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The research work presented in this manuscript is of algorithmic kind: it is mainly composed of
polynomial, fixed parameter and approximation algorithms, while hardness results are also men-
tioned.

This work is about building and comparing labelled trees. These objects find application in
different areas, but notoriously in phylogenetics, where they represent evolutionary relationships
of organisms or sequences.

Most of this work can be considered as investigating solutions to so-called supertree problems.
Supertrees are large trees built by a dynamic programming approach from smaller trees. For in-
stance, the latter are gene trees from which a comprehensive tree on many living species is to be
built, such as the Tree of Life.

First definitions are introduced, then a part of the manuscript is dedicated to quartet tree build-
ing methods. The next part details tree comparison methods, mainly variants of the maximum
agreement subtree method. Next follows a part on supertree problems in all generality. The
manuscript ends with a report of the research plan for the next few years.

Several journal papers illustrating the material described in this manuscript are adjoined in
appendix.
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Chapter 1

Is that all supertree stuff?

The work presented in this manuscript is the result of ten years of research on the construction
and comparison of trees with application to phylogenetics, the bioinformatics field that aims at
elucidating evolutionary relationships between living organisms. The words Computational Biol-
ogy are well suited to describing the kind of work presented in this manuscript. In other words,
obtained results are always based on a non-negligible number of theoretical arguments. However,
these results were almost always obtained with the aim of answering questions arising as a result
of problems encountered in phylogenetics. The practical side prevailed throughout this material,
being both the motivation and the final step, via tests on real or simulated data.

As I look back at this work, almost every part of it seems to fall under the supertree category.
Supertrees are trees on a large set of species that are built from smaller trees by combining the
topological traits of these source trees. The first part of my research concerned quartet methods
(presented in part II of this manuscript) which go almost beyond the limits of the “supertree" term
since their input consists of source trees on four taxa only. The second part (presented in Part III)
was motivated by an extension of the maximum agreement subtree consensus method (MAST)
to the context of supertrees where input trees usually have different leaf sets. In the process, we
obtained results on the original MAST problem but the basic motivation remained supertrees. The
most recent part of my activity (presented in part IV) has been focused on tackling problems of
supertrees originating from the systematic biology community. The sizes of parts detailing past
works differ due to the different amounts of work (e.g. in number of years) they represent.

In all these works, the emphasis is on reliability, i.e. inference of trees whose parts are strongly
supported by data. This reliability is usually enforced by combinatorial arguments.

The manuscript ends with a description of ongoing research and a short description of the
research I will conduct on multigene families in the next four years, through the ANR funding we
just obtained.
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Chapter 2

Basic notions and definitions

This chapter first explains basic but important terms used throughout this manuscript. Then a
number of basic definitions from computer science and phylogenetics are recalled. Those relevant
to several parts of the manuscript are presented here, while those specific to a part are detailed in
due place. Some definitions are standard in the fields but reviewing them allows us to see associated
notations used in this manuscript. For additional definitions and properties on objects considered
here, I refer the reader to the excellent book of C. Semple and M. Steel [SS03]. Lastly, the basic
terms of parameterized complexity are explained, as several results detailed in the manuscript are
affiliated with this way of dealing with NP-hard problems.

2.1 Allowing computer science and phylogenetics to communi-

cate

Phylogenetics and computer science sometimes have different words to denote the same notions. I
indicate here the most frequent synonyms that are used in this manuscript.

Words that biologists might not know.

• the degree of a node in a tree is the number of its neighbors, while the degree of a tree is the
maximum degree observed for its nodes.

• an edge is a link between two adjacent nodes in a tree (or in a graph), which is sometimes
referred to as branch in phylogenetics.

• Computer scientists usually formalize considered tasks to be fulfilled in a problem state-
ment, indicating the input and the sought output. Each possible input for the given problem
is also called an instance. Computer scientist like to classify problems in different classes

depending on the intrinsic hardness of the problems. The well-known P and NP classes
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are well-known examples but a large number of classes exist, some specifically related to
approximation and parameterized versions of usual problems. A small dozen of problem
classes are mentioned in this manuscript. The reader is referred to computer science manu-
als on complexity theory for their definition.

• a reduction from one problem to another problem is a transformation of any instance of the
first problem into an instance of the second problem. When this transformation is done in
polynomial time, this highlights that the second problem is at least as hard as the first one.

Words that computer scientists might not know.

• a taxon (plural taxa) is a studied object that can be anything like a species, a subspecies, a
genre, family name, or even a molecule.

• a phylogeny or phylogenetic tree, is a tree displaying the evolutionary relationships of sev-
eral taxa. Internal nodes of the tree represent ancestral taxa while its leaves represent con-
temporary or extinct taxa. The association of taxa to leaves – and sometimes internal nodes
– of a phylogeny is indicated by labels given to these nodes, with each label representing a
different taxa.

• a clade in a rooted tree is a set of leaves under the same internal node. It represents all taxa
belonging to the same taxonomic group, e.g. mammals.

• a multifurcation, or multifurcating node, in a tree is an internal node whose degree is
larger than that of a node in a binary tree, i.e. larger then 3.

• a fully resolved tree is a binary tree. This stems from the usual hypothesis that evolution
is mainly a binary process. A partially resolved tree is then a tree containing at least one
multifurcation.

2.2 Supertrees

Definition and applications. It often happens that several phylogenies with different but over-
lapping taxa sets have to be combined within a single phylogeny, representing a summary of these
source phylogenies. The resulting tree is called a supertree as it is built from trees and usually
contains more taxa than each input tree.

Supertree methods are thus tree-building methods that take trees as input, as opposed to dis-
tance or character-based methods that work from primary data. But what is the interest in an
indirect approach when a tree could be inferred directly from a combination of the primary data?
Well, depending on the ways the data was collected, supertrees are sometimes the easiest way to
obtain a large phylogeny, and sometimes they even are the only possible approach. For instance,
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one might want to obtain a large phylogeny for a group of species by recycling data used by previ-
ous authors. However, these data can sometimes be hard to find (e.g. lost on an old computer that
was used at the time of the study1) and the only usable vestiges of the study are the phylogenies
visible in figures included in the paper, that are, in the best cases, referenced in a database such
as TreeBASE [SBB+93]. Another situation where supertrees are the incontrovertible solution is
when the primary datasets to be combined are heterogeneous, e.g. morphological traits, molecular
sequences of different sorts, distances between genomes.

Supertree methods can also be of use in broad-scale studies based on molecular data where
several genes are considered as primary data but span different sets of species. This means that
gene sequences are unavailable for some taxa. Such a situation arises because the given genes have
not yet been sequenced for all the studied species (due to sequencing cost or to the difficulty of
sequencing some species) or because the gene no longer exists for these species. In this situation,
there are two possible approaches, one is the supermatrix approach that concatenates for each
species all available sequences, putting specific signs such as question marks when the sequence
is missing. The obtained sequences for all species are then combined into a large matrix that is
analyzed by a classical tree-building method such as maximum likelihood. The other approach is to
infer a gene tree for each gene and then to combine the gene trees in a comprehensive tree through
a supertree method. Depending on the percentage of missing data, a supermatrix or supertree
approach is best suited.

There are many different applications of supertree methods in phylogenetics, including the
construction of extensive taxonomies for large groups of species such as mammals [BECJ+07]
and the construction of the Tree of Life [SPH98, BE04], for which supertrees are currently the most
promising technique – if not the only hope! – thanks to their divide-and-conquer strategy. Indeed,
the supertree approach is an example of such a strategy: the computational effort is first focused on
small quantities of data to obtain intermediary objects (source trees) that are then combined within
a larger one (the supertree).

Supertree methods. The goal of a supertree is to combine the topological information of the
source trees into a single comprehensive picture, and there are several ways of doing this as the
information present in different source trees can be incompatible. Thus, an important issue con-
cerning supertree methods is how they handle topological conflicts, i.e. different arrangements of
the same labels (i.e. taxa) among source trees. Such conflicts can, for instance, arise from long
branch attraction, from model misspecification in the inference of individual source trees, or from
contradictory phylogenetic signals among the primary datasets, e.g. due to paralogy or horizon-
tal gene transfers (HGT). Supertree methods fall into three categories depending on the way they
handle conflicts.

The first suite of methods are just able to detect conflicts among source trees, returning an

1Let me mention here that this is not pure rhetoric: I really obtained this answer once from a biologist whose
primary data interested me! But computer scientists should laugh aloud here when considering the very small number
of experimental past studies for which they are still able to provide the full results (not only those summarized in
published papers) and programs used to obtain these results.
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“incompatible" message in such cases. The pioneering methods that belong to this category are
BUILD [ASSU81] and the strict consensus supertree [Gor86] (we should maybe also cite the SQM
quartet method here [ESSW97]). Although they are important milestones, these methods appear
“of limited use. As most systematics know, phylogenies usually conflict with one another” [BE04,
p4].

The second suite of methods handle conflicts among input trees in a liberal way: they apply
a voting procedure. In order to extract their main phylogenetic signal, source trees are asked to
vote on various parts of the phylogeny to be inferred, with the most supported candidates being
elected and composing the output supertree. Voting methods are said to resolve conflicts [TW03]:
for each conflict, they use some optimization criteria to make a decision in favor of one of the
topological alternatives. Most conflicts among input trees are expected to be resolved because
relationships displayed by the supertree are guided by source topologies on the basis of the weight
of evidence. This strategy is best suited for studies that aim at extracting congruent phylogenetic
signals from a set of source trees with moderately to strongly supported clades, and then plays
the role of a meta-analytic synthesis of the input trees. This can be applied for instance to gene
trees, where the main phylogenetic signal can be contrasted in some source trees by alternative
signals, i.e. slightly different evolutionary histories due to duplication/loss or HGT events. A large
number of voting methods have been proposed, that can mainly be presented on the basis of the
reconstruction principle they adopt:

• The most widespread voting method is Matrix Representation with Parsimony (MRP) whereby
clades of each source tree are encoded as binary characters of a matrix that is then analyzed
with the maximum parsimony criterion to obtain the supertree [Bau92, Rag92]. Analyzing
this binary encoding of source topological information with other tree-building criteria leads
to MRP variants such as Matrix Representation with Flipping [CEFBS02, CDE+03] and
Matrix Representation with Compatibility [RR04].

• Other voting methods, such as MinCut (MC) [SS00] and ModifiedMinCut (MMC) [Pag02],
extend the BUILD algorithm [ASSU81], i.e. encode rooted source trees in a graph on the
basis of the rooted triples they contain. The graph is then progressively decomposed to get
the clades of the supertree in a top-down way. When conflicts hinder the decomposition, the
graph is cut by removing the least number of supported relationships.

The MC (and hence MMC) method are, in some sense, extensions of the Adams consensus
[Ada72] as shown by [SS00]. Therefore, multifurcations in the output supertree are not to be
interpreted in the usual way: subtrees hanging from a multifurcating node are not considered
as monophyletic (any fully resolved supertree where they are interleaved is acceptable), the
important point is that the internal structure of each subtree is respected. Under this inter-
pretation, a multifurcation represents a much wider range of fully-resolved phylogenies than
with the usual interpretation and is harder to interprete in a phylogenetic context2.

2In particular, this means that simulation studies on supertree methods that use the Robinson and Foulds distance
to evaluate the performance of MC or MMC are misleading.
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• Quartet methods proposed in the computer science field in the 90s (detailed in Part. II of
this manuscript) can be considered as supertree methods. However, they have mainly been
designed to deal with a single dataset, e.g. sequences, from which all possible quartets can
be computed. By contrast, usual supertree methods combine input trees that often have little
taxonomic overlap. Thus, in the supertree context, quartet methods are required to build trees
from incomplete to sparse quartet sets. This rules out a number of quartet methods detailed
in Part. II. Piaggio et al proposed a quartet method specifically dedicated to such a situation
[PTBE04]. Their method refines a method by J. Willson, related to quartet cleaning methods
detailed in Chap. 4 of this manuscript.

• Average Consensus [LC97] and Super Distance Matrix [CBDG06] methods implement the
voting approach in an alternative way. They average the initial distance matrices, converted
from source characters or valued topologies, into a superdistance matrix; a tree-building
distance-based approach is then used to infer a supertree from the matrix.

By combining the topological information of different source trees, any supertree method is
expected to generate novel clades, i.e. clades not present in any input tree alone [Pur95]. When
source trees conflict, it is possible that some novel clades contradict some source trees. Unfor-
tunately, voting methods can infer novel clades that are contradicted by each and every source
tree [GP02, Gol05, CSW06]. The frequency of this extreme phenomenon is still debated, [BE03]
reporting on the basis of simulations that it is not very frequent for MRP, while [Gol05] shows
selected case studies where “this situation is clearly not very unlikely”.

The third suite of methods handle conflicts among input trees in a conservative way. They adopt
a veto philosophy: the phylogenetic information of every source topology is to be respected, and
the supertree is not allowed to contain any clade that a source tree would vote against. These meth-
ods remove conflicts [TW03] because they either propose multifurcations in the supertree [GP02],
or prune taxa whose position varies in the source trees [BN04]. In this framework, the supertree
should not retain a single branching pattern for a subset of taxa when topological alternatives
are present in the source trees. The full agreement required by veto methods provides an unam-
biguous phylogenetic framework that is, for instance, well suited for taxonomic revisions. More
specifically, such a conservative approach may be applied to automatically build or update parts
of the Tree of Life (http://tolweb.org). In this application, each source tree can be thought of
as representing the current state of knowledge on a taxonomic group (but possibly also contains
taxa from neighboring groups). As all input trees are assumed to be equally reliable, in case of a
conflict, it is not a desirable feature that the supertree chooses one of the topological alternatives.
We rather expect it to indicate the incongruences (by including multifurcations, excluding taxa
or outputting extra information). Unanimity among source trees as displayed by veto supertrees
would also seem useful for other applications such as molecular dating of speciation events or
character evolution investigations. Several supertree methods have been proposed over the years
[Gor86, GP02], including those discussed in chapters 7 and 9 of this manuscript.

For a wide panorama of research on supertrees as of 2004, I refer the reader to the well-known
book of O. Bininda-Emonds [BE04].
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2.3 Notations and basic definitions on trees

Trees and collections of trees.

Definition 2.1 Let T be a singularly labeled tree, L(T ) denotes the leaf set in T , as well as the
label set of its leaves. The size of a tree T is its number of leaves and is denoted |T |.

A collection is a set of trees that are either all rooted or all unrooted. Given a collection T ,
L(T ) denotes the set of labels in T , i.e. ∪T∈T L(T ). The size of the collection, denoted |T |, is the
number of trees it contains.

A star tree on L is the trivial tree containing only one internal node linked to leaves bijectively
labeled with elements of L.

Let u be a node in a rooted tree R, S(u) denotes the complete subtree of R rooted at u. Given
two nodes u and v in a rooted tree R, u < v means that u is a proper ancestor of v and u≤ v means
that u is either a proper ancestor of v, or v itself.

The following relationships between nodes of a tree are extremely common and useful in de-
signing algorithms on rooted trees. In phylogenetics, it is also referred to as the most recent
common ancestor relationship.

Definition 2.2 Given a rooted tree R, the least common ancestor (or lca) of a set of leaves L ⊆
L(R) is the single node u such that u ≤ ℓ for all ℓ ∈ L, and v < u for any other node v that is also
an ancestor of every leaf in L. The lca of L in R is denoted lcaR(L). More particularly, the lca of
any pair {ℓ,ℓ′} ⊆ L(R) is denoted lcaR(ℓ,ℓ′).

Tree restrictions.

Definition 2.3 Given a set L of labels and a tree T , the restriction of T to L, denoted T |L, is the
tree obtained in the following way: take the smallest induced subgraph of T connecting leaves with
labels in L∩L(T ), then remove any degree two (non-root) node to make the tree homeomorphically
irreducible. If T is a collection of trees, then define T |L = {T |L : T ∈ T }.

See trees U , U ′ in Figure 2.1 for an example. Note that for any tree T and any two label sets
L,L′, (T |L)|L′ = T |(L∩L′) = (T |L′)|L.

Isomorphism and refinement relationships between trees.

Definition 2.4 Two trees T , T ′ are isomorphic, denoted T = T ′, if and only if there is a graph
isomorphism T 7→ T ′ preserving leaf labels (and the root if both trees are rooted). Given two trees
T , T ′, T is homeomorphically included in T ′ if and only if T = T ′|L(T ).
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Figure 2.1: Three unrooted trees to illustrate the restriction and refinement relationships. A tree U ,
a tree U ′ such that U ′ = U |{a,c,e} and a tree U ′′ such that U ′′DU .

Definition 2.5 A tree T refines a tree T ′, and we write T D T ′, whenever T can be transformed
into T ′ by collapsing some of its internal edges (collapsing an edge means removing it and merging
its extremities). See Figure 2.1 for an example. More generally, a tree T refines a collection T ,
denoted T DT , whenever T refines all Ti’s in T .

When considering a set of trees with different leaf sets, the preceding definition can be extended
[SS03]:

Definition 2.6 Let T be a tree with leaf set L, let L′ be a subset of L and T ′ be a tree with leaf set
L′. We say T displays T ′ whenever T |L′DT ′. A tree T displaying any tree T ′ in a collection T is
said to display T .

Note that definitions 2.4, 2.3 and 2.5 apply in the case where T is a set of rooted trees, or
alternatively a set of unrooted trees.

Isomorphism and compatibility issues between rooted trees can also be expressed in terms of
ancestor relationships. The following statements are directly derived from the definitions given
previously and are implicitly or explicitly used in a number of works (for instance [GW02, PT04]).

Observation 2.1 Let R and R′ be two rooted trees on the same leaf set L.
The following two statements are equivalent:
(i) R and R′ are isomorphic
(ii) ∀ℓ,ℓ′, ℓ′′ ∈ L, the two following equations hold

lcaR(ℓ,ℓ′) < lcaR(ℓ,ℓ′′) ⇐⇒ lcaR′(ℓ,ℓ
′) < lcaR′(ℓ,ℓ

′′) (2.1)

and lcaR(ℓ,ℓ′) = lcaR(ℓ,ℓ′′) ⇐⇒ lcaR′(ℓ,ℓ
′) = lcaR′(ℓ,ℓ

′′) (2.2)

Moreover, the following two statements are equivalent:
(iii) R refines R′

(iv) ∀ℓ,ℓ′, ℓ′′ ∈ L, the following holds:

lcaR′(ℓ,ℓ
′) < lcaR′(ℓ,ℓ

′′) ⇒ lcaR(ℓ,ℓ′) < lcaR(ℓ,ℓ′′) (2.3)
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Compatibility.

Compatibility is the notion used to state whether objects of some kind can be combined to-
gether in a given structure. The tree, rooted or unrooted, is usually the structure examined in
phylogenetics, but different kinds of networks have also been considered [BD92, HNR+98, Gam]
as they enable us to model recombination events such as hybridization or lateral gene transfers. In
this manuscript, we will only consider the compatibility in tree structures.

The compatibility of different kinds of objects can be considered: bipartitions, unrooted or
rooted trees with the same or different label sets, quartets, etc. Below we formally define compat-
ibility for the kinds of objects that will be considered in the next chapters. We first consider the
compatibility of bipartitions in unrooted trees.

Definition 2.7 A set B of bipartitions on the same label set X is compatible (or tree-compatible)
if and only if there is an unrooted tree T with L(T ) = X such that for each bipartition σ1|σ1 ∈ B
there is an edge in T that, when removed, splits T into two trees T ′ and T ” with L(T ′) = σ1 and
L(T ”) = σ1.

P. Buneman gave the following well-known characterization of such a set:

Lemma 2.1 ([Bun71])

• Two bipartitions b1 = σ1|σ1, b2 = σ2|σ2 are compatible if and only if at least one of σ1∩σ2,
σ1∩σ2, σ1∩σ2, σ1∩σ2 is empty.

• A set B of bipartitions is compatible if and only if every pair of bipartitions b1,b2∈B are
compatible (i.e. we only need to check the compatibility of subsets of two elements to decide
on the compatibility of the whole set).

Now, consider the case of collections of trees:

Definition 2.8

• A collection T of leaf-labeled trees on the same label set L is said to be compatible if and
only if there is a leaf-labeled tree T on L that refines every tree T ′ in T .

• A collection T of leaf-labeled trees with different label sets is said to be compatible if and
only if there is a tree T on L(T ) that displays any tree T ′ in T .

2.4 Building stones of trees

In phylogenetics, it is well-known that trees of arbitrary size can be described by subtrees of small
bounded size. This decomposition is used a number of times in this manuscript, with a whole part
being even devoted to them. Tirples and fans are the building stones of rooted trees.

22



a a

b b

c c

d d

a b

c d

a b

cd

ab|cd ac|bd ad|bc (abcd)

Figure 2.2: The four possible quartet topologies for {a,b,c,d}.

Definition 2.9 A rooted triple (or simply triple or resolved triple) is a binary rooted tree on three
leaves.

A fan (also called unresolved triple) is a rooted tree on three leaves with only one internal
node. On three given distinct leaves a,b and c, there are three possible rooted triples, denoted
ab|c, respectively ac|b, respectively bc|a, depending on their innermost grouping of two leaves
(ab, respectively ac, respectively bc). The only one possible fan on this set of leaves is denoted
(a,b,c).

Let R be a rooted tree. For any set {a,b,c} of three leaves in L(R), R|{a,b,c} is either a rooted
triple or a fan. We define rt(R), respectively f(R), as the set of rooted triples, respectively fans,
of tree R induced by the 3-leaf subsets of L(R). Given a collection T of rooted trees, rt(T ), resp.
f(T ) denotes the union of the set of rooted triples, resp. fan sets, of trees in T .

The basic building stones of unrooted trees are quartet and stars on four leaves:

Definition 2.10 A quartet is a binary unrooted tree on four leaves. Alternatively, an unrooted tree
on four leaves can be a star tree. Given four distinct leaves a, b, c and d, there are three possible
quartets, respectively denoted ab|cd (corresponding to the binary tree where the path from a to
b does not intersect the path from c to d), ac|bd and ad|bc, and only one possible star denoted
(a,b,c,d).

Let U be an unrooted tree. For any set q of four leaves appearing in U, U |q is either a quartet
or a star. We define q(U), respectively s(U), as the set of quartets, respectively stars, of U induced
by 4-leaf subsets of L(U). Given a collection T of unrooted trees, q(T ), resp. s(T ) denotes the
union of the set of quartets, resp. 4-leaf star sets, of trees in T .

Figure 2.2 shows the quartets and fan corresponding to a set of four leaves.

As for bipartitions, tree compatibility can also be defined for partial objects such as triples and
quartets3. But a stronger notion also exists in this case, indicating when such a set completely fits
to a tree:

Definition 2.11 A triple set R, resp. a set quartet set Q, is

• compatible (or tree-consistent) if and only if there is a tree T such that R⊆ rt(T ), resp. Q⊆ q(T ).

• tree-like if and only if there is a tree T such that R = rt(T ), resp. Q = q(T ).

3they are partial objects in the sense that they each indicate a relationship on only three or four elements of a set
of arbitrary size.
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2.5 Parameterized complexity

When facing an NP-hard problem, there are two main alternatives to obtain practical algorithms:
proposing polynomial time approximation algorithms, or either exact algorithms whose running
time is fast for some instances of the considered problem. The latter solution is usually investigated
by distinguishing a given parameter characterizing the instances, and trying to obtain an exact
algorithm whose running time is practical for instances having small values for this parameter. A
number of results reported in this manuscript fall into this category.

Parameterized complexity theory [DF99, FG06] formalized this behaviour and proposed var-
ious difficulty classes sorting computational problems according to the kinds of parameterized
results that can be obtained. More precisely, given a computational problem, let n denote the
size of an instance and let p be a parameter describing these instances. For example, when an
instance is composed of molecular sequences, n is the total number of characters composing
the input sequences and p can be the size of the alphabet (i.e. 2 for binary characters encoding
purines/pyrimidines, 4 for DNA sequences, 20 for proteins). Parameterized complexity theory
makes a distinction between: (i) a problem solvable in O(2pn) time, (ii) a problem solvable in
O(np) time, and (iii) a problem which is NP-hard for any value of p larger than some constant. In
case (i), the corresponding algorithm remains practical for large n values, provided that p is small.
In case (ii), the algorithm is still practical for the smallest p values. In case (iii), the problem is not
easier for any instance when considering parameter p.

The fixed-parameter tractability concept has been introduced to deal with case (i). A problem
is said to be fixed-parameter tractable (fpt) if there is an algorithm that solves the problem on an
instance of size n in time O( f (p)nc), where f is any function of the parameter p, and c is a constant
independent of p. In most cases, f has exponential growth. The above definition naturally extends
to problems involving a combination of several parameters.

Tools are also available to distinguish problems that specifically fall into case (ii) above. Param-
eterized complexity classes and parameterized reduction enables one to show that a parameterized
problem is unlikely to be fpt. The ground complexity class is that of fpt problems, denoted FPT.
The theory defines several other complexity classes, which are conjectured to properly contain the
FPT class. A studied problem is shown to be hard for one of these classes by a parameterized re-
duction from an already classified problem, and rules out the possibility of an fpt algorithm (under
some complexity-theoretic assumption). These classes are called W[1], W[2],. . . and we have FPT
⊆W[1]⊆W[2]⊆ . . .. We refer the reader to [DF99, FG06] for formal definitions of these classes.

Over the last decade, this approach has gained increasing popularity in computer science and
in particular in computational biology, where parameters taking small values can often be distin-
guished. In phylogenetics, a number of results have been recently obtained on the parameterized
complexity of NP-hard problems (see [GNT08] for a survey).
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Part II

Quartet methods
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Chapter 3

Setting the stage

3.1 Introduction to quartet-based methods

The quartet paradygm. Several phylogenetic reconstruction methods relying on quartets have
been proposed. The combinatorial justification for such methods is that if all quartets are available
and have the topology of the estimated tree, then this tree is uniquely determined and can be effi-
ciently constructed. This remains true in some cases where only a moderate number of quartets are
available [Ste92, SS03]. Of course, it is unlikely that we are given a fully correct set of quartets.
Anyhow, any quartet set Q can be compared to a general tree T , as Q can be put face to face with
q(T ). Quartet-based methods (hereafter referred to as quartet methods) proceed from this mere
principle. They are designed as a two-step procedure, with the first being to infer quartets sep-
arately from primary data (molecular sequences, morphological traits, distances between studied
taxa, etc), and the second step being to build a tree whose quartet set corresponds to the input
quartets according to some decision or optimization criterion. The quartet paradigm for computing
phylogenetic trees is an example of the well-known divide-and-conquer approach: trees are first
computed on subproblems of small size, and are then combined to obtain a solution to the full
problem. As such, it had its hour of glory in the 1990s. At that time, no smart algorithm like
PhyML [GG03] or RaxML [SLM05] was available to compute trees on more than ≈ 40 taxa using
computationally intensive criteria such as maximum likelihood applied to sophisticated models of
evolution. However, such a task was completely manageable on trees of four taxa and this allowed
to infer trees of ≈ 100 taxa while relying on an underlying elaborate criterion.

Tractability of the general problem. As mentioned above, quartet sets obtained from practical
data contain several erroneous quartets, whereby a tree consistent with all given quartets may not
exist. The natural optimization task is then to seek the tree that satisfies (i.e. contains) a maxi-
mum number of input quartets. However, this is not a tractable problem as M. Steel showed in his
seminal 1992 paper that deciding whether a given quartet set is compatible is already an NP-hard
problem [Ste92]. As a direct consequence, deciding whether there is a tree that satisfies at least x
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input quartets is also NP-hard. In 1999, we have shown that the problem remains NP-hard even if
the input quartet set is complete [BJK+99]. Several authors have proposed heuristic [CV06] and
exact algorithms, either exponential [BdCG+98] or FPT [GN03], for the corresponding optimiza-
tion problem.

3.2 The rise of quartet methods in phylogenetics

In 1995, the only known papers on quartets were that of H.-J. Bandelt and A. Dress [BD86], de-
scribing various relationships between trees and quartets, and that of M Steel [Ste92], who focused
on combinatorial aspects of combining quartets into trees, such as knowing the minimum num-
ber of quartets needed to identify a tree or showing the NP-hardness result mentioned above. At
that time, I started working on quartets with the idea of providing a quartet-based algorithm to
reconstruct phylogenetic trees. For this purpose, I focused on the ||∗ relationship [BD86], which
has the interesting property of corresponding to a perfectly tree-like part that exists in any quartet
set, even one that is incompatible. In short, computing this relationship amounts to computing the
largest tree-like subset of an input quartet set. No algorithm was provided in [BD86] for computing
this relationship. Solving this problem had been conjectured to be an NP-hard problem [BG91],
and the bad news on the NP-hardness of deciding quartet compatibility [Ste92] only reinforced
this opinion. However, tree-likeness is a stricter variant than compatibility, thus there was a slight
chance that the problem was tractable. Eventually, I found out that this could be computed not only
in polynomial time, but also in linear time, i.e. O(n4), where n is the number of objects addressed
in the input quartet set.

At that time, the only known method for building trees that explicitly referred to quartets was
the AddTree algorithm [ST77]. This distance-based agglomerative algorithm only used quartets
as an intermediate formalism to recode a distance matrix and then decide which subtrees to group
at each agglomerative step. However, the quartet set changed regularly to reflect changes in the
distance matrix, whose dimension decreased by one after each agglomerative step. In contrast,
quartet-based methods take a quartet set as input and, as such, do not change this set during the
tree-building process. Note that a specific quartet inference process is sometimes associated with
a quartet method.

In 1996-97, no less than three quartet methods originating from independent works appeared
at the same time in phylogenetics:

• the Quartet Puzzling (QP) method, from a German team [SvH96]. The QP method first
estimates the probability that each possible quartet is correct on the basis of the Bayes the-
orem. Then these values are considered as weights for quartets, with the second phase of
the method being to infer a tree on the basis of this complete set of weighted quartets. This
heuristic process starts by choosing a random order on taxa. Then it chooses the heaviest
quartet for the first four taxa into which it inserts each successive taxon in turn, attaching
the new leaf to an edge of the current tree so as to optimize a quartet-based score. Since the
quality of the result depends on the ordering of taxa, QP uses a large number of random input
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orderings and computes the majority consensus of all trees found. Thus, QP seeks to return
a tree in which every edge appears in more than half of the tentative trees, i.e. is reliable to
some extent. The first implementation of the method was requiring O(n5) running time with
a high constant (the authors recommend performing 1000 runs), but can be accelarated to
O(n4) as noted by several authors (e.g. [RG01]), though with the same leading constant.

• the Short Quartet Method (SQM) issuing from an international collaboration at a DIMACS
meeting [ESSW97]. The SQM method was rough – it either returned a fully resolved tree
or no tree at all, and hence was later shown to perform poorly in simulations – but the paper
came with an interesting proof that a simple quartet inference process would lead the SQM
method to converge fast, i.e. to recover the correct tree with high probability from molecular
sequences that grow only polynomially in the number of leaves, for all model trees with
edges having bounded mutation probabilities. Intuitively, this nice property is obtained by
ensuring that the method uses only “close" relationships (smallest values in the distance
matrix) to determine the tree. The running time of SQM is O(n4 log2 n+n2k), where k is the
length of the molecular sequences from which quartets are inferred.

• the Q∗ method [BG97] I proposed on the basis of the ||∗ relation of [BD86]. It takes as input
a fully determined quartet set inferred through any quartet inference process such as max-
imum likelihood (ML), neighbor joining (NJ), or ordinal quartet method (OQM) [Kea98].
A fully determined quartet set is one where one and only one quartet is available for all
O(n4) combinations of four input taxa. From such a set where quartets are considered as
unweighted, it proposes a tree such that the quartets corresponding to each edge are all in
the input set. No need to say that with such an heavy combinatorial constraint it usually pro-
poses partially resolved trees. It’s running time is linear, i.e. O(n4). This method is detailed
below in section (4.1).

A constant in these first quartet methods was the conservative approach they adopted, maybe
starting from the observation that the quartet inference processes usually propose some erroneous
quartets. Thus, the first quartet methods all aimed at inferring trees containing only reliable edges.
QP is less stringent than SQM, while Q∗ pushes the conservatism to an extreme point, while still
being more flexible than SQM in its ability to infer some edges even when insufficient quartets are
available for other edges.

Between 1997 and 2001, under the name quartet cleaning (QC), several works in which I took
part proposed new quartet methods relying on combinatorial arguments in the line of the Q∗ method
but being less stringent, hence inferring more resolved trees. These studies were based on an initial
idea of P. Kearney [JKL98] and conducted with many different collaborators (see section 4.2).

Starting from 1998, David Bryant and I also discovered that the Q∗ method had two equivalent
methods in the world of distance-based methods. The first one is called the Buneman tree since it
is briefly described in a paragraph of an old work of P. Buneman originating from the classification
field [Bun71]. It allows us to compute a set of compatible bipartitions, i.e. an unrooted tree,
from a distance matrix. The second one is called Apresjan clustering, after the name of the
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Russian mathematician D.J. Apresjan and was proposed even earlier [Apr66]. It enables to obtain
a collection of compatible clusters, i.e. a rooted tree. The correspondence between distance and
quartet worlds was further increased when in 1999 Vince Moulton and Mike Steel investigated an
extension of the Buneman tree, called the refined Buneman method [MS99], that corresponds
to part of the QC methods. This is called being timely! As I heard quite early about this work
through a technical report, the same year we were able to propose a faster algorithm to compute
the refined Buneman tree [BB99]. Later on, we extended this algorithm to a whole family of
clustering methods for which we provided fast algorithms [BB01] (see section 4.2).

Below, we first detail the Q∗ method, then QC methods generalizing it, and finally discuss the
future of quartets in phylogenetics.
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Chapter 4

Contributions to the quartet world

4.1 The Q∗ method

Defining Q∗. Given a fully determined quartet set Q on a set S of objects (e.g. taxa), we consider
here the problem of finding the maximum tree-like subset of Q, denoted Q∗. The following char-
acterization of Q∗ can be obtained from the definition of the ||∗ relationship given in Bandelt and
Dress [BD86]:

Definition 4.1 Let Q be a quartet set and B∗ be the set of bipartitions b=σ|σ such that q(b)⊆Q,
then Q∗=

S

b∈B∗ q(b) .

B∗ is a compatible set of bipartitions, due to the fact that q(b) ∈ Q is required for any b ∈ B∗ and
that Q contains at most one quartet topology for each four-object set. Tree-like subsets of Q on the
ground set S bijectively correspond to elements in B∗. As B∗ is a set of compatible elements, the
tree-like subsets of Q form a lattice having as unique maximum element the set Q∗ corresponding
to the complete set B∗.

Note however that Q∗ is usually not the maximum compatible subset of Q, since it is not
even a maximal compatible subset of Q: ∀q∈Q−Q∗, {q}∪Q∗ is compatible. Moreover, we can
easily find counter-examples showing that Q∗ is not always contained in the maximum subset of
compatible quartets.

Computing Q∗. Obtaining B∗,T ∗,Q∗ form one another can be done in linear time. The algorithm
I designed focuses on computin B∗ from the input quartet set Q. It first does this for a trivial number
of objects, then progressively transforms B∗ to account for new objects considered, until all objects
in S have been accounted for. More precisely, for the trivial case of four objects, B∗ is readily
obtained: it contains the four trivial bipartitions on these elements plus possibly the bipartition
{x,y}|{z, t}, with {x,y,z, t}= {1,2,3,4} (when xy|zt ∈Q). At step i, an object xi ∈ S not yet
considered is taken into account and the B∗ set of this step is initialized with the trivial bipartition
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{xi}|{x1, . . . ,xi−1}. Then for each bipartition b=σ|σ in the previous set B∗, the algorithm checks
whether b′=σ∪{xi}|σ and b′′=σ|σ∪{xi} qualify to be in the new B∗ set. As stated before, this
only requires checking whether (q(b′)− q(b)) ⊆ Q and (q(b′′)− q(b)) ⊆ Q, respectively. This
procedure stops after all objects of S have been processed.

In [BG97] we showed that this algorithm can be implemented to have O(n4) running time since
it is possible to consider only once each quartet in the process: the tree T ∗ is built together with B∗

and information is propagated along its edges according to a postorder and a preorder traversals to
detect the position where a new object xi can be inserted as well as the former edges that have to
be collapsed due to missing quartets on xi.

Convergence rate. Additionally, we showed that, when using the four point method (FPM) to
infer quartets of Q, the convergence rate of the method is at worst polynomial when the maximum
evolutive distance between two taxa is bounded, which is usually the case in practice. This means
that sequences from which quartets are inferred need only to have polynomial length in the number
of taxa. More precisely, we have the following result:

Theorem 4.1 ([BG97]) Under the Cavender-Farris model of evolution, the probability that the
Q∗ method recovers the entire topology of an estimated tree T is at least

1−n2e− f 2e−4dk/2

where f is the length of the smallest edge in T . Equivalently, if we suppose k characters evolve
along the edges of a phylogeny T under the Cavender-Farris model, then T ∗ = T with probability
at least 1−ε (ε>0) if

k >
2ln(n2

ε )e4d

f 2 .

Thus, the difficulty comes from short edges of the estimated tree. This is explained by the
fact that edges can be found only when the ancestral sequence evolving from one endpoint of
the edge to the other one is prone to substitutions – the number of such events is proportional to
the amount of time the sequence evolved along the edge, i.e. to the length of the edge. When
substitutions actually occurre during this laps of time, the presence of the edge can be suspected
by comparing sequences observed for the leaves of the tree (namely, sequences belonging to the
subtree originating from one endpoint of the edge share common traits that sequences from the
symmetric subtree do not have).

Since the inference of the different edges is independent for the Q∗ method, we can obtain the
following result:

Theorem 4.2 ([BG97]) Under the Cavender-Farris model of evolution, the probability that the
Q∗ method recovers an edge e is at least

1−n2e−l(e)2e−4dk/2.
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The theorem extends to more general stochastic evolution models, such as the generalized Jukes
Cantor model [TN84].

Generalizing the problem. When the set Q of considered quartets is not complete, it can be
shown that deciding whether Q is tree-like is solvable in polynomial time, even if Q contains
several resolutions for the same quartet. However, what is the complexity of obtaining the largest
tree-like quartet subset in such a case? In other words, does the problem considered in this section
remain solvable in polynomial time?

4.2 Quartet cleaning methods

As already mentioned, the quartet inference step in quartet methods is not error prone. As a result,
the input set Q of quartet topologies sometimes contain quartets differing from those present in the
estimated tree T . A quartet {a,b,c,d} is a quartet error if ab|cd ∈ Q but ab|cd 6∈ q(T ). When
the quartet set Q is only a rough estimation of q(T ), quartet methods will infer a tree T ′ that is
unlikely to be a good estimate of T . In fact, several early quartet methods are very sensitive to
quartet errors. For instance, a single quartet error can prevent the Q∗ and SQM methods to recover
the (complete) true evolutionary tree. Hence, at the time these methods were proposed, it was of
prior importance to develop procedures to improve the accuracy of quartet topologies inferred from
primary data.

There are two approaches for improving the quartet accuracy. The first is to develop better
quartet topology inference methods, which requires skills on models of sequence evolution and
statistics to propose for instance more accurate character-based methods than those previously
used. [Wil99a, LWT99] followed this way but – as far as I know – the efficiency of their methods
has not yet been experimentally reported. The second alternative is to develop methods that detect
and correct quartet errors in Q by comparing different subsets of quartets. This process is called
quartet cleaning and have been investigated since the late 90s, through the impulsion of P. Kearney.

In, [BJK+99] we presented two polynomial-time quartet cleaning algorithms. One of them
was proven to be optimal in its ability to correct quartet errors whereas the other is shown to be
robust to the distribution of quartet errors in the true evolutionary tree. We also performed an
extensive simulation showing that i) quartet errors are common, regardless of the quartet topology
inference method used, hence establishing the need for quartet cleaning algorithms; ii) the quartet
cleaning algorithms we presented are very effective in detecting and correcting quartet errors, in
most studied cases dramatically improving the accuracy of Q. Some details are given below on all
these results.

Definitions Define the quartet error {a,b,c,d} to be across edge e if e is on the joining path of
{a,b,c,d} in T . Similarly, define the quartet error {a,b,c,d} to be across vertex v if v is on the
joining path of {a,b,c,d} in T . These definitions permit the assignment of quartet errors in Q to
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edges/vertices of T .

X Y

a b

e

ab

T T'

Figure 4.1: An extreme case of subtrees surrounding an edge e. This leads to establishing cleaning
bounds.

Let e = (X ,Y ) be the bipartition induced in T as depicted in Figure 4.1. Observe that q(T )
and q(T ′) differ by quartets of the form ax|by where x ∈ X and y ∈ Y . It follows that |q(T )−
q(T ′)|= (|X |−1)(|Y |−1). If half of the quartets of the form {a,b,x,y} with x ∈ X and y ∈Y have
quartet topology ax|by in Q and the other half have quartet topology bx|ay in Q then no quartet
cleaning algorithm only looking at quartet across e can guarantee that quartet errors across e can
be corrected. Under the basic principle of trying to satisfy a maximum number of input quartets,
(|X | − 1)(|Y | − 1)/2 is then the upper bound of quartet errors that an edge can have across it to
have the guarantee of being recovered. This motivates the following formulations of quartet edge
cleaning:

Local A quartet edge cleaning algorithm has local cleaning bound b if it corrects all quartet errors
across any edge with fewer than b quartet errors across it.

Global A quartet edge cleaning algorithm has global cleaning bound b if it corrects all quartet
errors in Q if each edge of T has fewer than b quartet errors across it.

Analogous definitions apply to local and global vertex cleaning algorithms by requiring the same
constraints on the three edges connected to an internal vertex.

Local edge/vertex cleaning is more robust than global edge/vertex cleaning since it can be
applied to an edge/vertex independently of the number of quartet errors across other edges/vertices.
This is a significant feature especially when some edges/vertices have a high number of quartet
errors across them. In contrast, global cleaning algorithms are applicable only if all edges/vertices
satisfy the cleaning bound.

The example from Figure 4.1 illustrates that edge/vertex cleaning bounds should not be con-
stant but depend on the bipartition sizes. Hence, an edge e = (X ,Y ) would have an edge cleaning
bound that depends upon |X | and |Y |. In particular, the example demonstrates that the optimal edge
cleaning bound is bopt = (|X |−1)(|Y |−1)/2.
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A quartet cleaning algorithm A simple global edge cleaning algorithm can be obtained by a
bottom-up approach:

Algorithm Global-Clean(Q)
1. Let R := S.
2. For every pair of rooted subtrees T1 and T2 in R
3. Let A denote the leaf labels of T1 and T2, i.e. L(T1)∪L(T2).
4. If |q(A,S−A)−Q|< (|A|−1)(|S−A|−1)/2 then
5. Create a new tree T ′ that contains T1 and T2 as its subtrees.
6. Let R := R−{T1,T2}∪{T ′}.
7. Repeat step 2 until |R|= 3.
8. Connect the three subtrees in R at a new vertex and output the resulting unrooted tree.

A straightforward implementation of Global–Clean results in a time complexity of O(n2 ·n4) =
O(n6), since each quartet can be checked at most O(n2) times. However, a careful use of quar-
tets and of adequate data structures enabled us to factorize tests performed between the different
analyzed bipartitions and to reduce the complexity of the algorithm down to the optimal O(n4)
running time.

Local cleaning is a more difficult algorithmic problem, as edges across which too much errors
are present might hinder the recovery of the other ones. A first polynomial-time algorithm was
proposed in [JKL98], but this algorithm had a suboptimal cleaning bound and the polynomial
of its running time had very high degree, so that this algorithm was only of theoretical interest.
In [BJK+99] we where able to design an O(n7) local vertex cleaning algorithm with cleaning
bound (|X |−1)(|Y |−1)/4. Later on, we proposed a more practical O(n5) edge cleaning algorithm
with optimal bound [BBJ+00], then [DVW02] obtained an O(n7) vertex cleaning algorithm with
optimal cleaning bound.

Empirical evaluation of the cleaning algorithms. Experiments on randomly generated 10-taxa
trees were performed to measure both the need for cleaning algorithms and their efficiency. Results
showed that:

• quartet sets inferred by regular methods (NJ, ML, OQM) almost always contain incorrect
quartets. The number of quartet errors decreases when sequence length increases, as ex-
pected, and when mean edge-length decreases. However quartet errors remain significant
even for sequences of 2000bp and mean edge-length 0.0025: still more than 50% of the
datasets contain quartet errors in this case. This clearly shows that quartet errors concern a
non-marginal number of trees to be estimated.

• global edge and local vertex quartet cleaning algorithms can clean significant numbers of
trees and vertices per tree, respectively, under moderate mean edge–lengths and large se-
quence lengths. Both algorithms decrease the number of quartet errors significantly under
a wide variety of conditions. For instance, when resorting to OQM to infer quartets and
mean edge–length is 0.1 while sequence length is 200, the increase in accuracy is approxi-
mately 25%. When the mean edge–length is large and/or the sequence length is small, the
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increase in accuracy is dramatic. For instance, for 200bp sequences and mean edge-length
0.25, where only ≈ 2% input quartet sets Q are correct, the global edge cleaning algorithm
enables to correct all errors for ≈ 82% input trees. In this case, ≈ 30% vertices of the esti-
mated tree have no quartet errors across them in Q, and ≈ 69% of these trees are completely
error-free after the local vertex cleaning algorithm is applied. Table A.1 in appendix details
results for all simulated conditions.

For more experiments on quartet cleaning see also [SJWMV03] whose findings are reported at
the end of this chapter.

Recovering all correct bipartitions The experiments related above showed that in some cases
the correct bipartitions (X ,Y ) had more quartet errors across them with respect to Q than allowed
by the (|X |− 1)(|Y |− 1)/2 bound detailed above. Thus, if we want to recover all true edges, we
have to be less stringent on the number of quartet errors. Doing so, leads to infer more bipartitions,
but at the risk of obtaining an incompatible set of bipartitions. For this reason, bipartitions need
also to be ranked to select the most supported ones from an incompatible set. It is natural to rank
bipartitions according to the number of quartet errors across them with respect to the input set Q.
The distance from a set of quartets Q to a bipartition (X ,Y ) is defined to be

|q(X ,Y )−Q|.

Note that the number of quartet topologies in q(X ,Y ) is |X |(|X |−1)|Y |(|Y |−1)/4. In order to
compare the support for two bipartitions, the distance function must be normalized. Let us define
the normalized distance from Q to (X ,Y ) by

δ(Q,(X ,Y )) =
4 · |q(X ,Y )−Q|

|X | · (|X |−1) · |Y | · (|Y |−1)
.

When (X ,Y ) is trivial (|X | = 1 or |Y | = 1), the normalized distance is defined to be 0. The δ
measure can be used as the bipartition support function: the bipartitions with lower distances from
Q are those better supported by Q.

Using the normalized distance δ defined above, we can implicitly define a bipartition list that
orders all bipartitions of S by increasing distance from Q. Assuming that correct bipartitions are
well–supported by Q (a claim supported by experimental results) and appear near the start of the
list, the task is to generate a bipartition neighborhood of Q of the form

{(X ,Y ) | δ(Q,(X ,Y ))≤ r}

which is called the closed r–neighborhood of Q. When the inequality is strict it is called the open

r–neighborhood of Q.

This framework nicely integrates results mentioned since the beginning of this section:
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• when r = 0, the closed r–neighborhood of Q corresponds to those bipartitions that have 0
quartet topology differing from those of Q. This corresponds to the set of bipartitions B∗

computed by the Q∗ method.

• when r = 2
|X ||Y | the open r–neighborhood of Q corresponds to cleaning algorithms with the

“optimum" bound detailed previously. As a result, the closed 2
|X ||Y |–neighborhood of Q is

not necessarily compatible. A good example is that given in Figure 4.1.

Widening the set of inferred bipartitions to include all correct bipartitions corresponds to com-
puting the r-neighborhood of Q with higher values of r. For this purpose, define

Best(Q,m) =

{

(X ,Y ) | δ(Q,(X ,Y )) <
2m

|X ||Y |

}

.

Thus the set Best(Q,m′) contains the set Best(Q,m) for all m ≤ m′. Note that Best(Q,1) is the
set obtained by local edge cleaning and the limit of Best(Q,m) as m tends to zero is the set of
bipartitions recovered by the Q∗ method. An algorithm that constructs the set Best(Q,m) is called
a hypercleaning algorithm, indicating that m can take on values greater than 1 which corresponds
to cleaning algorithms detailed previously in this section.

Though there is an exponential number of bipartitions on n objects, focusing on those that
differ from Q by only a limited number of quartets helps a lot. As we will now see, we can obtain
an fpt algorithm in m, the parameter indicating the “quartet lag" of the sought bipartitions to the
set Q. This shows that this computational problem can be solved efficiently for small values of
m. Experiments reported hereafter indicate that a moderate value of m is sufficient to recover all
correct bipartitions.

A hypercleaning algorithm. Let S = {s1,s2, . . . ,sn}, Sk = {s1,s2, . . . ,sn} and Qk be the subset
of Q induced by Sk. The hypercleaning algorithm proceeds by first computing sets of the form

Bestxy(Qk,m) = { (X ,Y ) such that x ∈ X ,y ∈ Y and there are fewer than m

quartet errors across (X ,Y ) involving x and y }

for all x,y ∈ S and 1≤ k ≤ n.These sets can be computed by a recurrence relation:

Theorem 4.3 ([BBJ+00]) If k = 1 then Bestxy(Qk,m) = /0. If k ≥ 2 then

Bestxy(Qk,m)⊆ Lxy∪Rxy∪Mxy

where

Lxy = {(X ∪{sk},Y ) | (X ,Y ) ∈ Bestxy(Qk−1,m)}
Rxy = {(X ,Y ∪{sk}) | (X ,Y ) ∈ Bestxy(Qk−1,m)}
Mxy = {({sk},Sk−1)}
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The algorithm for computing Bestxy(Qk,m) for all x,y∈ S and 1≤ k≤ n follows from Theorem
4.3: For all x,y ∈ S, for k ranging from 1 to n, and for all (X ,Y ) ∈ Lxy∪Rxy∪Mxy, place (X ,Y ) in
Bestxy(Qk,m) if there are fewer than m quartet errors across (X ,Y ) involving x and y.

The number of bipartitions in Bestxy(Qk,m), for any 1 ≤ k ≤ n, is O(n · f (m)), where f (m) =
4m2(1+2m)4m. There are O(n3) sets Bestxy(Qk,m) to construct. Constructing each set Bestxy(Qk,m)
takes time proportional to the size of Bestxy(Qk−1,m) times the complexity of testing if a biparti-
tion has fewer than m quartet errors involving x and y. Factorizing the detection of quartet errors
from Qk−1 to Qk, at step k we only need to check for the O(n) quartets involving x,y and sk. It
follows that the complexity of constructing all sets Bestxy(Qk,m) is O(n5 f (m)).

Now, let

Best(Qk,m) = {(X ,Y )|δ(Qk,(X ,Y )) <
2m

(|X ||Y |)}

for all 1≤ k ≤ n. Observe that Best(Qn,m) = Best(Q,m). Best(Qk,m) can be computed thanks to
the following recurrence relation:

Theorem 4.4 ([BBJ+00]) If k = 1 then Best(Qk,m) = /0. If k ≥ 2 then

Best(Qk,m)⊆ L∪R∪M

where

L = {(X ∪{sk},Y ) : (X ,Y ) ∈ Best(Qk−1,m)}
R = {(X ,Y ∪{sk}) : (X ,Y ) ∈ Best(Qk−1,m)}

M = ∪x∈Sk−1Bestxsk(Qk,m)

The algorithm for computing Best(Qk,m), for 1≤ k ≤ n follows from Theorem 4.4: For k ranging
from 1 to n, and for all (X ,Y )∈ L∪R∪M, place bipartition (X ,Y ) in Best(Qk,m) if there are fewer
than m(|X |−1)(|Y |−1)/2 quartet errors across (X ,Y ). To obtain the complexity of this algorithm,
we obtained the following bound on the size of each set Best(Qk,m):

Theorem 4.5 ([BBJ+00]) The number of bipartitions in Best(Qk,m), for any 1≤ k≤ n, is O(n3 f (2m)).

By a similar reasoning as above, we showed that the overall complexity to compute Best(Q,m) is
O(n5 f (2m)+n7 f (m)). This establishes the problem of determining Best(Q,m) as fixed parameter
tractable. Like other fixed parameter tractable problems, it is likely that more efficient implemen-
tations can be achieved. Anyhow, from the above equations it is clear that the method can already
be heavily parallelized.

As we could compute Best(Q,m) and rank these bipartitions by the δ measure, we proposed a
simple greedy “optimization" algorithm to produce a tree that is as resolved as possible and that
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maximizes the agreement with the input set Q. More precisely, it tries to select a maximal set of
compatible bipartitions (X ,Y ), with the smallest distance to Q, i.e., minimizing ∑(X ,Y ) δ(Q,(X ,Y )).
For this purpose, the greedy algorithm orders bipartitions in Best(Q,m) by increasing normalized
distance to Q and selects a bipartition when it is compatible with all previously chosen bipartitions.
The set of chosen bipartitions are then assembled into a tree output by the greedy algorithm.

A simulation study starting from a real 10-taxa tree showed that m = 5 was enough to recover
all correct bipartitions, and that, even when m = 2, the hypercleaning greedy algorithm obtains
systematically and significantly better results than the local cleaning algorithm. Note that the
definition of Best(Q,m) takes into account the size of the two parts of a bipartition. Hence, it
is likely that the minimum value of m needed to find all correct bipartitions does not depend on
the number of taxa in the estimated tree, but rather only on the difficulty of the reconstruction,
e.g. depending on LBA phenomena.

Conclusion and future directions. The m parameter contributes to the appeal in the hyperclean-
ing technique, in that it allows for a complete range of quartet methods, from conservative (with
values of m close to 0) to optimization (large values of m). The heuristic detailed above choos-
ing the output bipartitions among those of Best(Q,m) is simplistic, and there is a real hope that a
very accurate quartet method is obtained by replacing it with a more involved selection procedure.
Indeed, the experiments showed that m = 5 allows to circumvent in 99% of the cases the set of
all correct bipartitions in a set whose size is at most 7 times larger. This is already an impressive
results: at the beginning we had the challenge of recovering the O(n) correct bipartitions from
an exponentially large set of possible bipartitions. Now we only have to decipher them from a
set whose size is constant with respect to n. There are at least two ways in which the simplistic
bipartition selection heuristic could be improved:

• First, the bipartitions could be ranked depending on another criteria. For instance, different
quartets could contribute different weights to rank a bipartition. From the interesting results
obtained by latest method relying on short quartets [SWR08], it might be interesting to give
more weight to short quartets than to others to avoid LBA problems. The weighting scheme
among quartets could be progressive. A weighting scheme giving better rank to the correct
bipartitions would lead the selection procedure to choose more correct bipartitions at the
start, hence increase the total number of them chosen overall. Indeed, every incorrect bipar-
tition chosen impedes one or several correct bipartitions to be selected as they are mutually
incompatible.

• A complementary possibility is to adopt a less naïve algorithmic procedure to select bipar-
titions from Best(Q,m). A bipartition could be chosen not only depending on those already
chosen but also on the other candidates ones. For instance, a bipartition that invalidates four
fifths of the remaining ones could be given less chance than one invalidating just one fifth
of them. A weighted incompatibility graph among candidate bipartitions could also be com-
puted, in which a maximum weighted clique (or an approximation of it) would be sought.
The connectivity of the vertices in this graph depends on the value of m, and it is worth ex-
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ploring whether a fixed-parameter algorithm or an approximation algorithm can be designed
depending on the actual value of m. Many ideas remain to be tested there.

• In 2001, S. Willson proposed an “error correcting map" (called EC) that aims at correcting
quartets incorrectly inferred [Wil01]. This map has a purpose apparent to that of the quartet
cleaning methods detailed here. However, EC works from a very different principle than
cleaning methods and both methods could correct different quartet errors. The complemen-
tarity between EC and QC/HQC is indicated by the fact that more resolved trees are obtained
when combining EC with QC/HQC. Given current results in [Wil01, pp347-348], a couple
of theoretical results remain to be obtained such as showing that correcting quartets by EC
before applying QC/HQC can never lead to loose some inferred splits. Moreover, a complete
simulation study would be welcomed to examine the overall level of accuracy obtained by
combining the two kinds of error correction methods.

4.3 Link between some quartet- and distance-based methods

Between 1998 and 2000, I worked with David Bryant on parallels between the above-mentioned
quartet methods and several distance-based methods. The latter take as input a matrix of “dis-
tances" between pairs of objects, from which is built a tree whose leaves are labeled by the objects.
Distance methods have been used in phylogenetics since the 80s, the age of numerical taxonomy,
where such methods were called phenetic methods. Distance methods preexisted in other scientific
fields such as classification, where they are often called hierarchical clustering methods. The aim
of almost every clustering method is to cluster objects in groups of objects such that objects in a
group (or cluster) are more similar to one another than they are to objects outside the group. Note
that there is a slight but important distinction here with phylogenetic reconstruction which aims at
clustering evolutionary related objects together.

Duality between clustering and splitting methods. Any “distance" method takes as input a
squared or triangular matrix of values between studied objects. In fact, these values can either
represent similarities or dissimilarities between objects. Methods working from similarities usu-
ally produce a collection of compatible clusters, equivalently a rooted tree, and are hence called
clustering methods hereafter. Methods working from dissimilarities usually produce a collection
of bipartitions or splits, equivalently an unrooted tree, and are called splitting methods. There is
a duality between the two kinds of methods, as a method of one kind can usually be turned into a
method of the other kind. Below is detailed an example we studied.

Let S be the set of studied objects. Define the Apresjan clusters [Apr66] of a similarity
function s to be {A : A⊆ S such that ιs(A) > 0}, where ιs(A) is the strong isolation index

ιs(A) := min
a,a′,x
{s(a,a′)− s(a,x) : a,a′ ∈ A, x ∈ S−A}.
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Define the Buneman splits [Bun71] of a dissimilarity function δ to be the set of splits {A|B :
µδ(A|B) > 0}, where µδ is the strong separation index

µδ(A|B) = 1
2 min{(δ(a,b)+δ(a′,b′))− (δ(a,a′)+δ(b,b′)) : a,a′ ∈ A, b,b′ ∈ B}. (4.1)

In [BB99] we formalized the link between the two methods. Let δ be a dissimilarity function
on S. The Farris Transform of δ with respect to x ∈ S is the similarity function sx on S−{x} with

sx(a,b) = 1
2(δ(a,x)+δ(b,x)−δ(a,b))

for all a,b ∈ S−{x} [FKE70]. The inverse of the Farris transform is given by

δ(a,b) = sx(a,a)+ sx(b,b)−2sx(a,b)

for all a,b ∈ S−{x}, and δ(a,x) = sx(a,a) as well as δ(x,x) = 0.

Theorem 4.6 ([BB99]) Let δ be a dissimilarity function on S and let sx denote the Farris transform
of δ with respect to x ∈ S. For any split A|B of S,

µδ(A|B) = min
b
{ιsb(A) : b ∈ B}= min

a
{ιsa(B) : a ∈ A}.

Thus A|B is a Buneman split for δ if and only if A is an Apresjan cluster of sb for all b ∈ B, and
this holds if and only if B is an Apresjan cluster of sa for all a ∈ A. This connection leads to the
suprising algorithmic result that Buneman splits of a dissimilarity function can be constructed in
O(n3) time [BB99], even though the definition appears to imply that O(n4) quartets need to be
considered (see equation (4.1)).

Connection betweeen distance and quartet methods. The fact that quartets appear in the def-
inition of the Buneman method can be exploited to define a link between splitting methods and
quartet methods. Indeed, the Buneman tree can be redefined in the following way: consider the
Buneman score of a quartet ab|cd with a,b,c,d ∈ S, to be defined as:

βδ(ab|cd) = 1
2 (min{δ(a,c)+δ(b,d),δ(a,d)+δ(b,c)}−δ(a,b)−δ(c,d)) (4.2)

The strong separation index of a split A|B of S is then

µδ(A|B) = min
a,a′∈A,b,b′∈B

βδ(aa′|bb′).

Formulated as above, the Buneman tree method can be easily generalized to the case when quartets
are not necessarily weighted by their Buneman score. Given any set of quartets Q and a weighting
function w for Q such that at most one quartet has positive weight for each subset of four species,
the set of splits

{U |V : ∀q ∈ q(U |V ),w(q) > 0}
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is precisely the set of bipartitions B∗ computed by the Q∗ method. The gateway from dissimilarities
to quartet weights provided by equation (4.2) allowed us to define a whole family of splitting
methods by defining different separation indices and looking each time at the set of splits that have
positive index. Depending on the strictness of the separation index, methods with a varying degree
of conservatism are obtained. Each method in the family outputs a set of splits that includes those
of the more conservative methods. Equivalently, the unrooted tree output by a method refines the
trees output by the more conservative methods. The progression begins with the Buneman tree
[Bun71], then contains the refined Buneman tree [MS99], then a generalization of quartet cleaning
methods [JKL98, BJK+99, BBJ+00] and ends with a construction called stable splits, that uses the
most lenient separation index.

Thanks to the duality between clustering and splitting methods, a whole family of clustering
methods (with a varying degree of conservatism) was also defined starting from the Apresjan clus-
ters [Apr66] to a construction called stable clusters [BB01]. Additionally, we were able to prove
links between some of these methods and well-known methods in classification, such as the Single
Linkage and Average Linkage methods.

Fast algorithms The link with these classical methods, as well as the gateways between clus-
tering, splitting and quartet methods enabled us to obtain efficient polynomial time algorithms
for most constructions, except for stable clusters and splits that we showed NP-hard to com-
pute. These algorithms have been implemented in the well-known SplitsTree phylogenetic package
[Hus98, HB06]. Table 4.1 lists the running times obtained for the various methods we considered,
where splitting methods can accept either a dissimilarity function or a quartet weighting function,
while clustering methods take as input either a similarity function or a triple weighting function1.

Future direction. Sometimes, data simply does not support a tree but a more intricate structure,
such as a network, e.g. due to recombination events. To build networks from distance data, Bandelt
and Dress introduced the split decomposition method, which constructs a set of weakly compatible
splits [BD92]. In fact, split decomposition is the exact network analogue of the Buneman tree
construction. We already exploited this relationship to provide a faster algorithm for split decom-
position than previously known [BB99]. However, the generalization of the split decomposition to
a whole family of network methods refining it, i.e. outputting more splits, has not yet been con-
sidered. The only work I know of in this direction is the interesting but somewhat cryptic work of
Andreas Dress on weak hierarchies [Dre97].

1i.e. a weighting function on rooted triples.
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Construction Input Complexity

Strong clusters [Apr66] similarity function O(n2)

triple weighting function O(n3)

Buneman splits[Bun71] dissimilarity function O(n3)

quartet weighting function O(n4)

Clean clusters similarity function O(n3)

triple weighting function O(n4)

Clean splits quartet weighting function O(n5)

Refined Buneman splits [MS99] quartet weighting function O(n5)

Stable clusters NP-hard.

Stable splits NP-hard.

Table 4.1: A summary of the construction complexities for the clustering and splitting methods
studied in [BB01]. Methods are ordered by decreasing degree of conservatism.

Publication(s) whose material is described in this chapter:

• Inferring Evolutionary Trees with Strong Combinatorial Evidence, V. Berry

and O. Gascuel, Theoretical Computer Science, 240(2), 271-298, 2000. A less
complete preliminary version of this paper appeared in Berry, V., Gascuel, O.,
Proceedings of COCOON’97.

• Quartet Cleaning: Improved Algorithms and Simulations, V. Berry, P. Kear-
ney, M. Li, T. Jiang and T. Wareham, European Symposium on Algorithms
(ESA’99), LNCS, num. 1643, 313–324, 1999.

• A practical algorithm for recovering the best supported edges of an evolution-
ary tree, V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham et
H. Zhang, Symposium on Discrete Algorithms (SODA’00), ACM press, 287–
296, 2000.

• Faster reliable phylogenetic analysis, International Conference on Computa-
tional Molecular Biology (RECOMB’99) – best student paper, V. Berry and
D. Bryant, ACM press, 59–68, 1999.

• A structured family of clustering methods, D. Bryant and V. Berry, Advances
in Applied Mathematics, vol 27, pp 705-732, 2001.
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Chapter 5

The fall of quartet methods in

phylogenetics?

Quartet methods can be used in various fields as a paradigm to obtain a hierarchical classification
of a set of objects under study. The application field of prime interest to me is phylogenetics and I
will discuss here experimental results of quartet methods in this field.

In phylogenetics, the first methodological works on quartets mainly date from the 1990’s, with
many new methods being proposed around year 2000. The emergence of these new methods
naturally raised the question of their accuracy to build phylogenies, relative to other methods in
use.

Simulation studies. In biology, the correct, historical tree is almost never known, which makes
assessing the accuracy of tree-building methods problematic. Thus, the habit in the field is to
compare methods by using computationally intensive simulations where the “correct" tree is fixed.
A large number of runs are repeated with varying parameters. For each run, a random model tree
is chosen; sequences are evolved according to a simple evolution model from the root down to the
leaves of the model tree; then sequences obtained at the leaves are collected to form a dataset given
as input to the competing tree-building methods. Performances of the methods are compared on
the basis of various measures. The accuracy of the methods is usually measured with the Robinson
and Foulds (RF) distance [RF81]: its value is defined as the number of edges in the inferred tree
that are not in the model tree (type I error) plus the number of edges in the model tree that are not
in the inferred tree (type II error).

Accuracy of the inferred quartets. By studying the impact of taxonomic sampling among
groups of a phylogeny to estimate, [LPVLLG93] pointed out that the accuracy of a proposed
phylogeny is linked to the number of taxa it contains, with trees including more taxa being better
estimated. This raised doubts on quartet methods simply because the quartet estimation process –
building trees on four leaves only – is likely to produce an unlimited number of incorrect quartets.
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Hence, any quartet method would be handicaped from the start. However, quartet methods are in a
way quite resistant to errors in the input quartet set, as I showed experimentally [Ber97]. I studied
the case of a 15-taxa tree, extracting its quartets from which I deleted pe percent at random. The
resulting incomplete quartet set was given as input to a simple quartet-based heuristic method. For
5%≤ pe ≤ 80%, this method was able to find the starting tree in 100% of the times (on 200 runs).
For pe = 95%, the correct tree was still found 84% of the times. Additionally, reversing (i.e. re-
placing by an incorrect quartet) the pi percent of the remaining quartets at random did not make
the reconstruction a lot harder. For instance, choosing (pe = 50%, pi = 33%), the heuristic quartet
method was still able to find the correct tree 99% of the times, and for (pe = 75%, pi = 33%) its
success rate was 98.3% (on 300 runs). So quartet methods can still perform well despite a lot of
missing and incorrect information.

However, accuracy problems can arise when the errors are not homogeneously distributed
among quartets. On real or simulated datasets, it can happen that all quartet errors point in the
same direction, e.g. toward an alternative global topology than that of the phylogeny being esti-
mated. This mostly happens when the estimated phylogeny is submitted to long-branch attraction
(LBA), i.e. when there is a succession of long-short-long edges in the phylogeny. In such a case,
quartets concerning a short internal edge can be systematically incorrect and consistently point
toward another resolution of the edge. The whole quartet set thus leads any quartet method to infer
a partially incorrect topology. This is the conclusion of [RG01] who obtained less accurate results
for quartet methods in simulations where LBA arises. Their results could be explained by the fact
that distance methods (such as NJ) and character methods (such as parsimony or ML), as opposed
to quartet methods, could be less affected by LBA since they would first cluster taxa in the different
subtrees surrounding the short problematic edge, and then choose a resolution of that edge on the
basis of the information given by more than four taxa.

Accuracy of quartet methods to infer phylogenies. More generally, the accuracy of quartet
methods has been compared to that of NJ a large number of times, usually on the basis of the RF
distance, with mitigated results:

• [SvH96] obtained better accuracy results for QP than for NJ on an 8-taxa tree with sequences
of 500 bp or 1000 bp. However, their results were criticized by [RG01] as they used a well-
balanced model tree, which favors QP (as clearly demonstrated in [RG01, Table 5]).

• [Ber97] showed on 10-taxa trees that a simple quartet-based heuristic further resolving the
tree output by Q∗ is able to beat NJ on the RF measure when short sequences are available
(≤ 300 bp). But as I remember it, NJ had better RF results on longer sequences (unpublished
results).

• [RG01] obtained better RF results for NJ than for QP and for the Weight Optimization (WO)
quartet heuristics they presented. These results were obtained on 12-taxa trees for sequences
of 300 and 600 bp and trees likely submitted to LBA.
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• [SJWMV03] observed that NJ recovered on average a larger proportion of correct edges
than conservative quartet methods (Q∗, QC, QP), on 10- to 40-taxa trees with sequences
containing up to 2000 bp.

In defense of quartet methods, it can be noted that most of these studies did not use the most
accurate quartet inference methods available at the time, e.g. the OQM [Kea98] and the Higher
Order Parsimony method proposed by S. Willson to specifically reduce LBA problems [Wil99b].
It is however not clear that this factor alone would inverse the tendency of above related results.
Personally, I doubt this would be the case, simply because of comparison measures chosen above
would not allow it.

Inadequate comparative measures. Indeed, conclusions obtained on QP, Q∗ and QC in these
papers – and others – are misleading. These studies consider two categories of tree-building meth-
ods, independent of their reconstruction paradigm (quartets, distances or characters): “optimiza-
tion" methods that infer fully resolved trees, i.e. trees with a structure similar to that of the esti-
mated tree, as opposed to “conservative" methods, that usually propose partially resolved trees.
It is important to make the distinction between these two kinds of methods to realize that some
comparison measures are inadequate here. For instance, [SvH96, RG01] measure the number of
model trees correctly recovered by the methods under study. But inherently, conservative methods
will achieve lower success rates, with these rates being bounded above by the percent of times they
propose a fully-resolved tree. Even randomly completing the partially resolved trees proposed by
QP will on average increase its results for this measure. Similarly, [SJWMV03] compare methods
on the basis of the number of correct edges they are able to find. Clearly Q∗, QC and QP are penal-
ized according to this measure. Instead of estimating the accuracy, this measure mainly estimates
the average level of resolution of the trees inferred by the different methods. This is particularly
clear in [SJWMV03, Figs. 6 and 7], where methods have a success rate directly dependent on
their degree of conservatism. The observation of [SJWMV03] that the observed performance of
Q∗ drops to zero as the number of taxa increases is also simply explained: for a given edge, the
method does not allow for a single error on a quartet crossing that edge. Hence, the more taxa
in the estimated trees, the more quartets estimated and then the more chances that an edge has an
incorrectly inferred quartet. Moreover, [SJWMV03] observed that the gap in accuracy between
QC and NJ increases proportionally to the number of taxa. Here again, the number of quartets is
O(n4) while the number of accepted errors across an edge for QC to recover the edge is O(n2),
indicating that the probability that an edge will be recovered by QC diminishes as the number of
taxa increases.

Optimization and conservative methods have also been compared in terms of the MAST dis-
tance (e.g. [SWR08]). The MAST distance between two trees is proportional to the smallest num-
ber of leaves to remove from both trees so that they will become homeomorphic. However, this
distance again favors the method proposing the most resolved trees (at equal accuracy): any mul-
tifurcation greatly penalizes conservative methods by excluding full subtrees and their leaves.

The RF distance is also inadequate for comparing conservative and optimization methods. In-
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deed, the former methods start from the assumption that inferring incorrect edges (type I error,
also called false positive) is more penalizing than not inferring a correct edge (type II error, also
called false negative), whereas the RF distance gives – somewhat arbitrarily – equal weight to both
error terms. The comparison between the two kinds of methods is then, here again, flawed from
the start.

The point I want to make here is that conservative quartet methods and distance-based methods
have mainly been compared on the basis of error measures previously in use in the field but inade-
quate for this job. False negative (FN) and false positive (FP) rates should be presented separately
when comparing conservative and optimization methods, as done in [SWR08]: these two error
terms cannot really be combined together as done in the RF distance. Besides, the average reso-
lution degree of the inferred trees should be given to help distinguish between the quality of the
estimation proposed and the structural gap separating the inferred trees from fully resolved trees.
For the same reasons, a measure based on the compatibility criterion (e.g. MCT, see Chapter 6)
would be more suited than one relying on subtree isomorphism, such as MAST.

Combining conservative and optimization methods. The two kinds of methods have different
goals. Conservative quartet methods only seek to provide reliable edges. Thus, they can serve
as a basis for a regular tree-building method, by considering the tree they provide as a backbone
tree to be completed using a usual mathematical criterion, such as NJ, MP or ML. In this way,
different methods could be appropriately combined so as to get better estimates than either of the
method. For instance, I showed that a simple quartet heuristics called AddQuad always obtains
more accurate results when starting from the Q∗ tree than from no tree at all [Ber97]. T. Warnow
and her team particularly followed this track proposing a series of hybrid methods. In accordance
with the observations of [BG97], they observed that the Q∗ method and the Buneman tree (its
distance counterpart) provided trees that were contractions of the correct tree in 99% of the time.
They first proposed a very simple method combining NJ and the Buneman tree: edges of the NJ tree
incompatible with those proposed by the Buneman tree where simply collapsed. The resulting tree
was already showing better accuracy than the native NJ method [RSWY97]. Then, they designed
much more involved methods that are additionally fast converging [HNR+98, HNW99, NRSJ+01,
RMWW04].

Quartet inference errors are the crux of the matter. Turning now to the comparison of quartet-
based optimization methods with optimization methods of other paradigms, the results obtained for
WO in [RG01] where not encouraging. The reason for these results can stem from the fact that WO
tries to output the tree that satisfies a maximum number of quartets. However, this behaviour (also
advocated in a number of other papers [SvH96, BdCG+98, GN03]) is misleading simply because
a non-negligible part of the input quartets are incorrect. An experimental demonstration of this
point lies at the end of the paper of V. Ranwez and O. Gascuel who report that in their simulations
the correct tree most often satisfied less input quartets than other trees found by heuristic methods
[RG01].

The point is thus clearly to decipher between correct and incorrect quartets. This is were
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progress needs to be done. This can be achieved at least in three directions: (i) providing better
quartet inference rules, e.g. following efforts of [Wil99b], (ii) detecting incorrect quartets, e.g. by
extending cleaning algorithms, or (iii) avoiding “dangerous" quartets, e.g. by focusing on those of
small diameter as done by SQM, hence partly escaping LBA problems. Concerning (i), a more
involved quartet inference method has been recently proposed on the basis of phylogenetic invari-
ants [CFS07]. Though the authors emphasize that the computation of the invariants of a given
evolutionary model just needs to be done once, they do not provide running time of their method
on a single quartet. Further investigation is then required to know whether practical times can
be achieved given the large number of quartets to consider. Concerning (ii) and (iii), more in-
volved quartet optimization methods have been designed: the team of P. Kearney proposed the
HyperCleaning∗ method, an optimization method inspired from conservative cleaning techniques,
which showed better results than NJ on 35- and 40-taxa trees [Hu02]; then the team of T. Warnow
proposed the Short Quartet Puzzling method, an optimization variant of the conservative SQM
method, which consistently beat NJ on 30- to 80-taxa trees [SWR08].

Thus it seems that the history of quartet methods in phylogenetics has not yet ended. How-
ever, it must be noted that these methods are not universal, due to their inherent combinatorics,
i.e. dealing with O(n4) sets of elements in a study considering n taxa. Thus no study on more
than several hundreds taxa is likely to be amenable to reconstruction through quartet methods even
when resorting to massively parallel computing resources. Though this still covers a majority of
practical phylogenetic datasets, this limits the use of quartet methods in the first assembling steps
of large supertrees.
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Part III

Agreement of subtrees and trees
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Chapter 6

Mast and Mct

6.1 The maximum agreement subtree problem

Definition. Labeled trees can be compared using various methods, but a well-known technique
is the Maximum Agreement SubTree (MAST) method [Gor79]. Informally, given a set of trees
whose nodes are labeled, it seeks a tree with the largest number of labels that is homeomorphically
included in all input trees, i.e. that has exactly the same topology as any input tree restricted to
its set of labels. In that respect, MAST is sometimes referred to as a pattern matching problem
on trees. See Figure 6.1 for an example. MAST has been applied in various areas of computer
science such as image processing, databases, data mining, knowledge representation, but also in
other sciences such as linguistics, mathematical psychology, classification, chemical sciences and
biology.

a b c d e a d b c e a c e a b c e

T1 T2 MAST(T1,T2) MCT(T1,T2)

Figure 6.1: A collection T = {T1,T2} of two incompatible trees, a maximum agreement subtree
for T and a maximum compatible tree for T . Thanks to a less stringent definition, the MCT tree
contains here more labels than the MAST tree.

