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Introduction

1.1 Dissertation Objectives

Figure 1.1: Industrial jet engine.

The research work reported in this dissertation aims to provide computational method-
ologies and to further the understanding of physical phenomena that will aid and improve
the design of bladed disk assemblies from a structural dynamics standpoint. Bladed disk

structures are found in a wide array of applications, including small impeller pumps and



automotive turbo systems; large gas, steam, and hydro turbines for power generation; and
jet engines for military and commercial aircraft propulsion (Fig. 1.1).

Based on the nominal design, a bladed disk assembly is a rotationally periodic struc-
ture. If it is assumed that each disk-blade sector is identical, then the theory of cyclic
symmetry may be used to analyze the dynamics of the entire structure based on one funda-
mental disk-blade sector (typically in finite element representation). In practice, however,
there are always small differences among the structural properties of individual blades,
which destroy the cyclic symmetry of the bladed disk assembly. These structural irregu-
larities, commonly referred to as mistuning, may derive from manufacturing tolerances,
deviations in material properties, or non-uniform operational wear. Mistuning is known to
have a potentially dramatic effect on the vibratory behavior of the rotor, since it can lead to
spatial localization of the vibration energy. Spatial localization implies that the vibration
energy in a bladed disk becomes confined to one or a few blades rather than being uni-
formly distributed throughout the system. This phenomenon may be explained by viewing
the vibration energy of the system as a circumferentially traveling wave. In a perfectly
tuned system, the wave propagates through each identical disk-blade sector, yielding uni-
form vibration amplitudes that differ only in phase. In the mistuned case, however, the
structural irregularities may cause the traveling wave to be partially reflected at each sec-
tor. This can lead to confinement of vibration energy to a small region of the assembly.
As a result, certain blades may experience forced response amplitudes and stresses that
are substantially larger than those predicted by an analysis of the nominal design. Hence,
certain blades may exhibit much shorter lifespans than would be predicted by a fatigue life
assessment based on the nominal assembly.

In order to address this concern, some efficient computational methods have been de-

veloped that can predict the effects of mistuning on the vibratory response of a turbo-



machinery rotor stage. Furthermore, these techniques enable analyses of large numbers
of randomly mistuned bladed disks in order to estimate the mistuned forced response
statistics for a rotor design. However, at the outset of this research effort, no methods
possessed the combination of accuracy and computational efficiency required to allow re-
liable statistical assessments of mistuning sensitivity to be included as an integral part of
the turbomachinery rotor design process.
Motivated by the turbomachinery community’s need for practical design tools that

incorporate mistuning effects, three distinct objectives are identified and addressed in this

research effort:

e To develop highly efficient and accurate reduced order modeling techniques for the
free and forced response of tuned and mistuned bladed disks, based on parent fi-
nite element representations of arbitrary complexity and detail in a consistent and

systematic fashion.

e To broaden the scope of these reduced order modeling techniques by establishing

linearized formulations for shrouded blade designs.

e To increase the understanding of the underlying physical mechanisms of the mis-
tuning phenomenon, with particular emphasis on the role of disk flexibility and
structural stage-to-stage coupling in determining a design’s sensitivity to mistuning,

leading to formulations for multi-stage synthesis and analysis.

1.2 Background

Investigations into the effects of imperfections on the vibrations of rotating disks can
be traced back as far as to 1899, when Zenneck [2] presented a study on the dynamics

of nearly perfectly axisymmetric disks. In the axisymmetric case, a disk features mode



pairs with identical natural frequencies and mode shapes that are positioned arbitrarily in
the circumferential direction. Zenneck [2] showed both analytically and experimentally
that structural imperfections cause the degenerate mode pairs to split into two distinct
modes featuring spatially fixed mode shapes. Several decades later, the related mistuning
phenomena found in turbomachinery rotors started to receive attention from researchers
and engineers. In 1957, Tobias and Arnold [3] showed that in the case of nominally
periodic, cyclic symmetric structures, mistuning causes mode pairs to splitinto two distinct
modes. Almost in parallel, Anderson, who would later receive the Nobel Prize in Physics,
documented the localization phenomenon in the field of solid state electronics in 1958 [4].
This would prove critical to yielding an understanding of the effects of mistuning on the
dynamics of bladed disks.

Several researchers have since documented the effects of mistuning on blade vibra-
tions by experiments, as well as by analyses of representative lumped parameter models
using numerical, statistical, and perturbation methods (Wagner [5]; Dye and Henry [6];
Ewins [7, 8]; EI-Bayoumy and Srinivasan [9]; Lu and Warner [10]; Griffin and Hoosac [11];
Abbas and Kamal [12]; Lin and Mignolet [13]). In particular, Wei and Pierre [14] exam-
ined first and second order perturbations of the general eigenvalue problem of periodic
systems and concluded that structures with high modal densities (i.e., close eigenvalues)
are more susceptible to mode localization than structures with widely spaced eigenvalues.
However, although high modal density is a necessary condition for mode localization to
occur, the existence of localized modes alone is not a sufficient condition for significant
increases in resonant amplitudes in the forced response. In fact, Wei and Pierre [15] de-
termined that significant resonant amplitude increases in the forced response also require
moderately weak interblade coupling, while very weak or strong interblade coupling leads

to mistuned response amplitudes that approach those of a tuned assembly. Hence, with the



additional insights provided tﬁyttarsson and Pierre [16], it has been concluded that bladed
disk systems with low damping, high modal density, and moderately weak interblade cou-
pling are most susceptible to resonant amplitude magnification due to localization of the
vibration energy. In 1997, Srinivasan [17] published a particularly comprehensive survey
of the literature on mistuning in bladed disks.

Although significant, the aforementioned efforts were primarily based on lumped pa-
rameter models of mistuned bladed disks. Unfortunately, in order to accurately represent
an actual bladed disk design with a lumped parameter model, one must perform a diffi-
cult parameter identification which becomes infeasible as the number of model degrees
of freedom (DOF) increases. Hence, to gain practical usefulness, there have been sev-
eral efforts to generate reduced order models systematically from finite element models
using component mode synthesis (CMS) methods (Irretier [18]; Zheng and Wang [19];
Castanieret al. [20]; Kruse and Pierre [21, 22]; Bladét al. [23]). In CMS, the origi-
nal structure is subdivided into smaller substructures, or components, for which normal
modes are computed independently, and more inexpensively. The assembled system is
then represented by a truncated set of component modes through necessary compatibility
constraints in a systematic fashion. The result is highly-reduced order models based on
parent finite element models of bladed disks of arbitrary complexity. Craig [24] and Se-
shu [25] have published excellent surveys on the development of CMS techniques. Other
notable finite-element-based reduced order modeling methods include the receptance tech-
nique by Yang and Griffin [26], and an approach that incorporates classical modal analysis
with mistuning projection by Yang and Griffin [27].

The technique of Castaniet al. [20] and Kruse and Pierre [21] is notable because itis
specially-tailored to mistuned bladed disks. The key idea introduced by Castbaid20]

is that the motion of an individual blade is approximated by linear combinations of subsets



of cantilevered blade normal modes of vibration and disk-induced motion. The technique
was thoroughly validated using a finite element model of an industrial rotor by Kruse and
Pierre [22], and has been well received by industry. The significance of this technique is
that it has enabled engineers to examine systematically the effects of random mistuning on
forced response amplitudes.

This research focuses in part on the development of reduced order models of mistuned
bladed disks based primarily on CMS techniques. Component mode synthesis in engi-
neering practice was initiated by the work of Hurty [28]. Hurty employed three sets of
component modes: (a) fixed interface normal modes; (b) static (“redundant”) constraint
modes; and (c) rigid-body modes. A few years later, Craig and Bampton [29] formulated
a simplified CMS technique based on the work by Hurty. In this method, commonly re-
ferred to as Craig-Bampton (C-B), Hurty’s set of rigid-body modes is left out. Instead, a
complete set of “constraint modes” is supplemented to the fixed interface normal modes
of the components. The constraint modes of a component are constructed by imposing
successive unit deflections on each of the interface DOF, while all other interface DOF are
held fixed. C-B has rightfully gained enormous popularity among structural analysts and
has been applied to a wide array of engineering structures. However, applications of C-B
to mistuned bladed disks are surprisingly scarce in the literature.

The principal drawback of C-B is the use of fixed interfaces while computing the com-
ponent normal modes, since experimental data for a component is often obtained for free
interface conditions. Goldman [30] was the first to formulate a CMS technique that em-
ployed free interface normal modes. MacNeal [31] then formulated a hybrid CMS tech-
nique that allowed for mixed interface representations. Furthermore, MacNeal'’s technique
was the first to account for the residual flexibility from the unused component modes in

order to improve accuracy. Rubin [32] went one step further and included residual inertial



and dissipative effects in addition to the residual flexibility introduced by MacNeal. Later,
Craig and Chang [33] were able to construct an exceptionally compact residual flexibility
CMS technique. In this technique, only the generalized coordinates pertaining to the free
interface component normal modes appear in the assembled system of equations of mo-
tion. Thus, by eliminating the interface DOF entirely, they obtained a compact and highly
efficient reduced order model. Irretier [18] applied this technique to a simple finite element
model of a bladed disk. Irretier's work demonstrates the applicability of the Craig-Chang
method for this class of structures, showing good accuracy for both tuned and mistuned
models.

After this twelve-year burst of classical CMS technique development, the progress in
the CMS field has been fairly modest. It appears from the literature that research has since
focused primarily on replacing the traditional normal component modes (free, fixed, or
hybrid interface), in order to alleviate the need to solve the component eigenvalue prob-
lems. This may be achieved with generated sets of admissible component displacement
vectors, or Ritz vectors, provided they adequately span the deformation space of the com-
ponent. This line of action was spearheaded by the work by Hale and Meirovitch [34]
who formulated a generalized method of CMS using admissible functions. A number of
related research efforts has followed using Wilson-Ritz vectors (Wasah [35]; Wilson
and Bayo [36]; Arnoldet al. [37]; Abdallah and Huckelbridge [38]) and Block-Krylov
Ritz vectors (Craig and Hale [39]). Other notable efforts in CMS development include,
for instance, the intuitive coordinate transformation presented by Moggah [40] to
gain a physical interpretation of residual flexibility attachment modes, as well as the C-B
method formulated with quasi-static rather than static constraint modes using a “centering
frequency” approach demonstrated in Sleyal. [41]. It should be pointed out, however,

that the “centering frequency” approach leads to matrix ill-conditioning and eventually



fails due to matrix singularity as the component natural frequencies approach the “cen-
tering frequency”, which is typically chosen close to a natural frequency of the system.
This is not recognized in the work and, unfortunately, this is precisely the case for most
turbomachinery rotor designs, since the blade is generally far more flexible than the disk.
Hence, the natural frequencies of the blade component and the assembled system, and thus

the “centering frequency”, are often very close.

1.3 Dissertation Outline

This dissertation is directly compiled from a collection of six manuscripts that either
have been or are in the process of being published in scientific journals. Two additional
chapters (Il and IX) are included that contain unpublished material on topics that are rel-
evant to the main theme of this thesis. Note that repetition of some of the material is
unavoidable, due to the chosen format and the coherent scope of the reported research. A
brief outline of the chapters to follow in this dissertation is given next.

Chapter Il outlines the theory of cyclic symmetry analysis, which is a central compo-
nent of all reduced order modeling techniques considered in this work. Both real-valued
and complex forms of cyclic symmetry analysis are considered. Important features of
interest and value are highlighted.

Chapter Il presents the theoretical foundation of the reduced order modeling tech-
nique originally developed by Castangdral. [20] and extended by Kruse and Pierre [21].

The technique is validated using a finite element model of an advanced industrial com-
pressor stage in the free and forced response, including predictions of response statis-
tics utilizing Weibull distributions. Furthermore, a technique is presented for calculating
pseudo-continuous interblade phase angle modes (i.e., non-integer harmonics) of cyclic

assemblies, which allows one to calculate natural frequency veering data more precisely.



Chapter IV provides an extension of the technique of Castagtiaf. [20] to mistuned
bladed disk assemblies with shrouded blades. A technique is formulated for extracting
blade stiffness deviations from experimental or numerically generated mistuning data. The
reduced order modeling technique for shrouded blades includes the concept of projecting
blade mistuning data onto cyclic modes of the blade-shroud-ring assembly — a central
concept for techniques developed later in this dissertation.

Chapter V presents the theoretical bases for several state of the art reduced order
modeling techniques for the dynamic analysis of mistuned bladed disk assemblies. The
considered approaches use a cyclic component mode synthesis (CMS) formulation, cyclic
finite element modal analysis with projection of mistuning data, and a sequential combi-
nation of the two. The techniques are compared in terms of computational efficiency, with
emphasis on comprehensive analyses of response statistics.

Chapter VI presents thorough, comparative case studies using the techniques devel-
oped in Chapter V and the technique of Castaeied. [20], via modal convergence trends,
as well as mode shape and forced response conformity. The objective of this study is to
determine which formulation offers the most efficient and accurate modeling of mistuned
blade disk assemblies.

Chapter VII investigates the impact of disk flexibility and structural stage-to-stage
coupling on the free and forced response of bladed disks in multi-stage rotor assemblies.
Particular attention is devoted to the effects on eigenfrequency veering characteristics and
veering response behavior.

Chapter VIII presents two related techniques for the reduced order modeling of mis-
tuned multi-stage rotors in response to the findings in Chapter VII. The introduced tech-
niques use cyclic CMS representations of single-stage models, which are coupled together

through static constraint modes to form the multi-stage assembly. The multi-stage CMS
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model is further reduced by secondary modal analyses on either constraint-mode partitions
or the entire multi-stage CMS model. The techniques are validated against benchmark fi-
nite element solutions for a simple two-stage example model.

In Chapter IX, recent progress in the application of CMS-based techniques to bladed
disk modeling is presented. Both numerical stability and modal convergence issues are
investigated. Results are shown for simple test cases, and preliminary conclusions are
summarized.

Finally, in Chapter X, the conclusions and contributions of this dissertation are sum-

marized, and ideas for future work are outlined.



CHAPTERIII

Cyclic Symmetry Analysis

Although cyclic symmetry is a well-known concept among structural analysts, it plays
such an important role in the reduced order modeling techniques formulated later that a
brief review is in place. A detailed description of modes of vibration for cyclic structures
is contained in the important work by Thomas [42], although certain related mathematical
aspects, such as the fundamentals of circulant matrices, appear to have been unrealized at

the time.

2.1 Real Form Cyclic Analysis Using Isolated Substructures

This approach to cyclic symmetry analysis is employed in the commercial finite el-
ement method software package MSC/NASTRANThe review of the topic presented
here is similar in spirit to that given by Joseph [43], although this presentation is intended
to be more focused towards dynamic analysis.

From the theory of symmetrical components [44], it is found that one may relate some
quantityx,, (i.e., displacements, forces, etc.) in physical coordinates fonthsector,
to the corresponding quantity* in cyclic coordinates for a fundamental sector. This
coordinate transformation is governed by the expression:

1 2 &
Xy = —u’+ N > [uk’c cos (n — 1)ka + u**sin (n — l)ka] +
k=1

VN

(-1
VN

uz, (2.1)

11
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wherek is the harmonic order]N is the total number of sectorg; is the fundamental

interblade phase shift defined zs/N; and K is defined as:

A=l if Nis odd
K = (2.2)
A= if Niseven

Note that the last term in EqQ. (2.1) only exists if the number of secioyss even.
In this context, the quantities andu represent nodal displacements in physical and
cyclic coordinates, respectively. The corresponding backward transformation from physi-

cal to cyclic coordinates is then given by the following series of relations:

0 1 &
= —= ) Xy

mE
) N

u*® = /= x,cos(n—1)ka (2.3)
Nn:l
) N

u*® = /=Y xusin(n — 1)ka

Nn:l

1 al n—1
uz = ﬁ;(_l) Xp-

Defining the displacement vectatsandu as:

4
uO
X1
ul,c
X2
ul,s
X=14 x3 ( u= > (2.4)
u2,c
XN N
uz
\ J

Eqg. (2.1) is more conveniently represented in matrix form as:
x=(F®I)u, (2.5)

whereF is the real-valued Fourier matrix defined in Eqg. (B.3), and the symbd¢énotes

the Kronecker product defined in Appendix A. Note that the identity maltias the
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size of the number of elementsw’. Also, note that the backward transformation matrix
(FoI) 'issimplyFT @ 1.

While assuming harmonic motion, it is convenient to define the quawtiag:
Y =K —w’M (2.6)

whereK andM are, respectively, the stiffness and mass matrices of a fundamental sector,
andw is the frequency of motion. Note that these matrices include all elements related to
both boundaries towards adjacent sectors, since the fundamental sector is still a completely
isolated, uncoupled structure. One may perform permutations on the structural matrices

involved to give the following matrix partitioning scheme:

Yaa Yai Yab Kaa Kai Kab Maa Mai Mab
Y = Yg; Yii Yib - Kg‘l Kii Kib _w2 Mg‘l Mii Mib ) (27)
YaTb Y;{, Yo Kgb K’il;) Koy Mgb 1\/I’i1,;J \Y FRS

where subscripts andb denote, respectively, degrees of freedom (DOF) on the indepen-
dent and dependent boundaries, adénotes internal DOF, as indicated in Fig. 2.1. Note
that the structural matrices of the isolated sector are always symmetric. The displacement

vector must be ordered accordingly:

uk=<{ uk b (2.8)

u, J
The internal energy conterif (strain and kinetic energy) of the entire system (all

sectors) can now be expressed as:

E = %XT I®Y)x, (2.9)
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Figure 2.1: Sector boundary index notations.

wherel ® Y represents the compact form of the block-diagonal matrix:

Y 0

0 Y

1Y = Bdiag[Y] =

..... N

n=1

0 0

0

0
(2.10)

Y

By making the coordinate change to cyclic coordinates in accordance with Eq. (2.1), and

applying Hamilton’s principle, one obtains:

to
OF dt =

t1

t1

/t2‘5“T (FTeI)IeY)(Felud =

2
sutT (I®Y)udt =0,
t1
(2.11)

where itis noted that the s.imilaritytlransformati@ﬁT ® I) (I®Y)(F®I)simplyyields
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exactly the same block-diagonal matfi® Y. Realizing that Eq. (2.11) must hold true for

any arbitrary set of virtual displacemernts, Egs. (2.4), (2.10), and (2.11) give a set of,

for now unconstrained, eigenvalue problems in cyclic coordinates. For reasons that will
soon be obvious, these eigenvalue problems are reduced to the size of either one or two

sectors:

Y 0 | [ uke 0
1<k<K: = (2.12)
0Y uks 0
k=Y. Yuz =0 (if Niseven).

