J. A. Stubbe, Radicals with a controlled lifestyle, Chemical Communications, issue.20, pp.2511-2513, 2003.
DOI : 10.1039/b307617m

P. A. Frey, Radical Mechanisms of Enzymatic Catalysis, Annual Review of Biochemistry, vol.70, issue.1, pp.121-148, 2001.
DOI : 10.1146/annurev.biochem.70.1.121

J. Stubbe and W. A. Van-der-donk, Protein Radicals in Enzyme Catalysis, Chemical Reviews, vol.98, issue.2, pp.705-762, 1998.
DOI : 10.1021/cr9400875

A. Ehrenberg and P. Reichard, Electron Spin Resonance of the Iron-containing Protein B2 from Ribonucleotide Reductase, J. Biol. Chem, vol.247, pp.3485-3488, 1972.

B. M. Sjöberg and P. Reichard, Nature of the free radical in ribonucleotide reductase from Escherichia coli, J. Biol. Chem, vol.252, pp.536-541, 1977.

B. M. Sjöberg, P. Reichard, A. Graslund, and A. Ehrenberg, The tyrosine free radical in ribonucleotide reductase from Escherichia coli, J. Biol. Chem, vol.253, pp.6863-6865, 1978.

J. Stubbe, Ribonucleotide Reductases, Adv. Enzymol. Relat. Areas Mol. Biol, vol.262, pp.349-419, 1990.
DOI : 10.1002/9780470123096.ch6

M. Fontecave, P. Nordlund, H. Eklund, and P. Reichard, The Redox Centers of Ribonucleotide Reductase of Escherichia coli, Adv. Enzymol. Relat. Areas Mol. Biol, vol.263, pp.147-183, 1992.
DOI : 10.1002/9780470123119.ch4

J. Stubbe, Di-iron-tyrosyl radical ribonucleotide reductases, Current Opinion in Chemical Biology, vol.7, issue.2, pp.183-188, 2003.
DOI : 10.1016/S1367-5931(03)00025-5

M. R. Seyedsayamdost and J. Stubbe, Ribonucleotide Reductase, Journal of the American Chemical Society, vol.128, issue.8, pp.2522-2523, 2006.
DOI : 10.1021/ja057776q

G. T. Babcock, B. A. Barry, R. J. Debus, C. W. Hoganson, M. Atamian et al., Water oxidation in photosystem II: from radical chemistry to multielectron chemistry, Biochemistry, vol.28, issue.25, pp.9557-9565, 1989.
DOI : 10.1021/bi00451a001

D. F. Ghanotakis and C. F. Yocum, Photosystem II and the Oxygen-Evolving Complex, Annual Review of Plant Physiology and Plant Molecular Biology, vol.41, issue.1, pp.255-276, 1990.
DOI : 10.1146/annurev.pp.41.060190.001351

G. W. Brudvi, W. F. Beck, and J. C. De-paula, Mechanism of Photosynthetic Water Oxidation, Annual Review of Biophysics and Biophysical Chemistry, vol.18, issue.1, pp.25-46, 1989.
DOI : 10.1146/annurev.bb.18.060189.000325

B. A. Barry, M. K. Deeb, P. O. Sandusky, and G. T. Babcock, Tyrosine radicals in photosystem II and related model compounds. Characterization by isotopic labeling and EPR spectroscopy, J. Biol. Chem, vol.265, pp.20139-20143, 1990.

J. H. Nugent, R. J. Ball, and M. C. Evans, Photosynthetic water oxidation: the role of tyrosine radicals, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.217-221, 2004.
DOI : 10.1016/j.bbabio.2003.09.015

A. Zouni, H. Witt, J. Kern, P. Fromme, N. Krauss et al., Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature, vol.409, issue.6821, pp.739-743, 2001.
DOI : 10.1038/35055589

N. Kamiya and J. Shen, Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution, Proceedings of the National Academy of Sciences, vol.100, issue.1, pp.98-103, 2003.
DOI : 10.1073/pnas.0135651100

K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Architecture of the Photosynthetic Oxygen-Evolving Center, Science, vol.303, issue.5665, pp.1831-1838, 2004.
DOI : 10.1126/science.1093087

I. W. Chapitre, A. Rutherford, P. Boussac, and . Faller, Radicaux d'acides aminés formés au sein des protéines Exemples et caractérisations 23 A The stable tyrosyl radical in Photosystem II: why D?, Biochim. Biophys.Acta, vol.1655, pp.222-230, 2004.

G. Avigad, D. Amaral, C. Asensio, and B. L. Horecker, The d-Galactose Oxidase of Polyporus circinatus, J. Biol. Chem, vol.237, pp.2736-2743, 1962.

G. J. Gerfen, B. F. Bellew, R. G. Griffin, D. J. Singel, C. A. Ekberg et al., High-Frequency Electron Paramagnetic Resonance Spectroscopy of the Apogalactose Oxidase Radical, The Journal of Physical Chemistry, vol.100, issue.41, pp.16739-16748, 1996.
DOI : 10.1021/jp960709l

M. M. Whittaker, P. J. Kersten, N. Nakamura, J. Sanders-loehr, E. S. Schweizer et al., Glyoxal Oxidase from Phanerochaete chrysosporium Is a New Radical-Copper Oxidase, Journal of Biological Chemistry, vol.271, issue.2, pp.681-687, 1996.
DOI : 10.1074/jbc.271.2.681

M. M. Whittaker and J. W. Whittaker, The active site of galactose oxidase, J. Biol. Chem, vol.263, pp.6074-6080, 1988.

D. A. Svistunenko, M. T. Wilson, and C. E. Cooper, Tryptophan or tyrosine? On the nature of the amino acid radical formed following hydrogen peroxide treatment of cytochrome c oxidase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.372-380, 2004.
DOI : 10.1016/j.bbabio.2003.06.006

M. S. Rogers and D. M. Dooley, Copper-tyrosyl radical enzymes, Current Opinion in Chemical Biology, vol.7, issue.2, pp.189-196, 2003.
DOI : 10.1016/S1367-5931(03)00024-3

C. J. Chang, M. C. Chang, N. H. Damrauer, and D. G. Nocera, Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.13-28, 2004.
DOI : 10.1016/j.bbabio.2003.08.010

C. A. Rouzer and L. J. Marnett, Mechanism of Free Radical Oxygenation of Polyunsaturated Fatty Acids by Cyclooxygenases, Chemical Reviews, vol.103, issue.6, pp.2239-2304, 2003.
DOI : 10.1021/cr000068x

A. L. Tsai, G. Palmer, R. J. Kulmacz, and H. Prostaglandin, Kinetics of tyrosyl radical formation and of cyclooxygenase catalysis, J. Biol. Chem, vol.267, pp.17753-17759, 1992.