Comparing trees through the MAST method can have several purposes:

• to measure the similarity of trees in a collection, e.g. trees inferred by different tree-building
methods from the same dataset. In this case, the information that matters is the maximum
number of leaves whose positions all input trees agree upon.
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• to obtain a consensus of trees with different characteristics. In this case, the user is more
interested in the structure of a largest subtree that is common to all input trees.

Previous results on MAST. The MAST method was introduced in 1980 by A. Gordon [Gor80]
in a paper aimed at the classification field. It was used for the first time on biological data, though
with no particular focus on phylogenetics, by [FG85]. The first published algorithms applied only
to the case of two input trees. For this particular case, Finden and Gordon gave a heuristic algo-
rithm, meaning that the output of their algorithm is not guaranteed to be optimal. Then, an exact
algorithm of complexity O(n1/2+ε logn) was presented by Kubicka et al. [KKM92], where n de-
notes the number of leaves in an input tree. This result was improved by M. Steel and T. Warnow to
finding MAST of two trees in time O(n2) for bounded degree trees and O(n4.5 logn) for unbounded
degree trees [SW93]. A similar result was independently found by Goddard et al. who provided
an O(n2) algorithm for the case of two binary trees [GKKM93]. A. Amir and D. Keselman were
the first to provide an algorithm handling the case of more than two trees, achieving a complexity
of O(knd+1 +n2d) for k trees including one whose degree is bounded by d [AK94]. Additionally,
they proved that the MAST problem is NP-Hard for three trees of unbounded degree and gave
an O(kn5) 3-approximation algorithm for the problem. This means that their heuristic algorithm
always outputs a tree whose size is at most three times less than that of a maximum agreement
subtree.

The following years, many papers improved the above listed complexities and efficient al-
gorithms were obtained for particular cases of the general problem. For the case of two rooted
trees, the current best results are an O(n logn) algorithm for binary trees [CFCH+01] and an
O(
√

Dn log 2n
D ) algorithm for trees of degree bounded by D [KLST01]. When the two input trees

are unrooted and of unbounded degree, the O(n1.5) algorithm of [KLST99] can be used. Suppose
k rooted trees are given as input, if at least one input tree has maximum degree d, then MAST can
be solved in O(nd + kn3) time [FPT95, Bry97] or slightly faster when resorting to quite involved
data structures [LHC+05].

The MAST problem is also known to be fpt1 in p, the smallest number of labels to remove
from the input set of labels such that the input trees agree: [DFS99] describe an O(3pkn logn) time
algorithm and [AGN01] give an O(2.27p + kn3) time algorithm. The fact that MAST is fpt means
that some instances of the problem can be solved efficiently, i.e. here those where the input trees
disagree on the position of few leaves. This parameterized version of the problem is of particular
interest in phylogenetics where many instances of MAST consist of phylogenies inferred by dif-
ferent tree-building methods on the basis of molecular sequences of reasonable length. Hence, the
trees given as input to MAST usually differ with respect to the location of a small number p of
species. This means that the above algorithms are usually likely to achieve fast running times.

1fixed-parameter tractable, see Chapter 2.
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6.2 The Maximum Compatible Tree problem

Definition. The Maximum Compatible Tree (MCT) problem is a variant of MAST that is partic-
ularly relevant in phylogenetics. It has been introduced independently in [HS96] and [HJWZ96,
under the MRST acronym]. The MCT problem is solved by finding a largest subset of leaves on
which the input trees are compatible. When the purpose is to obtain a consensus tree of the input
trees, the problem is formulated as finding a tree on such a set of leaves. See Figure 6.2 for an
example.

Figure 6.2: An incompatible collection of two input trees {T1,T2} and their maximum compatible
tree T . Here T1 and T2 only disagree on the position of leaf d. In this example, T strictly refines
T2 restricted to L(T ), which is expressed by the fact that the blue node in T2 has its child subtrees
distributed between several connected nodes of T (blue nodes).

The difference between MAST and MCT is that the former asks for isomorphism while the
latter asks for compatibility. In other words, MAST requires a consensus tree whose branching
information (i.e. groups of leaves or clades) are contained in each input tree, while MCT asks for a
tree whose branching information is contained in some input tree(s), while being compatible with
the topological information of the other trees. This difference allows the MCT tree to be more
informative than the MAST tree, i.e. to generally contain more clades and leaves. For instance, on
the collection {T1,T2} of Figure 6.2, a MAST tree contains only three leaves and one non-trivial
clade, while the MCT tree contains four leaves and two non-trivial clades. Note that there is no
difference between MAST and MCT in the case where the input trees are binary.

In phylogenetics, quite often some edges of trees inferred from primary data can be collapsed
due to insufficient statistical support. This results in some higher-degree nodes in the trees to
be compared. Each such node does not indicate a multi-speciation event but rather the uncertainty
with respect to the branching pattern to be chosen for its child subtrees. In such situations, the MCT
problem is to be preferred to MAST, as it correctly handles high degree nodes, enabling them to be
resolved according to branching information present in other input trees. In other words, MAST
considers multifurcating nodes as hard polytomies, while MCT considers them as soft polytomies.
MCT thus conserves more input leaves in the output tree, hence a larger degree of similarity is
detected between the input trees.
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Previous results on MCT. In 1996, the MCT problem was shown to be NP-hard on six trees
[HS96] then on two trees as soon as one of them is of unbounded degree [HJWZ96]. A first
algorithm for the problem was proposed by G. Ganapathy and T. Warnow that solves the problem
for k rooted trees of n leaves and maximum degree D in O(22kDnk) time [GW01]. The same authors
also provided a 3-approximation algorithm for CMCT running in O(k2n2), where CMCT is the
complement version of MCT aiming at selecting the smallest number of leaves to be removed from
the input trees such that they become compatible [GW02]. More recently [GN05], S. Guillemot
and F. Nicolas proposed an O(n2D+2

+ kn3) exact algorithm for MCT inspired by the O(nD + kn3)
algorithm of D. Bryant for MAST. This proves that MCT can be solved in polynomial time on trees
of bounded degree. The complexity bound of this algorithm is tight as MCT cannot be solved in
time O(no(2D/2) + poly(k,n)) unless SNP⊆ SE 2 [GN05]. Guillemot and Nicolas also showed that
MCT is W[1]-hard for parameter D, i.e. that it is likely that no fpt algorithm on this parameter will
be obtained [GN06].

6.3 Results obtained on MAST and MCT

I first worked on the MAST and MCT problem with F. Nicolas when he was in his last PhD year at
LIRMM, then to a further extent with C. Paul and S. Guillemot when supervising the PhD of the
latter. The results obtained during these collaborations are given below.

With F. Nicolas, we obtained two linear time certifying algorithms for deciding the isomor-
phism, resp. compatibility, of k rooted trees [BN06]. This means that the algorithms are able to
produce a positive or negative certificate for the considered problem. For instance, for compatibil-
ity, we provided an algorithm, called FIND-REFINEMENT-OR-CONFLICT, that either outputs a
tree refining all input trees, hence proving their compatibility, or alternatively a set of three leaves
x,y,z whose resolution the input trees disagree on, i.e. such that the triple xy|z is observed in one
tree and xz|y is observed in another input tree. As no single tree can include both triples at the
same time, this shows the incompatibility of the input trees. To handle unrooted input trees, all of
them can simply be rooted at the same arbitrary leaf and then the above-mentioned algorithms can
be applied.

We then used these algorithms as subroutines in exact algorithms to solve the following param-
eterized versions of MAST and MCT:

Name: PARAMETERIZED ROOTED MAXIMUM AGREEMENT SUBTREE (p-rMAST)
Input: A collection T of k rooted trees with identical leaf set L of cardinality n.
Parameter: an integer p≥ 0.
Task: Find an agreement subtree T of T s.t. |T | ≥ n− p, if such a tree exists.

Name: PARAMETERIZED ROOTED MAXIMUM COMPATIBLE TREE problem (p-rMCT)
Input: A collection T of k rooted trees with identical leaf set L of cardinality n.

2The inclusion SNP⊆ SE is widely believed to be unlikely in complexity theory [GN05].
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Parameter: an integer p≥ 0.
Task: Find a tree T compatible with T |L(T ) s.t. |T | ≥ n− p, if such a tree exists.

As discussed in Section. 6.1, parameter p is particularly relevant to phylogenetic applications.
MAST and MCT problems are linked with the well-known 3-HITTING-SET problem in that when
the input trees are not isomorphic, resp. compatible, then there are topological conflicts on sets of
three leaves.

Definition 6.1 Given a collection T of rooted trees, a set of three leaves a,b,c is

• a hard conflict between trees of T if both ab|c and ac|b belong to rt(T ).

• a soft conflict between trees of T if both ab|c ∈ rt(T ) and (a,b,c) ∈ f(T ).

To obtain the compatibility, resp. isomorphism, of the input trees, the hard conflicts, resp.
hard and soft conflicts between these trees must all be removed. This is done by excluding some
leaves belonging to these conflicts. These 3-leaf obstructions prompted R. Downey and M. Fellows
[DFS99] to formulate an fpt algorithm for solving p-rMAST by a bounded-search tree technique
similar to that used for 3-HITTING-SET (see [AGN01] for another fpt algorithm based on the link
between the two problems). In [BN06], we slightly improved the algorithm of [DFS99], obtaining
a very simple algorithm to solve p-rMAST and p-rMCT. Below, we see that p-rMCT can be solved
by using the FIND-REFINEMENT-OR-CONFLICT certifying subroutine for compatibility.

Algorithm 1: Recursive-MCT(T , p)

Input: A collection T of k rooted trees with identical leaf set L and an integer p≥ 0.

Result: A tree T compatible with T s.t. |T | ≥ |L|− p if such a tree exists or, otherwise, the
empty tree /0.

res← FIND-REFINEMENT-OR-CONFLICT(T )
if res is a tree T then return T /* this tree is compatible with T */
/* Otherwise res is a set of three leaves that is a hard conflict between trees in T */
if p > 0 then

foreach leaf ℓ ∈ res do

T ← Recursive-MCT
(

T |(L−{ℓ}), p−1
)

if T 6= /0 then return T

return /0

A very similar algorithm called Recursive-MAST was designed to solve p-rMAST.

Theorem 6.1 ([BN04]) Given a collection T of k input trees on the same n leaves
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(i) algorithm Recursive-MAST solves the p-rMAST problem in O(3p · kn) time.

(ii) algorithm Recursive-MCT solves the p-rMCT problem in O(3p · kn) time.

An alternative way to solve p-rMAST and p-rMCT is to reduce them to the 3-HITTING-SET
problem, as implicitly done in [AGN01, GW02]. This is achieved quite simply on the basis of
the link existing between the problems. Thanks to the reduction and the algorithm of [NR03] for
solving 3-HITTING-SET, we can obtain:

Theorem 6.2 ([BN04]) The p-rMAST and p-rMCT problems can be solved in O(2.27p + kn3)
time.

When unrooted trees are available, problems p-uMAST and p-uMCT can be defined similarly
to p-rMAST and p-rMCT above. p-uMAST and p-uMCT can be solved by resorting to the above-
described algorithms a given number of times, while each time rooting the trees at a different leaf.
We managed to bound this number of times as a function of parameter p rather than n, with the
interest being that p is smaller than n and usually p << n:

Theorem 6.3 ([BN07]) Given a collection T of k unrooted trees on an identical set of n leaves,
p-uMAST and p-uMCT can be solved in time O

(

(p+1) ·min{3pkn,2.27p + kn3}
)

.

The obtained running times are exponential in p, while measuring the level of disagreement
of the input trees. Thus, these algorithms are interesting alternatives to those of [GW01, GN06]
whose complexities are exponential in the number of trees and/or maximum degree of the trees.
I did a rough implementation of some of these algorithms that is available on my webpage. The
practicality of these algorithms has been demonstrated since they have been used for a while in
a statistical procedure to estimate the congruence level of a collection of trees [dVGM07] and
showed reasonable running times for almost all tested collections (deVienne, personal communi-
cation).

The link between MAST, MCT and 3-HITTING SET has also been used to obtain 3-approximation
algorithms for the complement versions of the two former problems [AK97, GW02]. The com-
plement version of MAST and MCT, denoted CMAST and CMCT, aim at selecting the smallest
number of leaves to be removed from the input trees in order to obtain their agreement (i.e. isomor-
phism, resp. compatibility). In practice, input trees usually agree on the position of most leaves,
thus approximating CMAST and CMCT is more relevant than approximating MAST and MCT.

Fast approximation algorithms are the alternatives to fpt algorithms when faced with NP-hard
problems such as MAST and MCT. With S. Guillemot, F. Nicolas and C. Paul, we improved the
previously published approximation algorithms for the problems. Using dedicated but simple data
structures, we obtained a linear-time, i.e. O(kn), algorithm for CMAST and an O(n2 + kn) algo-
rithm for CMCT. This represents a substantial improvement of the O(kn5) algorithm of [AK97]
and O(k2n2) algorithm of [GW02].
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We also obtained several theoretical results on the approximability of the problems. We showed
that:

• for all ε > 0, the general MCT problem is not approximable within n1−ε unless NP=ZPP as
was already known for the MAST problem [BVM00].

• CMAST on 3 trees and CMCT on 2 trees are APX-hard, ruling out the possibility of a PTAS
for these particular problems unless P=NP. A PTAS is a (1 + ε)-approximation scheme that
runs in polynomial time for fixed ε. This means that a tradeoff can be established between
the precision and running time of the heuristics.

• MAST on 3 trees and MCT on 2 trees cannot be approximated within 2logδ(n), for all δ < 1,
unless NP⊆ DT IME(2polylog(n)).
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Chapter 7

SMAST and SMCT

7.1 Extending MAST and MCT to the supertree context

An input for MAST and MCT is a set of trees having all the same set of taxa labeling their
leaves. The input trees only differ with respect to the branching pattern or groups they display
for the labels. From 2003 on until recently, I studied the extension of MAST and MCT to the
supertree context, where input trees have different though intersecting labels sets. The obtained
methods/computational problems where denoted SMAST and SMCT.

There are several interests in generalizing the MAST and MCT problems to the supertree con-
text. First, they can be used to measure the congruence of a collection of source trees to be com-
bined into a supertree. The relative congruence of several collections can hence be compared and
the most congruent one can then be chosen to assemble a consensual supertree. The added value
of any source tree can also be measured as the net effect it has on the congruence of the collection
as measured by SMAST and SMCT.

Another interest of SMAST and SMCT is that they propose alternatives to usual supertree
methods that incorporate all labels of the source trees in the supertree. This is a problem whenever
the input trees contain some “rogue” taxa, i.e. taxa whose position greatly differs from one input
tree to the other. Unfortunately, this phenomenon happens quite often in real instances. In such
cases, veto supertree methods [Gor86, GP02] propose unresolved nodes (multifurcations) in the
supertree. If each position is supported by the same number of source trees, even voting methods
[Bau92, Rag92, SS00, CEFBS02] will not be able to choose among the different positions for the
leaves and produce partially resolved supertrees or, worse, will choose arbitrarily between one of
them depending on the number of neighboring leaves [BEB98, Gol05]. Thus, when the supertree
inferred by a classical supertree method contains multifurcations, it is worth checking whether
excluding a few leaves would result in a much more informative picture. Pushing it further, several
authors [Gor86, WTLB00, BEGS02] have suggested that alternative supertree methods could be
obtained by focusing on leaves individually – and removing uncertain ones – rather than on subsets
of leaves (triples, quartets or clusters), as usually done. SMAST and SMCT are then well suited to
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suggest a set of leaves upon whose positions the input trees disagree.

Replacing MAST by SMAST also provides some advantage in the detection of horizontal
gene transfers (HGT). MAST has indeed been used in this context on the rationale that leaves
whose position gene trees highly disagree upon are susceptible to being subject to HGT events
[GWK05, NRW05]. The broad-scale study of [GWK05] shows that this technique can indeed be
quite successful. In this study, for each pair of trees, the size of a MAST tree is computed for the
two trees restricted to their common labels. A gene tree is detected to be affected by HGT events
depending on the distribution of MAST scores obtained for the pairs to which it belongs. However,
here a MAST tree cannot be computed for a vast majority of pairs simply because the considered
genes do not have enough labels in common, which limits the confidence in the final conclusions
[GWK05]. Replacing MAST computations on pairs of gene trees by SMAST computations on
more than two trees would undoubtedly increase the proportion of cases where there is enough
overlap to conduct the analysis.

Still another use of SMAST and SMCT is in improving the accuracy of traditional methods.
For instance, the popular MRP method has relatively low accuracy when the input trees overlap
moderately and [BES01] recommend adding to the set of input trees a tree with leaves spanning
most input trees, that they call a seed tree. Any supertree provided by SMAST and SMCT most
likely contains leaves from most, if not all, input trees (see next section) and, moreover, fully agrees
with all of these trees by definition. It is thus a potential candidate for being a seed tree.

7.2 Results obtained on SMAST and SMCT

The results presented below where obtained during the PhD period of F. Nicolas and S. Guilemot.
With F. Nicolas, we proposed the following definition to extend MAST and MCT to the supertree
context [BN04]:

Definition 7.1 Given a collection T of leaf-labeled trees, an agreement supertree of T is a tree
T with L(T ) ⊆ L(T ) such that ∀Ti ∈ T , T |L(Ti) = Ti|L(T ). An agreement supertree of T that is
of maximum size is called a maximum agreement supertree of T and is denoted SMAST (T ). A
supertree compatible with T is a tree T with L(T )⊆ L(T ) such that ∀Ti ∈ T , T |L(Ti)DTi|L(T ).
A supertree compatible with T that is of maximum size is called a maximum compatible supertree

of T and is denoted SMCT (T ).

The optimization problem corresponding to SMAST is stated as follows:

Name: MAXIMUM AGREEMENT SUPERTREE (SMAST)
Input: A finite collection T of trees (all rooted or all unrooted).
Task: Find a maximum agreement supertree of T .

The optimization problem for SMCT is defined in the same way. Figure 7.1 shows examples
of SMAST and SMCT trees for a collection of two trees.
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Figure 7.1: A collection R = {R1,R2} of two source trees on tomatoes taken from [BR04] and
a supertree RM. In this example, the supertree represents both a SMAST tree and an SMCT tree
for R . Leaves appearing in only one source tree are displayed in white. Correspondance between
numbers and species: 1 – L. lycopersicoides, 2 – L. juglandifolium, 3 – L. peruvianum, 4 – L. chilense,
5 – L. pennellii, 6 – L. hirsutum, 7 – L. chmielewskii, 8 – L. esculentum, 9 – L. pimpinellifolium, 10 –
L. cheesmanii, 11 – L. rickii.

The basic case of two compatible rooted trees. We first concentrated on the computation of
SMAST and SMCT for a collection of two rooted trees. To achieve this goal, we first designed a
fast algorithm for computing a supertree in the case of two compatible trees such that one refines
the other when restricted to their common leaves. When faced with such input, a supertree on all
leaves can be obtained by grafting in the refining tree the subtrees of the other tree that contain
leaves specific to the latter. By defining links between nodes of the two trees on the basis of least
common ancestor relationships and identifying the specific subtrees of the input trees, we achieved
linear running time for this algorithm, that we called MERGETREES.

Theorem 7.1 Given a collection R = {RI,RA} of two rooted trees such that RA|L(RI)DRI|L(RA),
the algorithm MERGETREES (RI,RA) returns a tree R such that L(R) = L(R ) and such that R
is a SMCT tree for R . In the particular case where RA|L(RI) = RI|L(RA), then R is a SMAST
tree for R . Moreover, a call to algorithm MERGETREES (RI,RA) costs O(n) time where n =
|L(RI)∪L(RA)|.

A corollary is that this grafting procedure can be used to compute in linear time the Strict
Consensus Supertree defined by A. Gordon and for which he proposed an O(n3) algorithm [Gor86].

Cases in which the general problems are sovable in polynomial time. Considering a general
collection T of input trees, we can split the leaves L(T ) into three caterogies: those belonging to
just one tree, called specific leaves and denoted LS(T ), those belonging to all trees and denoted
L∩(T ), and those belonging to several but not all input trees, denoted Lδ(T ). We showed that
LS(T ) is fully included in any SMAST and SMCT tree for T . The intuitive reason for this is that
the relative position of the specific leaves is indicated by just one source tree, hence no conflict can
arise when combining all source trees1. As a direct corollary, Lδ(T ) = /0 is a sufficient condition

1note, though, that the formal proof that everything works fine requires half a page [BN07].
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to solve SMAST and SMCT problems by resorting to MAST and MCT as subproblems. Note,
however, that things can go wrong when Lδ(T ) 6= /0, as shown by the example of Figure 7.2. As
Lδ(T ) = /0 is always met on two trees.

This shows a special case where the SMAST problem can be solved in linear time. Additionally
SMAST, can be solved in polynomial time for collections of more than two trees when Lδ(T ) = /0
and the maximum degree of at least one input trees is bounded. In comparison, using the latest
results on MCT [GN06], SMCT can be solved in polynomial time when Lδ(T ) = /0 and the degree
of all input trees is bounded.

Figure 7.2: A collection R = {R1,R2,R3} of rooted input trees for which the MAST and MCT
trees cannot be used as backbones of SMAST and SMCT trees.

The above results also apply to the case of unrooted input trees. For instance, when faced with
two unrooted trees, rooting them on the external edge leading to a common leaf allows us to solve
SMAST and SMCT problems by reducing them to the rooted case.

Reducing to instances of bounded size. On the basis of several results known in the field for
characterizing trees by triples, fan, quartets and stars [BS95, AK97, Bry97, BGNP05, BN06] we
then showed that SMAST and SMCT for trees of arbitrary size can be reduced to computing the
same problems on trees of bounded size:

Lemma 7.1 ([BN04]) Let R, R′ be two rooted trees and U, U ′ be two unrooted trees.

(i) R is isomorphic to R′ if and only if rt(R) = rt(R′) and f(R) = f(R′).

(ii) R refines R′ if and only if rt(R′)⊆ rt(R) and L(R) = L(R′).
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(iii) U is isomorphic to U ′ if and only if q(U) = q(U ′) and s(U) = s(U ′).

(iv) U refines U ′ if and only if q(U ′)⊆ q(U) and L(U) = L(U ′).

Then accumulating small trees for collections of trees, we deduce:

Corollary 7.1 ([BN04]) Let R be a collection of rooted trees and let R be a rooted tree with
L(R)⊆ L(R ).

(i) R is an agreement supertree of R if and only if R is an agreement supertree of rt(R )∪ f(R ),

(ii) R is a supertree compatible with R if and only if R is a supertree compatible with rt(R ).

Let U be a collection of unrooted trees and let U be an unrooted tree with L(U)⊆ L(U).

(iii) U is an agreement supertree of U if and only if U is an agreement supertree of q(U)∪ s(U),

(iv) U is a supertree compatible with U if and only if U is a supertree compatible with q(U).

A corollary of the possible reduction of SMAST and SMCT to collections of bounded size in

an exact algorithm solving the problems in O(n
p(p+1)

2 · poly(n,k)+ kn), where p is the number of
leaves to remove to obtain the agreement of the input trees [BN03]. This algorithm is obtained
by exhaustive examination of all subsets of size less than p, each time resorting to the ONETREE
algorithm of [NW96]. The time complexity of this algorithm indicates that SMAST and SMCT
are solvable in polynomial time when the input trees disagree on a constant number of leaves.
However, this algorithm is mainly a theoretical freak and can only be used for practical collections
of trees disagreeing on the position of a very small number of leaves.

The case of binary input trees. The three algorithms reported below consider the particular case
where the input trees are binary. For this particular case of the SMAST problem, more efficient
algorithms can be obtained, as shown by the PhD work of S. Guillemot. Note also that since the
input trees are binary, SMAST and SMCT are equivalent here.

Given a collection T of k input binary trees, the new algorithms rely on the consideration of
positions in T , where a position is a tuple of nodes, with one in each tree of T . This combinatorial
object is similar to lca-tuples considered in early works on the MAST problem [AK94, FPT95]. A
position can be seen to define a restriction of the input collection T by considering subtrees of the
input trees rooted at nodes composing the position. By building an intersection graph of the largest
clades of these subtrees it is possible to determine whether this restriction of T is compatible.
When this graph is connected, the restricted collection is incompatible, similar to what happens
with the well-known Aho graph [ASSU81, SS03]. However, the interest in the intersection graph
is that, when incompatibility arises, a set of at most k labels can be easily found that is responsible
for the incompatibility. We do not know of such a result for the Aho graph. When the intersection
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graph is disconnected, then it is recursively decomposed until incompatibility is detected or graphs
of trivial sizes are obtained. The intersection graph is the basis of a certifying algorithm to decide
the compatibility of a collection of rooted trees:

Theorem 7.2 ([GB07]) Given a collection T of k rooted trees on n leaves, there is an algorithm
which, in O(kn2) time, decides if T is compatible, and returns a conflict of size ≤ 2k in case of
incompatibility.

This algorihtm is in turn the basis of a simple algorithm based on the bounded-search tree tech-
nique:

Theorem 7.3 ([GB07]) The SMAST problem on a collection of k rooted binary trees can be solved
in O((2k)p× kn2) time.

This algorithm is really simple to implement and should be efficient on collections of gene trees
conflicting on the position of few leaves. Its time complexity shows that the SMAST problem on
binary trees is fpt for the combination of parameters (k, p). By considering an even more particular
case of SMAST, an fpt algorithm on parameter p alone can be obtained. Consider the case of a
collection T of binary rooted trees such that each 3-label subset of L(T ) appears in at least one
input tree. Recall that SMAST on trees of arbitrary size can be reduced to SMAST on rooted triples
and fans. The particular case considered here then corresponds to solving the SMAST problem on
a collection of triples that is at least complete (see definition in chapter 2), but potentially contains
several different resolutions for the same set of three labels. What makes things easier in the case
of a complete collection is that compatibility amounts to tree-likeness. Consequently, we can rely
on the fact that conflicts among input triples can be circumvented to a small number of leaves.
Define here a conflict to be a small subset C⊆ L(T ) such that T |C is incompatible. The following
result on rooted triples is an analog of a known result on quartets [BD86]:

Theorem 7.4 ([GB07]) Given a complete collection of triples T , it is possible to decide in O(n3)
time if T is tree-like, and in this case to return the tree displayed by T , or in the case where T is
incompatible to return a conflict C with |C| ≤ 4.

This certifying algorithm can then be used in an fpt algorithm for solving the SMAST problem by
detecting a conflict, removing alternatively each leaf in the conflict (and the corresponding triples
from T ) and then recursing until no conflict remains or more than p leaves have been removed:

Theorem 7.5 The SMAST problem parameterized in p can be solved in O(4pn3) time.

Lastly, S. Guillemot also proposed an O((8n)k) time algorithm resorting to a dynamic pro-
gramming approach based on positions. This significantly improves on the O(k(2n)3k2

) algorithm
proposed in [JNSS04].
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Intractability results. In [BN03], we have shown that the SMAST problem is NP-hard by reduc-
ing from the 3-HITTING-SET problem2. The latter is fixed-parameter tractable (fpt) for parameter
p. This first gave us some hope on the tractability of SMAST, but later on we found a reduc-
tion from the general HITTING-SET problem, showing that SMAST is in fact W[2]-hard for p
[BN04, BN07]. This means that it is very unlikely that an fpt algorithm exists when considering
this parameter. This shows that there is a significant gap between the difficulties of SMAST and
MAST, as the latter is fpt in p [DFS99, BN06].

Note that the above-mentioned reduction from HITTING-SET is approximation preserving.
This rules out the possibility of any polynomial time algorithm approximating, within a constant
factor, CSMAST and CSMCT, i.e. the complement optimization problems of SMAST and SMCT.
This contrasts with CMAST and CMCT that can be 3-approximated by efficient algorithms as
detailed in the previous chapter.

Restricting SMAST to the case of binary input trees is not sufficient to make it a lot more
tractable in terms of parameterized complexity. Let q be the complement parameter of p, i.e. let
q be a lower bound on the number of labels that are missing in a SMAST solution. SMAST is
W[1]-complete for parameter q [JNSS05], but also for parameter k and for the parameter pair
(q,k) [GB07].

7.3 Are SMAST and SMCT hot topics?

As a final remark, I have noted that the extension of MAST and MCT to the supertree context
seems to be a hot topic as on two occasions our results were published at the same time as similar
– and complementary – results independently proposed by other teams!

After having published our first results on SMAST and SMCT in 2004, we learnt that another
team had independently studied the SMAST problem (that they called MASP). Their paper –
appearing 3 months before ours – also proposed a polynomial time algorithm for the case of two
rooted trees [JNSS04, JNSS05]. For the particular case of binary trees, they also proposed an
exponential algorithm running in O(k(2n)3k2

), showing that SMAST can be solved in polynomial
time when the input collection contains a constant number of binary trees. We later subsumed this
result by the O((8n)k) algorithm mentioned in the previous section.

By reduction from INDEPENDENT SET and VERTEX COVER, Jansson et al. also showed
that SMAST is NP-hard for any fixed k ≥ 3 when the trees are of unbounded degree, and also
when the input trees are of fixed maximum degree D≥ 2 when k is unrestricted. Additionally, they
proposed an (n/ logn)-approximation algorithm running in polynomial time.

More recently, when we proposed the results for SMAST (and thus SMCT) on binary trees,
we were in competition with V. Hoang and W. Sung. Several months after us, they indepen-
dently proposed the same algorithm as that mentioned above for binary rooted trees running in

2In comparison, the MAST problem was shown to be NP-hard by reduction from 3-DIMENTIONAL-MATCHING
[AK94].
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O((8n)k) time [GB07]. Their finer analysis shows that the complexity bound is in fact O((6n)k)
[HS08]. Additionally, they generalized this algorithm to input trees of degree larger then 2: given
k rooted trees of maximum degree D over n taxa, they showed that SMAST can be solved in
O((kD)kD+2(2n)k +(2n)k) time and that SMCT can be solved in O(4kDnk) time. The latter com-
plexity matches that of the algorithm for MCT proposed in[GW01]. This is a good surprise, as the
results reported above (at least in terms of parameterized complexity) have shown that SMCT is
generally less tractable than MCT. Though it is hard to make a comparison with the O(n2D+2

+kn3)
algorithm of [GN05], the latter seems preferable in the case of a collection containing a non-trivial
number of binary trees, as usually happens in practice. V. Hoang and W. Sung also considered
the case of unrooted trees, showing that SMAST can be solved in O((kD)kD+2(2Dn)k +(2n)2kDk)
time and SMCT in O(22kDnk) time [HS08].

7.4 Future work

On the theoretical side, the algorithm of [HS08] for solving the SMCT problem with the same
running time as the algorithm of [GW01] for MCT calls for more work on the latter problem to
obtain a faster algorithm. A first approach is to study whether the former algorithm simplifies in
the case of input trees with identical label sets.

On the practical side, the running times of the algorithms reported above are close to the limit
where programs can be written and used for data of reasonable size. Hence, much experimental
work remains to be done to test the efficiency of SMAST and SMCT for the various applications
mentioned in the introduction of this chapter. Among others, the detection of HGT will be of
prime importance for me as this comes within the scope of the recent ANR funding we obtained
on bacteria, where this kind of event is common. Testing whether an SMCT tree would be a good
seed tree for a collection of trees whose labels only slightly overlap is also of interest since this
can be done easily by reusing the simulations we did recently (see condition d75 of the simulation
study mentioned in part IV). The performance of the usual MRP method would be compared to
that of MRP when the collection is completed with the SMCT tree. Measures such as accuracy and
amount of information in the supertree would indicate whether the SMCT improves the situation.
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Publication(s) whose material is described in this chapter:

• Maximum Agreement and Compatible Supertrees, V. Berry and F. Nicolas,
Journal of Discrete Algorithms, 5(3), 564–591, 2007.
An extended abstract of this work appears in the proceedings of the 15th Ann.
Combinatorial Pattern Matching Symposium (CPM’04), LNCS 3109, pp. 205-
219, Springer, 2004,

• Fixed-Parameter Tractability of the Maximum Agreement Supertree Problem,
S. Guillemot and V. Berry, IEEE/ACM Transactions in Computational Biolol-
ogy and Bioinformatics, (in press), 2008.
An extended abstract of this work appears in the proceedings of the 18th Ann.
Combinatorial Pattern Matching Symposium (CPM’07), LNCS 4580, pp. 274-
285, Springer, 2007.
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Part IV

Supertree methods from new principles
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In the preceding chapters, we saw several supertree methods, some affiliated with quartet meth-
ods and others to the well-known MAST method. In the following part, I relate results concerning
supertree methods with an original design.

The first method tackles a problem mentioned by R. Page, namely allowing internal labels in
source trees and supertrees. This is the result of a collaboration with C. Semple and O. Bininda-
Emonds.

Then I describe methods relying on desirable combinatorial properties that supertree methods
should verify. This work results from a collaboration with several researchers in Montpellier, with
the main ones being E. Douzery, V. Ranwez, and C. Scornavacca. The latter is a PhD student I
co-supervise with V. Ranwez.
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Chapter 8

Ancestral compatibility of trees

8.1 motivation

A high number of phylogenetic trees published in biology journals over the last 15 years are stored
in TreeBASE [SDPE94, PSD03]. As of summer 2008, this database contains 6,237 trees belonging
to 3,696 different studies, covering a total of 93,013 taxa. The database also stores references to
papers in which the trees appear and primary data from which they were obtained. TreeBASE can
be used for many purposes such as obtaining information on the phylogeny of particular groups of
interest, obtaining datasets for studies of character evolution, linking trees of particular groups into
more inclusive phylogenies or discovering understudied groups. This database has been used in
a number of studies addressing phylogenetic, biogeographic and coevolution questions. However,
this important resource has not yet been used for building large supertrees. These are still inferred
from patiently hand-collected source trees [BECJ+07] or from phylogenies automatically inferred
from data obtained by mining sequence databases [San08]. This is really a shame as TreeBASE
contains several thousand phylogenies, each validated by experts, and hence represents a valuable
resource for building both large and accurate supertrees. However, supertree people are not to
blame here as the content of TreeBASE is quite confusing. It was, and still is, populated by many
different researchers, having varying interests and varying views on naming conventions for taxa.
As a result, a number of problems impede proper use of TreeBASE without adequate preprocess.

In 2001, the well-known biologist M. Sanderson challenged the phylogenetic community to
propose the “largest" and “best" possible supertree from TreeBASE. His challenge still remains
unanswered. The just as famous R. Page listed several problems to solve before such a goal could
be achieved [Pag04, Pag07]. A major problem he highlighted is that trees in TreeBASE consider
taxa at different levels in the Tree of Life. Since the work of C. Linnaeus (1707-1778), species
are grouped according to shared characteristics; the groups form a hierarchical structure called
taxonomy or biological classification. The content of this hierarchy evolves regularly but its ranks,
or taxonomic levels, are well-established; they are e.g. domain, kingdom, order, family, genus,
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species1.

The fact that TreeBASE contains taxa at different taxonomic levels, such as “mammal" and
“elepehant" is a problem for assembling supertrees: historically, supertree methods combine source
trees with labels only at the leaves and, similarly, produce leaf-labeled supertrees. Thus, if source
trees have labels on internal nodes, these are not taken into account. More importantly, it can hap-
pen that two taxa belonging to different taxonomic levels and nested into one another, like elephant
and mammal, appear as leaves of different source trees. In such cases, the output supertree will
erroneously contain both taxa as distinct leaves. From this remark, R. Page challenged researchers
in the field to design supertree methods to correctly handle the case of nested taxa. Such methods
must allow both the internal nodes and leaves of trees to represent taxa. In these nested-taxa trees,
an interior label corresponds to a taxon at a higher taxonomic level than any of its descendants.

8.2 Previous work

There has been very little work related to this problem. Let us first define some notions in this
context before reporting related work.

Definition 8.1 A nested taxa tree, or semi-labeled tree, is a tree in which all leaves and some
internal nodes are associated with labels (i.e. taxa), such that each node has at most one label and
each label appears at only one node. This definition applies both to rooted and unrooted trees,
though we will here only consider rooted trees.

Figure 8.1: A compatible collection of three nested taxa source trees.

Definition 8.2 Let T be a semi-labeled tree with label set X and let T ′ be a semi-labeled tree with
label set X ′ with X ⊆ X ′. Then T ′ ancestrally displays T if, up to suppressing non-root nodes of
degree-two, the minimal rooted subtree of T ′ that connects the elements in X is a refinement of T
and, for all a,b ∈ X, whenever a is a descendant label of b in T , then a is a descendant label of b
in this rooted subtree.

A collection T of semi-labeled trees is ancestrally compatible if there is a rooted semi-labeled
tree T that ancestrally displays each of the trees in T , then we say that T ancestrally displays T .
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Figure 8.2: A tree ancestrally displaying the collection of Figure 8.1.

These definitions are illustrated on Figures 8.1 and 8.2.

The first computational problem that arises is to find a polynomial-time algorithm for decid-
ing whether or not a collection of nested-taxa source trees is ancestrally compatible and, if so,
constructing an appropriate supertree. In response to this problem, [DS04] provided an algorithm
called AncestralBuild, generalizing the Build algorithm [ASSU81]. Recall that the latter decides
in polynomial time if a collection of rooted leaf-labeled trees is compatible, in which case it re-
turns a leaf-labeled supertree that displays the collection2. The algorithm AncestralBuild takes a
collection T of nested-taxa trees as input and then outputs a supertree that ancestrally displays T

if such a supertree exists, otherwise it states that the collection is not ancestrally compatible.

Though this is an all-or-nothing algorithm, it has nonetheless important potential use as Llabrés
et al. have shown that trees in TreeBASE are mostly compatible [LRRV06]. However, the time
complexity of AncestralBuild on a collection of k trees spanning n taxa is O(k2n3). Such large
complexity impedes the use of the algorithm to more than a few dozen trees. This algorithm is
then an important milestone, showing that the problem can be addressed in polynomial time, but
additional progress is required to handle practical collections.

The Build algorihm uses a top-down process, where each step considers a graph whose vertices
bijctively correspond to studied taxa[ASSU81]. The algorithm requires computation of connected
components (CC) in all these graphs. However, each graph considered at some step in the process
is a subgraph of the graph considered in the previous step, in which some edges are deleted. Thus,
the CC computations of the whole process can be avoided if one maintains connected components
in a dynamic graph under edge deletion. Henzinger et al. relied on sophisticated techniques
dedicated to dynamic graphs to propose a fast implementation of Build in the case of fully resolved
(i.e. binary) leaf-labeled trees [HKW99]. More precisely, their implementation runs in O(m · n 1

2 )
time, where m is the total sum of the number of nodes in each of the source trees and n is the total
number of taxa3.

1from the most to the least inclusive one.
2see Chapter 2 for the definition.
3They also proposed a variant of BUILD running in O(m+n2 logn) time but, in the case of compatibility, it typically

resulted in a supertree with edges not supported by any part of the data, an undesirable feature for a supertree algorithm.
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In 2005, I started a collaboration with C. Semple to solve the problems revealed by M. Sander-
son and R. Page. We started with the idea of adapting the techniques used by Henzinger et al. to
obtain a fast algorithm for deciding ancestral compatibility. However, the algorithm had to accept
as input semi-labeled trees (i.e. not only leaf-labeled trees), and trees that can be partially resolved
(i.e. not only binary trees). Our findings are detailed below.

8.3 Descendancy graphs

To step from leaf-labeled trees to semi-labeled trees necessitates the use of a different graph than
that of Aho [ASSU81]. Indeed, in the latter case, two kinds of relationships between taxa need
to be encoded: ancestral relationships between nodes on top of one another in a source tree and
incomparability relationships between nodes that are not ancestors of one another in a source tree.
To achieve this goal, P. Daniel and C. Semple relied on a mixed graph, i.e. a graph containing both
directed edges, called arcs, from one vertex to another, and undirected edges between two vertices
[DS04]. The descendancy graph they defined contains m nodes but a large number of edges and
arcs, namely O(kn2) of both sorts, where k is the number of source trees in the input collection T .

We first proposed a modification of the descendancy graph, called the restricted descendancy

graph. The latter is of smaller size than the former: it still contains m nodes but now contains only
O(m) arcs and

O
(

∑
Ti∈T

∑
u∈I(Ti)

d(u)2)

edges, where I(Ti) denotes the set of interior nodes of tree Ti for all i and d() denotes the degree of
a node. Note that, depending on the degree of overlap of the source trees and the degree of each of
their nodes, the number of edges can range from O(m) to O(kn2). In particular, if the source trees
are all fully-resolved, then the restricted graph contains O(m) nodes, arcs, and edges.

We then proved that running the AncestralBuild algorithm [DS04] on this restricted graph still
correctly answers the ancestral compatibility question [BN06, Prop. 4.1].

8.4 A faster algorithm to decide ancestral compatibility

Though we generally reduce the size of the graph that lies at the core of AncestralBuild, the algo-
rithm still runs in the same time bound as before in the worst case, i.e. for collections or highly
multifurcating trees.

We thus proposed modifications of the algorithm to reduce its running time even in the worst
case. The computing steps of AncestralBuild that have the most influence on the running time
are the computation of arc-components (AC) in the restricted graph and the identification of edges
between them. We showed that the AC computations can be transferred into CC computations
in a smaller ad-hoc graph called the component graph. This graph contains O(n) nodes instead
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of the O(m) nodes of the restricted graph, i.e. we gain here a k factor since m = O(kn). This
graph also facilitates the identification of edges linking different AC of the restricted graph. The
modification of AncestralBuild based on this graph was called AncestralBuild*. This graph also
has the interesting property that recursive calls issued during an ongoing step of the algorithm
consider node disjoint restrictions of this graph. Hence, we can apply similar techniques as those
used in [HKW99] to maintain CC thanks to dedicated data structures. As a result, we obtain the
following result:

Theorem 8.1 ([BS06]) Let T be a collection of rooted semi-labeled trees with |L(T )|= n. Then, it
is possible to decide if T is ancestrally compatible, and in this case propose supertree that display
T in

O
(

log2 n ·
(

∑
Ti∈T

∑
u∈I(Ti)

d(u)2)),

total time.

In general, AncestralBuild* allows for the source trees to be rooted semi-labeled trees of un-
bounded degree. However, in the special case where the source trees are all rooted binary semi-
labeled trees, the running time of AncestralBuild* is O(m log2 n). This running time is the same as
the running time of the algorithm in [HKW99] whose source trees are all rooted binary leaf-labeled
trees4. Moreover, it is almost linear in the size of the input, which guarantees short execution times
even on large datasets.

8.5 Beyond the decision problem

When a considered collection T of semi-labeled trees is not compatible, we can adopt several
strategies to still obtain a supertree thanks to the AncestralBuild* algorithm, e.g. by considering
a subset of the input trees or compatible parts of them. However, the most natural solution con-
sists of conceiving an optimization problem to solve when incompatibility is met, i.e. when the
restricted descendancy graph is connected. In such cases, to progress in the building of the su-
pertree, we need to disconnect the graph, i.e. to remove some arcs and edges. A first idea is to
identify and remove the smallest number of arcs and edges to achieve this goal, with similar ideas
as in several other supertree methods [SS00, SWR08]. This procedure would be biased toward
large trees, contributing more edges and arcs. As some supertree methods have been criticized for
the same behavior [BEB98], it is preferable to first investigate criteria that would not favor trees
depending on their size. A natural idea is then to find the smallest number of input trees such that
ignoring the arcs and edges they contribute in the graph disconnects it. Unfortunately, this problem
is NP-hard [BBES08]. We have then chose another optimization criterion to evaluate the cost of

4The running time of their algorithm can be improved from O(mn
1
2 ) (as stated in [HKW99]) to O(m log2 n) by

changing the dynamic connectivity algorithm it uses.
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disconnecting the graph and designed a polynomial time algorithm that provides an optimal solu-
tion to the problem5. Starting from the Splitstree package [HB06], I implemented the algorithm in
Java. The implementation performs fine on a Phocidea dataset and its results are currently under
investigation for several other datasets.

Publication(s) whose material is described in this chapter:

• Fast Computation of Supertrees for Compatible Phylogenies with Nested Taxa,
V. Berry and C. Semple, Systematic Biology, 55(2), U108-U126, 2006.

• Amalgamating source trees with different taxonomic levels, V. Berry,
O. Bininda-Emonds and C. Semple, in preparation.

5as we are in competition with several teams on this topic, I cannot reveal here the details of the algorithm, but they
will be available as soon as we submit our paper [BBES08].
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Chapter 9

Supertree construction from desirable

properties

9.1 Introduction

To assess the relevance of supertree methods, it is most useful to have properties that character-
ize the extent to which the supertrees they infer are reliable syntheses of source trees [SDB00,
WTP+04, Gol05]. For instance, Steel et al. suggest that the output supertree should (i) encompass
every source tree when possible, (ii) always contain every label (taxon) that occurs in at least one
source tree, and (iii) be computable by a polynomial-time algorithm [SDB00]. These authors also
showed that rooted input trees are more appealing than unrooted ones for supertree methods that
aim to satisfy several desirable properties simultaneously.

In Chap. 2, we have seen that operational supertree methods can mainly be divided into liberal
methods and veto methods, with the latter aiming at proposing supertrees containing only reliable
clades at the price of obtaining less resolved supertrees. As of 2004, several supertree methods
akin to the veto philosophy had been proposed, all of which were inspired by consensus methods,
i.e. methods that operate on trees with identical leaf sets. For instance, extensions of the strict
consensus [Gor86, HNW99, Bry02], semi-strict consensus [GP02] and maximum agreement sub-
tree consensus [BN04] had been proposed to infer veto supertrees. Technically speaking, veto
methods adopt an axiomatic approach, i.e. specify an interesting mathematical property and only
propose supertrees verifying this property. However, the above-mentioned veto methods rely on
properties that either impose very strong constraints on the supertree, like the Strict Consensus Su-
pertree [Gor86] and SMAST [BN04], or are computationally hard to ensure, like the Semi-Strict
Supertree [GP02] and SMCT [BN04]. At that time, I decided to hunt for what seemed to be the
holy grail of veto supertree methods, i.e. interesting and computationally tractable properties that
supertrees should verify. This study began with E. Douzery, then V. Ranwez later joined us, as
well as C. Scornavacca, whose PhD is co-supervised by V. Ranwez and me.

Our starting point was papers criticizing methods that could infer supertrees containing ar-
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bitrary clades (e.g. see [BEB98, Gol05]). We then investigated several formalisms according to
which the topology of the supertree could be compared to that of source trees and that would al-
low us to check whether parts of a proposed supertree are really induced by the data. This led us
to investigate the identification property [SS03, Dan04, GSS07]. In the same time, we wanted a
formalism that could enable us to check that a candidate supertree would not contradict the source
trees (recall that we are looking for a veto method). Rooted triples then seemed to be the ideal
formalism, for which tractable results could be obtained. Eventually, we proposed two desirable
properties that veto supertree methods should display and that could be checked in polynomial
time for a supertree in regards to a given collection of source trees. We were also able to design
supertree methods that would only produce supertrees satisfying these properties.

9.2 Non-contradiction and induction properties

This section gives details on the two important points mentioned above for supertree construction.
On the one hand, supertree methods should avoid arbitrary resolutions, i.e. resolutions that are
not entailed by the source topologies. Indeed, novel relationships displayed by a supertree “are
worrying if they are not implied by combinations of the input trees” [WPCC05], and “should be
identified as such, to highlight their lack of any known justification" [PW02]. Thus, we first wanted
a way to verify that every piece of phylogenetic information displayed in a supertree was present
in one or several source topologies, or induced by them collectively; we called this the induction

property (PI).

On the other hand, as we adopted a veto view point, we focused on ways to distinguish between
unanimous and contradicted clades of a supertree with respect to a collection of source trees. In
the veto approach, a supertree is not allowed to contain a clade that conflicts either directly with a
source tree or indirectly with a combination of them. We call this the non-contradiction property

(PC). Supertree clades that are detected to not verify this property could then be removed from the
supertree, hence leading to a supertree that can be considered as a reliable baseline for subsequent
analyses, as e.g. suggested by Goloboff [GP02, Gol05].

Last, inferred supertrees often contain multifurcating nodes, reflecting the impossibility for
the inference method to choose among the possible evolutive scenarios for the subtrees hanging
from the node. Actually, this intermixes two distinct phenomena: either a lack of overlap in
the topological information of the source trees (hence, the impossibility to resolve the clade) or
the occurrence of topological conflicts among them. PI and PC are key properties to distinguish
between these two phenomena. With this in mind, we later included specific information in the
supertrees inferred by methods we designed.

But let us now concentrate on the property definitions.

Definition 9.1 Given a rooted triple t, let t̄ denote any of the two other rooted triples on the same
set of labels. A tree T is said to display a set R of triples when R ⊆ rt(T ); moreover, T strictly

displays R if additionally L(T ) = L(R ).
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To find a tree displaying a triple set R , it is useful to take into account that some triples of the
tree are induced by R :

Definition 9.2 A compatible set R of triples induces a triple t, denoted by R ⊢ t, if and only if
R ∪{ t̄ } is not compatible, or equivalently if any tree T that displays R contains t. We can extend
this definition to the case of incompatible collections in the following way: say that a set R of
triples induces a triple t when there is a compatible subset R ′ of R that induces t.

The induction process mentioned in the above definition has been known for quartets and triples
for roughly 20 years [BD86, Dek86]. The possible inductions have mainly been grouped in induc-
tion rules. For instance, the following rule is well-known:

{AB|C,BC|D} ⊢ AC|D,

i.e. any tree displaying AB|C and BC|D also has to display the triple AC|D. Since they were
introduced [BD86, Dek86], induction rules have been used in a number of papers (see [GSS07] for
a recent development).

Definition 9.3 Given a collection T of input trees and a candidate supertree T , let R (T,T ) denote
the set of triples of T for which T proposes a resolution. More formally, R (T,T ) =

{

AB|C ∈
rt(T ) such that {AB|C,AC|B,BC|A}∩ rt(T ) 6= /0

}

.

Set R (T,T ) corresponds to the topological information present in collection T relative to that
present in supertree T . Using these notations, we can express the induction property (PI) and the
non-contradiction property (PC) as follows:

Definition 9.4

• T satisfies PI for T if and only if for all t ∈ rt(T ), it holds that R (T,T ) ⊢ t. In other words,
PI requires that each and every triple of T is induced by R (T,T ).

• T satisfies PC for T if and only if for all t ∈ rt(T ) and all t̄, it holds that R (T,T ) 6⊢ t̄ . This
means that, for each and every triple of T , R (T,T ) induces no alternative resolution.

For instance, considering collection T = {T1,T2} and supertree T ′ in Fig. 9.1, the set R (T ′,T )
is {AC|E,AC|F,AB|E,AB|F,BC|E,BC|F,EF |A,EF |B,EF |C}. Note that the triple AD|C present
in rt(T ) due to T2 is not in this set because A,D,C are multifurcating in T ′. Note also that when
considering supertree T of the same figure, R (T,T ) contains two different triples for taxa A,B,C.
For this reason, T does not satisfy PC for T . Trees T and T ” satisfy both PI and PC. However, tree
T ” is preferable, as it is more informative.

When the source trees are compatible, any reasonable method is expected to produce a su-
pertree satisfying PC. However, some methods can propose a supertree that does not satisfy PI, by
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Figure 9.1: Two source trees T1 and T2 and three possible supertrees T,T ′,T ”.

proposing one of the numerous trees that display the source trees (there can be an exponential num-
ber of such trees). However, when T is compatible, it is possible to find a supertree that displays
all triplets of the collection and is also refined by all other possible supertrees. This corresponds to
the identification property between trees:

Definition 9.5 A set R of triples is said to identify a tree T if and only if T strictly displays R and
T is refined by every tree T ′ that strictly displays R .

A set R can identify at most one tree thus, when this happens, this tree is a canonical representation
of all possible supertrees. It is unlikely that for practical collections T , the set rt(T ) identifies a
tree. Nevertheless, it is possible that a subset of rt(T ) identifies a tree T , and then the topological
information contained in T exactly corresponds to a subset of the topological information contained
in T . Such a subset is most interesting when the triples t it contains do not have an alternative
resolution t̄ in rt(T ). We showed that this situation actually occurs for the subset R (T,T ) of
rt(T ) precisely when the supertree T satisfies both PI and PC.

Property 9.1 ([RBG+07]) Given a collection of rooted trees T , a supertree T satisfies PI and PC
for T if and only if R (T,T ) identifies T .

We later found out that P. Goloboff and D. Pol had evoked similar properties [GP02]. They
mention as interesting: “the property of [the supertree] displaying AB|C if it is found in some
input tree or implied by some combination of input trees and no input tree or combination of input
trees displays or implies AC |B or BC |A". From this citation, we can obtain properties PI’ and PC’,
whose definition is close to that of PI and PC, but still different. However, we showed several cases
where PI and PC are preferable to PI’ and PC’ , and additionally the latter does not seem easy to
verify. In contrast, PI and PC can be checked in polynomial time. To show this, we proposed the
following equivalent properties, whose formulation is less intuitive but whose checking is easier.

Definition 9.6 Let T be a collection of rooted source trees and T be a proposed supertree for T .
Define PCeq and PIeq to be the following properties:

• PCeq: rt(T )∪R (T,T ) is compatible.

• PIeq: for any t ∈ rt(T ) and for all t̄, the set { t̄ }∪R (T,T ) is incompatible.
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Property 9.2 ([RBG+07])

(PIeq and PCeq)⇔ (PI and PC).

More precisely, PC and PCeq are equivalent but PIeq is equivalent to PI only when PCeq holds.
PIeq and PCeq can easily be checked by using the BUILD algorithm [ASSU81], which indicates
in polynomial time whether a set of rooted trees is compatible or not. A similar procedure was
proposed by [Ste92], and refined by [Dan04]. However, for the case of PC, we proposed a faster
linear time algorithm [RBG+07].

9.3 An algorithm computing supertrees that verify PI and PC

I briefly discuss now a method that from the start produces supertrees verifying the PI and PC
properties. I should point out that we want more than that, since the uninformative star tree verifies
PI and PC simply because it does not resolve any triplet. Our precise goal was to produce a
method that infers supertrees that verify PI and PC and that contain as much resolution as possible,
e.g. resolve as many triples as possible. More precisely, we require a method that, given any
collection T , proposes a supertree T such that R (T,T ) identifies T and R (T,T ) has maximum
size over all such subsets of rt(T ). We proved that computing such a subset of rt(T ) is an NP-hard
task. We thus proposed a heuristic algorithm, but only approximate in the size of the subset, i.e. we
imposed that inferred supertrees always verify PI and PC. This algorithm is a variant of the BUILD
algorithm and is called PhySIC – Phylogenetic Signal with Induction and non-Contradiction1. We
showed that it can be implemented to run in O(kn3 + n4) time on a collection of k rooted trees
spanning a set of n labels. We proposed an implementation of this algorithm and a webpage
from which it can be run online (http://www.atgc-montpellier.fr/physic). The inferred
supertrees contain internal labels at multifurcating nodes to indicate whether they originate from
contradiction issues or from a lack of overlap (or both) between source trees. Hopefully, this will
help biologists in deciding on further analyses to resolve these nodes.

We showed the relevance of the produced supertree with respect to other supertree methods on
two biological datasets on the historical group of primates [Pur95]. We studied this group at the
genus level by combining 24 source trees covering 95% of its genera. I encourage the reader to
have a look at the resulting supertree, displayed at the end of the corresponding paper, included the
last pages of the final part of this manuscript.

In simulations, PhySIC inferred on average less than 1% incorrect edges. Such a very low type
I error rate is an expected characteristics of veto methods.

1Note that, unlike BUILD, PhySIC always returns a supertree.
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9.4 A more involved algorithm

The PhySIC algorithm was a first step in that its purpose was mainly to show that polynomial-
time supertree algorithms with interesting properties can be designed. In the simulation we did
hereafter, we noted that this algorithm is very sensitive to the difficulty of the considered instances,
proposing highly unresolved trees for the most difficult instances. This shows that in some cases
it is not good heuristics to obtain the most resolved supertree verifying PI and PC. To remedy
this situation, we designed a new algorithm inferring supertrees that verify PI and PC by either
incorporating multifurcating nodes in the supertree – as PhySIC – or by not including some taxa
in the supertree – similar to the SMAST and SMCT methods (see Chap. 7). The rationale is that
excluding taxa whose position greatly differs among source trees from the analysis allows us to
obtain much more resolved, hence more informative, supertrees.

In the PhySIC study, we expressed the amount of information of a supertree as the number
of triples it contains. This shortcoming is not well suited when some input taxa are no longer
in the supertree. As a supertree verifying PI and PC is in essence a common denominator of
all possible fully-resolved supertrees for the data, we then chose to measure the information of a
supertree as a function of the number of binary plenary supertrees by which it is compatible. For
this purpose, we proposed a variant of the Cladistic Information Content (CIC) measure [TWC98],
that is denoted CIC*. We also changed the approach with which the supertree was built. Instead
of using a variant of the top-down BUILD algorithm that could be blocked at some step due to a
difficult situation, we resorted to an iterative insertion procedure [SvH96, RG01]. The resulting
algorithm was called PhySIC_IST (PHYlogenetic Signal with Induction and non-Contradiction
Inserting a Subset of Taxa). Its results on simulated data are far better than those of PhySIC in
terms of resolution: the improvement over PhySIC according to the CIC* measure is 1.5-fold.
This is a considerable improvement, as the measure is valued on a logarithmic scale. In return,
PhySIC_IST shows higher type I error than PhySIC due to the fact that it proposes more clades in
a supertree. However, its type I errors remains under 1% and decreases even more as the number of
source trees grows. PhySIC_IST clearly offers a better tradeoff between resolution and accuracy
for dealing with practical datasets.

9.5 Navigating between veto and liberal methods

Consider the case of a biologist inferring a supertree for a given collection of source trees, ac-
cording to any chosen method. After this first computation, as he accumulates more source
trees, e.g. appearing in new individual studies published in the literature or obtained by scan-
ning databases for newly discovered genes, he will complete his original set of source trees and
infer a new supertree. In doing so, he hopes to obtain a more complete and resolved picture of the
taxonomic group he is fond of. However, there can be disappointing cases in which he will actually
obtain a less resolved supertree. The first reason is that the new taxa hosted by the added source
trees by far outnumbers added trees, in which case it has on average lowered the overlap between
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the source trees. This inevitably leads to less average resolution in the supertree, whatever the
method. Alternatively, he could obtain less resolution due to additional conflicts on the position of
taxa already included in the initial collection. In fact, by adding new trees, one can only increase
the number of conflicts on these taxa. If this number of conflicts remains small, liberal supertree
methods will infer more resolved trees, but veto methods will inherently tend to infer less resolved
supertrees as they are not allowed to propose clades contradicting any source tree. Indeed, adding
more trees provides more information on the relative position of some taxa, but also increases the
number of local conflicts. This means that pure veto methods cannot satisfactorily handle large
collections of trees. For such instances, one has to use the liberal approach that allows us to ar-
bitrate between conflicts arising among source trees. These methods will take ad-hoc decisions,
according to their objective criterion, when dealing with individual conflicts that occur during the
tree-building process.

Lately, we have explored a new way to arbitrate between conflicts in large collections of source
trees. We proposed a statistical preprocess to detect and correct anomalies in source trees. A
veto method can then be applied to obtain a supertree not contradicting the retained information.
This approach has the advantage over liberal methods of making the removal of conflicts between
source trees explicit and parametrizable.

The preprocess we proposed, called STC (Source Trees Correction), analyzes contradictions
among the source trees on the basis of the rooted triple formalism; for all direct contradictions2, it
considers the possible topological alternatives and drops the alternative(s) that is (are) statistically
less supported. The level of significance required to drop an alternative is a value related to a
confidence threshold in a statistical test and can be chosen by the user. Then STC modifies each
source tree (using an algorithmic schema similar to that of PhySIC_IST) so that it does not contain
any dropped alternative and yet remains as informative as possible. In other words, STC aims at
correcting source trees that propose anomalous phylogenetic positions for some taxa (due to lateral
gene transfers, long branch attractions, paralogy, etc.).

If the user approves the proposed modifications, the PhySIC_IST veto method is then applied
to the modified source trees. The resulting supertree satisfies both PI and PC properties for the
collection of modified source trees. If the user is not satisfied with the modified source trees,
he can change the threshold and restart the procedure, or choose to skip it. In this way, the lib-
eral component of the supertree inference is not only made to be explicit but also interactive and
parameterizable.

We proposed an implementation of the STC preprocess and of the PhySIC_IST method that
is available for download or online execution (http://www.atgc-montpellier.fr/physic_
ist/).

We applied the STC preprocess to the PhySIC and PhySIC_IST veto methods in a simulation
study. Figures B.1, B.2 and B.3 in Appendix B detail the results obtained for the supertree methods
under study in the reconstruction conditions we simulated. When setting the STC threshold at
95% (i.e. a 5% probability that a detected anomaly is not actually an anomaly), the resolution of

2i.e. 3-leaf set {A,B,C} such that both AB|C and AC|B are in the source trees
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supertrees inferred by both methods greatly increases. Moreover, the type I error rate of the two
methods does not change significantly when applied after source trees have been modified by STC.
This shows that the preprocess corrects the source trees in an appropriate way. Lastly, when more
source trees are added, the number of input taxa not appearing in the supertree decreases and more
informative trees are obtained. Thus, as more information is provided, the STC fully plays its role
of liberal preprocess in allowing the user to obtain more informative supertrees.

The case where the overlap between source trees is very weak is an exception to the results
reported above. In such a situation (for small collections of small trees in comparison to other
studied conditions), the STC preprocess is not able to detect anomalies to a significant extent since
it has too few rooted triples at hand. Hence, supertree methods output by the veto methods retain
the same characteristics as when not using the STC preprocess.

To conclude, it seems that the above STC preprocess allows to combine the advantages of both
veto and liberal methods: informative supertrees are obtained that also verify interesting properties
with respect to the (modified) source trees.

Publication(s) whose material is described in this chapter:

• Votez veto pour l’Arbre de la Vie, V. Berry, V. Ranwez, P.-H. Fabre,
E.J.P. Douzery, Journées Ouvertes Biologie, Informatique et Mathématiques
(JOBIM), p. 251-263, 2006.

• PhySIC: a Veto Supertree Method with Desirable Properties, V. Ranwez,
V. Berry, A. Criscuolo, P.-H. Fabre, S. Guillemot, C. Scornavacca and
E.J.P. Douzery, Systematic Biology, 56(5), 293-304, 2007.

• PhySIC_IST: cleaning source trees to infer more informative supertrees,
C. Scornavacca, V. Berry, E.J.P. Douzery and V. Ranwez, BMC Bioinformat-
ics (to appear).
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Part V

Ongoing and future research
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Chapter 10

Ongoing research

I am currently involved in several collaborative studies, one of which is the ongoing work with
C. Semple and O. Bininda-Emonds described in the previous part of this manuscript.

Co-supervision of Celine Scornavacca’s PhD work with V. Ranwez, led to a collaboration
with V. Daubin on multi-gene families that started last year. More precisely, handling such data
necessitates tree-comparison algorithms that are able to deal with trees containing several copies of
the same labels. As a first simple solution, we are currently investigating preprocessing algorithms
to decompose such trees with the idea of feeding them as input into the PhySIC_IST algorithm
detailed in Chap. 9. This collaboration has greatly motivated us and we decided to write an ANR
project proposal. Since our proposal was accepted, this collaboration will last for several years (see
next chapter for more details). A paper on multigene trees should be submitted to the RECOMB’09
conference.

For a year, I have been co-supervising the PhD work of Philippe Gambette, in collaboration
with C. Paul. During his first year, Philippe worked on networks as a tool to represent phylogenetic
relationships and especially on a combinatorial formalism to decompose increasingly complex
networks. In this context, we also started a collaboration with D. Huson and R. Rupp on algorithms
to infer rooted networks of minimum complexity from collections of rooted trees. A paper relating
these results should be submitted to the RECOMB’09 conference.

A collaboration with T. Gernhard, V. Ranwez and A. Jean-Marie was started in June on consen-
sus methods explicitly taking tree evolution models into account. We obtained several algorithms
that should lead to consensus trees whose clade content should be less biased by down-weighting
clades that are most likely to appear frequently via the models underlying the input trees. A paper
should be submitted to the Molecular Biology and Evolution journal in the next six months.

Another collaboration with V. Ranwez concerns the TreeBASE phylogenetic database. To-
gether with students S. Pourali and N. Clairon that we supervised, we designed a website to ex-
plore and correct a collection of source trees. By resorting to several taxonomic resources, this
website provides statistics on the characteristics and overlap of source trees, helps in locating un-
known or misspelled taxon names and indicates TreeBASE trees that were published with a similar
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taxonomic focus. A short paper has been submitted to the BMC Bioinformatics journal.

I am also involved in some collaborations with local members of LIRMM. A collaboration
with C. Caraux started last year on resampling methods to obtain accurate congruence measures
of collections of source trees. Our work is mainly based on a critique of the method proposed by
Lapointe and Rissler involving the MAST consensus method [LR05]. We propose a method that
better accounts for the influence of source tree topological traits on MAST scores computed at
intermediary steps of the method. A first variant of the method was successfully experimented in
a co-evolution study on fig wasps and fig trees [JvNB+08]. We also extend the method to the case
of trees having different though overlapping taxon sets.

Following supervision of Sushant Gupta, an Indian student, I also started a collaboration with
L. Brehelin on a variant of the MRP supertree method. This variant relies on statistical models to
extract topological information from a set of source trees. The collaboration has just begun but
looks promising as MRP is the most known supertree method and since our approach is likely
to obtain more information from the source trees than can be obtained with the current signal
extraction protocol. This would benefit the MRP method when faced with source trees having
little overlap, i.e. in such cases the method has been shown to perform poorly.

More recently, I had an animated discussion with F. Chevenet and R. Christen concerning a
scripting language for graphical display of phylogenetic trees that the former is currently develop-
ing. We used this language, called ScripTree, as an intermediate step to set up webpages enabling
users to browse modifications proposed by the PhySIC_IST program on collections of source trees
considered for building supertrees. An application note on ScripTree should be submitted in the
following month to the Bioinformatics journal.
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Chapter 11

Plans for the future

11.1 Introduction

In the next few years I will conduct research within the framework of the long-term ANR project
that we just got funds for and that I will coordinate. This project is a collaboration with F. Chevenet,
V. Daubin, E. Douzery, N. Galtier, C. Paul, V. Ranwez and E. Tannier. Our project as several goals,
including the building of large phylogenies by integrating, on a large scale, both micro-evolutionary
events, such as sequence substitutions, and macro-evolutionary events, such as duplications/losses
(D/L) and horizontal transfers (HGT) that may occur in genes. I believe that this is a necessary
step in assembling the tree of life, and gene sequences produced by the numerous ongoing genome
sequencing projects is an important source of data for such ends. The data we will focus on are
multi-gene families, i.e. genes existing in several copies in the genome of studies species. Indeed,
very few phylogenetic methods are able to deal with such genes, though they represent the vast ma-
jority of genes. Our application mainly concerns bacteria where HGT are relatively frequent and
interleaved with D/L events. Bacteria are an economically important target due to their involve-
ment in many aspects of human life (symbiotic relationship for digestion, responsible for lethal
infections, tool in food production, etc). In the process, we hope to obtain useful information on
D/L and HGT events in bacteria, whose mechanics remain highly unknown. A long-term appli-
cation is in understanding the spread of antibiotic-resistance among pathogenic bacteria. Our first
taxonomic group of interest will be a group of proteobacteria for which members of the project
have expertise. Ultimately, we hope to be able to consider the history of the major groups of bac-
teria, i.e. to determine the early relationships of these groups, annotated with flows of HGT events
between them.

Below I give a brief overview of why we think there is important research to be conducted in
this direction, what kind of data we can use and what strategies we plan to employ.
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11.2 Setting

The tree of life. As mentioned previously in this manuscript, it is generally thought that all
existing life on Earth has evolved from a single common, very distant ancestor from which new
species originated and evolved following a tree-like pattern, up to the current contemporary species
represented as leaves in this tree of life. Currently, 1.8 million species have been inventoried and
0.01 million are discovered every year [Bou07]. Yet, the relative position of the major groups of
species on the tree of life is still highly debated, e.g. 64% of the nodes of the well-known NCBI
estimation of the tree of life are currently unresolved. In particular, no significant progress has
been achieved since the 1970s on the relationship of the earliest groups of bacteria [WRG+01,
BDI+01, DGP02] and recent developments have radically revised the relative branching and roots
of the eight major eukaryote groups, suggesting “major gaps in our understanding simply of what
eukaryotes are" [Bal03, p.1703]. This shows that much work remains to be done before we obtain
an acurrate picture of the evolutionary relationships linking early living organisms.

Data to infer the tree of life. A considerable amount of data is routinely produced by sequenc-
ing projects and readily made available on the Internet. The current trend is to obtain complete
genome sequences, as this plays a key role in understanding functions of genomic elements and
in predicting precise gene locations, which has important medical applications. The availability
of complete gene repertoires also greatly benefits the task of recovering (ancient) evolutionary re-
lationships between living organisms [LDOM05]. The first complete genome was obtained only
10 years ago, but renewed progress in sequencing technologies in the last few years has led to the
sequencing of 730 complete genomes, spanning the major life groups. These were subsequently
scanned for the presence of genes, annotated with additional information, and then released in the
public domain. Moreover, more than 3600 new genomes are being sequenced and will be released
in the following years. Thus, plenty of data is available to infer the tree of life or parts of it, and
the task is now to infer something meaningful from this flood.

Horizontal gene transfers. When gene sequences are used to estimate the tree of life, the main
difficulty lies in separating the signal due to speciation events that accounts for the structure of the
species tree from the signal due to gene-specific evolutionary events such as HGT and D/L events.
HGT appears to have played a crucial role in the history of life [GDL02]. Not only have they been
of great importance in many evolutionary transitions, such as colonization of new environments,
but they also are still a preferred means of adaptation in many organisms. In pathogenic bacteria,
for instance, HGT is a preponderant cause of antibiotic resistance, and allows some bacteria to be
resistant to most, if not all known antibiotics. Therefore, recognizing the evolutionary origins of
genes in genome, and the length of time they have been part of the genome, i.e. knowing when
and where HGT occur, cannot only benefit assembly of the tree of life but is also important in
understanding genomes and their evolutionary mechanisms.
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Possible approaches. Several approaches have been proposed to identify horizontally trans-
ferred genes in a genome. Some are based on comparing the features of genes in a genome,
and distinguishing those that contrast with the genome-wide pattern. Others compare the gene
repertoires of closely related genomes to identify newly integrated genes. However, both of these
approaches are limited in terms of the information they provide. First, they only point to genes
that have been very recently acquired. Secondly, they can only be applied in favorable conditions,
i.e. when the considered genomes display sufficiently homogeneous features so that alien genes
can be recognized. And finally, they provide no information on the origin of these alien genes.
There is now a general consensus among evolutionary biologists that phylogenetic analysis is the
best way to reliably and fully document HGT events. Reconstructing the history of a gene theo-
retically reveals even ancient HGT in any sequenced genome and enables identification of putative
donor organisms. However, several difficulties are encountered when identifying HGT based on a
phylogenetic approach. First, HGT have to be distinguished from D/L events, as both contribute to
driving gene and species histories apart. Secondly, in order to identify atypical gene histories, one
needs to know the actual history of the species. To summarize, when inferring a species tree, it is
essential to know what HGT events are at stake in gene histories, which in turn can be determined
in comparison to the species tree. These interdependent relationships show that both horizontal
(HGT) and vertical (speciations, D/L) events have to be estimated in a well-coordinated effort.

The data complexity. Each gene history is the result of a multi-scale stochastic evolutionary
process: at the lowest level, individual nucleotide sites are submitted to micro-events, i.e. substi-
tutions, insertions and deletions, and at the highest level, HGT and D/L macro-events take place
in genes. Thus, biological data resulting from this process is inherently complex. An extremum of
complexity is encountered when dealing with multicopy genes, i.e. genes found in several copies
in one or more genomes. However, previous attempts at reconstructing the history of life have tried
to avoid considering this complexity, e.g. by selecting only the few genes that were ubiquitous (i.e.
present in all considered organisms) and that seemed to have simple histories, in particular without
duplications [CDvM+06]. This view gives a very incomplete if not anecdotal vision of evolution,
as only at most 30 genes can be considered in such analyses. Therefore, these approaches have
been criticized as representing a “tree of 1%" [BSE+07]. In addition, even these genes cannot be
considered a priori as free from HGT.

To reconstruct the tree of life and explain its incongruences with gene trees and those between
gene trees, the vertical signals, i.e. speciation and duplication events, and horizontal signal, i.e. ge-
netic exchanges between distinct species must be disentangled.

Previous work. Literature written on the subject mostly involves, (i) standard phylogenetic anal-
yses, in contexts within which HGTs are expectedly low [LDOM05], (ii) reports on specific HGT
events for specific genes [NLSD01, CGP05, For02, DBAG07], (iii) approaches that voluntarily do
not rely on gene phylogenies (e.g. gene content analyses [DM07]), and (iv) quasi-philosophical
statements about the relevance of tree-like representations in the HGT context [DB07]. Meth-
ods investigating the network model to represent evolution – as an alternative to the tree model
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– have studied the degree of “reticulate evolution" in a gene, or a set of genes [KH08], but these
approaches do not handle multicopy genes. Moreover, this work mainly identifies conflicting phy-
logenetic signals, and hence do not propose specific gene evolution scenarios (including HGT and
D/L events). Concerning the tree model, some algorithmic studies have begun to consider the rec-
onciliation of the phylogenetic history of a gene family with a given species tree. This field is still
at the budding age: algorithms often handle a single copy of each gene in one species, and those
considering multicopy genes generally avoid the real complexity of the problem by focusing either
on duplications [Ste99, LV03, ABLS04, DHV05, VSGD07] or HGT [HL01, ABHL03, LV03],
while overlooking more elaborate scenarios with mixtures of these events. However, some authors
have started to study the feasibility of incorporating all of these events in a single model to recon-
ciliate a single gene tree with a given species tree [Gor03, HL04], while allowing multicopy gene
trees. This is progress over former reconciliation studies [Cha98, PC98]. However, the additional
complexity of considering several gene trees simultaneously has not yet been examined, nor has
the case where the reference species tree is not given but instead has to be estimated. These are the
most complex but by far most relevant variants we will have to study in order to reach our goals.

11.3 Important steps

Here is a brief account of the important steps we plan to follow.

The first step involves elaborating a protocol to collect data from genome databases. Several
options exist for splitting gene sequences into gene families, but also for building gene trees and
removing uncertain parts of them. In this task, we will be inspired by the ENSEMBL, HOGENOM,
PhyloFact, GeneTree and COG databases but will likely need to set up our own protocol according
to the specificity of the problems we want to solve.

Then we will need to design criteria and algorithms to assess the accuracy and inherent com-
plexity of the gene families and trees, but also to classify the families in different categories.
These criteria will be useful for testing reconstruction algorithms on data of increasing difficulty.
Moreover, when this will be needed, we will be able to separate gene families into subsets having
different estimated ratios of vertical vs horizontal levels of sequence inheritance.

The main part of our research activity will be devoted to algorithms with thousands of gene
families as input, including multi-copy genes, from which evolutionary scenarios will have to be
built, compared and combined. Scenarios proposed by different gene trees may be correlated or, in
contrast, incompatible with each other and the complexity of simultaneously considering thousands
of gene trees in this context has not yet been studied. Two strategies are planned that respectively
rely on supertree and supermatrix methodologies.

In the supertree strategy, micro- and macro-events that drive genetic evolution are considered
in two separate steps: first, probabilistic models of evolution are used to build gene trees from
sequence similarities, i.e. guided by the signal due to the inheritance of genes from ancestors to
offspring; then, gene tree topologies are compared in a combinatorial analysis to detect gene HGT
and D/L events. The difficulty in this strategy is clearly the second step, as several algorithms
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have been proposed to build a species tree from gene trees but only reconciliating the gene trees
by D/L events [Ste99, HL01, LV03] or alternatively HGT [GWK05]. Algorithms that take both
into account [HL04] are limited to considering single gene family trees. We will have to go be-
yond this point as our project requires us to consider several gene trees and compare them jointly
to a tentative species tree in order to simultaneously infer the species tree and macro-events to
reconcile the gene trees. For this purpose, we will extend reconciliation algorithms [HL04] to
arbitrate between different scenarios integrating all kinds of macro-events. Consideration of sev-
eral gene trees at once may paradoxically make some algorithms easier, since the reconciliation
of every gene tree will surely benefit from the information deduced from the reconciliation of
other gene families. Though underlying problems are likely NP-hard, fixed-parameter tractability
is a workaround technique that has been applied several times to reconcile gene and species trees
[Ste99, HL04, VSGD07] and in which we already have some experience (e.g. see Part. III of this
manuscript).

