B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Annals of Mathematics, vol.165, issue.2, pp.547-565, 2007.
DOI : 10.4007/annals.2007.165.547

T. Akiyama, . Borbély, . Brunotte, . Peth?, Y. Adamczewski et al., Generalized radix representations and dynamical systems. I. Acta Math Continued fractions and transcendental numbers, Hungar. Ann. Inst. Fourier (Grenoble), vol.108, issue.567, pp.207-2382093, 2005.
DOI : 10.4064/aa121-1-2

P. Arnoux, . Berthé, S. Ei, . Arnoux, . Berthé et al., Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions Maison Inform Functional stepped surfaces, flips, and generalized substitutions, Discrete models : combinatorics , computation, and geometry Discrete Math Proc., AA, pp.59-078251, 2001.

P. Arnoux, S. Berthé, . Akiyama, . Brunotte, . Peth? et al., Generalized radix representations and dynamical systems Generalized radix representations and dynamical systems Algebraic numbers and automorphisms of free groups. submitted Detection of multi-stability, bifurcations, and hysteresis in a large class of biological positive-feedback systems Higher dimensional extensions of substitutions and their dual maps, Discrete planes, Z 2 -actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble)Adl98] RL Adler. Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.)AI01] P Arnoux and S Ito. Pisot substitutions and Rauzy fractalsAki98] S Akiyama. Pisot numbers and greedy algorithm. In Number theoryAki99] S Akiyama. Self affine tiling and Pisot numeration system Number theory and its applicationsAki00] S Akiyama. Cubic Pisot units with finite beta expansions Algebraic number theory and Diophantine analysis, pp.305-34921, 1996.

S. Akiyamaaki07, ]. Adler, A. Konheim, and M. Mcandrew, On the boundary of self affine tilings generated by Pisot numbers Pisot number system and its dual tiling In Physics and Theoretical Computer Science (Cargese, J. Math. Soc. Japan Topological entropy. Trans. Amer. Math. Soc, vol.54, issue.102, pp.283-308, 1965.

U. Alon, An Introduction to Systems Biology : Design Principles of Biological Circuits, 2006.

J. Anderson, I. Putnam-abasht, . Pitel, . Lagarrigue, and . Le-bihan-duval, Topological invariants for substitution tilings and their associated $C^\ast$-algebras, Ergodic Theory and Dynamical Systems, vol.18, issue.3, pp.509-537297, 1998.
DOI : 10.1017/S0143385798100457

M. Antoniotti, . Policriti, . Ugel, G. Arnoux, . Akiyama et al., Geometric representation of sequences of complexity 2n + 1. (Représentation géométrique de suites de complexité 2n + 1 Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics 199 ? Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition A certain finiteness property of Pisot number systems A self-similar tiling generated by the minimal Pisot number Automatic sequences : Theory and Applications Intersecting two-dimensional fractals with lines, Cell Biochemistry and Biophysics Bull. Soc. Math. Fr. J. Number Theory Acta Math. Info. Univ. Ostraviensis Acta Sci. Math. (Szeged) Chaos. Textbooks in Mathematical Sciences, vol.38, issue.713-4 98, pp.271-286199, 1970.

A. Barabási and R. Albert, Emergence of scaling in random networks [BAG01] A Broise-Alamichel and Y Guivarc'h. Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée Knowledge Representation, Reasoning and Declarative Problem Solving The control of flux, Science Ann. Inst. Fourier Burns and J Burns Symp Soc Exp Biol, vol.286, issue.513, pp.509-512565, 1973.

M. Bansal, . Belcastro, D. Ambesi-impiombato, . Bader, C. Betel et al., How to infer gene networks from expression profiles BIND : the Biomolecular Interaction Network Database Geometric realization and coincidence for reducible non-unimodular pisot tiling spaces with an application to beta-shifts, Mol Syst Biol. Nucleic Acids Res Ann. Inst. Fourier, vol.3, issue.3117, pp.248-50, 2003.

G. Bernot, J. Comet, J. Richard, B. Barge, C. Diamond et al., A fruitful application of formal methods to biological regulatory networks : Extending thomas' asynchronous logical approach with temporal logic Coincidence for substitutions of Pisot type A global geometric and probabilistic perspective On substitution invariant Sturmian words : an application of Rauzy fractals, of Encyclopaedia of Mathematical Sciences Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B, pp.339-347619, 1977.

A. Bertrand, Codage des endomorphismes de Pisot du tore $[0,1[^r$ et mesures simultan??ment invariantes pour deux homomorphismes du tore, Mathematische Zeitschrift, vol.231, issue.2, pp.369-381, 1999.
DOI : 10.1007/PL00004734

J. Bernat, Arithmetic automaton for perron numbers, Discrete Mathematics and Theoretical Computer Science

[. Berthé and T. Fernique, Brun expansions of stepped surfaces. preprint, and M Handel. Laminations, trees, and irreducible automorphisms of free groups. GAFA, pp.215-244, 1997.

[. Bestvina and . Feighn, The Tits Alternative for out(F n ) I: Dynamics of Exponentially-Growing Automorphisms, The Annals of Mathematics, vol.151, issue.2, pp.517-623, 2000.
DOI : 10.2307/121043

[. Berthé, L. Ferenczi, and . Zamboni, Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics Poincaré and the three body problem, pp.333-364, 1997.
DOI : 10.1090/conm/385/07205