M. Bennati and T. F. Prisner, New developments in high field electron paramagnetic resonance with applications in structural biology, Reports on Progress in Physics, vol.68, issue.2, pp.411-448, 2005.
DOI : 10.1088/0034-4885/68/2/R05

A. Ivancich, P. Dorlet, D. B. Goodin, and S. Un, Peroxidase, Journal of the American Chemical Society, vol.123, issue.21, pp.5050-5058, 2001.
DOI : 10.1021/ja0036514

URL : https://hal.archives-ouvertes.fr/hal-00583750

M. J. Benecky, J. E. Frew, N. Scowen, P. Jones, and B. M. Hoffman, EPR and ENDOR detection of compound I from Micrococcus lysodeikticus catalase, Biochemistry, vol.32, issue.44, pp.11929-11933, 1993.
DOI : 10.1021/bi00095a024

A. Ivancich, H. M. Jouve, and J. Gaillard, EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase, Journal of the American Chemical Society, vol.118, issue.50, pp.12852-12853, 1996.
DOI : 10.1021/ja9628361

A. Ivancich, H. M. Jouve, B. Sartor, and J. Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

X. Zhao, S. Girotto, S. Yu, and R. S. Magliozzo, Evidence for Radical Formation at Tyr-353 in Mycobacterium tuberculosis Catalase-Peroxidase (KatG), Journal of Biological Chemistry, vol.279, issue.9, pp.7606-7612, 2004.
DOI : 10.1074/jbc.M311884200

A. Ivancich, C. Jakopitsch, M. Auer, S. Un, and C. Obinger, PCC6803:?? A Multifrequency EPR Investigation of Wild-Type and Variants on the Environment of the Heme Active Site, Journal of the American Chemical Society, vol.125, issue.46, pp.14093-14102, 2003.
DOI : 10.1021/ja035582+

S. Chouchane, S. Girotto, S. Yu, and R. S. Magliozzo, Identification and Characterization of Tyrosyl Radical Formation in Mycobacterium tuberculosis Catalase-Peroxidase (KatG), Journal of Biological Chemistry, vol.277, issue.45, pp.42633-42638, 2002.
DOI : 10.1074/jbc.M207916200

T. Spolitak, J. H. Dawson, and D. P. Ballou, Reaction of Ferric Cytochrome P450cam with Peracids: KINETIC CHARACTERIZATION OF INTERMEDIATES ON THE REACTION PATHWAY, Journal of Biological Chemistry, vol.280, issue.21, pp.20300-20309, 2005.
DOI : 10.1074/jbc.M501761200

C. J. Krieger, W. Roseboom, S. P. Albracht, and A. M. Spormann, A Stable Organic Free Radical in Anaerobic Benzylsuccinate Synthase of Azoarcus sp. Strain T, Journal of Biological Chemistry, vol.276, issue.16, pp.12924-12927, 2001.
DOI : 10.1074/jbc.M009453200

T. Selmer and P. I. Andrei, Clostridium difficile, Hydroxyphenylacetate decarboxylase from Clostridium difficile, pp.1363-1372, 2001.
DOI : 10.1046/j.1432-1327.2001.02001.x

P. I. Andrei, A. J. Pierik, S. Zauner, L. C. Andrei-selmer, and T. Selmer, Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase, European Journal of Biochemistry, vol.1, issue.11, pp.2225-2230, 2004.
DOI : 10.1111/j.1432-1033.2004.04152.x

S. Kacprzak, R. Reviakine, and M. Kaupp, -Acetylglycine Single-Crystal Environment, The Journal of Physical Chemistry B, vol.111, issue.4, pp.811-819, 2007.
DOI : 10.1021/jp0660379

URL : https://hal.archives-ouvertes.fr/hal-00677361

E. Mulliez, M. Fontecave, J. Gaillard, and P. Reichard, An iron-sulfur center and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli, J. Biol. Chem, vol.268, pp.2296-2299, 1993.

X. Sun, S. Ollagnier, P. P. Schmidt, M. Atta, E. Mulliez et al., The Free Radical of the Anaerobic Ribonucleotide Reductase from Escherichia coli Is at Glycine 681, J. Biol. Chem, vol.271, pp.6827-6831, 1996.

C. Jakopitsch, C. Obinger, S. Un, and A. Ivancich, Identification of Trp106 as the tryptophanyl radical intermediate in Synechocystis PCC6803 catalase-peroxidase by multifrequency Electron Paramagnetic Resonance spectroscopy, Journal of Inorganic Biochemistry, vol.100, issue.5-6, pp.1091-1099, 2006.
DOI : 10.1016/j.jinorgbio.2006.02.009

W. Blodig, A. T. Smith, K. Winterhalter, and . Piontek, Evidence from Spin-Trapping for a Transient Radical on Tryptophan Residue 171 of Lignin Peroxidase, Archives of Biochemistry and Biophysics, vol.370, issue.1, pp.86-92, 1999.
DOI : 10.1006/abbi.1999.1365

M. Sivaraja, D. B. Goodin, M. Smith, and B. M. Hoffman, Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES, Science, vol.245, issue.4919, pp.738-740, 1989.
DOI : 10.1126/science.2549632

C. Aubert, M. H. Vos, P. Mathis, A. P. Eker, and K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, vol.405, pp.586-590, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00837017

M. Byrdin, V. Sartor, A. P. Eker, M. H. Vos, C. Aubert et al., Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an ???inverse??? deuterium isotope effect, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.64-70, 2004.
DOI : 10.1016/j.bbabio.2003.07.001

URL : https://hal.archives-ouvertes.fr/hal-00831846

C. V. Parast, K. K. Wong, J. W. Kozarich, J. Peisach, and R. S. Magliozzo, Electron Paramagnetic Resonance Evidence for a Cysteine-Based Radical in Pyruvate Formate-lyase Inactivated with Mercaptopyruvate, Biochemistry, vol.34, issue.17, pp.5712-5717, 1995.
DOI : 10.1021/bi00017a002

C. V. Parast, K. K. Wong, S. A. Lewisch, J. W. Kozarich, J. Peisach et al., Hydrogen Exchange of the Glycyl Radical of Pyruvate Formate-Lyase Is Catalyzed by Cysteine 419, Biochemistry, vol.34, issue.8, pp.2393-2399, 1995.
DOI : 10.1021/bi00008a001

P. K. Witting and A. G. Mauk, Reaction of Human Myoglobin and H2O2: ELECTRON TRANSFER BETWEEN TYROSINE 103 PHENOXYL RADICAL AND CYSTEINE 110 YIELDS A PROTEIN-THIYL RADICAL, Journal of Biological Chemistry, vol.276, issue.19, pp.16540-16547, 2001.
DOI : 10.1074/jbc.M011707200

V. P. Denysenkov, T. F. Prisner, J. Stubbe, and M. Bennati, High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase, Proceedings of the National Academy of Sciences, vol.103, issue.36, pp.13386-13390, 2006.
DOI : 10.1073/pnas.0605851103

C. Wei, R. J. Kulmacz, and A. Tsai, Comparison of branched-chain and tightly coupled reaction mechanisms for prostaglandin H synthase, Biochemistry, vol.34, issue.26, pp.8499-8512, 1995.
DOI : 10.1021/bi00026a034

B. M. Hoey and J. Butler, Repair of oxidised amino acid units in proteins by antioxidants, Life Chem. Reports, vol.3, pp.80-90, 1985.