The supermatrix strategy simultaneously considers micro- and macro-events responsible for
gene evolution. To implement this strategy, evolutionary models will have to be designed that
integrate standard micro-event models with D/L and HGT events, so that the presence and location
of such events will be inferable in a maximum likelihood framework – the approach that provides
the most accurate phylogenetic reconstruction results. Then the species tree will be estimated
on the basis of these annotated gene histories by specific algorithms to be designed. This is an
innovative approach as only [ABLS04] proposed a comprehensive model integrating micro- and
macro-events, but their model does not take HGT events into account. The lock-in of this approach
is in estimating with sufficient accuracy and speed, the rate of HGT and D/L events, which are at
a meta-level compared to substitutions affecting individual sequence sites. As regular parameters
of the model, these rates will be estimated from the gene sequences, but the difficulty lies in the
fact that transfer and duplication rates seem to be specific to lineages, so a non-trivial number
of parameters will have to be estimated. The difficulty will then be in choosing an appropriate
complexity level in the model design to allow for both accurate and efficient computations. The
supermatrix approach might require high computing times due to the optimization starting from
the mere sequences and to the estimation of a non-trivial number of parameters. These times will
be reduced by grouping data into “modes" of congruent signals and by sharing parameters among
genes with a similar profile.

Once the developed algorithms have provided a putative species tree together with HGT and
D/L events affecting individual genes, we will set up a database to register all inferences. We will
also provide specific software to allow efficient visualization of the inferences and facilitate their
mining.

Exciting research in computational biology and bioinformatics thus awaits us in this large-scale
collaborative project.
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Appendix A

Efficiency of quartet cleaning as measured

by experiments

These results are taken from [BJK+99].
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Global Edge Local Vertex
(% of Trees Cleanable) (Average % of Vertices per Tree

Quartet Mean that are Cleanable)
Inference Edge Sequence Length Sequence Length
Method Length 50 200 2000 50 200 2000

Maximum 0.025 10.48% 62.85% 95.02% 38.98% 76.15% 94.80%
Parsimony ( 0.45%) (10.85%) (56.67%) (29.20%) (59.82%) (87.27%)

0.1 38.62% 79.60% 92.34% 55.91% 80.76% 89.90%
( 0.22%) ( 6.17%) (27.06%) (28.82%) (55.57%) (74.01%)

0.25 26.88% 64.44% 78.48% 45.18% 67.96% 77.03%
( 0.01%) ( 0.71%) ( 6.83%) (20.09%) (37.73%) (53.93%)

0.5 3.25% 23.46% 56.33% 23.50% 43.47% 61.71%
( 0.00%) ( 0.03%) ( 0.87%) (10.59%) (22.38%) (38.42%)

0.75 0.30% 3.81% 27.46% 13.08% 25.46% 46.57%
( 0.00%) ( 0.00%) ( 0.08%) ( 6.03%) (14.11%) (28.48%)

Neighbor 0.025 16.36% 70.47% 95.67% 43.79% 79.85% 95.06%
Joining ( 0.73%) (13.49%) (57.18%) (32.53%) (62.96%) (87.46%)

0.1 47.10% 81.36% 91.72% 60.86% 81.57% 88.97%
( 0.34%) ( 6.92%) (24.57%) (32.04%) (56.65%) (72.31%)

0.25 30.85% 64.18% 76.48% 47.69% 67.50% 75.48%
( 0.02%) ( 0.84%) ( 6.16%) (23.19%) (38.44%) (52.55%)

0.5 3.91% 22.27% 51.80% 26.91% 43.25% 58.88%
( 0.00%) ( 0.07%) ( 0.79%) (16.37%) (26.27%) (38.08%)

0.75 0.41% 3.63% 21.47% 16.78% 27.56% 43.48%
( 0.00%) ( 0.00%) ( 0.06%) (11.33%) (19.41%) (30.49%)

Ordinal 0.025 20.49% 74.33% 96.12% 47.79% 82.19% 95.45%
Quartet ( 1.21%) (17.11%) (59.25%) (37.36%) (66.38%) (88.19%)
Method 0.1 64.15% 86.91% 93.84% 71.92% 86.32% 91.50%

( 1.21%) (12.38%) (34.53%) (40.32%) (63.45%) (78.00%)
0.25 63.64% 81.72% 87.31% 68.85% 81.13% 85.44%

( 0.16%) ( 2.42%) (13.82%) (30.29%) (47.25%) (65.10%)
0.5 39.03% 67.26% 81.75% 52.41% 69.18% 79.47%

( 0.04%) ( 0.19%) ( 1.82%) (23.67%) (32.06%) (45.22%)
0.75 12.32% 35.18% 63.60% 34.28% 49.52% 66.47%

( 0.00%) ( 0.01%) ( 0.16%) (18.56%) (24.86%) (33.28%)

Table A.1: Performance of the Quartet Cleaning Algorithms Under Simulation. The unparanthe-
sized number is the average percent of all evolutionary trees (vertices per evolutionary tree) that
have no quartet errors (no quartet errors across them) after global edge cleaning (local vertex clean-
ing) has been applied. The parenthesized number is the average percent of all evolutionary trees
(vertices per evolutionary tree) that have no quartet errors (no quartet errors across them) before
quartet cleaning is applied.
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Appendix B

Efficiency of supertree methods in various

reconstruction conditions
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Figure B.1: Average level of supertree resolution for various supertree methods as measured by the
CIC criterion, on input collections of 10 to 50 source trees depending on their overlap: each source
tree lacks on average d = 75%, d = 50% or d = 25% of the taxa in the correct tree to reconstruct;
alternatively, condition mixed d represents collections containing trees taken at random from the
three previous kinds of collections. A CIC value of 1 indicates a fully resolved tree, while a 0 value
indicates a star tree.
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Figure B.2: Average percentage of type I error for various supertree methods, on input collections
of 10 to 50 source trees depending on their overlap. Type I error is the percentage of incorrect
edges contained in the inferred supertree.
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Figure B.3: Average percentage of type II error for various supertree methods, on input collections
of 10 to 50 source trees depending on their overlap. Type II error is the percentage of edges in the
correct tree (i.e. model tree) that are not contained in the inferred supertree.
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➍♣➒❯➠❏➒❯➊❜➔✟➐✩➎♣➟✵➔✟→➡➏➋➒ ➎❫➟◗➏❧➐☞➒❯➍❣➎♣➜❏➔✟→✪➛❿➜❸➝✴↔♣➏➋➈✍➎✖➜❸➌◗➎❫➍♣➒❯➢✾➏❝➑③➤✡➥☞➟✾➏➦➈➋➐❫➒ ➎♣➏➋➐❫➒❯➜❸→❿➒❯➍❣➒❯→✪➎♣➌✾➒ ➎♣➒ ➙➂➏❸➧✵➈➋➜❸➠➅➨
➣✝➏➋➊❯➊❯➒❯→✾➩✾➧➂➝✾➌◗➎✩➜✟↕❲➎❫➏➋→➅➎♣➜✴➜➦➐♣➏❧➍❩➎❫➐♣➒❯➈✍➎❫➒ ➙➂➏❣↕✧➜❸➐✫➔✟➣✾➣◗➊❯➒❯➈❖➔✬➎♣➒❯➜❸→✾➍✔➒❯→➫➈➋➊❜➔✟➍❫➍❫➒ ➭✾➈❖➔✬➎♣➒❯➜❸→☛➤s➯➲➏❣➎❫➟✾➏➋➐♣➏➋↕✧➜❸➐❫➏
➏✍➳✴➣✾➊❯➜❸➐❫➏❿➏✍➳✴➎♣➏➋→✾➍❫➒❯➜❸→✾➍✲➜✟↕✐➇☎➣✾➐♣➏➋➍♥↔♣➔✟→➵➈❧➊❯➌◗➍♣➎♣➏❧➐♣➒❯→✾➩➸➎❫➜➲➔➡↕✚➔✟➠❏➒❯➊ ➛✥➜✟↕✐➐❫➏➋➊❜➔✬➎❫➏➋➢❵➟✾➒❯➏➋➐❨➔✟➐♣➈❨➟✾➒❯➈❧➔✟➊
➈➋➊❯➌✾➍❩➎❫➏➋➐❫➒❯→◗➩➡➠❏➏✍➎❫➟✾➜✪➢✾➍❧➤➡➥☞➟✾➏❏➏✍➳✴➎♣➏➋→✾➍❫➒❯➜❸→◗➍❏➔✟➐❫➏❏➍♣➟✾➜❖➞✖→✥➎♣➜✦➝✝➏✲➈❧➊❯➜❸➍♣➏➋➊ ➛✥➈➋➜❸→✾→◗➏❧➈✍➎♣➏➋➢❵➞✖➒ ➎♣➟
➎♣➟✾➏✐➞✔➏❧➊❯➊ ➨✚➺✴→✾➜❧➞✖→❏➍❫➒❯→✾➩❸➊❯➏✖➔✟→✾➢❿➔❧➙➂➏➋➐❫➔✟➩❸➏☎➊❯➒❯→✾➺✬➔✟➩❸➏✐➎♣➐❫➏➋➏✐➈➋➜❸→✾➍❩➎❫➐♣➌✾➈✍➎❫➒❯➜❸→◗➍❖➤✩➇➻➢✾➌✵➔✟➊✵↕♥➔✟➠❏➒❯➊ ➛➫➜✟↕
➠❏➏✍➎♣➟✾➜✴➢◗➍❝↕✧➜❸➐➦➈➋➊❜➔✟➍❫➍♣➒ ➭✵➈❧➔✬➎❫➒❯➜❸→➲➝✪➛➲➍♣➣✾➊❯➒ ➎❫➍➦➒❯➍❝➔✟➊❯➍♣➜▼➣✾➐♣➏➋➍❫➏➋→✪➎♣➏➋➢☛➤✼➼✴➣✾➊❯➒ ➎♣➍❝➔✟➐❫➏❄➣✵➔✟➐♣➎♣➒ ➎❫➒❯➜❸→◗➍③➜✟↕
➎♣➟✾➏☎➍♣➏✍➎✔➜✟↕✏➜❸➝✴↔♣➏➋➈✍➎♣➍✔➒❯→✪➎♣➜❝➎❢➞❣➜❝➢✾➒❯➍♥↔❩➜❸➒❯→✪➎✫➝✾➊❯➜✪➈❨➺✴➍✔➔✟→✾➢❿➔✟➐❫➏☞➞✐➒❯➢◗➏❧➊ ➛➫➌✾➍♣➏❧➢✲➒❯→➅➢◗➜❸➠✲➔✟➒❯→✾➍✫➍♣➌✾➈❨➟
➔✟➍❣➣✾➟➂➛✴➊❯➜❸➩❸➏❧→◗➏➋➎♣➒❯➈➋➍❖➤✫➽✔➜✟➎❫➟✲➎♣➟✾➏✳➈➋➊❯➌✾➍♣➎♣➏➋➐☞➔✟→✾➢✲➍❫➣✾➊❯➒ ➎✫➠❏➏✍➎❫➟✾➜✪➢✾➍❣➩❸➒ ➙➂➏✳➐♣➒❯➍❫➏☞➎❫➜③➣✾➐♣➜❸➩❸➐❫➏➋➍❫➍♣➒ ➙➂➏❧➊ ➛
➐♣➏➋➭✾→✾➏➋➢➅➎❫➐♣➏❧➏✐➐❫➏➋➣✾➐♣➏❧➍♣➏➋→✪➎❫➔✬➎❫➒❯➜❸→◗➍❖➤s➯➲➏☎➏✍➳◗➣◗➊❯➜❸➒ ➎✔➢✾➌✵➔✟➊❯➒ ➎♣➒❯➏➋➍❣➔✟→✾➢❏➈➋➜❸→✾→✾➏➋➈✍➎♣➒❯➜❸→✾➍☞➝❋➏✍➎❢➞❣➏➋➏➋→✲➎❫➟✾➏
➙✟➔✟➐❫➒❯➜❸➌✾➍✐➠❏➏➋➎♣➟✾➜✪➢✾➍❖➧❋➩❸➒ ➙✴➒❯→✾➩✲➣✝➜❸➊ ➛◗→✾➜❸➠❏➒❜➔✟➊✏➎♣➒❯➠❏➏➦➈➋➜❸→✾➍♣➎♣➐❫➌◗➈➋➎♣➒❯➜❸→✥➔✟➊❯➩❸➜❸➐❫➒ ➎♣➟✾➠❏➍✖↕✧➜❸➐☎➠❏➜❸➍❩➎☎➜✟↕
➎♣➟✾➏➦➈➋➜❸→✾➍♣➎♣➐❫➌◗➈➋➎♣➒❯➜❸→✾➍➦➔✟→◗➢➡➾✐➚✡➨❢➟✵➔✟➐♣➢✾→✾➏➋➍❫➍☞➐❫➏➋➍♣➌✾➊ ➎❫➍❣↕✧➜❸➐❣➎❫➟✾➏❝➐♣➏❧➍❩➎❖➤

➪❿➶❖➹➴➘➸➷✴➬❫➮✴➱◗✃➡❐❖❒❜❮❋❰❫Ï✍Ð❧Ñ❨Ò❜Ó❆Ô✝Õ✝❰❨Ö✝❒❯Ò❯Ï✍❰✬Õ✝Ï❨Ñ✍Ð❖Ð➦❐✬×✪Ó❆❰♣Ï❨Ñ✍❮❋❐❖Ï❨Ò❜×✪Ó✡Õ❋Ø❸❒❜Ô✪×✪Ñ❨Ò❯Ï❨Ù❆Ú❿❰✬Õ❆❐❖❒❲Ø➂❰❨❰❫Ò❯Û❆❐✟Ø❸Ï❨Ò❜×✴ÓsÕ❆❐✬×✪Ú❿Ü
Ö❆Ø➂Ï❫Ò❜Ý❋Ò❯❒❯Ò❯Ï❩Þ◗Õ⑧ß◗❮☛Ø❸Ñ❨Ï✍Ð❧Ï✍❰✬Õ❆Ù❋Ò❜Ð❧Ñ➋Ø➂Ñ❨❐❧Ù✝Ò❜Ð✬❰❖Õ✏❰❫Ò❜Ó❋Ô✪❒❜Ð➅❒❯Ò❜Ó❋à➂Ø➂Ô✴Ð➅Ï❨Ñ❨Ð✬Ð✴Õ❆Ø✬á✴Ð❖Ñ➋Ø➂Ô✪Ð➅❒❯Ò❜Ó❆à➂Ø➂Ô✴Ð❏Ï❨Ñ❨Ð✬Ð✴â

ã✩ä❝å✪æ➓ç➸è❵é➵êìë➻í✥ç➸å✴é❵æ
î ➀✪ï✧ð✩ñ➋❈✬➁✪❃✲✿✚ñ❏✻➵ñ❧ð✡ò✡ñ❧➁✪❈❏ó✝ô➦✻õ➀✪ó❋ï♥ï✧➁◗➀❸❈✬✿✧ó❆❇❂ó❋ô☎ó❆ò⑧ö➋➁✴➀➂❈✬ñ✴÷ î ñ❧øsï♥✿✧❈✲✿♥ñ❏✻ùñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇➴ó❋ô

❈❖ús➁➡➀➂ó❆ï✧ï♥➁✴➀➂❈❖✿♥ó❋❇❵✿♥❇☛❈❖ó➲❈➋û➫óõ❀⑧✿♥ñ❩ö➋ó❋✿♥❇☛❈❄ø✩✻✝❃❖❈✬ñ✴÷✐üý➁✼û❏✿♥ï♥ï✩ò✫➁✼✿♥❇✏✽❋➁◗ñ➋❈✬✿✧þ☛✻✵❈❖✿♥❇sþ➸ÿù➁✪❈❖úsó⑧❀sñ➫ô❍ó❋❃
➀➂ï✚✻❋ñ✬ñ❧✿✁�✩➀✴✻✵❈❖✿♥ó❋❇➡ð✡ñ❖✿♥❇sþ❿➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ✐✻✝❇✡❀➡ÿù➁➂❈✬úsó⑧❀sñ✐ð✡ñ❧✿♥❇sþ☛ñ✖ñ❖øsï✧✿✧❈✬ñ✄✂✾❃❖➁✴ø✩➁◗✻✵❈✬➁✴❀⑧ï♥❅✼➁✆☎⑧øsï✧ó❆✿❲❈✬✿✧❇✡þ
➀➂ó❆❇s❇s➁✴➀➂❈❖✿♥ó❋❇✡ñ❿ò✩➁✪❈➋û➫➁✴➁✪❇➻❈✬ús➁✦❈➋û❄ó➴✻✝øsø✡❃❖ó☛✻❋➀✟ús➁◗ñ✪÷➫ü✘➁➲ñ❧❈✬✻❋❃❧❈✼û❏✿❲❈✬ú➻❈➋û➫ó➴➀✪ï♥✻❆ñ❖ñ❖✿✁�✩➀✪✻✝❈❖✿♥ó❋❇
ÿù➁➂❈❖ú✡ó✏❀✡ñ➅❈❖ú✡✻✝❈❿✻✝❃✬➁✼❇✡ó✵û ✻✝ï♥ÿùó❆ñ❧❈✲➀➂ï✚✻❋ñ✬ñ❧✿✚➀✪✻❋ï✞✝ î øs❃✬➁✴ñ❩ö❧✻✝❇➻➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ✠✟☛✡✌☞✖✻✝❇✡❀➻❁❄ðs❇s➁✴ÿù✻❋❇
ñ❧ø✡ï✧✿✧❈✬ñ✠✟☛✡✠✍✎☞❨÷✯üý➁ û❏✿♥ï✧ï▼ñ❧úsó✵û úsó✵û ❈❖ús➁◗ñ❧➁➉➀✪ï✧ó☛ñ❧➁✴ï✧❅ ❃❖➁✴ï♥✻✝❈❖➁◗❀ ➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✡ñ❵➀✴✻✝❇ ò✩➁

✏



✑ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

➁✌☎✏❈❖➁✴❇✡❀⑧➁◗❀ý✻❋❇✡❀ ❃✬➁✌�✩❇s➁✴❀➉❈❖ó➻þ❋✿♥✽❋➁ù✻❂ús✿✧þ❆úsï♥❅➉ñ➋❈✬❃❖ð✩➀❸❈❖ð✡❃❖➁◗❀ ô❩✻❋ÿõ✿♥ï♥❅ ó✝ô➫➀✪ï✧ð✩ñ➋❈✬➁✪❃✬✿✧❇sþ➓✻❋❇✡❀
✢ ñ❖øsï♥✿❲❈❖❈❖✿♥❇sþ✤✣ù➀➂ï✚✻❋ñ✬ñ❖✿☛�✩➀✴✻✵❈✬✿✧ó❆❇❂ÿù➁➂❈✬úsó⑧❀sñ✴÷

✥➅ú✡➁✲✻✝✿♥ÿ ó✝ô✔✻✝ï♥ÿõó☛ñ➋❈➦➁✴✽❋➁✪❃✬❅➸➀➂ï♥ð✡ñ❧❈❖➁✴❃❖✿♥❇sþ➡ÿù➁➂❈❖ú✡ó✏❀✡ñ✳✿♥ñ☎❈✬ó➸➀➂ï♥ð✡ñ➋❈✬➁✪❃✳ó❋òsö➋➁✴➀❸❈✟ñ☎❈❖ó❆þ❋➁➂❈✬ús➁✪❃
❈❖ú✡✻✝❈▼✻❋❃❖➁➸ÿùó❆❃❖➁➲ñ❖✿♥ÿõ✿♥ï✚✻✝❃✲❈✬ó❵ó❋❇✡➁➲✻✝❇só❋❈❖ús➁✴❃✲❈✬ú✡✻✝❇➓❈✬ús➁✪❅➻✻✝❃✬➁✦❈✬ó❵ó❋ò⑧ö➋➁◗➀❸❈✟ñ❿ó❆ð⑧❈✬ñ❖✿♥❀s➁✦❈❖ús➁
➀➂ï♥ð✡ñ❧❈❖➁✪❃◗÷õü✘➁➵❃✬➁✪øs❃✬➁✴ñ❖➁✪❇☛❈▼❈❖ús➁ùï♥➁✪✽❆➁✪ï➦ó✝ô➅ñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿✧❈➋❅➓ò✩➁✪❈➋û➫➁✴➁✪❇ý➁✪ï♥➁✪ÿù➁✪❇☛❈✬ñ➡ó❋ô❄✻➻ñ❖➁➂❈✧✦
ð✡ñ❖✿✧❇sþ✘✻✘★✄✩✞✪✫✩✭✬✞✮✖✯✎✩✱✰✳✲✵✴✷✶✹✸✻✺✼✰✄✩✞✽✾✸❀✿❁✝✛✦❃❂❄✦❆❅❈❇ û❏ús✿✚➀✟ú✱û➫➁➴❀s➁✌�✡❇s➁❵❈❖ó ò✫➁➴✻✝❇✏❅
ñ❧❅✏ÿùÿù➁➂❈✬❃❖✿✚➀ìô❍ðs❇✡➀➂❈❖✿♥ó❋❇ ô❍❃✬ó❋ÿ ø✡✻❋✿✧❃✟ñùó✝ô➡ó❋òsö➋➁✴➀❸❈✟ñù❈❖ó❉❇▼÷✵✥➅ús➁➓✿✧❇☛❈✬ðs✿❲❈✬✿✧✽❆➁➓❇só✝❈✬✿✧ó❆❇ ó❋ô
➀➂ï♥ð✡ñ❧❈❖➁✪❃✬✿♥❇sþ✸✿✚ñ❂➀✴✻✝ø⑧❈✬ðs❃❖➁◗❀ ✿✧❇ ❈✬ús➁✘❀s➁✌�✡❇s✿✧❈❖✿♥ó❋❇✯ó✝ô î ø✡❃❖➁◗ñ❍ö❧✻❋❇ ➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ✄✟✁✡✳☞✷✂✲û❏ús✿✚➀✟ú ✿♥ñ
❈❖ús➁❊�✡❃✟ñ➋❈ù➀➂ï♥ð✡ñ❧❈❖➁✪❃✬✿♥❇sþ ÿù➁➂❈✬úsó⑧❀✸û❄➁❵✿✧❇✏✽❆➁✴ñ❧❈❖✿♥þ❆✻✵❈✬➁❋÷●❋✡ó❋ï♥ï✧ó✵û❏✿♥❇sþ➉❁➅✻❋❇✡❀⑧➁✪ï✧❈õ✻❋❇✡❀✸✺✼❃❖➁◗ñ❖ñ
✟ ✑ ☞❍✂▼û❄➁✘❀⑧➁✆�✡❇s➁ î øs❃✬➁✴ñ❩ö❧✻✝❇✷➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ❂✿✧❇✯❈❖➁✪❃✬ÿ➵ñìó✝ô✥ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅ ô❍ðs❇✡➀➂❈❖✿♥ó❋❇✡ñ✄✂❿❃✟✻✵❈✬ús➁✪❃
❈❖ú✡✻❋❇ ❀s✿♥ñ✬ñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿✧❈❖✿♥➁✴ñ✄✂✳❈❖óý➁✪ÿùøsú✡✻❆ñ❧✿❏■✪➁❂❈❖ús➁ìÿ➵✻✵❈✬ús➁✪ÿ➵✻✵❈✬✿♥➀✴✻✝ï❏❀⑧ð✡✻❋ï✧✿✧❈➋❅✱ò✫➁➂❈➋û❄➁✪➁✪❇✢❈❖ús➁
➀➂ï♥ð✡ñ❧❈❖➁✪❃✬✿♥❇sþ➉✻✝❇✩❀ ❈❖ús➁ìñ❧ø✡ï✧✿✧❈❧❈✬✿✧❇sþý➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥ó❋❇✩ñ✪÷ î ï✧ï❄ó✝ô❏❈✬ús➁❂➀✪ï✧ð✡ñ❧❈❖➁✴❃❖✿♥❇sþ ÿù➁✪❈❖úsó⑧❀sñ
û➫➁➸❀s➁✴ñ✬➀➂❃✬✿✧ò✫➁➡ús➁✪❃✬➁✦➀✪✻✝❇ìò✫➁✦ÿõó⑧❀⑧✿✁�✡➁◗❀➴❈✬ó➵ú✡✻✝❇✩❀⑧ï✧➁✦❀⑧✿✚ñ✬ñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿❲❈➋❅❂❀s✻✵❈✟✻s÷
✺✼➁✌�✩❇s➁➡❈❖ús➁✧❑▼▲✻✯✎◆✜★❍❖✠✮P✸◗✺✤✬✭✶✹★✆✰✠◆❘✯❙★▼ó❋ô☎✻ùñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿✧❈➋❅ùô❍ðs❇✡➀❸❈✬✿✧ó❆❇❚✿➡❈❖óùò✩➁❱❯❙❲❳✝✼❲❩❨

✦✘❬❪❭❍❫✎❴✞❲❛❵❝❜❞✍✖❡✤✂⑧û❏ú✡➁✪❃✬➁❢❭❍❫✎❴✞❲❛❵❄✿✚ñ➅❈❖ú✡➁➸ñ➋❈✬❃❖ó❆❇sþ✥✿✚ñ❖ó❋ï✚✻✵❈❖✿♥ó❋❇ì✿♥❇✡❀⑧➁✌☎

❭❍❫✎❴✞❲❛❵❝✝❤❣ ÿù✿✧❇
✐❙❥ ✐❧❦✱❥ ♠

❯❙✿❘❴✭♥❪❬♦♥❘♣q❵✹rs✿✤❴✞♥❪❬✉t❪❵✈✝✇♥❪❬♦♥❘♣②①③❲④✂Pt✘①③✦⑤r⑥❲✧❡❘⑦ ❴⑧✡✠❵

✥➅ús➁ ➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✢û➅✻❋ñ❱�✡❃✟ñ➋❈❵ñ❧❈❖ð✡❀s✿✧➁◗❀ ò✏❅❉⑨➦✻❋❃❶⑩❆➁✪❃❶❷✷❸✲úsó⑧❀⑧➁✴ñ✥✻✝❇✡❀❞❹✲➁✴➁✴❀⑧ú✡✻❋ÿ❆✟ ✑✼✑ ☞
û❏úsó✸➀✪✻❋ï✧ï♥➁✴❀✢❈❖ú✡➁➉➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ❻❺❁❷✍➀➂ï♥ðsÿùø✡ñ✴÷ î øs❃✬➁✴ñ❩ö❧✻✝❇ ➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ➵✻❋❃❖➁➓✻✝ï✚ñ❖ó❼⑩✏❇só✵û❏❇ ✻❋ñ
❽❾❷❨þ❋❃✬ó❋ðsø✩ñ✆✂✖❺❁❷❨þ❋❃✬ó❋ð✡ø✡ñ✆✂✏✻✝❇✩❀ìñ❧❈❖❃✬ó❋❇✡þõ➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ✧✟ ✑ ✂✔✡✄❿P✂②✡✠➀❙☞❫÷
✥➅ú✡➁ î øs❃✬➁✴ñ❩ö❧✻✝❇ ➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ❏ó✝ô➦✻❵ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅➵ô❍ðs❇✡➀➂❈❖✿♥ó❋❇➓ô❍ó❆❃❖ÿ ✻✘➁⑧★✄✰✆✯✎✽❪✸✻➂✔➃❱➄✻✩✞◆❘✯❙✮P✯✄➅

✺❙➄✚✲❾✂✩✿♥❇➻❈❖ús➁➸ñ❖➁✪❇✩ñ❧➁➡❈✬ú✡✻✵❈✲✿✧ô✳❈➋û➫ó î ø✡❃❖➁◗ñ❍ö❧✻❋❇➻➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ➅✿✧❇☛❈❖➁✴❃✬ñ❖➁✴➀➂❈❏❈❖ús➁✴❇➓ó❋❇s➁✦➀✪ó❋❇☛❈✬✻❋✿✧❇✡ñ
❈❖ús➁➓ó❋❈❖ús➁✴❃✴÷◗➆❨ô➡û❄➁ìú✩✻✾✽❋➁❂❈❖ú✡✻✝❈❊✿✤❴✞♥❪❬❶♥✖❵❁❜➇✿❘❴✭♥❪❬✳➈✌❵➲ô❍ó❋❃❵✻✝ï♥ï➉♥➋➊❣➌➈❙✂➫✻❆ñù✿♥ñ❵ð✡ñ❧ð✩✻✝ï♥ï✧❅
❈❖ús➁❵➀✴✻❋ñ❖➁✼✂✔❈✬ús➁✪❇ ✻✝ï♥ï❝ñ❧✿♥❇sþ❆ï✧➁✪❈❖ó❋❇ý➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ✦✻✝❃✬➁ î øs❃✬➁✴ñ❩ö❧✻✝❇ ✻✝❇✡❀✘û➫➁õó❋òs❈✬✻✝✿♥❇ ✻➴øs❃✬ó❋ø✫➁✪❃
ús✿♥➁✪❃✟✻✝❃✟➀✟ú☛❅❆÷✹✥➅ú✡➁✼➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ➫➀✪✻✝❇❵❈❖ús➁✴❇➴ò✫➁❿❃✬➁✪øs❃✬➁✴ñ❖➁✪❇☛❈❖➁◗❀ùð✡ñ❖✿✧❇sþõ✻➸❃✬ó✏ó✝❈❖➁◗❀õ❈❖❃✬➁✪➁❛➍ û❏✿❲❈✬ú
ï✧➁◗✻✾✽❋➁◗ñ❝ï✚✻✝ò✫➁✪ï♥ï✧➁◗❀❵ò✏❅ùÿõ➁✴ÿ➲ò✫➁✪❃✟ñ③ó❋ô②✦✸÷❾➎❝✽❆➁✪❃✬❅➲❇só⑧❀⑧➁➐➏ù✿✧❇➑➍✯✿♥ñ❄✻❋ñ✬ñ❧ó⑧➀✪✿♥✻✝❈❖➁✴❀ùû❏✿✧❈❖ú➴❈❖ús➁
➀➂ï♥ð✡ñ❧❈❖➁✪❃➉➒✇❴✭➏✜❵✌✂s❈✬ús➁➸ñ❧➁✪❈❏ó✝ô➦✻✝ï♥ï❣ï✧➁◗✻✾✽❋➁✴ñ③❈❖ú✩✻✵❈❿✻✝❃✬➁✦❀⑧➁✴ñ✬➀➂➁✴❇✡❀⑧➁✴❇❆❈✟ñ➅ó✝ô✹➏✩÷➓❋✡ó❋❃❏➁✴✻❆➀✟ú➴❇só⑧❀⑧➁
➏ û➫➁➴✻❆ñ❖ñ❖✿♥þ❋❇ ❈❖ú✡➁➴ï♥➁✪❇sþ❋❈❖ú❞❭❍❫✎❴❍➒✇❴✱➏✖❵✉❵➸❈❖ó ❈✬ús➁➴➁◗❀⑧þ❋➁ì➀➂ó❆❇s❇s➁✴➀➂❈❖✿♥❇sþ✘➏ ✻✝❇✡❀✸✿❲❈✟ñ➲ø✡✻❋❃❖➁✴❇☛❈
❇só⑧❀⑧➁❋÷
➆❨ô❾✿❘❴✭♥❪❬❶♥✖❵➫✿♥ñ➅➀✪ó❋❇✡ñ❧❈✬✻❋❇❆❈❄ô❍ó❋❃❏✻❋ï✧ï✔♥➑①③✦✂❈✬ús➁✪❇❂❈❖ú✡➁▼❃✬ó✏ó✝❈✬➁✴❀➵❈✬❃❖➁✴➁✼û❏✿♥ï♥ï❣ò✩➁➡✻✥❀s➁✪❇✡❀⑧❃✬ó➔❷

þ❋❃✟✻✝ÿ❚✂☞û❏✿✧❈❖ú✱✻✝ï♥ï➦ï♥➁✴✻✾✽❋➁◗ñ✲❈✬ús➁❵ñ✬✻✝ÿù➁➵❀⑧✿♥ñ❧❈✬✻❋❇✡➀➂➁õô❍❃✬ó❋ÿ ❈✬ús➁➵❃✬ó☛ó❋❈✴÷✇❋sðs❃❖❈❖ú✡➁✪❃✬ÿõó❆❃❖➁✤✂☞✿✧ô❝✿
ñ❖✻✝❈❖✿✚ñ⑧�✩➁✴ñ❄❈❖ú✡➁➑❴❩ñ❖✿✧þ❆❇ì❃✬➁✪✽❆➁✪❃✟ñ❧➁◗❀→❵③ðsï❲❈✬❃✬✻❋ÿù➁➂❈❖✿✚➀▼✿✧❇✡➁✄➣☛ð✡✻✝ï♥✿✧❈➋❅

✿❘❴✭♥❪❬♦➈✌❵↕↔ ÿù✿✧❇✛❯❙✿❘❴✭♥❪❬❶➙✄❵❧❬♦✿❘❴❍➈❙❬❶➙✆❵❧❡

ô❍ó❋❃❄✻✝ï♥ï❪♥❪❬♦➈✎❬❶➙❄❈❖ú✡➁✪❇➵❈✬ús➁✲❈✬❃❖➁✴➁➛➍ û❏✿✧ï♥ï✡ò✫➁✲❈✬ús➁✼❀s➁✪❇✡❀⑧❃✬ó❋þ❆❃✬✻❋ÿ ➀✪ó❋❃✬❃❖➁◗ñ❧ø✫ó❋❇✡❀s✿✧❇sþ➡❈✬ó➜✿❱✟ ✑ ☞❫÷

❁❄ðs❇✡➁✪ÿ➵✻✝❇➸✿♥❇☛❈❖❃✬ó⑧❀⑧ð✡➀➂➁◗❀✦✻❏❃✬➁✪ï✚✻✵❈❖➁◗❀✦➀➂ï✚✻❋ñ✬ñ❧✿✧ô❩➀✪✻✝❈❖✿♥ó❋❇➡ÿù➁➂❈✬úsó⑧❀✦✿✧❇✥✻❏ø✡✻✝ø✫➁✪❃✐ó❋❇➡❈✬ús➁➓�✡ï✚✻✎❷
❈❖✿♥ó❋❇❂ús✿♥ñ❧❈❖ó❆❃❖❅ùó❋ô✖✻✝❇✡➀✪✿✧➁✴❇❆❈➅ÿ➵✻✝❇✏ð✡ñ✬➀➂❃✬✿✧øs❈✬ñ➉✟✁✡✄✍✎☞❫÷➓✥➅ús➁✼✿✧❇✡øsð⑧❈➅ô❍ó❋❃➅❁❄ðs❇s➁✪ÿ➵✻❋❇②➝ ñ➫ÿù➁➂❈✬úsó⑧❀
✿♥ñ❄✻❢➞✹✩✭★✠★✄✩✞✪✫✩✭✬✞✮✖✯✎✩✱✰✳✲●✴✷✶✹✸✻✺✼✰✄✩✭✽❪✸❼➟④✝➔✦⑤❂❱✦➠❅➡❇❝➢❝✂⑧✻✝❇✩❀õ❈❖ús➁✼ò✡✻❋ñ❖✿♥➀❿þ❋❃✬ó❋ðsø✡✿✧❇sþ✦ð✡❇s✿❲❈
✿♥ñ✥✻✘★✄▲✹✬✞✩✱✰✘❴❍ò✡✿✧ø✡✻❋❃❧❈✬✿❲❈✬✿✧ó❆❇✫❲➜➤ ➥✂ó❋ô❝✦❼❵➡❃✬✻✝❈❖ús➁✴❃✦❈❖ú✩✻✝❇✸✻➓➀➂ï♥ð✡ñ❧❈❖➁✴❃✴÷❁✥➅ús➁③➦➜✶✹✸✻◆✜✪✫✮→✸



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ➸

★✆▲➯✬✭✩✭✰✄★✦ó❋ô➓➟õ✻❋❃❖➁➑❯✠❲➜➤ ➥➺✝✜➻②➼➔❴✞❲➜➤ ➥➜❵❛❜➽✍✖❡❘✂sû❏ús➁✴❃❖➁❢➻②➼➸✿♥ñ✲❈❖ús➁④★✄✰✆✯✎✽❪✸✻➂❉★✄◆❘▲➯✮✖✯✎✮✖✰✄✩✞✽✾✸
✩✭✸✹➞✻◆❘➾

➻②➼✼❴✞❲➜➤ ➥➜❵➚❣⑤➪➶ ÿù✿✧❇✛❯❘❴✞➟✖❴✭♥❪❬♦➈✌❵♦➹➐➟✖❴✭♥ ♣ ❬♦➈ ♣ ❵✉❵✌r❢❴✭➟✖❴✭♥❪❬♦♥ ♣ ❵❶➹➐➟✖❴❍➈❙❬♦➈ ♣ ❵❶❵❝✝✼♥❪❬❶♥ ♣ ①❚❲❢❬✾➈✎❬♦➈ ♣ ①❚➥❻❡❘⑦❴ ✑ ❵
î ❇❉✦❁➅♦✰✆✯✎◆✜◆ ✿✚ñ✥✻❋❇◗➘✖➴→➷❶➬✠➬✎➮✃➱✳❐õ❈❖❃✬➁✪➁❊➍❒❣❮❴✞❰➚❬❶Ï④❵➸û❏✿❲❈✬ú✸ï♥✻❋ò✩➁✴ï✧ï♥✿♥❇sþÐ❽Ñ✝✹✦Ò❅Ó❰

ñ❧ð✩➀✟ú ❈❖ú✩✻✵❈✦➁✪✽❆➁✪❃✬❅ì❇✡ó✏❀s➁õó❋ô➫❀⑧➁✴þ❋❃✬➁✪➁➲ï♥➁✴ñ✬ñ✼❈❖ú✡✻❋❇➉❈✬ús❃✬➁✪➁õ✿♥ñ▼ï✚✻✝ò✫➁✪ï♥ï✧➁◗❀❣÷④✥➅ús➁➵❁❄ðs❇s➁✴ÿù✻❋❇
ñ❧ø✡ï✧✿✧❈✬ñ➡➀✪✻❋❇ ò✫➁✥❃✬➁✪øs❃✬➁✴ñ❖➁✪❇☛❈✬➁✴❀➻ð✡ñ❖✿✧❇✡þ❂✻❂✽✾✻❋ï✧ð✡➁✴❀❁✦❁❷❫❈❖❃✬➁✪➁❆÷➉➆❨ô③û❄➁➲❃✬➁✪ÿùó✵✽❆➁➲✻✝❇✏❅➻➁✴❀⑧þ❆➁➜Ô
✿✧❇ ✻✝❇✫✦✘❷♣❈✬❃❖➁✴➁➵û➫➁ì❀⑧✿✧✽✏✿✚❀⑧➁❵❈✬ús➁❂❈❖❃✬➁✪➁❵✿♥❇☛❈❖ó ❈➋û❄ó✘➀✪ó❋ÿùø✫ó❋❇s➁✴❇❆❈✟ñ➲✻❋❇✡❀✱✿♥❇✡❀⑧ð✡➀✪➁❂✻➉ñ❖øsï♥✿❲❈
Õ ❴✭Ô✎❵✳ó❋ô✔✦ þ❆✿✧✽❆➁✪❇ùò✏❅➲❈✬ús➁✲ï✚✻✝ò✫➁✪ï✡ñ❖➁➂❈✟ñ❝ó❋ô✫❈✬ús➁❏❈➋û❄ó➸➀➂ó❆ÿõø✫ó❋❇✡➁✪❇☛❈✬ñ✴÷☎❁❄ðs❇✡➁✪ÿ➵✻✝❇❵ñ❖úsó✵û❄➁✴❀
❈❖ú✡✻✝❈➡❈❖ús➁✴❃❖➁õ✿♥ñ✦✻❋❇●✦❁❷❫❈❖❃✬➁✪➁➜➍ ñ❖ð✡➀✟ú ❈✬ú✡✻✵❈➡❈✬ús➁õñ❖øsï♥✿❲❈✟ñ❱❯ Õ ❴✞Ô✎❵❄✝✾Ô③①sÏ✇❡❵✻✝❃✬➁➲➁✆☎⑧✻❆➀❸❈✬ï✧❅
❈❖ús➁✦❁❄ðs❇s➁✴ÿ➵✻✝❇➻ñ❧øsï♥✿✧❈✬ñ❄ô❍ó❋❃✈➟✏÷✳üý➁➡ñ✬✻✾❅ù❈❖ú✩✻✵❈✈➍✯✿✚ñ➫❈❖ús➁✧➦❱✶✻✸✹◆✜✪✫✮P✸Ö✰✆✯✎◆✜◆õô❍ó❋❃✈➟✏÷➦ü✘➁
➀✪✻❋❇➴➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❄✻➸✽✾✻❋ï✧ð✡➁✴❀❻✦❁❷❫❈❖❃✬➁✪➁❿ò☛❅➵✻❆ñ❖ñ❖✿✧þ❆❇s✿♥❇sþ➡❈❖ús➁▼ï♥➁✪❇sþ❋❈❖ú➑➻ ❫ ❴✞❲➜➤ ➥➜❵③❈❖ó✦❈✬ús➁▼➁✴❀⑧þ❆➁
➀➂ó❆❃❖❃✬➁✴ñ❖ø✩ó❆❇✡❀⑧✿♥❇sþ✦❈✬ó➜❲➜➤ ➥❵÷❾➆✍❇❵❈❖ús✿✚ñ❄û❄✻✾❅õû➫➁✼ó❋ò⑧❈✟✻✝✿♥❇➴✻➸ÿ➵✻❋øsøs✿♥❇sþ➸ô❍❃✬ó❋ÿ ❀⑧✿✚ñ❖ñ❖✿♥ÿõ✿♥ï✚✻✝❃✬✿❲❈➋❅
ô❍ðs❇✡➀➂❈❖✿♥ó❋❇✡ñ➲❈❖ó✘✽✾✻❋ï✧ð✡➁✴❀s✦❁❷❫❈❖❃✬➁✪➁◗ñ✆✂✐û❏ús✿✚➀✟ú✢➀✪✻❋❇✱ò✩➁ì➀➂ó❋ÿùøsðs❈❖➁✴❀✸✿✧❇✸ø✫ó❋ï♥❅✏❇só❋ÿù✿✚✻✝ï③❈❖✿♥ÿõ➁
û❏✿❲❈✬ú➉❃✬➁✴ñ❖ø✩➁◗➀❸❈✼❈❖ós➤ ✦Ö➤❲÷❛✥➅ú✡➁õñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇➻✿♥❇✡❀⑧✿✚➀➂➁✴ñ➐➻ ➼ ❴✞❲➜➤ ➥➜❵▼✻✝❃✬➁➲➀✪ó❋❇☛❈❖✿♥❇✏ðsó❋ð✡ñ✄✂✔ñ❧óì✻
ñ❧ÿ➵✻❋ï✧ï✡➀✟ú✩✻✝❇sþ❆➁➫✿♥❇❻➟✲û❏✿♥ï✧ïs✿♥❇✡❀⑧ð✩➀➂➁❏ó❋❇✡ï✧❅➲✻➡ñ❖ÿ➵✻✝ï♥ïs➀✟ú✡✻✝❇sþ❆➁➅✿✧❇✥❈❖ús➁➅❈✬❃❖➁✴➁❋÷➓×✼❇s➁❏➀✪✻❋❇õñ❖úsó✵û
❈❖ú✡✻✝❈✲✿❲ô❾➟✥✿♥ñ✲✻❆❀s❀⑧✿✧❈❖✿♥✽❋➁✤✂✏❈❖ú✡✻✝❈✲✿♥ñ

➟✖❴✞♥✾❬✳➈✌❵②➹❉➟✖❴✭➙✎❬♦Ø❘❵❝Ù ÿ➵✻✎☎✚❯✠➟✖❴✞♥✾❬♦➙✆❵②➹❉➟✖❴✞➈❙❬♦Ø❘❵✌❬❶➟✖❴✭♥❪❬♦Ø❘❵✹➹✫➟✖❴❍➈❙❬❶➙✆❵❧❡✤❬

ô❍ó❋❃✳✻✝ï♥ï❘♥❪❬✳➈❙❬❶➙✎❬♦Ø→✂✾❈✬ús➁✪❇➲❈❖ús➁③❈❖❃✬➁✪➁Ú➍✸û❏✿✧ï♥ï✏ò✩➁③❈❖ús➁❄✽✵✻✝ï♥ðs➁✴❀④✦❁❷❫❈❖❃✬➁✪➁③➀✪ó❋❃✬❃❖➁◗ñ❧ø✫ó❋❇✡❀s✿✧❇sþ➅❈✬ó❛➟✏÷

✥➅ú✡➁ýÿù➁✪❈❖úsó⑧❀sñìó✝ô î øs❃✬➁✴ñ❩ö❧✻✝❇✷✻✝❇✡❀ ❁❄ðs❇s➁✪ÿ➵✻❋❇ ✻✝❃✬➁Ð➣☛ðs✿✧❈❖➁✱➀✪ó❋❇✡ñ❖➁✪❃✬✽✵✻✵❈❖✿♥✽❋➁✤✂✲ó❋❇✡ï✧❅
❃❖➁✪❈❖ðs❃✬❇s✿♥❇sþ✢þ❆❃❖ó❆ðsøs✿♥❇sþ❆ñ❵û❏✿❲❈✬ú ✻✱ï♥ó✝❈ìó✝ô➲ñ❖ðsøsø✫ó❋❃❖❈❂✿♥❇ ❈❖ú✡➁✘❀s✻✝❈✬✻s÷ ü ✿❲❈✬ú î øs❃❖➁◗ñ❍ö❧✻❋❇
➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ✄✂✖❈✬ús➁➴➀➂ó❆❇✡❀⑧✿✧❈❖✿♥ó❋❇ ❈✬ú✡✻✵❈✇❭❍❫✎❴✞❲❛❵✇❜❃✍➻✿✚ñ➸✽❋➁✴❃❖❅ýñ➋❈✬❃❖ó❆❇sþ→✝➸ô❍ó❋❃❊➱✆Û❙➱✆➷❧Ü❵➀✟úsó❆✿♥➀✪➁õó❋ô
♥❪❬❶♥ ♣ ①❁❲ ✻❋❇✡❀❻t✘①③✦Ñr✘❲ û➫➁✼ÿ➲ð✡ñ❧❈❄ú✩✻✾✽❋➁❛✿❘❴✭♥❪❬♦♥ ♣ ❵↕❜Ý✿✤❴✞♥❪❬✉t❪❵➂÷ î ñ❧✿♥❇sþ❋ï♥➁ ✢ ➁✪❃✬❃✬✻❋❇☛❈♦✣
ñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿✧❈➋❅ û❄ó❋ð✡ï♥❀ ➁✆☎s➀➂ï♥ð✡❀⑧➁ ❈✬ús➁ ➀➂ï♥ð✡ñ➋❈✬➁✪❃❂ô❍❃❖ó❆ÿ ❈❖ús➁ ➀➂ó❆ï✧ï♥➁✴➀➂❈❖✿♥ó❋❇☞÷ÑÞ✏✿♥ÿõ✿♥ï✚✻✝❃✬ï✧❅✤✂❏❈❖ús➁
➀➂ó❆❇✡❀⑧✿✧❈❖✿♥ó❋❇ìô❍ó❋❃❿❁❄ðs❇✡➁✪ÿ➵✻✝❇➻ñ❧ø✡ï✧✿✧❈✬ñ➅❈✬ú✡✻✵❈➛➻②➼✤❴✭❲❱➤ ➥❱❵✈❜Ý✍✥✿✚ñ✲✻❋ï♥ñ❖óù✽❋➁✪❃✬❅➴ñ❧❈❖❃✬ó❋❇sþ✾✂✏û❏✿❲❈✬ú ✻
ñ❧ÿ➵✻❋ï✧ï❣ø✫➁✪❃❖❈❖ðsò✩✻✵❈❖✿♥ó❋❇❂✿✧❇❂❈❖ú✡➁▼✿♥❇søsðs❈❿❀⑧✿♥ñ✬ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅ùø✩ó❋❈❖➁✪❇☛❈✬✿♥✻❋ï✧ï♥❅❵➁✌☎s➀✪ï✧ð✡❀s✿✧❇sþù✻✝ï♥ï❣ñ❧ø✡ï✧✿✧❈✬ñ
ô❍❃❖ó❆ÿ✒❈✬ús➁✼❁❄ðs❇✡➁✪ÿ➵✻✝❇ù❈✬❃❖➁✴➁❋÷➚ß➫ó❋❇✡ñ❖➁✄➣☛ðs➁✴❇☛❈❖ï♥❅✼✂❋û❏ú✡➁✪❇➵❈✬ús➁❿ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅✥ó❆❃③❀⑧✿✚ñ❖ñ❖✿♥ÿõ✿♥ï✚✻✝❃✬✿❲❈➋❅
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❈✬✻❋✿✧❇s➁◗❀➴✿♥❇❵❈✬ús➁✦ñ❧✿♥❇sþ❆ï✧➁▼ï✧✿♥❇P⑩✵✻✝þ❆➁❿❈✬❃❖➁✴➁❱❴✞✥➅ús➁✪ó❆❃❖➁✴ÿ ✑ ÷ ➸ ❵✌✂✏✻❋❇✡❀➵❈✬ú✡✻✵❈➅ó❋ð✡❃❄➁✆☎✏❈❖➁✪❇✩ñ❧✿♥ó❋❇✡ñ➫❈✬ó
î øs❃✬➁✴ñ❩ö❧✻✝❇➻➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ❏✻❋❃❖➁➡➀➂ó❆❇❆❈✟✻✝✿♥❇s➁✴❀➴✿✧❇ì❈✬ús➁✦✻✾✽❋➁✪❃✟✻✝þ❆➁❿ï♥✿✧❇→⑩✾✻❋þ❋➁✼❈❖❃✬➁✪➁❻❴✭✥➅ú✡➁✪ó❋❃✬➁✪ÿ ✑ ÷ ❿❘❵❸÷
ü✘➁➅ð✡ñ❖➁❝❹➉⑨❾❷❨ú✡✻❋❃✬❀⑧❇✡➁✴ñ✬ñ☞øs❃✬ó✏ó✝ô❩ñ✖❈❖ó▼✿✧❇✡❀s✿♥➀✴✻✵❈❖➁➫❈❖ú✡➁❄ï♥✿♥ÿõ✿✧❈➦ó✝ôs❈✬ús✿✚ñ☎ñ❖➁✪❃✬✿♥➁✴ñ✐ó✝ô✡❃✬➁✌�✡❇✡➁✪ÿù➁✪❇☛❈✬ñ
✻✝❇✡❀ì➁✆☎☛❈✬➁✪❇✡ñ❖✿♥ó❋❇✡ñ✴÷
üý➁❵✻✝ï✚ñ❖óì➁✆☎✏❈❖➁✪❇✩❀➉❈✬ús➁ î ø✡❃❖➁◗ñ❍ö❧✻❋❇ý✻❋❇✡❀✘❁❄ðs❇✡➁✪ÿ➵✻✝❇✱➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✡ñ➡ñ❧óì❈❖ú✩✻✵❈✦❈❖ú✡➁✪❅

➀✪✻❋❇✘✻❋➀✴➀➂➁✴ø⑧❈➡❀s✿☛å✔➁✪❃✬➁✪❇☛❈✧⑩✏✿✧❇✡❀✡ñ✼ó❋ô➫✿♥❇søsð⑧❈◗÷✇×✼❇s➁ù➀✪✻❋❇➉❃✬➁✪û❏❃✬✿❲❈✬➁➸❈✬ús➁➵❀⑧➁✌�✡❇✡✿❲❈✬✿✧ó❆❇✘ó❋ô❝❈❖ús➁
ñ➋❈✬❃❖ó❆❇sþù✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇➴✿♥❇✡❀⑧➁✆☎❼❴❍➁✠➣✫÷✛❴⑧✡❙❵✉❵➅✻❋ñ

❭ ❫ ❴✭❲➐❵➚❣ ÿù✿♥❇✔❯✄æ➜❴✭♥✜♥✜♣❍➤ t❪❵❝✝✤♥✾❬♦♥✜♣✔①❁❲❢❬✉t●①❊✦➠r⑥❲✧❡✤⑦ ❴ ➸ ❵

û❏ús➁✪❃✬➁❱æ④❴✭♥✜♥ ♣ ➤ t✚❵❛❣ç✿❘❴✭♥❪❬❶♥ ♣ ❵➓r✱ÿ➵✻✎☎✚❯✎✿✤❴✞♥❪❬✉t❪❵✌❬♦✿❘❴✭♥ ♣ ❬✉t✚❵✳❡❆÷➲ü✘➁➵➀✪✻❋❇➉❇só✵û ❃✬➁✪ø✡ï♥✻❆➀➂➁❱æ
û❏✿❲❈✬ú ✻✝❇só❋❈❖ús➁✴❃❏ô❍ðs❇✡➀➂❈❖✿♥ó❋❇☞÷❄✺❿✿✁å✔➁✪❃✬➁✪❇☛❈❿û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþõô❍ðs❇✡➀➂❈❖✿♥ó❋❇✡ñ➉æ þ❋✿♥✽❋➁✦❀⑧✿✁å✫➁✴❃❖➁✴❇❆❈▼➀➂ï♥ð✡ñ⑧❷
❈❖➁✴❃❖✿♥❇sþ➴ÿù➁✪❈❖úsó⑧❀sñ✴÷❿üý➁➲➁✆☎✏ø✡ï✧ó❆❃❖➁✦❈✬ús➁✥➀✪ó❋❇✡❀s✿❲❈✬✿✧ó❆❇✡ñ✲❈✬ú✡✻✵❈✼❈❖ús➁✥û➫➁✴✿✧þ❆ú☛❈❖✿♥❇sþ➵ô❍ðs❇✡➀➂❈❖✿♥ó❋❇Ðæ
ú✡✻❋ñ✲❈❖ó➴ñ✬✻✵❈✬✿♥ñ❧ô❍❅❂ô❍ó❋❃✲❈✬ús➁➸❃✬➁✴ñ❖ðsï✧❈❖✿♥❇sþ➴➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ➅❈✬ó➵ô❍ó❋❃✬ÿ ✻➵ús✿♥➁✪❃✟✻✝❃✟➀✟ú☛❅✤✂✡✻✝❇✩❀➻✿✧❇☛❈❖❃✬ó⑧❀⑧ð✡➀✪➁
➁✄➣☛ðs✿♥✽✵✻✝ï♥➁✪❇☛❈❏➁✌☎✏❈❖➁✴❇✡ñ❧✿♥ó❋❇✩ñ❄ô❍ó❋❃✲ñ❖øsï✧✿✧❈✬ñ❏✻❋❇✡❀❂ðs❇s❃✬ó☛ó❋❈❖➁◗❀❵❈✬❃❖➁✴➁➡➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈❖✿♥ó❋❇✡ñ✴÷❾✥➅ús➁✦✻✝òs✿♥ï☛❷
✿❲❈➋❅❵❈❖óõð✡ñ❧➁▼ÿùó❋❃✬➁❿þ❆➁✪❇s➁✴❃✬✻❋ï✩û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþ➲ô❍ðs❇✡➀❸❈✬✿✧ó❆❇✡ñ➅þ❋❃✬➁✴✻✝❈❖ï♥❅ù✿✧❇✡➀✪❃❖➁◗✻❋ñ❖➁✴ñ③❈❖ús➁❛è✡➁✆☎✏✿♥òs✿♥ï✧✿✧❈➋❅
✻✝❇✡❀ìð⑧❈✬✿✧ï♥✿✧❈➋❅➴ó✝ô✐❈❖ús➁◗ñ❧➁✦ÿù➁✪❈❖úsó⑧❀sñ✴÷

✥➅ú✡➁ ✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿùñ➻ú✩✻✾✽❋➁✱ò✫➁✪➁✪❇ ✿♥ÿùøsï♥➁✪ÿù➁✪❇☛❈❖➁◗❀ ✿♥❇éß✈➹✧➹✥÷➌Þ✏ó❆ðs❃✟➀➂➁✢➀✪ó✏❀s➁✼✂➲✻❋❇✡❀
ø✡ñ❖➁✪ð✡❀⑧ó❵➀✪ó⑧❀⑧➁✼✂⑧û❏✿♥ï✧ï✖ò✩➁✦ÿ➵✻❋❀s➁➡✻✾✽✵✻❋✿✧ï✚✻✝òsï♥➁➡ò✏❅➵❈❖ús➁➸✻❋ð⑧❈❖ú✡ó❋❃✟ñ✪÷

ê❣ä ❑➌ë✚❑▼ì å✆í✾î é ë í➜í③ë❁ï✖ç❢ð✼è❂å➂æ●ñ ì ð✼ç❢ò➉é❵ê❚ï
ê☞ä❩ã✫ä ê ◆❘ä✹✸✹✩✱✰✠✩✭✽❪✸✻★

î ✯✎✽②✽→✰✠◆✜➞Ý✦❁➅❶✰✄✯❙◆✜◆➴✿♥ñ✼✻➵❃❖ó✏ó❋❈❖➁✴❀❂❈✬❃❖➁✴➁✧➍❀❣ç❴✞❰➚❬❶Ï④❵✌✂✡û❏✿✧❈❖ú ❇✡ó✏❀s➁✴ñ❛❰ ✻❋❇✡❀➻➁✴❀sþ❋➁✴ñ
Ï❻✂❆❈❖ó❋þ❆➁➂❈✬ús➁✪❃➦û❏✿✧❈❖ú❵✻➡ï✚✻✝ò✫➁✪ï♥ï✧✿♥❇sþ➡ô❍ðs❇✩➀❸❈❖✿♥ó❋❇➑❽Ý✝✼✦ã❅➡❰ ñ❧ð✡➀✟úõ❈✬ú✡✻✵❈❝➁✴✽❋➁✪❃✬❅➲❇✡ó✏❀s➁❏û❏✿❲❈✬ú
ï✧➁◗ñ❖ñ✖❈❖ú✩✻✝❇➸❈➋û❄ó✼➀✟ú✡✿✧ï✚❀⑧❃✬➁✪❇➸✿✚ñ✖ï✚✻✝ò✫➁✪ï♥ï♥➁✴❀❣÷➯⑨❝ð⑧❈➯ó❚❣é➤ ✦Ö➤❜÷➯ô▼✿✧✽❆➁✪❇✦❈➋û❄ó❿❇✡ó✏❀s➁✴ñ✻õù✻❋❇✡❀✧➏➡û❄➁
û❏❃❖✿✧❈❖➁❛õ✘ö➛÷❚➏õ✿❲ô✛õ❂✿♥ñ❄✻➲ñ❧❈❖❃✬✿✚➀❸❈❄❀s➁✴ñ✬➀➂➁✪❇✩❀⑧➁✪❇☛❈➫ó❋ô②➏✥✿♥❇▼➍➲÷✹✥➅ús➁➐✺✼✬✞✶✻★✄✰✄◆❘✯✇✮P★✄★✠✽②✺✤✩✭✮✖✰✠◆❘➞



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ø

✰✄✽Ý➏➓✿✚ñ▼❈❖ús➁➵ñ❖➁➂❈➡ó✝ô❄ï♥✻❋ò✩➁✴ï♥ñ➡ó❆❇➉❇só⑧❀⑧➁◗ñ▼❈❖ú✡✻✝❈✦✻❋❃❖➁ù❀⑧➁◗ñ❖➀✪➁✪❇✡❀⑧➁✴❇☛❈✬ñ▼ó✝ô↕➏✫❴❍✿♥❇✡➀➂ï♥ð✡❀⑧✿♥❇sþ❚➏✜❵
✻✝❇✡❀ì✿✚ñ❏❀⑧➁✪❇✡ó✝❈❖➁◗❀❁➒✇❴✱➏✖❵❸÷➚✥➅ús➁❢✺✤✬✭✶✹★✆✰✠◆❘✯❙★✇✽❪✴✈➍ ✻✝❃✬➁➐➙✌ù✭õ✚✿❘❴✭➍❛❵❾❣❀❯❙➒✇❴✭➏✜❵✈✝➔➏➑①✘❰✇❡☛÷ î
➀➂ï♥ð✡ñ❧❈❖➁✪❃❢❲ ✿✚ñ❄✰✆✯✎✩✭ú②✩✭✮P✬❄✿✧ô✧➤ ❲➜➤✔❣⑤✡õó❋❃❢❲Ñ❣é✦✸÷ùü✘➁ùð✡ñ❖➁ùï♥➀✴✻→❴✭t✛❬✉ûP❵✼❈✬ó➻❀s➁✪❇só❋❈❖➁õ❈❖ús➁
❇só⑧❀⑧➁➡❈❖ú✩✻✵❈✲✿✚ñ❄❈❖ús➁✦ï♥➁✴✻❆ñ➋❈❿➀✪ó❋ÿùÿùó❋❇➻✻✝❇✡➀✪➁✴ñ❧❈❖ó❋❃➅ó❋ô✖❈❖ú✡➁✦❇só⑧❀⑧➁✴ñ❏ï✚✻✝ò✫➁✪ï♥ï♥➁✴❀ìò✏❅➑t ✻✝❇✡❀❊û✔÷
î ñ❖➁➂❈➅ó✝ô✖➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ➚ü➓✿♥ñ↕✺✼✽❪✪s▲➯✮✖✰✄✩✭ý✹✬✞◆➲✿✧ô②ü❁❣➽➙✌ù✱õ✔✿❘❴✱➍❛❵✳ô❍ó❋❃➅ñ❧ó❆ÿõ➁✼❃❖ó✏ó❋❈❖➁✴❀➑✦❁❷♣❈✬❃❖➁✴➁

➍❢✂☎û❏ús✿♥➀✟ú úsó❆ï♥❀✡ñ✦✿❲ô✲✻❋❇✡❀ýó❋❇sï♥❅➉✿✧ô❝ü✢ô❍ó❋❃✬ÿ➵ñ➸✻➻ús✿♥➁✪❃✟✻✝❃✟➀✟ú✏❅❋÷➑➆❨❈➸✿✚ñ➲✻➓➀✪ï♥✻❆ñ❖ñ❖✿♥➀✴✻✝ï➦❃✬➁✴ñ❖ðsï✧❈
❈❖ú✡✻✝❈❢ü✢✿✚ñ➸➀➂ó❆ÿùø✡✻✵❈✬✿✧òsï♥➁➵✿✧ô➅✻❋❇✡❀ýó❋❇sï♥❅➉✿✧ô➫ô❍ó❆❃➸➁✴✻❆➀✟ú✘ø✩✻✝✿♥❃❢❲❢❬❶➥➌①❉ü ó❆❇s➁ùó✝ô✈❲❳r❉➥➑✂
➥❩r⑥❲❢✂→❲❉þ③➥ ✿✚ñ❏➁✪ÿùø⑧❈➋❅❼❴❍➁❋÷ þ✡÷✈✟✁✡✄✍❙☞✱❵❸÷
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➮✷➱✆➷✤✭➜➬❋❊➉æ✸➑❝➮❩❃→➱❣✭✆➱✆➮➛➬❋❊❱❇❈✯✁➱✤✱✎➴♦❇❈✯❤➘❉✭❧➮✷➱✆➷✤✭➜➬❋❊➉æ❪✱➔➴❪❐▼➮❩❃→➱❱✭✌➱✆➮✈➬❋❊✸✭❧➮①✱✗✼❈✯✁➱☞❇❈✯❤➘❉✭❧➮✷➱✆➷✤✭➜➬❋❊➉æ✱✎➷❶➱✉✱➎✯❩✯➒❇✳➬✰❯ ❧ ✱➔➮✘✫✟✼❈✯✁➱☞❇✳➬✰✯❩✯✁➱✤❇✆➮✘✫✭➬➔➴➅✭➜➬◆❊❣❇❀✯❤➘❉✭❧➮✃➱✌➷✤✭❈●

❹❝➷❶➬✄➬◆❊❀● ü✘➁❢�✡❃✬ñ❧❈❿øs❃✬ó✵✽❋➁▼❈✬ú✡✻✵❈✲❈✬ús➁✥ñ❖➁➂❈✼ó✝ô❝ñ➋❈✟✻✝òsï♥➁➸➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ❿✿♥ñ✼➀➂ó❋ÿùø✡✻✝❈❖✿♥òsï♥➁❋÷✞➌☞➁➂❈
❲✯ò✫➁✼✻✥ñ➋❈✟✻✝òsï♥➁❿➀✪ï✧ð✡ñ❧❈❖➁✴❃➫ó❋ô②æ✯✻✝❇✩❀➵ï✧➁✪❈↕➥✒ò✩➁➡✻➸➀➂ï♥ð✡ñ❧❈❖➁✴❃➫✿♥❇✡➀➂ó❆ÿùø✡✻✵❈✬✿✧òsï♥➁❿û❏✿✧❈❖ú❊❲➸÷❾⑨❝ð⑧❈✜❳❣➽❲❊r④➥➑✂❘❰ ❣➽❲✇þ✈➥ ✻✝❇✩❀✶✣➽❣➽➥●r④❲➲÷➓Þ✏✿✧❇✩➀➂➁❝❲ ✻❋❇✡❀❱➥ ✻❋❃❖➁❄✿✧❇✩➀➂ó❋ÿùø✡✻✝❈❖✿♥òsï♥➁✼✂❅✜❱✂
❰❻✂✡✻❋❇✡❀✪✣✷✻✝❃✬➁▼✻❋ï✧ï✖❇só❋❇✖❷❨➁✪ÿùø⑧❈➋❅❆÷❾✥➅ús➁✪❇●❭ ❫◗ ❴✭❲❛❵✈Ù æ❱❴✥✜✧❰➑➤ ✣❛❵❧✂❪❭ ❫◗ ❴✭➥❱❵❝Ù æ➜❴✞❰✉✣④➤ ✜✧❵❧✂
✻✝❇✡❀

❭ ❫◗ ❴✞❲❛❵✛➹❞❭ ❫◗ ❴✭➥➜❵ Ù æ➜❴❡✜✧❰▼➤ ✣➉❵②➹ æ➜❴❍❰❱✣➜➤ ✜❢❵
❣ ➪✌ ❫ ✌➓✌ ❴ ✌➓✌ ❵ ✌ ✏❘ ✕ ❫ ✏❙ ✕ ❴ ✏✔✖✕ ❵

æ④❴✱õ❪➏✔➤ ✁✜❵✛➹✫æ④❴✱➏❉✁❪➤ õ✔❵
Ù ✍

ñ❖✿♥❇✡➀➂➁✇æ ✿✚ñ✦✻✝❇ ✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇➉û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþ✩÷✇✥➅ú✡➁❵➀➂ï♥ð✡ñ➋❈✬➁✪❃❢❲ ✿✚ñ✦ñ➋❈✟✻✝òsï♥➁✼✂☎ñ❧ó●❭ ◗ ❴✭❲➐❵④❜é✍
✻✝❇✡❀③❭ ◗ ❴✞➥➜❵⑧➔Ý✍s÷✎✴✲➁✴❇✡➀➂➁➐➥ ✿✚ñ❄❇só✝❈➅✻➲ñ❧❈✬✻✝ò✡ï✧➁▼➀➂ï♥ð✡ñ➋❈✬➁✪❃❄✻✝❇✡❀ù❈✬ús➁➡➀➂ó❋ï♥ï♥➁✴➀❸❈✬✿✧ó❆❇❵ó✝ô✖ñ❧❈✬✻❋òsï♥➁
➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ➅✿✚ñ✲➀➂ó❆ÿõø✩✻✵❈❖✿♥òsï♥➁❋÷



➀ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

✥➅ú✡➁➵✿✧❇✡➀✪ï✧ð✩ñ❧✿♥ó❋❇ýó✝ô➫❈❖ús➁➵ñ❖➁➂❈✦ó✝ô➅ñ➋❈✬❃❖ó❆❇sþì➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✦✻✝❇✡❀➉❈❖ús➁➵ñ❖➁➂❈✦ó✝ô➅➀➂ï♥➁✴✻❋❇ý➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ
✿✧❇➲❈❖ús➁➅ñ❖➁➂❈✐ó❋ô✡ñ➋❈✟✻✝òsï♥➁➫➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñÚ❴✞✥➅ús➁✪ó❆❃❖➁✴ÿ ✑ ÷✁✡❙❵❣øs❃✬ó✵✽❋➁◗ñ✖➀➂ó❆ÿùø✡✻✵❈✬✿✧òs✿♥ï♥✿❲❈➋❅▼ô❍ó❋❃✖❈❖ús➁❄ó✝❈✬ús➁✪❃
➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥ó❋❇✩ñ✪÷

✥➅ú✡➁✼❃✬➁✪ï✚✻✵❈✬✿✧ó❆❇✡ñ❧ú✡✿✧ø❵ò✫➁➂❈➋û❄➁✪➁✴❇❵❈✬ús➁❿❈✬ús❃✬➁✪➁➡➀➂ï♥ð✡ñ➋❈✬➁✪❃✬✿✧❇✡þ➲ÿù➁➂❈✬úsó⑧❀sñ➅➀✪✻✝❇❂ò✩➁▼✽✏✿✧➁✴û➫➁◗❀❵✻❋ñ
✻➴ø✡❃❖ó❆þ❋❃✬➁✴ñ✬ñ❧✿♥✽❋➁➸❃✬➁✪ï✚✻✎☎s✻✝❈❖✿♥ó❋❇➓ó✝ô③❈❖ús➁➵ñ❖➁✪ï♥➁✴➀❸❈✬✿✧ó❆❇✘➀✪❃❖✿✧❈❖➁✴❃❖✿♥ó❋❇☞÷❢✥➅ú✡➁õ➀✪❃❖✿✧❈❖➁✴❃❖✿✚✻➴❀⑧✿✁å✔➁✪❃➡ó✵✽❋➁✴❃
❈❖ús➁ ➀✪ó❋❇✡❀s✿❲❈✬✿✧ó❆❇✡ñõó❋❇ ❈❖ús➁ ñ❖ðsò✡ñ❖➁➂❈✟ñ✶✝ ❨ � ❴✞❲❛❵õ❈✬ú✡✻✵❈❵➀✴✻✝❇ ú✡✻✾✽❋➁③■✪➁✴❃❖ó✘ó❋❃➵❇s➁✴þ❆✻✵❈✬✿✧✽❆➁
✻✾✽❋➁✴❃✬✻❋þ❋➁➴û❄➁✪✿♥þ❋ú☛❈➴✻❋❇✡❀✸❈✬ús➁ ➀➂ï♥ð✡ñ❧❈❖➁✴❃▼❲ ñ➋❈✬✿✧ï♥ï✲ò✫➁ ñ❧➁✴ï✧➁◗➀❸❈✬➁✴❀✔✝➻❈✬ús➁➉➀➂ó❆❇✡❀⑧✿✧❈❖✿♥ó❋❇ ó✝ô▼❈❖ús➁
ñ➋❈✬❃❖ó❆❇sþ➲➀✪ï✧ð✡ñ❧❈❖➁✴❃➫ÿù➁✪❈❖úsó⑧❀➵✿✚ñ❝❈✬ús➁❿ÿùó☛ñ➋❈➅ñ➋❈✬❃❖✿✚➀❸❈✓→❆❈✬ús➁✼➀✪ó❋❇✡❀s✿❲❈✬✿✧ó❆❇❵ó✝ô❣❈✬ús➁✼ñ❧❈✬✻❋òsï✧➁▼➀➂ï♥ð✡ñ❧❈❖➁✪❃
ÿù➁➂❈❖ú✡ó✏❀ì❈✬ús➁✦ÿùó❆ñ❧❈❏ï✧➁✴❇s✿✧➁✴❇☛❈✴÷
✥➅ú✡➁➸ñ➋❈✬❃❖ó❆❇sþõ➀✪ï✧ð✩ñ➋❈✬➁✪❃❿➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇➴✿✚ñ➅❈❖ú✡➁✦ÿõó☛ñ➋❈✲➀✪ó❋❇✡ñ❖➁✪❃✬✽✵✻✵❈❖✿♥✽❋➁❆÷✹✥➅ú✡➁➸➀➂ó❋❇✩❀⑧✿❲❈✬✿✧ó❆❇

❈❖ú✡✻✝❈➛❭✘◗❝❴✭❲➐❵❝❜Ý✍➸✿♥ÿõø✡ï✧✿♥➁✴ñ➫❈❖ú✩✻✵❈➫❇✡óõñ❖ðsò✡ñ❖➁➂❈✞✝➁➣ � ❴✞❲❛❵➅➀✪✻❋❇❵ú✡✻✾✽❆➁✲❇s➁✪þ☛✻✵❈✬✿✧✽❆➁❿✻✾✽❋➁✴❃✬✻❋þ❋➁
û➫➁✴✿✧þ❆ú☛❈✴÷
î ❈▼❈❖ú✡➁õó❋❈❖ús➁✴❃✼➁✆☎✏❈❖❃✬➁✪ÿù➁✼✂❣✻➴➀✪ï✧ð✩ñ➋❈✬➁✪❃❄❲ ➀✴✻✝❇➉ò✫➁ùñ➋❈✟✻✝òsï♥➁✥✻❋❇✡❀➉ñ❧❈❖✿♥ï✧ï✳ú✡✻✾✽❆➁➲✻➴ñ❖ðsò✡ñ❖➁➂❈✝ã❨ � ❴✭❲➐❵➡ó✝ô❏ñ❖✿✁■✴➁✠↔✇❴✱ó❞↕❙❵▼û❏✿❲❈✬ú❼■✴➁✪❃✬ó➻ó❋❃✦❇s➁✴þ❆✻✵❈✬✿✧✽❆➁õ✻✾✽❆➁✪❃✟✻✝þ❆➁➲û❄➁✪✿♥þ❋ú☛❈✴÷▼Þ✏ð✩➀✟ú ñ❖ðsò✖❷