At this point, the above eigenvalue problems are in fact identical, since each displacement
vectoruX in the current form includes the nodes on both boundaries of the isolated sector
substructure (e.g., boundarieandb in Fig. 2.1). Considering the rotational symmetry of

the assembly, it is obvious from displacement compatibility considerations that the nodal
displacements on one of these two boundaries are dependent upon the nodal displacements
of the other boundary in a non-arbitrary manner. Furthermore, this dependency is unique
for each harmonic order. Hence, the missing piece is the boundary constraints, which,
when introduced into Eqg. (2.12), will give a unique eigenvalue problem to solve for each

of the harmonics. Using the notation shown in Fig. 2.1, the required cyclic boundary

constraints for actual and virtual displacement compatibility can be shown to be:

k .
uS® = ukc cos ka + uks sin ka

k .
u® = — uksinka + uks cos ka

(2.13)
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k :
duy® = dulc cos ka + duks sin ka

k .
duy® = — dukcsin ka + duks cos ka.

Note that fork = 0 and, if it existst = N/2, the governing relations in Eq. (2.13) collapse

to the following:
0 N 5 5
N (2.14)

0 0 _
k=0: up =u,
N N

dul = su? du? = —du,

which is consistent with the single-sector representations for these harmonicsin Eq. (2.12).
By introducing Egs. (2.8), (2.13), and (2.14) into Eq. (2.12), the following four sets of

governing equations of motion are obtained after simplifications and collection of terms:
.

[Yaa + (Yab + YaTb) cos ko + Ybb] u:’c + [Yai + Y cos ka] u

5u1;’CT :
+ [(Yab - YaTb) sin ka] ubs — [Y;{, sin ka] u® =0
5“?’@ : [Y:fl + Y cos ka} u 4 [Yi] u + [Yip sin ko] ul® = 0
(2.15)
ouls" [(YaTb - Yab) sin ka] ule 4 [Yin sin ka] u® +
+ [Yaa + (Yab + Y.Eb) cos ko + Ybb} ubs + [Yai + Y, cos ka} ui"s =0
Sub" s~ [Yipsin ko] s+ [Y + Vi cos ko ok + [¥i u* = .

Note that the eigenvalue problem for a “double” harmonic (i.e kfeuch that < k < K)

is examined here for generality. The above system of equations can be written in a more
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convenient matrix form:

r 1 | ukec 0
Y§ YT
u’ 0
Yok = e A (2.16)
o . uks 0
i Y; Ys§ | e
ui ’ Vs \ 0 Vs
where
i Y.+ (Yab + YaTb) coska + Ypp Yai+ Y coska
0 pu—
YT+ Yy, coska Yii
[ VT ) _vT o
v = (Yab Yab) sinka =Y, sin ka
Y}, sin ko 0

Note thatY* is symmetric, and that its two diagonal blocks are identical. The eigen-
value problemdet [\?k] = 0, belongs to a degenerate class of structural eigenvalue prob-
lems [45], and will yield pairs of real eigenvalues. Therefore, there will be an infinite
number of eigenvectors satisfying the eigenvalue problem for each pair of eigenvalues,
which, in general, will not be mutually orthogonal. However, since any linear combina-
tion of two eigenvectors associated with an eigenvalue pair is also a valid solution, the task
of orthogonalizing the eigenvectors is quite trivial. For the same reason, the circumferen-
tial positioning of mode shapes pertaining to double harmonics is arbitrary. As a result,
these mode shape pairs can also be represented by complex, counter-rotating waves.
Taking a closer look at the elements in the off-diagonal block#f it is observed
that the off-diagonal block’¥ consists of coupling masses and stiffnesses. In particular, it
is only the direct coupling between the two cyclic boundariear(db), and the coupling
between the dependent boundaby gnd the interior 4) that appear in the off-diagonal

block. However, the direct cyclic boundary-to-boundary couplilg,,, is commonly
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non-existent. Moreover, for = 0 and, if it exists, fork = N/2, the off-diagonal block is
zero. Thus, any diagonal block alone provides the complete eigenvalue problem in these
two special cases, which is also indicated in Eq. (2.12).

As a point of interest, consider the pairs of orthogonalized cyclic eigenvectors as-
sociated with the double harmonics. Toe vectors building the cyclic modal matrix

associated with the*™ harmonic will appear as:

Uk,c uk,c (wl 1) uk,c (wl 2) . uk,c (wm 1) uk,c (wm 2)
Uk — — ’ ’ ’ 7 . (217)
Uk,s uk,s (wl,l) uk,s (w1,2) .. uk,s (wm,l) uk,s (wm,Z)

The interesting thing about these mode partitions is that it turns out that the sine mode

components are related to the cosine mode components in a very simple fashion:

uk® (w, 1) = £uk° (v,
(wWn,1) (Wn,2) (2.18)

k,s ( k,c (

ue® (wy2) = Fu©® (wy1) .
The order in which the signs appear in an actual cyclic eigen-analysis seems to be random,
however. This suggests that this would be governed by some characteristic of the numeri-
cal solver in combination with the numerics of the eigenvalue problem at hand, rather than
by any strict rules. Hence, to the author’s knowledge, there is no way of tellprgpri
which pair of signs will appear in Eq. (2.18).

In addition, note that if there is no structural coupling between the interior and the
dependent cyclic boundary, and if there is no cyclic boundary-to-boundary coupling,
will be identically zero, which implies that the sign relations between the sine and co-
sine components of the modes become redundant. Incidentally, this circumstance com-
prises one of the major differences between the reduced order modeling technique for
unshrouded blades in Castangtral. [20] and its extension to shrouded blade designs in

Bladhet al. [23]. The former, unshrouded formulation inherently assumes that there is no

coupling between the blade (viewed as interior) and the dependent cyclic boundary of the
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disk sector. It should be noted, however, that this may not hold true for all models, and

this assumption can therefore introduce additional errors in certain cases.

2.2 Real Form Cyclic Analysis Using Integral Substructures

An alternative way of formulating the structural matrices is to view the substructure,
or sector, as an integral part of the entire assembly. This implies that nodes formerly on
boundaryb are now viewed as nodes on boundaryf the adjacent sector. Moreover, the
structural coupling between adjacent sectors is then already accounted for. This leads to
block-circulant structural matrices, and consequently, a block-circulant eigenvalue prob-
lem for the entire structure. Since structural coupling will only be present between adjacent

sectors, the following form is obtained:

Y = Bcirc|Y,, Y1,0, ... ,O,Y;r (2.19)
Yo, Y, 0 0 YT
YT Y, Y, 0 0
0 o YI Y, Y,
Y, 0 0 YT Y,

Adopting the DOF partitioning scheme of the isolated substructure approach, these new

blocks will have the following composition:

_ Yaa + Ybb Yai _ Yab 0
YO — Y]_ —
Yg; Yii Yib 0

, (2.20)

where it is noted that the sector-to-sector coupli¥ig, is non-symmetric. Furthermore,

the dependent cyclic boundary nodésdre now excluded from both physical and cyclic
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displacement vectors. Hence, in this case, the displacement vectors will have the repre-

sentation:

X ax
Xn = ak = . (2.21)

k
i

=]

=]

X
By necessity, the real-valued relation between physical and cyclic coordinates given in
Eq. (2.5) remains valid. Sinc¥ is block-circulant, the cyclic eigenvalue problem re-
sulting from the transformatio(1FT ® I) Y (F ® I) will be pseudo-block-diagonal (see
Appendix B), where the block associated with #& double harmonic will have the fol-

lowing partitions:

Yo + (Yl + Y}‘) cos ka (YI — Y}‘) sin ko

Tk — (2.22)

(Y’rf — Yl) sin ko Yo+ (Yl + er) cos ko
By combining Egs. (2.20) and (2.22), it is easy to show that exactly the same set of cyclic
eigenvalue problems of the same general form as shown in Eq. (2.16) will be obtained, as

required.

2.3 Complex Form Cyclic Analysis

Both of the aforementioned approaches for setting up the cyclic eigenvalue problem
can use a complex transformation rather than the real-valued form shown. The expansion
of the fundamental sector’s displacements in cyclic coordinates to the corresponding dis-
placements of the entire assembly is then performed by means of complex phase shifts.
This is achieved simply by using the complex Fourier matiixjn the transformations,
instead of the real-valued “almost-equivalent” transformation mdirixSee Appendix B
for definitions of Fourier matriceB andF.

Although both isolated and integral substructure approaches to cyclic symmetry anal-

ysis may be cast in complex forms, only the latter is considered here for brevity. In the
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case of an integral substructure, the malixs block-circulant as shown in Eq. (2.20).
Since the columns of the Fourier matrix represent the eigenvectors of any circulant matrix,
the transformatioiE* ® I) Y (E ® I) will yield a true block-diagonal matrix, as opposed

to the pseudo-block-diagonal structure achievedbyThis implies that the eigenvalue
problem for each harmonic ordéris now the size of one sector, with no exceptions. On
the other hand, the eigenvalue problems are now complex.

With reference to the notation in Eq. (2.22), the complex eigenvalue problems will take

the following form:
Ylz = [YO + Yqe/ Do 4 Y;re_j("_l)a] z=0, n=1,...,N. (2.23)

Note that the matri 2 is Hermitian, evidenced byy® = Y2, By virtue of a fundamen-
tal property of Hermitian matrices, th€ eigenvalue problemdet [YQ] = 0 will yield
exclusively real eigenvalues, while the eigenvectors in general will be complex.

In terms of harmonics, the cyclic eigenvalues and eigenvectors associated with the
harmonic derive from thék + 1)*® and (N — k + 1)*® eigenvalue problems, due to the
periodicity of the complex phase shift. Again, note that 0 and, if it existsk = N/2
(IV even) are single harmonics. For the double harmonics, ¥ < K, the (k + 1)t
eigenvalue problem provides the first set of eigenvalues and eigenvegt@asd the( NV —

k + 1)t eigenvalue problem will give a set of corresponding complex conjugates. Since
all eigenvalues are real, this second set of eigenvalues will be identical to the first, while
the second set of eigenvectoz$, will be the complex conjugates af.. The correlation
between the previous real eigenvectors and these complex ones is quite simple, as shown
below:

0 (wn,1) = R [z 0 (wn2) = [z (2.24)

0 (wn1) = F [z 0 (wn2) = FR (2],

whereR and< denote the real and imaginary parts, respectively.
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2.4 Summary

To conclude, there are considerable savings in both computing time and data storage
associated with the use of the cyclic symmetry concept. Assuming a finite element model
with a sector size ofi DOF, a real-valued cyclic symmetry approach leads, in the worst
case, to one eigenvalue problem of sizend(N — 1) /2 eigenvalue problems of size; a
complex approach leads 16 eigenvalue problems of size while the full analysis leads
to a single, but very costly, eigenvalue problem of size. It is reasonable to assume that
the cost of a sparse eigenvalue solution is somewhere bei@¢gt) andO (p*), where
p is the problem size. Thus, it is clear that cyclic symmetry techniques can provide great

computational savings.



CHAPTER Il

Dynamic Response Predictions for a Mistuned Industrial
Turbomachinery Rotor Using Reduced Order Modeling

A reduced order model formulation based on component mode synthesis is presented
for examining the forced response of tuned and mistuned unshrouded bladed disks. The
technique uses modal data obtained from finite element models of arbitrary size to cre-
ate computationally inexpensive models of mistuned bladed disks in a systematic manner.
The resulting four to five orders of magnitude model size reduction enables analysts to
examine the effects of variations in mistuning strengths and patterns, interblade coupling,
and localized modes on forced response amplitudes. In order to demonstrate the capabil-
ities of the technique, this paper explores the effects of random blade mistuning on the
dynamics of an advanced industrial compressor rotor. Both free and forced responses of
the rotor are considered, and the obtained results are compared with “benchmark” finite
element solutions. The mistuned forced response amplitude is found to vary considerably
with mistuning strength and the degree of structural coupling between the blades. More-
over, a brief statistical study is presented, in which Weibull distributions are shown to yield
reliable estimates of forced response statistics. It is further demonstrated how the highly
efficient reduced order modeling technique and Weibull estimates of the forced response

statistics combine to facilitate thorough investigations of the important effects of structural

23
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Figure 3.1: Finite element meshes for the industrial 29-blade compressor rotor: (a) the full
model; (b) the fundamental sector.

interblade coupling on mistuning sensitivity.

3.1 Introduction

In a dynamic analysis of a turbomachinery rotor, one traditionally assumes that the
individual sectors that comprise the rotor are identical. The cyclic characteristic enables
analysts to reduce the computational time considerably by modeling a single sector (e.qg.,
Fig. 3.1b) rather than modeling the entire blade assembly (e.g., Fig. 3.1a). Prior experi-
ences with turbomachinery rotors indicate that cyclic symmetry analyses are seldom ade-
guate for predicting actual blade response [7, 46, 18]. In practice, there are small differ-
ences in the structural properties of individual blades, due to manufacturing and material

tolerances or in-service degradation, which are referred to as blade mistuning. These vari-
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ations destroy the cyclic symmetry of the system and may lead to qualitatively different
dynamic behavior than that predicted for a perfectly tuned rotor. In particular, mistun-
ing may confine vibration energy to a few blades or even a single blade. As a result, a
single blade may experience deflections much larger than that predicted by a tuned analy-
sis [14, 15]. Mistuning effects must thus be included in the analysis if accurate predictions
of vibratory response amplitudes are to be made. In practice, blade mistuning is a random
guantity, and statistical analyses that utilize computational Monte Carlo simulations are
therefore critical in safely predicting the response amplitudes in the design process. How-
ever, a Monte Carlo simulation for a full finite element blade assembly, such as that shown
in Fig. 3.1a, is enormously costly, and not even feasible for most industrial turbomachin-
ery rotors. Some means of reduced order modeling is thus required to facilitate statistical
analyses of mistuned bladed disk response.

The primary focus of this paper is to demonstrate that mistuned response statistics
can be accurately and efficiently predicted via reduced order modeling. The technique
employed in this paper was originally developed by Castagtiex. [20] and Kruse and
Pierre [21], and it was recently extended by Blatal. [23]. This method produces re-
duced order models (ROMs) of turbomachinery rotors directly from their finite element
models (FEMSs) in a systematic fashion. The procedure involves a component mode anal-
ysis of the rotor, with a truncated number of modal amplitudes describing the response
of the assembly. The principal advantage of the reduced order modeling technique is the
considerable computational savings associated with solving for the dynamic response of
an entire mistuned rotor with a reduced set of degrees of freedom. In this paper, this
technique is employed to study the free and forced dynamic responses of an industrial
turbomachinery rotor with blade mistuning. Comparisons are made with “benchmark” so-

lutions obtained for the finite element model of the full assembly in Fig. 3.1a in order to
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validate the ROM.

Once the validity of the ROM has been established, it is used to examine the effects
of interblade coupling on mistuned forced response amplitudes. In unshrouded rotors,
the two predominant forms of interblade coupling are aerodynamic coupling and struc-
tural coupling through the disk. However, aerodynamic coupling will not be considered
in this study. Instead, the focus will be on the effects of structural interblade coupling,
which governs the transmission of vibration energy between blades through the disk. It
has previously been shown that interblade structural coupling plays a key role for mistun-
ing sensitivity [16], such that there is an intermediate range of coupling stiffness at which
the system is more susceptible to the effects of mistuning compared to both lower and
higher values. So far, this has been shown only for relatively simple lumped parameter
systems for which the interblade structural coupling is an easily accessed and controlled
guantity. However, for more elaborate finite element models, identifying an effective mea-
sure of interblade coupling is much more complicated. In this work, it is suggested that
the curvature of the eigenfrequency veerings when plotted versus the number of nodal
diameters can be used to assess the interblade coupling strength [47, 21].

Furthermore, a simple method is presented for calculating eigenfrequencies for in-
terblade phase angles that are between those corresponding to integer numbers of nodal
diameters. By treating the interblade phase angle as a continuous variable rather than a
discrete variable, the frequency veerings may be fully captured, and the curvature of the
veerings may be quantified. This type of approach was used in [21] but here it is further
shown how the eigenfrequency calculations may be performed using commercially avail-
able finite element software. This extended eigenvalue analysis may provide a tool for
guantifying the interblade coupling, which would aid in determining the rotor’s sensitivity

to mistuning in terms of forced response.
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There are two significant contributions of this workirst, the technique presented
establishes a systematic approach for developing ROMs that are representative of indus-
trial turbomachinery rotors, and for obtaining their forced response statistics in an accurate
and inexpensive manner. ROM results are shown to correlate well with those of the finite
element model of the industrial rotor, which is several orders of magnitude larger. The
computational validation of the ROM technique is of particular importance to the indus-
trial manufacturers of turbomachinery rotorSecond both quantitative and qualitative
findings in this case study indicate that important conclusions with regard to a design’s
sensitivity to mistuning may be drawn from the free vibration characteristics of the tuned
system. Thus, it may be possible to avoid slow and costly statistical analyses during the
design process. However, more rigorous work is still required in this area. Other contribu-
tions include the use of Weibull distributions to model forced response statistics, and the
use of the interblade phase angle as a continuous variable.

This paper is organized as follows. The reduced order modeling technique and the
formulation for the modal forcing vector in the ROM generalized coordinates are outlined
in Section 3.2. Section 3.3 describes the studied rotor and discusses the finite element and
reduced order models used in subsequent analyses. Selected FEM versus ROM validation
results from free and forced response of tuned and mistuned rotors are examined in Sec-
tion 3.4. Section 3.5 discusses the use of Weibull distributions as an approximation for
the forced response statistics of randomly mistuned rotors. In Section 3.6, the validated
ROM is used to examine the effects of structural interblade coupling on forced response

amplitude increases due to mistuning. Finally, conclusions are given in Section 3.7.
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Figure 3.2: Employed component modes: (a) normal modes of a cantilevered blade; (b)
cyclic modes for a fundamental disk-blade sector, where the blade is massless.

3.2 Reduced Order Modeling Technique

3.2.1 General Formulation of Reduced Order Model

It may be assumed that the disk (d) and blade (b) degrees of freedom are ordered in
such a manner as to give the following block-diagonal form for the assembled stiffness
matrix of the entire structure:

. Ka 0 | IoKg 0 | e

0 K, 0 I® Ky

wherel is an identity matrix, and the symbel denotes the Kronecker product, which is
defined in Appendix A. The structure of the mass matrix is identical to that of the stiffness
matrix. The “tilde” notation is used to indicate that a quantity refers to a single blade or
disk sector. Note that the location of the disk-blade interface can be chosen completely
arbitrarily. In practice, though, this choice may affect the accuracy of the approximate
solutions.