M. J. Davies and R. T. , Dean, dans Radical-mediated Protein Oxidation: From Chemistry to Medicine, 1997.

C. L. Hawkins and M. J. Davies, EPR studies on the selectivity of hydroxyl radical attack on amino acids and peptides, Journal of the Chemical Society, Perkin Transactions 2, vol.2, issue.12, pp.2617-2622, 1998.
DOI : 10.1039/a806666c

A. Favier, Le stress oxydant, Intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique, pp.108-115, 2003.

H. Ostdal, H. J. Andersen, and M. J. Davies, Formation of Long-Lived Radicals on Proteins by Radical Transfer from Heme Enzymes???A Common Process?, Archives of Biochemistry and Biophysics, vol.362, issue.1, pp.105-112, 1999.
DOI : 10.1006/abbi.1998.0988

M. Audette, Y. Blouquit, and C. Houee-levin, Oxidative Dimerization of Proteins: Role of Tyrosine Accessibility, Archives of Biochemistry and Biophysics, vol.376, issue.1, pp.217-220, 2000.
DOI : 10.1006/abbi.2000.1709

G. T. Babcock, M. K. El-deeb, P. O. Sandusky, M. M. Whittaker, and J. W. Whittaker, Electron paramagnetic resonance and electron nuclear double resonance spectroscopies of the radical site in galactose oxidase and of thioether-substituted phenol model compounds, Journal of the American Chemical Society, vol.114, issue.10, pp.3727-3734, 1992.
DOI : 10.1021/ja00036a023

M. L. Mcglashen, D. D. Eads, T. G. Spiro, and J. W. Whittaker, Resonance Raman Spectroscopy of Galactose Oxidase: A New Interpretation Based on Model Compound Free Radical Spectra, The Journal of Physical Chemistry, vol.99, issue.14, pp.4918-4922, 1995.
DOI : 10.1021/j100014a008

C. Berthomieu and R. Hienerwadel, Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1707, issue.1, pp.51-66, 2005.
DOI : 10.1016/j.bbabio.2004.03.011

G. Jeschke, EPR techniques for studying radical enzymes, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1707, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.bbabio.2004.02.012

URL : http://doi.org/10.1016/j.bbabio.2004.02.012

C. C. Lawrence, M. Bennati, H. V. Obias, G. Bar, R. G. Griffin et al., High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5'-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase, Proceedings of the National Academy of Sciences, vol.96, issue.16, pp.8979-8984, 1999.
DOI : 10.1073/pnas.96.16.8979

A. F. Wagner, M. Frey, F. A. Neugebauer, W. Schafer, and J. Knappe, The free radical in pyruvate formate-lyase is located on glycine-734., Proceedings of the National Academy of Sciences, vol.89, issue.3, pp.996-1000, 1992.
DOI : 10.1073/pnas.89.3.996

A. Larsson and B. M. Sjöberg, Identification of the stable free radical tyrosine residue in ribonucleotide reductase, EMBO J, vol.5, pp.2037-2040, 1986.

W. A. Van-der-donk, J. Stubbe, G. J. Gerfen, B. F. Bellew, and R. G. Griffin, EPR Investigations of the Inactivation of E. coli Ribonucleotide Reductase with 2'-Azido-2'-deoxyuridine 5'-Diphosphate: Evidence for the Involvement of the Thiyl Radical of C225-R1, Journal of the American Chemical Society, vol.117, issue.35, pp.8908-8916, 1995.
DOI : 10.1021/ja00140a003

M. R. Gunther, R. A. Tschirret-guth, H. E. Witkowska, Y. C. Fann, D. P. Barr et al., Site-specific spin trapping of tyrosine radicals in the oxidation of metmyoglobin by hydrogen peroxide, Biochemical Journal, vol.330, issue.3, pp.1293-1299, 1998.
DOI : 10.1042/bj3301293

M. J. Davies, Detection and identification of macromolecule-derived radicals by epr spin trapping, Research on Chemical Intermediates, vol.261, issue.7, pp.669-679, 1993.
DOI : 10.1163/156856793X00307

S. Y. Qian, Y. R. Chen, L. J. Deterding, Y. C. Fann, C. F. Chignell et al., Identification of protein-derived tyrosyl radical in the reaction of cytochrome c and hydrogen peroxide: characterization by ESR spin-trapping, HPLC and MS, Biochemical Journal, vol.363, issue.2, pp.281-288, 2002.
DOI : 10.1042/bj3630281

L. Hubbell, D. S. Cafiso, and C. Altenbach, Identifying conformational changes with site-directed spin labeling, Nature Structural Biology, vol.7, issue.9, pp.735-739, 2000.
DOI : 10.1038/78956

J. A. Silvester, G. S. Timmins, and M. J. Davies, Photodynamically Generated Bovine Serum Albumin Radicals: Evidence for Damage Transfer and Oxidation at Cysteine and Tryptophan Residues, Free Radical Biology and Medicine, vol.24, issue.5, pp.754-766, 1998.
DOI : 10.1016/S0891-5849(97)00327-4

M. N. Harris, S. W. Burchiel, P. G. Winyard, J. R. Engen, C. D. Mobarak et al., Determining the Site of Spin Trapping of the Equine Myoglobin Radical by Combined Use of EPR, Electrophoretic Purification, and Mass Spectrometry, Electrophoretic Purification, and Mass Spectrometry, pp.1589-1594, 2002.
DOI : 10.1021/tx025594t

P. K. Witting, D. J. Douglas, and A. G. Mauk, Reaction of Human Myoglobin and H2O2: INVOLVEMENT OF A THIYL RADICAL PRODUCED AT CYSTEINE 110, Journal of Biological Chemistry, vol.275, issue.27, pp.20391-20398, 2000.
DOI : 10.1074/jbc.M000373200

Y. Chen and R. P. Mason, Mechanism in the reaction of cytochrome c oxidase with organic hydroperoxides: an ESR spin-trapping investigation, Biochemical Journal, vol.365, issue.2, pp.461-469, 2002.
DOI : 10.1042/bj20020170

M. R. Gunther, J. A. Peters, and M. K. Sivaneri, Histidinyl Radical Formation in the Self-peroxidation Reaction of Bovine Copper-Zinc Superoxide Dismutase, Journal of Biological Chemistry, vol.277, issue.11, pp.9160-9166, 2002.
DOI : 10.1074/jbc.M107342200

C. W. Fenwick and A. M. English, Reaction, Journal of the American Chemical Society, vol.118, issue.48, pp.12236-12237, 1996.
DOI : 10.1021/ja962764d

A. Filosa and A. M. English, Mass Spectral Analysis of Protein-based Radicals Using DBNBS: NONRADICAL ADDUCT FORMATION VERSUS SPIN TRAPPING, Journal of Biological Chemistry, vol.276, issue.24, pp.21022-21027, 2001.
DOI : 10.1074/jbc.M100644200

P. J. Wright and A. M. English, To Identify Peptide- and Protein-Based Radicals by Mass Spectrometry:?? Advantages of Spin Scavenging over Spin Trapping, Journal of the American Chemical Society, vol.125, issue.28, pp.8655-8665, 2003.
DOI : 10.1021/ja0291888

L. J. Berliner, V. Khramtsov, H. Fujii, and T. L. Clanton, Unique in vivo applications of spin traps, Free Rad, Biol. Med, vol.30, pp.489-499, 2001.