ñ❧➁✪❈✬ñ♠✝✯ÿ✥ð✡ñ➋❈➫ò✩➁✼ó✝ô☞✻➡ø✡✻✝❃❖❈❖✿✚➀➂ð✡ï♥✻❋❃③➀➂ó❆ÿõø✫ó❆ñ❖✿✧❈❖✿♥ó❋❇ù❃❖➁✴ï♥✻✝❈❖➁◗❀õ❈❖ó✦❈✬ús➁❿➀➂ó❆❇✖è✡✿✚➀❸❈✬✿✧❇sþ➸❈❖❃✬✿✧øsï♥➁✴ñ
ò✩➁✪❈➋û➫➁✴➁✪❇✘❈➋û➫óì✿♥❇✡➀➂ó❆ÿõø✩✻✵❈❖✿♥òsï♥➁➵➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ✪÷➜➆❨ô↕❲ ✻❋❇✡❀●➥ ✻✝❃✬➁õ✿✧❇✡➀✪ó❋ÿùø✡✻✝❈❖✿♥òsï✧➁➵➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ
❈❖ús➁✴❇ � ❴✭❲➐❵③✻❋❇✡❀ � ❴✭➥➜❵③➀➂ó❆❇✖è✡✿✚➀❸❈③ó❆❇ù❈❖ús➁✼❃❖➁◗ñ❧ó❆ï✧ð⑧❈✬✿✧ó❆❇ùó✝ô☞ñ❧➁✴✽❋➁✴❃✬✻❋ï✏❈❖❃✬✿✧øsï♥➁✴ñ✄✂✏➀✪✻✝ï♥ï♥➁✴❀✇✺✼✽❪✸②➅➙ ✩✞✺➔✰✠✩✭✸✹➂❳✰✆✯✎✩✱▲➯✬✭◆✜★❆÷⑥✥➅ú✡➁✴ñ❖➁ì✻❋❃❖➁❂➁✌☎s✻❋➀➂❈❖ï♥❅ ❈❖ús➁ì❃❖ó✏ó❋❈❖➁✴❀✸❈❖❃✬✿✧ø✡ï✧➁◗ñ✥û❏✿✧❈❖ú ó❋❇✡➁➴➁✪ï♥➁✪ÿù➁✴❇❆❈
✿✧❇s❲❀rÖ➥▼✂✖ó❆❇s➁ù➁✪ï♥➁✪ÿù➁✪❇☛❈➸✿♥❇❼❲◗þÐ➥➑✂✐✻❋❇✡❀✘ó❋❇s➁ù➁✪ï♥➁✪ÿù➁✴❇❆❈➸✿♥❇s➥çr❉❲➸÷➑✥➅ús➁❵ñ❧❈✬✻❋òsï♥➁
➀➂ï♥ð✡ñ❧❈❖➁✪❃õñ❧➁✴ï✧➁◗➀❸❈✬✿✧ó❆❇ ➀✪❃❖✿✧❈❖➁✴❃❖✿♥ó❋❇ýøs❃✬ó❋ús✿♥òs✿✧❈✬ñ✦➁✆☎s✻❋➀❸❈✬ï✧❅➉❈❖úsó☛ñ❧➁➵❇✡➁✪þ❆✻✝❈❖✿♥✽❋➁➵û❄➁✪✿♥þ❋ú☛❈➲ñ❖ðsò✡ñ❖➁➂❈✬ñ✝❒❨ � ❴✭❲➐❵✼❈❖ú✡✻✝❈✦➀✪ó❋❃✬❃❖➁◗ñ❧ø✫ó❋❇✩❀ì❈❖ó❂❈❖ús➁ùñ❧➁✪❈▼ó❋ô❄➀✪ó❋❇✖è✡✿✚➀❸❈✬✿✧❇✡þ❵❈❖❃✬✿♥øsï✧➁◗ñ▼ò✩➁✪❈➋û➫➁✴➁✪❇Ð❲ ✻❋❇✡❀
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➁✪ï♥➁✪ÿù➁✪❇☛❈➻ó✝ô❢✦ ✿✚ñ❂✿✧❇✯❈❖ús➁ýñ❖✻❋ÿõ➁ý➀➂ó❆ÿõø✫ó❋❇✡➁✪❇☛❈ì✻❆ñ❊❲➲÷❃ô▼✿♥✽❋➁✴❇✯✻✝❇✏❅◗♥ ✿✧❇❀❲ ✻❋❇✡❀
t➌①➇✦ r❩❲ ✿✧ô❁❯✠♥❪❬✉t✛❡é①➇Ï▼✟ ✡❘☞õ❈❖ú✡➁✪❇é✿❘❴✭♥❪❬❶t❪❵✵↔➳✡✔÷ Þ✏✿♥❇✡➀✪➁❉❲ ✿✚ñ✘✻✯ñ➋❈✬❃❖ó❆❇sþ
➀➂ï♥ð✡ñ❧❈❖➁✪❃✠✂✲❈✬ús➁✪❃✬➁ý✿♥ñ➏➵❞❜➌✍ ñ❧ð✩➀✟ú ❈❖ú✩✻✵❈✘✿✤❴✞♥❪❬❶♥ ♣ ❵✫↔➈➵❛➹ ✿❘❴✭♥❪❬❶t❪❵❵ô❍ó❋❃➻✻✝ï♥ï❄♥ ♣ ①➺❲➸÷
✥➅ús➁✪❇Ý❲ ✿♥ñù➀✪ó❋❇s❇s➁◗➀❸❈✬➁✴❀✸✿♥❇❍➭❻✟ ✡▼➹❢➵❶☞❍✂➫➀➂ó❋❇☛❈✬❃✬✻❆❀⑧✿♥➀➂❈❖✿♥❇sþ ❈✬ús➁➻ÿ➵✻✎☎⑧✿✧ÿ➵✻❋ï✧✿✧❈➋❅✱✻❋ñ✬ñ❧ðsÿùø✖❷
❈❖✿♥ó❋❇✱ô❍ó❆❃✶✡✔÷➉ü✘➁ì➀➂ó❋❇✩➀➂ï♥ð✡❀⑧➁➵❈✬ús➁✪❇✱❈✬ú✡✻✵❈✇❲ ✿✚ñ➲✻✘➀➂ó❋ÿùø✫ó❋❇s➁✴❇☛❈➲ó✝ô➸➭❻✟ ✡❘☞❫÷❼❋s❃✬ó❋ÿ ✟ ❿➔☞❍✂
➁✪✽❆➁✪❃✬❅➴➀➂ó❆ÿõø✫ó❋❇✡➁✪❇☛❈❏ó✝ô✎➭❻✟ ✡❘☞✐✿♥ñ❏✻ù➀➂ï♥ð✡ñ❧❈❖➁✴❃❏✿✧❇➻➁✪✽❆➁✪❃✬❅➴ñ❖✿✧❇sþ❆ï✧➁➡ï♥✿✧❇→⑩✾✻❋þ❋➁▼❈❖❃✬➁✪➁▼ô❍ó❆❃➉✿❋÷
✥➅ú✡➁✦ï✧✿♥❇P⑩➴ï♥➁✴✻❆❀sñ❄❈❖ó➵✻❋❇ì➁✆à❵➀➂✿♥➁✪❇☛❈❏û❄✻✾❅➵❈✬ó➵➀➂ó❋ÿùøsðs❈❖➁➡❈❖ú✡➁ î øs❃✬➁✴ñ❩ö❧✻✝❇➻➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ✄✝
➺ ❿▼➀➅❿➼➻✰➻❄⑦t➀✗➽➠⑨t⑩❩❶❉⑩➚➾ ➱✸❇✤✱➔➴✢❇✳➬✎➴✂✭❧➮✞➷❧➘✂❇✆➮➯➮❩❃→➱ ❦♠❧ ➷♦➱❤✭❩♥❈✱✎➴✪❇❈✯❤➘❉✭❧➮✷➱✆➷✤✭➐➬◆❊✵✱❱✭❤✫❩❯❱✫❩✯✲✱✎➷❤✫ ➮❍Ü❊✳➘✖➴q❇✆➮✘✫✭➬➔➴③✿❆✫ ➴➏↔✇❴✭ó ➶ ❵❢➮✘✫❩❯❻➱❀➑❻✿➒❃P➱✆➷❶➱➛ó✘❣é➤ ✦Ö➤✲●
❹❝➷❶➬✄➬◆❊❀● ×✼❇✡➁❵➀✪✻✝❇✱➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈➲✻➓ñ❖✿♥❇sþ❋ï♥➁➵ï✧✿♥❇P⑩✵✻✝þ❆➁ù❈❖❃✬➁✪➁❻➍ ô❍ó❋❃➜✿❵✿✧❇▲↔✇❴✭ó ➶ ❵➡❈❖✿♥ÿõ➁

✟☛✡ ø ✂ ✑ ➸ ☞❨÷➡❁➫❅❁✥➅ús➁✴ó❋❃✬➁✪ÿ ✑ ÷ ➸ ✂✚➙✌ù✱õ✔✿❘❴✱➍❛❵✲➀➂ó❋❇☛❈✟✻✝✿♥❇✡ñ❿✻❋ï✧ï✐❈❖ús➁ î øs❃✬➁✴ñ❩ö❧✻✝❇✘➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ✆✂❣✻❋❇✡❀
ø✩ó☛ñ❖ñ❖✿♥òsï✧❅✸✻❆❀s❀⑧✿✧❈❖✿♥ó❋❇✡✻❋ï❄➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✪÷s❋só❆❃✥➁◗✻❋➀✟ú✸❇✡ó✏❀s➁❊➏✱✻✝❇✩❀✸➁✪ï♥➁✪ÿù➁✴❇❆❈✇t❳①❀➒✇❴✭➏✜❵✥û❄➁
➀➂ó❆ÿõø✡ð⑧❈❖➁

➪ ✟ ➏❪❬✉t→☞Ð❣ ÿù✿♥❇
♠ ❦
❯✎✿✤❴✭t✛❬❶t ♣ ❵❝✝➔t ♣ ①❚➒✇❴✭➏✜❵❧❡

➶❃✟ ➏✾❬❶tP☞●❣ ÿ➵✻➔☎
♠ ❦ ❦

❯✎✿❘❴✱t✛❬❶t✾♣ ♣ ❵↕✝➔t✾♣ ♣➓➊①❚➒✇❴✭➏✜❵❧❡✤⑦

➌✖➁➂❈❢õ✱ò✫➁ù❈❖ús➁✘❴❩ðs❇s✿q➣☛ðs➁✠❵➡➀✟ús✿♥ï✚❀➉ó❋ô↕➏➉ñ❖ð✡➀✟ú✘❈❖ú✡✻✝❈❢tÖ①Ý➒✇❴✱õ✔❵❸÷❻➆❨ô❝t ♣ ①Ö➒✇❴✭➏✜❵➡❈❖ús➁✴❇
➁✪✿✧❈❖ús➁✴❃➛t ♣ ①❚➒✇❴✭õ✚❵❄ó❆❃❏ï♥➀✴✻P❴✱t✻❬✉t ♣ ❵➓❣◗➏✫÷❻✴✲➁✴❇✡➀➂➁
➪ ✟ ➏❪❬✉t→☞✘❣ ÿù✿♥❇❱➹✩ÿõ✿♥❇

♠ ❦
❯✎✿❘❴✱t✛❬❶t ♣ ❵❝✝➔t ♣ ①❁➒✇❴✱õ✔❵✳❡➑❬➅ÿù✿✧❇

♠ ❦
❯❙✿❘❴✱t✻❬✉t ♣ ❵❝✝✝ï✚➀✪✻→❴✱t✛❬❶t ♣ ❵➓❣➽➏→❡❨➘

❣ ÿù✿♥❇❱➹ ➪ ✟ õ✻❬❶tP☞✷❬❏ÿù✿✧❇♠✄❦ ❯✎✿❘❴✱t✛❬❶t ♣ ❵↕✝✝ï✚➀✪✻✾❴✱t✛❬❶t ♣ ❵➚❣◗➏→❡➅➘✻⑦ ❴✉✡✄✍❘❵

✥➅ús➁❵ï✚➀✪✻➓❃✬➁✪ï✚✻✵❈✬✿✧ó❆❇✡ñ❖ús✿✧ø✩ñ➸➀✪✻❋❇✱ò✩➁❂øs❃❖➁◗➀➂ó❆ÿõø✡ð⑧❈❖➁◗❀ ✿✧❇❍↔✇❴✭ó ➶ ❵✦❈❖✿♥ÿù➁❋÷ î ø✫ó❆ñ❧❈✉❷❨ó❋❃✟❀⑧➁✴❃
❈❖❃✟✻✾✽❋➁✴❃✬ñ✬✻✝ï✲ó❋ô❢➍ ð✡ñ❖✿✧❇sþ✢❈❖ús➁ ✻✝ò✫ó✵✽❋➁✘➀➂ó❋❇✏✽❆➁✪❃✟ñ❧✿♥ó❋❇ ❈❖ú✡➁✪❇ þ❆✿✧✽❆➁✴ñ➵❈✬ús➁ý✽✾✻❋ï✧ð✡➁✴ñ ➪ ✟ ➏✾❬❶tP☞



✡✄✍ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

✿✧❇▲↔✇❴✭ó ➶ ❵➡❈❖ó✝❈✟✻✝ï➦❈✬✿✧ÿù➁❆÷③❹❿ó✝❈❖➁❵❈❖ú✡✻✝❈➲✻➓ø✩ó☛ñ➋❈❶❷❫ó❆❃✬❀s➁✪❃▼❈❖❃✟✻✾✽❋➁✴❃✬ñ✬✻✝ï✳ó✝ô✈➍ øs❃✬ó✏➀✪➁✴ñ✬ñ❧➁◗ñ▼❈❖ús➁
➀✟ús✿♥ï♥❀⑧❃✬➁✪❇➻ó❋ô☎✻õ❇só⑧❀⑧➁✠✼✳➱✟❊✌➬➔➷❶➱❏ø✡❃❖ó⑧➀➂➁◗ñ❖ñ❖✿♥❇sþ➲❈✬ús➁✦❇só⑧❀⑧➁❆÷
✥➅ú✡➁➻➀✪ó❋ÿùøsð⑧❈✟✻✵❈✬✿✧ó❆❇ ó❋ô❿❈❖ú✡➁ì✽✵✻❋ï✧ðs➁◗ñ♣➶❃✟ ➏❪❬✉t→☞✲øs❃✬ó✏➀✪➁✪➁◗❀sñ✥ô❍❃❖ó❆ÿ ❈❖ús➁➻❃✬ó✏ó✝❈õ❈❖óý❈❖ús➁

ï✧➁◗✻✾✽❋➁◗ñ✪÷✎➌☞➁✪❈✈➏➵ò✩➁✦✻õ❇só⑧❀⑧➁✼✂✖t ✻❋❇❂➁✴ï✧➁✴ÿù➁✪❇☛❈❏ó✝ô➯➒✇❴✭➏✜❵✌✂✡✻✝❇✩❀▼õì❈❖ú✡➁✦ðs❇s✿q➣❆ð✡➁➡➀✟ú✡✿✧ï✚❀➴ó❋ô✻➏
ô❍ó❋❃✲û❏ú✡✿♥➀✟ú❁tÐ①❁➒✇❴✭õ✚❵➂÷Ú➆❨ô❾t ♣ ♣ ➊①●➒✇❴✱õ✔❵❄❈✬ús➁✪❇➓➁✴✿❲❈✬ús➁✪❃➛t ♣ ♣ ①●➒✇❴✭õ✚❵➅ó❆❃❏ï♥➀✴✻→❴✭t✛❬✉t ♣ ♣ ❵↕❣ ➏✩÷✴✲➁✴❇✡➀➂➁
➶❃✟ õ✹❬✉t→☞✘❣ ÿ➵✻✎☎ ➹ ÿ➵✻✎☎

♠ ❦ ❦
❯❙✿❘❴✱t✻❬✉t ♣ ♣ ❵❝✝✼t ♣ ♣ ➊①❁➒✇❴✱➏✖❵✳❡➑❬❏ÿ➵✻✎☎

♠ ❦ ❦
❯✎✿✤❴✭t✛❬❶t ♣ ♣ ❵✈✝✝ï♥➀✴✻P❴✱t✻❬✉t ♣ ♣ ❵➓❣➽➏✾❡ ➘

❣ ÿ➵✻✎☎ ➹ ➶❃✟ ➏✾❬❶tP☞✷❬❏ÿù✻➔☎
♠ ❦ ❦

❯✎✿❘❴✱t✛❬❶t ♣ ♣ ❵❝✝✝ï✚➀✪✻P❴✭t✛❬❶t ♣ ♣ ❵➓❣◗➏✾❡ ➘ ⑦ ❴✉✡✼✡❙❵

ü✘➁❄➀✪✻✝❇▼❈✬ús➁✪❃✬➁➂ô❍ó❆❃❖➁➦ð✡ñ❖➁③✻➅øs❃✬➁✌❷❨ó❋❃✟❀⑧➁✴❃✔❈❖❃✟✻✾✽❋➁✪❃✟ñ✬✻✝ï✾ó✝ô✖➍ý❈❖ó❿➀✪ó❋ÿùøsð⑧❈✬➁❝✻✝ï♥ï❋ó❋ô☛❈✬ús➁♠➶❃✟ ➏✾❬❶tP☞
✽✵✻✝ï♥ðs➁✴ñ➡✿♥❇r↔✇❴✭ó ➶ ❵✼❈✬ó✝❈✟✻✝ï☎❈❖✿♥ÿù➁❋÷❻❹✲ó❋❈❖➁õ❈❖ú✡✻✝❈➸✻❂ø✡❃❖➁✆❷❫ó❆❃✬❀⑧➁✴❃✲❈✬❃✬✻✾✽❆➁✪❃✟ñ❖✻❋ï✐øs❃✬ó⑧➀➂➁◗ñ❖ñ❖➁✴ñ❿❈❖ús➁
➀✟ús✿♥ï♥❀⑧❃✬➁✪❇➻ó❋ô☎✻õ❇só⑧❀⑧➁✠✱❋❊✳➮✃➱✆➷➫øs❃✬ó⑧➀➂➁◗ñ❖ñ❖✿✧❇✡þ➲❈✬ús➁✦❇só⑧❀⑧➁❋÷
✥➅ú✡➁✥✽✵✻✝ï♥ðs➁◗ñ✵➶❃✟ õ✻❬❶tP☞➦✻✝❇✡❀ ➪ ✟ õ✻❬❶tP☞✳➁✪❇✡✻❋òsï✧➁➲❈❖ús➁ù➀➂ó❆ÿùøsð⑧❈✬✻✝❈❖✿♥ó❋❇ ó❋ô➦❈❖ús➁✥✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇
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➀➂ó❆❇☛✽❆➁✪❃✟ñ❧➁➡✿✚ñ❏❇só❋❈✲❈❖❃✬ðs➁❋÷➛ß➫ó❋❇✩ñ❧✿✚❀⑧➁✪❃✲❈❖ús➁➲ñ❖✿♥ÿõ✿♥ï✚✻✝❃✬✿❲❈➋❅➵ô❍ð✡❇✡➀❸❈✬✿✧ó❆❇Ð✿✦ó❆❇❁✦ ❣❩❯❙♥❪❬♦➈❙❬♦➙✎❬❶Ø→❡
þ❋✿♥✽❋➁✴❇❂✿♥❇③�✡þ❋ðs❃✬➁✇✡❋÷

➆⑧❹➐Þ✖➎➚❸➯✥❀❋✹➆✉ô✹➮➉❸➛➎❳✡✧❹➉➎ î ❸☎✴➉➎Ú❸➛➎
✥➅ú✡➁✪❃✬➁③✻✝❃✬➁✳❈➋û➫ó❿❇só❋❇☛❈❖❃✬✿♥✽☛✿✚✻✝ï❆➀➂ï♥➁✴✻✝❇➸➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✆✂✤❯✠♥❪❬♦➈❙❡③✻✝❇✡❀❱❯❙♥✾❬✳➈❙❬❶➙✎❡✤✂✪ò✡ð⑧❈✐ó❆❇sï✧❅➜❯✠♥❪❬✳➈✠❡

✿♥ñ✥✻✝❇ î ø✡❃❖➁◗ñ❍ö❧✻❋❇ ➀✪ï✧ð✩ñ➋❈✬➁✪❃◗÷③❋✡ðs❃❧❈✬ús➁✪❃✬ÿùó❋❃✬➁✼✂✖❈❖ús➁❵ð✡❇s✿❏➣☛ðs➁❂ñ❧✿♥❇sþ❋ï♥➁➵ï♥✿✧❇P⑩✵✻❋þ❋➁ù❈❖❃✬➁✪➁ùô❍ó❆❃➜✿
➀➂ó❆❇❆❈✟✻✝✿♥❇✡ñ▼❇só❋❇P❷♣❈✬❃❖✿♥✽✏✿♥✻❋ï☎➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ➜❯❙♥✾❬✳➈✠❡õ✻❋❇✡❀❉❯✠♥❪❬♦➈❙❬♦ØP❡❘✂❣ñ❧ó❂❈❖ús➁➵➀✪ï✧➁◗✻✝❇✘➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✼ó❋ô↕✿
✻✝❃✬➁ù❇só✝❈➸❇s➁◗➀➂➁◗ñ❖ñ✬✻✝❃✬✿✧ï♥❅➓øs❃✬➁✴ñ❖➁✪❇☛❈✦✿✧❇✱✻➻ñ❖✿✧❇sþ❆ï✧➁➵ï♥✿♥❇P⑩✵✻✝þ❋➁õ❈✬❃❖➁✴➁✥ô❍ó❆❃④✿❆÷✠✴✲ó✵û❄➁✪✽❆➁✪❃✠✂☞✻❋ñ➡û❄➁
❇só✵û✯ñ❖úsó✵û✧✂☛❈❖ús➁➡➀➂ï♥➁✴✻❋❇❂➀✪ï✧ð✡ñ❧❈❖➁✴❃❏➀➂ó❋❇✩ñ➋❈✬❃❖ð✡➀➂❈❖✿♥ó❋❇❵✿✚ñ➅➀➂ï♥ó❆ñ❖➁✪ï♥❅❵➀➂ó❆❇s❇s➁✴➀➂❈❖➁◗❀❵û❏✿✧❈❖ú❂✻❋❇só✝❈✬ús➁✪❃
➀➂ï✚✻❋ñ✬ñ❧✿✚➀✪✻❋ï➫➀✪ï✧ð✡ñ❧❈❖➁✴❃❖✿♥❇sþ ÿù➁✪❈❖úsó⑧❀✔✝ù❈✬ús➁❂✻✾✽❆➁✪❃✟✻✝þ❋➁ùï♥✿✧❇→⑩✾✻❋þ❋➁➵❈✬❃❖➁✴➁●✟ ✑ ❿✎☞✧❴❩✻❋ï♥ñ❖ó✘⑩✏❇só✵û❏❇✸✻❋ñ
❈❖ús➁✦þ❆❃❖ó❆ðsø➻✻✾✽❋➁✪❃✟✻✝þ❆➁❿ï♥✿✧❇→⑩✾✻❋þ❋➁▼❈❖❃✬➁✪➁❻✟✁✡✆❿✎☞✱❵❸÷

❽②❾t④❨❿▼➀t④❉⑥➁⑨t⑩➓➱▼⑩➚✃ Û❙➱✆➷❧Ü➇✭❧➮❡✱➉✼❀✯✁➱✇❇❀✯☛➘❉✭✳➮✃➱✆➷③➬❋❊❻✿✬✫✮✭✦✱♦❇❈✯❤➘❉✭❧➮✷➱✆➷➏✫ ➴ ➱✌Û✎➱✌➷❧Ü✬✱➔Û❙➱✆➷✧✱❈❁❘➱✯➧✫ ➴❉➩➉✱❈❁❘➱⑥➮❍➷❶➱✳➱❥❊✌➬➔➷③✿❉●❚➆➜➱✌➴▼❇✳➱Ð➱✆Û❙➱✆➷❧Ü➠❇❈✯✁➱✤✱✎➴✑❇❈✯❤➘❉✭❧➮✷➱✆➷Ð➬❋❊③✿❍✫✮✭➇✱❍❇❈✯❤➘❉✭❧➮✃➱✌➷✦✫ ➴❩➱✌Û✎➱✆➷❧Ü✱✎Û✎➱✌➷☛✱❈❁❘➱✶✯➧✫ ➴❉➩➉✱❈❁❘➱➜➮✞➷❶➱✳➱➫❊✌➬✎➷➉✿❉●
❹❝➷❶➬✄➬◆❊❀● ❋✡ó❋❃✦✻✝❇✏❅➻❈➋û❄óì❀⑧✿✚ñ❩ö➋ó❋✿♥❇❆❈✦ñ❖ðsò✡ñ❖➁➂❈✬ñ✧❲④❬❶➥ ❀⑧➁✆�✡❇s➁ ✿✼❴✞❲❢❬♦➥➜❵❄❣✒✻✾✽✾❯❙✿❘❴✞♥✾❬✳➈✌❵❄✝

♥➑①❁❲❢❬❪➈➛①❁➥❻❡☛÷❾✥➅ús➁✼✻✾✽❆➁✪❃✟✻✝þ❋➁➅ï♥✿✧❇→⑩✾✻❋þ❋➁❏❈✬❃❖➁✴➁✼✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿ✒ò✫➁✪þ❆✿✧❇✡ñ➫û❏✿✧❈❖ú❂✻➲➀➂ó❋ï♥ï♥➁✴➀❸❈✬✿✧ó❆❇
ó✝ô✦ñ❧✿♥❇sþ❆ï✧➁✪❈❖ó❋❇ ➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ ➟ ➪ ❣ ❯✼❯✠t②❡❉✝↕t➋①➋✦s❡❆÷ î ❈❵➁✴✻❆➀✟ú ✿✧❈❖➁✴❃✬✻✝❈❖✿♥ó❋❇➯✡❳❜➡✡➻✿❲❈
➀✟úsó✏ó❆ñ❖➁✴ñ➫❈❖ú✡➁▼ø✩✻✝✿♥❃❏ó✝ô✐ÿ➵✻➔☎✏✿♥ÿ➵✻✝ï❾❴❍ò✏❅❵✿♥❇✡➀✪ï✧ð✡ñ❖✿♥ó❋❇✾❵➅➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ❝❲④❬❶➥❃① ➟❥➡✓➢ ➪ ô❍ó❋❃➅û❏ús✿✚➀✟ú
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✿❘❴✭❲❢❬♦➥➜❵➲✿♥ñ➲ï♥✻❋❃❖þ❆➁✴ñ❧❈✄✂☎✻✝❇✡❀ øsðs❈✬ñ ➟❥➡ ❣ ➟❥➡✓➢ ➪➸➥ ❯❙❲ ➥ ➥➑❡❆÷❁✥➅✿✧➁◗ñ➲➀✴✻✝❇✱ò✫➁➴òs❃✬ó✼⑩❆➁✪❇❃✬✻❋❇✡❀⑧ó❆ÿõï♥❅❋÷❾✥➅ús➁✦ø✡❃❖ó⑧➀➂➁◗❀⑧ðs❃✬➁▼❈❖➁✪❃✬ÿù✿✧❇✩✻✵❈❖➁◗ñ➅û❏ús➁✪❇ ➟❥➡ ➀➂ó❆❇☛❈✬✻✝✿♥❇✡ñ❝✦✸÷➌✖➁➂❈ ➟ ò✩➁➴❈❖ús➁➴➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ➸✿♥❇ ❈❖ús➁ì✻✾✽❋➁✪❃✟✻✝þ❆➁✥ï♥✿♥❇P⑩✵✻✝þ❋➁❵❈❖❃✬➁✪➁➵ô❍ó❆❃➜✿➴✻❋❇✡❀ ï♥➁➂❈❱❲ ò✩➁ì✻
ñ➋❈✟✻✝òsï♥➁ù➀➂ï♥ð✡ñ➋❈✬➁✪❃▼❈❖ú✩✻✵❈➡✿♥ñ▼❇só❋❈✦✻❂➀➂ï♥ð✡ñ❧❈❖➁✪❃➡✿♥❇ ➟ ÷❱Þ✏✿✧❇✩➀➂➁ ➟ ✿✚ñ➡✻➴ÿ➵✻✎☎⑧✿♥ÿ➵✻✝ï☎ús✿✧➁✴❃✬✻❋❃✬➀✟ú✏❅✤✂➟ ➥ ❯❙❲✧❡▼✿♥ñ❄✿♥❇✡➀➂ó❆ÿõø✩✻✵❈❖✿♥òsï♥➁❋÷✎➌☞➁✪❈➨✡❵ò✩➁▼❈✬ús➁➉�✩❃✬ñ❧❈❄✿✧❈❖➁✴❃✬✻✝❈❖✿♥ó❋❇❵ó❋ô☞❈❖ú✡➁➡✻✾✽❆➁✪❃✟✻✝þ❆➁❏ï✧✿♥❇P⑩✵✻✝þ❆➁
❈❖❃✬➁✪➁▼✻✝ï♥þ❋ó❋❃✬✿✧❈❖úsÿ ô❍ó❋❃❄û❏ús✿✚➀✟ú ➟❥➡ ➀✪ó❋❇☛❈✬✻❋✿✧❇✡ñ➫✻➲➀✪ï✧ð✡ñ❧❈❖➁✴❃Ú➥✒❈❖ú✡✻✝❈➫✿✚ñ③✿♥❇✡➀✪ó❋ÿùø✡✻✵❈✬✿✧ò✡ï✧➁✼û❏✿❲❈✬ú
❲➸÷❱✥➅ús➁✪❃✬➁✥✻❋❃❖➁õÿ➵✻✎☎⑧✿✧ÿ➵✻❋ï☎➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ✧❰ ✻✝❇✡❀r✣✒✿✧❇ ➟ ➡✓➢ ➪ ñ❖ð✡➀✟ú➉❈❖ú✡✻✝❈✧❰ ✻✝❇✡❀♦✣✒✻✝❃✬➁
✻✝ÿ➵✻✝ï♥þ❆✻❋ÿ➵✻✵❈❖➁◗❀➓❈✬ó➓þ❋✿♥✽❋➁✇➥❵÷♣✴✲➁✴❇✡➀➂➁➑➥ ❣Ñ❰❥✷➫✣ ✻✝❇✡❀ ✿❘❴✞❰➚❬❶❲✵❐❍❵➜Ù ✿❘❴✞❰➚❬✤✣❛❵✼ô❍ó❋❃➸✻❋ï✧ï
ÿ➵✻✎☎⑧✿✧ÿ➵✻❋ï②❲②❐❾① ➟ ➡✓➢ ➪ ÷➎③✽❋➁✴❃❖❅ý➀➂ï♥ð✡ñ➋❈✬➁✪❃➸✿♥❇ ➟ ➡❄➢ ➪ ✿✚ñ➲➀✪ó❋ÿùø✡✻✝❈❖✿♥òsï✧➁➴û❏✿❲❈✬ú✫❲❢✂➦ñ❧ó➉➁✪✽❋➁✴❃❖❅➉ÿù✻➔☎⑧✿✧ÿ➵✻✝ï❄➀➂ï♥ð✡ñ❧❈❖➁✪❃✿✧❇ ➟ ➡✓➢ ➪ ✿♥ñõ➁✴✿❲❈✬ús➁✪❃➵➀➂ó❆❇☛❈✬✻✝✿♥❇s➁◗❀✸✿♥❇❞❲ ó❋❃ù❀⑧✿✚ñ❍ö➋ó❆✿✧❇☛❈➵û❏✿✧❈❖úÝ❲➸÷✸ü ÷ ï♣÷ ó✡÷ þ✡÷ ñ❖ðsøsø✫ó❆ñ❖➁
❈❖ú✡✻✝❈➐❰❒➣◗❲ ✻✝❇✡❀✪✣sþ③❲✵❣❰❮s÷❻➌☞➁➂❈✻✜ ➪ ❬❤✜ ➶ ❬✄⑦✆⑦✄⑦✆❬✤✜⑤Ï✥ò✫➁➡❈❖ús➁➸ÿ➵✻➔☎✏✿♥ÿ➵✻✝ï☞➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ➅ó❋ô➟❥➡✓➢ ➪ r❞❯❙❰❻❡➸❈❖ú✩✻✵❈✼✻❋❃❖➁➲✻❋ï♥ñ❖ó❵➀➂ó❆❇☛❈✬✻✝✿♥❇s➁◗❀➻✿✧❇●❲➲÷➛✥➅ú✏ð✡ñ ✿❘❴✥✜✎Ð⑧❬♦❰④❵➉Ù ✿❘❴❍❰➓❬❤✣➉❵❏ô❍ó❋❃✼✻❋ï✧ï
ù✛❣❩✡✤❬ ✑ ❬✆⑦✆⑦✄⑦❩❺✖÷❻➌✖➁➂❈✻✜❀❣➽❲◗rs❰❻✂sñ❖óõ❈❖ú✡✻✝❈✻✜❳❣ ➥ Ï Ð ❜ ➪ ✜➊Ð✳✻✝❇✩❀

➤ ✜❻➤ ✿✤❴✥✜❝❬✳❰④❵❞❣ Ï
✏ Ð ❜ ➪

➤ ✜ ❐ ➤ ✿❘❴❡✜➊Ð✃❬♦❰➜❵
Ù

Ï
✏ Ð ❜ ➪

➤ ✜✎❐✳➤ ✿❘❴❍❰➓❬❤✣➉❵
❣ ➤ ✜❻➤ ✿❘❴✞❰➚❬✤✣❛❵❧❬

þ❆✿✧✽✏✿♥❇sþ ✿❘❴✥✜❝❬✳❰❢❵❝Ù ✿✤❴❍❰➓❬❤✣➉❵➂÷
❋✡ó❋❃✲✻❋ï✧ï②õ❁①★✜❱✂✖➏❊①❚❰➑✂✂✁✇①✪✣✷û➫➁➡ú✡✻✾✽❆➁

✆ ❫❙❴✱õ❪➏✔➤ ✁✜❵➓❣ ✿❘❴✭õ✻❬❶➏✜❵✹rýÿ➵✻✎☎✚❯❙✿❘❴✱õ✹❬✧✁✜❵❧❬✳✿❘❴✱➏❪❬✧✁✜❵✳❡❄Ù❞✿❘❴✱õ✹❬✉➏✖❵➯rs✿✤❴✭➏✾❬☛✁❘❵✌⑦
➌☞➁✪❈➛æ✵❣ ✆ ❫◗÷➓✥➅ús➁✪❇

❭ ❫◗ ❴✭❲❛❵➽Ù æ④❴✥✜❢❰▼➤ ✣➉❵
❣ ➪✌ ❫ ✌➓✌ ❴ ✌➓✌ Ñ✢✌ ✏❘ ✕ ❫ ✏❙ ✕ ❴ ✏✔✖✕ ❵ ✆ ❫❙❴✱õ❪➏✚➤ ✁✜❵
Ù ➪✌ ❫ ✌➓✌ ❴ ✌➓✌ Ñ✢✌ ✏❘ ✕ ❫ ✏❙ ✕ ❴ ✏✔✖✕ ❵

✿❘❴✱õ✹❬✉➏✖❵✹rs✿✤❴✭➏✾❬☛✁❘❵
❣ ✿❘❴✥✜❝❬✳❰❢❵➯r ✿❘❴✞❰➚❬✤✣❛❵
Ù ✍P❬

✻ù➀✪ó❋❇☛❈❖❃✟✻❋❀⑧✿✚➀❸❈✬✿✧ó❆❇☞÷✎✴✲➁✴❇✡➀➂➁❢❲ ✿✚ñ❏➀➂ó❆❇❆❈✟✻✝✿♥❇s➁✴❀❂✿♥❇❂❈✬ús➁➸✻✾✽❋➁✴❃✬✻❋þ❋➁✼ï✧✿♥❇P⑩✵✻✝þ❆➁✼❈✬❃❖➁✴➁❋÷
❁❄❅④✥➅ú✡➁✪ó❋❃✬➁✪ÿ ✑ ÷✁✡❏✻❋ï✧ï⑧➀➂ï♥➁✴✻❋❇õ➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ➦✻✝❃✬➁❄ñ❧❈✬✻❋òsï✧➁➅➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ➦✻❋❇✡❀✥ñ❖ó➡✻✝❃✬➁❄➀✪ó❋❇☛❈✬✻❋✿✧❇s➁◗❀

✿✧❇➻➁✴✽❋➁✪❃✬❅➴✻✾✽❆➁✪❃✟✻✝þ❋➁❿ï✧✿♥❇P⑩✵✻✝þ❆➁✼❈✬❃❖➁✴➁❋÷
î ø✡✻✝❃❖❈ùô❍❃❖ó❆ÿ øs❃✬ó✵✽☛✿✚❀⑧✿♥❇sþ ✻✘➀✟ú✡✻❋❃✬✻❆➀❸❈✬➁✪❃✬✿♥ñ✬✻✵❈✬✿✧ó❆❇✱ó✝ô▼✻ýñ❖ðsò✡ñ❖➁➂❈➵ó✝ô➡➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñõ✿✧❇ ❈❖ús➁

✻✾✽❋➁✴❃✬✻❋þ❋➁❵ï♥✿✧❇→⑩✾✻❋þ❋➁❂❈❖❃✬➁✪➁✤✂Ú✥➅ús➁✴ó❋❃✬➁✪ÿ ✑ ÷ ❿ýï✧➁◗✻❋❀sñ✥❈❖ó✱✻❋❇➠↔✇❴✱ó ↕ ❵➲❈❖✿♥ÿù➁➻✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿ ô❍ó❋❃



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✡ ➸

➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥❇sþ➻➀➂ï♥➁✴✻❋❇ý➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ▼ó❋ô❄✻ìñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿❲❈➋❅➻ô❍ð✡❇✡➀❸❈✬✿✧ó❆❇Ý❴♣➀✝÷ ô➋÷õ✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿ➵ñ④✡➵✻❋❇✡❀
✑ ÷

➺ ❿▼➀➅❿➼➻✰➻❄⑦t➀✗➽➠⑨t⑩➧➦q⑩ ❑▼❃→➱✇❇❈✯✁➱✤✱✎➴☎❇❀✯❤➘❉✭❧➮✃➱✌➷✤✭❁➬❋❊✪✱➇✭❤✫❩❯✶✫❩✯✾✱✎➷❤✫ ➮❍Ü✠❊✳➘✖➴▼❇✌➮✥✫✭➬✎➴Ö✿➠❇✤✱✎➴❢✼✳➱❇✳➬✎➴➅✭❧➮❍➷❧➘✂❇✌➮✃➱✳❐✉✫ ➴➏↔✇❴✭ó ↕ ❵❢➮✘✫❩❯❻➱❀➑➫✿➒❃P➱✆➷❶➱➉ó❁❣é➤ ✦❞➤✾●
❹❝➷❶➬✄➬◆❊❀● ❋☎✿♥❃✬ñ❧❈➡➀✪ó❋ÿùøsð⑧❈✬➁➵✻✝❇✘✻✾✽❆➁✪❃✟✻✝þ❆➁✦ï✧✿♥❇P⑩✵✻✝þ❆➁➲❈✬❃❖➁✴➁➜➍✒ô❍ó❋❃❢✿õð✡ñ❖✿✧❇sþ❂❈❖ú✡➁☞↔✇❴✭ó ➶ ❵

❈❖✿♥ÿù➁❿✻✝ï♥þ❋ó❆❃❖✿✧❈❖úsÿ ó✝ô❾✟ ✑ ✡❧☞❨÷✳❁❄❅❱✥➅ús➁✪ó❆❃❖➁✴ÿ ✑ ÷ ❿→✂❆➁✪✽❆➁✪❃✬❅➲➀➂ï♥➁✴✻❋❇ù➀✪ï✧ð✩ñ➋❈✬➁✪❃❝ó❋ô②✿✲✿♥ñ➫✻✦➀➂ï♥ð✡ñ❧❈❖➁✪❃
ó✝ô➯➍➸÷
❋✡ó❋❃❏➁◗✻❋➀✟úìø✡✻✝✿♥❃❏ó✝ô✳❇só⑧❀⑧➁✴ñ❝õ✹❬✉➏➵✿♥❇❚➍✷ñ❖ð✡➀✟ú❂❈❖ú✡✻✝❈➛õ✘ö➛÷❚➏❪✂✡❀⑧➁✌�✩❇s➁

✝✇✟ õ✻❬❶➏✼☞✚❣❩❯✄t✾û②➤ ✁✇✝✝ï✚➀✪✻→❴✱t✛❬❶ûP❵➚❣Ýõ✹❬sï✚➀✪✻P❴✭t✛❬✧✁✜❵➓❣ ï♥➀✴✻→❴✱û✚❬☛✁❘❵❾❣➽➏→❡ ❴✉✡ ➸ ❵

✻✝❇✡❀
✝❥ÒÚ✟ õ✻❬❶➏✼☞✚❣ Ó

❘ ❦ Ò➼Ô ❘
✝✇✟ õ❪♣✞❬✉➏✤☞ ❴✉✡✆❿✜❵

➎❝✽❆➁✪❃✬❅õ❃✬ó✏ó✝❈✬➁✴❀➵❈✬❃❖✿♥øsï♥➁✼✿♥❇ � ❴✭➍❛❵③✿♥ñ➅✿♥❇➴➁✆☎⑧✻❆➀❸❈✬ï✧❅➵ó❆❇s➁▼ñ❖➁➂❈➨✝✇✟ õ✹❬✉➏✤☞✷✂✏✻❋❇✡❀➵❈✬ús➁✴ñ❖➁✦ñ❧➁✪❈✬ñ➅➀✪✻❋❇
ò✩➁➸➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈❖➁✴❀ì✿♥❇✢↔✇❴✭ó ↕ ❵➫❈✬✿✧ÿù➁❆÷➌✖➁➂❈➒✝✇✟ õ✻❬❶➏✾❬❶ó✚☞❆❀⑧➁✴❇só✝❈✬➁✳❈❖ús➁③ñ❖➁➂❈☞ó❋ô✖ó✥ÿù✿♥❇s✿✧ÿ✥ðsÿ✷û➫➁✴✿✧þ❆ú❆❈☞❃✬ó✏ó✝❈✬➁✴❀❿❈❖❃✬✿✧øsï♥➁✴ñ☞ó✝ô➅✝✇✟ õ✹❬✉➏✤☞❫÷
➆❨❈❏❈✬✻✼⑩❋➁✴ñ➨↔✇❴♦➤ ✝✇✟ õ✻❬❶➏✼☞⑧➤ ❵➫❈✬✿✧ÿù➁➡❈✬óõ➁✆☎✏❈❖❃✟✻❋➀❸❈➨✝✇✟ õ✹❬✉➏❪❬✉ó✚☞✔ô❍❃✬ó❋ÿÕ✝✇✟ õ✻❬❶➏✼☞☞ð✩ñ❧✿♥❇sþõ❈❖ús➁➡ï♥✿✧❇✡➁✴✻✝❃
❈❖✿♥ÿù➁➡ñ❖➁✪ï♥➁✴➀➂❈❖✿♥ó❋❇ì✻✝ï♥þ❋ó❋❃✬✿✧❈❖úsÿ ó✝ô↕✟ ➀➔☞❫÷➯➆❨❈➅❈❖ús➁✴❃❖➁✪ô❍ó❋❃✬➁✲❈✟✻➔⑩❋➁◗ñ➨↔✇❴✱ó ↕ ❵➦❈✬✿✧ÿù➁▼❈❖óõ➁✌☎✏❈❖❃✟✻❋➀➂❈➅✻❋ï✧ï
ó✝ô☎❈❖ús➁➸ñ❖➁➂❈✟ñ➨✝✇✟ õ✹❬✉➏❪❬✉ó✚☞❨÷➌✖➁➂❈✵✝ Ò ✟ õ✻❬❶➏✾❬❶ó✚☞✐❀⑧➁✴❇só✝❈✬➁➡❈❖ús➁➸ÿù✿♥❇s✿♥ÿ➲ðsÿ⑤óý❈❖❃✬✿✧øsï♥➁✴ñ✲ó✝ô✎✝ Ò ✟ õ✹❬✉➏✤☞❫÷➫ü✘➁➲➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈
❈❖ús➁◗ñ❧➁➸ñ❖➁➂❈✟ñ❄ð✡ñ❧✿♥❇sþ➵❀⑧❅✏❇✡✻❋ÿõ✿✚➀▼øs❃✬ó❋þ❋❃✟✻✝ÿùÿù✿♥❇sþ✡÷➊➌☞➁✪❈❝õ ➪ ❬❶õ ➶ ❬✆⑦✆⑦✄⑦✆❬❶õqÖ ò✫➁▼❈❖ús➁➸➀✟ús✿♥ï✚❀⑧❃❖➁✴❇
ó✝ô➯õ✐÷❾✥➅ús➁✴❇✦✝ Ò ✟ õ✹❬✉➏❪❬✉ó✚☞✖✿✚ñ➅➁✄➣☛ð✡✻❋ï✔❈❖óù❈❖ú✡➁➸ñ❧➁✪❈➅ó❋ô✹ó✘ÿù✿✧❇s✿♥ÿ➲ð✡ÿ û❄➁✪✿♥þ❋ú☛❈➅❈❖❃✬✿✧øsï♥➁✴ñ✲✿✧❇

✝✇✟ õ✹❬✉➏❪❬✉ó✚☞ ➥ ✝❥ÒÚ✟ õ ➪ ❬✉➏❪❬✉ó✚☞ ➥ ✝❥ÒÚ✟ õ ➶ ❬✉➏❪❬✉ó✚☞ ➥✇×❈×✖×✖➥ ✝❣Ò↕✟ õ Ö✵Ø ❘❄Ù ❬✉➏❪❬✉ó✚☞✷⑦ ❴✉✡ ø ❵

❋só❆❃➸➁✴✻❆➀✟ú❼➏❪✂✳✿❲❈➲❈✬✻➔⑩❆➁✴ñ❣↔✇❴✭ó ➶ ❵▼❈✬ó➉➀➂ó❆ÿùøsð⑧❈❖➁❂✻✝ï♥ï❝ó✝ô➅❈❖ú✡➁✴ñ❖➁❵ñ❧➁✪❈✬ñ❥✝✇✟ õ✻❬❶➏✾❬❶ó✚☞③ð✡ñ❖✿✧❇✡þ ✻
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ñ❖✻❋ÿù➁▼ï♥✿♥❇s➁✴ñ✲✻❆ñ❄❈❖ús➁✦ø✡❃❖➁◗ñ❧➁✴❇❆❈✟✻✵❈✬✿✧ó❆❇➴ó✝ô☎❈❖ú✡➁➸➀➂ï♥ð✡ñ➋❈✬➁✪❃✬✿✧❇✡þõÿù➁✪❈❖úsó⑧❀sñ✴÷

➜✖ä❩ã✫ä ê ◆❘ä✹✸✹✩✱✰✠✩✭✽❪✸✻★➮❿❇s❃✬ó☛ó❋❈❖➁◗❀✫✦❁❷❫❈❖❃✬➁✪➁◗ñ➲✻✝❇✩❀✸ñ❧ø✡ï✧✿✧❈✬ñõû❄➁✪❃✬➁➴❀⑧➁✌�✩❇s➁✴❀✢✿✧❇ÝÞ✏➁✴➀➂❈❖✿♥ó❋❇ ✡❆÷❼⑨③ð⑧❈✇ó❀❣➡➤ ✦Ö➤❜÷➌☞➁✪❈➐✿✧❺✾ù❲ß❡ñ✉✿❘❴✱➍➐❵③❀⑧➁✴❇só✝❈✬➁➡❈❖ús➁✥ñ❧➁✪❈✲ó✝ô❝ñ❧ø✡ï✧✿✧❈✬ñ❏ó❋ô✳✻õ❈✬❃❖➁✴➁✧➍➸÷ î ñ❖➁➂❈✲ó❋ô➦ñ❖øsï♥✿❲❈✟ñ✞ò ó✝ô➯✦ ✿♥ñ
✺✼✽❪✪s▲➯✮✖✰✄✩✭ý✹✬✞◆✦✿❲ô✔❈✬ús➁✪❃✬➁❏✿♥ñ③✻▼❈❖❃✬➁✪➁✈➍ ñ❧ð✩➀✟ú✥❈✬ú✡✻✵❈✎ò➽❨◗✿✧❺✾ù✟ß✥ñ✉✿❘❴✭➍❛❵❸÷✖❁❄ðs❇✡➁✪ÿ➵✻✝❇❵ñ❖úsó✵û❄➁✴❀
❈❖ú✡✻✝❈✞ò ✿✚ñ➅➀➂ó❋ÿùø✡✻✝❈❖✿♥òsï♥➁▼✿✧ô✐✻❋❇✡❀➴ó❆❇sï♥❅➵✿❲ô✐ô❍ó❋❃➅➁✴✻❆➀✟ú❵ø✡✻✝✿♥❃✈❲➜➤ ➥➑✂→➒❻➤ ó ó❋ô✐ñ❖øsï✧✿✧❈✬ñ➅✿♥❇❆ò ✻✝❈
ï✧➁◗✻❋ñ❧❈✲ó❋❇s➁➡ó❋ô✹❲❉þ❚➒❱✂→❲❉þ❆ó❁✂→➥✵þ③➒❱✂✾➥➽þ❆ó ✿✚ñ➅➁✪ÿùø⑧❈➋❅❼✟☛✡✠✍❙☞❫÷
î❢ô ✶✻✮P✯✠✰✠◆❘✰❛♥✖➈➔➤ ➙✌Ø➲❀⑧➁✆�✡❇s➁◗ñ③✻➸ñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇õó✝ô✛♥õ✻✝❇✡❀➑➈③ô❍❃✬ó❋ÿ❃➙❏✻✝❇✡❀❻Ø✩÷❾✥➅ús➁❿ñ❖➁➂❈③ó❋ô

✻✝ï♥ï☞ø✫ó❆ñ✬ñ❧✿♥òsï♥➁❢➣❆ð✩✻✝❃❖❈❖➁➂❈✟ñ❏ó❋❇❚✦ ✿✚ñ✲❀⑧➁✪❇✡ó✝❈❖➁◗❀♦õ④❴✭✦Ð❵❸÷↕✥➅ús➁➲ñ❖➁➂❈✲ó✝ô❾➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ❏ó❋ô✳✻➵ñ❖øsï♥✿❲❈
❲➜➤ ➥ ✿✚ñ❏❀⑧➁✌�✡❇✡➁✴❀ìò✏❅

ö ❴✞❲➜➤ ➥➜❵➚❣❩❯✠♥✜♥ ♣ ➤ ➈✌➈ ♣ ✝✼♥❪❬❶♥ ♣ ①❁❲❢❬✾➈✎❬♦➈ ♣ ①❁➥❻❡❘⑦
ü✘➁➸ñ✬✻✾❅õ❈❖ú✡✻✝❈➉♥✖➈➔➤ ➙✆Ø✥✿✚ñ❏✻✇➣☛ð✡✻✝❃❖❈❖➁✪❈❄ó❋ô✻➍✯✿✧ô✖❈✬ús➁✪❃✬➁➡✿♥ñ❏✻õñ❖øsï✧✿✧❈➉❲➜➤ ➥❃①✘✿✧❺✾ù❲ß❡ñ✉✿❘❴✱➍➐❵❝ñ❖ð✡➀✟ú
❈❖ú✡✻✝❈➉♥✖➈➔➤ ➙✆Ø❻① ö ❴✭❲➜➤ ➥➜❵➂÷➚✥➅ús➁✦ñ❖➁➂❈✲ó✝ô➯➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ➅ó✝ô➯➍✷✿♥ñ❏❀⑧➁✴❇só✝❈✬➁✴❀ ö ❴✱➍➐❵❸÷
î ➞✻✩✞★✄★✠✩✭✪✫✩✞✬✭✮✖✯✎✩✭✰♦✲✫✴✷✶✹✸✻✺✼✰✄✩✞✽✾✸✱✿✚ñ✲✻➵ñ❖❅✏ÿõÿù➁✪❈❖❃✬✿♥➀▼ô❍ðs❇✩➀❸❈❖✿♥ó❋❇ìô❍❃✬ó❋ÿ ✦❮❂❚✦ ❈❖ó▼❇❝➢➅÷

î ★✄◆❘▲➯✮✖✯✎✮✖✰✄✩✞✽✾✸✇✄④◆✜✩✭➂❪➄✚✰✄✩✞✸✻➂õ✿✚ñ➦✻✲ô❍ðs❇✩➀❸❈❖✿♥ó❋❇❱÷Ý✝tõ④❴✭✦Ð❵➓❅➡❇✱ñ❖ð✡➀✟ú✥❈❖ú✡✻✝❈➒÷➉❴✞♥✖➈➔➤ ➙✆Ø❘❵❙➹÷➉❴✭♥✜➙✼➤ ➈❧Ø✜❵↕Ù❞✍➸ô❍ó❋❃➫✻❋ï✧ï✚♥❪❬♦➈❙❬♦➙✎❬❶Ø✇①❚✦✸÷➯✥➅ús➁✼û➫➁✴✿✧þ❆ú❆❈➫÷➉❴✭♥✖➈➔➤ ➙✌Ø❘❵❝✿✧❇✩❀⑧✿♥➀✴✻✵❈✬➁✴ñ③❈❖ús➁➡❀⑧➁✪þ❆❃❖➁✴➁
❈❖ó✦û❏ús✿✚➀✟ú❻♥➲✻❋❇✡❀❻➈➫✻❋❃❖➁❏ñ❖➁✪ø✡✻❋❃✬✻✝❈❖➁◗❀✦ô❍❃✬ó❋ÿé➙➅✻❋❇✡❀✇Ø✡÷❾ô▼✿✧✽❆➁✪❇➵✻✦❀⑧✿✚ñ❖ñ❖✿♥ÿõ✿♥ï✚✻✝❃✬✿❲❈➋❅✦ô❍ð✡❇✡➀❸❈✬✿✧ó❆❇
➟✜✂✡❀⑧➁✆�✡❇s➁

ø ➼ ❴✭♥✖➈➔➤ ➙✌Ø✜❵➚❣ ➪➶ ❴❩ÿù✿♥❇✔❯✠➟✖❴✞♥❪❬❶➙✆❵②➹❉➟✖❴✞➈❙❬♦Ø❘❵✌❬❶➟✖❴✞♥✾❬♦Ø❘❵✻➹❉➟✖❴❍➈❙❬❶➙✄❵✳❡➛r⑥➟✖❴✭♥❪❬♦➈✌❵✹r⑥➟✖❴✭➙➔❬❶Ø✜❵✉❵ ❴✉✡✖❼❘❵
✥➅ús➁✪❇ ø ➼✼✿✚ñ✲✻ùñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇➴û❄➁✪✿♥þ❋ú☛❈✬✿✧❇sþ✩÷
ô▼✿♥✽❋➁✴❇➲✻✲ñ❖➁➂❈⑤ù ó❋ôP➣❆ð✩✻✝❃❖❈❖➁➂❈✟ñ✆✂✵✻❏ñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇➡û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþ➨÷➛✂✾✻✝❇✡❀➲✻➅ø✩ó☛ñ❧✿✧❈❖✿♥✽❋➁❝✿♥❇☛❈❖➁✴þ❋➁✪❃✡❊Ù❳➤ ù➑➤☛✂s❀⑧➁✌�✡❇✡➁

✻✾✽✚❴✘ù❢❵❞❣ ➪✌ ú➫✌á✏
✐❀➤ ✌ ❬①û ✕✗ú

÷➉❴✭♥✖➈➔➤ ➙✌Ø❘❵ ❴ ✑ ✍❘❵

✻✾✽✏ÿõ✿♥❇✛❴✥ù✇❬☛✡P❵Ö❣ ÿõ✿♥❇ú ❦ ❯❙♥✤➏✚❴✘ù❢♣❏❵↕✝➉ù❢♣✔❨✙ù❻❬✛➤ ù✧♣✷➤✤❣✈✡❪❡✤⑦ ❴ ✑ ✡❙❵

ô▼✿♥✽❋➁✴❇➻❇só❋❇✖❷❨➁✪ÿùø⑧❈➋❅❂❀⑧✿♥ñ❩ö➋ó❋✿♥❇☛❈✲ñ❧ðsò✩ñ❧➁✪❈✬ñ✵✜✈❬♦❰➚❬✧üÚ❬✤✣ ❀⑧➁✌�✩❇s➁
÷➉❴✥✜✧❰❊➤ ü❱✣❛❵➓❣✯✻✾✽→❯✠õ✾➏✔➤ û❨✁❱✝➔õ✘①✪✜❝❬→➏➑①❚❰➚❬Pû❊①➏üÚ❬✂✁✇①★✣❄❡❘❬ ❴ ✑✼✑ ❵

❈❖ús➁❵✻✾✽❆➁✪❃✟✻✝þ❆➁➲û❄➁✪✿♥þ❋ú☛❈✦ó✝ô❏✻✝ï♥ï➓➣❆ð✩✻✝❃❖❈❖➁➂❈✟ñ❄õ✾➏✔➤ û❉✁➻û❏✿✧❈❖ú⑥õÝ①✙✜✇✂②➏s①❞❰➑✂✛ûs①❍ü▼✂✐✻❋❇✡❀✁❻①✪✣✦÷
➜✖äqê☞ä ❑➌✴✷✮P✪✫✩✭✬✭✲❉✽❪✴❝✰✆✯✎◆✜◆✘✺✼✽❪✸✻★✄✰✆✯✎✶✹✺➔✰✠✩✭✽❪✸◗✪✫◆❘✰✄➄✹✽②➞✻★

➆✍❇➽Þ✏➁◗➀❸❈✬✿✧ó❆❇ ✑ ÷ ✑ û❄➁ ❀⑧➁✌�✩❇s➁✴❀ ✻ ➀➂ó❆ï✧ï♥➁✴➀➂❈❖✿♥ó❋❇ ó✝ô▼✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇ ✿♥❇✡❀⑧✿✚➀➂➁◗ñ❵✻✝❇✡❀ ñ❖úsó✵û❄➁✴❀
❈❖ú✡✻✝❈✄✂❆ô❍ó❋❃➦➁◗✻❋➀✟úõ✿✧❇✡❀s➁✌☎✔✂❋❈✬ús➁✲➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ✳û❏✿✧❈❖ú➵ø✫ó❆ñ❖✿❲❈✬✿✧✽❆➁➅✿✧❇✡❀s➁✌☎õô❍ó❋❃✬ÿõ➁◗❀✥✻➡ú✡✿✧➁✴❃✬✻❋❃✬➀✟ú✏❅❋÷✛➆✍❇



✡✄➀ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

❈❖ús✿✚ñ❿ñ❖➁✴➀➂❈❖✿♥ó❋❇➓û❄➁➸❀⑧ó➵❈✬ús➁➲ñ✬✻✝ÿù➁➡ô❍ó❋❃❿ñ❖øsï♥✿❲❈✟ñ✆✝❄û❄➁➸❀⑧➁✌�✡❇✡➁➲✻➵➀➂ó❆ï✧ï♥➁✴➀➂❈❖✿♥ó❋❇➻ó✝ô❝ñ❖➁✪ø✡✻❋❃✬✻✝❈❖✿♥ó❋❇
✿✧❇✩❀⑧✿♥➀✪➁✴ñ✳✻✝❇✩❀✦❈❖ú✡➁✪❇✥ñ❖úsó✵û ❈✬ú✡✻✵❈☎❈❖ús➁❄❃✬➁✴ñ❖ðsï❲❈✬✿✧❇✡þ✼➀➂ó❆ï✧ï♥➁✴➀➂❈❖✿♥ó❋❇✡ñ✐ó✝ô✡ñ❖øsï♥✿❲❈✟ñ✳✻✝❃✬➁➫➀➂ó❆ÿùø✡✻✵❈✬✿✧òsï♥➁❋÷
ê ◆❘ä➯✸✻✩✭✰✄✩✞✽✾✸Ý✽❪✴ ï ▲➯✬✭✩✭✰ å ✸✻➞✹✩✭✺✤◆❘★✶✺✛➱✆➮❞÷❚✼✳➱❱✱☞✭✆➱ ❧ ✱✎➷✧✱➔➮✘✫✭➬➔➴✇✫ ➴✚❐✼➱☛✳✢✱✎➴❪❐④❲➜➤ ➥ý✱☞✭ ❧ ✯➧✫ ➮
➬❋❊✈✦➠●

■ ✫ ❏▲❑▼❃P➱➐★✆✰✄✯✎✽✾✸✹➂⑥★✄◆❘▲➯✮✖✯✎✮✖✰✄✩✞✽✾✸◗✩✞✸✻➞✹◆❘➾ ➬❋❊✈❲➜➤ ➥þ✫✮✭④❐✤➱✟P➚➴❪➱✳❐
➻➼ÿ➯❴✭❲➜➤ ➥➜❵Ú❣ ÿõ✿♥❇❘❄❙ ✌ ✒ ✔ ❯❈÷➉❴✭õ✾➏✔➤ û❉✁✜❵➚✝➔õ✾➏✔➤ û❉✁✇① ö ❴✞❲➜➤ ➥➜❵✳❡

✱✎➴✚❐➑➮❲❃P➱❛➦➜✶✹✸✹◆❘✪❉✮P✸Ö★✄▲➯✬✭✩✱✰✠★➸❊✌➬✎➷➸÷➁✱➔➷❶➱❢❯✠❲➜➤ ➥Ñ✝➔➻➼ÿ➯❴✭❲❱➤ ➥❱❵❝❜Ö✍P❡❉●■ ✫❩✫ ❏▲❑▼❃P➱❛✯✎◆✤ä➯✸✹◆❘➞◗➦❱✶✹✸✻◆✜✪✫✮P✸Ý✩✞✸✻➞✹◆❘➾◗➬◆❊➛❲➜➤ ➥þ✫✮✭④❐✤➱✟P➚➴❪➱✳❐
➻ âÿ ❴✭❲❱➤ ➥❱❵➚❣➁✱➔Û✖❯✶✫ ➴❪❴ ö ❴✭❲❱➤ ➥❱❵❧❬✉ó❚r ➸ ❵

✱✎➴✚❐➑➮❲❃P➱➉✯✎◆✤ä➯✸✹◆❘➞Ý➦❱✶✻✸✹◆✜✪✫✮P✸Ý★✄▲✹✬✞✩✱✰✄★②❊✌➬✎➷➨÷❚✱✎➷♦➱✧❯❙❲➜➤ ➥❃✝➔➻②âÿ ❴✭❲➜➤ ➥➜❵✈❜Ö✍✖❡❨●■ ✫❩✫❩✫ ❏❍❑▼❃P➱➐✺✼✬✞◆✜✮P✸◗★✆▲➯✬✭✩✭✰➜✩✞✸✻➞✹◆❘➾ ➬❋❊✈❲➜➤ ➥á✫✮✭❢❐✤➱✟P➚➴❪➱✳❐
➻ ❬ÿ ❴✞❲➜➤ ➥➜❵➚❣❚✱✎Û✓❯❱✫ ➴✚❴ ö ❴✞❲➜➤ ➥➜❵✌❬✄❴❶➤ ❲➜➤✼r❞✡✠❵✌❴♦➤ ➥③➤✎r❞✡✠❵❶❵

✱✎➴✚❐➑➮❲❃P➱❛✺✼✬✞◆❘✮→✸◗★✆▲➯✬✭✩✭✰✄★➸❊✌➬➔➷✞÷❭✱✎➷❶➱❢❯✠❲❱➤ ➥❃✝➔➻ ❬ÿ ❴✭❲❱➤ ➥❱❵❝❜Ý✍✖❡❉●■ ✫ Û✧❏✬❑▼❃→➱❛★✄▲➯✬✭✩✱✰✇★✄✰✄✮✖ý➯✩✭✬✞✩✱✰✳✲❉✩✭✸✹➞✹◆✤➾ ➬◆❊✈❲➜➤ ➥þ✫✮✭④❐✼➱✘P➓➴✚➱✳❐
➻ ❫ÿ ❴✭❲❱➤ ➥❱❵➚❣ ÿù✿✧❇❫ ❥ ❴✖❥ �✖❥ ❵✎❛❜❞❝ ❯ ÷✈❴❡✜✧❰▼➤ ü❱✣❛❵↕✝✼❲✵❣❢✜✸✷❾❰➓❬✾➥➋❣✚ü✶✷❻✣❄❡

✱✎➴✚❐➑➮❲❃P➱❛★✆✰✠✮✖ý➯✬✭◆❁★✄▲✹✬✞✩✱✰✄★❊➬❋❊✞÷❚✱✎➷♦➱✧❯❙❲➜➤ ➥❃✝➔➻ ❫ÿ ❴✞❲➜➤ ➥➜❵➛❜Ö✍✖❡❨●
❑▼❃P➱✂✁➛➘✖➴❪➱❈❯✉✱➔➴✠✭ ❧ ✯❂✫ ➮✟✭❛➬◆❊✵✱❱❐✰✫✮✭✤✭❤✫❩❯❱✫❩✯✾✱➔➷❤✫ ➮✞Ü➨❊✳➘✖➴▼❇✌➮✥✫✭➬✎➴❱➟✠✱✎➷❶➱❛➮❲❃P➱✄✁➛➘✖➴❪➱❈❯✉✱➔➴✠✭ ❧ ✯❂✫ ➮✟✭❛➬◆❊÷✫❣ ø ➼➉●✞st✫❩❯✶✫❩✯✾✱➔➷❤✯❤Ü➫❊✌➬✎➷✈➷♦➱✟P➚➴❪➱✳❐☎✁➛➘✖➴❪➱❈❯✉✱➔➴♣✭ ❧ ✯➧✫ ➮✘✭✤➑⑤❇❈✯✁➱✤✱✎➴♣✭ ❧ ✯➧✫ ➮✟✭✤➑⑤✱➔➴❪❐✸✭✳➮①✱✗✼❈✯✁➱➸✭ ❧ ✯➧✫ ➮✘✭❈●
✥➅ú✡➁✼❃✬➁✌�✡❇✡➁✪ÿù➁✪❇☛❈➅❃❖➁✴ï♥✻✝❈❖✿♥ó❋❇✡ñ➫ò✩➁✪❈➋û➫➁✴➁✪❇➴❈❖ús➁➡❀⑧✿✁å✫➁✴❃❖➁✴❇❆❈➅ÿù➁➂❈✬úsó⑧❀sñ➅✻✝❃✬➁❿øs❃✬➁✴ñ❖➁✪❇☛❈❖➁◗❀➵✿♥❇

✥➅ús➁✪ó❆❃❖➁✴ÿ ➸ ÷❏✡❋÷❻✥➅ús➁✴ó❋❃✬➁✪ÿ ➸ ÷ ✑ ➁◗ñ➋❈✟✻✝òsï♥✿♥ñ❖ús➁◗ñ▼❈❖ú✡✻✝❈➸➁✴✻❋➀✟ú ➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✘þ❆✿✧✽❆➁✴ñ➡➀➂ó❆ÿ➜❷
ø✡✻✵❈✬✿✧ò✡ï✧➁➵ñ❖øsï✧✿✧❈✬ñ✴÷➸❁❄ó✝❈✬ú ❈❖ú✡➁✪ó❋❃✬➁✪ÿ➵ñ▼ð✡ñ❖➁➲❈✬ús➁✥ô❍ó❋ï♥ï✧ó✵û❏✿♥❇sþ➴ò✫ó❋ð✡❇✡❀sñ➡ó❋❇➉❈❖ús➁ùñ❖✿✁■✴➁✥ó❋ô❝❈❖ús➁
➀➂ó❆❇✖è✡✿✚➀❸❈❏ñ❧➁✪❈③ô❍ó❋❃➫✿✧❇✩➀➂ó❋ÿùø✡✻✝❈❖✿♥òsï♥➁✼ñ❖øsï✧✿✧❈✬ñ✴÷❾✥➅ús➁▼✿✧❇✡❀s✿♥➀✪➁✴ñ✄✂☛✻❋❇✡❀ù❈❖ú✡➁▼➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇❵➀➂ó❆ÿ➜❷
øsï♥➁✌☎⑧✿❲❈✬✿✧➁◗ñ✆✂sô❍ó❋❃✲✻✝ï♥ï☞ó❋ô✖❈❖ú✡➁➸ñ❧øsï♥✿✧❈✲ÿõ➁✪❈❖úsó⑧❀sñ❿✻✝❃✬➁▼ñ❖ðsÿùÿ➵✻✝❃✬✿♥ñ❖➁✴❀❂✿✧❇ì❈✟✻✝òsï♥➁ ✑ ÷

③⑤④❨⑥✞⑥⑧⑦➇➦q⑩❩❶❉⑩➁❷ ❊✹✜❱➑✹❰✉➑➊ü✉➑✎✣❳✱✎➷♦➱❱➴❪➬✎➴t➐✉➱❀❯ ❧ ➮❍Ü✉✭❧➘✂✼❤✭✆➱✆➮✟✭➜➬◆❊✈✦❸✭❧➘✂❇✤❃❁➮❲❃➅✱➔➮➯❲❩❣✜✸✷➓❰þ✱➔➴❪❐④➥é❣➯ü✶✷❻✣❃➮❲❃P➱✆➴
➤ ✜➑➤✁➤ ❰▼➤❏➤ ü③➤✁➤ ✣➜➤✜↔✵❴♦➤ ❲❱➤✎r❞✡✠❵✌❴♦➤ ➥③➤✎r❞✡✠❵↕↔❞ó❊r ➸ ⑦

❹❝➷❶➬✄➬◆❊❀●➠⑨❝ð⑧❈❻❺❊❣é➤ ❰➑➤⑧✻✝❇✩❀ ö ❣ ➤ ✣➜➤❜÷➓✥➅ús➁✴❇
➤ ✜❻➤❏➤ ❰➑➤❏➤ ü❊➤❏➤ ✣➜➤✼❣➋❴❶➤ ❲➜➤✎r➏❺❪❵❲❺✻❴♦➤ ➥③➤✎r ö ❵ ö ⑦ ❴ ✑ ➸ ❵



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✡✖❼
➮❿ñ❖✿✧❇✡þ ñ❧❈❖❃✟✻✝✿♥þ❋ú☛❈❖ô❍ó❋❃✬û❄✻❋❃✬❀ ➀✪✻❋ï♥➀✪ðsï♥ð✡ñõû➫➁➻➀✪✻❋❇ ñ❖úsó✵û ❈❖ú✡✻✝❈✘❴❶➤ ❲➜➤✖rr❺✚❵❩❺❩↔ ❴♦➤ ❲❱➤Pr❳✡❙❵
✻✝❇✡❀❳❴♦➤ ➥③➤Pr ö ❵ ö ↔➌❴♦➤ ➥③➤Pr❩✡❙❵❧✂❄þ❋✿♥✽✏✿✧❇sþ✘❈❖ú✡➁❚�✡❃✬ñ❧❈➵✿✧❇✡➁✄➣☛ð✡✻✝ï♥✿✧❈➋❅❋÷◗❋só❆❃ù❈❖ús➁ ñ❖➁✴➀✪ó❋❇✡❀✔✂
øsð⑧❈ ➪ ❣ ❴♦➤ ➥③➤❪r➋✡❙❵➴ñ❖ó✸❈✬ú✡✻✵❈✫➤ ❲❱➤❪r➋✡❞❣ óÖr ✑ r ➪ ✻✝❇✡❀é❴❶➤ ❲➜➤✚r➋✡✠❵✌❴♦➤ ➥③➤✚r
✡✠❵➓❣➋❴✱ó❚r ✑ r ➪ ❵ ➪ ÷➓✥➅ús➁➡ÿù✿✧❇s✿♥ÿ➲ð✡ÿ❒ó❚r ➸ ✿✚ñ➅ó❋ò⑧❈✟✻✝✿♥❇s➁✴❀ìû❏ús➁✴❇ ➪ ❣❳✡❆÷

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩❩❶❉⑩ ✺✛➱✆➮➅÷❢✼✳➱✵✱✸✭✆➱ ❧ ✱➔➷✧✱✎➮✥✫✭➬✎➴➏✿➚➱❀✫❂❁❄❃✜➮✥✫ ➴❅❁✇➬➔➴④✦❍● ➂ ➬✎➷②✱➔➴→Ü✹✭ ❧ ✯❂✫ ➮✚❲❱➤ ➥✿➚➱✻❃✂✱✎Û✎➱
➻ ÿ ❴✭❲❱➤ ➥❱❵❝Ù❉➻ âÿ ❴✭❲❱➤ ➥❱❵✈ÙÖ➻➋❬ÿ ❴✞❲➜➤ ➥➜❵❝Ù❞➻ ❫ÿ ❴✞❲➜➤ ➥➜❵✌⑦

➆④➱✆➴q❇✳➱✈➮❲❃P➱➨✭✆➱✌➮➯➬❋❊✆✁✈➘✖➴✚➱❀❯☞✱✎➴♣✭ ❧ ✯➧✫ ➮✘✭✞✫✮✭➸❇✳➬✎➴✾➮❡✱➎✫ ➴❪➱✳❐✹✿✎✫ ➮❲❃❉✫ ➴▼➮❲❃P➱➨✭✆➱✌➮➯➬❋❊↕➷❶➱✘P➓➴❪➱✳❐☎✁➛➘✖➴❪➱❈➐❯✉✱➔➴▲✭ ❧ ✯➧✫ ➮✟✭♣✿➒❃❨✫✟❇☛❃▲✫✮✭❆❇✳➬✎➴✾➮❡✱➎✫ ➴❪➱✳❐★✿✎✫ ➮❩❃❨✫ ➴❞➮❲❃P➱✠✭✆➱✆➮❄➬◆❊✠❇❀✯❏➱☛✱➔➴▲✭ ❧ ✯➧✫ ➮✟✭♣✿➒❃❨✫✟❇☛❃❍✫✮✭❆❇✳➬➔➴✂➐
➮❡✱➎✫ ➴❪➱✳❐✠✿✎✫ ➮❩❃❨✫ ➴●➮❲❃P➱❣✭✌➱✆➮↕➬◆❊✹✭❧➮❡✱➉✼❀✯❏➱✸✭ ❧ ✯❂✫ ➮✟✭❈●

❹❝➷❶➬✄➬◆❊❀● ✥➅ús➁❂✿✧❇✡➁✄➣☛ð✡✻✝ï♥✿✧❈❖✿♥➁✴ñ➜➻ ÿ ❴✞❲➜➤ ➥➜❵▼ÙÑ➻ âÿ ❴✞❲➜➤ ➥➜❵❊Ù❃➻ ❬ÿ ❴✞❲➜➤ ➥➜❵➸ô❍ó❋ï♥ï✧ó✵û ô❍❃✬ó❋ÿ
❈❖ús➁✼ó❋ò✡ñ❖➁✪❃✬✽✵✻✵❈✬✿✧ó❆❇➲❈✬ú✡✻✵❈➨✡▼Ù✙✡ ♣ ✿✧ÿùøsï♥✿✧➁◗ñ③✻✾✽✏ÿù✿✧❇②❴ ö ❴✭❲❱➤ ➥❱❵❧❬☛✡→❵✈Ù ✻✾✽✏ÿù✿♥❇✛❴ ö ❴✞❲➜➤ ➥➜❵❧❬✤✡ ♣ ❵❸÷
ß➫úsó✏ó❆ñ❖➁➓❇só❋❇P❷❫➁✴ÿõøs❈➋❅ ✻❋❇✡❀ ❀⑧✿♥ñ❩ö➋ó❋✿♥❇☛❈❂ñ❖ðsò✡ñ❖➁➂❈✬ñ✢✜❝❬✳❰➓❬☛ü➚❬❤✣ ñ❧ð✡➀✟ú ❈✬ú✡✻✵❈③❲➡❣➄✜✸✷❾❰❻✂
➥é❣➯ü✶✷❻✣✧✂✩✻✝❇✡❀❊➻ ❫◗ ❴✭❲➜➤ ➥➜❵Ú❣ ÷➛❴✥✜❢❰▼➤ ü✶✣❛❵❸÷➓✥➅ús➁✴❇

➻ ❬ÿ ❴✭❲❱➤ ➥❱❵❞❣ ✻✾✽✏ÿù✿✧❇②❴ ö ❴✭❲❱➤ ➥❱❵❧❬✄❴♦➤ ❲❱➤➔rÝ✡❙❵✌❴❶➤ ➥❊➤✎rÖ✡❙❵✉❵ ❴ ✑ ❿✜❵
Ù ✻✾✽✏ÿù✿✧❇②❴ ö ❴✭❲❱➤ ➥❱❵❧❬✠➤ ✜❻➤❏➤ ❰③➤❏➤ ü③➤✁➤ ✣④➤❏➤ ❵ ❴ ✑ ø ❵
Ù ÷➛❴✥✜❢❰▼➤ ü✶✣❛❵ ❴ ✑ ✛❘❵
❣Ò➻ ❫◗ ❴✭❲❱➤ ➥❱❵❧⑦ ❴ ✑ ✩✼❵

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩❂⑨t⑩ ✺✻➱✆➮✎÷✽✼✳➱♣✱❆✭✆➱ ❧ ✱➔➷✧✱✎➮✥✫✭➬✎➴▲✿➚➱❀✫❂❁❄❃✜➮✥✫ ➴❅❁❅●✬❑▼❃P➱✉✭✆➱✆➮✟✭❻➬❋❊✝✁✈➘✖➴✚➱❀❯☞✱✎➴✭ ❧ ✯➧✫ ➮✘✭✤➑④➷❶➱✘P➓➴❪➱✳❐✞✁➛➘✖➴❪➱❈❯✉✱➔➴❍✭ ❧ ✯➧✫ ➮✟✭✤➑❱❇❈✯✁➱✤✱✎➴✙✭ ❧ ✯❂✫ ➮✟✭✤➑❱✱✎➴✚❐✇✭❧➮❡✱➉✼❀✯✁➱✢✭ ❧ ✯➧✫ ➮✘✭③➬❋❊❱÷❪✱➔➷❶➱✦✱✰✯❩✯❇✳➬✰❯ ❧ ✱➔➮✘✫✟✼❈✯✁➱☞❇✳➬✰✯❩✯✁➱✤❇✆➮✘✫✭➬➔➴➅✭➜➬◆❊✻✭ ❧ ✯➧✫ ➮✘✭❀●
❹❝➷❶➬✄➬◆❊❀● üý➁➲ø✡❃❖ó✵✽❆➁➡❈❖ú✡✻✝❈❿❈❖ú✡➁õñ❖➁➂❈▼ó✝ô③ñ❧❈✬✻✝ò✡ï✧➁➲ñ❖øsï♥✿❲❈✟ñ❿✿✚ñ▼➀➂ó❋ÿùø✡✻✝❈❖✿♥òsï♥➁❋÷❛✥➅ú✡➁➲ó✝❈✬ús➁✪❃

➀➂ó❆ÿõø✩✻✵❈❖✿♥òs✿♥ï✧✿✧❈➋❅➴❃✬➁✴ñ❖ðsï✧❈✬ñ❄ô❍ó❆ï✧ï♥ó✵û ô❍❃✬ó❋ÿ❒✥➅ú✡➁✪ó❋❃✬➁✪ÿ ➸ ÷❏✡❋÷➌✖➁➂❈➛❲➜➤ ➥ ò✩➁➡✻✥ñ❧❈✬✻❋òsï♥➁▼ñ❖øsï♥✿❲❈❏✻✝❇✡❀➴ï✧➁✪❈✈➒❻➤ ó ò✫➁✦✻➲ñ❖øsï♥✿❲❈❏✿♥❇✡➀➂ó❆ÿõø✩✻✵❈❖✿♥òsï♥➁❿û❏✿✧❈❖ú❚❲➜➤ ➥❵÷
⑨❝ð⑧❈✻✜❀❣ ❲✫þ❊➒❱✂✾❰ ❣ ❲✫þ❆ó❁✂➅ü➋❣➽➥➽þ③➒❱✂t✣➽❣ ➥➽þ✠ó ÷➚Þ✏✿✧❇✩➀➂➁✧❲➜➤ ➥ ✻✝❇✡❀❚➒❻➤ ó
✻✝❃✬➁➡✿✧❇✡➀✪ó❋ÿùø✡✻✝❈❖✿♥òsï✧➁✤✂q✜❱✂→❰➑✂✂ü❻✂✡✻❋❇✡❀✪✣✷✻✝❃✬➁✼❇só❆❇✖❷❨➁✪ÿùø⑧❈➋❅❋÷➓✥➅ú✡➁✪❇
➻ ❫ÿ ❴✭❲➜➤ ➥➜❵✻➹s➻ ❫ÿ ❴✞➒❻➤ ó▼❵ Ù ÷➉❴❡✜✧❰▼➤ ü✶✣❛❵②➹ ÷➉❴✥✜✹ü▼➤ ❰❱✣❛❵