A key idea for the reduced order modeling technique of Castaiak [20] is to de-
scribe the motion of the bladed disk assembly using two particular sets of component
modes. Figure 3.2 depicts the two fundamental component mode types for a greatly

simplified finite element model of a bladed disk sector. The first mode set consists of

the modes of a single blade that is clamped at the chosen disk-blade interface location
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(Fig. 3.2a). For unshrouded blades, the modal mdtixfor all N identical blades is
block-diagonal and is assembledlag i, wheretP is the cantilever mode shapes of a
single blade. The second set is comprised of disk-induced modes, which are the cyclic
modes of the entire assembly where the attached blades are massless (Fig. 3.2b). In this
case, the blade motion is a rigid-body motion plus elastic deformation due to the boundary
motion. The blade portion of the disk-induced modes, i.e., the part belonging to the blade
degrees of freedom, is denot&f, and the disk portioV4,

By superposing these two sets of component modes, and using the node ordering con-
figuration in Eq. (3.1), the resulting nodal displacements of the entire assembly can be

expanded as

_ vd 0
x =Va+UPb = a-+ b, (3.2)
Ud Uk
wherea andb are modal coordinates for the disk modes and the cantilever blade modes,
respectively. With the basic quantities defined, the total strain and kinetic energies of
the entire structure may be expressed using Egs. (3.1) and (3.2). Moreover, the external

virtual work done by a time-harmonic engine order excitation fo@emnay be formulated

in component modal quantities as
SWet = suTQ = 6bTUP" Q + 5aTUT Q. (3.3)

Applying Hamilton’s principle yields the governing equations of motion for the reduced

order model. They are conveniently written in matrix form as
Mz +Cz+ (14 vj) Kz = Q, (3.4)

where

a 0 0 Q4 ud'Q

T

b 0 C b UbQ
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I+UM, U UM, UP Kq UK, UP
M - IC =
UP" M, U I UK, U? K, + AK,
Note that structural damping with coefficientas well as viscous modal damping of the
cantilever blade modes;, have now been added to the reduced order model, in order to
facilitate more realistic modeling of the structure’s dynamic response. In addition, some

measure of mistuning;f(b, is added into the stiffness matrkk. This measure of mis-

tuning, although general at this point, implies three assumptions:

e The mistuned characteristics of a blade are restricted to its stiffness (lower-right
guadrant ofC). While stiffness mistuning is sufficient for the purposes of this study,
it may be more accurate to model mistuning in other structural parameters as well;
for instance, by using the mixed least squares — maximum likelihood method of

Mignolet and Lin [48].

e The effects of stiffness mistuning on the other three quadranis afe assumed
negligible. To a large extent, this is justified by considering the kind of rigid-body-

like motion the blade undergoes in this set of component modes.

e The mistuned cantilever modes of a blade may be realized by a linear combination

of the tuned modes (i.e., they span approximately the same space).

Note that the resulting structural matrices are all symmetric. In general, this symmetry is
destroyed if aerodynamic coupling between blades is introduced into the system. However,
aerodynamic coupling is not considered here. Next, a closer examination of the various

partitions of the structural matrices reveals significant further simplifications.
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3.2.2 Formulation Refinement for Unshrouded Designs

In the unshrouded case, the assembly of the disk-induced modes of the entire struc-
ture from the sector modes employs a mixed complex-to-real approach. This process is
described in earlier works [20, 21] and will therefore not be repeated in detail here. The
essential feature of the approach is that it implicitly utilizes the fact that no direct blade-
to-blade structural coupling is present in the unshrouded case, which allows for a linear
re-combination of the actual finite element modes. The final form for the cyclic disk-

induced modes of the full unshrouded assembly is
d _
Ut=|ud vd ... ud |- (3.5)

The integerP is the highest possible harmonic givenimt [N/2], whereN is the total
number of blades (sectors). The assembly modal vectors associated wittt thasine ()

and sine (s) mode pair of thé" harmonic may be expanded as

d ~a,c S ~d,s S ~d,C C ~d,s
Upm=| ff® uﬁ:m - ® uﬁ:m fr ® uﬁ:m +ff® uﬁ:m ) (3.6)

wheref{/® is the appropriate column of the real Fourier mafixiefined in Appendix B,
andﬁﬁ:‘fr/f are the disk-induced mode shapes associated wittheepeated eigenvalue
of the A" harmonic for a fundamental sector. Note that there is only one mode per eigen-
value for thed'" and, forNV even, theP'" harmonic. Consequently, there is only one vector
per mode in these two special cases.

Due to the cyclicity ofU9, the projection produdy4” M, U4 in the upper-left quad-
rant of the ROM mass matri#1 is pseudo-block-diagonal:

U M, U? = Bdiag [ Myiig|, (3.7)

h=0,...,P

since cyclic modes of different harmonics are mutually orthogonal with respect to the
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mass and stiffness matrices (see AppendixR)iag [e] denotes a pseudo-block-diagonal
matrix, with the argument being th&" “block”, and the range of; is shown.
The projectiongU?” M, UP and U4" K,,U" in the upper-right and lower-left quad-

rants of M and/C, respectively, can be expressed as:

UM, U = Ud (I ® Mb) (I ® ﬁb) -y’ (I ® Mbﬁb)

UTK,U" = UY (19 Kpil). (3.8)

No further simplifications apply to these partitions, and they are thus generally fully pop-
ulated in the unshrouded case.

The external excitation force vect@yintroduced in Eq. (3.3) defines the forcing on all
the blade degrees of freedom of the assembly. The restriction to blade degrees of freedom
is not an absolute requirement, but leads to a more compact formulation, and it should
also be sufficient from a practical perspective. Moreover, an engine order excitation is
assumed, which is harmonic in time and differs only in phase from blade to blade. The

phase at the™ blade,#,, is given by

_ 27C (n — 1)

b v n=LooN, (3.9)

where C' is the engine order of the excitation. The external force vector can then be

expressed as

\

?ejd)l

?6J¢2 -
Q= = VNec1 @f, (3.10)

7

whereec,; is the (C' +1)™ column of the complex Fourier matri defined in Ap-

pendix B, and is the force vector on a single blade.
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The expression for the modal force vectdiin Eq. (3.4) can be simplified to a much
more convenient form in terms of the disk-induced and cantilevered blade mode shapes of
a single sectorii! andiP, respectively. The principal advantage of expressing the modal
forcing vector on a sector basis lies in the computer memory savings. In particular, the
disk portion of the modal force vector will become greatly simplified when expressed in

terms of sector-referred quantities:
Qu=U"Q=U" (VN ec;1®f). (3.11)

The expansion will yield a disk portion of the modal force vector that is zero everywhere,
except for theC*™" harmonic mode shapes as shown in the summary later in this section.
Thus, the engine order excitatio@), determines which mode shapes of the assembly

that are being excited. The remaining blade portion of the modal forcing vector can be

expanded as
Q0 =U"Q=(I® ﬁb)T (VNecy1 ®F) = VNec. @ 8" F. (3.12)

Furthermore, the modal viscous damping matrix for the cantilever blade m@ges,
will be diagonal:

C= (I © diag [2&]) VK, (3.13)
where(* is the modal damping coefficient of tié&" cantilever blade mode.

Perhaps the most fundamental feature of this technique is its suitability for mistuning of
the individual blades. Each individual cantilever blade mode of all blades in the assembly
is isolated in the diagonal matriK,. Therefore, the formulation lends itself to a very
convenient and simple input of individual mistuning of each cantilever blade mode of
each blade as

n=1,...,N

AK,, = Bdiag ldia [52]] K, (3.14)
k=

1,..., my,
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6k is the mistuning parameter associated with AHecantilever blade mode of the"

blade and is defined as

k oy ’
ok = ($n) 1, (3.15)

wk
wherew! represents the mistuned natural frequency ofithenode of blade:, andw” is
the corresponding nominal, or tuned, natural frequency.
To summarize, the reduced order model structural matrices and forcing vector for un-

shrouded bladed disks, in the absence of aerodynamic coupling, are:

_ I + Bdiag [uh Mbuh] U (I ® Mbﬁb)
M — h=0,...,P
(Te@"M,) U I
_ 00
c —
0 (1 ® diag [zng VKy
L k=1,...,mp,
[ Kq U (1@ Kyii®)
K =
(I ® "bTKb) Ud Bdlag [dlag [1 + 5’“}]
L - 7 n=l,.., N k=1,...,my

o - {or: QbT}TZ{O .0 Q5" 0 -0 bT}T

~d,cTz ~dsTz W
\/N {fgcec+1 ® 11%’1 f— fgsec+1 ® ugj,l f}

VN {fc €ci1 © UGS 18 c€Cct1® 11ch1 f}

VN {fc c€c1 ® uc my naf — fc s€c+1 ® ug mdf.}

VN {fc €ci1 ® U mdf +f& e ® Ag md?} )

Qp = \/Nec+1®ﬁbTi

As a concluding remark, the reduced order model for unshrouded bladed disks requires

the following input from finite element analyses:
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Kq4,i%: The modal stiffnesses and corresponding cyclic mode shapes from a cyclic sym-
metry eigenmode analysis for a bladed disk sector, where the density of the blade’s

elements are set to zero.

Ky,,iiP: The modal stiffnesses and corresponding normal mode shapes from a normal

eigenmode analysis for a single blade, clamped at the chosen disk-blade interface.

M, Ky,: The full finite element mass and stiffness matrices for a completely uncon-

strained blade.

3.2.3 Cantilever Blade Eigenvalue Adjustments

In this method, the disk motion is described by the disk portion from the second mode
set alone (Fig. 3.2b). Hence, no separate set of constraint modes for the disk is employed.
This causes the disk to be too stiff at the interface, which degrades the performance (modal
convergence) of the method. However, it has been found that artificial softening of the
cantilevered blade modes [20] yields significant accuracy improvements for both free and
forced response. This is achieved by adjusting the eigenvalues (modal stiffnesses) of the
cantilevered blade modes in an iterative fashion. The used iteration scheme is the simplest
possible where the cantilevered blade eigenvalues are scaled linearly based on the ratio
of the tuned ROM and exact (in the finite element sense) system eigenvalues for blade-
dominated modes. For th& eigenvalue adjustment iteration, the scaled cantilevered
blade eigenvalues are computed as

— (wﬁk)—Q (w’“)Q
e

wﬁ’“ is the exact eigenvalue of the tuned assembly mode characterized by than-

L k=1,...,m (3.16)

i—1

tilevered blade mode family at the highest possible harmdhic,* is the corresponding

eigenvalue from the tuned ROM, and is the number of retained cantilever blade modes.
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Material Property Notation| Value | Unit

Modulus of Elasticity E, 203.4| GPa

Modulus of Rigidity G 77.9| GPa
Mass Density p 7909 | kg/m?
Poisson’s Ratio v 0.305| -

Structural Damping v 0.006| -

Table 3.1: Blisk material properties.

Although heuristic, this technique has proved to be very efficient. In one case study, it
was seen to converge to residual errors among the blade-dominated mode eigenvalues that

were less than 0.001% after as few as two iterations [23].

3.3 Rotor Description and Computational Models

The industrial rotor illustrated in Fig. 3.1 is the second stage of a four-drum compressor
rotor used in an advanced gas turbine application. There are 29 blades in the rotor. The
design is referred to as a blisk, since the blades and disk are machined from a single,
continuous piece of material. The material properties are listed in Table 3.1.

The tuned finite element model is represented by the single sector model in Fig. 3.1b,
using MSC/NASTRAN" cyclic symmetry routines. The sector model is clamped at the
ribs located at the outer edges of the disk, which is a rough approximation of boundary
conditions due to neighboring stages. The sector finite element model is constructed with
standard linear brick elements (eight-noded solids). The disk portion of the model con-
tains 528 elements, and the blade portion has 375 elements. There are 4374 degrees of
freedom per sector in the finite element model. In contrast, the ROM used for technique

validation consists of five disk-induced modes and ten cantilever blade modes, for a total
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of 15 degrees of freedom per sector.

The mistuned finite element model consists of the entire blade assembly, as shown
in Fig. 3.1a. The same element type and mesh pattern is used in the single-sector cyclic
symmetry model and the full mistuned model. There are thus 126,846 degrees of freedom
in the mistuned finite element model, as compared to 435 degrees of freedom in the mis-
tuned ROM. Mistuning is introduced into the assembly by allowing each blade to have a

different Young’s modulus:

E,=FE,(1+6,), n=1,...,N, (3.17)

where E, is Young’s modulus for a tuned blade, afigis a dimensionless mistuning
parameter associated with th& blade. A specific mistuning distribution, or pattern, for

the industrial rotor that was used to obtain the FEM versus ROM validating results is listed
in Table 3.2. These mistuning parameters are based on experimental natural frequency

measurements on a prototype rotor.

3.4 Reduced Order Model Validation

3.4.1 Free Vibrations

It is convenient to describe the mode shapes of a tuned rotor in terms of nodal diameters
(nodal lines across the diameter of the disk) and nodal circles (nodal lines in the circumfer-
ential direction). To the number of nodal diameters for a mode shape corresponds a phase

shift between adjacent blades, also denoted interblade phase angle, which is given by

2mh
QS}L:T, hZO,...,P, (318)

whereh is the number of nodal diameters, aNds the number of blades in the assembly.

These modes are accordingly referred to as constant interblade phase angle modes.
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Blade | Mistuningé; || Blade| Mistuningé; | Blade | Mistuningd;
1 0.05704| 11 -0.03631 || 21 0.02919
2 0.01207| 12 -0.03570 || 22 -0.00328
3 0.04670| 13 -0.03631 || 23 0.00086
4 -0.01502 | 14 -0.03631| 24 -0.03654
5 0.05969 | 15 0.00242 || 25 -0.03631
6 -0.03324 | 16 0.04934 | 26 -0.01665
7 -0.00078 17 0.04479| 27 0.00783
8 -0.01688 || 18 0.03030| 28 -0.01169
9 0.00242 19 0.00242 | 29 -0.01332
10 -0.02747 || 20 0.01734

Table 3.2: Mistuning pattern for the case study rotor, based on natural frequency measure-
ments on a prototype rotor.

The characteristics of the free vibration modes are conveniently summarized by a plot
of natural frequencies versus the number of nodal diameters, as shown in Fig. 3.3. This
plot reveals two interesting features of the tuned rotor's modal structure. First, as the
number of nodal diameters increases, the disk stiffens rapidly, and the slanted lines in
Fig. 3.3 thus correspond to disk-dominated modes. In the absence of blade tip or mid-span
shrouding, the blade-dominated modes do not stiffen significantly as the number of nodal
diameters increases. Hence, lines that are approximately horizontal represent families of
blade-dominated modes. For instance, the family of modes around 2150 Hz features mo-
tion that is dominated by the first flexural bending mode (1F) of a cantilevered blade, while
motion in the second family of modes around 7400 Hz is dominated by the first torsional
mode (1T). Neither of these families of modes exhibit nodal circles. Motion in the third

family of modes (9100 Hz) is dominated by the second flexural bending mode (2F) and
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Figure 3.3: Natural frequencies versus number of nodal diameters for the tuned rotor by
finite element and reduced order modeling. Note the excellent agreement be-
tween finite element and adjusted ROM natural frequencies.

features one nodal circle, and so on. Note that Fig. 3.3 lists these physical descriptions
of the blade-dominated mode families (S denotes plate-type “stripe” modes characterized
by flexural motion along the chord of the blade). A second notable feature in Fig. 3.3 is
the numerous eigenfrequency veerings, in which blade- and disk-dominated mode fami-
lies veer away from each other. Physically, eigenfrequency veerings indicate the degree
of coupling between families of disk and blade modes. The strength of a veering may be
measured by the distance between the natural frequencies and the local curvature in the
veering region [47]. The impact of the eigenfrequency veerings on the forced response of
mistuned rotors will be highlighted further in later sections.

The average error for the standard (unadjusted) ROM among the natural frequencies
in the frequency range shown in Fig. 3.3 is 2.2%, where the maximum error of 6.9% is

found at the>*™® zero nodal diameter mode. The corresponding errors after cantilever blade
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eigenvalue adjustments are 0.3% and 2.6%, respectively. The demonstrated accuracy of
the reduced order modeling technique in terms of tuned natural frequencies also extends
to mode shapes. This is evidenced in Figs. 3.4 and 3.5, which depict example four nodal
diameter and one diameter mode shapes, respectively, obtained from finite element and
reduced order models. The four nodal diameter mode is characterized by 1F motion,
while the one nodal diameter mode is dominated by 2F motion. The mode shapes are
represented by a scalar denoted “relative blade Euclidean displacement norm”. The norm,

ur, for each blade, is defined as

Ny
Z] 1 UJ,

\/Z ] 1%,],

whereu;,, is the displacement of thg" degree of freedom of the'" blade, N, is the

n=1,...,N, (3.19)

number of degrees of freedom in one blade, And the number of blades in the assembly.

For these tuned mode shapes, the signs of the blade deflections were identified to enable
a more familiar sinusoidal representation, since the motion extends uniformly throughout
the blade assembly. Note that the one nodal diameter mode is located in the center of the
investigated eigenfrequency veering (see Fig. 3.3).

The nodal diameter description inherently implies that the mode shapes of the rotor
are spatially periodic, which is true for tuned rotors. However, small blade mistuning may
alter mode shapes and cause confinement of vibration energy to only a few blades — the
so-called phenomenon of localization. The observation that the first-order mode shape per-
turbation due to mistuning is inversely proportional to the difference in the tuned system'’s
natural frequencies, leads to the well-known property that mode localization is most acute
in frequency regions of high modal density [47]. From Fig. 3.3 it can be deduced that all
families of blade-dominated modes in the depicted range exhibit high modal density and

are therefore susceptible to mode localization upon the introduction of mistuning. Exam-
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Figure 3.4: Comparison of tuned finite element and ROM four nodal diameter mode
shapes (dominated by 1F motion).
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Figure 3.5: Comparison of tuned finite element and ROM one nodal diameter mode shapes
(dominated by 2F motion). This mode is located in the investigated veering.
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Figure 3.6: Comparison of mistuned finite element and ROM mode shapes in the fre-
guency region encompassing the 1F blade-dominated modes. The mode shape
is spatially localized about blade number six.

ination of the selected mode shapes from the mistuned rotor model depicted in Figs. 3.6
and 3.7 indicates significant mode localization as expected. The ROM mode shapes dis-
play the same severe localization, and they correlate well with the finite element mode

shapes.

3.4.2 Forced Response

The external loading is assumed to consist of a single load located at the tip and mid-
chord of each blade, and normal to the surface of the blade. This is of course a simplified
case of any actual loading, where the blades are subject to distributed pressure loads. More
realistic pressure loads can very easily be applied to the ROM by specifying the equivalent
nodal loading on all blade degrees of freedom. Structural dampinghich had been
experimentally determined to be 0.006, is used in both the finite element and ROM forced

response calculations. A scalar representation of blade deflection amplitude similar to
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Figure 3.7: Comparison of mistuned finite element and ROM mode shapes in the fre-
guency region encompassing the investigated veering. Motion is dominated
by the 2F blade mode and is localized about blade number six.