B. Bose-basu, E. F. Derose, Y. R. Chen, R. P. Mason, and R. E. London, Protein NMR spin trapping with [methyl-13 C(3)]-MNP: application to the tyrosyl radical of equine myoglobin, Free Rad, Biol. Med, vol.31, pp.383-390, 2001.

C. D. Detweiler, L. J. Deterding, K. B. Tomer, C. F. Chignell, D. Germolec et al., Immunological identification of the heart myoglobin radical formed by hydrogen peroxide, Free Rad, Biol. Med, vol.33, pp.364-369, 2002.

D. C. Ramirez, Y. R. Chen, and R. P. Mason, Immunochemical detection of hemoglobin-derived radicals formed by reaction with hydrogen peroxide: involvement of a protein-tyrosyl radical, Free Radical Biology and Medicine, vol.34, issue.7, pp.830-839, 2003.
DOI : 10.1016/S0891-5849(02)01437-5

R. J. Kulmacz, Y. Ren, A. L. Tsai, and G. Palmer, Prostaglandin H synthase: spectroscopic studies of the interaction with hydroperoxides and with indomethacin, Biochemistry, vol.29, issue.37, pp.8760-8771, 1990.
DOI : 10.1021/bi00489a037

T. Shimokawa, R. J. Kulmacz, D. L. Dewitt, and W. L. Smith, Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis, J. Biol. Chem, vol.265, 1990.

A. Tsai, L. C. Hsi, R. J. Kulmacz, G. Palmer, and W. L. Smith, Characterization of the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope replacement and site-directed mutagenesis, J. Biol. Chem, vol.269, pp.5085-5091, 1994.

J. L. Clément, B. C. Gilbert, A. Rockenbauer, and P. Tordo, Radical damage to proteins studied by EPR spintrapping techniques, J. Chem. Soc., Perkin Trans, vol.2, pp.1463-1470, 2001.

J. L. Clément, B. C. Gilbert, A. Rockenbauer, P. Tordo, and A. C. Whitwood, Observation of Protein-derived (BSA) Oxygen-centered Radicals by EPR Spin-trapping Techniques, Free Radical Research, vol.36, issue.8, pp.883-891, 2002.
DOI : 10.1080/1071576021000005320

K. Takamoto and M. R. Chance, RADIOLYTIC PROTEIN FOOTPRINTING WITH MASS SPECTROMETRY TO PROBE THE STRUCTURE OF MACROMOLECULAR COMPLEXES, Annual Review of Biophysics and Biomolecular Structure, vol.35, issue.1, pp.251-276, 2006.
DOI : 10.1146/annurev.biophys.35.040405.102050

D. Maleknia, M. Brenowitz, and M. R. Chance, Millisecond Radiolytic Modification of Peptides by Synchrotron X-rays Identified by Mass Spectrometry, Analytical Chemistry, vol.71, issue.18, pp.3965-3973, 1999.
DOI : 10.1021/ac990500e

Q. Guan and M. R. Chance, Structural proteomics of macromolecular assemblies using oxidative footprinting and mass spectrometry, Trends in Biochemical Sciences, vol.30, issue.10, pp.583-592, 2005.
DOI : 10.1016/j.tibs.2005.08.007

B. Goshe and V. E. Anderson, Hydroxyl Radical-Induced Hydrogen/Deuterium Exchange in Amino Acid Carbon-Hydrogen Bonds, Radiation Research, vol.151, issue.1, pp.50-58, 1999.
DOI : 10.2307/3579746

N. Nukuna, M. B. Goshe, and V. E. Anderson, H Exchange, Journal of the American Chemical Society, vol.123, issue.6, pp.1208-1214, 2001.
DOI : 10.1021/ja003342d

S. Akhlaq and C. , Free-radical-induced elimination of hydrogen sulfide from dithiothreitol. A chain reaction, Journal of the American Chemical Society, vol.108, issue.12, pp.3542-3544, 1986.
DOI : 10.1021/ja00272a079

P. Thomas, G. Mousseau, S. Oppilliart, A. Coirier, A. Salcedo-serna et al., Localization and Quantification of Carbon-Centered Radicals on Any Amino Acid of a Protein, Anal. Chem, vol.79, pp.5444-5448, 2007.

. Mousseau, Caractérisation des interactions protéine-ligand par échange 1 H/ 3 H, Thèse de doctorat, 2007.

H. B. Ralston and . Dunford, Horseradish peroxidase. XXXII. pH dependence of the oxidation of L-(-)-tyrosine by compound I, Can, J. Biochem, vol.56, pp.1115-1119, 1978.

L. Lindstroem and . Petersson, An ENDOR study of the tyrosyl free radical in ribonucleotide reductase from Escherichia coli, J. Am. Chem. Soc, vol.111, pp.8076-8083, 1989.

X. Tommos, K. Tang, C. W. Warncke, S. Hoganson, J. Styring et al., Spin-Density Distribution, Conformation, and Hydrogen Bonding of the Redox-Active Tyrosine YZ in Photosystem II from Multiple-Electron Magnetic-Resonance Spectroscopies: Implications for Photosynthetic Oxygen Evolution, Journal of the American Chemical Society, vol.117, issue.41, pp.10325-10335, 1995.
DOI : 10.1021/ja00146a017

E. J. Rigby, J. H. Nugent, and P. J. Malley, The dark stable tyrosine radical of photosystem 2 studied in three species using ENDOR and EPR spectroscopies, Biochemistry, vol.33, issue.7, pp.1734-1742, 1994.
DOI : 10.1021/bi00173a016

J. Warncke, G. T. Mccracken, and . Babcock, Structure of the YD Tyrosine Radical in Photosystem II as Revealed by 2H Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopic Analysis of Hydrogen Hyperfine Interactions, Journal of the American Chemical Society, vol.116, issue.16, pp.7332-7340, 1994.
DOI : 10.1021/ja00095a042

M. Ekberg, M. Sahlin, B. Eriksson, and . Sjoberg, Two Conserved Tyrosine Residues in Protein R1 Participate in an Intermolecular Electron Transfer in Ribonucleotide Reductase, Journal of Biological Chemistry, vol.271, issue.34, pp.20655-20659, 1996.
DOI : 10.1074/jbc.271.34.20655

A. Rova, S. Adrait, A. Potsch, L. Graslund, and . Thelander, Evidence by Mutagenesis that Tyr370 of the Mouse Ribonucleotide Reductase R2 Protein Is the Connecting Link in the Intersubunit Radical Transfer Pathway, Journal of Biological Chemistry, vol.274, issue.34, pp.23746-23751, 1999.
DOI : 10.1074/jbc.274.34.23746

K. Rova, R. Goodtzova, G. Ingemarson, A. Behravan, L. Graeslund et al., Evidence by Site-Directed Mutagenesis Supports Long-Range Electron Transfer in Mouse Ribonucleotide Reductase, Biochemistry, vol.34, issue.13, pp.4267-4275, 1995.
DOI : 10.1021/bi00013a016

F. N. Petersen, M. O. Jensen, and C. H. Nielsen, Interfacial Tryptophan Residues: A Role for the Cation-?? Effect?, Biophysical Journal, vol.89, issue.6, pp.3985-3996, 2005.
DOI : 10.1529/biophysj.105.061804