❣ ➪✌ ❫ ✌➓✌ ❴ ✌➓✌ � ✌➓✌ ❵ ✌t✏❘ ✕ ❫ ✏ ❙❈❴ ✏✒ ✕ � ✏✔✖✕ ❵
✟ ÷➉❴✱õ❪➏✚➤ û❨✁❘❵✔➹♦÷➉❴✱õ❪û②➤ ➏❉✁❘❵✡✠

Ù ✍

✻✝❇✡❀➵ñ❖ó❢➻ ❫ÿ ❴✭❲❱➤ ➥❱❵✈❜Ö✍➸✿✧ÿùøsï♥✿✧➁◗ñ➚➻ ❫ÿ ❴✞➒❻➤ ó▼❵✞➔Ý✍s÷✹➆❨❈③ô❍ó❆ï✧ï♥ó✵û✲ñ➦❈✬ú✡✻✵❈➫❈❖ús➁▼ñ❧➁✪❈③ó✝ô✖ñ❧❈✬✻❋òsï♥➁
ñ❧ø✡ï✧✿✧❈✬ñ❏✿✚ñ✲➀✪ó❋ÿùø✡✻✵❈✬✿✧ò✡ï✧➁❆÷



✑ ✍ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

✥➅ú✡➁❂❃✬➁✪ï✚✻✵❈✬✿✧ó❆❇✡ñ❧ú✡✿✧ø✸ò✫➁➂❈➋û❄➁✪➁✴❇✱❈❖ú✡➁➴❈✬❃❖➁✴➁❂➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✱ÿõ➁✪❈❖úsó⑧❀sñõø✡✻❋❃✬✻❋ï✧ï♥➁✪ï✚ñ✦❈✬ú✡✻✵❈
ô❍ó❋❃❿❈❖ús➁➲➀✪ï✧ð✩ñ➋❈✬➁✪❃✬✿✧❇sþ➵ÿù➁✪❈❖úsó⑧❀sñ✴÷✈✥➅ús➁➲❁❄ðs❇s➁✴ÿù✻❋❇ ñ❧ø✡ï✧✿✧❈❿ÿù➁➂❈✬úsó⑧❀➻✿♥ñ❛➣❆ð✡✿❲❈✬➁➲➀➂ó❆❇✡ñ❧➁✴❃❖✽✵✻➔❷
❈❖✿♥✽❋➁❆÷➚❋só❆❃➛❲➜➤ ➥ ❈❖ó➵ò✫➁➸✻õ❁❄ðs❇✡➁✪ÿ➵✻✝❇➓ñ❖øsï✧✿✧❈✲ó✝ô➒÷ û❄➁➡ÿ➲ð✡ñ❧❈✲ú✡✻✾✽❆➁✵÷➉❴✞♥✜♥ ♣ ➤ ➈✌➈ ♣ ❵✈❜❞✍✥ô❍ó❋❃
✻✝ï♥ï✻♥✜♥ ♣ ➤ ➈✌➈ ♣ ① ö ❴✞❲➜➤ ➥➜❵➂÷➉✥➅ús➁➸❃✬➁✌�✡❇✡➁✴❀➓❁❄ðs❇s➁✴ÿù✻❋❇➓✿✧❇✩❀⑧➁✌☎ ✻✝ï♥ï♥ó✵û✲ñ❝ó❁r ➸ ➣❆ð✩✻✝❃❖❈❖➁➂❈✟ñ❏✿♥❇ö ❴✭❲❱➤ ➥❱❵❏❈✬ó➴ú✡✻✾✽❆➁✦❇s➁✪þ☛✻✵❈❖✿♥✽❋➁✥✻✾✽❋➁✪❃✟✻✝þ❆➁✼û❄➁✪✿♥þ❋ú☛❈◗÷➉✥➅ús➁➲➀✪ï✧➁◗✻✝❇➉ñ❖øsï♥✿❲❈❿ÿù➁✪❈❖úsó⑧❀ ✿♥❇✡➀✪ó❋❃✬ø✩ó✼❷
❃✬✻✝❈❖➁◗ñ❏❈❖ú✡➁➲ñ❧✿❏■✪➁➲ó✝ô➓❲✒✻❋❇✡❀❁➥ ✿♥❇❆❈✬ó➵❈❖ú✡➁✥➀✪✻❋ï♥➀✪ðsï✚✻✵❈❖✿♥ó❋❇➻ó❋ô☎❈✬ús➁➲✿♥❇✡❀⑧➁✆☎❣÷➛✥➅ús➁➸ò✫ó❋ðs❇✡❀➻ó❋ô
❴❶➤ ❲➜➤✤r◗✡✠❵✆❴❶➤ ➥❊➤✼r◗✡✠❵❿ñ➋❈✬➁✪ÿ➵ñ✲ô❍❃✬ó❋ÿ➚➌✖➁✪ÿùÿ➵✻ ➸ ÷❏✡❋÷➉➆❨ô③û➫➁➲✿✧❇✡➀✪❃❖➁◗✻❋ñ❖➁✦❈❖ú✡✿♥ñ✼ò✩ó❆ðs❇✡❀ ❈❖ús➁✴❇
➀➂ï♥➁✴✻❋❇➻ñ❖øsï♥✿❲❈✟ñ➅û❏✿✧ï♥ï☞❇sóùï♥ó❋❇sþ❆➁✪❃❏❇s➁◗➀➂➁◗ñ❖ñ✬✻✝❃✬✿✧ï♥❅ùò✩➁➸ñ❧❈✬✻❋òsï♥➁➸ñ❧øsï♥✿✧❈✬ñ❏✻✝❇✩❀✔✂✡✻❋❀✡❀⑧✿❲❈✬✿✧ó❆❇✡✻✝ï♥ï♥❅✼✂⑧û❄➁
ï✧ó☛ñ❧➁▼❈✬ús➁✦þ❋ð✡✻❋❃✬✻❋❇☛❈❖➁✪➁▼ó✝ô➦➀➂ó❆ÿùø✡✻✵❈✬✿✧òs✿♥ï♥✿❲❈➋❅➵ô❍ó❆❃➅❈❖ús➁➸ñ❖øsï♥✿❲❈✟ñ✲ñ❖➁✪ï♥➁✴➀❸❈✬➁✴❀❣÷
✥➅ú✡➁➻ñ❧❈✬✻❋òsï♥➁➻ñ❖øsï♥✿❲❈➵ÿù➁➂❈✬úsó⑧❀ ✻❋ï✧ï♥ó✵û✲ñ➲❈❖ús➁➻ï✚✻✝❃✬þ❋➁✴ñ❧❈✥❇✏ðsÿ✥ò✩➁✴❃➵ó✝ô▼❇s➁✪þ☛✻✵❈❖✿♥✽❋➁❂û➫➁✴✿✧þ❆ú☛❈

➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ✴÷ î ñ❧øsï♥✿✧❈❛❲➜➤ ➥ ➀✴✻✝❇➓ú✡✻✾✽❆➁✸↔✇❴✭ó➼ã❙❵✲❇s➁✪þ☛✻✵❈✬✿✧✽❆➁✦û➫➁✴✿✧þ❆ú❆❈➉➣☛ð✡✻❋❃❧❈✬➁➂❈✟ñ❏✿✧❇ ö ❴✞❲➜➤ ➥➜❵
✻✝❇✡❀ù❅❆➁➂❈③ñ❧❈❖✿♥ï✧ï✡ò✩➁❿ñ❧❈✬✻❋òsï♥➁❋÷➯✥➅ús➁✪❃✬➁❏û❏✿✧ï♥ï✡✻❋ï✧û➅✻✾❅⑧ñ✆✂✵úsó✵û❄➁✪✽❆➁✪❃✠✂✵ò✩➁❿ÿõó❆❃❖➁➅ø✫ó❆ñ❖✿❲❈✬✿✧✽❆➁❏û➫➁✴✿✧þ❆ú☛❈
➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ✳✿♥❇ ö ❴✞❲➜➤ ➥➜❵☎❈✬ú✡✻✝❇ù❇s➁✴þ❆✻✝❈❖✿♥✽❋➁➅ó❋❇s➁◗ñ✪÷✹✥➅ús➁✲ñ❧❈✬✻✝ò✡✿✧ï♥✿❲❈➋❅✥✿✧❇✩❀⑧➁✌☎õó✝ô✫✻✦ñ❖øsï♥✿❲❈③➀✴✻✝❇õò✩➁
✽✏✿✧➁✴û➫➁◗❀❵✻❋ñ③❈❖ús➁✼ÿù➁✴✻❋ñ❖ðs❃✬➁❿ó❋ô✖ñ❧ðsø✡ø✩ó❆❃❧❈➫ô❍ó❋❃➅✻➸ñ❧ø✡ï✧✿✧❈❝❲❱➤ ➥ ó❋❇➴➁✌☎s✻❋➀➂❈❖ï♥❅➲❈✬úsó❆ñ❖➁❛➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ
û❏✿❲❈✬ú➓û❏ús✿✚➀✟ú③❲❱➤ ➥ ✿✚ñ❏✿♥❇➻➀✪ó❋❇✖è✩✿♥➀➂❈➅û❏✿✧❈❖ú➓✻❋❇ì✿♥❇✡➀✪ó❋ÿùø✡✻✵❈✬✿✧ò✡ï✧➁✦ñ❖øsï✧✿✧❈❛➒❻➤ ó➓÷

➜☞ä✮➜☞ä ➝ ✯❙✽✾▲➚◆❘✯❙✰✄✩✞◆❘★✇✮P✸✹➞◗✺✼✽❪✸✹★✆✰✄✯❙✶✹✺➔✰✠✩✭✽❪✸◗✽✾✴➉➦➜✶✹✸✻◆✜✪✫✮→✸Ö★✄▲✹✬✞✩✱✰✠★
üý➁➓❇só✵û ô❍ó❆❃❖ÿ➵✻❋ï✧✿✚ñ❧➁❂❈❖ú✡➁➻➀✪ó❋❇s❇✡➁✴➀❸❈✬✿✧ó❆❇ ò✫➁➂❈➋û❄➁✪➁✴❇✢❈✬ús➁➓❁❄ðs❇s➁✪ÿ➵✻❋❇ ñ❖øsï♥✿❲❈➵ÿù➁➂❈✬úsó⑧❀

✻✝❇✡❀ î øs❃❖➁◗ñ❍ö❧✻❋❇➓➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ✪÷♠➌☞➁➂❈➉➟✥ò✫➁➲✻ù❀⑧✿♥ñ✬ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅➵ô❍ðs❇✡➀➂❈❖✿♥ó❋❇➓ó❆❇③✦✢÷➚✥➅ús➁ ➂ ✱✎➷❧➷❤✫✮✭❑✖➷☛✱✎➴➅✭❲❊✌➬➔➷❤❯ ó❋ô④➟✘û❏✿✧❈❖ú✯❃❖➁◗ñ❧ø✫➁✴➀➂❈❵❈❖ó✫tÑ①é✦ ✿♥ñ❵❈❖ús➁ýñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿✧❈➋❅✸ô❍ðs❇✡➀➂❈❖✿♥ó❋❇✵✿ ♠ ó❆❇✦➠r❉❯✠t②❡✦û❏✿❲❈✬ú

✿ ♠ ❴✭♥❪❬♦➈✆❵➓❣ ➪➶ ❴✭➟✖❴✞♥✾❬❶t❪❵✹➹✫➟✖❴❍➈❙❬✉t✚❵➯r❼➟✖❴✞♥❪❬♦➈✌❵❶❵ ❴ ✑ ➀❘❵

ô❍ó❋❃❿✻❋ï✧ï②♥❪❬✳➈➛①❚✦⑤r❉❯✠t②❡▼✟✁✡ ➸ ☞❨÷➓✥➅ús➁➡✿✧❇✏✽❆➁✪❃✟ñ❧➁➡ó✝ô✐❈❖ús➁❢❋✩✻✝❃✬❃❖✿✚ñ➫❈❖❃✟✻✝❇✡ñ❧ô❍ó❋❃✬ÿ ✿✚ñ➅þ❋✿♥✽❋➁✴❇❂ò✏❅

➟✖❴✭♥❪❬♦➈✆❵➓❣➽✿ ♠ ❴✞♥✾❬♦♥✖❵✛➹❉✿ ♠ ❴✞➈❙❬✳➈✌❵✹r ✑ ✿ ♠ ❴✭♥❪❬♦➈✆❵

ô❍ó❋❃❿✻❋ï✧ï②♥❪❬✳➈➛①❚✦⑤r❉❯✠t②❡✤✂✩✻✝❇✡❀③➟✖❴✭♥❪❬✉t✚❵➚❣✵✿ ♠ ❴✭♥❪❬❶♥✖❵➅✻❋ñ➅û❄➁✪ï♥ï✖✻❆ñ↕➟✖❴✭t✛❬❶t❪❵Ú❣ ✍s÷
✥➅ú✡➁➜❋✡✻❋❃❖❃✬✿✚ñ❏❈❖❃✟✻✝❇✩ñ➋ô❍ó❆❃❖ÿ ï✧✿♥❇P⑩⑧ñ✼❁❄ðs❇✡➁✪ÿ➵✻✝❇ ñ❖øsï♥✿❲❈✟ñ✼✻❋❇✡❀ î ø✡❃❖➁◗ñ❍ö❧✻❋❇ ➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ✪÷➛✥➅ú✡✿♥ñ

➀➂ó❆❇s❇s➁✴➀➂❈❖✿♥ó❋❇➵ï♥➁✴✻❆❀sñ✳❈❖ó➸❈❖ús➁▼ñ❧ðsø✡❃❖✿✚ñ❧✿♥❇sþ➸✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿù✿♥➀➅❃✬➁✴ñ❖ðsï✧❈➦❈❖ú✡✻✝❈❄❁❄ðs❇s➁✴ÿù✻❋❇➵ñ❧øsï♥✿✧❈✬ñ❝ó❋ô
✻➲❀⑧✿✚ñ✬ñ❧✿♥ÿù✿✧ï✚✻✝❃✬✿❲❈➋❅✥ô❍ðs❇✡➀➂❈❖✿♥ó❋❇➴➀✴✻✝❇❵ò✫➁✼➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈❖➁✴❀❵✿✧❇❆↔✇❴✭ó ↕ ❵➦❈❖✿♥ÿù➁✼✂✏➁✪✽❆➁✪❇ù❈❖ú✡ó❋ðsþ❆ú➵❈❖ús➁
❀⑧➁✌�✩❇s✿❲❈✬✿✧ó❆❇➓✻✝øsø✫➁✴✻❋❃✬ñ❄❈✬óõ✿♥ÿùøsï♥❅❵❈❖ú✩✻✵❈✵↔✇❴✱ó➼ã✎❵❝➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ➅❇s➁✴➁✴❀❂❈❖óùò✫➁➸➀➂ó❆❇✡ñ❧✿✚❀⑧➁✴❃❖➁◗❀❣÷

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩➧➦q⑩ ■ ✫ ❏✇✺✛➱✆➮❛➟✚✼✳➱★✱Ö❐✰✫✮✭✤✭❤✫❩❯❱✫❩✯✲✱✎➷❤✫ ➮❍Ü➏❊✳➘✖➴▼❇✌➮✥✫✭➬✎➴✵➬➔➴❉✦ ✱➔➴❪❐♦✯❏➱✌➮✧✿ ♠❐✼➱✆➴❪➬➔➮✷➱➜➮❲❃P➱ ➂ ✱➔➷❧➷❤✫✮✭❄➮❍➷✧✱➔➴➅✭❲❊✌➬✎➷❤❯ã➬❋❊➛➟✢✿✎✫ ➮❲❃✘➷❶➱❤✭ ❧ ➱✤❇✌➮Ú➮✷➬❢t✘①❚✦❍● ➂ ➬✎➷❥✱➔➴→Ü✉✭ ❧ ✯❂✫ ➮➯❲❱➤ ➥
➬❋❊✈✦✬➑

➻②➼✤❴✭❲➜➤ ➥➜❵Ú❣ ÿù✿♥❇➤ ❯✎❭❍❫☞☛❙❴✞❲❛❵❝✝✤➈❛①❚➥❻❡➐❣ ÿõ✿♥❇
✐
❯➔❭❍❫☞✌✜❴✭➥❱❵❝✝✼♥➑①❁❲❢❡✤⑦ ❴ ✑ ❼❘❵

❑▼❃✜➘❉✭➛❲➜➤ ➥➚✫✮✭❣✱✍✁➛➘✖➴❪➱❈❯✉✱➔➴✢✭ ❧ ✯➧✫ ➮▼❊✌➬✎➷✈➟➏✫ ❊❣✱✎➴❪❐❊➬✎➴t✯❤Ü✉✫ ❊✈❲✽✫✮✭✸✱➔➴ ❦♠❧ ➷❶➱❀✭✮♥❈✱➔➴➇❇❈✯❤➘❉✭❧➮✷➱✆➷
➬❋❊✧✿ ➤ ❊✌➬✎➷☞✱✰✯❩✯②➈➜①Ð➥♣➑➸✱➔➴❪❐③➮❲❃❉✫✮✭✹❃→➬✰✯✁❐✰✭✶✫ ❊✉✱✎➴✚❐❁➬✎➴t✯❤Ü❆✫ ❊➐➥ý✫✮✭✉✱➔➴ ❦⑧❧ ➷❶➱❀✭❩♥❈✱✎➴▲❇❈✯❤➘❉✭❧➮✷➱✆➷
➬❋❊❄✿ ✐ ❊✌➬✎➷☞✱✰✯❩✯✔♥❁①❼❲❱● ■ ✫❩✫ ❏✬❑q❃→➱✎✁✈➘✖➴✚➱❀❯☞✱✎➴➇✭ ❧ ✯❂✫ ➮✟✭❻➬❋❊✉✱③❐➎✫✮✭✤✭✤✫❩❯✶✫❩✯✾✱➔➷❤✫ ➮✞Ü✸❊✳➘✖➴q❇✆➮✥✫✭➬✎➴❁➟❇✤✱✎➴➇✼✳➱✶❇✳➬✰❯ ❧ ➘✖➮✃➱♦❐♣✫ ➴➏↔✇❴✭ó ↕ ❵❢➮✘✫❩❯❻➱✖●



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✑ ✡

❹❝➷❶➬✄➬◆❊❀●➺➎Ú➣✩÷✤❴ ✑ ❼❘❵✩ô❍ó❋ï♥ï✧ó✵û✲ñ☞✿✧ÿùÿù➁✴❀⑧✿✚✻✵❈✬➁✪ï♥❅✲ô❍❃✬ó❋ÿ✯❈❖ús➁❝ó❆ò✡ñ❖➁✪❃✬✽✾✻✝❈❖✿♥ó❋❇✼❈❖ú✡✻✝❈ ø ➼✼❴✭♥✖➈➔➤ ➙❧t❪❵➚❣✆ ❫✡✏P❴✭♥✖➈➔➤ ➙✆❵➂÷
üý➁❄❇só✵û✱øs❃✬ó✵✽❋➁➉❴❩✿✧✿ ❵❸÷➯❋só❆❃✐➁◗✻❋➀✟ú❢t✘①③✦ û❄➁➫➀✪ó❋ÿùøsð⑧❈✬➁③❈✬ús➁↕❋✩✻✝❃✬❃❖✿✚ñ❣❈✬❃✬✻❋❇✡ñ❧ô❍ó❋❃✬ÿ❳✿ ♠ ó❋ô➟➸û❏✿✧❈❖ú➻❃✬➁✴ñ❖ø✩➁◗➀❸❈❄❈❖ó✇ts❴✘↔✇❴✱ó ➶ ❵③❈❖✿♥ÿù➁✼ô❍ó❆❃❏➁✴✻❆➀✟ú▼t❪❵❄✻❋❇✡❀❵❈✬ús➁✪❇➻➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈❄❈❖ús➁ î øs❃❖➁◗ñ⑧❷

ö❧✻✝❇➻➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ➫ó✝ô✹✿ ♠ ✿✧❇✢↔✇❴✱ó ➶ ❵➦❈✬✿✧ÿù➁❻❴❍ß➫ó❆❃❖ó❆ï✧ï✚✻✝❃✬❅ ✑ ÷✁✡❙❵❸÷✎➌☞➁✪❈ Õ ♠ ò✫➁❿❈✬ús➁➡ñ❧➁✪❈❄ó❋ô✐ñ❧ø✡ï✧✿✧❈✬ñ❲➜➤✁❴✱✦ r✫❲➐❵✲ñ❖ð✡➀✟ú➻❈❖ú✩✻✵❈➐❲✒✿♥ñ▼✻❵ñ❧❈❖❃✬ó❋❇sþ❂➀➂ï♥ð✡ñ➋❈✬➁✪❃✼ó✝ô➚✿ ♠ ÷➉✥➅ús➁õ❁❄ðs❇s➁✪ÿ➵✻❋❇➉ñ❧ø✡ï✧✿✧❈✬ñ✼✻✝❃✬➁➁✌☎s✻❋➀➂❈❖ï♥❅❵❈✬úsó❆ñ❖➁✦ñ❧øsï♥✿✧❈✬ñ✲✻❋øsø✩➁◗✻✝❃✬✿✧❇✡þõ✿♥❇➓✻✝ï♥ï❣ó✝ô☎❈❖ús➁➸ñ❖➁➂❈✟ñ❏ó✝ô➦ñ❖øsï✧✿✧❈✬ñ Õ ♠ ✂✡✻❋❇✡❀❂❈❖ús➁➸➀✪ó❋❃✬❃❖➁✆❷ñ❧ø✫ó❋❇✩❀⑧✿✧❇✡þ➲ñ❧➁✴ø✡✻✝❃✟✻✵❈✬✿✧ó❆❇✥✿♥❇✡❀⑧✿✚➀➂➁◗ñ③✻❋❃❖➁❏þ❆✿✧✽❆➁✪❇ùò✏❅✥➁✠➣✩÷❪❴ ✑ ❼✤❵✟÷✎✴✲➁✴❇✡➀➂➁✲❈❖ús➁✲➁✴❇☛❈❖✿♥❃❖➁❿➀✪ó❋ÿùøsð✖❷
❈✬✻✝❈❖✿♥ó❋❇ì❈✬✻✼⑩❋➁✴ñ➸↔✇❴✭ó ↕ ❵③❈✬✿✧ÿù➁❋÷
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✿✧❇✩❀⑧✿♥➀✪➁✴ñ✲➀✴✻✝❇ìò✩➁➡ô❍ó❆ðs❇✡❀ì✿♥❇ î øsø✫➁✪❇✡❀⑧✿✁☎s❴❩✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿÑ❿❘❵❸÷

③⑤④❨⑥✞⑥⑧⑦➇➦q⑩❂⑨t⑩ ✺✻➱✌➮✈➍á✼✳➱✦✱➔➴Ð✦✬➐✃➮❍➷❶➱✳➱✓● ➾ ➱✢❇☛✱➔➴✚❇♦➬➎❯ ❧ ➘✖➮✷➱➜➻②âÿ ❴✭❲❱➤ ➥❱❵✹❊✌➬✎➷③➱✤✱➉❇☛❃✭ ❧ ✯➧✫ ➮❾❲➜➤ ➥❃①✘✿✧❺✾ù❲ß❡ñ✉✿❘❴✱➍➐❵✻✫ ➴❆↔✇❴✱ó➼ã✎❵✧➮✥✫❩❯✇➱✓●
❹❝➷❶➬✄➬◆❊❀● ü✘➁❏✻❋❀✡✻✝ø⑧❈☎❈❖ús➁✲✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿ øs❃✬➁✴ñ❖➁✪❇☛❈❖➁◗❀➲✿♥❇➲❈✬ús➁➅øs❃✬ó☛ó❋ô✡ó✝ô✔➀➂ó❆❃❖ó❆ï✧ï✚✻✝❃✬❅ ✑ ÷ ➸ ❈✬ó

➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ✴÷➦ü✘➁❄�✡❃✟ñ❧❈➅❃✬ó✏ó✝❈✈➍ ✻✝❈❿✻✝❇➻✻✝❃✬òs✿✧❈❖❃✟✻✝❃✬❅õ❇✡ó✏❀s➁❋÷➓❋só❆❃❏➁✴✻❆➀✟ú❂ø✡✻❋✿✧❃❏ó❋ô✐✽❆➁✪❃❖❈❖✿✚➀➂➁✴ñ❝õ
✻✝❇✡❀✇➏➲✿✧❇❻➍ ï✧➁✪❈⑧ù❻✟ õ✻❬❶➏✼☞sò✫➁❏❈✬ús➁❿ñ❖➁➂❈❝ó✝ô✔➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ➓♥✖➈➔➤ ➙✌Ø➸ñ❖ð✡➀✟úõ❈❖ú✩✻✵❈➦❈❖ú✡➁✲ø✡✻✵❈✬úùô❍❃❖ó❆ÿ➋♥
❈❖ó❄➙➦✿♥❇❆❈✬➁✪❃✟ñ❧➁◗➀❸❈✟ñ❣❈❖ú✡➁➫ø✡✻✝❈❖ú✦ô❍❃✬ó❋ÿ ➈☎❈✬ó❛Ø✼➁✌☎s✻❋➀➂❈❖ï♥❅✦✻✝ï♥ó❋❇sþ❏❈✬ús➁③ø✩✻✵❈❖ú➲ô❍❃❖ó❆ÿ❳õ➸❈❖ó➐➏✫÷✻✥➅ús➁✴❇
➁✪✽❆➁✪❃✬❅❱➣☛ð✡✻❋❃❧❈✬➁➂❈↕♥✖➈➔➤ ➙✌Ø✥✿✧❇✩❀⑧ð✡➀➂➁◗❀❵ò✏❅✥❈❖ús➁▼øs❃✬➁✪✽✏✿✧ó❆ð✡ñ❖ï✧❅õðs❇s❃✬ó✏ó✝❈❖➁◗❀ù❈❖❃✬➁✪➁✼➀➂ó❋❃✬❃✬➁✴ñ❖ø✩ó❆❇✡❀⑧✿♥❇sþ
❈❖ó❻➍ ✻✝øsø✫➁✴✻❋❃✬ñ➅✿♥❇➻➁✌☎s✻❋➀➂❈❖ï♥❅❵❈➋û❄ó➵ñ❧➁✪❈✬ñ②ù❻✟ õ✹❬✉➏✤☞➚❴❍❇só❋❈❖✿♥❇sþ✠ù❻✟ õ✻❬❶➏✼☞✚❣❢ù❻✟ ➏✾❬❶õ→☞✱❵❧✂✩✻✝❇✡❀ìû❄➁
➀✪✻❋❇➻➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈❄❈✬ús➁✴ñ❖➁✦ñ❧➁✪❈✬ñ❏✿♥❇✪↔✇❴✱ó➼ã✎❵➫❈❖✿♥ÿù➁❋÷➌✖➁➂❈✻ù➑✟ õ✹❬✉➏❪❬✉ó③r ➸ ☞✐❀⑧➁✴❇só✝❈✬➁✦❈❖ú✡➁❢ó❊r ➸ ÿù✿♥❇s✿✧ÿ✥ðsÿ û➫➁✴✿✧þ❆ú❆❈➉➣☛ð✡✻❋❃❧❈✬➁➂❈✟ñ❏✿✧❇★ù➑✟ õ✹❬✉➏✤☞❫÷➮❿ñ❖✿✧❇✡þ ❈❖ú✡➁❂✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿ ó✝ô❢✟ ➀✎☞❄û➫➁ì➀✪✻✝❇✸➀✪ó❋ÿùøsð⑧❈✬➁❆ù❻✟ õ✻❬❶➏✾❬❶ó●r ➸ ☞➫ô❍❃❖ó❆ÿ ù❻✟ õ✹❬✉➏✤☞➫✿♥❇↔✇❴❶➤ ù❻✟ õ✻❬❶➏✼☞⑧➤ ❵✦❈❖✿♥ÿù➁❋÷✢✴✲➁✪❇✩➀➂➁❵û❄➁❵➀✪✻❋❇ ➀✪ó❋ÿùøsð⑧❈✬➁➴✻✝ï♥ï❝ó❋ô❄❈✬ús➁➴ñ❖➁➂❈✟ñ❥ù❻✟ õ✻❬❶➏✾❬❶ó●r ➸ ☞③✿♥❇↔✇❴✱ó ã ❵➫❈❖✿♥ÿù➁❋÷
❋✡ó❋❃❏➁◗✻❋➀✟úìø✡✻✝✿♥❃❢❴✱õ✹❬✉➏✖❵➅ñ❧ð✩➀✟ú➴❈✬ú✡✻✵❈➛➏❁➊✬ õ➓û❄➁➸❀⑧➁✌�✡❇✡➁

ù✶Ò➚✟ õ✻❬❶➏✼☞✚❣ Ó
❘❙❦ Ò Ô ❘

ù➑✟ õ✚♣✭❬❶➏✼☞

✻✝❇✡❀ýï♥➁➂❈✶ù Ò ✟ õ✹❬✉➏❪❬✉óÐr ➸ ☞➫❀s➁✪❇só❋❈❖➁ù❈❖ú✡➁❵ñ❧➁✪❈➸ó✝ô❝ó●r ➸ ÿù✿♥❇s✿✧ÿ✥ðsÿ û➫➁✴✿✧þ❆ú❆❈❢➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ
✿✧❇★ù✉Ò➚✟ õ✹❬✉➏✤☞❫÷③ü✘➁➲➀✴✻✝❇➓➀➂ó❆ÿùøsð⑧❈❖➁➡❈✬ús➁➸ñ❖➁➂❈✬ñ✵ù✶ÒÚ✟ õ✻❬❶➏✾❬❶ó❊r ➸ ☞✖ð✩ñ❧✿♥❇sþùó❋❇s➁✦ø✫ó❆ñ❧❈✉❷❨ó❋❃✟❀⑧➁✴❃
❈❖❃✟✻✾✽❋➁✴❃✬ñ✬✻✝ï☛ô❍ó❋❃③➁✴✻❋➀✟ú➵➀✟úsó❆✿♥➀✪➁➅ó✝ô✔➏✾✝➊➌☞➁✪❈➓õ ➪ ❬✉õ ➶ ❬✄⑦✆⑦✆⑦✆❬✉õ Ö ò✩➁✲❈❖ús➁❿➀✟ú✡✿✧ï✚❀⑧❃✬➁✪❇ùó✝ô✚õ✐÷➯✥➅ús➁✴❇ù✶ÒÚ✟ õ✻❬❶➏✾❬❶ó❊r ➸ ☞☞➁✠➣☛ð✡✻✝ï✚ñ❄❈❖ús➁➸ñ❖➁➂❈✲ó❋ô✻ó❚r ➸ ÿù✿♥❇s✿♥ÿ➲ðsÿ û➫➁✴✿✧þ❆ú❆❈➛➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ➅✿♥❇

ù❻✟ õ✹❬✉➏❪❬✉ó❊r ➸ ☞ ➥ ù Ò ✟ õ ➪ ❬✉➏❪❬✉ó③r ➸ ☞ ➥✇×❈×✖×✖➥ ù Ò ✟ õqÖ④❬✉➏❪❬✉ó③r ➸ ☞ ❴ ➸ ✍❘❵

❋só❆❃✲➁✴✻❆➀✟ú❊➏❵✿✧❈✲❈✟✻➔⑩❋➁◗ñ➸↔✇❴✱ó ➶ ❵➫❈❖✿♥ÿù➁➡❈❖ó❵➀➂ó❆ÿùøsð⑧❈❖➁➸✻❋ï✧ï✖ó✝ô☎❈❖ús➁◗ñ❧➁➸ñ❖➁➂❈✟ñ②ù✶Ò➚✟ õ✻❬❶➏✾❬❶ó③r ➸ ☞
ð✡ñ❖✿✧❇sþù✻✥ø✩ó☛ñ➋❈❶❷❫ó❆❃✬❀⑧➁✴❃❝❈✬❃✬✻✾✽❆➁✪❃✟ñ❖✻❋ï♣÷✹✥➅ús➁✪❃✬➁▼✻❋❃❖➁✹↔✇❴✱ó✛❵❄➀✟úsó❆✿♥➀✪➁✴ñ③ô❍ó❋❃❝➏➵ñ❧óõ➁✌☎✏❈❖❃✟✻❋➀➂❈❖✿♥❇sþ✥✻❋ï✧ï
ó✝ô☎❈❖ús➁➸ñ❖➁➂❈✟ñ➸ù✶ÒÚ✟ õ✻❬❶➏✾❬❶ó❊r ➸ ☞❣❈✟✻➔⑩❆➁✴ñ➸↔✇❴✱ó ↕ ❵➫❈❖✿♥ÿù➁❋÷
ô▼✿♥✽❋➁✴❇✸✻➓✽❋➁✴❃❧❈✬➁✌☎❼õ✻✂✳ï♥➁➂❈✉✜ ò✫➁❵❈✬ús➁➴ñ❖➁➂❈✥ó❋ô❏ï✧➁◗✻✾✽❋➁✴ñ▼❈✬ú✡✻✵❈ù✻✝❃✬➁❵❀⑧➁✴ñ✬➀➂➁✴❇✡❀⑧➁✴❇❆❈✟ñ➸ó❋ô❝õ

✻✝❇✡❀✘øsð⑧❈④❰❒❣➋✦ r❍✜ù÷④✥➅ús➁✪❇ ö ❴✥✜➑➤ ❰➜❵❛❣ Ú ❙✮✭ ❙✗❛✯ Ô ❘ ù✉ÒÚ✟ õ✹❬✉➏✤☞❝✻✝❇✡❀✘ñ❧ó❂❈❖ú✡➁❱ó❁r ➸
ÿù✿✧❇s✿♥ÿ➲ð✡ÿ û➫➁✴✿✧þ❆ú☛❈➯➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ✐✿♥❇ ö ❴❡✜❻➤ ❰➜❵✖✻❋❃❖➁➫❈❖ú✡➁Úó➛r ➸ ÿù✿✧❇✡✿✧ÿ✥ðsÿ û❄➁✪✿♥þ❋ú☛❈✹➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✑ ➸

✿✧❇

ù ❘ ❣ Ó
❙✗❛✯ Ô ❘

ù Ò ✟ õ✻❬❶➏✾❬❶ó❊r ➸ ☞✷⑦
✥➅ús➁➡❃❖➁✆�✡❇s➁◗❀➴❁❄ðs❇s➁✴ÿù✻❋❇➴✿♥❇✡❀⑧➁✆☎▼➻ â◗ ❴✥✜❻➤ ❰④❵➫➀✪✻❋❇❵❈❖ú✡➁✪❃✬➁➂ô❍ó❋❃✬➁▼ò✩➁✦➀➂ó❆ÿùøsð⑧❈❖➁◗❀❵✿♥❇✢↔✇❴✭ó ➶ ❵
❈❖✿♥ÿù➁❋÷➚✥➅ús➁➡➁✴❇❆❈✬✿✧❃✬➁➸➀➂ó❆ÿùøsð⑧❈✬✻✝❈❖✿♥ó❋❇❂❈✬✻✼⑩❋➁✴ñ➸↔✇❴✭ó ã ❵➫❈✬✿✧ÿù➁❆÷

➺ ❿▼➀➅❿➼➻✰➻❄⑦t➀✗➽❍➦q⑩❩❶❉⑩ ❑q❃→➱❱➷❶➱✘P➓➴❪➱✳❐★✁✈➘✖➴✚➱❀❯☞✱✎➴✇✭ ❧ ✯➧✫ ➮✘✭❱➬◆❊❥✱✠✭✌➱ ❧ ✱✎➷✧✱➔➮✘✫✭➬➔➴➇✿➚➱❈✫❂❁❄❃✜➮✥✫ ➴❅❁÷❭❇✤✱✎➴➇✼✳➱❱❇♦➬➔➴➅✭❧➮❍➷❧➘✂❇✌➮✃➱✳❐✉✫ ➴➏↔✇❴✭ó✪✫✠❵❢➮✘✫❩❯❻➱✖●
❹❝➷❶➬✄➬◆❊❀● ü✘➁➓ð✩ñ❧➁➓✻✝❇ ✿✧❈❖➁✴❃✬✻✝❈❖✿♥✽❋➁➻✻✝ï♥þ❋ó❋❃✬✿✧❈❖úsÿ❚✂③û❏ú✡ó❆ñ❖➁ìø✩ñ❧➁✴ð✡❀⑧ó⑧➀➂ó⑧❀⑧➁➻✿✚ñùþ❋✿♥✽❋➁✪❇ ✿♥❇

✻✝øsø✫➁✪❇✩❀⑧✿☛☎ ❴ î ï♥þ❋ó❋❃✬✿✧❈❖úsÿ ø ❵➂÷é×✼❃✬❀⑧➁✴❃➑✦ ✻✝❃✬òs✿✧❈❖❃✟✻✝❃✬✿✧ï♥❅✢✻❆ñ➑✦ ❣ ❯✄t ➪ ❬❶t ➶ ❬✆⑦✆⑦✄⑦✌❬✉tqÞ✚❡✤✂
øsð⑧❈❖❈❖✿♥❇sþ➑✦ ➡ ❣❳❯✠t ➪ ❬✉t ➶ ❬✆⑦✄⑦✆⑦✄❬✉t ➡ ❡▼ô❍ó❆❃✲➁✴✻❆➀✟ú✢✡③✝✾✡✧Ù✚✡③ÙÖó➦÷➫➌✖➁➂❈➸÷ ✌ ä✎å ❀⑧➁✴❇só✝❈✬➁➡❈❖ús➁
❃❖➁◗ñ➋❈✬❃❖✿✚➀❸❈✬✿✧ó❆❇ ó✝ô➨÷✷❈❖ó✘✦ ➡ ✻✝❇✩❀ ï✧➁✪❈❢ÿ ➡ ❀⑧➁✴❇só✝❈✬➁➵❈❖ús➁➴❃❖➁✆�✡❇s➁✴❀✱❁❄ðs❇✡➁✪ÿ➵✻✝❇✸ñ❖øsï♥✿❲❈✟ñ✦ô❍ó❋❃÷ ✌ ä✎å ÷➦üý➁➸➀➂ó❆ÿõø✡ð⑧❈❖➁➐ÿ ➶ ❀⑧✿♥❃✬➁✴➀❸❈✬ï✧❅❆÷⑨③ð⑧❈ � ❣➽t ➡ ➢ ➪ ÷❻➌✖➁➂❈↕ü ➡ ➢ ➪ ❀⑧➁✪❇só❋❈❖➁✼❈❖ús➁✦ñ❖➁➂❈➅ó✝ô✐ñ❧❈❖❃✬ó❋❇✡þ✥➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ❄ó✝ô✖❈❖ús➁▼✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇û➫➁✴✿✧þ❆ú☛❈❖✿♥❇sþ✇æ â ó❆❇❊✦ ➡ þ❋✿♥✽❋➁✴❇➴ò✏❅▼æ â ❴✭♥✖➈➔➤ ➙✆❵➓❣✙÷➉❴✞♥✖➈➔➤ ➙ � ❵➂÷❝❁❄❅▼✥➅ús➁✪ó❆❃❖➁✴ÿ ➸ ÷ ❿→✂

ÿ ➡ ➢ ➪ ❨✵❯❘❴✞❲ ➥ ❯ � ❡❙❵✆➤ ➥Ñ✝✼❲❱➤ ➥❃①③ÿ ➡ ❡ ➥ ❯❙❲➜➤✁❴✱✦ ➡ ➢ ➪ r⑥❲❛❵✈✝✼❲❳①▼ü ➡ ➢ ➪ ❡❘⑦
î ï♥ï✖❃✬➁✌�✡❇✡➁✴❀➻❁❄ðs❇s➁✪ÿ➵✻❋❇➓✿✧❇✡❀s✿♥➀✪➁✴ñ❏ó❋ô✳ñ❖øsï♥✿❲❈✟ñ✲✿♥❇Ð❯✜❴✭❲ ➥ ❯ � ❡❙❵✆➤ ➥Ñ✝❘❲➜➤ ➥➺①❚ÿ ➡ ❡➲➀✴✻✝❇➻ò✩➁
➀➂ó❆ÿõø✡ð⑧❈❖➁◗❀ù✿✧❇✠↔✇❴✭ó➼ã❙❵☎❈✬✿✧ÿù➁✼✿✧❇ù❈✬ó✝❈✬✻❋ïsò✏❅➲ÿ➵✻✝✿♥❇☛❈✬✻❋✿✧❇s✿♥❇sþ➸✻✦ï♥✿✚ñ➋❈ ö Ö✞❐✾Þ✔✟ ❲➜➤ ➥➑❬✤✡❘☞✩ó❋ô✚ó④r ➸
ÿù✿✧❇s✿♥ÿ➲ð✡ÿ⑤➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ❄ô❍ó❆❃❏➁✴✻❆➀✟ú❂ñ❖øsï✧✿✧❈➉❲➜➤ ➥Ñ①❊ÿ ➡ ÷ î ô❢❈❖➁✪❃❿➁✴✻❋➀✟ú❂➁✪ï♥➁✪ÿù➁✪❇☛❈❿✻❆❀s❀⑧✿✧❈❖✿♥ó❋❇
ö Ö✞❐✾Þ ✟ ❲ ➥ ❯✄t ➡ ➢ ➪ ❡✜➤ ➥➑❬✤✡❄➹➽✡✌☞✻❨ ö✱✰✳✲ ✴ ✟ ❲➜➤ ➥➑❬✤✡❘☞ ➥ ❯✠♥❘t ➡ ➢ ➪ ➤ ➈✌➈ ♣ ✝✼♥➑①❚❲❢❬✳➈❙❬♦➈ ♣ ①③➥➑❡❴ ➸ ✡❙❵
✻✝❇✡❀✢ñ❧ó ö Ö✞❐✾Þ ✟ ❲ ➥ ❯✄t ➡ ➢ ➪ ❡✜➤ ➥➑❬✤✡✇➹ ✡✌☞❏➀✪✻❋❇✸ò✫➁➴ó❋òs❈✬✻✝✿♥❇s➁◗❀✱✿✧❇✙↔✇❴✱ó ↕ ❵➡❈✬✿✧ÿù➁❋÷sÞ✏✿♥ÿù✿☛❷
ï♥✻❋❃❖ï♥❅➵ô❍ó❆❃ ö Ö✞❐✾Þ ✟ ❲❱➤ ➥ ➥ ❯✠t ➡ ➢ ➪ ❡✤❬✤✡✧➹◗✡✆☞❫÷➓✥➅ús➁✦❃✬➁✌�✩❇s➁✴❀ì❁❄ðs❇s➁✪ÿ➵✻❋❇ì✿♥❇✡❀⑧✿✚➀➂➁◗ñ❏ó✝ô✳ñ❧ø✡ï✧✿✧❈✬ñ✿✧❇➋❯✠❲❱➤☛❴✭✦ ➡ ➢ ➪ r ❲❛❵✫✝➐❲❆①çü ➡ ➢ ➪ ❡ ➀✪✻❋❇ ò✩➁ ➀➂ó❆ÿùøsð⑧❈❖➁◗❀ ✿♥❇❰↔✇❴✱ó ã ❵❵❈❖✿♥ÿõ➁ýð✡ñ❖✿✧❇✡þ➌☞➁✴ÿõÿ➵✻ ➸ ÷ ✑ ÷❻✴✲➁✪❇✩➀➂➁✦û❄➁➡➀✴✻✝❇➓➀➂ó❆ÿùøsð⑧❈❖➁❄ÿ ➡ ➢ ➪ ô❍❃✬ó❋ÿ➺ÿ ➡ ✿♥❇✪↔✇❴✱ó➼ã✎❵➫❈❖✿♥ÿõ➁➸✻❋❇✡❀❂❈❖ús➁
➁✪❇☛❈❖✿♥❃✬➁➸➀➂ó❋❇✩ñ➋❈✬❃❖ð✡➀➂❈❖✿♥ó❋❇➴❈✬✻➔⑩❆➁✴ñ➸↔✇❴✭ó✪✫✠❵➫❈✬✿✧ÿù➁❋÷

➜✖ä✮ê☞ä➞➝ ✯✎✽→▲Ú◆✤✯❙✰✠✩✭◆✜★✇✮P✸✻➞◗✺✤✽✾✸✹★✄✰✆✯✎✶✻✺✼✰✄✩✞✽✾✸◗✽❪✴➛✺✼✬✞◆✜✮P✸◗★✆▲➯✬✭✩✭✰✄★
✥➅ú✡➁✪❃✬➁❄✿✚ñ✳✻✝øsø✩✻✝❃✬➁✪❇☛❈❖ï♥❅➡❇só✦✻✝❇✡✻❋ï✧ó❆þ❋ðs➁❝ó❋ô❪✥➅ús➁✴ó❋❃✬➁✪ÿ ➸ ÷ ➸ ô❍ó❋❃❝➀➂ï♥➁✴✻❋❇✥ñ❖øsï♥✿❲❈✟ñ✪÷☎ü✘➁➅ú✡✻✾✽❆➁

➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖➁◗❀ ✻✝❇ ➁✌☎s✻✝ÿùøsï♥➁➵ó❋❇ ➁✴✿✧þ❆ú❆❈✦➁✴ï✧➁✴ÿõ➁✴❇☛❈✬ñ✦û❏ús➁✴❃❖➁➑➟❂ú✡✻❆ñ➸✻➓➀➂ï♥➁✴✻❋❇ýñ❖øsï♥✿❲❈➜❲❱➤ ➥
ñ❧ð✩➀✟ú❂❈✬ú✡✻✵❈➉❲ ✿✚ñ➅❇só❋❈✲✿✧❇❂❈❖ús➁➸✻✾✽❆➁✪❃✟✻✝þ❆➁❿ï♥✿✧❇P⑩✵✻❋þ❋➁▼❈❖❃✬➁✪➁▼ô❍ó❋❃➐✿ ➤ ô❍ó❆❃❱✱✎➴✾Ü❄➈➉①❁➥❵÷
➆✍❇❞Þ✏➁✴➀➂❈❖✿♥ó❋❇ ✑ ÷ ❿ û❄➁➴ñ❖úsó✵û❄➁✴❀ýúsó✵û ➀➂ï♥➁✴✻❋❇✸➀➂ï♥ð✡ñ➋❈✬➁✪❃✟ñ➲➀✴✻✝❇✱ò✫➁❂➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬➁✴❀ ✿✧❈❖➁✪❃✟✻✎❷

❈❖✿♥✽❋➁✴ï✧❅➵ð✡ñ❖✿♥❇sþ✥✻✥➀➂ó❋❇✡❇s➁✴➀➂❈❖✿♥ó❋❇➴û❏✿✧❈❖ú❂❃❖ó✏ó❋❈❖➁✴❀➴➀✟ú✡✻✝✿♥❇✡ñ➐❴✭✥➅ús➁✴ó❋❃✬➁✪ÿ ✑ ÷ ø ❵➂÷➊✴❿➁✪❃✬➁❿û❄➁✼ñ❖úsó✵û
❈❖ú✡✻✝❈➲✻✝❇ ñ❧✿♥ÿù✿✧ï✚✻✝❃➸➀✪ó❋❇s❇✡➁✴➀❸❈✬✿✧ó❆❇ý✻❋øsøsï♥✿✧➁◗ñ▼❈❖óì❈❖ú✡➁❵➀➂ï♥➁✴✻✝❇ ñ❖øsï✧✿✧❈➲➀✪✻❆ñ❧➁❆÷✶➌✖➁➂❈❢æ â ❀⑧➁✴❇só✝❈✬➁❈❖ús➁➲✿♥ñ❖ó❋ï✚✻✵❈✬✿✧ó❆❇❂û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþùó❋❇③✦➠r❞❯ � ❡✦þ❋✿♥✽❋➁✪❇➻ò✏❅➑æ â ❴✭♥✖➈➔➤ ➙✆❵➓❣✚÷➉❴✭♥✖➈➔➤ ➙ � ❵❄❴❩➀✝÷ ô➋÷↕Þ⑧➁✴➀❧❷
❈❖✿♥ó❋❇ ➸ ÷ ➸ ❵➂÷



✑ ❿ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩❂àt⑩ ✺✻➱✌➮q÷✑✼♦➱✸✱❥✭✆➱ ❧ ✱➔➷✧✱✎➮✥✫✭➬✎➴✦✿➚➱❈✫❂❁✓❃✖➮✘✫ ➴❉❁➨❊✌➬✎➷↕✦❍● ❷ ❊➚❲❱➤ ➥➍✫✮✭✸✱✶❇❈✯✁➱✤✱✎➴✭ ❧ ✯➧✫ ➮➛➬❋❊➨÷➁✱➔➴❪❐ � ①❁➥ ➮❲❃P➱✆➴Ð➱❈✫ ➮❩❃→➱✌➷❛❲❖✫✮✭❥✱✠❇❈✯✁➱✤✱✎➴♦❇❀✯☛➘❉✭✳➮✃➱✆➷✧➬◆❊✈æ â ➬➔➷➛❲➜➤✁❴✭➥❩rÖ❯ � ❡❙❵✫✮✭❱✱✠❇❈✯✁➱✤✱✎➴★✭ ❧ ✯➧✫ ➮✈➬❋❊✞÷❩➷❶➱❀✭❧➮✞➷❤✫✟❇✆➮✷➱✳❐➑➮✷➬❢✦ rÖ❯ � ❡❉●
❹❝➷❶➬✄➬◆❊❀● Þ✏ðsøsø✫ó❆ñ❖➁➵❈✬ú✡✻✵❈✇❲➜➤✁❴✭➥❃r � ❵➸✿♥ñ➲❇só✝❈õ✻ ➀➂ï♥➁✴✻❋❇✸ñ❧øsï♥✿✧❈➲ó✝ô✞÷ ❃❖➁◗ñ➋❈✬❃❖✿✚➀❸❈✬➁✴❀ý❈✬ó

✦ãr❞❯ � ❡❆÷❝✥➅ús➁✪❇ì❈✬ús➁✪❃✬➁➸✿✚ñ②ù❃❨ ö ❴✭❲❱➤ ➥➋rÖ❯ � ❡❙❵❏ñ❖ð✡➀✟úì❈❖ú✡✻✝❈❱➤ ù➑➤✤❣ç❴♦➤ ❲❱➤➔r❞✡✠❵✆❴❶➤ ➥ r
❯ � ❡✜➤❘r ✡✠❵✼✻✝❇✡❀♦â ✐✆✐ ❦ ✌ ➤❡➤ ❦ ✕✗ú ÷➉❴✞♥✜♥ ♣ ➤ ➈✌➈ ♣ ❵✧Ù ✍s÷❱➆❨ô↕❲ ✿✚ñ▼❇só✝❈➸✻➻➀➂ï♥➁✴✻❋❇ý➀✪ï✧ð✩ñ➋❈✬➁✪❃➡ó✝ô↕æ â❈❖ús➁✴❇➻❈❖ús➁✴❃❖➁➡✿✚ñ➨✝✒ñ❖ð✡➀✟ú❂❈❖ú✡✻✝❈

✝ ❨✵❯✠♥✜♥ ♣ ➤ t✘✝✼♥❪❬❶♥ ♣ ①❚❲❢❬Pt●①❊✦➠rÖ❯ � ❡✼❡❘❬
➤ ✝❻➤✼❣é➤ ❲➜➤✆r❼✡▼✻✝❇✡❀➏â ✐✌✐✌❦ ✌ ♠ ✕✗✍ æ â ❴✞♥✜♥ ♣ ➤ t❪❵❝ÙÝ✍s÷❾⑨❝ðs❈✞ù ✍ ❣❳❯❙♥❘♥ ♣ ➤ t � ✝✤♥❘♥ ♣ ➤ t●①➏✝➜❡✤✂
ñ❧ó

✏
✐✌✐ ❦ ✌ ♠ â ✕✗ú✶✵

÷➉❴✭♥✜♥ ♣ ➤ t � ❵❝ÙÝ✍P⑦
⑨❝ð⑧❈✞ù ♣ ❣❢ù ➥ ù ✍ ÷❾✥➅ús➁✪❇✠ù ♣ ✿♥ñ➫✻✦ñ❧ðsò✩ñ❧➁✪❈❝ó✝ô ö ❴✭❲❱➤ ➥❱❵❝➀➂ó❆❇☛❈✬✻✝✿♥❇s✿♥❇sþ❻❴❶➤ ❲➜➤✉r❁✡✠❵✆❴❶➤ ➥❊➤✉r
✑ ❵❙➹❚❴❶➤ ❲➜➤✞r➑✡❙❵Ú❣ ❴❶➤ ❲➜➤✞r➑✡✠❵✆❴❶➤ ➥❊➤✞r➑✡❙❵❾➣☛ð✡✻✝❃❖❈❖➁✪❈✬ñ✳ñ❧ð✩➀✟ú➸❈❖ú✩✻✵❈ â ✐❈➤ ✌ ❬①û ✕✗ú ❦ ÷➉❴✭♥✖➈➔➤ ➙✌Ø❘❵↕ÙÝ✍s÷✴✲➁✴❇✡➀➂➁❢❲❱➤ ➥ ✿✚ñ❏❇só❋❈❏✻➵➀✪ï✧➁◗✻✝❇➻ñ❧ø✡ï✧✿✧❈✲ó✝ô➒÷✲÷
✥➅ú✡➁✪ó❋❃✬➁✪ÿ ➸ ÷ ø ø✡❃❖ó✵✽✏✿✚❀⑧➁✴ñ➅❈✬ús➁õ❃❖➁◗❀⑧ð✡➀❸❈✬✿✧ó❆❇➉ñ❧❈❖➁✪ø➉ó✝ô③✻➵ø✫ó❋ï♥❅✏❇só❋ÿù✿✚✻✝ï✐❈❖✿♥ÿõ➁✥✿❲❈✬➁✪❃✟✻✵❈✬✿✧✽❆➁

✻✝ï♥þ❋ó❆❃❖✿✧❈❖úsÿ ô❍ó❋❃✲➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧❇sþõ❈✬ús➁➸ñ❧➁✪❈❏ó✝ô➦➀➂ï♥➁✴✻✝❇➻ñ❖øsï✧✿✧❈✬ñ✴÷

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩➧ëq⑩ ❑q❃→➱❱❇❈✯✁➱✤✱✎➴★✭ ❧ ✯➧✫ ➮✘✭✧➬◆❊❣✱✉✭✆➱ ❧ ✱➔➷✧✱✎➮✥✫✭➬✎➴✇✿➚➱❀✫❂❁❄❃✜➮✥✫ ➴❅❁❥÷➁❇☛✱➔➴✇✼✳➱❱❇✳➬➔➴✂➐✭❧➮✞➷❧➘✂❇✆➮✷➱✳❐✉✫ ➴✢↔✇❴✱ó✪✫❙❵✧➮✥✫❩❯✇➱✓●
❹❝➷❶➬✄➬◆❊❀●❆❋☎✿♥❃✬ñ❧❈➡❇só✝❈✬➁✥❈✬ú✡✻✵❈✦û❄➁õ➀✴✻✝❇ý➀➂ó❋ÿùøsðs❈❖➁✇➻ ❬ÿ ❴✞❲➜➤ ➥➜❵✼ô❍ó❆❃▼➁◗✻❋➀✟úýñ❧øsï♥✿✧❈✧❲❱➤ ➥➇①

✿✧❺✾ù❲ß❡ñ✉✿❘❴✱➍➐❵➦✿♥❇✢↔✇❴✭ó➼ã❙❵❝❈❖✿♥ÿù➁▼ò✏❅➵ð✡ñ❖✿♥❇sþõ✻✥✽✵✻✝❃✬✿♥✻❋❇☛❈❄ó❋ô➒➌☞➁✴ÿõÿ➵✻ ➸ ÷ ✑ ÷❾✥➅ús➁✸↔✇❴✱ó✪✫❙❵③❈❖✿♥ÿõ➁
✻✝ï♥þ❋ó❆❃❖✿✧❈❖úsÿ✷✿✚ñ✐✻❋ï✧ÿùó❆ñ❧❈✐✿✚❀⑧➁✴❇❆❈✬✿♥➀✴✻✝ï❆❈❖ó❿❈❖ú✡✻✝❈✖ô❍ó❋❃☎❃✬➁✌�✡❇s➁◗❀➸❁❄ðs❇s➁✴ÿù✻❋❇➲ñ❖øsï✧✿✧❈✬ñ☎❀⑧➁◗ñ❖➀✪❃❖✿♥ò✩➁◗❀✦✿♥❇
ß➫ó❋❃✬ó❋ï♥ï♥✻❋❃❖❅ ➸ ÷✁✡✇❴❩➀❋÷ ô➋÷ î ï♥þ❋ó❋❃✬✿✧❈❖úsÿ➵ñ❝❿➵✻✝❇✡❀ ø ❵➂÷
✥➅ú✡➁✎✷✼ð✩✻✝❃❖❈❖➁➂❈➛ß➫ï✧➁◗✻✝❇s✿♥❇sþõÿù➁➂❈❖ú✡ó✏❀❂ó✝ô↕✟ ✛❙☞☞✿✚ñ➅✻✥ñ❖ø✫➁✴➀➂✿✚✻✝ï❣➀✴✻❋ñ❖➁❿ó✝ô✖❈❖ús➁➡ðs❇s❃✬ó✏ó✝❈✬➁✴❀▼➒❛❷

❈❖❃✬➁✪➁➅➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥ó❋❇✖÷➋➌☞➁✪❈✎ù ò✩➁➅✻❿ñ❖➁➂❈✳ó✝ô→➣☛ð✡✻❋❃❧❈✬➁➂❈✬ñ☎ñ❖ð✡➀✟ú✦❈❖ú✩✻✵❈☎ô❍ó❋❃☎➁✴✻❋➀✟ú➜♥✾❬✳➈❙❬❶➙➔❬❶Ø❻①③✦
✻✵❈✲ÿùó❆ñ❧❈❏ó❋❇s➁✦ó❋ô✹♥✖➈➔➤ ➙✌Ø✾✂→♥✜➙✼➤ ➈✌Ø→✂→♥✜Ø✚➤ ➈✌➙❿✿✚ñ❏✿♥❇✦ù➵÷✳✺✼➁✌�✩❇s➁➲✻ùñ❧➁✴ø✡✻✝❃✟✻✵❈✬✿✧ó❆❇➴û❄➁✪✿♥þ❋ú☛❈❖✿♥❇sþ✶÷
ò✏❅✥øsðs❈❧❈❖✿♥❇sþ✸÷➉❴✞♥✖➈➔➤ ➙✆Ø❘❵➓❣❩✡❏✿❲ô②♥✖➈➔➤ ➙✌Ø❻①✦ù ✻❋❇✡❀✶÷➉❴✭♥✖➈➔➤ ➙✌Ø✜❵➓❣❳r✧✡❏✿✧ô②♥✜➈✼➤ ➙✌Ø❁➊①✢ùù÷➯✥➅ús➁✴❇
❲➜➤ ➥ ✿♥ñ➅✻➲➀✪ï✧➁◗✻✝❇ìñ❧øsï♥✿✧❈❄ó❋ô❞÷✢✿✧ô☎✻✝❇✩❀➵ó❋❇sï♥❅➵✿✧ô❝➤ ö ❴✭❲➜➤ ➥➜❵✛r★ù➑➤❉➔❀❴❶➤ ❲➜➤✄rs✡✠❵✆❴❶➤ ➥❊➤✄r⑥✡✠❵✹✸ ✑ ✂
❈❖ús➁➡➀➂ó❆❇✡❀⑧✿✧❈❖✿♥ó❋❇ùô❍ó❆❃Ú❲➜➤ ➥ ❈✬ó➲ò✫➁✼✻ ✢ ➀➂ï♥➁✴✻❋❇→✣➸ñ❖øsï✧✿✧❈➫û❏✿✧❈❖ú➴❃❖➁◗ñ❧ø✫➁✴➀➂❈❝❈❖ó➲❈❖ús➁❿❈❖➁✪❃✬ÿù✿✧❇✡ó❋ï♥ó❋þ❋❅
ó✝ô✈✟ ✛➔☞❫÷

➜☞ä✙✺☞ä í ✽❪✸✻★✄✰✆✯✎✶✹✺➔✰✠✩✭✽❪✸❞✽❪✴➛★✄✰✄✮✖ý➯✬✭◆❁★✄▲➯✬✭✩✱✰✠★➌✖✿✁⑩❆➁✦❈❖ú✡➁✥ñ❧❈✬✻✝ò✡ï✧➁➲➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✆✂✩❈❖ús➁✥ñ➋❈✟✻✝òsï♥➁✥ñ❖øsï♥✿❲❈✟ñ❿✻✝❃✬➁✦❈✬ús➁➸ï✚✻❋ñ❧❈✄✂✔✻✝❇✡❀➻ÿùó❆ñ❧❈✼❃✬➁✌�✩❇s➁✴❀✔✂
✿✧❇➻❈✬ús➁➸ñ❖➁✪❃✬✿✧➁◗ñ➅ó✝ô➦➀➂ó❋❇✩ñ➋❈✬❃❖ð✡➀➂❈❖✿♥ó❋❇✡ñ✴÷ î ñ❏û❏✿✧❈❖ú ñ❧❈✬✻❋òsï♥➁➡➀✪ï✧ð✩ñ➋❈✬➁✪❃✟ñ✆✂⑧❈✬ús➁➸ñ❧❈✬✻✝ò✡ï✧➁✦ñ❖øsï✧✿✧❈✬ñ❿✻✝❃✬➁
❀⑧✿✁à➵➀✪ðsï✧❈✲❈❖ó➵➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✠✝



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✑ ø

❽②❾t④❨❿▼➀t④❉⑥✑➦q⑩✼✻➅⑩➷❷ ➮②✫✮✭♣✱✎➴➇ì✵❹⑧➐✘❃✂✱✎➷❶❐ ❧ ➷❶➬➉✼❀✯✁➱❈❯❮➮✷➬✪❇✳➬➔➴➅✭❧➮✞➷❧➘✂❇✆➮✈➮❲❃P➱✉✭✆➱✆➮➐➬◆❊✶✭✳➮①✱✗✼❈✯✁➱✭ ❧ ✯➧✫ ➮✘✭✧➬◆❊✻✱❻❐➎✫✮✭✤✭✤✫❩❯✶✫❩✯✾✱➔➷❤✫ ➮✞Ü➸❊✳➘✖➴▼❇✌➮✥✫✭➬✎➴▼●♠➆➜➱✌➴▼❇♦➱✸✫ ➮✎✫✮✭✹✱✰✯➧✭✌➬❥ì✵❹⑧➐✘❃✂✱✎➷❶❐❱➮✃➬☞❇✳➬✎➴➅✭❧➮❍➷❧➘✂❇✌➮➯➮❲❃P➱✭❧➮❡✱➉✼❀✯✁➱✉❇❈✯❤➘❉✭❧➮✷➱✆➷✤✭❢➬❋❊❥✱➔➴✇✱✎➷❈✼❈✫ ➮✞➷☛✱✎➷❧Ü☞✭✆➱ ❧ ✱➔➷✧✱✎➮✥✫✭➬✎➴➇✿➚➱❀✫❂❁❄❃✜➮✥✫ ➴❅❁❅●

❹❝➷❶➬✄➬◆❊❀● ➌☞➁➂❈▼❰➚❬❶➙❂✻✝❇✡❀✙✡✸ÿ➵✻✼⑩❋➁ìðsø ✻❋❇ ✻❋❃❖ò✡✿❲❈✬❃✬✻❋❃❖❅ ✿♥❇✡ñ➋❈✟✻✝❇✡➀✪➁➻ó✝ô❄ÞP⑨ î ❸➉Þ✖➎↕Þ✖✥
ß⑧➮➉✥➡÷✴ü✘➁③➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀➂❈✖✻❏❀⑧✿♥ñ✬ñ❖✿✧ÿù✿♥ï♥✻❋❃❖✿✧❈➋❅❏ô❍ðs❇✡➀➂❈❖✿♥ó❋❇❢➟➅ñ❖ð✡➀✟ú▼❈❖ú✡✻✝❈ ø ➼✼❴✭õ✾➏✔➤ t→ûP❵➓❣➽➙✼❴✱õ✹❬✉➏✖❵❧r✡❂ô❍ó❋❃❿✻❋ï✧ï✻õ✻❬❶➏▼①Ð❰➵÷❝✥➅ú✡➁✦❃❖➁◗ñ❧ðsï✧❈✲❈✬ús➁✪❇➻ô❍ó❆ï✧ï♥ó✵û✲ñ❏ò✏❅❵❈✬ús➁➲ñ✬✻✝ÿù➁➸✻✝❃✬þ❋ðsÿù➁✴❇❆❈✟ñ❏ð✡ñ❖➁✴❀ì❈✬ó
øs❃✬ó✵✽❋➁❄✥➅ús➁✪ó❆❃❖➁✴ÿ ✑ ÷ ✛s÷

➬✖ä➦êìå✄ï☎í➲ë❁ï✹ï☞å✴é❵æ
üý➁③ú✩✻✾✽❋➁❝øs❃✬➁✴ñ❖➁✪❇☛❈✬➁✴❀✼❈➋û➫ó❿ø✡✻✝❃✟✻✝ï♥ï✧➁✴ï❋ñ❖➁✪❃✬✿✧➁◗ñ☞ó✝ô✏❈✬❃❖➁✴➁❝ò✡✻❋ñ❖➁✴❀✦➀✪ï♥✻❆ñ❖ñ❖✿✁�✩➀✪✻✝❈❖✿♥ó❋❇➡ÿù➁➂❈❖ú✡ó✏❀✡ñ✆✂

ó❋❇s➁õþ❋✿♥✽✏✿✧❇✡þ❂➀➂ï♥ð✡ñ❧❈❖➁✴❃✬ñ▼✻✝❇✡❀ ❃❖ó✏ó✝❈✬➁✴❀➻❈✬❃❖➁✴➁✴ñ✄✂✫❈❖ús➁õó✝❈✬ús➁✪❃▼þ❋✿♥✽✏✿✧❇sþìñ❧ø✡ï✧✿✧❈✬ñ▼✻✝❇✡❀➉ðs❇s❃✬ó✏ó✝❈❖➁◗❀
❈❖❃✬➁✪➁◗ñ✪÷❉✥➅ú✡➁ìø✡❃❖ó❆þ❋❃✬➁✴ñ✬ñ❧✿♥ó❋❇✱ò✫➁✪þ☛✻✝❇✢û❏✿✧❈❖ú✢❈➋û➫ó ➀➂ï✚✻❋ñ✬ñ❖✿♥➀✴✻✝ï➅➀➂ó❋❇✩ñ➋❈✬❃❖ð✡➀➂❈❖✿♥ó❋❇✡ñ✄✂ î øs❃❖➁◗ñ❍ö❧✻❋❇
➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ➅✻✝❇✡❀❂❁❄ðs❇s➁✪ÿ➵✻❋❇❂ñ❖øsï✧✿✧❈✬ñ✄✂s✻✝❇✩❀❻�✡❇s✿✚ñ❖ús➁✴❀➴û❏✿❲❈✬ú➴❈➋û❄ó➲þ❆➁✪❇s➁✴❃✬✻❋ï✹❴❩òsð⑧❈➛❹➉⑨➓❷❫ú✡✻❋❃✬❀✾❵
➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥ó❋❇✩ñ✆✂sñ❧❈✬✻❋òsï✧➁✦➀✪ï✧ð✡ñ❧❈❖➁✴❃✬ñ❏✻❋❇✡❀ìñ➋❈✟✻✝òsï♥➁✦ñ❧øsï♥✿✧❈✬ñ✴÷➦ü✘➁✦➁✆☎✏ø✡ï✧ó❆❃❖➁◗❀❵ï♥✿✧❇P⑩⑧ñ➅ò✫➁➂❈➋û❄➁✪➁✴❇
❈❖ús➁➸❀s✿☛å✔➁✪❃✬➁✪❇☛❈❿➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✬✿✧ó❆❇✡ñ❏✻✝❇✡❀❂û❏✿✧❈❖ú➻û➫➁✴ï✧ï✁❷✷⑩☛❇✡ó✵û❏❇❂➀➂ï✚✻❋ñ✬ñ❖✿☛�✩➀✴✻✵❈✬✿✧ó❆❇❂ÿù➁➂❈✬úsó⑧❀sñ✴÷
üý➁ùñ❧➁✴➁✦❈➋û➫ó➴ÿù✻✝ö➋ó❋❃❿❀s✿✧❃✬➁✴➀➂❈❖✿♥ó❋❇✡ñ✲ô❍ó❋❃✲ô❍ðs❈❖ðs❃✬➁✥û❄ó❋❃♦⑩✔÷✈✥➅ús➁❢�✡❃✟ñ❧❈✼✿✚ñ❏❈❖ó❂✿✧❇✏✽❆➁✴ñ❧❈❖✿♥þ❆✻✵❈✬➁

❈❖ús➁➲ø✩➁✴❃❧ô❍ó❆❃❖ÿ➵✻✝❇✩➀➂➁➡ó✝ô✳❈❖ú✡➁✴ñ❖➁✦ÿõ➁✪❈❖úsó⑧❀sñ✲✿✧❇ ✻❋❇➻✻❋øsøsï♥✿✧➁◗❀❊�✡➁✪ï✚❀➻ó✝ô➦➀➂ï✚✻❋ñ✬ñ❧✿✁�✩➀✴✻✵❈❖✿♥ó❋❇➻ñ❖ð✡➀✟ú
✻❋ñ➡øsú✏❅✏ï♥ó❋þ❋➁✴❇s➁➂❈✬✿♥➀✴ñ✪÷➜✥➅ús❃❖➁✴➁✥✽✵✻❋❃❖✿✚✻✝❇☛❈✬ñ▼ó❋ô③❈❖ú✡➁õÿù➁✪❈❖úsó⑧❀sñ✦❀⑧➁◗ñ❖➀✪❃❖✿♥ò✫➁✴❀✘ús➁✪❃✬➁③✟ ✛P✂➒✩✜✂❾✡❄✩✄☞
ú✡✻✾✽❋➁❂✻✝ï♥❃❖➁◗✻❋❀⑧❅✘ò✩➁✴➁✪❇✸➁✴ÿõø✡ï✧ó✵❅❆➁✴❀ ò✏❅✱➀➂ó❋ÿùøsðs❈✬✻✵❈✬✿✧ó❆❇✡✻✝ï③òs✿✧ó❆ï✧ó❆þ❋✿✚ñ➋❈✟ñ✪÷✘✥➅ú✡➁❂✻✝ø✡ø✩➁◗✻✝ï③ó❋ô
➀➂ó❆ÿ➲òs✿♥❇✡✻✵❈✬ó❋❃✬✿♥✻❋ï➦✻✝øsøs❃✬ó❆✻❆➀✟ús➁✴ñ❿✿✧❇ øsú✏❅✏ï♥ó❋þ❋➁✴❇s➁➂❈✬✿♥➀✴ñ▼✿♥ñ✼❈❖ú✩✻✵❈④➣☛ð✡✻✝❃❖❈❖➁✪❈▼û❄➁✪✿♥þ❋ú☛❈✟ñ▼➀✴✻✝❇ýò✩➁
❀⑧➁➂❈✬➁✪❃✬ÿù✿✧❇s➁◗❀➓ð✡ñ❖✿✧❇✡þ❵➀➂ó❋ÿùøsï♥➁✌☎➻øsú✏❅✏ï✧ó❆þ❋➁✴❇s➁➂❈✬✿♥➀✦➀✪❃❖✿✧❈❖➁✴❃❖✿✚✻➵✻✝❇✡❀➻ÿùó⑧❀⑧➁✴ï♥ñ✲❈❖ú✡✻✝❈✼✻✝❃✬➁➸➀➂ó❆ÿ➜❷
øsð⑧❈✟✻✵❈❖✿♥ó❋❇✩✻✝ï♥ï✧❅✸✿♥❇⑧ô❍➁◗✻❋ñ❖✿✧òsï♥➁ìô❍ó❋❃ùï✚✻✝❃✬þ❋➁✪❃ùñ❖➁➂❈✬ñõó❋ô❿❈✬✻➔☎s✻s÷✽✷✼ð✩✻✝❃❖❈❖➁➂❈ùû❄➁✪✿♥þ❋ú☛❈✬ñù✻✝❃✬➁❂❈❖ús➁✴❇
ð✡ñ❖➁✴❀✘❈❖ó➻➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈➸✻❂❈❖❃✬➁✪➁ù✿✧❇ ✻ì❃❖➁◗✻❋ñ❖ó❋❇✡✻❋òsï♥➁✥✻✝ÿùó❆ðs❇☛❈▼ó❋ô③❈❖✿♥ÿù➁❋÷❻✥➅ús➁➵➀➂ï♥➁✴✻❋❇ýñ❖øsï♥✿❲❈
➀➂ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈❖✿♥ó❋❇ù✿✚ñ➦ø✡✻❋❃❧❈✬✿♥➀✪ðsï♥✻❋❃❖ï♥❅✦û❄➁✪ï♥ï☛❷✍ñ❧ð✡✿❲❈✬➁✴❀✥ô❍ó❋❃➦✿♥❇✡➀➂ó❆❃❖ø✫ó❋❃✟✻✵❈✬✿✧ó❆❇➲✿♥❇❵✻➡➀➂ó❋ÿ✥òs✿♥❇✡✻✵❈✬ó❋❃✬✿♥✻❋ï
ñ➋❈✬❃✬✻✝❈❖➁✴þ❋❅✼ô❍ó❋❃✖ø✡ú☛❅✏ï♥ó❋þ❆➁✪❇s➁✪❈❖✿✚➀✳❃❖➁◗➀➂ó❋❇✩ñ➋❈✬❃❖ð✡➀➂❈❖✿♥ó❋❇☞÷✻✥➅ús➁③ÿù➁➂❈✬úsó⑧❀✔✂✾ï✧✿❏⑩❋➁③ó✝❈❖ú✡➁✪❃✟ñ☞øs❃✬➁✴ñ❖➁✪❇☛❈❖➁◗❀
ús➁✪❃✬➁✼✂✖✿♥ñ➡➀➂ó❆❇☛❈❖✿♥❇☛ð✡ó❋ð✡ñ✄✂☞➀➂ï♥➁✴✻❋❃❖ï♥❅➓❀⑧➁✌�✡❇✡➁✴❀✔✂☞ú✩✻❋ñ➡✻➴ø✫ó❋ï♥❅✏❇só❋ÿù✿✚✻✝ï☎❈❖✿♥ÿù➁➵✻✝ï♥þ❋ó❋❃✬✿✧❈❖úsÿ✂✻❋❇✡❀
➀✪✻❋❇ìò✫➁✦ð✡ñ❖➁✴❀➴❈❖ó❵✻❋❇✡✻✝ï♥❅⑧ñ❧➁▼ò✩ó❋❈❖ú➓❀⑧✿✚ñ❖ñ❖✿♥ÿõ✿♥ï✚✻✝❃✬✿❲❈➋❅➴❀✡✻✵❈✬✻ù✻❋❇✡❀❊➣☛ð✡✻❋❃❧❈✬➁➂❈❏û❄➁✪✿♥þ❋ú☛❈✬ñ✴÷
î ñ❖➁✴➀✪ó❋❇✡❀ ❀⑧✿✧❃✬➁✴➀➂❈❖✿♥ó❋❇ ó✝ô➸ô❍ð⑧❈✬ðs❃✬➁ýû❄ó❋❃♦⑩ ✿♥ñ❂ô❍ðs❃❖❈❖ú✡➁✪❃➻þ❋➁✴❇s➁✪❃✟✻✝ï♥✿♥ñ✬✻✵❈✬✿✧ó❆❇☞÷ ❁➅✻✝❇✡❀s➁✪ï✧❈