Eq. (3.19) is utilized to represent the forced response of the assembly:

n=1,...,N. (3.20)

In the tuned system response, all blades have identical displacement norms. However, this
is not true for a mistuned rotor, where the various blades may have vastly different response
amplitudes. In the mistuned case, the maximum blade displacement norm throughout the
assembly is selected at each driving frequency, defining the maximum response amplitude.
Figure 3.8 depicts the frequency response of the tuned assembly using both finite el-
ement and reduced order models in the frequency region encompassing the 1F family of
blade-dominated modes. An engine order four excitation is applied (). Figure 3.8
shows that the resonant response amplitude of the tuned system using the ROM formula-
tion is less than 2% higher than the corresponding finite element result. Figure 3.9 depicts

a comparison of mistuned finite element and ROM maximum blade responses. The highly
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complex response pattern is very well captured by the ROM. Only small discrepancies in
resonant frequencies and response amplitudes are observed. The response sampling for the
mistuned finite element model is relatively coarse, due to the tremendous computational
expense associated with solving a full blade assembly. Each sampled response (one data
point) for the mistuned finite element model requires approximately 27 cpu minutes on a
360 MHz UNIX workstation. In contrast, each ROM response sample requires less than
2.7 cpu seconds on the same workstation. Note in Fig. 3.9 that the maximum mistuned
response amplitude is only 17% higher than the tuned resonant amplitude. Recall, from
the works of Wei and Pierre [15] ar@ttarsson and Pierre [16] that significant amplitude
increases occur when there is moderately weak interblade coupling. From Fig. 3.3 it is
seen that this particular frequency region exhibits no eigenfrequency veerings. This im-
plies minimal disk-blade modal interaction and very weak interblade coupling. Hence, the
mode shapes are dominated by cantilever blade motion, where the individual blades are
isolated from each other by the disk and cannot effectively communicate energy to one
another. The mistuned system thus responds very much like a collection of uncoupled
blades, yielding a relatively modest response amplitude increase due to mistuning.

An excitation close to an eigenfrequency veering is considered next, since it is crucial
that interblade coupling effects be well captured by the ROM. Figure 3.10 illustrates the
tuned finite element and ROM responses to an engine order one excitation. The resonance
in Fig. 3.10 corresponds to the 2F mode of a cantilever blade. It is located in the heart
of the investigated eigenfrequency veering, between the third family of blade-dominated
modes and the first family of disk-dominated modes, as can be seen in Fig. 3.3. As with
the 1F mode family, the correlation between tuned finite element and ROM responses
in Fig. 3.10 is excellent. Figure 3.11 depicts a comparison of mistuned finite element and

ROM maximum blade response amplitudes for engine order one excitation. Itis again seen
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Figure 3.8: Comparison of tuned finite element and ROM forced responses, for blade tip
excitation with C=4.
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Figure 3.9: Comparison of mistuned finite element and ROM maximum blade forced re-
sponses, for blade tip excitation with C=4.
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Figure 3.10: Comparison of tuned finite element and ROM forced responses, for blade tip
excitation with C=1.

that the ROM yields a good representation of the mistuned response pattern. However, the
ROM response amplitudes do not compare as well as in the previous case. Note that the
maximum mistuned response exceeds the tuned response by 57%. Per earlier discussion,
this is due to the increased disk-blade modal interaction found in veering regions, enabling
vibration energy transfer and confinement.

Once the displacement field has been solved with the efficient ROM, displacements can
be imported back into the finite element model for post-processing of stresses and strains.
For the engine order one excitation, the maximum principal stresses in the blade at tuned
resonance are 507 and 527 MPai{s) as obtained with the finite element model and
the ROM, respectively. The corresponding maximum principal stresses in the mistuned
case are 777 and 751 MPa3%). Hence, the maximum principal stresses obtained with
the ROM are in this case withiit5% of the principal stresses determined with the finite

element model. Furthermore, note that the maximum principal stress for the mistuned
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Figure 3.11: Comparison of mistuned finite element and ROM maximum blade forced
responses, for blade tip excitation with C=1.

finite element model is as much 53% higher than that for the tuned model. This 53%
increase in principal stress corresponds to the 57% increase in resonant response amplitude

observed in Fig. 3.11.

3.5 Forced Response Statistics

As the above free and forced response results illustrate, reduced order models of bladed
disks correlate well with much larger finite element models. The technique successfully
captures and predicts mistuning effects on response amplitudes for industrial rotors. More
importantly, however, reduced order modeling enables engineers to determine the statis-
tical characteristics of blade forced response amplitudes for randomly mistuned rotors.
Random mistuning must be compensated for by increasing the overall fatigue strength of
the blades in order to meet some statistically determined stress level. Alternatively, if fea-

sible, the designer could choose an intentional mistuning pattern in an attempt to minimize
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the increase in mistuned vibratory stresses. Recent work by Castanier and Pierre [49] in-
dicates mode-wise robustness of such an approach. Note that in both instances, reduced
order modeling can aid the designer in capturing mistuning effects.

Figure 3.12 illustrates a Monte Carlo simulation of the statistics of the maximum blade
response amplitude for engine order one excitation over the frequency range of 8750 to
10,750 Hz, which encompasses the 2F family of blade modes. The simulation consists
of frequency sweeps for 1000 different mistuning patterns, obtained from a uniform dis-
tribution with zero mean and 3% standard deviation. In Fig. 3.1293Hepercentile of
the maximum blade response amplitude (i.e., the amplitude such that, statistically, 95% of
all mistuned rotors exhibit smaller maximum amplitudes) is seen to correspond to a 54%
increase over the tuned system'’s resonant response amplitude. The corresponding maxi-
mum principal stress for or@&'™ percentile mistuning pattern is 830 MPa. Recall that the
tuned maximum principal stress is 527 MPa. The stress level farsthgercentile of the
maximum blade response amplitude is thus as much as 58% higher than the tuned stress
level. If the current rotor design is based on tuned stress magnitudes, fatigue properties of
the blades should be increased to compensate for the effect of random mistuning.

A simulation using 1000 mistuning patterns is computationally expensive, even with
the ROM. In addition, if compliance of 95% of the rotors is not acceptable, and, for in-
stance99.9'" percentile compliance is required, 1000 realizations will not suffice. De-
termining the99.9"" percentile forced response amplitudes with Monte Carlo simulations
requires analyses of an estimated 50,000 mistuned rotors, which is a formidable task.
Therefore, a new statistical analysis method is proposed, whereby the probability distribu-
tions of forced response amplitudes are approximated with statistical models.

Weibull distributions are frequently used to describe probabilistic engineering obser-

vations due to the versatility of the shape of the probability density function. Furthermore,
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Figure 3.12: Histogram of the maximum blade response amplitudes for engine order one
excitation. Obtained by Monte Carlo simulation of 1000 different mistuned
systems with uniform distributions of zero mean and 3% standard deviation.

using the theory of the statistics of extreme values, the amplitude of the largest-responding
blade on a rotor will have a Weibull distribution [50]. The probability density function of

a three-parameter Weibull distribution is given by Gumbel [51] as

-1 y
flz) = p (A _ x) e (55)" (3.21)

whered, 3, and\ are scale, shape, and location parameters, respectively; anthe
random variable under investigation (i.e., the maximum blade amplitude magnification). In
this study, the location parametar,is approximated by the theoretical maximum response

magnification factor, which was determined by Whitehead [52, 53] to be

A== (1+VN). (3.22)

DN | —

Using this approximation fok, the remaining two parametersand3, may be estimated

by least squares linear regression [49].
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and 95" percentiles of maximum blade response amplitude magnification.
The approximate percentiles from the Weibull distributions conform well

with the Monte Carlo percentiles.

To determine the correlation between Weibull estimates of response amplitudes and

“true” response amplitudes, the maximum blade response statistics from the Monte Carlo

simulation were compared to numerous Weibull approximations of the response ampli-

tudes that utilize only 50 mistuned rotors. This comparison is presented in Fig. 3.13 for

the 5%, 50", and95'" percentiles of the maximum blade response amplitude. Note how

closely the three-parameter Weibull distribution approximate the “true” distribution. In

addition, the quality of the Weibull estimates of the probability density function based on

several subsets containing 50 mistuning patterns each is displayed in Fig. 3.14. Clearly,

the probability density is well captured using a significantly smaller number of patterns

than the full set of 1000 patterns.

Using Weibull distributions to calculate approximate maximum forced response statis-

tics in the described manner, the effect of mistuning strength was investigated for the



51

T T T
— 1000 Patterns
-+ Sets of 50 Patterns

(<2
T

o1
T

Weibull Probability Density
w IN
Tuned Reference

N
T

"f.::‘ 1 1 1 1
1 11 12 3 14 15 16 17 18
Maximum Blade Amplitude Magnification

Figure 3.14: Comparison of Weibull estimates of the probability density function for sev-
eral sets of 50 mistuning patterns each and the full set of 1000 mistuning pat-
terns. The Weibull approximations based on the smaller sets conform well
with the probability density function obtained with the full set.

5%, 50", and 95'" percentile responses in the frequency veering considered here (see
Fig. 3.3). As shown in Fig. 3.15, there is a local maximum in the maximum blade re-
sponse amplitudes for mistuning distributions with approximately 1% standard deviation.
The maximum principal stress for one mistuning pattern corresponding @hth@er-
centile response amplitude at 0.8% mistuning standard deviation4s978 MPa. This

principal stress represents an 86% increase over the tuned principal stress reported earlier.
3.6 Effects of Structural Interblade Coupling

As mentioned earlier, the two factors that determine response increases for a given
level of mistuning are mode localization and interblade coupling. Using a single-degree of
freedom per sector bladed disk model, Wei and Pierre [15)Gttarsson and Pierre [16]

determined that moderately weak interblade coupling is required for significant increases
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mistuning. Note that a local maximum occurs for mistuning distributions
with approximately 1% standard deviation. Mistuned maximum principal
stresses are as much as 86% higher than the tuned maximum principal stress.

in forced response amplitudes. If there is no interblade coupling, then each blade acts as
an individual mistuned oscillator, and the mistuned response does not deviate significantly
from the tuned response. As coupling increases, an avenue is created for the blades to
communicate vibrational energy, which raises the possibility of confining energy to a few
blades. The mistuned response may then deviate significantly from the tuned response,
until further increases in coupling prohibit the confinement of energy, yielding tuned-like
response for large coupling values.

In a structural model of an unshrouded bladed disk, the only means of communica-
tion from one blade to the next is through the disk. Therefore, it is reasonable to assume
that the interblade coupling is indicated by the amount of interaction between disk- and
blade-dominated modes. Such modal interaction appears as veering regions in a natural

frequency versus nodal diameter plot, where the lines that connect natural frequencies
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veer away from each other [47]. This relationship between the veerings and the interblade
coupling was investigated for simple finite element models of bladed disks in Kruse and
Pierre [21] and Bladlet al. [54]. From curve veering theory [47], it is known that the
strength of the disk-blade interaction, and thus the interblade coupling, is a function of the
veering curvature. If the interaction between disk-dominated and blade-dominated motion
is negligible, then the disk-dominated and the blade-dominated frequency curves will ap-
pear to “pass through” each other, or cross. Thus, the veering is extremely sharp, with
high curvature. In contrast, a lower-curvature veering indicates a higher level of modal
interaction, and thus, stronger interblade coupling. This does not imply that the maximum
sensitivity to mistuning is always found in the veering region, since the interblade cou-
pling here might fall above the critical range. In this case, a critical amount of interblade
coupling may exist at a harmonic that is not adjacent to the veering, since the effective
interblade coupling decays with increasing “distance” from the veering region.

For the tuned system, cyclic symmetry arguments lead to a defined number of natural
modes at discrete interblade phase angles, representing integer harmonics. That is, the
modes shapes associated with natural frequencies form standing waves that undergo, over
the assembly, integer multiples of phase shift. However, from these discrete points
representing the true modes of the system, it is impossible to obtain reliable estimates
for the veering curvatures and mode distances, since the center point of the veerings will
likely be missed in most cases. To overcome this problem, one may compute modes
based on arbitrary, intermediate interblade phase angles (non-integer harmonics) to obtain
approximations of curvatures and mode distances in the veering regions. Note that this
leads to displacement discontinuity at the interface betweemvtheand the first cyclic
sector, and these modes can therefore not occur in reality. They can, however, be viewed

as traveling wave modes [55].
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Following the indices defined in Fig. 3.16
may be formulated in real-valued matrix form as

where
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and the mass matrix is partitioned in exactly the same fashion. The trigonometric argu-
ment,¢;,, is the interblade phase angle defined in Eq. (3.18), from which one observes that
the interblade phase angle is a function of the rafi&/. Thus, a continuous interblade
phase angle mode description may be obtained either by léttigga “continuous” vari-
able (i.e., using small, non-integer steps), or, equivalently, by specifying integer vakues of
andN that yield the same ratio. The latter option offers a possibility to use commercial fi-
nite element software featuring cyclic symmetry to compute these intermediate interblade
phase angle modes, as long as the finite element code does not check for geometric con-
sistency. The continuous solid lines in Fig. 3.17 were obtained using MSC/NASTRAN
for an assembly of 580 blades (compared to the actual number, 29) to get 20 data points
per integer harmonic. Moreover, Fig. 3.18 provides a detail view of the highly complex
region of modal interaction at lower harmonics (i.e., the lower left portion of Fig. 3.17).
From Fig. 3.18 it is particularly clear that much of the complex interaction between blade-
and disk-dominated modes will be missed by viewing integer harmonics alone.

Using a continuous interblade phase angle representation with sufficiently small step
size, one may invoke, for instance, a finite difference scheme to compute the curvature of

the eigenfrequency “function’(; (), in the neighborhood of the veerings as

dz};k(fh)
K(dn) = i , (3.24)

i+ ()]

for each mode set (ordered by ascending frequencies as shown in Fig. 3.18). As an

(M2

example, consider the veering region at #i& harmonic for thet*™® and5™ mode sets

seen in Fig. 3.18. Using a fourth order finite difference scheme, approximations of the
first and second derivatives with respect to the interblade phase angle were obtained to
compute the veering curvatures depicted in Fig. 3.19. This plot quantifies the relatively

sharp veering occurring close to tf¢ harmonic, where mode sets 4 and 5 veer away from
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each other with curvatures of comparable magnitudes but of opposite signs. Also visible
are the obtained curvatures of thi& harmonic veering (between mode sets 3 and 4), and
of the veering located between 2% and3® harmonic (between mode sets 5 and 6).
Comprehensive statistical analyses similar to the one presented in Fig. 3.15 were car-
ried out for several veerings among the low-order mode families. The analyses use Weibull
fits based on 50 random mistuning patterns, and the selected results are shown in Fig. 3.20.
Figure 3.20 shows the locations and maximum curvatutg®f(the analyzed veerings.
Note that the maximum veering curvatures are averaged between the lower and upper
mode sets. In addition, Fig. 3.20 shows the engine order of the excitation (C), the max-
imum 99.9'" percentile response amplitude magnification factor relative to the tuned re-
sponse (A), and the standard deviation of the mistuning distribution yielding maximum
amplification ¢) at selected locations.

Several interesting observations can be made in Fig. 3.20. As shown, the response
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Figure 3.20: Forced response statistical data for selected veerings.

increases due to mistuning can be very large — close to 200% above tuned levels in some
cases. Based on the large magnification factors found for excitations near the veerings, it
may be deduced that the veering curvatures are such that the corresponding interblade cou-
pling values are near critical levels relatively close to the analyzed veerings. The depicted
results also indicate that the amplitude magnification decays significantly with the distance
from the veering. This important observation is consistent with the decay of interblade
coupling with increasing distance from the veering. Moreover, comparing the 2F and 2T
veerings, it is observed that these two veerings have comparable curvatures. However,
both maximum amplifications and the mistuning strength for which maximum occurs are
vastly different. In fact, based on the displayed results, the blade-dominated mode families
with torsion (T) content appear to be significantly more sensitive to mistuning than purely
flexural mode families (F and S). This may be explained by significant differences in disk-

blade interface motion and how far this motion extends in the disk. Another interesting
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observation is that the maximum amplifications are found at a much higher level of mis-
tuning strength for both families exhibiting torsion content. Hence, these results indicate
that the blade mode type may also be a factor influencing the sensitivity to mistuning.

One focus of future work is to be able to relate mistuning sensitivity to veering curva-
ture, distance between eigenfrequencies, and distance of eigenfrequencies from the veer-
ing. If such arelationship can be thoroughly understood, this extended eigenvalue analysis

may provide an inexpensive design tool for early assessments of mistuning sensitivity.

3.7 Conclusions

In this paper, the ROM free response formulation presented by Castanig20] was
successfully extended to the forced response case. The ROM forcing vector was expressed
in terms of single sector quantities, which minimizes computer memory and computational
costs. In order to validate the extended ROM formulation, the technique was employed
to investigate mistuned free and forced response characteristics for an industrial turbo-
machinery rotor. In all investigations, very good correlation was observed between finite
element and ROM responses. The computationally inexpensive ROM was further used to
determine statistically the variation in response amplitudes due to mistuning.

This investigation verified the existence of localized modes in industrial turbomachin-
ery rotors. Localized modes were found to exist in areas of high modal density, such as
blade-dominated modes. Moreover, the existence of localized modes raises the possibil-
ity of significant amplitude increases in the forced response of the rotor. In particular, it
was shown that mistuned responses can exceed tuned response levels by nearly 200%, if
appropriate levels of mistuning and interblade coupling are present.

The relationship between blade mistuning for a particular rotor and the associated mis-

tuned forced response is not simple. Previous works have shown that there exists a critical,
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intermediate level of interblade coupling that leads to maximum mistuned forced response
amplitudes [16]. In this study, the analysis of the curvature of eigenfrequency veerings was
considered as a means of determining the interblade coupling strength for a bladed disk.
A simple method was presented for calculating eigenfrequencies for interblade phase an-
gles corresponding to non-integer harmonics. This calculation may be performed using
commercial finite element software. Since this analysis allows one to quantify the veer-
ing curvature, it might also allow one to quantify the interblade coupling strength. A
brief forced response statistical study utilizing this technique, indicated that there are four
principal factors governing mistuned forced response: (a) modal density; (b) interblade
coupling; (c) mistuning strength; (d) characteristic blade motion. Future work will aim to

guantitatively relate these factors to mistuned forced response amplifications.