C. Moosmann and . Behl, Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins, European Journal of Biochemistry, vol.73, issue.18, pp.5687-5692, 2000.
DOI : 10.1046/j.1432-1327.2000.01658.x

A. Prütz and E. J. Land, Charge Transfer in Peptides, Int. J. Radiat. Biol, vol.36, pp.513-520, 1979.

L. Ravanat, C. Saint-pierre, and J. Cadet, One-Electron Oxidation of the Guanine Moiety of 2???-Deoxyguanosine:?? Influence of 8-Oxo-7,8-dihydro-2???-deoxyguanosine, Journal of the American Chemical Society, vol.125, issue.8, pp.2030-2031, 2003.
DOI : 10.1021/ja028608q

J. R. Milligan, J. A. Aguilera, A. Ly, N. Q. Tran, O. Hoang et al., Repair of oxidative DNA damage by amino acids, Nucleic Acids Research, vol.31, issue.21, pp.6258-6263, 1986.
DOI : 10.1093/nar/gkg816

H. N. Kirkman and G. F. Gaetani, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH., Proceedings of the National Academy of Sciences, vol.81, issue.14, pp.4343-4347, 1984.
DOI : 10.1073/pnas.81.14.4343

C. D. Putnam, A. S. Arvai, Y. Bourne, and J. A. Tainer, Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism, Journal of Molecular Biology, vol.296, issue.1, pp.295-309, 2000.
DOI : 10.1006/jmbi.1999.3458

G. Avigad, D. Amaral, C. Asensio, and B. L. Horecker, The d-Galactose Oxidase of Polyporus circinatus, J. Biol. Chem, vol.237, pp.2736-2743, 1962.

A. Deisseroth and A. L. Dounce, Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role, Physiol. Rev, vol.50, pp.319-375, 1970.

N. Kirkman, S. Galiano, and G. F. Gaetani, The function of catalase-bound NADPH, J. Biol. Chem, vol.262, pp.660-666, 1987.

J. Benecky, J. E. Frew, N. Scowen, P. Jones, and B. M. Hoffman, EPR and ENDOR detection of compound I from Micrococcus lysodeikticus catalase, Biochemistry, vol.32, issue.44, pp.11929-11933, 1993.
DOI : 10.1021/bi00095a024

H. M. Ivancich, J. Jouve, and . Gaillard, EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase, Journal of the American Chemical Society, vol.118, issue.50, pp.12852-12853, 1996.
DOI : 10.1021/ja9628361

H. M. Ivancich, B. Jouve, J. Sartor, and . Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

T. Green, The Structure and Spin Coupling of Catalase Compound I:?? A Study of Noncovalent Effects, Journal of the American Chemical Society, vol.123, issue.37, pp.9218-9219, 2001.
DOI : 10.1021/ja010105h

T. A. Ivancich, S. Mattioli, and . Un, Effect of Protein Microenvironment on Tyrosyl Radicals. A High-Field (285 GHz) EPR, Resonance Raman, and Hybrid Density Functional Study, Journal of the American Chemical Society, vol.121, issue.24, pp.5743-5753, 1999.
DOI : 10.1021/ja990562m

I. Chapitre, Marquage du site actif de la catalase de foie de boeuf tyrosines in photosystem II and other proteins, Biochim. Biophys. Acta, vol.1707, pp.51-66, 2005.

W. A. Stubbe and . Van-der-donk, Protein Radicals in Enzyme Catalysis, Chemical Reviews, vol.98, issue.2, pp.705-762, 1998.
DOI : 10.1021/cr9400875

J. Gerfen, B. F. Bellew, S. Un, J. M. Bollinger, J. Stubbe et al., High-frequency (139.5 GHz) EPR spectroscopy of the tyrosyl radical in Escherichia coli ribonucleotide reductase, Journal of the American Chemical Society, vol.115, issue.14, pp.6420-6421, 1993.
DOI : 10.1021/ja00067a071

A. Svistunenko and C. E. Cooper, A New Method of Identifying the Site of Tyrosyl Radicals in Proteins, Biophysical Journal, vol.87, issue.1, pp.582-595, 2004.
DOI : 10.1529/biophysj.104.041046

W. Majima, W. Schnabel, and . Weber, Phenyl-2, 4, 6-trimethylbenzoylphosphinates as water-soluble photoinitiators. Generation and reactivity of O= P(C 6 H 5 )(O -) radical anions, Die Makromolekulare Chemie, vol.192, issue.10, pp.2307-2315, 1991.
DOI : 10.1002/macp.1991.021921010

P. Thomas, G. Mousseau, S. Oppilliart, A. Coirier, A. Salcedo-serna et al., Localization and Quantification of Carbon-Centered Radicals on Any Amino Acid of a Protein, Anal. Chem. Tetrahedron letters, vol.79, issue.35, pp.5444-5448, 1994.

B. Giese, A. Dussy, E. Meggers, M. Petretta, and U. Schwitter, Conformation, Lifetime, and Repair of 4???-DNA Radicals, Journal of the American Chemical Society, vol.119, issue.45, pp.11130-11131, 1997.
DOI : 10.1021/ja972769q

C. Chatgilialoglu, M. Ballestri, J. Escudie, and I. Pailhous, Hydrogen Donor Abilities of Germanium Hydrides, Organometallics, vol.18, issue.12, pp.2395-2397, 1999.
DOI : 10.1021/om990020d

T. Nakamura, H. Yorimitsu, H. Shinokubo, and K. Oshima, Reduction of Organic Halides with Tri-2-furylgermane: Stoichiometric and Catalytic Reduction, Bulletin of the Chemical Society of Japan, vol.74, issue.4, pp.747-752, 2001.
DOI : 10.1246/bcsj.74.747

H. Yorimitsu and K. Oshima, Recent advances in the use of tri(2-furyl)germane, triphenylgermane and their derivatives in organic synthesis, Inorganic Chemistry Communications, vol.8, issue.1, pp.131-142, 2005.
DOI : 10.1016/j.inoche.2004.11.017

L. J. Johnston, J. Lusztyk, D. D. Wayner, A. N. Abeywickreyma, A. L. Beckwith et al., Absolute rate constants for reaction of phenyl, 2,2-dimethylvinyl, cyclopropyl, and neopentyl radicals with tri-n-butylstannane. Comparison of the radical trapping abilities of tri-n-butylstannane and -germane, Journal of the American Chemical Society, vol.107, issue.15, pp.4594-4596, 1985.
DOI : 10.1021/ja00301a062

H. Fischer, dans Radical Reaction Rates in Liquids, Landolt-Börnstein New Series, 1997.

P. A. Baguley and J. C. Walton, Flight from the Tyranny of Tin: The Quest for Practical Radical Sources Free from Metal Encumbrances, Angewandte Chemie International Edition, vol.37, issue.22, pp.3072-3082, 1998.
DOI : 10.1002/(SICI)1521-3773(19981204)37:22<3072::AID-ANIE3072>3.0.CO;2-9

A. Studer and S. Amrein, Tin Hydride Substitutes in Reductive Radical Chain Reactions, Synthesis, pp.835-849, 2002.

J. C. Walton and A. Studer, Evolution of Functional Cyclohexadiene-Based Synthetic Reagents:?? The Importance of Becoming Aromatic, Accounts of Chemical Research, vol.38, issue.10, pp.794-802, 2005.
DOI : 10.1021/ar050089j