✻✝❇✡❀✱✺✼❃✬➁✴ñ✬ñ➑✟ ➸ ☞➫➁◗ñ➋❈✟✻✝òsï♥✿♥ñ❖ús➁◗❀ý✻➓❀sð✡✻✝ï♥✿❲❈➋❅ýò✫➁➂❈➋û❄➁✪➁✪❇ û❄➁✴✻✼⑩➉ús✿♥➁✪❃✟✻✝❃✟➀✟ús✿♥➁✴ñ✦✻✝❇✩❀ û➫➁◗✻➔⑩✏ï✧❅
➀➂ó❆ÿõø✩✻✵❈❖✿♥òsï♥➁ìñ❖øsï♥✿❲❈✟ñ❚✟ ➸ ☞❨÷✱üý➁❂ú✡✻✾✽❆➁➴✻✝ï♥❃✬➁✴✻❋❀s❅ýð✩ñ❧➁◗❀ ❈❖ús✿✚ñ✥❈❖óýøs❃✬ó✵✽☛✿✚❀⑧➁➴✻✘ÿùó❋❃✬➁➴➁✆à❱❷
➀➂✿♥➁✪❇☛❈➲✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿ ô❍ó❋❃➲ñ❖øsï♥✿❲❈➸❀⑧➁◗➀➂ó❋ÿùø✫ó❆ñ❖✿❲❈✬✿✧ó❆❇❞✟ ø ☞❨÷ î ñ❖➁✪❃✬✿✧➁◗ñ✼ó❋ô❄þ❆➁✪❇s➁✴❃✬✻❋ï➦➀➂ï♥ð✡ñ➋❈✬➁✪❃✬✿✧❇✡þ
ÿù➁➂❈❖ú✡ó✏❀✡ñ✆✂☎➁✌☎✏❈❖➁✴❇✡❀⑧✿♥❇sþ➓û❄ó❋❃♦⑩➓ó❋❇ û➫➁◗✻➔⑩➓ús✿♥➁✪❃✟✻✝❃✟➀✟ús✿♥➁✴ñ✄✂☞û➅✻❋ñ➡➁✌☎⑧øsï♥ó❋❃✬➁✴❀➉✿✧❇➽✟✁✡✼✡✌☞❫÷➑✥➅ús➁
➣☛ðs➁✴ñ❧❈❖✿♥ó❋❇❵✻❋❃❖✿✚ñ❧➁◗ñ✳ó✝ô❣û❏ús➁✪❈❖ús➁✴❃❝❈❖ú✡➁✴ñ❖➁❏❈➋û➫ó✦ÿù➁✪❈❖úsó⑧❀sñ➫➀✪✻✝❇➵ò✫➁✲❃✬➁✌�✡❇✡➁✴❀ùï♥✿✁⑩❆➁➅❈❖ús➁▼ñ➋❈✬❃❖ó❆❇sþ
➀➂ï♥ð✡ñ❧❈❖➁✪❃✟ñ✲✻❋❇✡❀➓❁❄ðs❇s➁✪ÿ➵✻❋❇➻❈❖❃✬➁✪➁✼✂✩✻✝❇✡❀➻û❏ús➁✪❈❖ús➁✴❃❏❈❖ú✡➁➲➀➂ó❆❇s❇s➁✴➀➂❈❖✿♥ó❋❇✡ñ✲û❏✿❲❈✬ú ñ❧✿♥❇sþ❋ï♥➁➸ï♥✿✧❇→⑩✤❷
✻✝þ❆➁✿✾✵✻✾✽❆➁✪❃✟✻✝þ❆➁✲ï✧✿♥❇P⑩✵✻✝þ❆➁➸➀✪✻❋❇ìò✫➁➸þ❆➁✪❇s➁✴❃✬✻❋ï✧✿✚ñ❧➁◗❀➵❈✬ó❵✻✝þ❋þ❆ï✧ó❆ÿù➁✪❃✟✻✵❈❖✿♥✽❋➁▼ÿù➁➂❈✬úsó⑧❀sñ➅ô❍ó❋❃❿❇só❋❇✖❷
ús✿♥➁✪❃✟✻✝❃✟➀✟ús✿♥➀✴✻✝ï❣➀➂ï♥ð✡ñ❧❈❖➁✴❃❖✿♥❇sþ✡÷



✑ ✛ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

❑ ➝✸➝✧ð▼æ➓ê❂å✱❀ í
❑❊✬✭➂❪✽→✯✎✩✱✰✠➄✻✪❉★

➆✍❇ ❈✬ús➁ùô❍ó❋ï♥ï♥ó✵û❏✿✧❇sþ ✻❋ï✧þ❆ó❋❃✬✿❲❈✬úsÿ➵ñ▼û➫➁➵ï♥➁➂❈❂❁➐❴✱õ✔❵➡❀⑧➁✪❇✡ó✝❈❖➁❵❈❖ús➁➵ï✚✻✝ò✫➁✪ï✚ñ✦ó✝ô❄❈❖ú✡➁❵ï✧➁◗✻✾✽❋➁◗ñ
❈❖ú✡✻✝❈❿✻✝❃✬➁✦❀⑧➁✴ñ✬➀➂➁✴❇✡❀⑧➁✪❇☛❈✟ñ➅ó✝ô☎❈❖ús➁✦❇só⑧❀⑧➁❄õ☎÷

❃ ➻❅❄➼❿▼➀❆✖✙✘✂❾▼⑥➷❶❈❇✍❉ ➬✰❯ ❧ ➘✖➮✃➱✧❭ ❬◗ ❴❡✜✧❵❻❊✌➬➔➷❥✱✰✯❩✯▼✜➋①❚➙✌ù✱õ✔✿❘❴✱➍❛❵①❏✗●
ß➫ó❋ÿùøsðs❈❖➁➸✻✝❇✩❀❵❈✟✻✝òsðsï✚✻✵❈✬➁✦ï♥➀✴✻P❴✱t✻❬✉t ♣ ❵➫ô❍ó❋❃✲✻✝ï♥ï❣ï♥➁✴✻✾✽❋➁◗ñ↕t✛❬✉t ♣ ✿♥❇❚➍➸÷
➆❨❈❖➁✴❃✬✻✝❈❖➁▼❈❖ú✡❃❖ó❆ðsþ❋ú➻✻✝ï♥ï❣❃❖ó✏ó❋❈❖➁✴❀➴❈❖❃✬✿♥øsï✧➁◗ñ✈t→û②➤ ✁✇① � ❴✭➍❛❵❏✻✝❇✩❀➴ð✡ñ❖➁➡ï♥➀✴✻õ❈✬✻❋òsï✧➁◗ñ❄❈❖ó
➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈➸✝✇✟ õ✻❬❶➏✼☞❣ô❍ó❆❃✲✻✝ï♥ïÐõ✹❬✉➏➑①❁❰➑❴✭➍❛❵❄ñ❧ð✩➀✟ú❂❈✬ú✡✻✵❈➛õ❁ö ÷ ➏✫÷

❋só❆❃❏➁✴✻❆➀✟ú❂ø✡✻❋✿✧❃✈õ✹❬✉➏▼①❚❰▼❴✱➍❛❵❄ñ❖ð✡➀✟ú➴❈✬ú✡✻✵❈➛õ●ö ÷ ➏❵ð✡ñ❖➁✼❈✬ús➁➸✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿ ó✝ô❝✟ ➀➔☞❣❈❖ó
❀⑧➁✪❈❖➁✴❃❖ÿù✿♥❇s➁▼❈❖ús➁➸ñ❖➁➂❈②✝✇✟ õ✻❬❶➏✾❬❶ó✚☞☞ó✝ô✻óýÿù✿✧❇✡✿✧ÿ✥ðsÿ û❄➁✪✿♥þ❋ú☛❈➅❈❖❃✬✿✧ø✡ï✧➁◗ñ❏✿✧❇✢✝✇✟ õ✹❬✉➏✤☞❨÷

❋só❆❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝➏➑①✘❰❻❴✭➍❛❵➅❀⑧ó
❋✡ó❋❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝õ➓✿♥❇➓✻✥ø✫ó❆ñ❧❈✉❷❨ó❋❃✟❀⑧➁✴❃➫❈✬❃✬✻✾✽❆➁✪❃✟ñ❖✻❋ï✩ó❋ô✻➍ ❀⑧ó

➮✼ñ❧➁➡➁✠➣✩÷✻❴⑧✡ ø ❵❄✻✝❇✡❀❼✟ ➀➔☞☞❈❖ó➵➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈➸✝❥ÒÚ✟ õ✻❬❶➏✾❬❶ó✚☞❫÷
❋só❆❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝õ✘①❁❰➑❴✭➍❛❵❄➀➂ó❋ÿùøsðs❈❖➁

✝ ❘✍❊ ➥ ❙✓Û Ô ❘ ✝ Ò ✟ õ✹❬✉➏❪❬✉ó✚☞
❭ ❬◗ ❴❋❁➐❴✱õ✔❵✉❵ ❊ ✻✾✽✏ÿù✿♥❇②❴✃❯✄æ➜❴✱t→û②➤ ✁❘❵✈✝➔t→û②➤ ✁❻①➏✝ ❘ ❡✤❬✠➤ ❁❛❴✭õ✚❵❾rÖ✡✜➤ ❵✌✂⑧ð✡ñ❧✿♥❇sþ✘✟ ➀❙☞❨÷

×✼ð⑧❈✬øsð⑧❈❿➀➂ï♥ð✡ñ❧❈❖➁✴❃✲✿✧❇✩❀⑧✿♥➀✪➁✴ñ➉❭ ❬◗ ❴❋❁➐❴✱õ✔❵✉❵❄ô❍ó❆❃✲✻✝ï♥ï✔õ✘①❚❰▼❴✱➍❛❵➂÷
❃ ➻❅❄➼❿▼➀❆✖✙✘✂❾▼⑥➁⑨●❇■❍ ➬✠➬✎➮✃➱✳❐④➒✶➐✃➮❍➷❶➱✳➱❻❊✌➬➔➷❱✱✉✭❤✫❩❯✶✫❩✯✾✱✎➷❤✫ ➮❍Ü②❊✳➘✖➴q❇✆➮✥✫✭➬✎➴③✿❚➬➔➴➑✦✦❏✗●
ß➫ó❋ÿùøsðs❈❖➁➸✻✝❇➻✻✾✽❋➁✴❃✬✻❋þ❋➁✼ï✧✿♥❇P⑩✵✻✝þ❆➁✼❈✬❃❖➁✴➁❄➍✯ô❍ó❆❃➉✿❋÷
➮❿ñ❖➁➸✻✝ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿ➺✍✥û❏✿✧❈❖ú❚æ✵❣ ø ❫ ❈❖ó➵➀➂ó❆ÿùøsð⑧❈❖➁➜❭ ❬◗ ❴✥✜❢❵➫ô❍ó❋❃✲✻✝ï♥ï⑤✜ ①❁➙✌ù✱õ✔✿❘❴✱➍❛❵
×✼ð⑧❈✬øsð⑧❈②✝✧➒✇❴ ø ❫✌❵➓❣❳❯➎✜❩①❁➙✌ù✭õ✚✿❘❴✭➍❛❵➓✝✜❭ ◗ ❴❡✜✧❵❝❜Ö✍P❡❆÷



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✑ ✩

❃ ➻❅❄➼❿▼➀❆✖✙✘✂❾▼⑥✑➦❏❇■❍ ➬✠➬✎➮✃➱✳❐④➒✶➐✃➮❍➷❶➱✳➱❻❊✌➬➔➷❱✱✎➴✇✫✮✭✌➬➎✯✾✱✎➮✥✫✭➬✎➴➇✿➚➱❈✫❂❁✓❃✖➮✘✫ ➴❉❁④æ➸❏➎●
×✼❃✟❀⑧➁✪❃❝✦ ✻✝❃✬òs✿❲❈✬❃✬✻❋❃❖✿♥ï♥❅❵✻❋ñ❝t ➪ ❬✉t ➶ ❬✄⑦✆⑦✆⑦✄❬✉tqÞ
ü ➶ ❊ ❯✼❯✠t ➪ ❡✤❬✌❯✠t ➶ ❡✼❡è� ✟☛❯✄t ➪ ❡✤❬ ✑ ☞ ❊ ❯✠t ➪ t ➪ ➤ t ➶ ❡➉→❻è� ✟☛❯✄t ➶ ❡❘❬ ✑ ☞ ❊ ❯✄t ➶ t ➶ ➤ t ➪ ❡☛÷
❋só❆❃②✡➴ô❍❃❖ó❆ÿ ✑ ❈❖ó❻ó③rÖ✡✦❀⑧ó
ß➫ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈➉➒✹Ü✫❴✱æ ✌ ä å◆æ❉ç ❬❶t ➡ ➢ ➪ ❵❄ð✡ñ❖✿♥❇sþ➵øs❃✬ó☛ó❋ô✐ó❋ô⑤➌☞➁✴ÿùÿù✻ ✑ ÷ ❿✩÷
➮✼ñ❧➁ î ï♥þ❋ó❆❃❖✿✧❈❖ú✡ÿ➇✡▼❈❖ó➵➀➂ó❆ÿùøsð⑧❈❖➁➜❭ ❬◗ ❴✥✜❢❵➫ô❍ó❋❃✲✻✝ï♥ï➒✜➋①✘➒✹Ü✫❴✱æ ✌ ä å◆æ❉ç ❬❶t ➡ ➢ ➪ ❵❸÷
ü ➡ ➢ ➪ ❊ ❯✰✜ ①❚➒✹Ü❉❴✱æ ✌ ä✎å◆æ❉ç ❬❶t ➡ ➢ ➪ ❵↕✝❘❭ ❬◗ ❴✥✜✧❵✈❜Ö✍✖❡
❋✡ó❋❃✲✻✝ï♥ï②❲❳①③ü ➡ ❀⑧ó
ß➫ó❆ÿùøsð⑧❈❖➁✦è� ✟ ❲❢❬✤✡❢➹◗✡✆☞❣ô❍❃❖ó❆ÿ➄è� ✟ ❲④❬☛✡❘☞ ➥ ❯❙♥✜♥ ♣ ➤ t ➡ ➢ ➪ ✝✼♥❪❬❶♥ ♣ ①❁❲✧❡☛÷
ß➫ó❆ÿùøsð⑧❈❖➁④❭ ❬◗ ❴✭❲➐❵➅ð✡ñ❖✿✧❇sþ♦è� ✟ ❲❢❬✤✡❄➹➽✡✌☞☎✻✝❇✡❀❼✟ ➀➔☞❫÷
➆❨ô➚❭ ❬◗ ❴✭❲❛❵✈❜Ö✍✥❈❖ús➁✴❇ ✻❋❀s❀③❲✷❈❖ó❱ü ➡ ➢ ➪ ÷
ß➫ó❆ÿõø✡ð⑧❈❖➁❥è� ✟ ❲ ➥ ❯✠t ➡ ➢ ➪ ❡✤❬✤✡✾➹❻✡✌☞✝ô❍❃✬ó❋ÿ❪è� ✟ ❲④❬☛✡❘☞ ➥ ❯✠♥❘t ➡ ➢ ➪ ➤ û▼✝✤♥➑①❚❲❢❬✉û●➊①❁❲✧❡❆÷
ß➫ó❆ÿùøsð⑧❈❖➁Ñ❭ ❬◗ ❴✞❲ ➥ ❯✄t ➡ ➢ ➪ ❡❙❵➫ð✡ñ❖✿✧❇sþ♦è� ✟ ❲ ➥ ❯✄t ➡ ➢ ➪ ❡✤❬☛✡❄➹➽✡✌☞✐✻❋❇✡❀Ð✟ ➀✎☞❨÷
➆❨ô➚❭ ❬◗ ❴✭❲ ➥ ❯✄t ➡ ➢ ➪ ❡❙❵↕❜Ý✍➲❈✬ús➁✪❇➓✻❆❀s❀❚❲ ➥ ❯✠t ➡ ➢ ➪ ❡➡❈❖ó✇ü ➡ ➢ ➪ ÷

×✼ð⑧❈✬øsð⑧❈✈ü Þ ÷



✑ ➀ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

❃ ➻❅❄➼❿▼➀❆✖✙✘✂❾▼⑥☎➱❑❇✍❉ ➬✰❯ ❧ ➘✖➮✃➱❛➻ â◗ ❴❡✜❻➤ ✦➠r✬✜✧❵❻❊✌➬➔➷❥✱✰✯❩✯➋✭ ❧ ✯➧✫ ➮✘✭✻✜❻➤☛❴✭✦ r✬✜✧❵➜➬❋❊✈➍➨❏✗●
❸❏ó✏ó✝❈➛➍✷✻✵❈❿✻❋❇ì✻❋❃❖òs✿✧❈❖❃✟✻✝❃✬❅➵✽❋➁✴❃❧❈✬➁✌☎❣÷
ß➫ó❋ÿùøsðs❈❖➁➸✻✝❇✩❀❵❈✟✻✝òsðsï✚✻✵❈✬➁✦ï♥➀✴✻P❴✱t✻❬✉t ♣ ❵➫ô❍ó❋❃✲✻✝ï♥ï❣ï♥➁✴✻✾✽❋➁◗ñ↕t✛❬✉t ♣ ✿♥❇❚➍➸÷
➆❨❈❖➁✴❃✬✻✝❈❖➁▼❈❖ú✡❃❖ó❆ðsþ❋ú➻✻✝ï♥ï②♥❪❬♦➈❙❬♦➙✎❬❶Ø❻①③✦ ✻✝❇✡❀ìð✡ñ❖➁➡ï♥➀✴✻➲❈✟✻✝òsï♥➁✴ñ❄❈✬ó
➀➂ó❆❇✡ñ❧❈❖❃✬ð✡➀❸❈✵ù❻✟ õ✹❬✉➏✤☞❣ô❍ó❋❃✲✻✝ï♥ï❼õ✻❬❶➏❻①❁❰▼❴✱➍❛❵➂÷

❋só❆❃❏➁✴✻❆➀✟ú❂ø✡✻❋✿✧❃✈õ✹❬✉➏▼①❚❰▼❴✱➍❛❵ ð✡ñ❧➁▼❈✬ús➁➸✻✝ï♥þ❋ó❆❃❖✿✧❈❖úsÿ ó✝ô↕✟ ➀✎☞❣❈✬ó
➁✌☎✏❈✬❃✬✻❆➀❸❈☎ù➑✟ õ✹❬✉➏❪❬✉ó③r ➸ ☞②❨✙ù➑✟ õ✹❬✉➏✤☞❫÷

❋só❆❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝➏➑①✘❰❻❴✭➍❛❵➅❀⑧ó
❋✡ó❋❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝õ➻ô❍ó❆❃❏û❏ús✿♥➀✟ú③➏✘➊✬ õ ✿♥❇ì✻ùø✫ó❆ñ❧❈✉❷❨ó❋❃✟❀⑧➁✪❃➫❈❖❃✟✻✾✽❋➁✴❃✬ñ✬✻✝ï✫ó✝ô➯➍ ❀⑧ó

➮✼ñ❧➁➡➁✠➣✩÷✻❴ ➸ ✍❘❵❄✻✝❇✡❀❼✟ ➀➔☞☞❈❖ó➵➀✪ó❋❇✡ñ❧❈❖❃✬ð✡➀❸❈②ù Ò ✟ õ✹❬✉➏❪❬✉ó③r ➸ ☞❫÷
❋só❆❃✲✻✝ï♥ï❣✽❋➁✴❃❧❈✬✿♥➀✪➁✴ñ❝õ✘①❁❰➑❴✭➍❛❵➫øsð⑧❈✻✜❳❣▲❁➐❴✱õ✔❵➅✻✝❇✡❀ì➀➂ó❆ÿùøsð⑧❈❖➁

ù ❘ ❊ Ú ❙✗❛Ò▼Ô ❘ ù✶Ò➚✟ õ✻❬❶➏✾❬❶ó❊r ➸ ☞
➻ â◗ ❴✥✜➑➤ ✦⑤r♦✜❢❵ ❊ ✻✾✽✏ÿù✿✧❇②❴⑧❯✄æ④❴✞♥✜➈✼➤ ➙✌Ø✜❵❝✝✼♥✖➈➔➤ ➙✌Ø❻①✦ù ❘ ❡✤❬❶ó❊r ➸ ❵➂÷

×✼ð⑧❈✬øsð⑧❈❿ñ❖øsï✧✿✧❈✲✿♥❇✡❀⑧✿✚➀➂➁✴ñ➛➻②â◗ ❴❡✜❻➤ ✦ r✬✜✧❵➫ô❍ó❋❃✲✻❋ï✧ï➊✜❻➤☛❴✭✦ r✬✜✧❵❝①❁✿✧❺✾ù✟ß✥ñ✉✿❘❴✭➍❛❵❸÷



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ✑ ❼

❃ ➻❅❄➼❿▼➀❆✖✙✘✂❾▼⑥➁à●❇■❍ ➱✘P➓➴✚➱✳❐❂✁✈➘✖➴✚➱❀❯☞✱✎➴Ð➮✞➷♦➱♦➱➫❊✌➬✎➷➛æ➸❏➎●
×✼❃✟❀⑧➁✴❃✈✦ ✻❋❃❖òs✿✧❈❖❃✟✻✝❃✬✿♥ï✧❅➵✻❋ñ❝t ➪ ❬❶t ➶ ❬✆⑦✄⑦✆⑦✌❬❶ttÞ
ÿ ↕ ❊ ❯✄t ❐ ➤ ✦ ↕ r✧t ❐ ✝✗ß➯❣❳✡✤❬ ✑ ❬ ➸ ❡
❋✡ó❋❃➨ß❾❣❩✡✤❬ ✑ ❬ ➸ ❀só

ö Ö✞❐✾Þ ✟ t ❐ ➤ ✦ ↕ r✧t ❐ ☞✚❣ ö ❴✱t ❐ ➤ ✦ ↕ r✧t ❐ ❵
❋✡ó❋❃②✡➴ô❍❃✬ó❋ÿ ➸ ❈❖ó❻ó③r❞✡➡❀só

➌☞➁➂❈➛➍✷ò✫➁➡❈❖ús➁➸ñ❧❈❖❃✬ó❋❇sþù➀➂ï♥ð✡ñ❧❈❖➁✴❃➅❈❖❃✬➁✪➁▼ô❍ó❋❃➛æ ✌ ä å◆æ❉ç ÷➮❿ñ❖➁ î ï♥þ❋ó❋❃✬✿✧❈❖úsÿ➺❿õ❈✬ó❵➀➂ó❋ÿùøsðs❈❖➁❄➻②â ◗ ❴✥✜❻➤ ✦ ➡ ➢ ➪ r❱✜❢❵❝ô❍ó❆❃✲✻✝ï♥ï⑤✜➋①③➙✆ù✱õ✔✿✤❴✭➍❛❵❸÷
ÿ ➡ ➢ ➪ ❊ ❯✰✜❻➤ ✦ ➡ ➢ ➪ r❱✜ ✝❅✜➋①③➙✆ù✱õ✔✿✤❴✭➍❛❵❄✻✝❇✡❀❊➻②â◗ ❴✥✜❻➤ ✦ ➡ ➢ ➪ r❱✜✧❵Ú❜❞✍P❡❆÷
❋só❋❃✲✻❋ï✧ï➒✜➑➤ ❰ç①③ÿ ➡ ❀⑧ó
ß➫ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈ ö Ö✞❐✲Þ②✟ ✜ ➥ ❯✄t ➡ ➢ ➪ ❡✖➤ ❰➚❬☛✡✧➹➽✡✌☞☞ð✡ñ❖✿✧❇✡þ➵➁✄➣✫÷②❴ ➸ ✡✠❵❄✻✝❇✡❀⑥✟ ➀❙☞❨÷
ß➫ó❋ÿùøsð⑧❈✬➁❄➻②â ◗ ❴❡✜ ➥ ❯✠t ➡ ➢ ➪ ❡✖➤ ❰❢❵➫ð✡ñ❖✿♥❇sþ ö Ö⑧❐✲Þ ✟➓✜ ➥ ❯✠t ➡ ➢ ➪ ❡✖➤ ❰➚❬☛✡❄➹➽✡✌☞☞✻✝❇✡❀Ð✟ ➀✎☞❫÷
➆❨ô➯➻ â◗ ❴✥✜ ➥ ❯✠t ➡ ➢ ➪ ❡✜➤ ❰④❵↕❜Ý✍✥❈❖ús➁✴❇➻✻❆❀s❀✪✜ ➥ ❯✄t ➡ ➢ ➪ ❡✜➤ ❰ ❈✬ó❱ÿ ➡ ➢ ➪ ÷
ß➫ó❆❇✡ñ➋❈✬❃❖ð✩➀❸❈ ö Ö✞❐✲Þ ✟ ✜➑➤ ❰ ➥ ❯✠t ➡ ➢ ➪ ❡❘❬☛✡✧➹◗✡✌☞✖ð✡ñ❖✿✧❇sþù➁✠➣✩÷✻❴ ➸ ✡❙❵❄✻✝❇✡❀⑥✟ ➀❙☞❫÷
ß➫ó❋ÿùøsðs❈❖➁➉➻②â ◗ ❴❡✜❻➤ ❰ ➥ ❯✄t ➡ ➢ ➪ ❡❙❵➦ð✩ñ❧✿♥❇sþ ö Ö✞❐✾Þ ✟➓✜❻➤ ❰ ➥ ❯✄t ➡ ➢ ➪ ❡✤❬✤✡❄➹➽✡❧☞☞✻✝❇✩❀✘✟ ➀✎☞❫÷
➆❨ô➯➻②â ◗ ❴✥✜❻➤ ❰ ➥ ❯✠t ➡ ➢ ➪ ❡❙❵↕❜Ý✍✥❈❖ús➁✴❇➻✻❆❀s❀✪✜❻➤ ❰ ➥ ❯✄t ➡ ➢ ➪ ❡▼❈✬ó❱ÿ ➡ ➢ ➪ ÷

×✼ðs❈❖øsð⑧❈➉ÿ✠Þ✔÷

❑ í✍▼➓æ➉é✎◆ãíÚð✼ê❁ñ ì ð▼æ➓ç
➯✥➏✐➞❣➜❸➌✾➊❯➢❿➊❯➒❯➺❸➏✖➎♣➜➫➎♣➟✵➔✟→✾➺ ➲ ➊❯➒ ➙✴➒❯➏➋➐②➭✳➔✟➍❫➈➋➌✾➏➋➊✚➧ ✗ ➒❯→✾➈➋➏➋→✪➎✛➳➡➜❸➌✾➊ ➎♣➜❸→❿➔✟→✾➢❛➳➡➒❯➺❸➏➦➼✪➎♣➏➋➏❧➊❋↕♥➜❸➐✫➐❫➏❧➔✟➢✾➒❯→✾➩

➎♣➟✾➐❫➜❸➌◗➩❸➟▼➙➂➏➋➐❫➍❫➒❯➜❸→◗➍✐➜✟↕⑧➎♣➟✾➒❯➍✖➠✲➔✟→✴➌✾➍♣➈➋➐❫➒❯➣◗➎❧➤

è▼ð ë ð✼è❊ð✼æ➉í➜ð✧ï
❖ ➤✕P✾➤ ✒ ➤✐➇☎➣✾➐♣➏➋➍♥↔♣➔✟→☛➤ ➇☎→➉➔✟➊❯➩❸➜❸➐♣➒ ➎❫➟✾➠ ↕✧➜❸➐✦➈❧➜❸→◗➍♣➎♣➐❫➌✾➈✍➎♣➒❯→✾➩➓➈➋➊❯➌✾➍♣➎♣➏➋➐❫➍✦↕♥➐♣➜❸➠ ➔❂➢✾➒❯➍❩➎❨➔✟→✾➈➋➏➵➠✲➔✬➎♣➐❫➒ ➳❋➤◗❂❘✗❙❯❚❲❱❨❳❩❳❩❬✗❱❪❭❲❫✧❴❵❫✧❛✹❜✧❝✮❞❡❭❅❴❢❱❤❣✗✐ ❘✮❝✗❳❅❘❵❥☞❘❦✐ ❱❨❳❲❧✱❛✧❱♠❙✥♥✼❱♦❣✗❘ ➧✿♣rq s✧t ❖✡✉ ➧ ❖ ♣✗✈✗✈◗➤✇ ➤✔➵❝➤ ➨❋P✾➤✵➽❣➔✟→✾➢✾➏➋➊ ➎☎➔✟→✾➢➡➇③➤ ➯✘➤ ➳õ➤ ✒ ➐❫➏➋➍♣➍❖➤✡➯✥➏❧➔✟➺❿➟✾➒❯➏➋➐❨➔✟➐♣➈❨➟✾➒❯➏➋➍☎➔✟➍♣➍❫➜✪➈➋➒❜➔✬➎❫➏➋➢➡➞✖➒ ➎❫➟✼➍❫➒❯➠❏➒❯➊❜➔✟➐♣➒ ➎❢➛➅➠❏➏❧➔✬➨
➍♣➌✾➐❫➏➋➍✏➨❋➔✟→③➔✟➢✾➢✾➒ ➎♣➒ ➙➂➏✔➈➋➊❯➌✾➍♣➎♣➏➋➐❫➒❯→✾➩☞➎♣➏❧➈❫➟✾→✾➒❤①✪➌✾➏❸➤❅②④③ ✐♠✐ ❫✧♥✙❱❨❳✂❜❯⑤❆◗✎❘✱♥❨❚✿❫✡⑥■❘✗♥✙❱♠⑦✥❘✗✐ ② ❱♠❜✱✐ ❜✥❧✗❬ ➧⑨⑧ ❖✗⑩❵❖✧❶ q ❖ s✗s✧t❖ ✈✗✈◗➧ ❖ ♣ ✉ ♣◗➤s◗➤✔➵☞➨❋P❏➽❣➔✟→✾➢✾➏➋➊ ➎☎➔✟→✾➢➡➇➫➤ ➯➉➤ ➳ ✒ ➐❫➏➋➍❫➍❧➤✫➇➉➈❧➔✟→✾➜❸→✾➒❯➈❧➔✟➊⑧➢✾➏➋➈➋➜❸➠❏➣❋➜❸➍♣➒ ➎❫➒❯➜❸→✼➎❫➟✾➏➋➜❸➐❩➛✼↕✧➜❸➐☞➠❏➏➋➎♣➐❫➒❯➈➋➍☞➜❸→✦➔
➭✵→◗➒ ➎❫➏❝➍❫➏✍➎❧➤❸❷ ❝✗❛⑨❘✗❳❅⑦✥❫✧❙✆❱❨❳❦◗❂❘✗♥♠❚r❫✧⑥❹❘✱♥✼❱✼⑦✡❙ ➧❅♣ ✇ q ❺✮❻✡t ❖✡❼ ⑧◗➧ ❖ ♣✗♣ ✇ ➤❺✾➤✕P✾➤ ➨❢➚s➤✟➽❣➔✟➐❩➎❫➟❸❽➏❧➊✥❽➏➋➠③➛❝➔✟→✾➢③➇➫➤✳➭☎➌✓❽➏➋→✾➜✴➈❫➟✾➏❸➤✓❾ ❴❵❫✥❫✧❙✕❘✗❳❅❝✕❭❅❴❵❜✹❿✗❱♠⑥➀❱♠♥✼❬➁❴❵❫❵❭➂❴❵❫✡❙❢❫✧❳❩♥➃❘✗♥✙❱♠❜✗❳❩❙ ➤rP➂➜❸➟◗→③➯❂➒❯➊❯➏✍➛➄✱➼✪➜❸→✾➍ ➨ ➎❫➢☛➤❯➧ ➧ ➟✾➒❯➈❨➟✾➏➋➍♣➎♣➏➋➐❖➧ ❖ ♣✗♣ ❖ ➤



➸ ✍ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

⑧◗➤ ✗ ➤◗➽✔➏➋➐♣➐♣➛✲➔✟→✾➢ ✒ ➤◗➽✔➐♣➛✪➔✟→➂➎❧➤➆➅✝➔✟➍♣➎♣➏➋➐☞➐❫➏➋➊❯➒❜➔✟➝✾➊❯➏✖➣✾➟✪➛✴➊❯➜❸➩❸➏➋→✾➏✍➎❫➒❯➈❝➔✟→✾➔✟➊ ➛◗➍♣➒❯➍❖➤✜➫❢→❦➇ ❴❵❜✡⑦⑨➈➊➉✗❴❯❝✄❱❨❳❩♥➃❫✧❴❢❳❅❘✗➋♥✙❱♠❜✗❳❅❘✗✐➌⑦✥❜✗❳✧⑤☞❫✡❴❵❫✧❳❅⑦✥❫✄❜✗❳❂⑦✥❜✗⑥✶❭❡➈✚⑥❹❜✗✐❤➈✓➍☞❱✼❜✗✐❤➈❸➎✙➏✪➐✆➑✪➒❸◗ ②✚➓✟➧◗➙➂➜❸➊❯➌✾➠❏➏✳s◗➧✾➣✾➔✟➩❸➏❧➍✶⑧✗♣✧t❲✈ ✉ ➧ ❖ ♣✗♣✗♣◗➤✈◗➤ ✗ ➤❋➽✔➏❧➐♣➐♣➛➂➧❋➥➦➤➂P➂➒❜➔✟→◗➩✾➧❆➚s➤➂➔✳➏❧➔✟➐❫→✾➏✍➛➂➧☛➔✟→✾➢❢➳õ➤ ➨ ➒✚➤➣→☎➌✵➔✟➐♣➎♣➏✍➎➦➈➋➊❯➏❖➔✟→◗➒❯→✾➩✿q❘➫❢➠❏➣◗➐❫➜❖➙➂➏➋➢✦➔✟➊❯➩❸➜❸➐♣➒ ➎❫➟◗➠❏➍
➔✟→✾➢✼➍❫➒❯➠➫➌✾➊❜➔✬➎❫➒❯➜❸→◗➍❖➤❸↔ ❫✥⑦✧♥ ③ ❴❵❫➁↕✆❜✗♥➃❫✡❙➣❱❨❳➙➑✚❜✗⑥✶❭ ③ ♥➃❫✧❴➣➛❡⑦✧❱♠❫✧❳❅⑦➜❫ ➧ ❖ ✈⑨❺✱srq s ❖ s✧t❲s ✇ ❺✾➧ ❖ ♣✗♣✗♣◗➤❻✴➤ ✗ ➒❯→✾➈➋➏❧→➂➎➦➽✔➏➋➐♣➐♣➛✼➔✟→✾➢ ➲ ➊❯➒ ➙✴➒❯➏➋➐✹➭✳➔✟➍♣➈➋➌✾➏➋➊✚➤②➫❢→◗↕♥➏➋➐♣➐❫➒❯→✾➩➅➏✍➙➂➜❸➊❯➌◗➎♣➒❯➜❸→✵➔✟➐❩➛▼➎♣➐❫➏➋➏➋➍✐➞✖➒ ➎❫➟▼➍♣➎♣➐❫➜❸→✾➩❏➈➋➜❸➠❄➝◗➒ ➨
→✵➔✬➎♣➜❸➐❫➒❜➔✟➊☛➏➋➙✴➒❯➢✾➏➋→✾➈➋➏❸➤■❾ ❚r❫✥❜✗❴❵❫✧♥✙❱♠⑦✥❘✗✐➊⑦✥❜✗⑥✶❭ ③ ♥✙❫✧❴✆❙❢⑦✧❱♠❫✧❳❅⑦➜❫ ➧ ✇ ❺ ❼r⑩✼✇✱❶ q ✇ ❻ ❖ t ✇ ♣ ✉ ➧ ✇✗❼✗❼✗❼ ➤✉ ➤✔➳õ➤s➽✔➊❯➌◗➠➡➧ ✗ ➤⑧➚✫➐❫➔✬➎♣➎❧➧→✓❝➤ ✙✖➤✏➥s➔✟➐✧↔❫➔✟→☛➧✖✓❝➤ ➯➉➤➌➅s➊❯➜❖➛✴➢☛➧s➔✟→✾➢✇✓❝➤ ➨ ➤✖✓✖➒ ➙➂➏➋➍♣➎❧➤✦➥☞➒❯➠❏➏➅➝✝➜❸➌✾→✾➢◗➍➫↕✧➜❸➐
➍♣➏❧➊❯➏➋➈✍➎♣➒❯➜❸→☛➤❅➝ ➈➆➑✚❜✗⑥✶❭ ③ ♥❋➈r➛➂❬✗❙✥♥➃❫✡⑥➞➛❡⑦✡❱✙➈ ➧✧❻❲q ❺✗❺ ✉ t✮❺✱✈ ❖ ➧ ❖ ♣✱❻⑨s◗➤✮➅✵➜❸➌✾➐❩➎❫➟❝➇✐→✾→✴➌✾➔✟➊✴➇ ➧ ➳✢➼✪➛◗➠❏➣✝➜❸➍♣➒❯➌✾➠
➜❸→❿➎❫➟✾➏❝➥☞➟✾➏➋➜❸➐♣➛❿➜✟↕ ➧ ➜❸➠❏➣✾➌◗➎♣➒❯→✾➩ ⑩ ✒ ➏➋→➂➙➂➏❧➐❧➧ ➧ ➜❸➊❯➜✾➤❯➧ ❖ ♣✱❻ ✇✱❶ ➤♣◗➤ ✒ ➤✟➽✔➐♣➛✪➔✟→➂➎✔➔✟→◗➢ ✗ ➤✳➳➡➜❸➌✾➊ ➎♣➜❸→☛➤✾➇➴➣✝➜❸➊ ➛◗→✾➜❸➠❏➒❜➔✟➊➂➎♣➒❯➠❏➏❣➔✟➊❯➩❸➜❸➐❫➒ ➎♣➟✾➠✘↕✧➜❸➐s➈➋➜❸→✾➍♣➎♣➐❫➌✾➈✍➎♣➒❯→✾➩✳➎♣➟✾➏☞➐❫➏✍➭✵→✾➏➋➢
➽✔➌✾→◗➏❧➠✲➔✟→❿➎❫➐♣➏➋➏➂➤❸❷ ❭✮❭❅✐ ❱✼❫✥❝✄◗❂❘✗♥♠❚r❫✧⑥❹❘✱♥✼❱✼⑦✡❙ ↔ ❫✡♥✙♥➃❫✡❴❢❙ ➧ ❖✡✇ q ⑧ ❖ t❲⑧✗✈◗➧ ❖ ♣✗♣✗♣◗➤❖✡❼ ➤✔➚s➤✡➽✔➌✾→✾➏➋➠✲➔✟→☛➤➸➥☞➟✾➏❿➐❫➏➋➈➋➜❖➙➂➏➋➐♣➛õ➜✟↕✐➎♣➐❫➏➋➏➋➍❄↕✧➐❫➜❸➠ ➠❏➏❖➔✟➍♣➌✾➐❫➏➋➍③➜✟↕☎➢◗➒❯➍❫➍❫➒❯➠❏➒❯➊❜➔✟➐♣➒ ➎❢➛➂➤❄➫❢→★➅❣➤ ✓➦➤→➵✐➜✪➢◗➨
➍♣➜❸→☛➧ ✒ ➤ ➭➫➤➊➔✳➏➋→✾➢✵➔✟➊❯➊✚➧✩➔✟→✾➢➵➚s➤s➥s➔✟➌◗➎♣➌☛➧✡➏❧➢◗➒ ➎❫➜❸➐♣➍❖➧ ◗❂❘✗♥♠❚r❫✧⑥❹❘✗♥✙❱✼⑦✡❙➟❱❨❳➠♥♠❚r❫ ❷ ❴❯⑦❢❚r❘✮❫➜❜✱✐ ❜✥❧✗❱✼⑦➜❘✱✐✶❘✗❳❅❝➡➣❱♠❙✥♥✙❜✱❴❢❱♠⑦✥❘✗✐❡➛❡⑦✡❱✼❫✡❳❅⑦✥❫✧❙ ➧◗➣✵➔✟➩❸➏➋➍➣s ✉ ❻✡t❲s✗♣✗⑧◗➤➔✙✩➢✾➒❯→✴➝◗➌✾➐❫➩❸➟ ➩ →✾➒ ➙➂➏➋➐❫➍♣➒ ➎❢➛✲➚✫➐♣➏❧➍♣➍❖➧✠✙✫➢✾➒❯→✪➝✾➌✾➐♣➩❸➟☛➧ ❖ ♣✱❻ ❖ ➤❖✗❖ ➤✔➇③➤ ✒ ➐❫➏➋➍❫➍❧➤õ➥⑧➜❧➞☞➔✟➐❫➢✾➍✲➔➡➎♣➟✾➏➋➜❸➐♣➛➵➜✟↕☎➟✾➜❸➊❯➒❯➍♣➎♣➒❯➈❿➈❧➊❯➌◗➍♣➎♣➏❧➐♣➒❯→✾➩✾➤❻➫❢→❵➽☎➤✾➳➡➒❯➐❫➺✪➒❯→☛➧➌➅❣➤ ✓➦➤→➳➡➈✉➳➡➜❸➐❫➐❫➒❯➍❧➧➅❣➤✾✓✖➜❸➝✝➏➋➐♣➎♣➍❖➧✡➔✟→◗➢➴➇③➤→✓④➢➋➟✾➏✍➎♣➍❫➺➂➛➂➧✫➏➋➢✾➒ ➎♣➜❸➐❫➍❧➧ ◗✎❘✱♥❨❚✿❫✡⑥■❘✗♥✙❱♠⑦✥❘✗✐✓➡✳❱♠❫✧❴❵❘✗❴❯⑦❢❚❲❱✼❫✡❙❦❘✗❳❅❝ ② ❱♠❜✗✐ ❜➜❧✱❬ ➧ ✒ ➫✚➨
➳➡➇ ➧ ➼➫➍❫➏➋➐♣➒❯➏❧➍✡➒❯→ ✒ ➒❯➍♣➈➋➏➋➎♣➏✻➳✦➔✬➎❫➟☛➤✪➔✟→◗➢❏➥✖➟◗➏❧➜❸➐♣➏✍➎❫➒❯➈❧➔✟➊ ➧ ➜❸➠❏➣☛➤✪➼✴➈➋➒❯➏➋→✾➈➋➏❸➧✴➣✾➔✟➩❸➏❧➍ ✇ ❻ ❖ t ✇ ♣ ❼ ➤✴➇✹➳➸➼❋➧❖ ♣✗♣✱❻✴➤❖✡✇ ➤✔➳õ➤❅➅✝➔✟➐❫➔✟➈❨➟☛➧❆➼❋➤❡➔➦➔✟→✾→✵➔✟→❆➧❋➔✟→✾➢✦➥➦➤✵➯õ➔✟➐♣→✾➜❖➞❝➤✐➇ ➐❫➜❸➝◗➌✾➍♣➎✐➠❏➜✴➢◗➏❧➊✏↕✧➜❸➐✐➭✾→✾➢✾➒❯→✾➩✲➜❸➣◗➎♣➒❯➠✲➔✟➊✏➏✍➙➂➜❸➊❯➌◗➨
➎♣➒❯➜❸→✵➔✟➐♣➛✲➎♣➐❫➏➋➏➋➍❖➤✓❷ ✐ ❧✮❜✗❴❢❱❨♥♠❚❲⑥❹❱♠⑦✥❘ ➧ ❖ srq ❖ ⑧✗⑧✧t ❖ ❻⑨♣◗➧ ❖ ♣✗♣✗⑧◗➤❖ s◗➤✕P✾➤ ➼❋➤✚➅✝➔✟➐❫➐♣➒❯➍❖➧s➇③➤ ➭➫➤✚➔✳➊❯➌✾➩❸➏❸➧✫➔✟→◗➢❊➳õ➤ P✾➤→✙✫➈❫➺✟➔✟➐♣➎❧➤➵➇ →✪➌✾➠❏➏➋➐❫➒❯➈❧➔✟➊✖➔✟➣✾➣✾➐♣➜➂➔✟➈❨➟➵➎❫➜➲➣✾➟➂➛◗➊❯➜❸➩❸➏➋→✾➏✍➎♣➒❯➈
➍❩➛◗➍❩➎❫➏➋➠✲➔✬➎♣➒❯➈❧➍❧➤ ➛➂❬✗❙✥♥➃❫✧⑥❹❘✗♥✙❱✼⑦➁➤➌❜✡❜✱✐ ➈ ➧ ❖ ♣rq ❖ ❻ ✇ t ❖✡✉ ♣◗➧ ❖ ♣✱❻ ❼ ➤❖ ❺✾➤✔➇③➤ ✒ ➤✎➭☎➜❸➐♣➢✾➜❸→☛➤✾➵✐➒❯➏➋➐❫➔✟➐❫➈❨➟✾➒❜➔✟➊❋➈➋➊❜➔✟➍❫➍♣➒ ➭✵➈❧➔✬➎❫➒❯➜❸→☛➤→➫❢→❿➚✡➤◗➇☎➐❫➔✟➝✾➒❯➏❸➧ ➨ ➤ P✾➤✠➵✐➌✾➝✝➏➋➐♣➎❧➧✵➔✟→◗➢✧➭➫➤ ✒ ➏✬➼✪➜✴➏✍➎♣➏➂➧
➏➋➢✾➒ ➎♣➜❸➐❫➍❧➧ ➑➊✐ ③ ❙✥♥➃❫✡❴❢❱♠❳❲❧■❘✗❳❅❝➥➑➊✐ ❘✗❙✥❙✥❱ ➦❸⑦✥❘✗♥✙❱♠❜✗❳ ➧✴➣✾➔✟➩❸➏❧➍✪✈✗⑧✧t ❖✡✇✗✇ ➤✪➯➲➜❸➐❫➊❯➢❿➼✴➈➋➒❯➏➋→➂➎❫➒ ➭✵➈❸➧ ➨ ➜❸→✾➢✾➜❸→❆➧ ❖ ♣✗♣✗✈◗➤❖ ⑧◗➤✕P✾➤ ➧ ➤②➭☎➜❧➞❣➏➋➐▼➔✟→✾➢❚➭➫➤ P✾➤ ➼❋➤②✓☞➜❸➍❫➍❖➤●➳➡➒❯→◗➒❯➠❄➌✾➠ ➍❫➣✾➔✟→✾→✾➒❯→✾➩õ➎♣➐❫➏➋➏➸➔✟→✾➢❂➍❫➒❯→✾➩❸➊❯➏✦➊❯➒❯→◗➺✟➔✟➩❸➏✦➈➋➊❯➌✾➍♣➎♣➏➋➐
➔✟→✵➔✟➊ ➛✴➍❫➒❯➍❧➤❸❷ ❭✱❭❅✐ ❱♠❫✥❝✂➛➂♥➃❘✗♥✙❱❨❙✥♥✙❱♠⑦✧❙ ➧ ❖✡✉ q ⑧⑨❺✹t❲✈⑨❺✾➧ ❖ ♣✗✈✗♣◗➤❖ ✈◗➤✔➚s➤✖➵✖➏❧➊❯➊✫➔✟→✾➢✇➳õ➤✜✓✖➜❸➍♣➏➋→◗↕♥➏➋➊❯➢☛➤❿➥☞➟✾➏❏➈➋➜❸➠❏➣✾➊❯➏✍➳✴➒ ➎❢➛➸➜✟↕✖➭✾→✾➢✾➒❯→✾➩➡➩❸➏➋→✾➏➋➐❫➔✟➊❯➒❤➢❧➏➋➢✥➣✵➔✬➎❫➟◗➍❄➒❯→➸➎❫➜❸➌✾➐♣→✵➔✬➨
➠❏➏➋→➂➎❫➍❧➤④➝ ❜ ③ ❴❢❳❅❘✗✐➊❜❯⑤ ❷ ✐ ❧✱❜✗❴❢❱♠♥♠❚❲⑥➀❙ ➧❩❺✿q s ❼ s✧t❲s ❼ ♣◗➧ ❖ ♣ ✉✗✇ ➤❖ ❻✴➤ ✒ ➤✼➵✖➌✾➍❫➜❸→❆➧❆➼❋➤❋➾✐➏✍➎❩➎❫➊❯➏➋➍❖➧❆➔✟→✾➢▼➥❝➤✵➯✥➔✟➐♣→✾➜❖➞❝➤ ✒ ➒❯➍❫➺➂➨❢➈➋➜❖➙➂➏➋➐❫➒❯→◗➩✾➧✝➔➅↕✚➔✟➍❩➎☎➈➋➜❸→➂➙➂➏❧➐♣➩❸➒❯→✾➩❿➠❏➏➋➎♣➟✾➜✪➢▼↕✧➜❸➐
➣✾➟➂➛✴➊❯➜❸➩❸➏❧→◗➏➋➎♣➒❯➈❝➎❫➐♣➏❧➏➦➐♣➏➋➈❧➜❸→◗➍♣➎♣➐❫➌✾➈✍➎♣➒❯➜❸→☛➤✶➝ ➈✪➑✚❜✗⑥✶❭❡➈ ② ❱♠❜✗✐❤➈ ➧❅✈ ⑩ s✱➧✹❺ ❶ q s✗✈✗♣✧t❲s ✉ ✈◗➧ ❖ ♣✗♣✗♣◗➤❖✡✉ ➤❣➾❝➤❩P➂➔✟➐❫➢✾➒❯→◗➏➂➤✡➥⑧➜❧➞☞➔✟➐❫➢✾➍✐➔❄➩❸➏➋→✾➏➋➐❨➔✟➊❆➎❫➟✾➏➋➜❸➐❩➛▼➜✟↕s➈➋➊❯➌✾➍❩➎❫➏➋➐❫➒❯→◗➩✾➤✕② ❱♠❜✗⑥■❫✡♥✙❴❢❱✼⑦✡❙ ➧ ✇ ⑧rq ✈ ❼ ♣✧t❲✈ ❖✡❼ ➧ ❖ ♣✗✈✗♣◗➤❖ ♣◗➤ ✒ ➤◗➯✘➤➔➳✦➔✬➎♣➌✾➊❜➔➅➔✟→◗➢➥➅❣➤✝➼✴➟✵➔✟➟◗➐❫➜❸➺✪➟✾➒✚➤☞➼✴➣✾➔✟➐❫➍❫➏➋➍❩➎✐➈➋➌◗➎♣➍✳➔✟→◗➢➡➝✝➜✟➎♣➎♣➊❯➏➋→✾➏➋➈❨➺✴➍☎➒❯→▼➩❸➐❨➔✟➣◗➟✾➍❖➤✕➨ ❱❨❙❢⑦✧❴❵❫✧♥✙❫❷ ❭✮❭❅✐ ➈➌◗❂❘✗♥♠❚✿➈ ➧ ✇ ❻ ⑩❵❖ ➨ ✇✱❶ q ❖✗❖ s✧t ❖✡✇ s◗➧ ❖ ♣✗♣ ❼ ➤ ➧ ➜❸➠❏➣✾➌◗➎❫➔✬➎♣➒❯➜❸→✵➔✟➊✏➔✟➊❯➩❸➜❸➐♣➒ ➎❫➟✾➠❏➍❧➧✪➜❸➣❋➏➋➐❫➔✬➎❫➒❯➜❸→✾➍✖➐❫➏➋➍♣➏❖➔✟➐♣➈❨➟
➔✟→✾➢✼➈➋➜❸➠❏➣✾➌◗➎♣➏❧➐✖➍❫➈➋➒❯➏➋→✾➈➋➏ ⑩ ➽✔➌◗➐❫→✵➔✟➝➂➛➂➧✝➽ ➧ ➧ ❖ ♣ ✉ ❻ ❶ ➤✇✗❼ ➤ ✗ ➤✎➳➡➜❸➌✾➊ ➎♣➜❸→▼➔✟→◗➢❄➳õ➤✾➼✪➎❫➏➋➏➋➊✚➤❪✓✖➏✍➎♣➐❨➔✟➈✍➎❫➒❯➜❸→◗➍✐➜✟↕⑧➭✵→◗➒ ➎❫➏➦➢✾➒❯➍❩➎❨➔✟→◗➈❧➏✳↕✧➌✾→✾➈✍➎♣➒❯➜❸→✾➍✖➜❸→✪➎♣➜❄➎♣➐❫➏➋➏➦➠❏➏✍➎❫➐♣➒❯➈❧➍❧➤➨ ❱❨❙❢⑦✡❴❯❫✡♥➃❫ ❷ ❭✱❭➂✐ ➈➌◗❂❘✗♥♠❚✿➈ ➧❅♣ ❖✗⑩❵❖ ➨❋s ❶ q ✇r❖ ⑧✧t ✇ s✗s◗➧ ❖ ♣✗♣✗♣◗➤✇r❖ ➤✓➅❣➤✄➳➡➌✾➐♣➎❫➔✟➩❸➟☛➤ ➧ ➜❸➠❏➣◗➊❯➏➋➳✴➒ ➎♣➒❯➏❧➍✫➜✟↕✏➟✾➒❯➏➋➐❨➔✟➐♣➈❨➟✾➒❯➈✖➈➋➊❯➌✾➍♣➎♣➏➋➐❫➒❯→✾➩➫➔✟➊❯➩❸➜❸➐❫➒ ➎♣➟✾➠❏➍✧q➂➍❩➎❨➔✬➎♣➏✳➜✟↕❆➎❫➟✾➏☎➔✟➐♣➎❧➤ ➑➆➛✚➩ ➧❖✗⑩✼✇✱❶ q ❖✡❼r❖ t ❖✗❖ s◗➧ ❖ ♣ ✉ ❺✾➤✇✗✇ ➤✔➇③➤ ➅☞➤s➚✡➔✟➐♣➺❸➏❧➐❩➨✱✓☞➟✾➜✴➢◗➏❧➍➅➔✟→✾➢➑✓❝➤ ➳õ➤⑧➾✐➏➋➏➋➢✾➟✵➔✟➠➡➤✥➇ ➐❫➏➋➢✾➌◗➈➋➎♣➒❯➜❸→❵➠❏➏✍➎❫➟✾➜✪➢ù↕✧➜❸➐❄→✾➜❸→◗➨❢➔✟➐❫➒ ➎♣➟✾➠❏➏✍➎❫➒❯➈
➢✵➔✬➎❫➔◗➧☛➔✟→✾➢➸➒ ➎❫➍❝➔✟➣✾➣◗➊❯➒❯➈❖➔✬➎♣➒❯➜❸→✦➎❫➜✲➎♣➟✾➏➋➍❨➔✟➌✾➐♣➒❯➈➫➎♣➐❨➔✟→✾➍♣➊❜➔✬➎❫➒❯➜❸→☛➤➓➫❢→✍➫ ❳✧⑤☞❜✗❴❢⑥❹❘✱♥✼❱✼❜✗❳ ➇ ❴❵❜✡⑦✥❫✧❙➜❙✥❱♠❳❲❧✹➭ ➇ ❴❵❜✱➋⑦✥❫➜❫✥❝✗❱♠❳❲❧✗❙➣❜❯⑤✶♥♠❚r❫ ➫ ❳❩♥➃❫✡❴❢❳❅❘✱♥✼❱✼❜✗❳❅❘✗✐❆➑✚❜✗❳✧⑤❢❫✧❴❵❫✧❳❅⑦✥❫✆❜✗❳ ➫ ❳✧⑤☞❜✗❴❢⑥❹❘✱♥✼❱✼❜✗❳ ➇ ❴❵❜✡⑦✥❫✧❙➜❙✥❱♠❳❲❧ ➧◗➣✾➔✟➩❸➏❧➍✪s ✇r❖ t❲s ✇ ⑧◗➧
➚✡➔✟➐❫➒❯➍❧➧ ❖ ♣✗✈ ❼ ➤ ➩ ➾✻✙✔➼ ➧②➲ ➤✇ s◗➤✓➅❣➤ P✾➤❙✓☞➜❸➟✾➊ ↕❩➤s➇☎➊❯➩❸➜❸➐♣➒ ➎❫➟✾➠➯❻⑨✈rq❙➵✐➒❯➏➋➐❨➔✟➐♣➈❨➟✾➒❯➈❧➔✟➊☛➈➋➊❯➌✾➍❩➎❫➏➋➐❫➒❯→◗➩❄➌✾➍♣➒❯→✾➩➫➎♣➟✾➏➦➠❏➒❯→✾➒❯➠➫➌✾➠ý➍♣➣✵➔✟→✾→✾➒❯→✾➩➫➎❫➐♣➏❧➏❸➤➑✚❜✗⑥✶❭ ③ ♥✙❫✧❴ ➝ ❜ ③ ❴❢❳❅❘✗✐ ➧ ❖ ✈rq ♣✗s✧t❲♣✗⑧◗➧ ❖ ♣✱❻⑨s◗➤✇ ❺✾➤✔✓➦➤ ✓❝➤✵➼✴➜❸➺✟➔✟➊✏➔✟→✾➢ ➧ ➤ ✒ ➤✠➳➡➒❯➈❨➟✾➏➋→✾➏➋➐❖➤✩➇✘➍❩➎❨➔✬➎♣➒❯➍♣➎♣➒❯➈❧➔✟➊✏➠❏➏✍➎❫➟◗➜✴➢❿↕♥➜❸➐☞➏✍➙❸➔✟➊❯➌✵➔✬➎♣➒❯→✾➩❏➍❩➛◗➍❩➎❫➏➋➠✲➔✬➎♣➒❯➈➦➐❫➏➋➊❜➔✬➨
➎♣➒❯➜❸→✾➍❫➟◗➒❯➣✾➍❖➤❹➲ ❳❩❱❨❛✗➈❪➳➀❘✗❳❩❙❢❘✗❙➣➛❡⑦✧❱♠❫✧❳❅⑦✥❫ ②④③ ✐❨✐❤➈ ➧❩s ✉ q ❖ ❺ ❼ ♣✧t ❖ ❺✱s ✉ ➧ ❖ ♣✗⑧ ✉ ➤



➧✚➨✖➩ ➼✴➥②✙✚✓②➫❍➾➯➭✘➇☎➾ ✒ ➥✛✓✛✙✾✙ ➧②➲ ➾✳➼✪➥✻✓ ➩✹➧ ➥✛➫ ➲ ➾✘➳❄✙✩➥✻➵ ➲ ✒ ➼ ➸ ✡

➵✕➸✂➺❹➻❸➼➾➽➂➚
➇ ➍♣➌✾➠❏➠✲➔✟➐♣➛ì➜✟↕✲➎❫➟✾➏❵➈➋➊❯➌✾➍❩➎❫➏➋➐➲➒❯→✾➢✾➒❯➈➋➏➋➍õ➔✟→✾➢✘➈➋➜❸→✾➍♣➎♣➐❫➌✾➈✍➎♣➒❯➜❸→✱➈➋➜❸➠❏➣✾➊❯➏✍➳◗➒ ➎♣➒❯➏➋➍➲↕✧➜❸➐✦➎❫➟✾➏

↕♥➔✟➠❏➒❯➊ ➛❏➜✟↕s➈➋➊❯➌✾➍♣➎♣➏➋➐❫➒❯→✾➩➅➠❏➏✍➎♣➟✾➜✪➢✾➍❖➤

➪✶➶r➹❪➘✥➴❢➷☞➬❡➮✹➴☞➱♦➶r➹ ✃➜➹➆❐➂❒✹❮ ➪✶➶r❰✝Ï❡Ð♦❒✹❮➂➱♦➴❯Ñ
Ò❅➴❢➷☞➶r➹❡Ó❦➮⑨Ð♦➬❡➘✥➴☞❒✹➷☞➘ Ô❯Õ➣Ö❋×❹Ø④ÙÚ❰✝➱♦➹Û✮Ü❲Ý Þ✮ß✱à Ö➃á➆â➊ã ä❩Ø✳å❲á➆â➊ã ä➥æ★ç➂Ö❋×■Ø☞è é➥Ö➃ê❆ë✱Ø❹Ö➃➘❢➱❨❰★ì í✿Ø

é➥Ö➃ê✚î✮Ø❹Ö➃➱❨➘❢➶➂ì❪ï✳➴✗ì ð✧Ø
➪✶Ð❨❒⑨ñ❲➹★➮⑨Ð♦➬❡➘✥➴☞❒✹➷☞➘ Ô❵òÕ Ö❋×❹Ø④Ùóñ✗ô❅❰✝➱♦➹✚Ö➃ç➂Ö❋×■Ø✧õ✗ã ×➟ã✮ö●÷✱Ø é➥Ö➃ê✚î✮Ø❹Ö➃➘❢➱❨❰★ì Ø

é➥Ö➃ê✚ø✮Ø❹Ö➃➱❨➘❢➶➂ì❪ï✳➴✗ì Ø
Ò❅➴✡ñ❲ù❡Ð♦❒■➮⑨Ð♦➬❪➘✥➴☞❒✹➷☞➘ Ô❯úÕ Ö❋×❹Ø④Ùû❰✝➱♦➹ü❅ý þ➂ý ÿ ß à Ö✁�✄✂❂ã ☎➁Ø✳å✿×óÙ✆�✄✝✞✂④õ✟☎✆✠☛✡ ö❈×✄è ☞✄✌✎✍✑✏➆ñ✱➷✡❐✚ì

í ➧ ➜❸➠❏➣✾➊❯➏✍➳✴➒ ➎❢➛✲➞✐➟◗➏❧→✼➒❯→✾➣✾➌◗➎✖➒❯➍✖➔❄➍♣➒❯➠❏➒❯➊❜➔✟➐❫➒ ➎❢➛❄↕✧➌✾→✾➈✍➎♣➒❯➜❸→ð➓➧ ➜❸➠❏➣◗➊❯➏➋➳✴➒ ➎❢➛❏➞✖➟✾➏➋→▼➒❯→✾➣◗➌◗➎☎➒❯➍✖➔✟→✼➒❯➍❫➜❸➊❜➔✬➎♣➒❯➜❸→❿➞❣➏➋➒❯➩❸➟➂➎❫➒❯→◗➩



➸ ✑ ✒ ➤✾➽✔✓✖✕✩➇✳➾✖➥➓➇✳➾ ✒✘✗ ➤✵➽✚✙✚✓✛✓✜✕

➵✕➸✂➺❹➻❸➼✓✒➆➚
➇ ➍❫➌✾➠❏➠✲➔✟➐❩➛✱➜✟↕õ➎♣➟✾➏➉➍❫➣✾➊❯➒ ➎❂➒❯→✾➢✾➒❯➈➋➏➋➍➻➔✟→◗➢ ➈❧➜❸→◗➍♣➎♣➐❫➌✾➈✍➎♣➒❯➜❸→✯➈➋➜❸➠❏➣✾➊❯➏✍➳✴➒ ➎❫➒❯➏➋➍➴↕♥➜❸➐➴➎❫➟✾➏
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Abstract

Given a set of leaf-labelled trees with identical leaf sets, the MAST problem, respectively MCT problem, consists of finding a
largest subset of leaves such that all input trees restricted to these leaves are isomorphic, respectively compatible. In this paper,
we propose extensions of these problems to the context of supertree inference, where input trees have non-identical leaf sets. This
situation is of particular interest in phylogenetics. The resulting problems are called SMAST and SMCT.

A sufficient condition is given that identifies cases where these problems can be solved by resorting to MAST and MCT as
subproblems. This condition is met, for instance, when only two input trees are considered. Then we give algorithms for SMAST
and SMCT that benefit from the link with the subtree problems. These algorithms run in time linear to the time needed to solve
MAST, respectively MCT, on an instance of the same or smaller size.

It is shown that arbitrary instances of SMAST and SMCT can be turned in polynomial time into instances composed of trees
with a bounded number of leaves.

SMAST is shown to be W[2]-hard when the considered parameter is the number of input leaves that have to be removed to
obtain the agreement of the input trees. A similar result holds for SMCT. Moreover, the corresponding optimization problems, that
is the complements of SMAST and SMCT, cannot be approximated in polynomial time within any constant factor, unless P = NP.
These results also hold when the input trees have a bounded number of leaves.

The presented results apply to both collections of rooted and unrooted trees.
 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Trees; Isomorphism and refinement relations; Supertrees; Computational biology

1. Introduction

1.1. Supertree problems and methods

This paper proposes two new methods for building supertrees, i.e. trees inferred from other trees. Building su-
pertrees is a problem whose importance increased markedly in the last decade in phylogenetics. Trees considered

✩ Part of these results were briefly covered in a conference paper [V. Berry, F. Nicolas, Maximum agreement and compatible supertrees,
in: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz (Eds.), Proceedings of the 15th Combinatorial Pattern Matching Symposium (CPM’O4),
in: Lecture Notes in Computer Science, vol. 3109, Springer, Berlin, 2004, pp. 205–219].
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in this field are called phylogenies or evolutionary trees because any such tree is an estimation of the evolutionary
history of a set of species or sequences (e.g. genes) called taxa: the leaves of the tree are each labelled by a current
taxon and the branching pattern of the tree describes a speciation scenario leading from ancestral taxa to current ones.
In phylogenetics, the major work in progress is the building of the so-called Tree of Life, a huge tree interrelating
all species of the living realm (see e.g. [38]). Currently, some trees of life are still assembled by hand. According to
systematic biologists, the key problem remains to obtain reliable computational methods to assemble several source
phylogenies into a single supertree [9].

The input of any supertree building method is a collection of trees with different but overlapping sets of leaves. The
output is a tree whose leaf set includes all (or most) species of the input trees and that displays as much as possible
of the branching pattern of the input trees on these leaves. The input trees, usually inferred from different datasets,
often differ upon the position of some leaves or groups of leaves. Current supertree methods can be divided into two
categories depending on the way they handle these conflicts: (i) optimization methods tend to resolve conflicts, i.e.
choose one of the proposed scenarios, according to a specified optimization criterion (e.g. [3,32,34]); (ii) consensus
methods produce supertrees displaying only the parts of the species’ history for which the input trees agree. The
drawback of approach (i) is that output supertrees sometimes contain undesirable or unjustified resolutions of conflicts
[32]. Approach (ii) has been poorly investigated in the supertree context, in contrast with the many consensus methods
available to deal with collection of trees having identical leaf sets. The two known supertree methods of this kind are
the pioneering strict consensus [21] and reduced consensus [37]. Unfortunately, strict consensus usually produces
a supertree with a scant amount of information [10,31] and only applies to the rare case of compatible input trees:
the trees can differ from one another but not actually conflict [9]. Moreover, the use of reduced consensus is not
widespread because a few conflicts only will likely result in a whole set of complementary partial trees as output [37,
Section 4], instead of the single synthetic supertree that is sought. Below, we propose alternative methods affiliated to
approach (ii) that do not suffer from the drawbacks just mentioned.

1.2. Extending MAST and MCT to the supertree context

Almost all supertree methods proposed so far focus on clusters (sets of leaves under internal nodes). This is a
problem whenever the input trees contain some “rogue” leaves, i.e. leaves whose position differs greatly from one
input tree to the other. Indeed, changing the position of just one leaf in a tree can lead to a completely different
set of clusters. Unfortunately, this phenomenon does happen in real supertree instances. Thus, several authors have
suggested that an alternative in designing supertree methods would be to focus on leaves individually rather than to
consider clusters of leaves [10,21,31]. The rationale for this is that, in a number of cases, removing a few leaves upon
whose positions the input trees disagree is sufficient to produce a single informative supertree.

Here we respond to this suggestion by extending to the supertree context a well-known classical consensus prob-
lem and one of its variants. Given a set of leaf-labelled trees with identical leaf sets, the MAXIMUM AGREEMENT

SUBTREE (MAST) problem consists of finding a subtree homeomorphically included in all input trees and with the
largest number of leaves [2,14,17,23,30]. In other words, this involves selecting a largest set of input leaves such that
the source trees are isomorphic (i.e. agree) when restricted to these leaves. Note that this problem is also considered
in various domains other than computational biology. In phylogenetics, when input trees are non-binary, a node with
more than two descendants usually represents uncertainty with respect to the branching pattern of its descendants
rather than a multi-speciation event. The MAXIMUM COMPATIBLE TREE problem (MCT) is a variant of MAST that
takes this into account by seeking a largest set of leaves such that the source trees restricted to these leaves are com-
patible [7,19,24,26] (note that this problem is also called MRST in [26]). Compatibility allows a high-degree node
of a source tree to be resolved (split into several nodes) according to the information present in other source trees.
Note that this is a weaker constraint than the isomorphism required by MAST, and thus allows inclusion of more input
leaves in the output tree.

We call SMAST and SMCT the respective variants of MAST and MCT concerned with supertree inference, i.e.
which allow input trees with differing leaf sets. The use of SMCT rather than SMAST can be advocated when the
edges of the input trees are associated with confidence values (e.g. bootstrap values in phylogenetic analysis). To
obtain a more reliable supertree, edges with insufficient support can be collapsed before the supertree inference is
performed, which gives rise to nodes of higher degree in some input trees. In this case, SMCT is more propitious
than SMAST for inferring a supertree, as it allows a high degree node of an input tree to be resolved according to the
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highly supported branching patterns present in other input trees. In other words, highly supported clusters that remain
in some input trees will not be contradicted by weakly supported alternatives collapsed in other input trees.

Apart from inferring a partial estimate of the species’ history, SMAST and SMCT can also be used to achieve the
following goals in phylogenetics:

• To measure the topological similarity between the input trees considered for a supertree reconstruction. The pro-
portion of leaves not conserved in a produced supertree when solving SMAST and SMCT measures the intrinsic
difficulty of the particular instance considered for supertree building. This difficulty is currently assessed only
through indirect measures, such as the average number of triples or quartets common to two input trees.

• By explicitly indicating leaves upon whose position the input trees conflict, SMAST and SMCT help to identify
leaves that may be involved in horizontal transfers of genes and to identify paralogous sequences in the original
datasets.

• To increase the accuracy of other supertree building methods. For instance, the popular matrix representation with
parsimony (MRP) method [3,34] has relatively low accuracy when the input trees overlap moderately and [11]
recommend adding to the set of input trees a tree with leaves spanning most input trees, that they call a seed tree.
Any supertree that is a solution of SMAST or SMCT most likely contains leaves from most, if not all, input trees
(see Theorem 3) and, moreover, fully agrees with all of these trees by definition. Thus, it is a good candidate for
being a seed tree.

1.3. Related work

We first review known results on the complexity of MAST and MCT. The MAST problem is NP-hard for three
rooted trees of unbounded degree [2], while MCT is already NP-hard for two rooted trees of unbounded degree [26].
When k rooted trees with n leaves are given as input, MAST can be solved in O(nd + kn3) time provided that the
degree of one of the input trees is bounded by d [2,12], and MCT can be solved in O(22kdnk) time provided that all
input trees have degree bounded by d [19]. MCT is also theoretically solvable in polynomial time provided that solely
that the maximum degree of all input trees is bounded [22]. Polynomial-time algorithms with sub-quadratic running
times have been obtained for MAST in the special case of two input trees [14,29,30].

MAST and MCT are known to be fixed-parameter tractable (FPT) in p, the smallest number of leaves to remove
from the input set of leaves such that the input trees agree. The latest result being an O(min{3pkn,2.27p + kn3})

time algorithm for the case of rooted trees (considering unrooted trees adds a p factor) [8]. The MAST problem
(maximizing the number of leaves in an agreement subtree) is hard to approximate on a bounded number of trees
[26] or on trees with a bounded height [20]. The same results hold for MCT [7]. However, the complement problem
of MAST (i.e. minimizing the number of leaves to remove so that input trees are isomorphic) can be approximated
within a constant ratio in polynomial time in both rooted and unrooted cases [2,7,27]. The same result holds for the
complement problem of MCT [7,18].

The extension of MAST to supertree inference has also been considered in [23], and very recently in [28]. How-
ever, the “supertrees” considered in [23] (and subsequent papers) have a different meaning from that considered in
phylogenetics and here. The work of [28] is independent of the results presented here, but studies an extension of
MAST similar to the one we present. [28] give an algorithm for the case of two input rooted trees and present an
approximation result that is complementary to the results shown here. However, they neither consider the case of
unrooted trees, nor the extension of the MCT problem to the supertree context.

1.4. Results

We show how to extend MAST and MCT in a natural way to obtain the SMAST and SMCT problems on supertrees.
We prove that the maximal degree d of input trees does not play any role in solving SMAST and SMCT as any
instance of these problems can be reduced to an instance with small bounded degree. This contrasts with MAST and
MCT problems, for which polynomial-time algorithms are available for input trees of bounded degree only (in the
case of more than two input trees).

We show that any leaf appearing in a single input tree may definitely be included in all supertrees that are solutions
of SMAST and SMCT. We give a sufficient condition for SMAST and SMCT to be solved by using MAST and MCT
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as subproblems. This condition is always fulfilled for collections of only two input trees but also applies to instances
including more trees.

We give algorithms that take advantage of the link between these problems and detail when this leads to polynomial
cases for SMAST and SMCT. The presented algorithms run in time linear to the algorithm solving MAST and MCT,
one of them generalizing the algorithm of [28]. The MERGETREES algorithm we propose also enables computation of
the strict consensus supertree of two trees in O(n) time (where n is the total number of input leaves), which improves
the O(n3) bound stated in [21].

In general, SMAST and SMCT are NP-hard as they are equivalent to MAST, respectively MCT, in the case of input
trees with identical leaf sets. However, by reduction from HITTING SET, we show that SMAST and SMCT are more
difficult than MAST and MCT, as they are W[2]-hard for p (the minimum number of input leaves to remove from
input trees to obtain their agreement, respectively compatibility). This holds even when the instance only consists of
rooted triples (binary trees with three leaves) or unrooted quartets (trees with four leaves).

This suggests that heuristic algorithms may be required to solve these supertree problems in general. However,
no heuristics with a tight approximation ratio can exist for these problems: SMAST and SMCT are hard to approx-
imate (from the results of [20,26] for MAST), and the reduction from HITTING SET is approximation preserving,
which proves that no polynomial-time algorithm can approximate within any constant factor the complement of the
SMAST and SMCT problems (unless P = NP). Note in passing that, compared to the reduction from INDEPENDENT

SET/VERTEX COVER given in [28], the reduction given here from HITTING SET leads to tighter results on the pa-
rameterized complexity and approximability of the complement of SMAST. Moreover, our result also applies to the
complement of SMCT and to the unrooted case. Note that the strong limitations shown here on the approximability
of SMAST and SMCT do not impede the existence of approximation algorithms with non-constant ratio. E.g. [28]
provides a (n/ logn)-approximation algorithm for SMAST on rooted trees.

1.5. Organization of the paper

In the following, Section 2 reviews definitions of MAST and MCT with associated results, then introduces the
SMAST and SMCT supertree problems. Section 3 presents algorithms to solve SMAST and SMCT in the particular
cases where MAST and MCT can be used as subproblems. A sufficient condition for applying these algorithms is also
stated there. Then, Section 4 details how general instances of SMAST and SMCT can be polynomially transformed
into instances of trees having a bounded number of leaves (hence also a bounded degree). On the basis of such
instances, Section 5 shows the intractability and inapproximability results.

2. Definitions and preliminaries

The trees we consider are evolutionary trees (also called phylogenies). Such a tree T has its leaf set L(T ) in
bijection with a label set and is either rooted (at a node denoted root(T )), in which case all internal nodes have at least
two children each, or unrooted, in which case internal nodes have a degree of at least three. In the following, trees
are denoted T , respectively R, respectively U , in statements applying to both rooted and unrooted trees, respectively
applying only to rooted trees, respectively applying only to unrooted trees. When there is no ambiguity, we identify
leaves with their labels. Given a set S, Card(S) denotes the cardinality of S. In particular, if L is a leaf set, Card(L)

denotes the number of leaves in L. The size |T | of a tree T is the number of its leaves: |T | = Card(L(T )). For a node
u in a rooted tree, we denote S(u) the subtree rooted at u (i.e. u and its descendant nodes) and L(u) the leaves of this
subtree. See Fig. 2 for an example. The following definitions apply to rooted and unrooted trees.

Definition 1 (Restriction of a tree). Given a set L of labels and a tree T , the restriction of T to L, denoted T |L, is the
tree obtained in the following way: take the smallest induced subgraph of T connecting leaves with labels in L∩L(T ),
then remove any degree two (non-root) node to make the tree homeomorphically irreducible. If T is a collection of
trees, then define T |L := {T |L: T ∈ T }.

See trees U , U ′ in Fig. 1 for an example. Note that for any tree T and any two label sets L, L′, (T |L)|L′ =

T |(L ∩ L′) = (T |L′)|L.
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Fig. 1. Three unrooted trees. A tree U , a tree U ′ such that U ′ = U |{a, c, e} and a tree U ′′ such that U ′′ ☎ U .

Definition 2 (Tree isomorphism and inclusion). Two trees T , T ′ are isomorphic, denoted T = T ′, if and only if there
is a graph isomorphism T �→ T ′ preserving leaf labels (and the root if both trees are rooted). Given two trees T , T ′,
T is homeomorphically included in T ′ if and only if T = T ′|L(T ).

Definition 3 (Tree refinement). A tree T refines a tree T ′, and we write T ☎ T ′, whenever T can be transformed into
T ′ by collapsing some of its internal edges (collapsing an edge means removing it and merging its extremities). See
Fig. 1 for an example. More generally, a tree T refines a collection T = {T1, T2, . . . , Tk}, denoted T ☎ T , whenever
T refines all Ti ’s in T .

When considering a set of trees with different leaf sets, the preceding definition can be extended [36]:

Definition 4 (Tree compatibility). Let T be a tree with leaf set L, let L′ be a subset of L and T ′ be a tree with leaf
set L′. We say that T displays T ′ whenever T |L′ ☎ T ′. Furthermore, a collection T of trees with different leaf sets is
compatible if there is a tree T that displays every tree in T . In that case, T is said to display T .

Isomorphism and compatibility issues between rooted trees can also be expressed in terms of ancestor relationships.
Given two nodes u and v in a rooted tree R, u < v means that u is a proper ancestor of v and u � v means that u is
an ancestor of v, i.e. that u is either a proper ancestor of v, or v itself. The least common ancestor (or lca) of a set of
leaves L ⊆ L(R) is the unique node u such that u � ℓ for all ℓ ∈ L, and v < u for any other node v that is also an
ancestor of every leaf in L. The lca of L in R is denoted lcaR(L). More particularly, the lca of any pair {ℓ, ℓ′} ⊆ L(R)

is denoted lcaR(ℓ, ℓ′).
The following statements are directly derived from the definitions given previously and are implicitly or explicitly

used in a number of works (for instance [18,33]).