CHAPTER IV

Reduced Order Modeling and Vibration Analysis of
Mistuned Bladed Disk Assemblies with Shrouds

This paper presents important improvements and extensions to a computationally ef-
ficient reduced order modeling technique for the vibration analysis of mistuned bladed
disks. In particular, this work shows how the existing modeling technique is readily ex-
tended to turbomachinery rotors with shrouded blades. The modeling technique employs
a component mode synthesis approach to systematically generate a Reduced Order Model
(ROM) using component modes calculated from a Finite Element Model (FEM) of the
rotor. Based on the total number of degrees of freedom, the ROM is typically two or
three orders of magnitude smaller than the FEM. This makes it feasible to predict the
forced response statistics of mistuned bladed disks using Monte Carlo simulations. In this
work, particular attention is devoted to the introduction of mistuning into the ROM of a
shrouded assembly. Mistuning is modeled by projecting the mistuned natural frequencies
of a single, cantilever blade with free shrouds onto the harmonic modes of the shrouded
blade assembly. Thus, the necessary mistuning information may be measured by testing

individual blades.

61
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4.1 Introduction

Based on the nominal design, a bladed disk assembly is a rotationally periodic struc-
ture. If it is assumed that each sector is identical, then the theory of cyclic symmetry
may be used to analyze the dynamics of the entire structure based on, say, a finite ele-
ment model of one sector (Joseph [43]; Elchetrial. [56]; Hitchings and Singh [57]).

In practice, however, there are small differences among the structural properties of in-
dividual blades — due to manufacturing tolerances, material deviations, and non-uniform
operational wear. These small, random discrepancies, commonly referred to as mistuning,
are unavoidable. Furthermore, mistuning destroys the cyclic symmetry of the bladed disk
assembly, and it can drastically affect the vibratory behavior of the structure. In particular,
certain mode shapes may become spatially localized. As a result, a blade may experience
forced response amplitudes and stresses that are substantially larger than those predicted
by a tuned analysis.

The effects of mistuning on blade vibrations have been documented by experiments, as
well as by analyses of representative lumped parameter models using numerical, statistical,
and perturbation methods (Wagner [5]; Dye and Henry [6]; Ewins [7, 8]; EI-Bayoumy and
Srinivasan [9]; Griffin and Hoosac [11]; Wei and Pierre [14, 15]; Lin and Mignolet [13]).
See Srinivasan [17] for a survey of the literature. More recently, there have been efforts to
use component mode synthesis (Irretier [18]; Zheng and Wang [19]; Casthmie[20])
and receptance techniques (Yang and Griffin [26]) combined with finite element models in
order to obtain more accurate models of mistuned bladed disks.

The studies by Castaniet al. [20] and Yang and Griffin [26] are notable because
specially-tailored techniques were employed to obtain, in a systematic fashion, highly

reduced order models from parent finite element models of bladed disks. In particular,
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significant order reduction was achieved by reducing the number of degrees of freedom
(DOF) needed to connect the disk and blade components. Yang and Griffin treated the
disk-blade interface as having only rigid body motion, which reduced the necessary DOF
to six for each blade. However, this approximation did cause some loss in accuracy in
frequency regions that feature disk-blade interaction. In Castamial [20], a novel
component mode technique was developed to eliminate the so-called constraint modes.

The technique of Castaniet al. [20] has been applied to the analysis of the forced
response of mistuned bladed disks (Kruse and Pierre [21]) and it has been validated using
a finite element model of an industrial rotor (Kruse and Pierre [22]). However, these inves-
tigations concentrated on unshrouded bladed disk assemblies. In this paper, the reduced
order modeling technique is extended to turbomachinery rotors with shrouded blades. The
tuned blade-shroud ring is modeled as a single, cyclic component structure. Thus, the
limiting cases of full stick or full slip at the shroud interfaces may be treated. Mistuning
is added by projecting the mistuned natural frequencies of a single blade onto the cyclic
modes of the blade-shroud ring. For an example finite element model, using the case of
full stick at the shroud connections, excellent correlation between finite element and ROM
predictions of the free and forced response is demonstrated.

This paper is organized as follows. The reduced order modeling technique is presented
in Section 4.2, including updates to the ROM matrices, and specific formulations pertinent
to shrouded assemblies are derived. A fairly detailed derivation of the proposed method
to model mistuned shrouded assemblies is also included. In Section 4.3, the technique is
applied to the vibration analysis of a shrouded test case rotor. The results are validated by

comparisons with finite element results. Concluding remarks are given in Section 4.4.



64

4.2 Reduced Order Modeling Technique

4.2.1 General Formulation of Reduced Order Model

It may be assumed that the disk (d) and blade (b) degrees of freedom are ordered in
such a manner as to give the following partitioning of the assembled mass and stiffness
matrices of the entire structure:

Md 0 Kd 0
M = K= (4.1)
0 Mb 0 Kb
The location of the disk-to-blade interface can be chosen completely arbitrarily. In prac-
tice, though, this choice may affect the accuracy of the approximate solutions.

Each sector is here treated as an isolated substructure and since all sectors are assumed

identical, the non-zero matrix blocks will be block-diagonal:

Mg=I@Mg M,=I0M,
) ) (4.2)
Ka=1I® K4 Ky, =I® K,
wherel is an identity matrix, and the symbal denotes the Kronecker product, which
is defined in Appendix A. The “tilde” notation will be used throughout the following to
indicate that a quantity refers to a single blade or disk sector. Note that this implies that all
degrees of freedom associated with the boundaries between adjacent sectors will appear
twice.
A key idea for this reduced order modeling technique (Castaatial [20]) is to de-
scribe the motion of the bladed disk assembly using two particular sets of component
modes. Figure 4.1 depicts the two fundamental component mode types for a greatly sim-
plified finite element model of a bladed disk sector. The first set is comprised of disk-
induced modes, which are the cyclic modes of the entire assembly where the attached

blades are massless. In this case, the blade motion is a rigid-body motion plus elastic de-

formation due to the boundary motion. The blade portion of the disk-induced modes, i.e.,
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(b)

Figure 4.1: Cantilever blade (a) and disk-induced (b) motions.

the part belonging to the blade degrees of freedom, will be deddtecnd the disk por-
tion V4. The second mode set consists of the modes of a cantilever blade alone, which is
clamped at the chosen disk-blade interface location. Note that for unshrouded blades, the
modal matrixUP® for all N identical blades is block-diagonal and is assemblebasi®,
whereii® is the cantilever mode shapes of a single blade. For shrouded blades, however,
this set of modes is also cyclic in nature, due to the presence of direct blade-to-blade
structural coupling, and thus, the cyclic assembly modes will yield a full mBtbix

Through superposition of these two sets of component modes, and using the node or-
dering configuration in Eq. (4.1), the resulting nodal displacements of the entire assembly

can be expanded as:

wherea andb are modal coordinates for the disk-induced and the cantilever blade modes,
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respectively. With above definitions, the strain and kinetic energies of the system, as well
as the external virtual work done by a time-harmonic engine order excitation Qice,
may be formulated in component modal-referred quantities.

Applying Hamilton’s principle yields the governing equations of motion for the re-

duced order model. They are conveniently written in matrix form as:

Mz+Cz+ (1+Gj)Kz=Q (4.4)
where;
a 0 0 Q4 Ul Q
b 0 C | O u'Q
I + UM, Ud UM, UP Ky UK, UP
M == IC =
U M, Ud I, i UK, U? K+ AK,

K, andKy, arediagonalmatrices, and the elements on the diagonals are modal stiffnesses
(eigenvalues) obtained from the disk-induced and cantilever blade finite element analyses,
respectively.I4 andI,, are the corresponding modal mass matrices, which in view of the
employed method of eigenvector normalization will be identity matrices. Recall that the
blade is massless in the disk-induced analysis. Thus, the effect of blade mass on the disk
is included as the second term in the upper-left quadrant of the mass matrix, but no such
term is needed in the stiffness matrix.

Structural damping with damping coefficie@t as well as viscous modal damping of
the cantilever blade mode€, have now been added to the reduced order model, in order
to facilitate more realistic modeling of the structure’s dynamic response. In addition, some
general measure of mistuningKb, is added into the stiffness matix This measure of

mistuning, although general at this point, implies three assumptions:
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e The mistuned characteristics of a blade are restricted to its stiffness (lower-right
guadrant ofC). While stiffness mistuning is sufficient for the purposes of this study,
it may be more accurate to model mistuning in other structural parameters as well;
for instance, by using the mixed least squares — maximum likelihood method of

Mignolet and Lin [48].

e The effects of stiffness mistuning on the other three quadrants afe assumed
negligible. This is to a large extent justified by considering the kind of rigid-body-

like motion the blade undergoes in this set of component modes.

e The mistuned cantilever modes of a blade may be realized by a linear combination

of the tuned modes (i.e., they span approximately the same space).

Note that the resulting structural matrices are all symmetric. In general, this symmetry is
destroyed if aerodynamic coupling between blades is introduced into the system. However,
aerodynamic coupling will not be considered in this work.

At this point, the reduced order model formulation is completely general in that it is
applicable to both unshrouded and shrouded assemblies. However, a closer examination
of the various partitions of the structural matrices reveals significant differences between
the two designs, leading to slightly different degrees of further simplifications. Further
refinement of the formulation for unshrouded assemblies is detailed for the free response
by Castanieet al. [20], and extended for the forced response by Kruse and Pierre [21], and
will therefore not be repeated here. A presentation of formulation details for the reduced
order model of a shrouded assembly, including a novel method for modeling shrouded

blade mistuning, will follow.
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4.2.2 Formulation Refinement for Shrouded Designs

A modal matrix containing cyclic modes can be represented as:

U= (FRI) U, (4.5)

whereF is defined in Eq. (B.3), anti*, which contains the mode shapes of a fundamental

sector in cyclic coordinates, has a pseudo-block-diagonal structure (see Appendix B):

U* = Bdiag|ii], (4.6)

k=0,...,P

whereBdiag [¢] denotes a pseudo-block-diagonal matrix, with the argument being the
k™" “block”, and the range of: is shown. The mode type designatiorould be either

the disk-induced modesl, or the cantilever blade modds, since the structure of both
these modal matrices is cyclic. Combining Egs. (4.5) and (4.6), one may write the internal

structure of a cyclic modal matri¥* as:
Uur = fO ® ﬁb' fl,c ® ﬁli,c + fl,s ® ﬁli,s e (4.7)
fk,c X ﬁ-ﬁyc + fk,s ® ﬁﬁ,s e fN/2 ® i.irN/2

Because of the cyclicity of botti4 andU® and the block-diagonal structure®f and

K, all three projection products i and/C will become pseudo-block-diagonal:

UM, U? = Bdiag|iif Myii]

k=0,...,P
UM, UP = Bdiag|iif Myiip] (4.8)
k=0,...,P
UTK,U" = Bdiag|i] Kyiip|.
k=0,...,P

The external excitation force vector shown in Eq. (4@),defines the forcing on all
the blade degrees of freedom of the assembly. The restriction to blade degrees of freedom

is not an absolute requirement, but leads to a more compact formulation, and it should also



69

be sufficient from a practical perspective. Moreover, we assume an engine order excitation
which is harmonic in time and differs only in phase from blade to blade. The phase at blade

i, ¢;, IS given by:
~ 2nC(i—1)
¢’i - N )

i=1,...,N, (4.9)

whereC' is the engine order of the excitation. The external force vector can then be

expressed as:

4

?€j¢2
Q= > (4.10)

feion

wheref is the force vector on a single blade.
The expression for the modal force vect@rgiven in Eg. (4.4) can be simplified to

a much more convenient form in terms of the disk-induced and cantilevered blade mode

shapes of a single sectd andaip, respectively. Using Eq. (4.10), and the modal matrix

as written in Eq. (4.7), the corresponding modal force partition becomes:
(fo ® a5) ™ (ec ® ?)

(flyc R, +fis® ﬁ‘{,s)T (ec ® ?)

0, — UrTQ _JN . - (4.11)
(fk,c @ Uy + fies ® ﬁll;,s) (eC ® -f:)

(fxj2 ® ﬁ"N/z)T (ec @ f) J
whereec is the(C' + 1)™ column of the complex Fourier matrik, defined in Eq. (B.2).

This expression can now be greatly simplified, first by using the general algebraic proper-
ties of the Kronecker product stated in Egs. (A.2) and (A.4), and then by making use of

the orthogonal properties of the transformation column vectors involved. The expansion
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of Eq. (4.11) will yield modal force partitions that are zero everywhere, except f@i'the
harmonic disk-induced and cantilever blade modes. Thus, the engine order exditation,
determines which modes of the assembly that are being excited. The resulting modal force
vector is given in Section 4.2.4.

The modal viscous damping matrix for the shrouded cantilever blade mGdeg]l

be a diagonal matrix expressed as:

C = Bdiag [diag [2¢/] ] VK, (4.12)

K=0,.sP | .oy /21y
wherediag [e] denotes a diagonal matrix (block), with the argument being thdiagonal
element, and the range ofis shown. Also(* is the modal damping coefficient of the

n'h cantilever blade mode of the" harmonic. Note that for shrouded bladé&s, is
comprised of diagonal blocks associated with the various cyclic harmonics of the assembly

of shrouded blades.

4.2.3 Mistuning of Shrouded Blades

Perhaps the most fundamental feature of this technique is its suitability for stiffness
mistuning of the individual blades, since the modal stiffness of each individual cantilever
blade mode is isolated in the diagonal maikiy. Therefore, in the unshrouded case, the
formulation lends itself to a very convenient and simple input of individual mistuning of

each cantilever blade modal stiffness for each blade as:

AK, = Bdiag ldiag [5§]] Ky, (4.13)

n=1,....N | k=1,...,my
whereBdiag [e| denotes a block-diagonal (versus pseudo-block-diagonal) matrix. The
mistuning parameter associated with tf cantilever blade mode of the" blade,é*, is

defined as:

k ok ’
5 = _1, (4.14)

wk
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wherew! represents the mistuned natural frequency ofithenode of blade:, andw” is
the corresponding nominal, or tuned, natural frequency.

However, the manner in which the mistuning is put into the ROM stiffness matrix for
unshrouded blades is not particularly well suited for shrouded assemblies, i hiat
now represented inyclic, or harmonic modal coordinates. This implies that in order to
obtain any relevant measures of mistuning, one would need to know the effects of individ-
ual blade mistuning on the whole shrouded blade assembly. In theory, it would be possible
to obtain this information through frequency tests of the full blade-shroud assembly, but
this approach is not practical.

In view of this, an alternative approach is to project mistuning measurements for a
single blade onto the cyclic modes of the blade assembly. In this case, the test data would
consist of the deviations in natural frequencies of each individual mode of each blade.
This data could then be used to generate estimates of the mistuned stiffness matrices for
all blades, which would then be included in the ROM formulation. In addition, this would
be possible to achieve without very complicated and specialized testing procedures.

First, one must establish the manner in which the individual shrouded blade natural
frequencies are measured. Here, it is assumed that the shrouded blades are tested while
being clamped at the root, but are otherwise completely unconstrained, as indicated in
Fig. 4.2. Thus, the tests give measurements of the natural frequencies of a cantilever blade
with free shroudsy”. Using the mistuning paramet&y defined in Eq. (4.14), a diagonal
matrix containing the measured mistuned natural frequencies may be defined as:

Bdiag [diag 1+ 5{;]] Kpm = (Ie ﬁb)TK,gnt (1ea”), (4.15)

k=1,...,p

wherei® is the nominal modal matrix, or the nominal mode shapes, for one cantilever

blade; K™ is a mistuned, block-diagonal stiffness matrix, where each block corresponds
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Figure 4.2: Proposed configuration for measuring natural frequencies of shrouded blades
individually.

to the stiffness matrix of one of th¥ mistuned blades; anK}2°™ is a diagonal matrix

of squared nominal natural frequencies for a tuned cantilever blade. The nominal natural

frequencies may be taken either as some average values from tests, or directly from the

finite element analysis needed to obtain the tuned cantilever blade mode ahapise

that there is already an approximation made at this point, namely that the eigenw&ctors

of the mistuned blades are the same as the tuned ones (see discussion in Section 4.2.1).
Returning to Eq. (4.15), the mistuned frequencies are grouped in blocks associated

with each individual blade, where these blocks are diagonal in themselves. Moreover, the

mistuned stiffness matrix will have the following block-diagonal configuration:

K} = Bdiag [K}"| (4.16)
n=1

..... N

Finally, the matrix of nominal modal stiffnesses will also be of a block-diagonal form, but

where all the blocks are identical and diagonal. By denoting such a diagonal]]:é?ﬁénk
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the matrix of nominal modal stiffnesses can be expressed as:

Kie™ = Bdiag [Kb ] T (4.17)

2 nom

SinceK,, represents the nominal modal stiffnesses for one blade, Eq. (4.17) can be

rewritten as:
Krom = 1@ aP Kpi® = (I ® ﬁb)T (I ® f{b) (I ® ﬁb) (4.18)
From Egs. (4.15) and (4.18), one obtains:

K™ = (I ®1u )T_ Bdiag ldlag [1 + 5’“]] (I ® ﬁbe(b) , (4.19)

by virtue of the Kronecker product property given in Eq. (A.2).

Now, making use of the eigenvector normalization assumption, it is realized that:

I = Bdlag [ 1\~/Ibﬁb] = (I ® ﬁb)T (I ® 1\7Ib) (I ® l_lb)

n=1,...,N

- (1e ﬁb)T_l — I® M, (4.20)

By substituting Eq. (4.20) into Eq. (4.19), and by using the factMgtis symmetric, one

may express the mistuned blade stiffness matrix as:

Kglt =I® Rb + (I® 1\7Ibu )Bdlag

n=1,...,N

diag [5’f]] (Te " Ks). (4.21)

For convenience, the quantityK,, is introduced to denote the stiffness deviation matrix
as:

AKyp, = (1@ Myi®) Bdiag [dlag [5’“]] (Te @' Ks), (4.22)

Loy k=1,...,

such that:

K™ =19 Kp, + AK, = K}, + AK,,. (4.23)

The expression for the stiffness deviation mattii,,, can be simplified to:

n=1,...,N

AK,, = Bdiag leu dlag [5k]u Kb] ) (4.24)

.....
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Finally, the complete blade stiffness matrix for the tuned cKsg,js now simply replaced
by Kt in the reduced order model formulation. Thus, repladifgby K™t in Eq. (4.1),
and ignoring any contributions of mistuning from the projection onto the disk-induced
modes, as per discussion in Section 4.2.1, yield the ROM stiffness matrix for a general
mistuned shrouded bladed disk assembly:

Kq Bdiag il Ky iip]

K = k=0,...,P
Bdiag|ip Kpiif] Ky + UM AK,UP
k=0

..... P

(4.25)

AK,, = Bdiag lmbﬁbdia [5g]ﬁbe<b] :
k=

n=1,...,N 1,..., P

Thus, the stiffness mistuninK;,, which may be obtained from measuring natural fre-
guencies of individual blades with clamped roots and unconstrained shrouds, is now pro-
jected onto the cyclic modes of the shrouded blade assefiblylNote that the mistuning
projection termUP" AK, U does not yield any particular matrix structure, since there
are no special relations, such as orthogonality, between the modes of the cantilever blade
with unconstrained shrouds, and the cyclic modes of the shrouded blade assembly. Thus,
in general, the lower-right quadrant of the ROM stiffness matrix becomes fully populated

when mistuning is introduced for shrouded bladed disk assemblies.