O. Yamazaki, H. Togo, G. Nogami, and M. Yokoyama, Novel Water-Soluble Organosilane Compounds as a Radical Reducing Agent in Aqueous Media, Bulletin of the Chemical Society of Japan, vol.70, issue.10, pp.2519-2523, 1997.
DOI : 10.1246/bcsj.70.2519

B. P. Roberts, Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry, Chemical Society Reviews, vol.28, issue.1, pp.25-35, 1999.
DOI : 10.1039/a804291h

B. N. Nukuna, M. B. Goshe, and V. E. Anderson, H Exchange, Journal of the American Chemical Society, vol.123, issue.6, pp.1208-1214, 2001.
DOI : 10.1021/ja003342d

D. H. Barton, D. O. Jang, and J. C. Jaszberenyi, The invention of radical reactions. Part 32. Radical deoxygenations, dehalogenations, and deaminations with dialkyl phosphites and hypophosphorous acid as hydrogen sources, The Journal of Organic Chemistry, vol.58, issue.24, pp.6838-6842, 1993.
DOI : 10.1021/jo00076a054

D. H. Barton, D. O. Jang, and J. C. Jaszberenyi, Radical deoxygenations and dehalogenations with dialkyl phosphites as hydrogen atom sources, Tetrahedron Letters, vol.33, issue.17, pp.2311-2314, 1992.
DOI : 10.1016/S0040-4039(00)74198-0

D. O. Jang, Hypophosphorous acid mediated dehalogenation in water, Tetrahedron Letters, vol.37, issue.30, pp.5367-5368, 1996.
DOI : 10.1016/0040-4039(96)01079-9

T. A. Khan, R. Tripoli, J. J. Crawford, C. G. Martin, and J. A. Murphy, Diethylphosphine Oxide (DEPO):??? High-Yielding and Facile Preparation of Indolones in Water, Organic Letters, vol.5, issue.16, pp.2971-2974, 2003.
DOI : 10.1021/ol035173i

J. A. Murphy, R. Tripoli, T. A. Khan, and U. W. Mali, Novel Phosphorus Radical-Based Routes to Horsfiline, Organic Letters, vol.7, issue.15, pp.3287-3289, 2005.
DOI : 10.1021/ol051095i

D. H. Cho and D. O. Jang, Carbon???Carbon Bond Formation by Cyclization of Dienes Using Phosphorus-Centered Radicals in Water., ChemInform, vol.36, issue.22, pp.59-62, 2005.
DOI : 10.1002/chin.200522177

R. G. Kryger, J. P. Lorand, N. R. Stevens, and N. R. Herron, Radicals and scavengers. 7. Diffusion controlled scavenging of phenyl radicals and absolute rate constants of several phenyl radical reactions, Journal of the American Chemical Society, vol.99, issue.23, pp.7589-7600, 1977.
DOI : 10.1021/ja00465a030

D. M. Smith, M. E. Pulling, and J. R. Norton, Tin-Free and Catalytic Radical Cyclizations., ChemInform, vol.129, issue.19, pp.770-771, 2007.
DOI : 10.1002/chin.200719061

T. Miyai, K. Inoue, M. Yasuda, I. Shibata, and A. Baba, Preparation of a novel indium hydride and application to practical organic synthesis, Tetrahedron Letters, vol.39, issue.14, pp.1929-1932, 1998.
DOI : 10.1016/S0040-4039(98)00050-1

K. Inoue, A. Sawada, I. Shibata, and A. Baba, Indium(III) Chloride???Sodium Borohydride System:?? A Convenient Radical Reagent for an Alternative to Tributyltin Hydride System, Journal of the American Chemical Society, vol.124, issue.6, pp.906-907, 2002.
DOI : 10.1021/ja017537c

K. Fujita, T. Nakamura, H. Yorimitsu, and K. Oshima, Triethylborane-Induced Radical Reaction with Schwartz Reagent, Journal of the American Chemical Society, vol.123, issue.13, pp.3137-3138, 2001.
DOI : 10.1021/ja0032428

. Jouve, Formation of a Tyrosyl Radical Intermediate in Proteus mirabilis Catalase by Directed Mutagenesis and Consequences for Nucleotide Reactivity, Biochemistry, vol.40, pp.13734-13743, 2001.

X. Q. Zhu, H. R. Li, Q. Li, T. Ai, J. Y. Lu et al., Determination of the C4???H Bond Dissociation Energies of NADH Models and Their Radical Cations in Acetonitrile, Chemistry - A European Journal, vol.9, issue.4, pp.871-880, 2003.
DOI : 10.1002/chem.200390108

M. F. Powell and T. C. Bruice, Hydride vs. electron transfer in the reduction of flavin and flavin radical by 1,4-dihydropyridines, Journal of the American Chemical Society, vol.105, issue.4, pp.1014-1021, 1983.
DOI : 10.1021/ja00342a061

S. Fukuzumi, O. Inada, T. Suenobu, T. Shio, H. Yamamoto et al., Mechanisms of Electron-Transfer Oxidation of NADH Analogues and Chemiluminescence. Detection of the Keto and Enol Radical Cations, Journal of the American Chemical Society, vol.125, issue.16, pp.4808-4816, 1981.
DOI : 10.1021/ja029623y

A. Ohno, H. Yamamoto, and S. Oka, Reduction by a model of NAD(P)H. 29. Kinetics and isotope effects for the reduction of substituted trifluoroacetophenone, Journal of the American Chemical Society, vol.103, issue.8, pp.2041-2045, 1981.
DOI : 10.1021/ja00398a027

V. N. Gevorgyan, L. M. Ignatovich, and E. Lukevics, Reduction of alkoxysilanes, halo-silanes and -Germanes with lithium aluminium hydride under phase-transfer conditions, Journal of Organometallic Chemistry, vol.284, issue.2, pp.31-32, 1985.
DOI : 10.1016/0022-328X(85)87220-X

T. Nakamura, H. Yorimitsu, H. Shinokubo, and K. Oshima, Reduction of Organic Halides with Tri-2-Furanylgermane: Stoichiometric and Catalytic Reaction, Synlett, vol.1999, issue.9, pp.1415-1416, 1999.
DOI : 10.1055/s-1999-2874

S. R. Breining and R. K. Boeckman, A water-soluble tin hydride : tris[3-(2-methoxyethoxy)propyl]stannane, Org. Synth, vol.72, pp.199-204, 1995.

A. Deisseroth and A. L. Dounce, Catalase : Physical and chemical properties, mechanism of catalysis, and physiological role, Physiol. Rev, vol.50, pp.319-375, 1970.

