets of Non-Singular Vector Fields, The Annals of Mathematics, vol.84, issue.3, pp.529-536, 1966.
DOI : 10.2307/1970458

Y. Shing-tung, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. ´ Ecole Norm. Sup, vol.8, issue.44, pp.487-507, 1975.

R. J. Zimmer, Curvature of Leaves in Amenable Foliations, American Journal of Mathematics, vol.105, issue.4, pp.1011-1022, 1983.
DOI : 10.2307/2374302

R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol.81, 1984.
DOI : 10.1007/978-1-4684-9488-4