4.2.4 Final Formulation for Shrouded Designs

To conclude this section, the reduced order model structural matrices (in the absence
of aerodynamic coupling) and modal force for shrouded bladed disks are stated in their
final forms:

Iy + Bdiag | Myiif| Bdiag|iif” My p]
M — k=0,...,P k=0,...,P
Bdiag|[dP" My ] I,

k=0,...,P
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00
c =
0 diag [2¢*] VK,
L k=1,...,imy N
Kq Bdlag[uk Kbuk}
,C — k=0,...,P
Bdlag[uk Kbuk] K, + UPT AK, UP
L k=o,..,P

AKy = Bdlag [Mbubdlag [5k]u K ]

k=1,...,p

.....

o= {ar:a)

( 3\

Quam = \/N{fgce(;@ud/b f+fg ec ®u[d/] f}

4.3 Analysis of a Shrouded Test Case Rotor

4.3.1 Finite Element and Reduced Order Models

The finite element model of the test case rotor that is analyzed in this study is shown
in Figs. 4.3 and 4.4. The rotor features 24 blades. Each blade has a base @it¢h of
(measured from the axial direction), and a uniform twist of an additi@falover its
length. The base radius is 212 mm, and the blade length is 68 mm. The rotor is fixed at the
interfaces towards adjacent rotating blade stages. This is believed to provide a reasonable
description of the dynamics of the bladed disk assembly. Moreover, the studied test case
rotor features shrouds, which are arbitrarily positionethdt 3 of the blade length.

The construction of the reduced order model of a shrouded assembly requires the fol-
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blade-shroud sector. (b) Finite element

Figure 4.3: (a) Finite element mesh of a single disk

mesh of a single blade with shrouds.
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Figure 4.4: Finite element mesh of full shrouded test case rotor.
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lowing two finite element models:

e A complete sector subject to cyclic constraints at disk-to-disk and shroud-to-shroud
interfaces. This model consists of 488 eight-noded brick elements and 2,646 degrees
of freedombeforemodel reduction due to applied constraints. The finite element

mesh of this model is shown in Fig. 4.3a.

e Asingle cantilever blade. This model consists of 116 linear solid elements, and 738
degrees of freedom before model reduction. The finite element mesh of this model

is shown in Fig. 4.3b.

From these fundamental finite element models, the reduced order model (ROM) is
derived using the component mode synthesis technique described in Section 4.2. This
analysis is based on areduced order model that is created from five cantilever blade modes
(my, = 5) and five disk-induced modéds:; = 5) per harmonic, leading to a total of 240
degrees of freedom.

In addition, five cantilever blade modes with unconstrained shrouds were used to gen-
erate the stiffness deviation matrixK; (p = 5). This, however, does not influence the
size of the resulting reduced order model. It should be pointed out that, if the cantilever
blade mode shapes from the cyclic symmetry analysis conform relatively closely with the
cantilever blade mode shapes with unconstrained shrouds, very little improvement in ac-
curacy is gained by including more thaf, modes for the stiffness deviation generation.

In this case, the principal effects of the stiffness deviations are already capturedrby the
modes. However, using fewer that, modes yields poor accuracy and thus, in general,
the conditionp > m; should always be satisfied in order to obtain a reduced order model
with reasonable accuracy.

Finally, a finite element model of the full mistuned rotor was created to allow com-
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parisons of mistuned mode shapes and forced responses for a single, random mistuning
pattern. The mistuning pattern was sampled from a uniform distribution of mean zero and
standard deviation 5%. Individual mode mistuning is not employed in this analysis. There-
fore, the mistuning is readily introduced to the full finite element model by appropriately

varying Young’s modulus in the blade elements as:
E,=01+06,)E,, n=1,...,N. (4.26)

The material properties for the finite element model were taken to be those of steel. The
full finite element model consists afi, 712 linear solid elements angb, 376 degrees of
freedom, and its finite element mesh is shown in Fig. 4.4.

It should be noted that the shroud-to-shroud connection is modeled as being contin-
uous (full stick). Since no effort has been made to include friction at the shroud mating
surfaces, the present modeling technique can be used for the limiting cases of full stick or
full slip conditions. The incorporation of shroud interface models (Srinivasah [58];
Menget al. [59]; Valero and Bendiksen [60]) into this type of reduced order model will be

the subject of future work.

4.3.2 Free Vibration

Figure 4.5 displays the tuned natural frequencies versus the number of nodal diameters
for the test case rotor in the lower frequency range, as obtained from finite element analysis
and ROM analysis. MSC/NASTRAN was used to calculate the natural frequencies and
mode shapes of the finite element models, and to extract the blade mass and stiffness
matrices My, andKy).

Clearly, as the number of nodal diameters increases, the disk becomes much more stiff.
Thus, the slanted lines to the left in Fig. 4.5 correspond to disk-dominated modes. The

lines which are approximately horizontal represent families of blade-dominated modes.
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Figure 4.5: Comparison of tuned eigenfrequencies from finite element model (FEM) and
reduced order model (ROM) with and without eigenvalue adjustment itera-
tions.

The characteristic types of blade motion for the blade-dominated mode families are indi-
cated in the plot. One can observe that, depending on the mode family, a slight stiffen-
ing or a slight softening occurs as the number of nodal diameters increase for the blade-
dominated modes. This is somewhat different from the unshrouded case, where the fre-
guencies associated with a certain family of blade-dominated modes are nearly constant
over a certain range of nodal diameters.

Figure 4.5 also depicts the increase in ROM accuracy via eigenvalue adjustment. By
directly adjusting the eigenvalues, or modal stiffnesses, associated with the blade modes
(i.e., the diagonal elements &), the ROM’s representation of the blade-dominated
modes is enhanced.

The adjustment procedure is a simple iterative process, where the cantilever blade
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eigenvalues are re-scaled based on the ratio between the tuned finite element eigenvalues
from a cyclic symmetry analysis of a complete sector and the corresponding ROM eigen-
values. Once a sufficiently small residual is achieved, one may move on and introduce
mistuning. As seen in Fig. 4.5, after three iterations of eigenvalue adjustments, the blade-
mode frequencies for the ROM are nearly identical to those of the FEM. Naturally, the
adjustments of the cantilever blade mode eigenvalues have a much smaller effect on the
disk-dominated modes.

Figure 4.6 illustrates the correlation between finite element and ROM natural frequen-
cies for the mistuned rotor. Since the nodal diameter description of the modes fails for
certain mistuned modes due to localization, the natural frequencies are instead plotted
versus the mode number in the mistuned case. Again, the results obtained from the re-
duced order model after eigenvalue adjustments compare very well with the finite element
results.

Figure 4.7 illustrates the correlation between finite element and ROM mistuned mode

shapes. The Euclidean norm displacement measyrigr each bladé, is defined as:

N

No (.2 2 2
Pt (uij,r + Ui T+ uzyz)

i pu—
Np N 2 2 2
Dim1 2t (uij,r + U+ uz]z)

: (4.27)

whereu;; , is the displacement component in the x-directioi;is the number of nodes
in one blade; andv, is the total number of blades. The Euclidean norm is a scalar value,
which may be interpreted as a measure of relative blade energy content.

Specifically, Fig. 4.7 shows the 17th mistuned mode at 2862 Hz, in which the vi-
bration energy is largely confined to blades 17 and 19. The dramatic mode localization
exhibited by this mode is due to the high modal density in this particular frequency re-
gion (Pierre [47]). In fact, it is virtually impossible to find any traces of the corresponding

smooth harmonic tuned shape from which it derives.
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Figure 4.7: Mistuned mode number 17 at 2861.7 Hz, as obtained by finite element model
(FEM) and reduced order model (ROM) with and without eigenvalue adjust-
ment iterations. This mode exhibits significant localization.
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Note the excellent agreement between the FEM and the ROM mode shapes, especially
after eigenvalue adjustment. Several important factors are extremely well captured, such as
peak amplitude, position of localization, and rate of spatial decay away from the localized

area.

4.3.3 Forced Response

Next, we consider the forced response of the blisk. The external excitation force con-
sists of a unit nodal load applied on the tip of the blade’s leading edge in the axial direction.
This applied force was chosen arbitrarily, and it serves only to verify the accuracy of the
reduced order model. Furthermore, the structure is excited according to engine order 7
excitation, which has a blade-to-blade forcing phase shift of 105

The tuned rotor’s response to this external forcing is shown in Fig. 4.8. After only two
iterations of eigenvalue adjustments, the FEM and ROM predictions of the tuned rotor’s
response are nearly identical. The difference between the resonant frequencies of the FEM
and the ROM is reduced frot3% to 0.0007% after these two iterations. Also, the error
in peak response amplitude decreases fra319% to 0.9%. This amplitude error did not
improve during subsequent iterations.

Figure 4.9 shows the response of the mistuned rotor for the same source of excitation.
The mistuning and localization effects lead to a substantial increase in peak response am-
plitude and, in addition, a very significant widening of the resonant frequency bandwidth,
compared to the corresponding response of a tuned rotor. In absolute normed displacement
values, the maximum resonance amplitude predicted by the ROM is less than 0.2% lower
than that predicted by the FEM (0.649 versus 0.650), which is an acceptable discrepancy,
considering the huge difference in model sizes.

A notable effect of the order reduction is that the reduced order model here predicts
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Figure 4.8: Tuned forced response for engine order 7 excitation, as obtained by finite ele-
ment model (FEM) and reduced order model (ROM) with and without eigen-
value adjustment iterations.

a somewhat wider band of resonant frequencies, compared to the finite element analysis,
due to residual errors in the ROM mistuned eigenfrequencies. The ROM mistuned eigen-
frequency of the 12th mode is 0.16% lower than the corresponding FEM frequency, while
the approximation of the 17th mode eigenfrequency is 0.04% higher. The conformity of
the response characteristics predicted by the reduced order model is otherwise reasonably

accurate.

4.4 Conclusions

This paper demonstrates how the vibratory behavior of a mistuned bladed disk of a
general design may be analyzed by a systematic and computationally efficient reduced
order modeling technique, based on a component mode approach. In particular, this work

showed how the technique could be extended to designs with shrouded blades, and how a
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Figure 4.9: Forced response for engine order 7 excitation, for both tuned and mistuned
rotor, as obtained by finite element model (FEM) and reduced order model
(ROM) with three eigenvalue adjustment iterations. The mistuned FEM has
56,376 degrees of freedom, while the ROM has only 240 degrees of freedom.

convenient measure of individual blade mistuning may be incorporated into the analysis
with relative ease. Stiffness mistuning was included by projecting the mistuned natural
frequencies of individual blades (with clamped roots and free shrouds) onto the cyclic
modes of the shrouded blade assembly.

The reduced order modeling technique and the proposed method of mistuning for
shrouded blade assemblies were validated using a finite element model (FEM) of a test
case rotor. The total number of degrees of freedom for this FEM was 56,376, compared
to only 240 for the reduced order model (ROM). The free and forced response results
obtained for the ROM were in excellent agreement with those of the much larger FEM.
Of special importance was the agreement of the forced response amplitudes for a rotor
with mistuned blades. These results show that this reduced order modeling technique may
provide a valuable tool for predicting the statistics of forced response for mistuned bladed

disks.



CHAPTER YV

Component-Mode-Based Reduced Order Modeling
Techniques for Mistuned Bladed Disks, Part I: Theoretical
Models

Component mode synthesis (CMS) techniques are widely used for dynamic analyses
of complex structures. Significant computational savings can be achieved by using CMS,
since a modal analysis is performed on each component structure (substructure). Mistuned
bladed disks are a class of structures for which CMS is well suited. In the context of blade
mistuning, it is convenient to view the blades as individual components, while the entire
disk may be treated as a single component. Individual blade mistuning may then be incor-
porated into the CMS model in a straightforward manner. In this paper, the Craig-Bampton
(C-B) method of CMS is formulated specifically for mistuned bladed disks, using a cyclic
disk description. The primary focus, however, is the implementation of novel formulations
based on the robust C-B approach. After generating the mass and stiffness matrices using
the C-B method, a secondary modal analysis is performed in three different ways: (a) on
the partitions of the matrices that pertain to the constraint modes; (b) on the partitions
of the matrices that pertain to the disk normal mopks the constraint modes; and (c)
on the entire C-B CMS model. All three approaches yield further model order reduction,

and they may also eliminate matrix ill-conditioning. Furthermore, these extensions to the
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classic C-B technique are applicable to any complex structure. In addition, a straightfor-
ward non-CMS method is developed in which the blade mistuning is projected onto the
tuned system modes. Though similar approaches have been reported previously, here it is
generalized to a form that is more useful in practical applications. The theoretical mod-
els are discussed and compared from both computational and practical perspectives. It
is concluded that using a secondary modal analysis reduction technique (SMART) based
on a C-B model has tremendous potential for highly efficient, accurate modeling of the

vibration of mistuned bladed disks.

5.1 Introduction

The adverse effects of structural irregularities, or mistuning, among the blades of tur-
bomachinery rotors is a persisting concern in the gas turbine community. Mistuning is
caused by manufacturing tolerances, deviations in material properties, or non-uniform op-
erational wear; therefore, mistuning is unavoidable. Furthermore, even small mistuning
can have a dramatic effect on the vibratory behavior of a rotor, because it can lead to
spatial localization of the vibration energy. As a result, certain blades may experience
forced response amplitudes and stresses that are substantially larger than those predicted
by an analysis of the nominal (tuned) design. Unfortunately, these random uncertainties in
blade properties, and the immense computational effort involved in obtaining statistically
reliable design data, combine to make this aspect of rotor design cumbersome.

Since the 1960s, several researchers have documented the effects of mistuning on
blade vibrations by analyses of representative lumped parameter models, using numeri-
cal, statistical, and perturbation methods (Wagner [5]; Dye and Henry [6]; Ewins [7, 8];
El-Bayoumy and Srinivasan [9]; Griffin and Hoosac [11]; Wei and Pierre [14, 15]; Lin

and Mignolet [13]). See Srinivasan [17] for a comprehensive survey of the literature. Un-
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fortunately, in order to accurately represent an actual bladed disk design with a lumped
parameter model, one must perform a difficult parameter identification which becomes
infeasible as the number of model degrees of freedom (DOF) increases. Hence, to gain
practical usefulness, there is a pressing need to employ accurate finite element models of
rotor designs in mistuning studies.

To address this issue, there have been several efforts to generate reduced order mod-
els systematically from finite element models using component mode synthesis (CMS)
methods (Irretier [18]; Kruse and Pierre [21, 22]; Castasteal. [20]; Bladhet al. [23]),
receptance techniques (Yang and Griffin [26]), and classical modal analysis with mistun-
ing projection (Yang and Griffin [27]). In CMS, the original structure is subdivided into
smaller substructures, or components, for which normal modes are computed indepen-
dently. The global structure is then represented by a truncated set of component modes
that are assembled in a systematic fashion through compatibility constraints. This pro-
cess yields highly-reduced-order models for bladed disks that are based on finite element
models of arbitrary complexity.

The focus of this study is on the development of reduced order models of mistuned
bladed disks, based primarily on CMS techniques. In this first part of the two-part paper,
component-mode-based reduced order modeling techniques are derived and presented. In
particular, the Craig-Bampton (C-B) CMS method [29] is re-formulated specifically for
the analysis of mistuned bladed disks. This tailored formulation uses a cyclic symmetry
description of the disk. Moreover, two novel extensions of the C-B method are formulated.
First, a recent advance of the C-B method used in power flow analysis [61] is considered.
This approach employs a secondary modal analysis on the constraint-mode partitions of
the C-B mass and stiffness matrices. A truncated set of characteristic interface modes is

then selected, resulting in significant model reduction. Second, a related extension of the
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C-B technique is introduced. In this case, a secondary modal analysis is performed on the
disk-normal-modelusconstraint-mode partitions with subsequent selection of a truncated
set of modes. This yields model reduction comparable to éffaal.’s approach, but is
perhaps more straightforward in terms of the secondary mode selection. The obtained
reduced order model is similar in appearance to that of Castenar[20], having only
(modified) disk modes and the normal blade modes as resulting generalized coordinates.
The new approaches are by no means restricted to mistuned bladed disks only, but may be
applied to any C-B synthesized system for additional model reduction. Furthermore, these
novel extensions to the classic C-B technique may eliminate matrix ill-conditioning due to
the mix of modal and physical coordinates present in the original C-B formulation.

In addition, a straightforward non-CMS technique is formulated. This method con-
sists of a modal analysis of the nominal (tuned) system, with a subsequent projection of
the blade mistuning data onto the nominal system modes of vibration. This mistuning
projection approach is a generalization of the mistuning formulation for shrouded blade
assemblies developed in Bladhal. [23]. Also, Yang and Griffin [27] presented an anal-
ogous technique for the case in which each blade is mistuned by a small deviation in its
Young’s modulus.

Finally, the general idea of a secondary modal analysis reduction technique (SMART)
is introduced. In the SMART approach, a secondary modal analysis is performed on a
model already reduced by CMS. This two-step reduction decreases dramatically the order
of the original model. Also, in contrast to the non-CMS mistuning projection method, the
SMART mistuning is introduced in the modal domain rather than the physical domain.
This reduces significantly the associated computational effort, and it allows a straightfor-
ward implementation of individual blade natural frequency mistuning.

This paper is organized as follows. General assumptions and model issues are sum-
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marized in Section 5.2. The modeling theory begins in Section 5.3 with a derivation of
the Craig-Bampton technique tailored to a mistuned rotor with a cyclic symmetry de-
scription of the disk. Section 5.4 outlines the two related extensions of the Craig-Bampton
technique employing partial secondary modal analyses. In Section 5.5, the method of Cas-
tanieret al. [20], which uses a prescribed interface motion approach, is reviewed. In Sec-
tion 5.6, the mistuning projection method is outlined. In Section 5.7, the secondary modal
analysis reduction technique is formulated for mistuned rotors using the C-B method for
the intermediate model. In Section 5.8, a comparison is presented of the number of float-
ing point operations required for the various methods. The conclusions are summarized in

Section 5.9.

5.2 Computational Issues and Assumptions

An N-bladed disk assembly can be divided into one disk component (d)Naindi-
vidual blades (b). It is assumed that the disk features cyclic symmetry, meaning that it is
composed ofV identical sectors. A disk sector and a blade component are depicted in
Fig. 5.1, which also outlines the index notation used throughout this paper for the compo-
nents and the interfaces with neighboring components.