B. Chance, The spectra of the enzyme-substrate complexes of catalase and peroxidase, Archives of Biochemistry and Biophysics, vol.41, issue.2, pp.404-415, 1952.
DOI : 10.1016/0003-9861(52)90469-4

H. M. Jouve, J. Gaillard, and J. Pelmont, Characterization and spectral properties of <i>Proteus mirabilis</i> PR catalase, Biochemistry and Cell Biology, vol.62, issue.10, pp.935-944, 1984.
DOI : 10.1139/o84-120

A. Ivancich, H. M. Jouve, B. Sartor, and J. Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

M. B. Goshe and V. E. Anderson, Hydroxyl Radical-Induced Hydrogen/Deuterium Exchange in Amino Acid Carbon-Hydrogen Bonds, Radiation Research, vol.151, issue.1, pp.50-58, 1999.
DOI : 10.2307/3579746

J. S. Sharp, J. M. Becker, and R. L. Hettich, Protein surface mapping by chemical oxidation: Structural analysis by mass spectrometry, Analytical Biochemistry, vol.313, issue.2, pp.216-225, 2003.
DOI : 10.1016/S0003-2697(02)00612-7

J. S. Sharp, J. M. Becker, and R. L. Hettich, Analysis of Protein Solvent Accessible Surfaces by Photochemical Oxidation and Mass Spectrometry, Analytical Chemistry, vol.76, issue.3, pp.672-683, 2004.
DOI : 10.1021/ac0302004

J. W. Wong, S. D. Maleknia, and K. M. Downard, Hydroxyl radical probe of the calmodulin-melittin complex interface by electrospray ionization mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.43, issue.17, pp.225-233, 2005.
DOI : 10.1016/j.jasms.2004.11.009

G. Xu and M. R. Chance, Radiolytic Modification and Reactivity of Amino Acid Residues Serving as Structural Probes for Protein Footprinting, Analytical Chemistry, vol.77, issue.14, pp.4549-4555, 2005.
DOI : 10.1021/ac050299+

T. N. Das, Redox Chemistry of 3-Iodotyrosine in Aqueous Medium, The Journal of Physical Chemistry A, vol.102, issue.2, pp.426-433, 1998.
DOI : 10.1021/jp9716344

M. J. Davies and R. T. , Dean, dans Radical-mediated Protein Oxidation: From Chemistry to Medicine, 1997.

L. Cudina and . Josimovic, The Effect of Oxygen on the Radiolysis of Tyrosine in Aqueous Solutions, Radiation Research, vol.109, issue.2, pp.206-215, 1987.
DOI : 10.2307/3576947

B. Hickel and G. Baldacchino, une introduction; Nauwelaerts (Editions), Frison-Roche Edition ed.; Tilquin, B, 2001. 56 W. R. Gray, End-group Analysis using Dansyl Chloride, Methods Enzymol, Actions Biologique et Chimique des Rayonnements Ionisants, vol.25, pp.121-138, 1972.

L. Carlsson and I. Sjoholm, Synthesis of Tritium-labelled Oxytocin and Lysine-vasopressin., Acta Chemica Scandinavica, vol.20, pp.259-260, 1966.
DOI : 10.3891/acta.chem.scand.20-0259

G. Mousseau, Caractérisation des interactions protéine-ligand par échange 1 H/ 3 H, Thèse de doctorat, 2006.

L. A. Holt and B. Milligan, The labelling of proteins by irradiation in tritiated water, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.264, issue.3, pp.432-439, 1972.
DOI : 10.1016/0304-4165(72)90006-2

M. Audette, Y. Blouquit, and C. Houee-levin, Oxidative Dimerization of Proteins: Role of Tyrosine Accessibility, Archives of Biochemistry and Biophysics, vol.376, issue.1, pp.217-220, 2000.
DOI : 10.1006/abbi.2000.1709

S. Solar, W. Solar, and N. Getoff, Reactivity of hydroxyl with tyrosine in aqueous solution studied by pulse radiolysis, The Journal of Physical Chemistry, vol.88, issue.10, pp.2091-2095, 1984.
DOI : 10.1021/j150654a030

N. V. Raghavan and S. Steenken, Electrophilic reaction of the hydroxyl radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals, Journal of the American Chemical Society, vol.102, issue.10, pp.3495-3499, 1980.
DOI : 10.1021/ja00530a031

G. Albarran and R. H. Schuler, Concerted Effects of Substituents in the Reaction of ???OH Radicals with Aromatics:?? The Cresols, The Journal of Physical Chemistry A, vol.109, issue.41, pp.9363-9370, 2005.
DOI : 10.1021/jp0539876

S. C. Choure, M. M. Bamatraf, B. S. Rao, R. Das, H. Mohan et al., Hydroxylation of Chlorotoluenes and Cresols: A Pulse Radiolysis, Laser Flash Photolysis, and Product Analysis Study, The Journal of Physical Chemistry A, vol.101, issue.51, pp.9837-9845, 1997.
DOI : 10.1021/jp971986a

G. Albarran, J. Bentley, and R. H. Schuler, Substituent Effects in the Reaction of OH Radicals with Aromatics:?? Toluene, The Journal of Physical Chemistry A, vol.107, issue.39, pp.7770-7774, 2003.
DOI : 10.1021/jp030550u

R. H. Schuler, G. Albarran, J. Zajicek, M. V. George, R. W. Fessenden et al., -Cresol, The Journal of Physical Chemistry A, vol.106, issue.50, pp.12178-12183, 2002.
DOI : 10.1021/jp021807b

URL : https://hal.archives-ouvertes.fr/in2p3-00025602

M. Ye and R. H. Schuler, Second-order combination reactions of phenoxyl radicals, The Journal of Physical Chemistry, vol.93, issue.5, pp.1898-1902, 1989.
DOI : 10.1021/j100342a040

M. J. Lundqvist and L. A. Eriksson, Hydroxyl Radical Reactions with Phenol as a Model for Generation of Biologically Reactive Tyrosyl Radicals, The Journal of Physical Chemistry B, vol.104, issue.4, pp.848-855, 2000.
DOI : 10.1021/jp993011r

R. J. Hulsebosch, J. S. Van-den-brink, S. A. Nieuwenhuis, P. Gast, J. Raap et al., O-Isotope Labeling and EPR Spectroscopy at 9 and 35 GHz, Journal of the American Chemical Society, vol.119, issue.37, pp.8685-8694, 1997.
DOI : 10.1021/ja9707872

A. Schnepf, J. Sokolowski, V. Müller, K. Bachler, P. Wieghardt et al., Resonance Raman Spectroscopic Study of Phenoxyl Radical Complexes, Journal of the American Chemical Society, vol.120, issue.10, pp.2352-2364, 1998.
DOI : 10.1021/ja972269x

D. Wu, C. L. Wong, K. W. Chan, G. Z. Ji, and X. K. Jiang, Substituent Effects on the C???H Bond Dissociation Energy of Toluene. A Density Functional Study, The Journal of Organic Chemistry, vol.61, issue.2, pp.746-750, 1996.
DOI : 10.1021/jo951212v

J. Omalley, A. J. Macfarlane, S. E. Rigby, and J. H. Nugent, The geometry and spin density distribution of the tyrosyl radical: a molecular orbital study, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1232, issue.3, pp.175-179, 1995.
DOI : 10.1016/0005-2728(95)00102-6

J. Jin, C. Leitich, and . Sonntag, The photolysis (?? = 254 nm) of tyrosine in aqueous solutions in the absence and presence of oxygen. The reaction of tyrosine with singlet oxygen, Journal of Photochemistry and Photobiology A: Chemistry, vol.92, issue.3, pp.147-153, 1995.
DOI : 10.1016/1010-6030(95)04134-7

R. Lynn and J. W. Purdie, Some pulse and gamma radiolysis studies of tyrosine and its glycyl peptides, International Journal for Radiation Physics and Chemistry, vol.8, issue.6, pp.685-689, 1976.
DOI : 10.1016/0020-7055(76)90041-3

L. Cudina and . Josimovic, The Effect of Oxygen on the Radiolysis of Tyrosine in Aqueous Solutions, Radiation Research, vol.109, issue.2, pp.206-215, 1987.
DOI : 10.2307/3576947

M. Kim and S. Han, Tyrosinase scavenges tyrosyl radical, Biochemical and Biophysical Research Communications, vol.312, issue.3, pp.642-649, 2003.
DOI : 10.1016/j.bbrc.2003.10.173

M. Hoey and J. Butler, Repair of oxidised amino acid units in proteins by antioxidants, Life Chem. Reports, vol.3, pp.80-90, 1985.