Observation 1. Let R and R′ be two rooted trees on the same leaf set L. The following two statements are equivalent:

(i) R and R′ are isomorphic;
(ii) ∀ℓ, ℓ′, ℓ′′ ∈ L, the two following equations hold

(1)lcaR(ℓ, ℓ′) < lcaR(ℓ, ℓ′′) ⇐⇒ lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′) and

(2)lcaR(ℓ, ℓ′) = lcaR(ℓ, ℓ′′) ⇐⇒ lcaR′(ℓ, ℓ′) = lcaR′(ℓ, ℓ′′).

Moreover, the following two statements are equivalent:

(iii) R refines R′;
(iv) ∀ℓ, ℓ′, ℓ′′ ∈ L, the following holds:

(3)lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′) ⇒ lcaR(ℓ, ℓ′) < lcaR(ℓ, ℓ′′).

2.1. Agreement problems for trees with identical leaf sets

The well-known MAST problem is defined as follows:
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Fig. 2. A collection R = {R1,R2}, one of the MAST(R) trees and the MCT(R) tree. S(u) denotes the subtree induced by a node u and L(u) the
corresponding set of leaves.

Definition 5 (MAST problem). Given a collection T = {T1, T2, . . . , Tk} of trees with identical leaf sets L, an agreement
subtree of T is any tree T with leaves in L such that ∀Ti ∈ T , T = Ti |L(T ). The MAXIMUM AGREEMENT SUBTREE

problem (MAST) consists in finding an agreement subtree of T with the largest number of leaves. Such a tree is
denoted MAST(T ).

The MCT problem is a variant of MAST introduced in phylogenetics to deal with cases where high-degree nodes
represent uncertainty with respect to the relative branching of their child subtrees.

Definition 6 (MCT problem). Given a collection T = {T1, T2, . . . , Tk} of input trees with identical leaf sets L, a tree T

with leaves in L is said to be compatible with T if and only if ∀Ti ∈ T , T ☎ Ti |L(T ). The MAXIMUM COMPATIBLE

TREE problem (MCT) consists in finding a tree compatible with T having the largest number of leaves. Such a tree
is denoted MCT(T ). If there is a tree T compatible with T such that L(T ) = L, then the collection T is said to be
compatible.

Note that an evolutionary tree T properly refining another tree T ′, agrees with the entire evolutionary history of
T ′, while containing additional history absent from T ′: at least one high degree node of T ′ is replaced in T by several
nodes, hence T specifies more speciation events than T ′. Fig. 2 shows examples of trees MAST(T ) and MCT(T )

for a collection T of two rooted trees. Note that ∀T , |MCT(T )| � |MAST(T )| and that MCT is equivalent to MAST
when all input trees are binary. Note also that some instances of the MAST and MCT problems have several optimum
solutions.

2.2. Extending agreement problems to the supertree context

We now consider the case of supertree inference, where input trees are allowed to have different sets of leaves. We
first show how to extend MAST and MCT to this context. Then we distinguish different kinds of leaves that appear in
the input trees, depending on the overlap of these trees. Without loss of generality, the rest of the paper assumes that
any input tree shares at least two leaves with other input trees.

Definition 7 (Leaf set of a collection). Given a collection T = {T1, T2, . . . , Tk} of trees, we denote L(T ) :=
⋃

Ti∈T
L(Ti) the set of all leaves appearing in at least one tree of T .

Definition 8 (SMAST problem). Given a collection T = {T1, T2, . . . , Tk} of trees, an agreement supertree of T is a tree
T with L(T ) ⊆ L(T ) such that ∀Ti ∈ T , T |L(Ti) = Ti |L(T ). An agreement supertree of T that is of maximum size
is called a maximum agreement supertree of T and is denoted SMAST(T ). The corresponding optimization problem
is stated as follows:

Name: MAXIMUM AGREEMENT SUPERTREE (SMAST)
Instance: A finite collection T of trees (all rooted or all unrooted).
Solution: An agreement supertree T of T .
Measure: |T |, to be maximized.

In a similar way, we define:
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Fig. 3. A collection R = {R1,R2} of two source trees on tomatoes taken from [4] and a supertree RM . In this example, the supertree both
represents a SMAST(R) and a SMCT(R). Leaves appearing in only one source tree are displayed in white. Correspondence between numbers
and species: 1—L. lycopersicoides, 2—L. juglandifolium, 3 – L. peruvianum, 4—L. chilense, 5—L. pennellii, 6—L. hirsutum, 7—L. chmielewskii,
8—L. esculentum, 9—L. pimpinellifolium, 10—L. cheesmanii, 11—L. rickii.

Definition 9 (SMCT problem). Given a collection T = {T1, T2, . . . , Tk} of trees, a supertree compatible with T is a tree
T with L(T ) ⊆ L(T ) such that ∀Ti ∈ T , T |L(Ti)☎ Ti |L(T ). A supertree compatible with T that is of maximum size
is called a maximum compatible supertree of T and is denoted SMCT(T ). The corresponding optimization problem
is as follows:

Name: MAXIMUM COMPATIBLE SUPERTREE (SMCT)
Instance: A finite collection T of trees (all rooted or all unrooted).
Solution: A supertree T compatible with T .
Measure: |T |, to be maximized.

Fig. 3 shows a collection R with to source trees of tomato species (Lycopersicon) and a supertree, that both is a
SMAST(R) and a SMCT(R). Fig. 7 shows an example where these two supertrees differ. The two problems stated
above are natural extensions of the problems defined in Section 2.1. More precisely, SMAST, respectively SMCT, is
equivalent to MAST, respectively MCT, when all input trees have the same set of leaves.

Remark 1. Let T be a collection of trees. Any restriction of an agreement supertree of T is also an agreement
supertree of T and any restriction of a supertree compatible with T is also a supertree compatible with T .

Hence, MAST(T ) and SMCT(T ) can potentially contain less leaves than some trees in T .
Let T be a collection of trees with identical leaf set L. Given any subset L′ ⊆ L, there can be only one agreement

subtree of T with leaf set L′. This contrasts with what can happen for agreement supertrees, due to the lack of cross
information between source trees:

Remark 2. Given a collection T = {T1, T2, . . . , Tk} of trees and a subset L ⊆ L(T ), there may be more than one
agreement supertree, respectively compatible supertree, of T with leaf set L.

For instance, consider the collection R = {R1,R2} where R1 := ((a, c), b) and R2 = ((a, d), b), in parenthetical
notation (i.e. Newick format). Any tree in the set {(((a, c), d), b), (((a, d), c), b), ((a, (c, d)), b), ((a, c, d), b)} is a
SMAST(R) or a SMCT(R).

Definition 10 (Types of leaves). Let T = {T1, T2, . . . , Tk} be a collection of trees. Leaves in L(T ) can be partitioned
in three subsets:

(1) leaves appearing in every tree of T . We note L∩(T ) :=
⋂

Ti∈T
L(Ti) this subset of leaves;

(2) leaves appearing in several but not all trees of T . This subset of leaves is denoted L�(T );
(3) leaves specific to a tree of T , i.e. leaves appearing in a single tree of T . This subset of leaves is denoted LS(T ).
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3. Computing SMAST and SMCT

We first study, in Section 3.1, the particular case of a collection of only two trees with different leaf sets but such that
one refines (respectively, is equal to) the other when restricted to common leaves. In that case, it is always possible to
efficiently produce a tree that displays the collection, i.e. a maximum compatible supertree (respectively, a maximum
agreement supertree). We provide a linear-time algorithm that fulfills this purpose.

Then, Section 3.2 shows that for a collection containing an arbitrary number of trees, any maximum agreement
supertree or maximum compatible supertree includes all specific leaves, i.e. leaves that appear in a single tree of the
collection. Based on this property, Section 3.3 shows cases where the MAST and MCT problems can be used to solve
SMAST and SMCT problems, respectively, describing appropriate algorithms. The link between subtree problems
and supertree problems induces polynomial cases for the latter, as listed in Section 3.4.

3.1. Merging two rooted trees in linear time

Let R = {RI ,RA} be a compatible collection of two rooted trees with L(RI ) �= L(RA), such that RA|L(RI ) ☎

RI |L(RA). In other words, RA (loosely or strictly) refines RI when they are both restricted to their common leaves.
This section describes an algorithm called MERGETREES that returns a tree R displayingR. By definition, R contains
all leaves of the two trees and R is a maximum compatible supertree ofR. Moreover, when RA|L(RI ) loosely refines
RI |L(RA), i.e. when both restricted trees are isomorphic, then the tree R output by MERGETREES is a maximum
agreement supertree ofR. To compute a SMCT(R) or SMAST(R) of a collectionR of more than two trees, repeated
calls to MERGETREES operating on two trees will be used, as described in Section 3.3. For the rest of Section 3.1,
trees are considered to be rooted.

Definition 11 (Specific subtree). Let R be a collection of trees and RI ∈R. A specific subtree of RI is any maximal
tree of the form S(vi), where vi is a node of RI such that L(vi) ∩ (L(R) − L(RI )) = ∅. Here, maximal means that if
pi is the parent node of vi , then L(pi) ∩ (L(R) − L(RI )) �= ∅. A leaf in a specific subtree is called a specific leaf.

For instance, consider the collection {RI ,RA} displayed in Fig. 4. RI hosts two specific subtrees: the leaf {y1}

and the subtree rooted at node v′′
i . The leaf {x} is the only specific subtree of RA. In a collection R = {RA,RI } of

two trees, leaves are either specific to RI , specific to RA, or common to both trees. To obtain the desired tree R,
MERGETREES proceeds by grafting specific subtrees of RI into RA. In a way, its goal is similar to the grafting step of
the well-known algorithm of Gordon for computing a strict consensus supertree [21]. However, Gordon’s algorithm
attaches, one by one, specific leaves of the input trees to a “backbone” tree, while the algorithm detailed here proceeds
by grafting each time a whole specific subtree. Using this idea and two simple data structures, we can achieve linear
running time when the grafting step of [21] runs in cubic time. As the tree R output by MERGETREES has to display
RI , the specific subtrees of RI have to be grafted in RA so as to respect the ancestor-descendant constraints of RI

between lcas of leaves (see Observation 1). Sometimes there is a unique place where a subtree can be grafted in order
to respect these relationships, and sometimes there can be several. However, a correspondence between some nodes of
RI and some nodes of RA can be maintained such that a correct place is always easily identified. This correspondence
is explained by the fact that, when restricted to common leaves L∩({RA,RI }), RI is refined by RA. This ensures that
for any node vi ∈ RI |L(RA) there is a unique node va ∈ RA|L(RI ), such that L(vi) = L(va). This correspondence

Fig. 4. Two rooted trees RI and RA with overlapping sets of leaves such that RA|L(RI ) ☎ RI |L(RA), and the tree R returned by the call
MERGETREES(RI ,RA). Specific leaves are indicated by white circles.
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between nodes of the restricted trees RA|L(RI ) and RI |L(RA) can be translated as a correspondence between nodes
of the complete input trees RI and RA:

Definition 12. Let R and R′ be two trees. To any node v in R such that v := lcaR(S) with S ⊆ L∩({R,R′}),
Card(S) � 1, we associate an anchor node v′ in R′, defined as v′ := lcaR′(S). Nodes of R with an anchor in R′

are called anchored nodes.

Note that the previous definition allows both internal nodes and leaf nodes of R to have an anchor in R′. However,
note that some nodes of R can have no anchor in R′ and that some nodes of R′ are not anchors of any node in R.

Remark 3. Let RI and RA be two rooted trees such that RA|L(RI )☎RI |L(RA) and vi ∈ RI be a node with an anchor
node va ∈ RA. We have L(vi) ∩ L∩({RA,RI }) = L(va) ∩ L∩({RA,RI }).

If the root ri of RI has no anchor in RA according to the previous definition, then algorithm MERGETREES

artificially anchors it to a node in RA to enable grafting of specific subtrees hanging from ri or between ri and the
highest anchored node in RI . This artificial anchor is set in the following way: if the root ra of RA is not anchored to
any node in RI then it is used as the anchor for ri . Otherwise, the anchor of ri is set at a new node that is added as a
parent of ra (the algorithm will graft some specific subtrees to this new node that will hence not remain of degree 1).
In Fig. 4, leaves {a, b, c, e} of RI are respectively anchored at similarly labelled leaves in RI ; the internal nodes vi ,
respectively v′

i , is anchored at va , respectively v′
a . The root ri of RI is artificially anchored to a node added as parent

of the original root v′
a of RA (not shown in the figure).

The position of any specific subtree of RI can be considered w.r.t. anchored nodes: either (i) the subtree is hang-
ing from an anchored node, or (ii) it is hanging from a node that is in between two anchored nodes. Thanks to the
corresponding anchors between RI and RA, any specific subtree of RI can be grafted in RA so as to respect ances-
tor/descendant relationships needed for the produced tree to display RI (see Observation 1). Algorithm 1 details in
pseudo-code how this is done given two preprocessed data structures:

• Anchor that associates nodes of RI to their respective anchors in RA.
• SpecificChildren that associates to each node of RI the list of its children that are roots of specific subtrees.

Algorithm 1. MERGETREES(RI ,RA).
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For an example of an execution of MERGETREES, consider the trees RI and RA displayed in Fig. 4. The algorithm
progressively builds tree R, starting from a copy of the tree RA. Then anchors between RI and R are computed.
During this process, the initial root of R (corresponding to the node labelled v′

a in RA) is given a parent node (called
r) to serve as an artificial anchor for ri ∈ RI . During step (i) of the algorithm (i.e. loop in line 2), a copy of the
specific subtree S(v′′

i ) of RI is grafted to the anchor r of ri in R. Then during step (ii) (i.e. loop in line 3), the specific
leaf-subtree y1 hanging in RI from the parent of the anchored node b is grafted in R to a new node inserted between
the leaf labelled b and its parent. Fig. 4 shows the resulting tree R.

Theorem 1. Given a collection R = {RI ,RA} of two rooted trees such that RA|L(RI ) ☎ RI |L(RA), the algorithm
MERGETREES(RI ,RA) returns a tree R such that L(R) = L(R) and such that R is a SMCT(R). In the particular
case where RA|L(RI ) = RI |L(RA), then R is a SMAST(R).

Proof. First, it is easy to see that L(R) = L(RI )∪L(RA): R is initially set at RA and copies of all specific subtrees of
RI , i.e. containing all leaves in L(R) − L(RA), are then grafted into R. Hence, if R displays the two input trees, then
it is a SMCT(R), because there is no tree larger than R with leaves in L(R). The output tree R displays RA, because
R is initially set at RA, and the only modifications made to this tree are additions of subtrees containing leaves not
belonging to RA, i.e. not changing R|L(RA). It remains to be proven that R displays RI . To that aim, we prove that
R|L(RI ) ☎ RI |L(R) because, together with L(RI ) ⊆ L(R), this proves that R displays RI . R|L(RI ) ☎ RI |L(R) is
proven by induction on the number of grafts performed by the algorithm. The initial step of the induction holds as,
before the first graft, R = RA, and we know by assumption that RA|L(RI )☎RI |L(RA). Now suppose the result holds
for the first g � 0 grafts and that a (g + 1)th specific subtree Sp of RI is grafted into R, and for the needs of the proof,
let R′ be the resulting tree. We have to prove that R′|L(RI ) ☎ RI |L(R′) which, by Observation 1, is equivalent to
showing that for all ℓ, ℓ′, ℓ′′ in L(R′) ∩ L(RI ) the following holds:

(4)lcaRI
(ℓ, ℓ′) < lcaRI

(ℓ, ℓ′′) ⇒ lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′).

There are several cases depending on the number of these leaves already present in R before Sp is grafted:

(1) Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 0: then the three leaves belong to Sp ∈ RI and, since an exact copy of Sp is grafted
into R, the relationships between lcas of leaves in L(Sp) are reproduced in R′ as they are in RI , hence (4) holds.

(2) Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 3: this means that the three leaves belong to R before the grafting of Sp , hence (4)
holds by induction hypothesis since grafting a subtree does not alter lca relationships between already present
leaves in R.

(3) Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 1: w.l.o.g. suppose ℓ ∈ L(R), that is ℓ /∈ L(Sp), hence lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′) <

lcaRI
(ℓ′, ℓ′′). As R′ is obtained by adding a copy of Sp (containing ℓ′ and ℓ′′) by a new edge (v, v′) as a new child

subtree of a node v ∈ R, this means that lcaR′(ℓ, ℓ′) = lcaR′(ℓ, ℓ′′) � v < v′ � lcaR′(ℓ′, ℓ′′), hence (4) holds.
(4) Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 2: numerous but simple sub-cases arise here. For the sake of readability, this part of

the proof is presented in Appendix B.

In the particular case where RA|L(RI ) = RI |L(RA), we also have to show that the equivalent of Eq. (1) of Obser-
vation 1 holds for R′ and RI . This proof strictly follows the proof given above for (4), and is thus omitted. ✷

Theorem 2. Algorithm MERGETREES(RI ,RA) runs in O(n) time, where n = Card(L(RI ) ∪ L(RA)).

Proof. We first detail the cost of preprocessing the data structures used by the algorithm (line 1). To initialize the
SpecificChildren data structure, a simple O(n) search of each tree RI and RA enables us to know which leaves of each
tree are specific. Then an O(n) postorder search of each tree enables us to identify the children of each node that are
specific. To initialize the Anchor data structure, leaf-nodes of RI with a label in L∩({RA,RI }) are directly anchored at
nodes of RI sharing the same label. Then lca relationships are preprocessed in RI and RA in O(n) time [25]. LetO be
the left-right order in which the leaves of L∩({RA,RI }) appear in RI . The O(n) pairs (ℓi, ℓi+1) of successive leaves
inO are then considered. For each of these pairs, a single query for vi := lcaRI

(ℓi, ℓi+1) and for va := lcaRA(ℓi, ℓi+1)

is performed, each time costing only O(1) thanks to the preprocessing step. Only these pairs of leaves have to be
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considered to span all internal nodes vi of RI for which an anchor has to be determined, and to obtain the anchor va

for each of them (see Appendix A for more details). Hence, initializing the Anchor data structure costs O(n) time.
Step (i) of the MERGETREES algorithm is performed by a recursive search of the tree RI , during which O(n)

nodes vi are considered. Knowing whether a given node vi has an anchor in RA is O(1) time, thanks to the Anchor

data structure. If so, knowing each specific child of vi is also O(1) time thanks to the SpecificChildren data structure.
Note that each tree contains O(n) specific children. For each specific child c of vi , a copy of S(c) is grafted under
Anchor(vi ), which costs a time proportional to the size of this subtree, O(|L(c)|). Since non-intersecting subtrees S(c)

are considered over all examined nodes vi , the total size of grafted subtrees is bounded by the number of nodes in the
tree, i.e. by O(n), which is then the cost of step (i).

Step (ii) is performed by a recursive postorder search of RI . Every time an anchored node v is met, the edges on the
path from vi to its closest ascendant that is also anchored are explored (note that O(n) such edges exist in RI ). During
this upward walk, each time a non-anchored node vi is met, copies of specific subtrees hanging from vi are grafted
into RA to a place identified in O(1) (nodes va and vnew). Specific subtrees S(c) to be grafted are each identified in
O(1) and grafted in O(|L(c)|). This costs

∑

c |L(c)| ∈ O(n) total time. Hence, step (ii) also costs O(n) time. ✷

Corollary 1. The strict consensus supertree [21] of two trees containing n leaves in total can be computed in O(n)

time.

Proof. Computing the strict consensus supertree T of a collection T = {T1, T2} of two trees involves four steps:

(1) computing the restrictions T ′
1 and T ′

2 of the input trees to L∩(T );
(2) computing the strict consensus tree T ′ of the trees T ′

1, T
′
2 (having the same set of leaves);

(3) collapsing suitable edges (by joining their two extremities) in T1 and T2 such that T1|L∩(T ) = T ′ and
T2|L∩(T ) = T ′;

(4) T is obtained by grafting specific subtrees of the modified T1 and T2 in tree T ′, then collapsing edges in the parts
of T ′ where both specific subtrees of T1 and T2 have been inserted.

Step 1 is clearly done in O(n) by traversals of the trees. Several O(n) algorithms are known for Step 2 (e.g. [6]).
Step 3 is done by first anchoring nodes of T ′

1 and T ′
2 in T ′, then jointly traversing T1 and T ′ and similarly for T2 and T ′,

hence requiring O(n) time. Step 4 first performs two calls to MERGETREES, obtaining a tree T in O(n) time. When
keeping track of which input tree the specific subtrees originate from, a single traversal of T (requiring O(n) time) is
then enough to decide which specific subtrees have to be collapsed. Collapsing a subtree is linear in the number of its
edges, i.e. all collapsing operations in T require O(n) total time. ✷

When considering collections of more than two trees, the MERGETREES algorithm will be used several times to
attach specific subtrees from the different input trees to an initial backbone tree. The order in which input trees are
processed does not change the set of leaves of the produced supertree. However, the shape of the supertree can vary
depending on this order. This is not relevant to solve SMAST and SMCT, but can lead the supertree to possess some
edges that can be considered as arbitrary from a phylogenetic standpoint. However, such edges can easily be detected
and collapsed through known algorithms [35].

3.2. The inclusion of specific leaves

The following result states that all specific leaves of a collection are systematically included in any maximum
agreement supertree or maximum compatible supertree of the collection. Intuitively, this result is not surprising since
the information for positioning a specific leaf comes only from one input tree. Thus, no disagreement or incompat-
ibility arises by positioning the leaf according to this input tree. Nonetheless, the proof requires handling a certain
number of restrictions of trees and intersection of leaf sets.

Theorem 3. Let R be a collection of rooted trees with overlapping sets of leaves. All specific leaves of R appear in
any SMAST(R) and in any SMCT(R).
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Fig. 5. The set of leaves L(R) of a tree collection R = {R1,R2, . . . ,Rk}, decomposed into the three sets L∩(R),L�(R) and
LS(R) =

⋃

Ri∈R
LS(Ri ), all displayed in bold lines. The figure also displays the leaf set L(Ri ) of a tree Ri ∈ R, in plain thin lines, and

leaf sets L(RI ), respectively L(R), in dotted, respectively dashed lines, mentioned in the proof of Theorem 3, where R is a SMCT(R) assumed to
not cover all leaves of LS(R) for the sake of contradiction.

Proof. The proof is given for the SMCT problem. The proof for SMAST is quite similar. Let R be a SMCT(R).
The proof proceeds by supposing that there is a specific leaf ℓ ∈ LS(R) such that ℓ /∈ L(R) and shows that a single
run of algorithm MERGETREES gives a tree containing ℓ that is both a SMCT(R) and larger than R, which is in
contradiction with the maximality of R. Several leaf sets involved in the proof are exemplified in Fig. 5.

Let Ri be the tree ofR from which ℓ originates and let RI := Ri |(L(R) ∪ LS(Ri)). Basic set operations show that

(5)L(RI ) ∩ L(R) = L(Ri) ∩ L(R).

By definition of R, R|L(Ri) ☎ Ri |L(R), i.e.

(6)R|
(

L(R) ∩ L(Ri)
)

☎ Ri |
(

L(Ri) ∩ L(R)
)

,

(7)R|L(RI ) ☎ Ri |
(

L(RI ) ∩ L(R)
)

,

(8)R|L(RI ) ☎ RI |L(R),

where (7) results from the use of (5) on both sides of (6), and (8) derives from Ri |L(RI ) = RI .
Let R′ be the tree returned by the call to MERGETREES (RI ,R). From (8), Theorem 1 applies and gives

(9)L(R′) = L(R) ∪ L(RI ).

As, ℓ ∈ L(RI ) − L(R), we deduce from (9) that

(10)Card
(

L(R′)
)

> Card
(

L(R)
)

.

Also, by definition of RI , we have L(RI ) = L(Ri) ∩ (L(R) ∪ LS(Ri)) = (L(Ri) ∩ L(R)) ∪ LS(Ri). Combined with
(9), we then have

(11)L(R′) = L(R) ∪ LS(Ri).

From (8) and Theorem 1, we also know that R′ is a SMCT({RI ,R}), thus

(12)R′|L(RI ) ☎ RI |L(R′).

From (9) and the definition of RI , basic set operations show that L(R′) ∩ L(RI ) = L(R′) ∩ L(Ri), thus the left term
of (12) can be rewritten as R′|L(Ri); its right term can be rewritten as Ri |L(R′) (replacing RI by its definition and
then using (9)), leading to

(13)R′|L(Ri) ☎ Ri |L(R′).

Moreover, from Theorem 1, R′|L(R) ☎ R|L(R′). Since, L(R) ⊆ L(R′), this means that

(14)R′|L(R) ☎ R.
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Now consider any Rj ∈R such that Rj �= Ri . From LS(Ri) ∩ L(Rj ) = ∅ and (11) we obtain

(15)L(Rj ) ∩ L(R) = L(Rj ) ∩ L(R′),

from which we deduce (R′|L(R))|L(Rj ) = R′|(L(R) ∩ L(Rj )) = R′|L(Rj ). Thus, restricting both terms of (14) to
L(Rj ), we obtain R′|L(Rj ) ☎ R|L(Rj ). Combining this with R|L(Rj ) ☎ Rj |L(R) (which holds by definition of R)
shows by transitivity that R′|L(Rj ) ☎ Rj |L(R). This can be rewritten as

(16)R′|L(Rj ) ☎ Rj |L(R′)

since (15) also implies Rj |L(R) = Rj |L(R′).
Eq. (13) for Ri and Eq. (16) for all Rj ∈R,Rj �= Ri , show that R′ is a supertree compatible with R. Moreover,

from (10), R′ contains more leaves than R := SMCT(R), a contradiction. ✷

3.3. Using MAST and MCT as subproblems

In the general case, it is not possible to solve SMAST, respectively SMCT, by considering MAST, respectively
MCT, as a subproblem. For instance, Fig. 6 shows a collection R with only three rooted trees, where the trees
SMAST(R) and SMCT(R) do not include MAST(R) and MCT(R) as restrictions. However, in the particular case
where every leaf of the collection belongs either to a single tree or to all trees of the collection, the connection be-
tween subtree and supertree problems can be exploited. See algorithm BUILDSMCT (Algorithm 2) to solve SMCT.
The algorithm proceeds from a maximum compatible tree of the input trees restricted to common leaves. Then, specific
subtrees of each original input tree are added by successive calls to the MERGETREES algorithm.

To prove the correctness of BUILDSMCT, we first need to establish the three following invariants:

Fig. 6. A collection R = {R1,R2,R3} of rooted input trees for which the trees MAST(R) and MCT(R) can not be used as backbones of SMAST(R)

and SMCT(R).

Algorithm 2. BUILDSMCT (R).
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Lemma 1. Given a collection R = {R1,R2, . . . ,Rk} such that L�(R) = ∅, the following statements hold at each
iteration i (1 � i � k) of the loop of algorithm BUILDSMCT:

(A) let RI := Ri |(L(Ri−1
M ) ∪ LS(Ri)) and RA := Ri−1

M be the trees given as input to MERGETREES in line 2,
RA|L(RI ) ☎ RI |L(RA) holds;

(B) L(Ri
M ) = L(R0

M ) ∪
⋃

j�i,Rj ∈R LS(Rj );

(C) Ri
M is a supertree compatible with R.

The proof of the lemma is done by induction on the iterations of the loop in algorithm BUILDSMCT, and is
included in Appendix C. The correctness of the algorithm BUILDSMCT directly derives from Lemma 1. Moreover,
its running time mainly depends on that of the algorithm for solving MCT on an instance of the same or smaller size.

Theorem 4. Let R = {R1,R2, . . . ,Rk} be a collection of rooted trees such that L�(R) = ∅. Algorithm
BUILDSMCT(R) computes a maximum compatible supertree of R in O(N + kn) time where n is the maximum
number of leaves in a tree ofR, and N is the time needed to compute a rooted maximum compatible tree ofR|L∩(R).

Proof. From Lemma 1(C), the tree Rk
M returned by the algorithm is a supertree compatible with R. Moreover, it is

of maximum size among such supertrees. Indeed, suppose there is a tree R = SMCT(R) such that |R| > |Rk
M |. Since

L(Rk
M) = LS(R) ∪ L(R0

M) (from Lemma 1(B)) and L(R) = LS(R) ∪ L∩(R) (from L�(R) = ∅) then R contains
more leaves of L∩(R) than Rk

M , i.e.

(17)
∣

∣R|L∩(R)
∣

∣ >
∣

∣Rk
M |L∩(R)

∣

∣ =
∣

∣R0
M |L∩(R)

∣

∣.

However, as R|L∩(R) is a collection of trees on the same leaf set, L∩(R), and L(R|L∩(R)) ⊆ L∩(R), the fact that
R is a supertree compatible withR implies that R|L∩(R) is a tree compatible with the collectionR|L∩(R). But then
(17) is in contradiction with the maximality of R0

M among the trees compatible with this collection. Thus, Rk
M is a

maximum compatible supertree of R.
Concerning the running time, the kn term results from both the restrictions of input trees and from calls to MERGE-

TREES: lines 1 and 2 restrict each of the k input trees to a subset of its leaves, necessitating a single O(n) traversal of
the tree each time; moreover, line 2 performs k calls to MERGETREES, each requiring a time proportional to the size
O(n) of the trees given as input to the call, by Theorem 2. The N term results from the computation of a maximum
compatible tree of R|L∩(R) in line 1. ✷

Note that the kn term in the complexity of BUILDSMCT can be reduced to an n term by integrating this algorithm
with MERGETREES and computing all anchors between the trees ofR and R0

M before performing the grafts of specific
subtrees. However, the N majoring term would remain.

A simple modification of the algorithm BUILDSMCT yields an algorithm, BUILDSMAST, that solves SMAST:
in line 1, use a tree MAST(R|L∩(R)) instead of a tree MCT(R|L∩(R)) to initialize R0

M .

Theorem 5. Let R = {R1,R2, . . . ,Rk} be a collection of rooted trees such that L�(R) = ∅. Algorithm
BUILDSMAST(R) computes a maximum agreement supertree of R in O(N ′ + kn) time where n is the maximum
number of leaves in a tree of R and N ′ is the time needed to compute a rooted maximum agreement subtree of
R|L∩(R).

Proof. The correctness of BUILDSMAST is shown in a very similar way as that of BUILDSMCT, replacing in the
above results (e.g. in Lemma 1(A)) each refinement relation between trees by an equality (i.e. isomorphism) of these
trees. The complexity proof is quite similar to that of Theorem 4, with N being replaced with N ′. ✷

Now consider the case where the input trees are unrooted. By rooting unrooted trees on the edge leading to a
common leaf, isomorphism and refinement relations between unrooted trees translate into the same relations between
corresponding rooted trees [8, Lemma 4]. Hence, the SMAST and SMCT problems on unrooted trees can be easily
reduced to the same problems on rooted trees.
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Theorem 6. Let U = {U1,U2, . . . ,Uk} be a collection of unrooted trees sets such that L�(U) = ∅.
One can compute a tree SMAST(U), respectively SMCT(U), in O(M + kn) time where M is the time needed to

compute an unrooted tree MAST(U |L∩(U)), respectively MCT(U |L∩(U)).

Proof. Consider the case of the SMCT problem (the proof for SMAST is similar). Make the following modifications
to BUILDSMCT: first compute U0

M = MCT(U |L∩(U)) by applying an algorithm to solve the problem on unrooted

trees [19]. Then choose an arbitrary leaf ℓ ∈ L(U0
M), compute the collectionR= {R1,R2, . . . ,Rk} of rooted trees such

that Ri ∈R is obtained by rooting Ui ∈ U (inserting a new node) on the external edge leading to leaf ℓ. Similarly, R0
M

is initialized as the tree obtained by rooting U0
M on the edge leading to ℓ. Then the for loop remains the same. The

last modification is to unroot the obtained tree Rk
M before returning it.

Concerning the correctness of the modified algorithm, first note that R0
M = MCT(R|L∩(R)) [8, Lemma 5].

Now, the k calls to algorithm MERGETREES give a tree Rk
M such that Rk

M = SMCT(R) (Theorem 4) and such that

L(Rk
M ) = L(R0

M) ∪ LS(R) (Lemma 1(B)). Let U k
M be the tree obtained by unrooting Rk

M . Since refinement relations
are preserved by unrooting trees [8, Lemma 4], U k

M is a supertree compatible with U . Moreover, it is of maximum size.
Indeed, a maximum compatible supertree U ′ of U including more leaves than U k

M would necessarily contain more

leaves of L∩(U) than U k
M (because L(U) = L∩(U) ∪ LS(U) and LS(U) ⊆ L(U k

M) = L(Rk
M ) = L(R0

M ) ∪ LS(R) =

L(U0
M ) ∪ LS(U)). Thus, U ′ would contain more leaves of L∩(U) than U0

M does, implying that U ′|L∩(U) would be a

tree compatible with U |L∩(U) of larger size than U0
M , which is a contradiction with the definition of the latter.

The running time differs from the original BUILDSMCT by the fact that the MCT is computed on unrooted trees,
requiring O(M) time instead of O(N). Choosing ℓ is O(1) time, computing R is O(kn) time, and unrooting Rk

M is
O(1) time. Taking restrictions of trees in line 2 is O(kn). Thus, the modified algorithm requires O(M + kn) time. ✷

The previous theorems enable to state the relationships between subtree and supertree problems for a collection T
when L�(T ) = ∅.

Corollary 2. Let T be a collection of trees such that L�(T ) = ∅. Any tree MAST(T |L∩(T )), respectively
MCT(T |L∩(T )), is the restriction to L∩(T ) of some tree SMAST(T ), respectively SMCT(T ).

Note that the condition required for Corollary 2 to apply is always fulfilled for collections T of only two trees,
because L(T ) = L∩(T ) ∪ LS(T ). Fig. 7 shows an illustration of the corollary in such a case. Lastly, note that
it is also true that in this case the restriction to L∩(T ) of any tree SMAST(T ), respectively SMCT(T ), is a tree
MAST(T |L∩(T )), respectively MCT(T |L∩(T )).

3.4. Polynomial cases

Particular cases where SMAST and SMCT problems can be solved in polynomial time are deduced from the above
results and from works on MAST and MCT.

Corollary 3. Let T = {T1, T2, . . . , Tk} be a collection of trees (all rooted or all unrooted).

(i) The SMAST problem on two trees can be solved in polynomial time.

Moreover, when L�(T ) = ∅,

(ii) the SMAST problem can be solved in polynomial time whenever the maximum degree of an input tree is bounded,
(iii) the SMCT problem on T can be solved in polynomial time whenever the degree of all input trees is bounded.

Proof. Consider the case where trees in T are rooted. In this case: (i) derives from Theorem 5 and from efficient algo-
rithms that solve MAST when T contains only two trees [14,29,30]; (ii) follows from Theorem 5 and the algorithms
of [2,12]; (iii) follows from Theorem 4 and [22]. If T is a collection of unrooted trees, then the result follows from
Theorem 6 and the works cited in the rooted case.
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Fig. 7. A collection R = {R1,R2} of two input trees (L∩(R) = {a, b, c, d, e}), two trees R0
M := MAST(R|L∩(R)) and R′0

M := MCT(R|L∩(R))

and two trees SMAST(R) and SMCT(R), in which the structure of R0
M , respectively R′0

M , is displayed in bold lines.

4. Reduction to instances involving smaller trees

We now show how trees of arbitrary size can be described by subtrees of small bounded size. This decomposition
will be used to prove intractability results in the next section. Rooted trees of arbitrary size can be described by rooted
trees on three leaves.

Definition 13 (Rooted triples and fans). A rooted triple (or resolved triple) is a binary rooted tree on three leaves.
A fan (also called unresolved triple) is a rooted tree on three leaves with only one internal node. On three given
distinct leaves a, b and c, there are three possible rooted triples, denoted bc|a, respectively ac|b, respectively ab|c,
depending on their innermost grouping of two leaves (bc, respectively ac, respectively ab). E.g. tree R0

M of Fig. 7 is
the rooted triple ac|e. The only one possible fan on this set of leaves is denoted (a, b, c).

Let R be a rooted tree. For any set {a, b, c} of three leaves in L(R), R|{a, b, c} is either a rooted triple or a fan. We
define rt(R), respectively f (R), as the set of rooted triples, respectively fans, of R induced by the 3-leaf subsets of
L(R).

For instance, in Fig. 2,

rt(R2) =
{

ad|b, ad|c, ad|e, ab|e, ac|e, bd|e, cd|e, bc|e
}

,

f (R2) =
{

(a, b, c), (b, c, d)
}

.

The basic building stones of unrooted trees are quartets and stars:

Definition 14 (Unrooted quartets and stars). A quartet is a binary unrooted tree on four leaves. A star is an unrooted
tree with only one internal node to which four leaves are connected. Given four distinct leaves a, b, c and d , there
are three possible quartets, respectively denoted ab|cd (corresponding to the binary tree in which the path from a to
b does not intersect the path from c to d), ac|bd and ad|bc, and only one possible star denoted (a, b, c, d).

Let U be an unrooted tree. For any set Q of four leaves appearing in U , U |Q is either a quartet or a star. We define
q(U), respectively s(U), as the set of quartets, respectively stars, of U induced by 4-leaf subsets of L(U).
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For instance, in Fig. 1,

q(U) =
{

ad|bc, ad|be, ad|bf, ad|ce, ad|cf, ad|ef, bc|ef, bd|ef, cd|ef, ab|ef, ac|ef
}

,

s(U) =
{

(a, b, c, e), (a, b, c, f ), (b, c, d, e), (b, c, d, f )
}

.

The following well-known results show that isomorphism and compatibility of rooted, respectively unrooted, trees
can be expressed by relations on sets of induced rooted triples and fans, respectively quartets and stars:

Lemma 2. Let R, R′ be two rooted trees.

(i) R is isomorphic to R′ if and only if rt(R) = rt(R′) and f (R) = f (R′).
(ii) R refines R′ if and only if rt(R′) ⊆ rt(R) and L(R) = L(R′).

Let U , U ′ be two unrooted trees.

(iii) U is isomorphic to U ′ if and only if q(U) = q(U ′) and s(U) = s(U ′).
(iv) U refines U ′ if and only if q(U ′) ⊆ q(U) and L(U) = L(U ′).

Proof. (i) derives from [12, Lemma 6.6], (iii) is [2, Theorem 2] and [13, Theorem 1] yields (ii) and (iv). ✷

We can now show that solving SMAST and SMCT on instances with input trees of arbitrary degree is equivalent to
solving the same problems on trees with both degree and size bounded by a small constant. This contrasts with MAST
and MCT which are trivial when the input trees contain a bounded number of leaves. Moreover, MAST is polynomial
in the case where an input tree has a bounded degrees [2,12]. Note also that having trees with bounded degree is a
sufficient condition for the algorithm of [22] to solve MCT in polynomial time.

We first define collections of rooted triples and fans, respectively unrooted quartets and stars that can be obtained
from a collection of general rooted trees, respectively general unrooted trees:

Definition 15. Given a collection R of rooted trees, define:

rt∪(R) =
⋃

Ri∈R

rt(Ri) and f∪(R) =
⋃

Ri∈R

f (Ri).

Similarly, given a collection U of unrooted trees, define:

q∪(U) =
⋃

Ui∈U

q(Ui) and s∪(U) =
⋃

Ui∈U

s(Ui) .

From Lemma 2, we deduce:

Corollary 4. Let R be a collection of rooted trees and let R be a rooted tree with L(R) ⊆ L(R).

(i) R is an agreement supertree of R if and only if R is an agreement supertree of rt∪(R) ∪ f∪(R),
(ii) R is a supertree compatible with R if and only if R is a supertree compatible with rt∪(R).

Let U be a collection of unrooted trees and let U be an unrooted tree with L(U) ⊆ L(U).

(iii) U is an agreement supertree of U if and only if U is an agreement supertree of q∪(U) ∪ s∪(U),
(iv) U is a supertree compatible with U if and only if U is a supertree compatible with q∪(U).

Proof. Assertions (i), (ii), (iii) and (iv) of Corollary 4 are easily deduced from statements (i), (ii), (iii) and (iv) of
Lemma 2, respectively. ✷

If k and n respectively denote the number of trees and the number of leaves in the collection, note that
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• rt∪(R) and f∪(R) are computable in O(kn3) time from R;
• q∪(U) and s∪(U) are computable in O(kn4) time from U .

Since approximating MAST on rooted trees is at least as hard as approximating MAXIMUM CLIQUE [20], approx-
imating SMAST on rooted triples and fans is at least as hard as approximating MAXIMUM CLIQUE. In the same way,
building on a result of [7], approximating SMCT on rooted triples is at least as hard as approximating MAXIMUM

INDEPENDENT SET.

5. Intractability of SMAST and SMCT

In this section, we show that there is a substantial gap in complexity between MAST and SMAST, respectively
MCT and SMCT. The complement of the SMAST problem, denoted CSMAST, is defined as the minimization
problem obtained from SMAST by changing, in Definition 8, “Measure: |T |, to be maximized”, into “Measure:

Card(L(T )) − |T |, to be minimized”. The complement of SMCT, denoted CSMCT, is obtained in the same way from
Definition 9. Note that trees involved in practical phylogenetic instances are expected to conflict on a small propor-
tion of leaves. Thus, Card(L(T )) − |SMAST(T )| and Card(L(T )) − |SMCT(T )| are expected to be small. Hence,
approximating CSMAST and CSMCT is more interesting than approximating SMAST and SMCT. The complement
of MAST, respectively MCT, is defined to be the restriction of CSMAST, respectively CSMCT, to instances consist-
ing in collections of trees sharing the same leaf set. The complement of MCT is approximable within ratio 3 [18],
as is also well-known for the complement of MAST [2,7]. The latter result was also recently improved to a ratio

3 −
6 log logn

logn
[27]. In contrast to these positive results, CSMAST, respectively CSMCT, in its general form is NP-hard

to approximate within any constant ratio, as shown below in Theorem 9.
Moreover, consider the decision problem corresponding to CSMAST:

Instance: A finite collection T of trees and an integer p � 0.
Question: Is there an agreement supertree of T of size at least Card(L(T )) − p?

The decision problem corresponding to CSMCT is defined in the same way (replace “agreement supertree of T ”
by “supertree compatible with T ” in the above statement of the “Question:”). Theorem 8 below shows that CSMAST
and CSMCT are hard for parameter p unlike the complements of MAST and MCT which are FPT in p (see [8] for
the latest algorithms).

5.1. The HITTING SET problem

As often done in previous works (e.g. [2,12]), we exploit links between the MAST problem and the HITTING SET

problem. A hitting set of a collection of sets C is a set H such that for all C ∈ C, H ∩ C is non-empty. Consider the
decision problem:

Name: HITTING SET

Instance: A finite collection C of finite sets and an integer p � 0.
Question: Is there a hitting set of C of cardinality at most p?

HITTING SET is an alternative formulation of SET COVER. It is thus NP-complete [15], and W[2]-complete for
parameter p [16, Proposition 10]. Moreover, its optimization version can not be approximated within any constant
ratio unless P = NP [5].

5.2. A graph representing rooted triples

Definition 16. [1,13,36] Let R be a finite collection of rooted triples and let L ⊆ L(R). Let [R,L] be the undirected
graph such that:

• there is a vertex for every element of L,
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• there is an edge between two vertices u and v if and only if there exists ℓ ∈ L such that uv|ℓ ∈R.

Theorem 2 in [13] can be restated as follows:

Theorem 7. [13] Let R be a collection of rooted triples and L ⊆ L(R). There is an agreement supertree of R with
leaf set L if and only if for each subset L′ ⊆ L of cardinality at least 3, the graph [R,L′] is disconnected.

5.3. The gadget

Definition 17. We recursively define the function rake associating a rooted tree to a given non-empty ordered sequence
of rooted trees with non-intersecting leaf sets:

• rake(R1) = R1 for any rooted tree R1 (sequence of length 1).
• rake(R1,R2, . . . ,Rk) is the rooted tree whose root has R1 and rake(R2,R3, . . . ,Rk) as two child subtrees for any

sequence of rooted trees R1,R2, . . . ,Rk of length k � 2 such that

∀i, j ∈ [1, k] i �= j ⇐⇒ L(Ri) ∩ L(Rj ) = ∅.

Fig. 8 illustrates the previous definition. We now describe the gadget that is used to reduce HITTING SET to
SMAST:

Definition 18 (Gadget). Let m be an integer such that m � 1 and let x1, x2, . . . , xm, y1, y2, . . . , ym be 2m distinct
labels. We define G = G(x1, x2, . . . , xm, y1, y2, . . . , ym) to be the following collection of rooted triples:

{

yh+1xh+1|yh, xh+1xh+2|yh
}

h∈[1,m]

setting xm+1 := x1, xm+2 := x2 and ym+1 := y1.

Lemma 3. G has the following properties:

(i) There is no agreement supertree of G having leaf set L(G).
(ii) Let j ∈ [1,m]. The following trees with leaf set L(G) − {xj } are agreement supertrees of G:

rake(yj , yj+1, . . . , ym, y1, y2, . . . , yj−1,R∗)

where R∗ is any rooted tree on {x1, x2, . . . , xm} − {xj }.

Proof. (i) The graph [G,L(G)] associated with G is connected (see Fig. 9). Therefore, by Theorem 7, there is no
agreement supertree of G having leaf set L(G).

(ii) Assume w.l.o.g. that j = 1 (G is not altered by a common circular permutation of the two sequences x1, x2, . . . ,
xm and y1, y2, . . . , ym). Fixing an arbitrary rooted tree R∗ on {x2, x3, . . . , xm}, we have to show that the tree

RA := rake(y1, y2, . . . , ym,R∗)

Fig. 8. The tree rake(R1,R2, . . . ,Rk).
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Fig. 9. The graph [G,L(G)] induced by the gadget G.

on L(G)−{x1} is an agreement supertree of G. For this purpose, we distinguish trees in G that do not contain x1 from
those that do.

In the one hand, it is easily seen that

∀h ∈ [1,m − 1] yh+1xh+1|yh = RA|{yh, yh+1, xh+1},

∀h ∈ [1,m − 2] xh+1xh+2|yh = RA|{yh, xh+1, xh+2}.

On the other hand, x1 = xm+1 is a leaf of ym+1xm+1|ym and of xh+1xh+2|yh for h ∈ {m−1,m}. Hence, restricting
these three trees to L(G) − {x1} reduces them to only two leaves, belonging to RA. We have shown that ∀Gi ∈ G,
RA|L(Gi) = Gi |L(RA). As also L(RA) ⊆ L(G), this proves that RA is an agreement supertree of G. ✷

In other words, G is a collection of conflicting trees in the sense that there is no tree R with the entire L(G)
as leaf set and displaying all trees of G. However, choosing only one leaf xj (any one) and removing from G all
triples containing xj guarantees that such a tree exists. It is formed by making leaves yh (with h ∈ [1,m]) pending
in a specific order from the successive internal nodes of the tree (starting from the root and going downward), last
appending a subtree containing the leaves xh (with h ∈ [1,m], h �= j ) but which can have any shape.

5.4. The reductions

Theorem 8. The CSMAST problem is NP-hard, and W[2]-hard for parameter p, even for instances T only composed
of rooted triples, respectively unrooted quartets.

Proof. Rooted case. We reduce HITTING SET to CSMAST, polynomially and preserving the parameter p. Let (C,p)

be an instance of HITTING SET,

C = {X1,X2, . . . ,Xc}

=
{

{x1
1 , x2

1 , . . . , x
m1
1 t}, {x1

2 , x2
2 , . . . , x

m2
2 }, . . . , {x1

c , x2
c , . . . , xmc

c }
}

,

where c := Card (C) and mi := Card(Xi). Then let (y
j

i ) be an injective family of labels not appearing in X1 ∪ X2 ∪

· · · ∪ Xc, indexed on the set of ordered pairs (i, j) with i ∈ [1, c], j ∈ [1,mi]. Based on the model of C, we build a
collection of non-intersecting sets

{

{y1
1 , y2

1 , . . . , y
m1
1 }, {y1

2 , y2
2 , . . . , y

m2
2 }, . . . , {y1

c , y2
c , . . . , ymc

c }
}

whose elements are distinct from those of C. Let

Gi := G(x1
i , x2

i , . . . , x
mi

i , y1
i , y2

i , . . . , y
mi

i )

for all i ∈ [1, c] and consider the collection of trees

R := G1 ∪ G2 ∪ · · · ∪ Gc.
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From the definition of gadgets (Definition 18), the transformation of the instance (C,p) of HITTING SET into the
instance (R,p) of the decision problem CSMAST obviously takes a polynomial time (R is of cardinality 2(m1 +

m2 + · · · + mc)) and preserves parameter p. By construction, all trees in R are rooted triples. It remains to be proven
that the following two statements are equivalent:

(1) C admits a hitting set of size at most p and
(2) there is an agreement supertree of R whose size is at least Card(L(R)) − p.

(2) ⇒ (1). Let RA be an agreement supertree of R of size at least Card(L(R)) − p. Thus, H := L(R) − L(RA)

is a set of cardinality at most p. Moreover, for any i ∈ [1, c], we know that L(Gi) is not a subset of L(RA) from
Lemma 3(i). Then at least one element of L(Gi) is not a leaf in RA, hence is in H . This shows that H is a hitting set
of {L(G1),L(G2), . . . ,L(Gc)}.

Now change H in the following way: replace each y
j

i ∈ H (which only hits the set L(Gi)) with any element in Xi .
H is then a hitting set of C of size at most p.

(1) ⇒ (2). Given i ∈ [1, c] and j ∈ [1,mi], we denote σ
j

i the (j −1)th cyclic shift of the sequence y1
i , y2

i , . . . , y
mi

i :

σ
j

i = y
j

i , y
j+1
i , . . . , y

mi

i , y1
i , y2

i , . . . , y
j−1
i .

Let H be a hitting set of C of cardinality at most p. For each i ∈ [1, c], H contains at least an element of Xi , that we

denote x
ji

i , with ji ∈ [1,mi]. Concatenate the c sequences σ
j1
1 , σ

j2
2 , . . . , σ

jc
c : this yields a label sequence z1, z2, . . . , zm

of length m := m1 + m2 + · · · + mc. Then form the tree

RA := rake(z1, z2, . . . , zm,R∗)

where R∗ is any rooted tree on (X1 ∪ X2 ∪ · · · ∪ Xc) − H .
By construction, RA is a tree on L(R)−H and thus of size at least Card(L(R))−p. Moreover, for each i ∈ [1, c],

RA (consisting of leaves of the kind y
j

i hanging one by one from internal nodes on the path from the root of RA

to the root of subtree R∗) is such that RA|L(Gi) = rake(yji

i , y
ji+1
i , . . . , y

mi

i , y1
i , y2

i , . . . , y
ji−1
i ,R∗|Xi), which is an

agreement supertree of Gi by Lemma 3(ii) (note that x
ji

i ∈ H is not a leaf in R∗, hence not in R∗|Xi ). Thus, RA is an
agreement supertree of R of size at least Card(L(R)) − p.

Unrooted case. We reduce below the version of CSMAST using a collection of rooted triples as input, to the version
of CSMAST using a collection of binary unrooted trees as input. Note that solving CSMAST on binary unrooted trees
is equivalent to solving this problem on unrooted quartets (Corollary 4(iii)).

Let (R,p) be an instance of CSMAST where R is a collection of rooted triples and p a non-negative integer.
Let R′ be a rooted binary tree containing Card(L(R)) new leaves: |R′| = Card(L(R)) and L(R′) ∩ L(R) = ∅.

Consider the collection U of unrooted trees where the trees Ui ∈ U are in one to one correspondence with the trees
Ri ∈R: given a tree Ri ∈R, the corresponding tree Ui is the unrooted tree obtained by adding an edge between the
root of Ri and the root of a copy of R′. We have L(U) = L(R′) ∪ L(R) and Card(L(U)) = 2 Card(L(R)).

The instance (R,p) of CSMAST is transformed into an another instance (U,p) of CSMAST where all trees in U
are unrooted. This transformation is clearly done in polynomial time and preserves parameter p.

We now prove that (R,p) is a positive instance of CSMAST if and only if (U,p) is a positive instance of CSMAST.
First, suppose that there is an agreement supertree RA of R with |RA| � Card(L(R)) − p. Then the unrooted tree

UA, obtained by connecting the roots of RA and a copy of R′ by an edge, is an agreement supertree of U of size
|RA| + |R′| � Card(L(R)) − p + |R′| = Card(L(U)) − p.

Conversely, assume there is an agreement supertree UA of U with |UA| � Card(L(U))−p. We can assume that p <

Card(L(R)) since otherwise, the empty tree is clearly an agreement supertree of R of size at least Card(L(R)) − p.
Hence, at most Card(L(R)) − 1 leaves appearing in U are not leaves of UA. Since Card(L(R)) distinct leaves of U
appear in R′, there is a leaf ℓ′ of R′ that is also a leaf of UA. Let U ′ := UA|(L(R)∪{ℓ′}). Note that U ′ is an agreement
supertree of U and, as for UA, contains at least Card(L(R)) − p leaves from L(R). Let RA be the tree with leaves in
L(R), obtained by rooting U ′ at the leaf ℓ′, and then deleting ℓ′ and its incident edge. RA is an agreement supertree
of R and as ℓ′ /∈ L(R), RA has at least Card(L(R)) − p leaves from L(R).
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Theorem 9. CSMAST is not approximable within any constant factor unless P = NP, even for instances T only
composed of rooted triples, respectively unrooted quartets.

Proof. The reduction from HITTING SET to CSMAST on rooted triples and the reduction from CSMAST on rooted
triples to CSMAST on unrooted quartets described in Theorem 8 can be seen as approximation preserving reductions.

Hence, the result of [5] stated in Section 5.1 for HITTING SET also applies to CSMAST on rooted triples and to
CSMAST on unrooted quartets. ✷

The above two intractability and inapproximability results also hold for the CSMCT problem, as the reductions use
collections of binary trees, i.e. cases in which this problem is equivalent to CSMAST.

Appendix A. Determining anchors between two rooted trees in linear time

In this section, we show how anchors from nodes of RI to nodes of RA can be determined in O(n) where n :=

Card(L(RI ) ∪ L(RA)).
Note that nodes of RI for which an anchor has to be determined are nodes vi := lcaRI

(S) for some set S ⊆

L∩({RA,RI }). Here such nodes are called anchorable.
The leaf -nodes in RI whose label is in L∩({RA,RI }) are anchorable. Their corresponding set S contains the single

leaf of RA having the same label. A single traversal of Ri and one of RA is thus enough to establish the anchors of
leaves of Ri . This costs O(n).

Now consider anchorable internal nodes (i.e. for which Card(S) > 1). To anchor these nodes, we proceed by
considering specific couples of leaves in L∩({RA,RI }). Let O be the left-right order with which the leaves of
L∩({RA,RI }) appear in the tree RI , and denote the ℓth element inO asOℓ. Let m be the cardinality of L∩({RA,RI }).
Then consider the m = O(n) pairs (Oℓ,Oℓ+1) of consecutive leaves in O. For each such pair, two lca queries are per-
formed to identify vi := lcaRI

(Oℓ,Oℓ+1) and va := lcaRA(Oℓ,Oℓ+1). For some of these pairs, va is the anchor of
vi . As lca relationships can be preprocessed in trees RI and RA in O(n) time to answer each lca query in O(1) [25],
considering the O(n) pairs (Oℓ,Oℓ+1) requires O(n) running time. The correctness of this approach is demonstrated
below. More precisely, it is shown that considering all pairs (Oℓ,Oℓ+1), 1 � ℓ < m, is sufficient to determine the
anchor of all anchorable internal nodes of RI .

First, by definition, any anchorable internal node vi ∈ RI is the lca of a set S ⊆ L∩({RA,RI }) with Card (S) � 2,
hence vi has leaves of S in s � 2 child subtrees, denoted c1, . . . , cs . Now, by definition of O, for all couples
(cj , cj + 1), 1 � j < s, the right-most leaf of L(cj ) ∩ S just precedes in O the left-most leaf of S ∩ L(cj+1), and vi

is the lca of these two leaves. Hence, examining the lca in RI of all couples (Oℓ,Oℓ+1), 1 � ℓ < m of consecutive
leaves in O ensures that vi is considered at some step.

Proposition 1. Given a node vi in RI such that vi = lcaRI
(S) with S ⊆ L∩({RA,RI }) and Card (S) � 2. Let

Os1, . . . ,Osj be the leaves of S, with 1 � s1 < s2 < · · · < sj � n. Let va be the node of RA such that va := lcaRA(S).
Then there is an integer ℓ, such that s1 � ℓ < sj and va = lcaRA(Oℓ,Oℓ+1).

Proof. First note that the elements of S are consecutive in O. Let c be the child subtree of va that contains Os1 . Let
ℓ be the smallest integer such that s1 � ℓ < sj and Oℓ+1 /∈ L(c). Note that ℓ exists, since by definition of va , this
node has leaves of S in at least two different child subtrees. Since Oℓ,Oℓ+1 are in different child subtrees of va , then
va = lcaRA(Oℓ,Oℓ+1). ✷

This proposition ensures that while examining all pairs of leaves (Oℓ,Oℓ+1) with 1 � ℓ < m, all nodes of RA that
are anchors of nodes in RI are considered.

Now we know that all anchorable nodes vi of RI will be considered, as will all anchor nodes va of RA. The
following shows that, at some point, each such node in RI is considered at the same time as its anchor va in RA.

Proposition 2. Let S = {Os1, . . . ,Osj } ⊆ L∩({RA,RI }) be a set of consecutive leaves in O with Card (S) � 2 such
that there exists a node vi in RI with vi = lcaRI

(S). Let va be the node of RA such that va = lcaRA(S).
Then ℓ exists, s1 � ℓ < sj , such that va = lcaRA(Oℓ,Oℓ+1) and vi = lcaRI

(Oℓ,Oℓ+1).
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Proof. If m = 2 then S contains only one pair of leaves. Thus, for ℓ = 1 we have S = {Oℓ,Oℓ+1}, so
lcaRI

(Oℓ,Oℓ+1) = lcaRI
(S) and lcaRA(Oℓ,Oℓ+1) = lcaRA(S).

Consider now the case where m > 3. Let ℓ with s1 � ℓ � sj be the smallest integer such that Oℓ and Oℓ+1 belong
to two different child subtrees of va = lcaRA(S). Such an ℓ exists because of Proposition 1. Now, {Oℓ,Oℓ+1} ∈ L(vi)

by definition of ℓ and S = {Os1 , . . . ,Osj }. More precisely, it can be shown that vi = lcaRI
(Oℓ,Oℓ+1). Indeed, if

this is not the case, i.e. these two leaves are in the same child subtree of vi , then let ℓ′′ ⊆ L∩({RA,RI }) be a leaf
in S belonging to another child subtree of vi . We have vi = lcaRI

(ℓ′′,Oℓ) < lcaRI
(Oℓ,Oℓ+1). Since Ra|L(Ri) ☎

Ri |L(RA), this implies lcaRA(ℓ′′,Oℓ) < lcaRA(Oℓ,Oℓ+1) by Observation 1. This in turn implies ℓ′′ /∈ L(va) because
va = lcaRA(Oℓ,Oℓ+1). Hence, L(va) ∩ L∩({RA,RI }) �= L(vi) ∩ L∩({RA,RI }), which is in contradiction with the
definition of va and Remark 3. This shows that Oℓ and Oℓ+1 are in different child subtrees of vi , hence that vi =

lcaRI
(Oℓ,Oℓ+1). By definition of va and vi , this shows that for this precise ℓ, we have both lcaRI

(Oℓ,Oℓ+1) =

lcaRI
(S) and RA(Oℓ,Oℓ+1) = lcaRA(S). ✷

Now, given that RA|L(RI ) refines RI |L(RA), the same anchorable internal node vi ∈ RI might be considered in
several pairs (Oℓ,Oℓ+1), sometimes together with a node va = lcaRA(Oℓ,Oℓ+1) that is not its anchor in RA. However,
the anchor of vi can be easily identified as it is the closest to the root (i.e. the one with the minimum depth), among
the examined candidate nodes va in RA. More formally:

Remark 4. Let vi be a node of RI such that vi = lcaRI
(S) for a set S ⊆ L∩({RA,RI }) with Card (S) � 2. Suppose vi =

lcaRI
(Oℓ,Oℓ+1) and vi = lcaRI

(Oℓ′ ,Oℓ′+1) with ℓ �= ℓ′. Let vℓ
a = lcaRA(Oℓ,Oℓ+1) and vℓ′

a = lcaRA(Oℓ′ ,Oℓ′+1). If

depth(vℓ
a) > depth(vℓ′

a ) then vℓ
a is not the anchor of vi .

Indeed, since depth(vℓ
a) > depth(lcaRA(Oℓ′ ,Oℓ′+1)), then Oℓ′ or Oℓ′+1 is not in L(vℓ

a). As both Oℓ′ and Oℓ′+1

belong to L(vi), this means that L(vℓ
a) ∩ L∩({RA,RI }) �= L(vi) ∩ L∩({RA,RI }), i.e. that vℓ

a is not the anchor of vi

(from Remark 3).
Based on the previous remarks, the pseudo-code ANCHORS (see Algorithm 3) shows how the anchors for all

anchorable nodes of RI are determined in O(n) time. The artificial anchor of the root of RI (when needed, see
Section 3.1) is also described.

Algorithm 3. ANCHORS(RI ,RA).
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Appendix B. Complement for the proof of Theorem 1

We give here the proof that (4) holds for the special case where Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 2. This completes the
proof of Theorem 1. Without loss of generality, let ℓ′, ℓ′′ be the two leaves present in R before the graft of the copy of
Sp and let ℓ be the leaf in Sp . If lcaRI

(ℓ, ℓ′) = lcaRI
(ℓ, ℓ′′) = lcaRI

(ℓ′, ℓ′′), then (4) is verified by default. The three
remaining possibilities for the relative positions of ℓ, ℓ, ℓ′′ in Ri are as follows:

(1) lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′) < lcaRI
(ℓ′, ℓ′′).

(2) lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ′, ℓ′′) < lcaRI
(ℓ, ℓ′′).

(3) lcaRI
(ℓ, ℓ′′) = lcaRI

(ℓ′, ℓ′′) < lcaRI
(ℓ, ℓ′).

The proof is only detailed below for case 1, as a very similar reasoning applies for cases 2 and 3.
Let vi be the node from which Sp is hanging in RI . Note that lcaRI

(ℓ, ℓ′) � vi , otherwise {ℓ, ℓ′, ℓ′′} ∈ L(Sp),
a contradiction with Card({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 2.

(I) Suppose lcaRI
(ℓ, ℓ′) = vi . Note that this does not imply that vi has an anchor in R because ℓ /∈ R.

(I-A) Suppose that vi has an anchor va in R. Let c be the child of vi such that {ℓ′, ℓ′′} ∈ S(c). Either (i) L(c)

contains no leaf of L∩({RA,RI }), or (ii) it contains at least such a leaf, say x. Case (i) occurs only when S(c) is a
specific subtree of Ri with respect to RA, which means that a copy of S(c) (containing {ℓ′, ℓ′′}) is grafted under va by
loop of line 2, just before Sp is grafted. Hence, ℓ′, ℓ′′ belong to a same subtree S(c′) of a child c′ of va . We now show
that the same holds in case (ii). Indeed, in that case, x ∈ L(vi) and because vi is an anchored node, then ∃y ∈ L(vi)

such that y ∈ L∩({RA,RI }) and vi = lcaRI
(x, y). Since {x, ℓ′, ℓ′′} ∈ S(c), we have

vi = lcaRI
(x, y) < lcaRI

(x, ℓ′) and vi = lcaRI
(x, y) < lcaRI

(x, ℓ′′).

Since {x, ℓ′, ℓ′′} ∈ L(R), we have by induction that

lcaR(x, y) < lcaR(x, ℓ′) and lcaR(x, y) < lcaR(x, ℓ′′).

Moreover, by definition of va , we know {x, y} ∈ L(va), thus va � lcaR(x, y), and then from the previous equation

va < lcaR(x, ℓ′) and va < lcaR(x, ℓ′′).

This means that {x, ℓ′, ℓ′′} belong to a same subtree S(c′) in R, with c′ being a child of va .
Thus, in both (i) and (ii), when a copy of Sp (containing ℓ) is inserted as a new child subtree of va , by loop of line

2, then Eq. (4) holds.
(I-B) The other sub-case is when vi is not an anchored node of Ri . This means that a copy of Sp is grafted in R as

a subtree of a node vnew by loop of line 4. This loop inserts subtrees at nodes above the anchor va of a node v of RI .
Note that in RI , vi < v, and that there is no node with an anchor on the path from v to vi (because the loop of line 4
would end before reaching vi ). There are several possible places for ℓ′ and ℓ′′ relative to vi and v0.

First, ℓ′ and ℓ′′, can be in the same specific subtree S′
p hanging from vi . Then ℓ′, ℓ′′ ∈ L(R) ensures that a copy of

S′
p is inserted as a subtree of vnew by loop of line 5, before the same loop inserts a copy of Sp . Thus in that case, ℓ′, ℓ′′

are in the same subtree of vnew before Sp is inserted. The second possibility for ℓ′, ℓ′′ is that they are in the subtree
of vi that contains v. Then ℓ′, respectively ℓ′′, can be in a specific subtree S′

p , respectively S′′
p , hanging from a node

on the path between v and vi , (with possibly S′
p = S′′

p). But then, the loop of line 4, proceeding in a bottom-up way,
ensures that S′

p , respectively S′′
p , is inserted in the subtree of vnew that contains va . Alternatively, ℓ′ and ℓ′′ (or just one

of them) can be in S(v). A similar argument1 as in (I-A) shows that in this case they are inserted in the subtree S(va)

of R. Thus, in this case also, they belong to the subtree of vnew containing va .
Thus, in all possible positions of ℓ′, ℓ′′ relative to vi and v, they are grafted in R the same subtree of vnew. This

means that when a copy of Sp (containing ℓ) is inserted as a different child subtree of vnew to obtain R′, then (4) holds.
(II) The other main sub-case arises when lcaRI

(ℓ, ℓ′) < vi . Let u := lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′). Note that ℓ′ and ℓ′′

belong to the same child subtree of u, differing from that containing ℓ.

1 Based on leaves {x, y} ∈ L(va) ∩ L∩({RA,RI }).
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Let v be the node vi , if vi is anchored, otherwise it is the closest descendant of vi that is anchored (v exists
otherwise, S(vi) would be a specific subtree, contradicting the maximality of the specific subtree Sp). Moreover, there
is a unique closest descendant of vi that is anchored because, if two nodes are anchored, then their least common
ancestor is also anchored).

Let va be the anchor of v in R. By definition of v and va , x, y ∈ L∩({RA,RI }) exist such that v = lcaRI
(x, y) and

va = lcaRA(x, y). Note that u = lcaRI
(ℓ′, x) = lcaRI

(ℓ′′, x) < lcaRI
(x, y) because x, y are in the child subtree of u

containing vi , different from the one containing ℓ′, ℓ′′. Hence,

lcaRI
(ℓ′, ℓ′′) > lcaRI

(ℓ′, x) = lcaRI
(ℓ′′, x) and

lcaRI
(x, y) > lcaRI

(ℓ′, x) = lcaRI
(ℓ′′, x).

As {ℓ′, ℓ′′, x, y} ∈ L(R), induction applies to obtain

lcaRA(ℓ′, ℓ′′) > lcaRA(ℓ′, x) = lcaRA(ℓ′′, x) and

lcaRA(x, y) = va > lcaRA(ℓ′, x) = lcaRA(ℓ′′, x).

Let v′
a be the node lcaRA(ℓ′, x) of RA. Previous equations indicate that v′

a has different children cℓ′ and cx , such that
{ℓ′, ℓ′′} ∈ S(cℓ′) and x, y ∈ S(cx). The node va = lcaRA(x, y), anchor of v, is thus in S(cx). Moreover, by definition
of v, the copy of Sp is inserted either as a new child subtree of va (in the case where v = vi ), either between va and its
parent in R. In both cases, ℓ is inserted in S(cx). Thus in tree R′, ℓ is in a subtree of v′

a differing from that containing
ℓ′, ℓ′′, hence (4) holds.

Appendix C. Proof of Lemma 1

Proof. The three statements of the lemma are related to the call to MERGETREES issued in line 2 of the loop of
BUILDSMCT, statement (A) applying before the execution of a call, while statements (B) and (C) apply to the result
of this call. Thus, the three statements are strongly inter-dependent and we prove them by a joint induction. However,
note that there is no circularity as

• the proof of (A) uses inductive hypothesis on previous iterations of statements (B) and (C), except for the basic
step which is proved independently;

• the proof of (B) uses statement (A) of the same iteration and, except for the basic step, inductive hypothesis on
the previous iteration of (B);

• the proof of (C) uses statements (A) and (B) of the same iteration and, except for the basic step, inductive hypoth-
esis on the previous iteration of (C).

The basic step (i = 1) of each statement is proved as following:

(A) When i = 1, RI = R1|(L(R0
M ) ∪ LS(R1)) and RA = R0

M . As R0
M = MCT(R|L(R)), we have

(C.1)L(R0
M) ⊆ L∩(R) and

(C.2)R0
M ☎ R1|L∩(R)|L(R0

M ).

From (C.1) we have L(R0
M ) ⊆ L(R1), thus

(C.3)R0
M = R0

M |L(R1) and

(C.4)
(

R1|L∩(R)
)

|L(R0
M ) = R1|L(R0

M).

Rewriting (C.2) thanks to (C.3) and (C.4) gives RA|L(RI ) ☎ RI |L(R0
M ) = RI |L(RA), the last equality resulting

from the remark following Definition 1.
(B) From the basic step of (A), we know that Theorem 1 applies when MERGETREES is called. Thus, the tree

R1
M returned by this call is such that L(R1

M) = (L(R1) ∩ (L(R0
M ) ∪ LS(R1))) ∪ L(R0

M), which simplifies into

L(R0
M ) ∪ LS(R1) since L�(R) = ∅.
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(C) From the basic step of statement (A) and Theorem 1 we know R1
M is a tree SMCT(RI ,RA), i.e.

(C.5)R1
M |L(RI ) ☎ RI |L(R1

M) and R1
M |L(RA) ☎ RA|L(R1

M )

with RI = R1|(L(R0
M ) ∪ LS(R1)) and RA = R0

M . Moreover, from the basic step of statement (B), L(R1
M ) =

L(R0
M) ∪ LS(R1), thus for all Rj ∈R, j > 1, we have from (C.5) that

(C.6)R1
M |L(R0

M ) ☎ R0
M |L(R1

M ) = R0
M ☎ Rj |L(R0

M ),

where the rightmost refinement relation results from the definition of R0
M . Statement (B), L�(R) = ∅, and

L(R0
M) ⊆ L∩(R) imply L(R1

M) ∩ L(R0
M) = L(R0

M) = L(Rj ) ∩ L(R0
M ) = L(R1

M ) ∩ L(Rj ) for all Rj ∈ R,j > 1.
Thus, (C.6) rewrites as

(C.7)R1
M |L(Rj ) ☎ Rj |L(R1

M), ∀j > 1.

From (C.5) we also have

R1
M |L(R1) ∩

(

L(R0
M ) ∪ LS(R1)

)

☎ R1|L(R0
M ) ∪ LS(R1)|L(R1

M )

which rewrites as R1
M |L(R1) ☎ R1|L(R1

M ) using statement (B). Together with (C.7), this proves the basic step of
statement (C).

Now suppose statements (A), (B) and (C) hold for the first i − 1 iterations of the loop in line 2 and consider its ith
iteration, with i > 1.

(A) We first rewrite L(RA),L(Ri
M) and L(RI ):

(C.8)L(RA) = L(Ri−1
M ) = L(R0

M ) ∪
⋃

j<i

LS(Ri),

(C.9)L(Ri) = L∩(R) ∪ LS(Ri),

(C.10)L(RI ) = L(Ri) ∩
(

L(R0
M) ∪ LS(Ri)

)

= L(R0
M ) ∪ LS(Ri),

where (C.8) results by inductive hypothesis from statement (B), (C.9) results from L�(R) = ∅, and (C.10) follows
from the fact that L(R0

M) ⊆ L∩(R) and LS(Ri) are both included into L(Ri), as (C.9) shows. This three equations
show that

(C.11)L(RI ) ∩ L(RA) = L(R0
M) = L(Ri) ∩ L(RA).

By inductive hypothesis, statement (C) says that Ri−1
M is a supertree compatible with R, i.e. Ri−1

M |L(Ri) ☎

Ri |L(Ri−1
M ), which rewrites as RA|L(RI ) ☎ RI |L(RA) by definition of RA,RI and use of (C.11).

(B) From statement (A) and Theorem 1, the call to MERGETREES(RI ,RA) performed at iteration i of the loop in
BUILDSMCT with trees RI = Ri |(L(Ri−1

M ) ∪ LS(Ri)) and RA = Ri−1
M returns a tree Ri

M such that

(C.12)L(Ri
M ) = L(RI ) ∪ L(RA).

It is easy top see that L(RI ) = L(R0
M) ∪ LS(Ri) and that, by inductive hypothesis of (B), L(RA) = L(Ri−1

M ) =

L(R0
M) ∪

⋃

j<i LS(Rj ). Thus, from (C.12) we obtain L(Ri
M ) = L(R0

M)
⋃

j�i LS(Rj ).
(C) From statement (A) for the ith iteration, we know Theorem 1 applies to the call MERGETREES(RI ,RA)

performed at that iteration with trees RI = Ri |(L(R0
M ) ∪ LS(Ri)) and RA = Ri−1

M . Thus, the tree Ri
M is a

SMCT(RI ,RA), i.e.

(C.13)Ri
M |L(RI ) ☎ RI |L(Ri

M) and Ri
M |L(RA) ☎ RA|L(Ri

M ).

Moreover, statement (B) used for the ith iteration says that

(C.14)L(Ri
M ) = L(R0

M ) ∪
⋃

j�i

LS(Ri) = L(Ri−1
M ) ∪ LS(Ri).
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Consider the case of trees Rj ∈R with j �= i, for which

(C.15)L(Rj ) ∩ L(Ri
M) = L(Rj ) ∩ L(Ri−1

M ),

from (C.14) and the fact that specific leaves of Ri do not appear in other input trees. By inductive hypothesis of
statement (C),

(C.16)Ri−1
M |L(Rj ) ☎ Rj |L(Ri−1

M ) = Rj |L(Ri
M ).

From the second part of (C.13) we know another refinement relation:

(C.17)Ri
M |L(Ri−1

M ) ☎ Ri−1
M |L(Ri

M ) = Ri−1
M ,

the equality resulting from L(Ri−1
M ) ⊆ L(Ri

M) (from (C.14)). Thus, reducing both sides of (C.17) to leaves of a
tree Rj , j �= i, we obtain

Ri
M |L(Ri−1

M )|L(Rj ) ☎ Ri−1
M |L(Rj ),

the left part of which rewrites as (Ri
M |L(Rj ))|L(Ri−1

M ) = Ri
M |L(Rj ) from (C.15). Combining this refinement

relation with the one stated in (C.16) we obtain by transitivity that

(C.18)Ri
M |L(Rj ) ☎ Rj |L(Ri

M ), ∀j �= i.

Now consider the case of the input tree Ri ∈R. Since L�(R) = ∅, i.e. L(Ri) = L∩(R) ∪ LS(Ri), and L(R0
M ) ⊆

L∩(R), we obtain

(C.19)L(Ri) ∩ L(Ri
M) = L(R0

M) ∪ LS(Ri)

from (C.14). The refinement relation stated in the first part of (C.13) can be rewritten as

Ri
M |L(Ri) ∩

(

L(R0
M) ∪ LS(Ri)

)

☎ Ri |L(R0
M ) ∪ LS(Ri)|L(Ri

M )

which can be simplified into Ri
M |L(Ri) ☎ Ri |L(Ri

M ) using (C.19). Together with (C.18), this proves statement
(C) for the ith iteration. ✷
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34392 Montpellier Cedex 5, France

Abstract.— This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of
the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this
framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree
does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that
all topological information contained in the supertree is present in a source tree or collectively induced by several source
trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated
properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we
introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set
of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn3 + n4) computing time. The
polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient
overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize
groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets
of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at
http://atgc.lirmm.fr/cgi-bin/PhySIC. [Formal properties; phylogenetics; polynomial-time algorithms; primates; software;
supertrees; triplets; veto methods.]