Initially, it is assumed that each disk sector or blade is an identical (tuned) and physi-
cally isolated substructure. At this point, the stiffness matrix of all disk sectors and blades,

IC, has a block-diagonal structure:

K4 0 IoKY 0
K — — , (5.1)
0 KP 0 I KP

wherel is an identity matrix of dimensiofy, the symbok denotes the Kronecker product
(see Appendix A), and<? (disk) andKP (blade) are the stiffness matrices of the two

fundamental, stand-alone substructures. Using the notation of Fig. 5.1, the displacement
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Figure 5.1: Substructuring approach and index notation.

vectors and the corresponding stiffness matrices may be partitioned in detail as

d d d d
XdD Koo Kpr Kp, KDﬁ
d dT d d d
<4 — Xr | gl = Kpr Krr Kr, Kpg
d dT dT d d
Xa KDa KFa Kaa Ka,é’
d dT dT dT d
| X5 Koy Krs Kis Kfps |
b b
<P — XB Kb Kgs Kpgr
b bT b
Xr Kgr Krr

The mass matrices are partitioned in exactly the same fashion.

(5.2)

(5.3)
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5.2.1 Cyclic Symmetry Description of the Disk Component

The treatment of the disk component is greatly simplified by using a cyclic symmetry
analysis. There are two principal benefits from treating the disk as a cyclic assembly rather
than an assembly oWV arbitrary components. First, the DOF at each interface between
adjacent disk sectors are eliminated by cyclic constraints, which yields a smaller CMS
model. Second, the disk component mode shapes bear a greater resemblance to the system
modes, which improves modal convergence.

The cyclic symmetry analysis employed here is identical to the implementation in the
commercial finite element software package MSC/NASTRAN his approach is a real-
valued formulation, and it was outlined by Joseph [43]. From the theory of symmetrical
components (Fortescue [44]) some quantitydisplacements, forces, etc.) in physical
coordinates for allV disk sectors may be expressed as a linear combination of the corre-

sponding quantityi in cyclic coordinates for the fundamental disk sector as

( )
( \ ﬁo
X1
ﬁl,c
X2
ﬁl,s R
x={ x5 ¢ =(FQI) ~ Fi, (5.4)
ﬁ2,c
X
\ N Vs ﬁP J

whereF is the real-valued Fourier matrix defined in Appendix B. Moreover, the dimension
of I is equal to the number of elementsih, i represents the harmonic order, ands the
highest possible harmonic for avi-bladed disk, which is defined @ = int [N/2]. The

“tilde” notation is used throughout this paper to indicate when a quantity is represented
in cyclic coordinates. The cyclic coordinate representation is essentially a Fourier series

expansion of the disk motion. However, itnst an approximation, as the series contains
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the complete set of admissible circumferential shapes of the cyclic assembly.
The cyclic coordinate transformation of Eq. (5.4) yields a set of trigonometric relations
that describe the motion of the disk sector’s dependent cyclic boundarglative to the

independent cyclic boundary) as follows:

~h,c ~h.c ~h,s .

Uy = 02 cos ¢y + 0% sin ¢y,

’ « « h=0,..., P, (5.5)
ﬁg’sz — @M sin ¢y, + 02* cos ¢y,

whereg, = 2rh/N is the interblade phase angle for thi& harmonic. Note that the two
equations in Eqg. (5.5) collapse to one for harmoni@nd, if it exists,N/2. These are
“single” harmonics and require only a single sector description, as in Eqg. (5.2). All other

harmonics are “double” and require a two-sector description:

K¢ 0
K§, = : (5.6)

0 K¢
For generality, a “double” harmonic is considered below. By enforcing Eqg. (5.5) on the
double disk sector’s stiffness matrix in Eq. (5.6), the dependeDOF are eliminated.
Moreover, for the disk’s subsequent CMS implementation, it is necessary to partition with
respect to interior (D and) DOF—which are collectively denoted Sector (S) DOF—
and disk-blade interfacd§ DOF. With this in mind, the cyclic disk stiffness matrix and

displacement vector of harmonic(h # 0, h # N/2) may be written as

( \
~h,c
Ug

rh >h
Kd,SS Kd,sr Ug

=h
A
Il
=]
A
Il

(5.7)

hT ‘h ~h,c
Kisr Kairr ur’
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The interior (SS) partition is sub-partitioned as

Kg ss — ) (5-8)

’

where
gho  _ Kd + (Kgﬂ + Kg;) cos ¢y, + Kgﬁ KdDZ + KdDTﬁ COS ¢y, 5.9)
dss — .
| KD, + Kpscosdy K3,
i d dT . 4dT .
Khi (Kaﬁ — Kaﬁ) sing, —Kpgsin gy, (5.10)
dss — . .
I K5 sin ¢y, 0

The remaining partitions (SandI'T') take on the following forms:

K¢, + Kg;cosd, —Kg;singy,

- K& 0

Kisr = T . . (5.11)
Kl‘iﬂ sin ¢y, Kg, + Kl‘iﬂ oS ¢y,

0 K¢ |

- K&, 0

Kipp = - . (5.12)
0 K¢

Note that forh = 0 and, if it exists, forh = N/2, the “sine blocks” are zero. By rearrang-

ing the DOF order in this case, two identical blocks form on the diagonfdfpfwhile

the off-diagonal block is zero. Thus, as indicated earlier, one such block on the diagonal
alone provides the complete disk description in these two special cases. The corresponding

cyclic disk partitions for “single” harmonics are given by:

- K9+ (K, + K97) cos gy, + K9, K + K cos oy,
KlS,ss = ( ’ ﬁ) 7 D o (5.13)

K, + Kg;cos oy K&p
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K¢ + K%; cos ¢y,

I.{g,sr‘ = KS,I‘I‘ = Kg[‘- (5-14)

Kir
Again, the manipulations of the mass matrix are completely analogous.

5.2.2 Engine Order Excitation Force

In this section, an external excitation force vecQr,is constructed for all the blade
DOF of the assembly. The restriction to blade DOF is not an absolute requirement, but it
leads to a more compact formulation, and it should be sufficient from a practical perspec-
tive. An engine order excitation is assumed, which is harmonic in time and differs only in

phase from blade to blade. The phase atttieblade,p,, is given by:

_ 21C(n —1)

E— (5.15)

Yn

whereC' is the engine order of the excitation. The external force vector can then be

expressed as:

QB VNeci1 ® fs
Q= = ) (5.16)
Qr VNec;1 ® fr
whereec . isthe(C' + 1)th column of the complex Fourier matrix defined in Appendix B.
The column vectorfg andfr contain the forces on, respectively, the interior and interface

DOF of a fundamental blade.

5.2.3 Mistuning Implementation

In this work, the blade mistuning is modeled by offsets in modal stiffnedses
or, equivalently, offsets in natural frequencies— of the blades while fixed at the base
(cantilevered). The mistuned modal stiffness of iffe cantilevered blade mode for the

n'" blade may be expressed as

R, = (0f,) = (1+05) AL, (5.17)



(b)

Figure 5.2: Craig-Bampton component modes: (a) fixed-interface normal modes of vibra-
tion; (b) static constraint modes due to successive unit deflections of interface
DOF.

whereA¥ is the modal stiffness of the'" tuned cantilevered blade mode, aifdis the
corresponding mistuning parameter for #ié blade. Note that this implies that the mis-
tuned modes of a blade may be realized by a linear combination of the tuned modes (i.e.,
it is assumed that they span the same space). Also, note that it is assumed throughout this
paper that mode shapes are normalized to yield unit modal masses.

Due to simple implementation and validation, most of the published studies on mis-
tuned bladed disks have considered variations in Young’s modulus as the only source of
blade mistuning. This implies a uniform re-scaling of the blade stiffness matrix, which
translates into a uniform re-scaling of the modal stiffnesses as well. The mistuning param-
eterd® in Eq. (5.17) is then replaced By, which represents the offset of Young's modulus

from its nominal value for the'™ blade.
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5.3 Fixed Interface Method (Craig-Bampton)

The Craig-Bampton (C-B) method [29, 62, 24] employs two sets of modes to represent

the motion of each component:

e &, atruncated set of normal elastic modes of vibration with the DOF at component

interfaces held fixed (see Fig. 5.2a)

e U, a complete set of static elastic constraint modes induced by successive unit de-
flections of each interface DOF while all other interface DOF are held fixed (see

Fig. 5.2b)

The modes inP are linearly independent by definition, and the manner in which the in-
terface DOF are successively displaced ensures linear independence among the constraint
modes in®, as well as linear independence between the two mode sets. Furthermore, if all
modes are retained, the number of mode® will equal the total number of interior DOF
in the component. By construction, the number of mode® @ways equals the number
of interface DOF. Hence, in the limit, linear independence and completeness combine to
yield the exact solution for the C-B method relative to the parent finite element model (i.e.,
it spans the complete deformation space of the finite element model).

The following subsections outline the assembly of the C-B model as applied to mis-
tuned bladed disks with a cyclic disk description, as well as two reduced order model

formulations that derive from the former.

5.3.1 Blade Component

For now, allN blades are assumed to be identical (tuned). Furthermore, from a com-
ponent perspective, the blades are not directly coupled, since only unshrouded blades are

considered in this study. Hence, for computing the component quantities, it is sufficient to
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look at a single blade and then expand\dlades.
First, the normal modes for the cantilevered blade are obtained from the conventional
eigenvalue problem:
KBy — w*Mpg| ¢, = 0. (5.18)

The mode shapes,, of interest are collected into a matri;,,, and the corresponding
eigenvalues form the elements in a diagonal maijx Second, the constraint modes,
v,,, are computed from the static problem

Kip Kr || ¥» | | O | (5.19)

Kpr Kpp || I Rr
whereR contains the reaction forces due to the imposed unit displaceniel@s|ving

the first block of equations in Eq. (5.19) yields:
U, = —Ki KB, (5.20)

Note that the matrix inverse need not be computed, since the columins afe the solu-
tion vectorsx of KBzx = —KB.
The physical blade displacements can now be expressed in terms of the two sets of

component modes, which form the traditional Craig-Bampton modal maitjx, as

=2

X P, ¥ pP
o= B LT bl _ubpt (5.21)
b b

Xr 0 I Pc
The transformation from physical blade coordinatésto C-B blade modal coordinates

pP via Ub, yields the reduced C-B mass and stiffness matrices for the blade component:

I Hbe
W= UL MPUL, =
IU’EC /’LCC,b
(5.22)
A, O

b _ 1pTrcbyh
k> = Uy K Uy, =
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where

fbe = Pp [M%B‘Ilb + MEI‘]
Heep = lI’E [M%B\I’b + MEF:I + Mg;\l’b + M})’T

b bT
Reeb = KI‘I‘_'_KBFlI’b'

In the absence of direct blade-to-blade structural coupling, Eq. (5.22) is expanded for

all N blades as

a® = kP = . (5.23)

I® /LEC I® Hee,b 0 I® Ree,b
5.3.2 Cyclic Disk Component

The construction of the required quantities for the disk component is more compu-
tationally intensive than for the blade component, although the steps are the same. For
the setup of the cyclic structural matrices involved, the reader is referred to Section 5.2.1,
Egs. (5.7)—(5.14).

To begin, the cyclic normal modes for the disk component are obtained for each har-

monich from the cyclic eigenvalue problem:
ngss - wz].\h'/.[gyss} &g — 0, h - O, ceey P (5.24)

Moreover, the cyclic constraint mode$!, are computed for each harmoridrom the

cyclic static problem

Riss Rise [| ¥4 [0 | 525
Kise Kiee || 1] | R
Again, solving the first block of equations in Eq. (5.25) for the cyclic disk constraint modes
yields
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While keeping normal and constraint modes separated, the retained cyclic normal modes
and the cyclic constraint modes of the disk are merged into a cyclic Craig-Bampton modal

matrix, U4, , as

Ug, = ]?%ﬁg[q)d] Bdﬁg[\yh] : (5.27)

0 I
whereBdiag [¢] denotes a pseudo-block-diagonal matrix (see Appendix B), with the ar-
gument being thé'" “block”, and the range of is shown. In this context, thié" “block”
pertains to theh'" harmonic. Similarly, the eigenvalues corresponding to the retained
cyclic normal modes form the elements in a pseudo-block-diagonal generalized stiffness
matrix [id, where each block is diagonal in itself.
Using Eg. (5.27), the physical disk displacements can now be expressed in terms of

the two sets of cyclic component modes by virtue of Eq. (5.4):

b p
eI S 6O SR R 1 (5.28)
xd pa
where
FBdlag[cbh] FBdiag|¥h]
Ucb_ h=0,..., h=0,...,P (5.29)

0 F

The transformation from physical disk coordina'sto C-B cyclic disk coordinates

pd via U4, yields the reduced C-B mass and stiffness matrices for the disk component:
I /]dc
il = 74 = , (5.30)

~T ~ ~
Hae HMee,d 0 Ree,d

where

fige = Bdlag[q> [V s B85 + M or|

h=0,...,P

fica = Bdiag [‘I’ [Md ss W4 + M§ sr] + My SI“I’ + Mg I‘I‘]

h=0,...,P

Keed = Bdlag [Kd,I‘I‘ + KE,TSF‘I’E] -

.....
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Note that there is no coupling between the harmonics due to the orthogonality of the cyclic

modes.

5.3.3 CMS Model Assembly

In the Craig-Bampton method, the CMS model assembly is achieved by satisfying

displacement compatibility over the component interfaces, k.= x¢. The physical

interface displacements for the blades and the disk are found in Egs. (5.21) and (5.28),

respectively, and result in the following necessary condition:

b
XN |

\

N
b
pc,l

b
pc,2

b
pc,N

7

(5.31)

Hence, keepingd as active DOF, the substructure coupling is represented by the con-

straint transformation

'1‘53} _10
133> 0 I
pP - 00
(Pt ) |OF

0 r 3\
Pd
0
fjc = TebPeb-
I
Pb
0 \ 7/

(5.32)

After this final transformation, the synthesized system mass and stiffness matrices for the

C-B method take on the following forms:

I ﬁdc 0
Mcb

_ T
- ch

ﬁg‘c ﬁcc,d + I & Mcc,b FT (I b2 Mgc)

A

0 (I®ue)F I

(5.33)



101

Aq O 0
KCb = ...= 0 Rcc7d+1®/€cc,b 0 !
0 0 1® Ay

where itis recognized that similarity transformations of expanded matrices fﬁM@ A) F =
I®A.

Note that the derived model is still for the tuned assembly. However, since the C-B
modal coordinates pertaining to the normal blade modes are for a cantilevered blade, the
introduction of modal stiffness mistuning is exquisitely simple. The cantilevered blade
modal stiffnesses on the diagonallof A, (extreme lower-right partition in Eq. (5.34))

may be perturbed directly and individually to give the followikg® partition:

K{® = Bdiag
n=1

diag [1+ of ] Ab] : (5.34)

k=1,...,my

wherem,, is the number of retained cantilevered blade modes. Introducing mistuning in
this way implies that any mistuning effects on the constraint modes are neglected. This
is not a severe approximation, but as shown in the second part of this study, it does affect
the performance of the method. However, except in the simplistic case of varying Young’s
modulus, quantifying mistuning for the constraint modes is a rather ambiguous task.
Finally, the C-B modal force is constructed. Projecting the component modal matrices
of Egs. (5.21) and (5.29) onto the physical blade force vector described in Eq. (5.16), while

enforcing the constraints of Eq. (5.32), the modal force is obtained as

( 3\

0
FP —{ peb (5.35)

c
cb
Fb

\ 7
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where

0
\/Nfg’cecﬂ (24 {‘I’EfB + f[‘}
VNIE 1 ® { U7 + fr}

0

Fcb —

F®* = VNec,i ® ®Lfp.

Note how orthogonality between columnskbfandF of different interblade phase angles
simplifies the modal force partition pertaining to the constraint modes.
Using Egs. (5.32), (5.33), (5.34), and (5.35), the complete C-B model of a mistuned

bladed disk (in the absence of aerodynamic coupling) can now be set up as
M®Bep + CPpeb + (1 + Gj) KPpep = F, (5.36)

wherej denotes the imaginary unit/—1. To facilitate more realistic modeling of the
structure’s dynamic response, Eq. (5.36) includes structural damping with coeffitient
as well as viscous modal damping of the cantilevered blade modes, which is implemented

as

C®=1000 , (5.37)

0 0 I®diag|2¢*|vAs
k=1

L k=1,.., my d

where¢* is the viscous damping coefficient associated with ktecantilevered blade

mode.
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5.4 Craig-Bampton with Partial Secondary Modal Analyses

5.4.1 Craig-Bampton with Modal Interface

This approach was recently developed by &aal. [61] for power flow analysis. The
fundamental step is a secondary modal analysis of the constraint-mode partition of the
traditional C-B model. In this case, the constraint-mode partition is represented in cyclic
coordinates. Therefore, the characteristic modes of the disk-blade inteffacare ob-
tained successively for each harmomnic Using the quantities defined in the previous
section, this is achieved by solving

[Keoh + Ko — w? Mo + Mgy || dh. =0, h=0,....P, (5.38)

where

cbh _ 1rh nT h
K = Karr +Kgsr¥q

cc,d

NI = B [N Y+ Nor] + NS+ N

cc,d
(
Keeb h =0,h =% (if it exists)
REE:E = Kee,b 0 N
h#0.h# Y,
0 Ree,b
cb,h

and correspondingly fdf/Icc,b :
To study the response of a limited set of blade mode families, only a relatively small

number of interface modes ij}@‘c is usually required for adequate accuracy. Typically, it

is sufficient to keep interface modes that represent interface motion due to blade torsion

and flexural motion. This mode selection may be done manually, either by inspection of

visualized shapes, or by the order of the interface generalized stiffnesses (usually, lower

generalized stiffness implies more “fundamental” interface motion). As a third, and per-

haps more appealing option, the modes may be selected in a more automated fashion
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via the commonly used Modal Assurance Criterion (MAC), introduced by Allemang and

Brown [63]. This implies selecting the modes based on how well they conform with the

corresponding harmonic portiong?, of the global C-B eigenvectors of interest, using

some user-defined tolerancg,,.. Hence, an interface modé{‘c,i, is selected and col-

lected into the cyclic modal matri®$_ only if it passes the criterion
(Fmly)

(bhrdh ) (BR5ply) —

for anyph ; of interest. The eigenvalues corresponding to selected modes are collected into

1—

(5.39)

a cyclic (ordered by harmonics) diagonal generalized stiffness matrixThe columns
of ¥*_ represent a new, reduced basis for the disk-blade interface motion. This gives
a secondary modal expansion of thg portion of C-B generalized coordinatgs, =

¥*_q., to yield the resulting equations of motion:

M™ B i + C™ P + (1 + G) K™ppy; = F™, (5.40)
where
_I fiac ¥3, 0 _
M™ = | AR T GLFT (1o )
0 (I® ppe) FES, 1 |
(0 0 0 _
c™ = |00 o0

=1,..., my 4

K™ = |0 A, O

0 0 Bdiag [diag [1+5;§}Ab]

k_l,...,mb
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( 3\ ( W

0 Pd

F™i= ¢ §pe Pmi = { G
Fﬁb J Pb J

Note from Eq. (5.35) that only interface modes of tfi&¢ harmonic get involved in the
secondary modal force projection.