H. Bisby, S. Ahmed, and R. B. , Repair of amino acid radicals by a vitamin E analogue, Biochemical and Biophysical Research Communications, vol.119, issue.1, pp.245-251, 1984.
DOI : 10.1016/0006-291X(84)91644-9

E. London and S. A. Gabel, Photoactivated H/D Exchange in Tyrosine:?? Involvement of a Radical Anion Intermediate, Journal of the American Chemical Society, vol.128, issue.7, pp.2268-2275, 2006.
DOI : 10.1021/ja055011c

N. Nukuna, M. B. Goshe, and V. E. Anderson, H Exchange, Journal of the American Chemical Society, vol.123, issue.6, pp.1208-1214, 2001.
DOI : 10.1021/ja003342d

J. Fairley, D. R. Boyd, N. D. Sharma, C. C. Allen, P. Morgan et al., Aerobic Metabolism of 4-Hydroxybenzoic Acid in Archaea via an Unusual Pathway Involving an Intramolecular Migration (NIH Shift), Applied and Environmental Microbiology, vol.68, issue.12, pp.6246-6255, 2002.
DOI : 10.1128/AEM.68.12.6246-6255.2002

K. Kiuru, Wähälä, dans Synthesis and Applications of Isotopically Labelled Compounds, 2000.

N. Das, Redox Chemistry of 3-Iodotyrosine in Aqueous Medium, The Journal of Physical Chemistry A, vol.102, issue.2, pp.426-433, 1998.
DOI : 10.1021/jp9716344

N. Das, R. E. Huie, and P. Neta, Radicals in Aqueous Solution, The Journal of Physical Chemistry A, vol.103, issue.18, pp.3581-3588, 1999.
DOI : 10.1021/jp9900234

H. Saito, A. Sugiyama, S. Yamamoto, T. Muramatsu, and . Matsuura, Photoinduced reactions. 158. Photochemical hydrogen-deuterium exchange reaction of tryptophan. The role of nonradiative decay of singlet tryptophan, Journal of the American Chemical Society, vol.106, issue.15, pp.4286-4287, 1984.
DOI : 10.1021/ja00327a048

A. Malencik, J. F. Sprouse, C. A. Swanson, and S. R. Anderson, Dityrosine: Preparation, Isolation, and Analysis, Analytical Biochemistry, vol.242, issue.2, pp.202-213, 1996.
DOI : 10.1006/abio.1996.0454

K. Ayala, D. Range, B. A. York, and . Barry, Spectroscopic Properties of Tyrosyl Radicals in Dipeptides, Journal of the American Chemical Society, vol.124, issue.19, pp.5496-5505, 2002.
DOI : 10.1021/ja0164327

G. Williams, H. Morimoto, and D. E. Wemmer, Application of modern tritium NMR techniques to analysis of complex isotopic products from a hydrogenation reaction, Journal of the American Chemical Society, vol.110, issue.24, pp.8038-8044, 1988.
DOI : 10.1021/ja00232a013

G. Hickel, Baldacchino, dans Actions Biologique et Chimique des Rayonnements Ionisants, une introduction, Nauwelaerts, 2001.

J. Davies and R. T. Dean, dans Radical-mediated Protein Oxidation: From Chemistry to Medicine, 1997.

E. Feitelson and . Hayon, Electron ejection and electron capture by phenolic compounds, The Journal of Physical Chemistry, vol.77, issue.1, pp.10-15, 1973.
DOI : 10.1021/j100620a003

P. Candeias, P. Wardman, and R. P. Mason, The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid, Biophysical Chemistry, vol.67, issue.1-3, pp.229-237, 1997.
DOI : 10.1016/S0301-4622(97)00052-5

K. Holcman and . Sehested, Anisole radical cation reactions in aqueous solution, The Journal of Physical Chemistry, vol.80, issue.14, pp.1642-1644, 1976.
DOI : 10.1021/j100555a027

P. O. Steenken and . Neill, Oxidative demethoxylation of methoxylated phenols and hydroxybenzoic acids by the hydroxyl radical. An in situ electron spin resonance, conductometric pulse radiolysis and product analysis study, The Journal of Physical Chemistry, vol.81, issue.6, pp.505-508, 1977.
DOI : 10.1021/j100521a002

M. Suryan, S. A. Kafafi, and S. E. Stein, Dissociation of substituted anisoles: substituent effects on bond strengths, Journal of the American Chemical Society, vol.111, issue.13, pp.4594-4600, 1989.
DOI : 10.1021/ja00195a011

O. Neill, S. Steenken, and D. Schulte-frohlinde, Formation of radical cations of methoxylated benzenes by reaction with hydroxyl radicals, thallium(2+), silver(2+), and peroxysulfate (SO4.-) in aqueous solution. Optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study, The Journal of Physical Chemistry, vol.79, issue.25, pp.2773-2779, 1975.
DOI : 10.1021/j100592a013

R. Deakin, P. M. Kovach, K. J. Stutts, and R. M. Wightman, Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes, Analytical Chemistry, vol.58, issue.7, pp.1474-1480, 1986.
DOI : 10.1021/ac00298a046

Y. Audette, C. Blouquit, and . Houee-levin, Oxidative Dimerization of Proteins: Role of Tyrosine Accessibility, Archives of Biochemistry and Biophysics, vol.376, issue.1, pp.217-220, 2000.
DOI : 10.1006/abbi.2000.1709

. Après-collecte-du-résidu, min), la solution est évaporée, MBq, vol.232, issue.237, p.4

O. Yamazaki, H. Togo, G. Nogami, and M. Yokoyama, Novel Water-Soluble Organosilane Compounds as a Radical Reducing Agent in Aqueous Media, Bulletin of the Chemical Society of Japan, vol.70, issue.10, pp.2519-2523, 1997.
DOI : 10.1246/bcsj.70.2519

I. Ayala, K. Range, D. York, and B. A. Barry, Spectroscopic Properties of Tyrosyl Radicals in Dipeptides, Journal of the American Chemical Society, vol.124, issue.19, pp.5496-5505, 2002.
DOI : 10.1021/ja0164327

D. A. Malencik, J. F. Sprouse, C. A. Swanson, and S. R. Anderson, Dityrosine: Preparation, Isolation, and Analysis, Analytical Biochemistry, vol.242, issue.2, pp.202-213, 1996.
DOI : 10.1006/abio.1996.0454