Building Supertrees

Phylogenies are invaluable tools in various areas
of biology to understand the evolution of genes and
taxa. Trees that incorporate an exhaustive sampling
of taxonomic biodiversity provide crucial information
about systematics, genomics, and diversification pat-
terns of species (e.g., Davies et al., 2004). Large trees
can be built using various approaches, including su-
permatrices and supertrees. The former approach con-
sists of combining the different source data sets into
a supermatrix of characters and then analyzing it un-
der standard phylogenetic reconstruction criteria (e.g.,
Delsuc et al., 2005). The supertree approach is an al-
ternative methodology using trees rather than charac-
ter data as a primary source of information. It first
involves inferring partially overlapping, source phy-
logenetic trees from initial character data and then
assembling them into a larger, more comprehensive
supertree (Bininda-Emonds, 2004a). This approach is
particularly convenient when dealing with heteroge-
neous character sources; e.g., those scored from mor-
phological, transposable elements, DNA, or protein
studies. Supertrees have become increasingly popular
(e.g., Bininda-Emonds, 2004b), notably since the semi-
nal work involving the reconstruction of the primate su-
pertree (Purvis, 1995a). The widespread use of supertrees
is explained by three useful applications (Wilkinson et al.,
2004): (i) they provide large phylogenetic frameworks
for broad comparative studies; (ii) they evaluate the con-
gruence of sets of input trees, and reveal conflicts due
to outlier/unstable taxa; and (iii) they identify insuf-
ficient overlap among leaf sets of input trees and as-

sign priorities for choosing the taxa to be subsequently
sampled.

Different Kinds of Supertree Methods

Supertree methods fall into three categories depend-
ing on their way of handling topological conflicts; i.e.,
different arrangements of the same leaves among labeled
source trees.

The first suite of methods does not handle incompati-
ble source trees. The pioneering methods that belong to
this category are Build (Aho et al., 1981) and the strict
consensus supertree (Gordon, 1986). Although they are
important milestones, these methods appear “of limited
use. As most systematists know, phylogenies usually
conflict with one another” (Bininda-Emonds, 2004b:4).

The second suite of methods handles conflicts among
input trees in a liberal way: they apply a voting proce-
dure. In order to extract their main phylogenetic sig-
nal, source trees are asked to vote on various parts
of the phylogeny to be inferred, with the most sup-
ported candidates being elected and composing the out-
put supertree. Voting methods are said to resolve con-
flicts (Thorley and Wilkinson, 2003): for each conflict,
they use some optimization criterion to make a deci-
sion in favor of one of the topological alternatives. Most
conflicts among input trees are expected to be resolved
because relationships displayed by the supertree are
guided by source topologies on the basis of weight of
evidence. The most widespread voting method is matrix
representation with parsimony (MRP) whereby nodes
of each source tree are encoded as binary characters of
a matrix, which is then analyzed with the maximum
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parsimony criterion to obtain the composite tree (Baum,
1992; Ragan, 1992). Analyzing this binary encoding of
source topological information with other tree-building
criteria leads to variants of MRP such as matrix repre-
sentation with flipping (MRF; Chen et al., 2003) and ma-
trix representation with compatibility (MRC; Ross and
Rodrigo, 2004). Other methods of the voting kind, such
as MinCut (MC; Semple and Steel, 2000) and Modified-
MinCut (MMC; Page, 2002) extend Build. They encode
source trees in a graph that is progressively decomposed
to get supertree clades. When conflicts hinder the de-
composition, the graph is cut by removing the least sup-
ported relationships. The Average Consensus Supertree
(Lapointe and Cucumel, 1997) and super distance matrix
(Criscuolo et al., 2006) methods implement the voting
approach in an alternative way. They average the initial
distance matrices, converted from source characters or
valued topologies, into a superdistance matrix; a tree-
building distance-based approach is then used to infer
a supertree from this matrix. Interestingly, voting meth-
ods like MRP may generate novel clades; i.e., clades not
present in any input tree alone (Purvis, 1995b; Bininda-
Emonds and Bryant, 1998; Sanderson et al., 1998). Unfor-
tunately, when source trees conflict, novel clades that are
contradicted by each of the source trees can be present
in the supertree inferred by MRP (Goloboff and Pol,
2002; Goloboff, 2005; Cotton et al., 2006) and by MRF
(Goloboff, 2005). The importance of this phenomenon is
still debated, Bininda-Emonds (2003) reporting, on the
basis of simulations, that this situation is not very fre-
quent for MRP, whereas Goloboff (2005) shows selected
case studies where “this situation is, clearly, not very
unlikely.”

The third suite of methods handles conflicts among
input trees in a conservative way. They adopt a veto phi-
losophy: the phylogenetic information of every source
topology is to be respected, and the supertree is not
allowed to contain clades that a source tree would
vote against. These methods remove conflicts (Thorley
and Wilkinson, 2003) because they either propose mul-
tifurcations in the supertree (Goloboff and Pol, 2002)
or prune rogue taxa (Berry and Nicolas, 2004). In this
framework, the supertree should not retain a single
branching pattern within a given clade when several
valid topological alternatives are present in the source
trees. The full agreement required by veto methods pro-
vides an unambiguous phylogenetic framework that is,
for instance, well suited for taxonomic revisions. More
specifically, such a conservative approach may be ap-
plied to automatically build or update parts of the Tree
of Life (http://tolweb.org). Several supertree methods
akin to the veto philosophy have been proposed, all of
which are inspired by consensus approaches that oper-
ate on trees with identical leaf sets. For example, exten-
sions of the strict consensus (Gordon, 1986; Huson et al.,
1999), semi-strict consensus (Goloboff and Pol, 2002),
and maximum agreement subtree consensus (Berry
and Nicolas, 2004) have been proposed to infer veto
supertrees.

Properties of Supertree Methods

To assess the relevance of supertree methods, it is most
useful to have properties characterizing the extent to
which the supertrees they infer are reliable syntheses
of source trees (Bininda-Emonds and Bryant, 1998; Steel
et al., 2000; Wilkinson et al., 2004; Goloboff, 2005). For in-
stance, Steel et al. (2000) suggest that the output supertree
should (i) encompass every source tree when possible,
(ii) always contain every leaf (taxon) that occurs in at least
one source tree, and (iii) be computed under a running
time that grows polynomially with respect to the total
number of leaves. These authors also showed that rooted
input trees are more appealing than unrooted ones for
supertree methods that aim to satisfy several desirable
properties simultaneously. Yet, even if supertree meth-
ods satisfy some desirable properties, the inferred su-
pertrees often contain polytomies that actually intermix
two distinct phenomena: either a lack of overlap in the
topological information among source trees, or the oc-
currence of topological conflicts among them, or a com-
bination of these. We thus decided to develop a method
that proposes supertrees with unambiguous resolutions,
and provides biologists with explanations about causes
of polytomies. For this purpose, we rely on two new for-
mal properties.

On the one hand, we think that supertree methods
should avoid arbitrary resolutions; i.e., resolutions that
are not entailed by the source topologies. Indeed, novel
relationships displayed by a supertree “are worrying if
they are not implied by combinations of the input trees”
(Wilkinson et al., 2005), and “should be identified as such,
to highlight their lack of any known justification” (Pisani
and Wilkinson, 2002). Thus, we first request that every
piece of phylogenetic information displayed in the su-
pertree be present in one or several source topologies or
be induced by their interaction; we call this the induction
property.

On the other hand, we focus on unanimous clades,
thus adopting a veto point of view. This means that the
supertree is not allowed to contain a clade that conflicts
either directly with a source tree or indirectly with a
combination of them. We call this the non-contradiction
property. Such a supertree, which incorporates only
uncontradicted input relationships, provides a reliable
baseline for subsequent analyses (Goloboff and Pol, 2002;
Goloboff, 2005).

Goloboff and Pol (2002) mentioned similar properties
in a formal characterization involving triplets. They pro-
vide examples showing that supertree methods of the
voting kind, such as MRP and MC, understandably do
not respect these properties. Although being appealing,
the characterization proposed by Goloboff and Pol (2002)
can at times be too restrictive or permissive (see follow-
ing sections). Recently, Grunewald et al. (2006) provided
another characterization of a property related to arbi-
trary resolutions contained in the supertree with respect
to source trees. In both cases, there does not seem to be
any straightforward algorithm that would always allow
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for property verification. Note, however, that Goloboff
and Pol (2002) proposed a supertree heuristic algorithm
that satisfies the desired properties in most cases.

In this paper, we provide a characterization of non-
contradiction and induction properties that differs from
those of Goloboff and Pol (2002) and Grunewald et al.
(2006). We also describe simple and polynomial-time
algorithms that enable users to check whether or not
a given supertree satisfies these properties. Then we
propose an algorithm called PhySIC that improves the
Build algorithm (Aho et al., 1981) by always inferring
a supertree and which, moreover, satisfies the non-
contradiction and induction properties. As far as we
know, this is the first time that a polynomial-time method
is proposed that always satisfies properties related to in-
duction and non-contradiction. Moreover, improving the
behavior of Build with respect to arbitrary decisions can
benefit the various methods that extend this algorithm
for supertree purposes; e.g., MC (Semple and Steel, 2000),
MCC (Page, 2002), AncestralBuild (Daniel and Semple,
2004; Berry and Semple, 2006), and RankedTree (Bryant
et al., 2004). Next, we pinpoint the difference between
the behavior of PhySIC and that of well-known supertree
methods on a biological case study on Primates. Lastly,
we illustrate PhySIC on the reconstruction of the pri-
mate supertree at the genus level from various source
trees based on mitochondrial DNA, nuclear DNA, and
jumping gene sequences. The supertree reconstructed
appears to be useful for displaying phylogenetic rela-
tionships among the major primate taxa (Goodman et al.,
2005). Moreover, the produced supertree displays la-
bel(s) on each of its polytomous nodes that identify the
cause(s) of these polytomies (lack of cross-information
and/or presence of contradictions). The PhySIC method
has been implemented in C++ using the Bio++ library
(Dutheil et al., 2006) and is freely available as a web
service and for download at http://atgc.lirmm.fr/cgi-
bin/PhySIC/physic.cgi.

NON-CONTRADICTION AND INDUCTION PROPERTIES

We first introduce vocabulary and notations required
to formally define the properties of non-contradiction (PC)
and of induction (PI). Simple examples are then used to
illustrate the relevance of PC and PI as well as to relate
them with previously proposed properties for supertree
methods (Steel et al., 2000; Goloboff and Pol, 2002). Then
we show how to check in polynomial time whether a
supertree satisfies PC and PI for a given collection of
source trees.

Topological Description of Trees

The definitions and notations used for trees and their
topological description are mainly the same as those used
by Semple and Steel (2003). We only consider rooted phy-
logenies, due to the fact that supertree methods cannot
fulfill different desirable properties listed in Steel et al.
(2000) when considering unrooted trees. Hereafter, the
terms phylogeny and tree are considered synonymous.
Given a tree T , L(T) denotes the set of taxa associated to

its leaves. More generally, given a collection T of trees,
L(T ) denotes the set of taxa appearing in at least one
tree of T . Given two phylogenies T and T ′ on the same
leaf set (L(T) = L(T ′)), we say that T refines T ′ when-
ever T contains all clades of T ′. In other words, either T
and T ′ are identical or T can be transformed into T ′ by
collapsing some of its internal edges.

A rooted tree on three leaves A, B, C has only three
possible binary shapes, called triplets and denoted by
AB|C , respectively AC |B, respectively BC |A, depend-
ing on the innermost clade (AB, respectively AC , respec-
tively BC). Given a triplet t, t̄ denotes any of the two other
triplets on the same set of leaves. Alternatively, a tree on
three leaves can be a star tree; i.e., a unique internal node
connected to the leaves. Any rooted tree T can be equiv-
alently described by the set of triplets homeomorphic to
subtrees of T connecting three leaves (e.g., Grunewald
et al., 2006); rt(T) denotes this set. Given a collection T
of phylogenies, rt(T ) =

⋃

Ti ∈T
rt(Ti ) denotes the set of

triplets present in these phylogenies. Note that it is pos-
sible that rt(T ) contains two triplets t and t̄, namely when
T hosts two incompatible phylogenies. Clearly, two such
triplets cannot be combined into a single supertree of the
collection.

Given a set R of triplets, L(R) denotes the set of taxa
appearing in at least one tree in R. A tree T is said to
display a set R of triplets when R ⊆ rt(T); moreover,
T strictly displays R if additionally L(T) = L(R). A set
R of triplets is compatible if there is a tree T that dis-
plays R. To find a tree displaying R, it is useful to take
into account that some triplets of the tree are induced by
R: a compatible set R of triplets induces a triplet t, de-
noted by R ⊢ t, if and only if R ∪ { t̄ } is not compatible,
or equivalently if any tree T that displays R contains t.
For instance, any tree displaying {AB|C, BC |D} also has
to display the triplet AC |D; i.e., {AB|C, BC |D} ⊢ AC |D.
Bandelt and Dress (1986) and Dekker (1986) were among
the first to investigate such induction rules. The set of
all triplets induced by a compatible set R is called the
closure ofR and is denoted by cl(R). Source trees consid-
ered for supertree building are sometimes incompatible,
and then the set of triplets considered is incompatible.
Nonetheless, we can characterize the set of triplets in-
duced by these collections by extending the preceding
definition: we will say that a set R of triplets induces a
triplet t when there is a compatible subset R′ of R that
induces t.

Characterizing Non-Contradiction and Induction by Triplets

Here we describe two important properties that veto
method supertrees should satisfy. They concern topolog-
ical relationships that a supertree should not contain with
respect to the input trees: first, it should not contain re-
lationships contradicting the source trees (PC property);
moreover, it should only contain relationships that are
induced by the input trees (PI property). Below we detail
these two properties.

There are several ways for a supertree to contradict a
collection of source trees. The most direct contradiction
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FIGURE 1. Supertrees can contain arbitrary resolution. Example of a collection T = {T1, T2} of two source trees and several possible supertrees
T ′, T ′′, T ′′′, and T . Unlike T , the supertrees T ′, T ′′, T ′′′ propose an arbitrary resolution for the clade, A, B, C .

occurs when only one resolution appears for a group
of taxa in one or several source trees, and the supertree
contains a different resolution for the group. When dif-
ferent resolutions appear in source trees, as soon as the
supertree proposes a resolution for the concerned taxa it
contradicts at least one input tree. Contradictions are less
direct when the supertree proposes a resolution that con-
tradicts no single input tree but does contradict a combi-
nation of them.

A relationship contained in a supertree can present no
contradiction with the input trees and still not be desir-
able. For instance, Figure 1 shows a collection of two
source trees and four possible supertrees, T ′, T ′′, T ′′′,
and T , for this collection. Both B and C are sister taxa
of A in the source trees, but no information is present
in these trees to resolve the clade A, B, C . Thus, the
fully resolved supertrees T ′, T ′′, T ′′′ all take arbitrary de-
cisions by proposing one of the possible resolutions for
this clade. Here, T is the sole supertree not proposing an
arbitrary resolution for the clade. Arbitrary resolutions
are misleading as they display relationships that are not
entailed by the input trees.

The above properties can be formalized in different
ways depending on the kind of topological relation-
ship considered; e.g., clades, nestings, triplets, etc.
Following Goloboff and Pol (2002) and Grunewald
et al. (2006), we chose to focus on triplets. Given a
collection T of input trees and a candidate supertree
T , R(T, T ) denotes the set of triplets of T for which
T proposes a resolution. More formally, R(T, T ) =
{

AB|C ∈ rt(T ) such that {AB|C, AC |B, BC |A} ∩ rt(T) �=

∅
}

. The set R(T, T ) corresponds to all topological
information present in collection T that is related
to the information present in supertree T . Using
this notation, we can express the induction prop-
erty (PI) and the non-contradiction property (PC) as
follows:

• T satisfies PI for T if and only if for all t ∈ rt(T),
it holds that R(T, T ) ⊢ t. In other words, PI re-
quires that each and every triplet of T is induced
byR(T, T ).

• T satisfies PC for T if and only if for all t ∈ rt(T)
and all t̄, it holds that R(T, T ) �⊢ t̄. This means that,
for each and every triplet of T , R(T, T ) induces no
alternative resolution.

For instance, considering collection T = {T1, T2} in
Figure 2 and supertree T ′ of Figure 3, the set R(T ′, T ) is
{AC |E, AC |F, AB|E, AB|F, BC |E, BC |F, E F |A, E F |B,
E F |C}. Note that the triplet AD|C present in rt(T ) due
to T2 is not in this set because A, D, C are multifurcating
in T ′. When the source trees are incompatible, it is
possible that R(T, T ) contains two different triplets
for the same three taxa. For example, consider the
supertree T in Figure 3 proposed by the MC and MMC
voting methods (Semple and Steel, 2000; Page, 2002)
on the collection T = {T1, T2}. R(T, T ) contains both
AB|C (resulting from T2) and AC |B (resulting from T1).
In this case, the supertree T that contains the triplet
t = AB|C does not satisfy PC, since t̄ = AC |B is in
R(T, T ) (hence, R(T, T ) ⊢ t̄). Indeed, in this example,
supertree T includes topological information contained
in T2 that contradicts that of T1. This situation indirectly
results from a difference in the sizes of the clades of T1

and T2, which are incompatible: the clade containing
more taxa (here (A, B, D) in T2 versus (A, C) in T1) is
favored in the MC-MMC supertree. Such a size bias
effect has been well-known in the field since Purvis
(1995b) demonstrated it for the MRP voting method.
Here it is illustrated for another voting method, and one
might wonder whether this size bias is present in most
voting methods. Note, however, that this size bias does
not seem to have a major impact on MRP’s accuracy
(Baum and Ragan, 2004).
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FIGURE 2. Example of a collection T = {T1, T2} of two source trees.

When the source trees are compatible, any reasonable
method is expected to produce a supertree satisfying PC.
However, some methods usually propose a supertree
that does not satisfy PI. Indeed, compatible source trees
can sometimes be displayed by an exponential num-
ber of supertrees, and some methods arbitrarily propose
only one of them, thus selecting some triplets to the
exclusion of other possible triplets. For instance, when
considering the trivial case of two source trees AB|E
and C D|E , both MC and MMC propose the supertree
((A,B),(C,D),E), whereas numerous supertrees are possi-
ble; e.g., ((A,C),(B,D),E). In such a case, it seems prefer-
able to output a consensus of all possible supertrees,
as done by MRP (e.g., Bininda-Emonds and Bryant,
1998). Unfortunately, some topological information of
the source trees (e.g., triplets) can be absent from the ob-
tained consensus as it can contain highly multifurcating
nodes.

However, for some compatible collections of trees, it
is possible to find a supertree that displays all triplets of
the collection and is also refined by all other possible su-
pertrees. More formally, a setR of triplets is said to iden-
tify a tree T if and only if T strictly displaysR and T is re-
fined by every tree T ′ that strictly displaysR. A setR can
identify at most one tree; thus, when the triplet set R =
rt(T ) of a collection T of source trees identifies a tree, this
tree is a canonical representation of all possible supertrees.

Considering practical collections T of source trees,
rt(T ) will almost never identify a tree, either because
this set is incompatible or because it does not identify a
particular tree. Nevertheless, it is possible that a subset of
the triplets in rt(T ) identifies a tree T , and then the topo-

FIGURE 3. Various supertrees for the collection of Figure 2. T is the supertree proposed by the MC (Semple and Steel, 2000) and MMC
methods (Page, 2002). T ′ and T ′′ are the supertrees respectively proposed by the BuildPC and PhySI CPC algorithms described in this paper.

logical information contained in T exactly corresponds
to a subset of the topological information contained in
T . Such a subset is most interesting when the triplets t it
contains do not have an alternative resolution t̄ in rt(T ).
This situation occurs for the subsetR(T, T ) of rt(T ) when
the supertree T satisfies PI and PC.

Proposition 1 A tree T satisfies PI and PC for a collection T
of trees if and only ifR(T, T ) identifies T.

The proof is given in Appendix 1. It is based on the fact
that a setR identifies a tree T if and only if rt(T) = cl(R)
(Grunewald et al., 2006: lemma. 2.1). This proposition
confirms the relevance of PI and PC: having a supertree
T that satisfies both of them highlights a part of rt(T )
(namely R(T, T )) that exactly corresponds to a tree, i.e.,
does not contain arbitrary topological information, and
moreover does not contradict any input tree. Such a fea-
ture is most desirable for supertrees inferred by veto
methods.

Links with Other Advocated Properties

Properties similar to PI and PC were described in
Goloboff and Pol (2002: 519) as “the property of [the su-
pertree] displaying AB|C if it is found in some input tree
or implied by some combination of input trees and no
input tree or combination of input trees displays or im-
plies AC |B or BC |A.” These properties were also pointed
out as being desirable by Grunewald et al. (2006). Using
our formalism, they can be translated as follows for a
supertree T representing a collection T :

• P I ′: for any t ∈ rt(T), it holds that rt(T ) ⊢ t
• PC ′: for any t ∈ rt(T) and for all t̄, it holds that

rt(T ) ⊢/ t̄.

The essential difference between PI’-PC’ and PI-PC is
whether we evaluate supertrees based on triplets in the
original set of trees, rt(T ), or on the triplets commonly
resolved by the supertree and at least one of the source
trees, R(T, T ). From the statement of the properties, it
is clear that PC’ implies PC and PI implies PI’. It is
thus natural to wonder which version of the properties is
preferable. Below, we show an example where PC’ is too
restrictive, and an example where PI’ is too permissive.
In contrast, PI and PC behave correctly in these examples.
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FIGURE 4. Excluding rogue taxa from the analysis can lead to informative supertrees.

Example 1 Let T = {T1, T2} with T1 and T2 as shown in Fig-
ure 4. r t(T ) contains AE |B and AC |E; therefore, rt(T ) ⊢
AC |B. We also have rt(T ) ⊢ AB|C because AB|C ∈ rt(T1).
Thus any tree providing a triplet on {A, B, C} does not satisfy
PC’. For analogous reasons PC’ does not allow us to propose
any triplet in the supertree. Thus, PC’ rejects the tree T of
Figure 4. Yet T is a reasonable and informative supertree for
T and satisfies both PI and PC.

We note that T is not a plenary supertree, i.e., it does
not contain all input taxa, but this example shows that
removing rogue taxa is a way in which more informative
supertrees can be obtained. This is in line with the remark
of Wilkinson et al. (2004), who stated that “non-plenary
supertree methods might be most useful for identify-
ing unstable leaves.” For instance, such leaves might be
involved in lateral transfers. This example easily gen-
eralizes to cases where the supertree actually contains
more leaves than each source tree. Figure 5 depicts this
generalization.

The next example shows a supertree satisfying both
PI’ and PC’ while also displaying irrelevant triplets.

Example 2 Let T = {T1, T2} with T1 and T2 as illustrated
in Figure 6. r t(T ) = {AB|C, AB|X, BC |A}. The tree T of
Figure 6 displays {AB|X, BC |X, AC |X}. AB|X is present in
(thus induced by) rt(T ) but the two other triplets can also
be induced from rt(T ): {AB|X, BC |A} ⊢ {BC |X, AC |X}. It
follows that T satisfies PI’. Moreover, it is easily seen that no
combination of triplets in rt(T ), other than {AB|X, BC |A},
induces triplets. However, T is clearly not an ideal supertree
for T as no information in T induces group A, B, C to nest
inside group A, B, C, X. The property PI, not satisfied by T,
detects this problem: here R(T, T ) only contains the triplet

FIGURE 5. Another example with rogue taxa. This figure presents a generalization of the example displayed in Fig. 4 to the case of a supertree
containing more taxa than each input tree.

AB|X and thus it does not induce the triplet AC |X present
in T.

The PI’ property quoted by Goloboff and Pol (2002)
is stronger than the Pareto property (Neumann, 1983;
Wilkinson et al., 2004) on triplets, which requires that
the output tree contain all triplets and splits that occur
in all source trees. The Pareto property is appealing in
general and has also been advocated in the supertree
context (property P6 of Steel et al., 2000). However, im-
posing the Pareto property on triplets may be problem-
atic, even in the case of compatible source trees (Thor-
ley and Wilkinson, 2003). This is due to the possibility of
having several candidate supertrees that are both compat-
ible with source trees and respect the Pareto property. In
this case, no single supertree exists that satisfies the Pareto
property while having no arbitrary resolution. The strict
consensus of these supertrees does not necessarily satisfy
the Pareto property. A solution is then to return several
trees, either all candidate supertrees or their reduced con-
sensus (Wilkinson, 1994). However, this solution may not
well be suited when the aim is to summarize a collection
of source trees into a single supertree that is more easily
dealt with for further analysis by biologists.

When source trees are incompatible, it may even be
impossible to have a supertree satisfying both the Pareto
and non-contradiction properties (PC and PC’) as shown
in the following example.

Example 3 Consider the collection T = {T1, T2}
where T1 = (((A, D), B), ((C, F ), E)) and T2 =
(((A, E), (B, F )), (C, D)). Triplets AB|C and E F |D
are displayed by both trees of T . Thus, any supertree T for
T must include all leaves in T in order to satisfy the Pareto
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FIGURE 6. Contradiction in the source trees can lead to arbitrary resolution. An example where the presence of contradiction in the source
trees (namely, AB|C in T1 versus BC |A in T2) can lead to the inferrence of arbitrary clades (namely, excluding X from the clade {A, B, C} in the
supertree T). This problem is detected by PI but not by PI′ nor PC′.

property. Since rt(T ) contains AB|D and AD|B, any tree
T displaying a triplet for the three leaves does not satisfy PC
(hence PC’). For similar reasons, no supertree T can display a
triplet on the taxa A, C, and D. Thus, any supertree satisfying
PC (or PC’) and including all taxa of T contains a multifur-
cating node on taxa A, B, C, D, and hence does not display
the triplet AB|C; i.e., does not satisfy the Pareto property.

In other words, imposing the Pareto property can
lead the supertree to explicitly contradict relationships
present in some input trees. This shows that the Pareto
property on triplets is not compatible with the veto ap-
proach, where the proposed supertree must not con-
tradict the source trees. However, the Pareto property
can be considered for other topological relationships
(Wilkinson et al., 2004). For example, there is always a
supertree satisfying PI and PC as well as the Pareto prop-
erty on partial or full splits contained in the source trees.

The Pareto property specifies relations that the su-
pertree must contain. The complementary co-Pareto
property specifies relations that the supertree must not
contain. The co-Pareto property in the consensus context
requires that the consensus tree contain no relationships
that are not present in at least one input tree. However,
Wilkinson et al. (2004) point out that this statement is
not reasonable for supertrees, because “they might con-
tain relashionships that are entailed by the input trees in
combination, but are not present in any of them singly.”
Then they propose a weaker version that requires that
the supertree does not contain relationships that are con-
tradicted by all the input trees whose leaf set makes a
contradiction possible. Note that, any supertree satisfy-
ing PC also satisfies the latter version of co-Pareto.

Steel et al. (2000) list five other properties that might
be requested from supertree methods: changing the or-
der of the trees in the input collection does not change
the supertree (P1); renaming the taxa of the source trees
gives the same supertree, but with the taxa renamed ac-
cordingly (P2); the output tree displays the source trees
when they are compatible (P3); each leaf (taxon) that oc-
curs in at least one source tree is in the supertree (P4); the
running time of the method grows polynomially with
respect to the total number of taxa (P5). The following
example shows that ensuring P3 can force the supertree
to contain arbirtrary clades. Thus, P3 can conflict with PI.

Example 4 Let T = {T1, T2} with T1 = ((A, B), W) and
T2 = ((A, B), (X, (Y, Z))). A supertree with taxon set

{A, B, W, X, Y, Z} that satisfies P3 must display T2, hence
must have a clade including Y, Z but not X. However, it
will contain arbitrary clades, no matter where taxon W is at-
tached. This is because any supertree satisfying PI must in-
clude a polytomy on W, X, Y, Z since source trees include
no information on the relative position of W and the group
X, Y, Z. For instance, the supertree ((A, B), (X, Y), W, Z)
excludes the possibility for (A, B) and (X, Y) to be
intermixed.

Note that if polytomies of a supertree are interpreted in
terms of an Adams consensus (Adams, 1972), then this
example does not put P3 into question. However, this
interpretation of polytomies does not prevail in phylo-
genetics, as we discuss in further detail in the case study
paragraph.

Checking PC and PI in Polynomial Time

Existing supertree methods can sometimes output
trees that do not satisfy PC or PI. For instance, the MC
supertree obtained for the collection of Figure 2 does not
satisfy PC, whereas on that of Example 4, it fails to sat-
isfy PI. In contrast, for the collection {AB|C, BC |D} the
MC supertree satisfies both PI and PC. The MRP method
sometimes outputs supertrees not satisying these prop-
erties (e.g., PC is not satisfied in Figure 1 of Bininda-
Emonds and Bryant, 1998) and sometimes provides
supertrees that satisfy them—e.g., when the source trees
are compatible (Steel, 1992). We now describe an algo-
rithm to decide whether a candidate supertree satisfies
both PI and PC together. In case of a negative answer,
it pinpoints those parts of the supertree contradicting
these properties. This algorithm relies on two properties
equivalent to PC and PI, whose formulation is less intu-
itive but whose checking is easy.

Definition 1 Let T be the collection of source trees and T
be a proposed supertree for T . Define PCeq and PIeq to be the
following properties:

• PCeq : r t(T) ∪R(T, T ) is compatible.
• PIeq : for any t ∈ rt(T) and for all t̄, the set { t̄ } ∪R(T, T )

is incompatible.

Proposition 2 (PIeq and PCeq ) ⇔ (PI and PC).
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2007 RANWEZ ET AL.—DESIRABLE PROPERTIES FOR VETO SUPERTREES 805

Proof.

• PCeq ⇒ PC: PCeq ⇒ ∀t ∈ rt(T), {t} ∪R(T, T ) is com-
patible. This ensures that there is at least one tree T ′

that displaysR(T, T ) ∪ {t}. It follows that T ′ displays
R(T, T ) but not t̄. As t̄ is not displayed by every tree
that displays the compatible set R(T, T ), it follows
thatR(T, T ) �⊢ t̄.

• PC ⇒ PCeq : PC ⇒ R(T, T ) ⊆ rt(T) (cf. proof of
Proposition 1); this ensures that rt(T) ∪R(T, T ) is
compatible (since displayed by T).

• PI + PC ⇒ PIeq : PI and PC ⇒ cl(R(T, T )) = rt(T) by
Proposition 1. This ensures PIeq .

• PIeq + PCeq ⇒ PI: PCeq ensures thatR(T, T ) is com-
patible. PIeq is exactly the definition of the induction
for a compatible set, thus ensuring PI.

Note that we do not prove a direct equivalence be-
tween PI and PIeq in this general case. The two properties
are only equivalent for a compatible set. In fact, PIeq is rel-
atively uninformative without PCeq , since PIeq holds as
soon as R(T, T ) is incompatible. Note also that another
formulation of PC, closer to that of PIeq but less con-
cise, is as follows: for any t ∈ rt(T), the set {t} ∪R(T, T ) is
compatible.

PIeq and PCeq can easily be checked by using the Build
algorithm, which indicates in polynomial time whether
a set of rooted trees is compatible or not. A similar proce-
dure was proposed by Steel (1992), and refined by Daniel
(2004), to compute the strict consensus of all supertrees
displaying a collection of compatible source trees. The
following lemma provides us with an even faster way to
check PCeq .

Definition 2 (Direct contradiction) A tree T directly
contradicts a set of triplets R when there is a triplet t in
rt(T) such that ∃ t̄ ∈ R. A supertree T is said to directly con-
tradict a collection T of source trees if T directly contradicts
rt(T ).

Direct contradictions are linked with the PC property
in the following way:

Lemma 1 If a tree T does not directly contradict a collection
T of source trees then the three following statements hold:

1. R(T, T ) ⊆ rt(T);
2. R(T, T ) is compatible;
3. T satisfies PCeq for T .

Proof. By definition, R(T, T ) only contains triplets on
three-taxon sets for which there is a triplet in rt(T).
Because T does not directly contradict T , the triplets
of R(T, T ) are resolved as those in T . It follows that
R(T, T ) ⊆ rt(T) (proving 1). R(T, T ) is therefore com-
patible (proving 2). Moreover, R(T, T ) ⊆ rt(T) ensures
that R(T, T ) ∪ rt(T) is compatible, which is exactly the
formulation of PCeq (proving 3).

Thus, to check that a supertree T satisfies PCeq , and
hence PC, for a collection T , it suffices to check that any
triplet of rt(T) is not resolved in a different way in a tree
of T . This can be done by computing the set rt(T) of
O(n3) triplets in T and then comparing rt(T) with the
set of triplets of each source tree Ti . If the collection T
contains k source trees and a total of n taxa, then this
simple implementation requires O(kn3) computing time.
However, it is possible to check this condition in linear
time for each pair T, Ti with Ti ∈ T : first restrict in O(n)
time the trees T and Ti to the taxa they share; then apply
the algorithm of Berry et al. (2005) that, given two trees
with the same taxa, finds in O(n) time a triplet resolved
differently in the trees, or states that this situation does
not arise. Thus, successively considering k source trees
leads to a procedure that checks PC in O(kn) computing
time.

PhySIC: A POLYNOMIAL-TIME VETO SUPERTREE

METHOD

We introduced above the PI and PC properties, showed
their relevance, and described algorithms to check
whether a given supertree T satisfies them. In this sec-
tion, we show that it is possible to design a method that
always produces supertrees that satisfy PI and PC. How-
ever, this aim is not precise enough, as the star tree (the
tree whose leaves are all children of a single internal
node) trivially satisfies these properties—simply because
it does not resolve any triplet. Thus, a reasonable aim is
to design a method that always infers supertrees that
satisfy PI and PC and that contain as much resolution as
possible; e.g., resolve as many triplets as possible. More
precisely, we require a method that, given any collection
T , proposes a supertree T such thatR(T, T ) identifies T
and R(T, T ) has maximum size over all such subsets of
rt(T ). Such a subset of rt(T ) is called a maximum iden-
tifying subset of triplets (MIST).

The difficulty of this problem cannot be simply de-
duced from previously known theoretical results for
optimization problems on triplets. Indeed, the MIST
problem is a middle term between the NP-hard prob-
lem that consists of finding a maximum-sized compatible
subset of triplets (Bryant, 1997) and the polynomial-time
problem that asks for the maximum-sized tree-like sub-
set of a complete set of triplets (Berry and Gascuel, 2000;
Bryant and Berry, 2001). Unfortunately, the MIST prob-
lem is NP-hard (Guillemot and Berry, 2007). This shows
that it is highly unlikely that a polynomial-time algo-
rithm exists that could find the most resolved supertree
satisfying PI and PC. However, we can still rely on heuris-
tic algorithms to find reasonable (but potentially subop-
timal) solutions, as is commonly done for other NP-hard
problems such as finding a most parsimonious tree or a
maximum likelihood tree for a character matrix.

We present below a polynomial-time heuristic method
that always outputs a supertree that satisfies PI and PC.
The method tries to produce a supertree that contains as
many input triplets as possible under this constraint. The
method is a variant of the well-known Build algorithm
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and is called PhySIC—Phylogenetic Signal with Induction
and non-Contradiction. Supertrees inferred by the method
have a degree of resolution that can be close to that of
supertrees inferred by voting methods (see next section)
while only containing clades that are not arbitrary with
respect to the source trees nor contradicting them as de-
tected by PC.

Inferring a Supertree that Satisfies PC

This section introduces algorithms, based on the Build
algorithm, to produce nontrivial trees that satisfy PC.

The Build Algorithm.—The Build algorithm is a yes-or-
no algorithm that tells whether a collection of triplets
or larger trees is compatible or not. To achieve its goal,
the algorithm tries to build a tree displaying the triplets;
if the process is blocked at some step, this means that
the input triplets are not compatible. This tree is built
recursively, from the root to the leaves. First, the largest
clades are identified, then clades included in the first
ones, and so on. The composition of the clades is guided
by the structure of a graph; that is, a set of objects (called
vertices) with links (called edges) between pairs of them.

The graph used by Build, called here the Aho Graph,
is defined as follows: let R be a collection of triplets on
a taxon set X, the Aho Graph G for R is the undirected
graph with vertices X and with edges (A, B) between
two taxa A and B whenever there is a triplet AB|C ∈ R.
Thus, an edge between two taxa means that at least one
triplet sees these two taxa in the same clade. The ver-
tices of G are denoted by v(G) (in the present description
v(G) = X). For instance, Figure 7a shows the Aho graph
built from R = rt({T1, T2}), where T1, T2 are the source
trees of Figure 2 and, e.g., the edge between taxa B and
D is due to the triplet bd|c ∈ rt(T2).

A connected component Ci of a graph is a maximal set
of taxa linked to one another; i.e., such that for any pair
A, B of taxa in Ci , there is a set of edges that links A to
B. For instance, the graph in Figure 7a contains two con-
nected components: C1 = {E, F } and C2 = {A, B, C, D}.
The connected components of graph G are denoted by
CC(G). The vertices of a component Ci of G are denoted
byv(Ci ). When the Aho graph contains several connected
components, each of them corresponds to a clade of the
tree representing the input collection of triplets (if such a
tree exists). Once these clades are known, the clades con-
tained in each of these primary clades are found by recur-
sively processing Aho graphs for subsets of triplets that
respectively concern the taxa of these clades: the restric-
tion ofR to taxa of a component Ci is denoted byR|v(Ci )
and defined as

{

AB|C ∈ R such that {A, B, C} ⊆ v(Ci )
}

.
For example, Figure 7b shows the Aho graph obtained
fromR|v(C2) whereR is the set of triplets due to source
trees in Figure 2, and C2 is the component of the initial
Aho graph shown in Figure 7a. The recursive calls stop
when dealing with components containing less than 3
taxa, because there is no triplet (hence incompatibility)
on so few taxa. However, if at some point in the recur-
sive process, the Aho graph for a set of at least three taxa
has only one connected component, this means that the

input trees are conflicting on the resolution of these taxa.
When this happens, the algorithm states that the collec-
tion of source trees is incompatible. Otherwise, when all
recursive calls return, the algorithm concludes that the
source trees are compatible. For instance, when run on
the collection of Figure 2, Build first finds two connected
components, C1 = {E, F } and C2 = {A, B, C, D}, but the
recursive call on C2 leads to a graph containing only one
connected component (Figure 7b), which leads the algo-
rithm to detect the incompatibility of the source trees.

A First Simple Modification of Build.—We first describe
here a simple modification of Build that infers a supertree
from a collection of source treesT . This subroutine, called
BuildPC (Figure 8), takes as input the triplet setR = rt(T )
of a collection T of source trees and the list S of taxa con-
tained in these trees. BuildPC mainly differs from Build
when the Aho graph contains one connected compo-
nent on the set S of taxa currently considered (line 1).
In this case, BuildPC returns the star tree on S (i.e., a sin-
gle polytomy on S, thus contradicting no input triplet),
whereas Build simply concludes that the sources trees
are incompatible. This star tree is then grafted as a sub-
tree of the tree built by the previous recursive call. Thus,
we can now output a supertree even when the source
trees are incompatible. As an example, from the collec-
tion of Figure 2, BuildPC infers the supertree T ′ displayed
in Figure 3.

Proposition 3 Given a collectionR of triplets on a taxon set
S, BuildPC returns a tree T on S that satisfies the PC property
forR.

The proof of this proposition can be found in Appendix
1.

A More Involved Algorithm to Infer a Supertree Satisfying
PC.—BuildPC sometimes produces poorly resolved trees
due to multifurcations returned in cases where G con-
tains a single connected component (i.e., when R con-
tains conflicts covering the considered subset of taxa).
In the most extreme (though unlikely) case, this situa-
tion occurs at the first step of the algorithm, which then
outputs a star tree.

The most basic conflicts between triplets of R occur
when two different triplets t and t̄ appear in R for a
same set of three taxa. Such a direct contradiction cannot
be present in a tree that satisfies PC. Given Rdc , the set
of triplets such that t, t̄ ∈ R it seems relevant to consider
the subsetR′ = R−Rdc . We define a variant of BuildPC ,
called PhySICPC , that resorts to that subset whenever
conflicts are detected. This enables the produced su-
pertree T ′ to be generally much more resolved than the
tree returned by BuildPC . For instance, Figure 7b shows
the graph obtained for R|v(C2), where R are triplets of
the collection in Figure 2 and C2 is the connected compo-
nent shown in Figure 7a. This graph is connected due to
the direct conflicts between AB|C (resulting from T1) and
BC |A (resulting from T2). This situation leads BuildPC to
return a polytomy on A, B, C , D. In contrast, building
the graph on the basis of R′ results in two connected
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2007 RANWEZ ET AL.—DESIRABLE PROPERTIES FOR VETO SUPERTREES 807

FIGURE 7. Examples of graphs. (a) The initial Aho graph G created from the triplets rt(T ) of the collection T displayed in Figure 2. The
two connected components of G are C1 = {E, F } and C2 = {A, B, C, D}. (b) The Aho graph obtained from R|v(C2). This graph is connected,
showing that the input trees conflict on the resolution of {A, B, C, D} and hence are incompatible. (c) The Aho graph obtained from R|v(C2)
when removing the triplets Rdc = {AB|C, AC |B}.

components, Ci and C j , allowing PhySICPC to propose a
tree with two subtrees for taxa A, B, C, D.

The correctness of BuildPC ensures that T ′ satisfies PC
with respect to R′ but without any guarantee that this
also holds with respect to R. To ensure the latter, and
thus the correctness of PhySICPC , T ′ must not resolve
any triplet ofRdc . A way to ensure this is to collapse any
branch of T ′ that resolves a triplet of Rdc . The tree thus
obtained is still always at least as resolved as the one pro-
posed by BuildPC and potentially contains supplemen-
tary branches. Indeed, direct contradictions at the root
of a clade no longer prevent the proposition of clades
on subsets of its taxa. For instance, on the collection of
Figure 2, the tree initially computed by PhySICPC is the
tree called T in Figure 3. But as the branch leading to
the clade (A, D, B) contradicts AC |B ∈ Rdc , the branch
above this clade is collapsed, and the final tree output by
PhySICPC is then the tree named T” in Figure 3. This tree
contains one clade more than the tree output by BuildPC

(the tree named T ′ in the figure).
These ideas are included in the PhySICPC algorithm

whose pseudo-code is detailed in Figure 9.

Theorem 1 Given a triplet setR = rt(T ) from a collection T
of source trees on a taxon set S of n leaves, PhySICPC returns
in O(n4) time a tree T satisfying PC for T .

FIGURE 8. Details of the BuildPC subroutine taking a set S of taxa and a set R of triplets on S as input.

The proof of this result can be found in Appendix 1.

Ensuring that the Supertree Satisfies PI

The supertree TPC output by PhySICPC does not usu-
ally satisfy the PI property. The PhySICP I algorithm
transforms TPC so that it also satisfies PI. To that aim
PhySICP I recursively searches the tree and checks that
for each branch each triplet is induced by R(TPC , T ).
Theorem 3.1.1 of Daniel (2004) provides a useful charac-
terization to decide when a branch is justified, directly or
indirectly, thanks to triplets present inR(TPC , T ). When
considering the branch linking a node u to a child subtree
Si , the theorem considers a graph G i j for any sibling sub-
tree Sj of Si . Any such graph G i j is the Aho graph with
vertices L(Si ), and with edges due to triplets ofR(TPC , T )
whose three leaves are in L(Si ) ∪ L(Sj ). The theorem
states that the branch from u to the root of Si is justified
if and only if G i j is connected, for any sibling subtree Sj .

Example 5 Consider for instance the simple example where
T contains the trees ((A,B),X) and ((E,F),X). The Aho graph
for rt(T ) = {AB|X, E F |X} is made of three connected com-
ponents: C1 = {A, B}, C2 = {E, F }, and C3 = {X}; there-
fore, applying the PhySICPC algorithm gives the tree TPC =
((A, B), (E, F ), X). TPC displays AB|E even though this in-
formation is not induced by T . Indeed, the branch defining
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808 SYSTEMATIC BIOLOGY VOL. 56

FIGURE 9. Details of the PhySI CPC subroutine taking a set S of taxa and a set R of triplets on S as input.

the clade (A, B) is detected as not justified since the corre-
sponding connected component, C1, is not connected in the
Aho graph when we consider only edges due to triplets with
taxa in C1 ∪ C2.

This theorem is the basis of a decision algorithm called
Identifies that states whether a given set of triplets iden-
tifies a given tree (Daniel, 2004). It is possible to design
a simple variant of this algorithm that always returns
a tree (not just a yes or no answer): when a branch be-
tween a node p and the root of a subtree Si is not jus-
tified, the idea is to replace Si by a star tree on the taxa
of the corresponding clade. This crude variant removes
the unjustified branches, but also potentially many other
branches; i.e., those inside Si , those leading to sibling
subtrees Sj of Si , and those inside Sj subtrees. PhySICP I

is a more refined variant that only collapses the unjusti-
fied branches. See the pseudo-code in Figure 10 for de-
tails. In this code, PhySICP I is given a tree T in which
unjustified branches are to be collapsed and a collection
T of source trees or, equivalently, the corresponding set
of triplets (as written in the pseudo-code). PhySICP I re-
peatedly calls the CheckP I subroutine to detect unjusti-
fied branches that are then removed until none remains
(note that in the pseudo-code of CheckP I , S(T) denotes

(complete) subtrees connected to the root of T ; i.e., the
subtrees corresponding to the largest clades under the
root of T).

From the collection of Figure 2, PhySICPC infers the
supertree T ′′ displayed in Figure 3 and none of the
three internal branches of T ′′ are collapsed by CheckP I .
For instance, consider the step where CheckP I checks
the subtree ((A,D),B,C) of T ′′, whose child subtrees are
(A,D) plus the two trivial subtrees on B and C. The
sole branch that has to be checked in ((A,D),B,C) is the
one defining the clade (A,D). Here, CheckP I builds two
Aho graphs with vertices {A, D}: one with edges due to
triplets on {A, D} ∪ {B} and one with edges due to triplets
on {A, D} ∪ {C}. Both graphs are connected thanks to
triplets of the source tree T2; therefore, CheckP I does not
collapse any branch at this step.

Theorem 2 Given a collection T of trees and a tree satisfying
PC for T , PhySICP I returns in O(n4) time a tree T on L(T )
that satisfies both PC and PI for T .

The proof of this Theorem can be found in the
appendix.
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2007 RANWEZ ET AL.—DESIRABLE PROPERTIES FOR VETO SUPERTREES 809

FIGURE 10. Details of the PhySIC algorithm and PhySI CP I and CheckP I subroutines.

The PhySIC algorithm (see pseudo-code) builds a su-
pertree for a collection of k source treesT by first comput-
ing the set rt(T ) and then successively calling PhySICPC

and PhySICP I . Since rt(T ) is computed in O(kn3), PhySIC
runs in O(kn3 + n4) time.

Theorem 3 Given a collection T of k source trees on n leaves,
PhySIC returns in O(kn3 + n4) time a tree satisfying both PC
and PI.

Lastly, we note that similar procedures can be designed
to modify the supertree proposed by any existing su-
pertree method. If a method proposes a supertree T that
does not satisfy PC and PI, it is possible in polynomial
time to transform T into a tree T ′ that satisfies these
properties. Indeed, the algorithm indicated previously
to check PC indicates the triplets from which the incom-
patibility arises. Then the branches of T inducing these
triplets can be collapsed to obtain a tree T ′ satisfying PC.
Now, PhySICP I can be applied to T ′ to ensure that it also
satisfies PI (without invalidating PC).

BIOLOGICAL CASE STUDIES ON PRIMATES

To illustrate the impact of the PC and PI properties
on supertree inference, and to compare the behavior of
veto methods like PhySIC to that of voting methods like
MRP and MMC, we present two case studies centered on
Primates. This mammalian order is one of the first taxo-

nomic groups for which a large-scale supertree approach
has been conducted (Purvis, 1995a). The first example
is designed to show the desirable properties of PhySIC
compared to other supertree methods on a smaller, un-
derstandable taxonomic scale. The second example ad-
dressing the question of the primate supertree at the
genus level shows how PhySIC performs on a larger tax-
onomic scale—approaching what supertree studies tend
to be performed on—and shows that varying degrees of
resolution are achieved in the supertree depending upon
the nodes retained from the input trees.

First Example: Illustration of Supertree Desirable Properties

Source Trees.—We focused on a subsample of Primates
IRBP (interphotoreceptor retinoid binding protein) and
ADRA2B (α2B-adrenergic receptor) gene sequences, re-
spectively, from Poux and Douzery (2004) and Poux et al.
(2006), with a rodent (Mus) and lagomorph (Oryctolagus)
outgroup. For ADRA2B, the hominoid representative
was Pan, with the sequence downloaded from the chimp
ENSEMBL project. The ADRA2B and IRBP source trees
were inferred by maximum likelihood (ML) analysis of
the corresponding alignments, using PHYML (Guindon
and Gascuel, 2003), version 2.4.4, under a GTR+Ŵ4+INV
model of DNA evolution. The node support was esti-
mated after 1000 bootstrap replicates using the same
software and expressed as bootstrap percentages (BP).
Denser taxonomic and phylogenetic information for
Strepsirrhines (i.e., Lemurs and Galagos) was sought from
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FIGURE 11. Three source trees for the case study on primates. Majority rule consensus source trees derived from the bootstrap analysis of
ADRA2B and IRBP sequences (in maximum likelihood) and SINE characters (in maximum parsimony). Bootstrap percentages are indicated on
nodes, and only nodes defined by more than 50% are considered. Thin branches lead to the outgroup. Taxa in bold are handled differently by the
different supertree algorithms and illustrate three different situations (arrows, letters, box: see main text). The two Tarsius species are T. bancanus
(b) and T. syrichta (s).

a study of presence-absence of short interspersed nuclear
elements (SINE) integrations in primate genomes (Roos
et al., 2004: fig. 2). Sixty-one monolocus SINE characters
detected by these authors were subjected to a maximum
parsimony analysis using PAUP* (Swofford, 2002), ver-
sion 4b10, with 1000 bootstrap replicates using a heuris-
tic search, with 10 random additions of taxa, and TBR
branch swapping. We only retained the best supported
nodes of source trees; i.e., those showing at least 50%
bootstrap (cf. also Daubin et al., 2002).

Comparison of Supertrees Inferred from PhySIC, MMC,
and MRP.—Starting from the three source trees (Fig-
ure 11), supertrees were built using the MMC, MRP, and
PhySIC methods. For MRP, the matrix representation of
the three source topologies resulted in 47 characters. Par-
simony analysis was conducted under PAUP*, with a
heuristic search with 1000 random addition sequences,
and TBR branch swapping, resulting in 864 equally par-
simonious trees, a strict consensus of which provided the
MRP supertree. The MMC supertree was obtained using
the program distributed by Rod Page. Figure 12 shows
the supertrees respectively reconstructed by MMC, MRP,
and PhySIC with its PhySICPC intermediate step.

The supertrees produced all contain some soft poly-
tomies, each of them representing uncertainty about
the resolution of a node’s child subtrees or lineages.
A soft polytomy can have two distinct interpretations,
differing in the set of admissible fully resolved phylo-
genies it encompasses. Consider the case of the poly-
tomous node P in the MMC tree of Figure 12. This
node has three child subtrees S1 = (Homo, Hylobates),
S2 = (Pan,(Cercopithecus, Macaca)), and S3, the Platyrrhinii

clade. The most widespread meaning of a soft poly-
tomy accepts any fully resolved tree on subtrees S1, S2, S3

that keeps their monophyly: ((S1, S2), S3), ((S1, S3), S2),
or ((S2, S3), S1). Strict consensus, majority-rule consen-
sus, and hence MRP, interpret polytomies in this way
(Margush and McMorris, 1981). Polytomies proposed by
PhySICPC are also to be interpreted in this way. A second
interpretation of soft polytomies was introduced by the
Adams consensus (Adams, 1972) and is also intended
by MC (Semple and Steel, 2000) and MMC (Page, 2002).
This interpretation accepts as possible phylogeny any
fully resolved tree that maintains the structure of each
subtree respectively, no matter whether or not S1, S2,
and/or S3 are kept monophyletic (i.e., their leaves can
be interleaved). Thus, the polytomy P of the MMC tree
in Figure 12 can indeed give rise to fully resolved trees
grouping Pan and Homo without Hylobates, as long as Pan
is kept outside the clades containing Cercopithecus and
Macaca (which is the structure imposed by S2). Under
this interpretation, a soft polytomy represents a much
wider range of fully resolved phylogenies than with
the first interpretation, and is harder to interprete in a
phylogenetic context. (In particular, this means that sim-
ulation studies on supertree methods that use the Robin-
son and Foulds distance to evaluate the performance of
MC or MMC are misleading: on the previous example,
the MMC method would have been considered to pro-
pose the incorrect clades Homo + Hylobates, and Pan +
Hylobates.)

The contribution of PhySICPC to the supertree in-
ference may be illustrated by the situation among
platyrrhines. Here, ADRA2B indicates that Ateles is the
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FIGURE 12. Comparison of supertrees inferred by three methods: MMC, MRP, and PhySIC (the PhySI CPC intermediate step of the latter is
also displayed). Thin branches lead to the outgroup. Taxa in bold are handled differently by the different supertree algorithms and illustrate
three different situations. (i) Arrows indicate the surprising positioning of Homo and Pan under the MMC and PhySI CPC algorithms; (ii) A-B-C-X
letters correspond to taxa arbitrarily grouped by MMC and PhySI CPC (cf. Figure 2); (iii) boxes contain platyrrhine taxa for which MMC and MRP
contradict the IRBP source topology. The P label on MMC and PhySI CPC supertrees refers to the polytomy involving catarrhine and platyrrhine
clades. The taxonomic frame for Primates is given on the PhySIC supertree. Hatched rectangles represent Anthropoidea (Catarrhini + Platyrrhini).
White and black rectangles respectively represent Haplorrhini (Tarsiiformes + Anthropoidea) and Strepsirrhini (Lorisiformes + Lemuriformes).
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sister-group of Pithecia, Callithrix, and Cebus, whereas
IRBP indicates that Ateles and Cebus are the closest rel-
atives (Figure 11: boxed areas). This conflict is detected
by PhySICPC . As a result, the PhySICPC and PhySIC su-
pertrees display all four platyrrhines within a multi-
furcation. By contrast, MRP and MMC give priority to
the Callithrix + Cebus grouping present in the ADRA2B
source tree, and thus contradicts the Ateles + Cebus group-
ing present in the IRBP source tree. Resolution of this con-
flict between the source trees reflects the voting approach
followed by MRP and MMC. For instance, consider the
case of MRP: the ADRA2B source topology comprises
two nodes within platyrrhines, against one node for the
IRBP topology. Therefore, MRP favors the node Callithrix
+ Cebus involved in a topological conflict but belonging
to a larger and more resolved clade (Bininda-Emonds
and Bryant, 1998). The behavior of MRP and MMC on
platyrrhines is problematic. Indeed, it favors one source
topology while contradicting another, just on the basis
of their respective levels of resolution, and despite the
fact that both contain the same number of taxa for the
platyrrhine subtree. MRP has already been criticized on
this point (e.g., Goloboff, 2005). Note that source trees
also conflict on the position of Propithecus with respect
to Microcebus and Lemur. However, in this case, MRP be-
haves as PhySICPC and PhySIC; i.e., displays a polytomy
on groups containing these three taxa (Figure 12: letters
A-B-C). By contrast, MMC groups together the Propithe-
cus and Lemur clades, following the SINE information,
but contradicting the IRBP information.

The complementary contribution of PhySICP I to the
supertree inference may be illustrated by the situation
among Catarrhines + Platyrrhines. Although not con-
tradicting the source trees, the PhySICPC supertree con-
tains two topological errors. First, man and chimp do
not group together relative to the gibbon, as would be
expected from a plethora of data (Goodman et al., 2005).
Homo is instead associated with Hylobates, whereas Pan
branches with the two cercopithecoids, Cercopithecus and
Macaca. This situation results from the taxon sampling of
the source topologies. More precisely, man and chimp are
not simultaneously present in any source tree; i.e., the for-
mer clusters with the gibbon (IRBP) and the latter with
cercopithecoids (ADRA2B). These two source clades are
reproduced in PhySICPC and MMC supertrees.

In the case of PhySICPC , these two clades are involved
in a polytomy with the platyrrhines. This polytomy
means that (Homo, Hylobates) is a sister clade of the clade
containing Pan. However, although these clades are cor-
rect when considered separately, they should not be sister
groups in the supertree. PhySICP I detects this situation
of arbitrary resolution and collapses the corresponding
branches, thus the final PhySIC supertree allows for a
group (Pan, Homo). MMC displays the same polytomy
as PhySICPC but with a different meaning: the interleav-
ing interpretation of this soft polytomy means that MMC
does not reject the expected resolution, namely group-
ing (Pan, Homo) as a sister clade of Hylobates. In con-
clusion, both MMC and PhySIC allows for the expected
group (Pan, Homo), but note that the PhySIC supertree

is more accurate, as its polytomy does not allow the
catarrhine taxa Homo, Hylobates, or Pan to branch within
the platyrrhines. Here, MRP does not introduce arbitrary
resolutions and proposes a polytomy involving the five
catarrhine taxa.

Another problem of MMC and PhySICPC supertrees
is that Lepilemur is the sister-group of all Lemuriformes
but Daubentonia, whereas this topological information is
not present in the only source tree (SINEs) for which Lep-
ilemur is scored. This result is explained by the fact that
the restriction of IRBP and ADRA2B source topologies to
taxa lettered A-B-C-X leads to the situation described on
Figure 6. Thanks to the PI property, the PhySIC algorithm
again corrects this problem and displays a polytomy in-
volving the major clades of lemuriformes, together with
Lepilemur (Figure 12). The same polytomy is also pro-
posed by MRP. Overall, this first case study illustrates
that the two properties introduced in the present work
help to identify and manage the potential arbitrary and
conflicting resolutions arising in supertrees when com-
bining independent source topologies.

Second Example: A PhySIC Supertree of Primate Genera

Primary Data and Source Tree Inference.—We used 24
data sets to reconstruct the primate phylogeny: two
mitochondrial DNA (mtDNA), 19 nuclear DNA, and
three transposable elements data sets. All sequences
used in this study were retrieved from EMBL-Genbank
databases. The sampling of genes and other molecular
markers is detailed in Table 1. The corresponding data
are available under TreeBASE accession numbers S1879
and M3455. This combined data set encompasses 95% of
all primate extant genera (Wilson and Reeder, 2005); i.e.,
66 genera. Two subfossil genera from ancient DNA anal-
yses were also included (Karanth et al., 2005). All genes
were aligned with Clustal X (Thompson et al., 1997) with
subsequent manual refinement. We used Mus and Rattus
as outgroups in all analyses for which sequence data was
available. Each gene was analyzed with the ML criterion
under the best fitting model (Table 1). Separate ML phy-
logenetic reconstructions and bootstrap analyses were
performed with PHYML (Guindon and Gascuel, 2003)
as described in previous section. Maximum parsimony
phylogenetic reconstruction and bootstrap analysis on
the three transposable element data sets were also con-
ducted using PAUP* as described in previous section.
Clades of the source trees with BP values above a speci-
fied threshold were retained. To evaluate the influence of
this parameter, five PhySIC supertrees were inferred by
respectively considering BP ≥ 50%, 60%, 70%, 80%, and
90%. Each run of PhySIC took less than 4 s on an Intel
MacBook.

The Major Clades of Primate Genera.—The most resolved
supertree reconstructed by PhySIC is obtained when
source trees were restricted to nodes supported by more
than 70% bootstrap (Figure 13; BP≥ 70%). This topol-
ogy conforms to current ideas on primate phylogeny
and is close to the informal supertree of Primates at
the genus level proposed by Goodman et al. (2005). In
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TABLE 1. Molecular markers used to infer the primate source trees.
The best-fitting model and the number of primate genera per marker
are indicated. (mtDNA: mitochondrial DNA)

Markers Model Genera

α-2B Adrenergic receptor HKY + Ŵ 16
Albumin gene introns 3 and 4 K80 + I 20
ATPase 7A HKY + Ŵ 11
Breast and ovarian cancer susceptibility 1 HKY + Ŵ 12
Cytochrome b [mtDNA] GTR + Ŵ+I 68
α-1,2 fucosyltransferase HKY + Ŵ 21
β globin GTR + I + Ŵ 22
γ globin exons 1 and 2 HKY + Ŵ 26
ǫ globin HKY+Ŵ 33
Glucose-6-phosphate dehydrogenase

introns 4 and 5
HKY + Ŵ 18

Glucose-6-phosphate dehydrogenase
introns 7 and 8

HKY + Ŵ 12

Interphotoreceptor retinoid-binding
protein exon 1

HKY + Ŵ 34

Interphotoreceptor retinoid-binding
protein intron 1

K80 + Ŵ 24

Lysozyme gene HKY + Ŵ 19
Membrane cofactor protein gene HKY + Ŵ 13
β2-microglobulin precursor exons 1 and 2 HKY + Ŵ 18
NADH dehydrogenase subunit 5

[mtDNA]
GTR + Ŵ+I 24

Phospholipase C β4 gene GTR 13
Testis-specific protein gene HKY + Ŵ 21
von Willebrand gene introns 11 and 12 HKY + Ŵ 37
9.3 kb chromosome Xq13.3 fragment HKY + Ŵ 13
SINE (Roos et al., 2004) — 20
ALU (Singer et al., 2003) — 8
SINE (Xing et al., 2005) — 15

addition, we here extend their taxon sampling with the
three extant genera Euoticus, Piliocolobus, and Simias, and
the two subfossil genera Megaladapis and Paleopropithe-
cus. Our supertree displays the fundamental dichotomy
among Primates between Strepsirrhini and Haplorrhini.
Strepsirrhines then split into Lorisiformes (Lorises and
Galagos) and Lemuriformes (lemurs and Daubentonia, the
aye-aye). Haplorrhines also split into Tarsiers and An-
thropoids. The latter clade subsequently divides into
monophyletic New World primates (Platyrrhini) and Old
World primates (Catarrhini). Platyrrhini display a tri-
furcation involving the three families Atelidae (the Ate-
les + Alouatta clade), Pitheciidae (the Pithecia + Callice-
bus clade), and Cebidae (the Cebus + Saimiri + Aotus +
Saguinus clade). Catarrhines split into Hominoidea (gib-
bons and apes) and Cercopithecoidea (colobines and
cercopithecines).

Identifying and Labeling the Causes of Supertree
Polytomies.—Because veto methods are used for evalu-
ating the topological congruence of source trees, and for
measuring their degree of leaf overlap, the PhySIC pro-
gram outputs labels on each polytomous node. A label
“C” (standing for Contradiction) indicates that the poly-
tomy results from contradictions among the source trees
on phylogenetic relationships of corresponding taxa:
proposing a resolution for the polytomy would contra-
dict at least one source tree; i.e., would not respect the PC
property. A label “I” (standing for Induction) indicates a
lack of cross-information in the source trees: any dichoto-

mous resolution of the clade would be at least partially
arbitrary and thus would not respect the PI property.
Note that a given label applies only to the node to which
it is assigned but not to other nodes in its subtrees. For
instance, in the primate genera supertree (Figure 13), the
platyrrhine trifurcation (Atelidae, Pitheciidae, Cebidae)
with a C label indicates that there is topological contra-
diction among the source trees about the sister-group
relationships of these three families. However, the C la-
bel does not put the monophyly of Atelidae, Pitheciidae,
and Cebidae into question. Note also that a same poly-
tomy can be characterized by both C and I labels. This
means that the inability of the supertree to propose a
dichotomous resolution is partly due to a lack of tax-
onomic overlap, and partly due to contradictions. For
example, Figure 13 shows that the clade Cercopithecus,
Erythrocebus, Chlorocebus, and Miopithecus is tagged by
both C and I, reflecting two problems. On the one hand,
source topologies disagree about the placement of Ery-
throcebus: this genus is either related to Cercopithecus (as
suggested by IRBP exon 1) or to Chlorocebus (cf. the TSPY
and chromosome Xq13.3 markers, and the Alu charac-
ters of Xing et al. [2005]). On the other hand, the input
trees analyzed here do not provide the information re-
quired to know whether Miopithecus is the sister group
of Cercopithecus, or is that of Erythrocebus + Chlorocebus,
or is the most basal genus in the clade.

Impact of the Robustness of Source Trees on Veto Supertree
Resolution.—The number of clades retained from the
original source trees depends on the bootstrap threshold
imposed to select them for supertree inference. Choosing
a low threshold thus increases the number of retained
source clades and hence lowers the number of poly-
tomies due to a lack of cross-information among source
trees but increases the number of polytomies due to con-
flicts among source trees. Increasing the threshold has the
opposite effect. The primate supertree of Figure 13 was
obtained with BP ≥ 70%. Lowering the threshold to BP
≥ 50% or BP ≥ 60%, PhySIC yields a completely multifur-
cating supertree, due to weakly supported clades that
conflict among source trees. When the bootstrap strin-
gency is increased from the BP ≥ 70% to BP ≥ 80%
threshold, a similar level of resolution in the genus level
phylogeny is obtained with the exception of two addi-
tional polytomies: the first involves Indriidae (Indri +
Avahi + Propithecus + Paleopropithecus) relative to other
lemuriformes, and the second involves Allenopithecus rel-
ative to the Cercopithecus clade (white stars in Figure 13
refer to disappearing branches). Interestingly, increas-
ing the threshold removes a topological conflict among
Lophocebus, Papio and Theropithecus: with the PC prop-
erty being satisfied, then the PhySIC supertree groups
together the latter two genera. At the BP ≥ 90% thresh-
old, 7 additional polytomies with respect to the BP ≥ 70%
topology appear (Figure 13: black stars refer to node col-
lapsing). This reflects the fact that less source nodes (i.e.,
the nodes of source trees) are available for supertree in-
ference. The PI property is thus less often satisfied in
the PhySICPC supertree, leading to a greater number of
irresolutions in the PhySIC supertree.
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FIGURE 13. Primate PhySIC supertree including 95% of all extant genera and containing no contradiction or arbitrary resolution with respect
to the source trees, as defined by the PI and PC properties. The genus-level primate supertree has been reconstructed from 24 molecular source
trees restricted to nodes supported by more than 70% bootstrap. When the bootstrap threshold is increased to 80%—respectively, 90%—the
supertree topology changes: disappearing branches as well as one appearing clade (Papio + Theropithecus) are indicated by white—respectively,
black—stars. Polytomies are labeled by tags pointing out the properties (PI, PC, or both) that would not be satisfied if the corresponding clade
was more resolved. The taxonomic frame and clade names for Primates are given. Hatched rectangles represent Anthropoidea (Platyrrhini +

Catarrhini). White and black rectangles respectively represent Haplorrhini (Tarsiiformes + Anthropoidea) and Strepsirrhini (Lorisiformes +
Lemuriformes).
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Overall, two reasons can lead the PhySIC method to
propose a poorly resolved supertree. First, it is possible
that the source trees contain too little cross-information
for the method to decide how the taxa of the respec-
tive source trees branch relatively to each other. In this
case, all methods, including voting methods, will pro-
duce unresolved supertrees. Obtaining more resolved
supertrees can then only be achieved by adding new
source trees containing new clades on the key taxa. The
second reason why the PhySIC supertree can lack resolu-
tion is the presence of topological conflicts among source
trees. Like other veto methods, PhySIC is very sensitive to
incongruences in the source trees. Thus, to obtain a well-
resolved tree, a preliminary process whereby unreliable
clades are collapsed in the source trees is usually nec-
essary before applying the method. This collapsing can
be done on the basis of the support values provided on
the clades by most phylogenetic inference methods (e.g.,
bootstrap values, Bayesian posterior probabilities, Bre-
mer support). We showed that a well-resolved supertree
of Primates can be obtained with such an approach from
a nontrivial number of gene trees. Note that on some data
sets, contradicting clades showing high support values
can occur, e.g., due to lateral gene transfers. In such cases,
veto methods will still produce unresolved supertrees
(as long as they are not allowed to exclude rogue taxa).
This can be seen as a drawback or as a way to pinpoint
such events. In such cases, outlier source trees can be
identified (Shimodaira and Hasegawa, 1999; Lerat et al.,
2003) and then curated or removed from the collection
of source trees, leading to a more resolved supertree.

CONCLUSION

Veto supertree methods are of interest for combining
source topologies containing reliable clades. Their study
also brings insight for the characterization of what we
expect from voting methods. Indeed, when source trees
are not conflicting, there is no fundamental difference
between the two approaches. In such cases, veto and
voting approaches should lead to reasonable supertrees.
What reasonable means can be characterized by several
formal properties. In the present work, we showed pit-
falls of some previously proposed supertree properties,
and also proposed new properties. In the general case
of conflicting source trees, we believe there is still room
for improvement, e.g., detecting arbitrary clades of a su-
pertree even when it partially conflicts with some source
trees, as usually happens in the voting context. With the
new theoretical material at hand we believe that this is a
reasonable goal.
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APPENDIX 1

Proof of Proposition 1

The proof is based on the fact that a set R identifies a tree T if and
only if rt(T) = cl(R) (Grunewald et al., 2006, lemma 2.1).

⇒ By definition, R(T, T ) only contains triplets on three-taxon sets
for which there is a resolution in T . Moreover, PC ensures that any
such triplet cannot be resolved in R(T, T ) differently than that in
T . It follows thatR(T, T ) ⊆ rt(T).R(T, T ) is therefore compatible
and cl(R(T, T )) ⊆ cl(rt(T)) = rt(T). Meanwhile, having proved
that R(T, T ) is compatible, it is clear from PI that cl(R(T, T )) ⊇

rt(T).
⇐ HavingR(T, T ) identifying T ensures thatR(T, T ) is compatible.

On one hand, cl(R(T, T )) = rt(T) implies that for all t ∈ rt(T),
t ∈ cl(R(T, T )); i.e., R(T, T ) ⊢ t and therefore PI holds. On the
other hand, given t ∈ rt(T), if R(T, T ) ⊢ t̄ then, by definition of
the closure, t̄ ∈ cl(R(T, T )) = rt(T) so that both t and t̄ are in
rt(T), which is not possible. This proves that R(T, T ) �⊢ t̄ for any
t ∈ rt(T); i.e., PC holds.
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Proof of Proposition 3

Let AB|C ∈ rt(T) be a triplet of the output supertree T and consider
the recursive step where the tree returned in line 3 hosts A, B in the
same subtree Ti , whereas C is in another subtree, say Tj . This means
that A, B are vertices in a connected component Ci of the current Aho
graph G, while C is in another component C j of CC(G). If R contained
AC |B or BC |A, then Ci and C j would not have been distinct connected
components (in such cases, graph G would have contained the edge
(A, C) or (B, C)). Thus, for any triplet t of rt(T), we know that no triplet
t̄ is inR; i.e., T does not directly contradictR. This ensures that BuildPC

returns a tree satisfying PC (lemma 1).

Proof of Theorem 1

Correctness of the Algorithm.—The triplets present in the tree TPC re-
turned by PhySICPC depend on the internal branches of this tree. Any
internal branch of TPC is created at line 10 during some recursive step,
thus linking a subtree Ti to the root of the tree returned by this step.
Thanks to Lemma 1, we just have to prove that every branch created
at this line does not generate a triplet that directly contradicts R.

At this line, either (i) CPC corresponds exactly to the connected com-
ponents of G (we have |CC(G)| > 1) and then, from Proposition 3, the
triplets created are not in direct contradiction with R; or (ii) CPC cor-
responds to a partition of the vertices of G based on R′. Two cases are
then possible. In the first case (line 4), G ′ is connected and the current
call returns a multifurcation that generates no triplet and hence does
not invalidate PC. In the second case, the Repeat loop ensures that for
each set of three taxa A, B, C ∈ v(G), CPC does not contain two elements
Ci and C j with A, B ∈ Ci and C ∈ C j such that either AC |B or BC |A
belongs to R = R′ ∪ Rdc . Indeed, AC |B (and BC |A) cannot be in Rdc

since Ci would have been removed from CPC (line 9). Moreover, if AC |B
(respectively BC |A) was in R′, then A and C (respectively B and C)
would have been in the same component of CPC contradicting Ci �= C j .
This proves that the tree TPC built in line 10, and whose subtrees bi-
jectively correspond to the elements of CPC , is such that no triplet of
rt(TPC ) directly contradicts R.

Time Complexity of the Algorithm.—The most time-consuming oper-
ations in PhySICPC are the computation of R′|v(Ci ) and G ′

i (line 8),
and that of the connected components of this graph (line 9). Obtain-
ing R′|v(Ci ) and constructing G ′

i requires considering each triplet of
R at most once and thus has a time complexity of O(n3). Determin-
ing the CC(G ′

i )s costs O(n2) (which is the maximum number of edges
for a graph with n vertices). During the whole set of recursive calls
to PhySICPC , CPC is modified at most O(n) times (proportional to the
number of clades of a tree with n leaves). Lines 8 and 9 are executed
as many times as CPC is modified; i.e., O(n) times. Thus, for the whole
set of recursive calls to PhySICPC , the computation time required by
these critical lines is O(n4), which is also the complexity of the entire
procedure.

Proof of Theorem 2

Correctness of the Algorithm.—we first prove that PhySI CP I always
returns a tree, denoted by TP I , and then that TP I satisfies both PC and
PI. By hypothesis, PhySI CP I is called with a tree TPC that satisfies PC.
Because PhySI CP I modifies this tree by only collapsing some of its
branches (possibly none), the tree considered in any execution CheckP I

never directly contradicts T . This ensures that the CheckP I subroutine

never exits in line 12; i.e., PhySI CP I always returns a tree. Moreover,
being a contraction of TPC , this tree satisfies PC.

CheckP I differs from the Identifies algorithm in that Return “tree
not identified” in the latter is replaced by line 14 in the former.
Given a tree T and a set R of triplets, Identifies(T, R) returns yes if R
identifies T (otherwise it returns no) (Daniel, 2004, theorem 3.1.1). This
ensures that when a call to CheckP I(T, RP I ) issued by PhySI CP I in
line 11 collapses no branch of TP I , then the set R identifies this tree.
Since the tree TP I returned by PhySI CP I is such that it is not modified
by the last run of CheckP I , then TP I is identified by R(TP I , T ) = RP I .
In other words, TP I satisfies both PI and PC for T (Prop. 1).

Time Complexity of the Algorithm.—As for PhySICPC , the most time-
consuming operations done by PhySI CP I are the construction of the
Aho graph G i j and the computation of its connected components in
the CheckP I subroutine. The G i graphs that may be used in CheckP I

can be precomputed in the PhySI CP I part of the pseudo-code (i.e.,
before calling CheckP I ), knowing rt(T ) and the current tree TP I to be
examined in CheckP I . This preprocess clearly requires O(n4) time, since
there are O(n) such graphs (one for each clade of T), each of which is
obtained by examining the O(n3) triplets of R(TP I , T ). Each G i j graph
can be obtained from a copy of the corresponding G i graph, completed
by the edges due to triplets AB|C having A, B ∈ Ci and C ∈ C j . All
the G i j graphs required during the recursive calls to CheckP I resulting
from an execution of line 11 in PhySI CP I can also be precomputed
in the PhySI CP I pseudo-code part. This can be done just before line
11, provided that CheckP I is modified to end as soon as an edge is
collapsed (line 14)—it is clear that this slight modification does not
modify the correctness of the algorithm. Indeed, the only G i j s that are
then required by CheckP I are those corresponding to two sibling clades
Ci and C j of the current TP I tree. Computing all of these G i j s before
line 11 of PhySI CP I is done in O(n3) since each triplet AB|C of rt(TP I )
adds an edge between A and B in the one and only graph G i j , such
that Ci and C j are sibling clades in TP I and A, B ∈ Ci and C ∈ C j .

Note also that the only information used by CheckP I on graph G i

and G i j is the number of their connected components. The total number
of edges present in the G i j graphs is in O(n3): precomputation of the
number of connected components for this set of graphs is thus globally
O(n3) time. As this has to be done at each pass of the Repeat loop,
and as this loop is done at most O(n) times (each pass results in the
collapsing of one of the O(n) clades of T), this part of the computation
is globally (on the whole for PhySI CP I ) in O(n4) time. Determination
of the number of connected components of each G i is done only once
just before the Repeat loop. For each of these O(n) graphs, this requires
examining O(n3) triplets. Thus, this preprocess also costs O(n4) time.
The preprocesses done for G i and G i j graphs thus require O(n4) time
and reduce the running time of CheckP I . The modification of CheckP I ,
consisting of returning to PhySI CP I as soon as an edge is collapsed, also
simplifies the algorithm (e.g., the Repeat loop is no longer required).

Thanks to the preprocessing, the only time-consuming operation in
CheckP I for the current tree TP I is the examination of the O(n2) pairs of
sibling clades Ci and C j of this tree. Operations performed for each of
this pair of clades is in O(1) (the number of connected components of
useful graphs G, G i and G i j have been preprocessed). Because a new
tree TP I can only be obtained by collapsing one of the O(n) edges (line
14) of TP I , this can at most occur O(n) times. Therefore, all executions
of CheckP I issued by a run of PhySI CP I are in O(n3) time. Thus, the
whole complexity of the PhySI CP I algorithm is no more than the cost
of the preprocessing; i.e., O(n4) time.
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