It is clear that by using a truncated set of interface modes, the size of the classical
C-B model may be significantly reduced. In addition, the conditioning of the synthesized
mass and stiffness matrices is improved, since all quantities are now in the modal domain.
Matrix ill-conditioning may occur in the classical C-B setup, since it contains both modal-
and physical-coordinate matrix partitions, which elements may differ by several orders of
magnitude.

5.4.2 Craig-Bampton with Modal Disk and Interface

This approach is similar in spirit to the method of Tetmal. [61]. Here, a secondary
modal analysis is performed on the disk-normal-mphlles constraint-mode partitions of
the traditional C-B model. Both partitions are represented in cyclic coordinates, and the
characteristic modes of the disk plus disk-blade interfagg, are therefore obtained

successively for each harmonic Again, using the quantities defined in Sections 5.3

and 5.4.1, this is achieved by solving
[Kh. — M| 0. =0, h=0,....P, (5.41)

where

0 KCb’(l; + KCb h

~rcb,h
I M.

“rcb,hT b,h
Mﬁc’ Mzc a T M,

cc,b
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~ b, o~ - -
Mdté b= ®4 1\/13,55‘1'3l + Mg,sr] .

As in the previous section, a severely truncated subset of modaégci'rs selected,
either manually by inspection of visualized shapes or by the order of the obtained gener-
alized stiffnesses, or automatically by using MAC comparisons. In the latter case, a mode
w"f;c,i is selected and collected into the cyclic modal mafix . only if it satisfies a re-
lation analogous to Eq. (5.39) for ay, ; of interest. The modal matrices involved here

are partitioned into disk-normal-mode and constraint-mode portions as

~ 12)'30 d - 133 =~ \i’fndi d
wtl;llc = _ ) pgc = ) lI"fndi = - : (542)
¢gc,c f)lg ‘Ilf‘ndi,c

The eigenvalues corresponding to selected modes are collected into a cyclic diagonal

generalized stiffness matriX,,q;. The columns ofS_,. represent a new, reduced basis

for the disk plus disk-blade interface motion. This gives a secondary modal expansion of

thepq andp. portions of the C-B generalized coordinates as

- Pa ‘i’fndi,d -
Pdc = = N ddc- (543)
I‘Sc \I’f‘ndi,c

Introducing this secondary modal expansion into the classical C-B setup yields the result-

ing equations of motion:

M™E di + C™ P ai + (1 + Gj) K™Yp g = F™9 (5.44)
where
Mmdi o I lI.:'fr’fdi,(::ﬁ‘rr (I ® :U’Ec)

| (I® pbe) F‘i’fndi,c I

00
Cmdi —

0 I®diag [2&] VA,

L k=1,...,my
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di Amdi 0
Kmdi — 7
0 Bdiag ldiag [1 + 52] Ay
n=1,..., N k:l,...,mb i
ws P ( q
mdi mdi,c™ ¢ dc
F di _ Pmdi =
FeP | B

Note that in this case too, only the selected modes of’tfiharmonic contribute to the
secondary modal force projection.

This approach yields a reduction of the classical C-B model comparable &t aa
method. Besides the more compact final formulation, another advantage of this last ap-
proach is that it may allow a more intuitive secondary mode selection. Note that the matrix

conditioning improvement discussed in Section 5.4.1 also applies to this approach.

5.5 Disk-Induced Blade Constraint Modes (REDUCE)

The method presented in this section is referred to by the name of the associated com-
puter code, REDUCE. It was thoroughly outlined for free vibrations by Castetéi{20].
It was extended to the forced response by Kruse and Pierre [21], and subsequently revised
and further extended to cover shrouded assemblies by Biadh[23]. In terms of gen-
erality and versatility, REDUCE represents the current state of the art for modeling the
structural dynamics of mistuned bladed disk assemblies. Moreover, REDUCE is actively
used by several gas turbine engine companies. However, as will be shown in this study,
alternative methods may be formulated that yield superior performance.

The REDUCE method employs two sets of modes:

e A truncated set of cantilevered blade modes — blade component modes with the
disk-blade interface DOF held fixed (see Fig. 5.3a). The mode shapes and associated

eigenvalues are collected into a modal mattxand a diagonal generalized stiffness
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Figure 5.3: REDUCE component modes: (a) fixed-interface (cantilevered) normal blade
modes; (b) cyclic modes for the fundamental disk-blade sector with a massless
blade.

matrix K, respectively. The corresponding generalized coordinates are dénoted

Note thatK, is equivalent td ® Ay, of the C-B method.

e A truncated set of cyclic modes for the fundamental disk-blade sector with a mass-
less blade (see Fig. 5.3b). The blade portions of the cyclic mode shapes are col-
lected into modal matrice! for each harmonié. These shapes may be described
as disk-induced blade constraint modes. The modal matiig¢esd the associated
eigenvalues are assembled iitf8 and a diagonal generalized stiffness makix,

respectively. The corresponding generalized coordinates are denoted

By definition, each set of modes® andU¢, are linearly independent. Moreover, since

does not contain any disk motion, it is clear that the two mode sets are linearly independent
with respect to each other as well. Furthermore, in the limit, the number of modés in

will equal the total number of interior (B) DOF in the blade, and the number of modes
in U4 will equal the number of independent disk interior (®+plus interface ') DOF.

Hence, just as for the C-B method, linear independence and DOF completeness in the
limit combine to yield the exact solution for the REDUCE method relative to the parent
finite element model. Finally, note that this is not a true CMS method, since the assembled

disk-blade sector is needed to obtain the disk-induced blade constraint modes.
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The resulting equations of motion are restated here for convenience:
Mz +Cz+ (1+Gj)Kz = Q, (5.45)

where

a 0 0

— C—
B 0 (I ® diag [2&]) VKy

k=1,...,my

Ky Ud” (I ® Kbub)

K =
(I®uP"KP) T4 Bdiag [diag 1+ 52}] K

k=1,..., my

T T

o = f{oriorf ~{o-0eooior)
~ cT -~ ST )

VN {fg,cec+1 X 11((13’,1 fp — fg,sec+1 ® u?:’,1 fb}

/ T ~d,cT T ~d,sT

/ T "'dycT T "'d:sT
N {fC,ceC+1 ® uC,mdfb - fC,seC+1 ® uC,mdfb}

T

T ~d,cT T ~d,s
VN {fC,seC+1 ® UG m,fb +fCcect1 ® uC,mdfb} )

\

Oy = \/Nec+1®ubeb,

andfy, is the force vector on the fundamental blade (i.e., a composifg ahdfr from
Section 5.2.2). In this formulation, quantities in physical coordinates (structural matrices,
mode shapes) pertain to the blade part only.

Since the disk motion is described by the disk portion from the second mode set alone

(Fig. 5.3b), no separate set of constraint modes for the disk is employed. This causes the
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disk to be too stiff at the interface, which degrades the performance (modal convergence)
of the method. However, it has been found that artificial softening of the cantilevered blade

modes yields significant accuracy improvements for both free and forced response. This
is achieved by adjusting the eigenvalues of the cantilevered blade modes in an iterative
fashion, based on the finite element eigenvalues for blade-dominated assembly modes.

Though it is heuristic, this technique has proved very efficient (B&tdil [23]).

5.6 Non-CMS Mistuning Projection Method

This method is based on the assumption that the mistuned modes of a bladed disk
assembly may be realized by a linear combination of its tuned modes. This assumption
is justified by two observations: (a) the local motion of a blade in a mistuned assembly
is, to a large extent, merely an amplification of its tuned motion; and (b) any admissible
disk shape, no matter how spatially localized, may be realized by a linear combination of
its harmonic shapes in cyclic coordinates if all harmonitisroughP are included in the
model.

By separating disk and blade parts by partitioning as shown in Eqg. (5.1), the stiffness

matrix of the mistuned bladed disk may be represented as

~ IoK?Y 0
K= , (5.46)
0 12 K" + Bdiag [AKY)]
n=1,..., N
where AKP® is a matrix containing the stiffness deviations from the nominal stiffness
matrix for then'" blade. Recall that only blade stiffness mistuning is considered here;
thus, all other partitions remain unaffected.
First, a set of nominal, cyclic eigenvalues and eigenvectors are computed for each

harmonich from

Kh— MMt =0, h=0,... P (5.47)
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where
r-h rh
Kdiss Kasr 0
ch — ~hT  tch ~h hT
K Kisr Kirr+Kprr Kpar
“h “h
0 Ky Br Ky BB

The cyclic disk quantities are defined in Section 5.2.1. Referring to Eq. (5.3), the cyclic

blade quantities have the common form

(

Kb, h=0,h =X (if it exists)
Kb, =1{ | K:, o (5.48)
’ ” h#0.h# %,
0 Kb,

where “xy” represents BB, B, or I'T. The structure of\1® is identical to that ofC™.

A fundamental step in this method is to use a small subset of the obtained cyclic modes
in order to form a reduced order model by classical modal analysis. The disk-blade inter-
face plus interior blade portions of the selected mode shapes are collected into a cyclic
modal matrixUy, while the associated eigenvalues are collected into a cyclic generalized
stiffness matrixAs. In the typical case, the analyst concentrates on a particular family of
blade modes and/or eigenfrequency veerings that are deemed critical due to engine operat-
ing conditions. As shown by Yang and Griffin [27], mistuned bladed disks are particularly
well adapted to system mode selections in relatively narrow frequency bands. Hence, the
mode selection is typically based on a frequency range encompassing the blade mode fam-
ily (or families) of interest. Thus, in most cases, the number of modes needets on
the order of the number of blade®(N). This is also the size of the resulting reduced
order model.

In the tuned case, classical modal analysis simply results in a small, fully decoupled
system, where the modal mass matrix is an identity matrix, and the modal stiffness ma-

trix is a diagonal matrix with the selected eigenvalues as elements. The mistuned case,
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however, requires some additional work. By representing the mistuned blades by stiffness
matrix deviations as indicated in Eq. (5.46), the mistuning is entered into the reduced order
model by projecting the stiffness deviations onto the selected tuned modes of the assembly.
Note, however, that the stiffness deviations are in physical coordinates while the nominal

modes are cyclic. Hence, the mistuning projection takes the form:

AK" = UTF"Bdiag [AK?] FU.. (5.49)
n=1 N

.....

The reduced order model may then be formulated as
§+C™4 + (1+Gj) [As + AK| q = F™P, (5.50)
where

& = diag [2¢4] V/A,

0

~CT
f‘mp vV Nfg’cecﬂ X llgb fb
— > ,

/N£T ~CT
NfC,seC+1 ® Ugph fy,

0

0 )
f, is the fundamental blade force vector (same as in Section 5.5)ﬁ§;,ndontains the
blade portions of the selected mode shapes of‘ttteharmonic. Note that the stiffness

deviation projection matrixAKP, does not possess any particular matrix structure other

than symmetry. Thus, in general, the reduced order model stiffness matrix becomes fully
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populated when mistuning is introduced. Also, note that the viscous modal damping in-
troduced here refers to the nominal assembly modes, not the cantilevered blade modes as
in previous methods. As seen in Eq. (5.50), once the blade stiffness deviations have been
established, this method is conceptually very straightforward. However, the process for
obtaining the blade stiffness deviations requires some further consideration.

In the simplistic case of offsets in blade Young’s modulus, this method allows for

simple input of mistuning in the following manner:
AKP =5, KPP, n=1,...,N. (5.51)

However, for input of mistuning individually for each mode of each cantilevered blade, as

in the previous methods, the task becomes more cumbersome. In this case, an approach
analogous to the mistuning of shrouded assemblies in the REDUCE method has to be
adopted. This approach is outlined in Blagthal. [23], but here it is reviewed briefly and
adapted to current notation. To begin, a diagonal matrix containing the mistuned modal

stiffnesses (measured or generated) ofiifieblade may be written as:

diag [1+ 0f| Ap = u*” [K® + AKY| u”, (5.52)
k=1

=1,..., my

whereu® contains the nominal mode shapes for a cantilevered blade\ gisla diagonal

matrix containing the corresponding modal stiffnesses for a tuned cantilevered blade. Note
that there is already an approximation made at this point, namely that the mode shapes of
a mistuned blade are the same as those of a tuned blade. Rearranging Eq. (5.52) and

identifying A, = uP” KPuP, yields the following expression for the stiffness deviation:

AK® = o™ diag [6] Apu® . (5.53)

k=1,...,my
Now, making use of the eigenvector normalization assumption, it is realized that:

-1

I=u”" Mu® = o ~MPuP (5.54)
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Ay =u” KPuP = A,uP ~uP KP

It is assumed here that®™" exists, i.e., that it is complete (square). This is seldom the
case in practice, as it would be impractically large, and thus, as indicated, Eq. (5.55) is an
approximation. The non-existent inverse does not pose a problem, however, since it need
not be computed. Moreover, the implied approximation is of the same order as the modal
analysis itself, and it does not cause a noticeable decrease in accuracy.

By substituting Eq. (5.55) into Eg. (5.53), the stiffness deviation matrix may be ex-

pressed in its final form as

AK}, = MPuPdiag [0f| u"" K", (5.55)
k=1

=1,..., my,
In this manner, stiffness deviations of individual blades can be incorporated into the re-

duced order model by projection onto the selected cyclic modes of the assembly.

5.7 Secondary Modal Analysis Reduction Technique
(SMART)

The key idea for this new technique is to whittle the size of the reduced order model to
an absolute minimum, without incurring severe truncation errors or sacrificing versatility.
This is achieved by performing a full-scale secondary modal analysis on an intermediate
model that has already been reduced through modal analysis in some fashion (e.g., by the
C-B method). The secondary modal analysis is based on those modes of the intermediate
model that fall within a frequency range encompassing the blade mode family (or fami-
lies) of interest during subsequent mistuned free and/or forced response analyses. In this
respect, the approach is very similar to the mistuning projection method of the previous
section. However, a distinct advantage of the SMART model is the fact that the required
projection of mistuning data is carried out in the low-order modal domain, while the mis-

tuning projection method must deal with the projections in the physical domain. This
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SMART idea may be applied to any intermediate model that is constructed from a CMS
(or other) method. In this work, the intermediate models are constructed with the C-B
method, due to its robustness and excellent accuracy. Furthermore, the C-B method is a
natural choice in view of the mistuning implementation employed in this study, since it
gives direct access to the blade modal stiffnesses.

As in the mistuning projection method, the first step is to obtain the tuned modes from
which to form the new selected basis. This is done for each harmonsing the tuned

C-B model entirely in cyclic coordinates, which results in the following set of eigenvalue

problems:
[Kh, — My |48, =0, h=0,...,P, (5.56)
where
AR 0 0
Ko = |0 K& +RDE 0
0 0 Ab
I MEPR 0
NI = | NI NI 4 NEhE N
0 MR I

The disk partitions as well as the blade cc-partitions are defined in Section 5.3. For the

remaining cyclic blade partitions in the C-B model, the definitions in Section 5.3.1 give

(

Ube h =0,h =% (if it exists)
Mt = e O (5.57)
’ h#t0h# Y,
0 Hbe
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Ap h =0,h =% (if it exists)
AR = A, O (5.58)
h#0,h# Y.
0 Ay

Similar to the mistuning projection method, the next step is to select a small subset of
the obtained C-B cyclic modes. This subset is then used to form a further reduced order
model by classical modal analysis, which is the secondary modal analysis indicated by the
name of the method. The constraint-mode portions of the selected mode sl{a“pewe
collected into a cyclic modal matrikI®;’, while the normal-blade-mode portions.;",
are collected intdJ%". The associated eigenvalues are collected into a cyclic generalized
stiffness matrixAs,. Both the mode selection process and the resulting reduced tuned
system follow the discussion in Section 5.5 for the mistuning projection method. The
difference, however, is that the selected eigenvalues are exact (with respect to the parent
finite element model) in the mistuning projection method, while they are only as accurate
as the intermediate model in the SMART case.

As shown in Eg. (5.34), mistuning is represented in the C-B model by perturbing the
diagonal elements of the normal-blade-mode (bb) partition, which represent the individual
modal stiffnesses for each cantilevered blade mode of each blade in the assembly. Hence,
using the selected tuned, cyclic modes as the basis for the secondary modal expansion,
mistuning enters into the SMART model by projecting these modal stiffness perturbations
onto the selected tuned modes of the assembly. Note that the perturbations are in normal
coordinates while the nominal modes are cyclic. Hence, the mistuning projection takes the
form:

=1,...,N

AK:, = UP"FTBdiag ldiag [0%] Ab] FUSP. (5.59)
n=1

k=1,...,my

Note that only the mode shape portions pertaining to the blade normal modes are involved

in the projection, which normally are of modest size. Equation (5.59) represents the key
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to this method’s versatility and suitability for statistical studies: versatility by enabling
input of a practical measure of mistuning obtained for cantilevered blades; and suitability
for statistical studies due to its computational efficiency, since this mistuning projection is
made in the low-order modal domain. In the next section, it is shown how the latter makes
the task of obtaining comprehensive forced response statistics nearly effortless compared
to other methods of comparable accuracy.

With the mistuning projection in place, the SMART C-B model may be formulated as
q+Cha+ (1+Gj) [A%, + AKS,| g = FS, (5.60)

where

Cop = T [I@diag [2¢4] JAT,] Ui

k=1,...,my

0 )
\/Nfg,cecﬂ X {‘I’EfB + f[‘}

| VNE eci1 ® { U] + fir

VNI eci1 ® DL fp

{ \/Nfg’secﬂ X q)g‘fB

Note that this generally leads to a fully populated, symmetric stiffness matrix, similar to

FCP

that of the mistuning projection method.
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5.8 Comparison of Methods

In this section, the number of floating point operations (flops) required to set up and use
areduced order model is estimated for some of the previously introduced techniques. Four
methods have been selected for this comparison — Craig-Bampton, REDUCE, mistuning
projection, and SMART Craig-Bampton. From the outset it is realized that including
REDUCE in this comparison is not quite fair, as REDUCE does not possess nearly the
same accuracy as the other methods. However, since REDUCE has gained popularity with
several industrial users, it is included as a benchmark for comparison.

The standard algorithms for matrix inversion (for solviag = b) and multiplication
of square matrices aK@ (n*) processes, whereis the order of the matrix (Strang [64]).
Moreover, for this comparison it is essential to have an estimate of the computational
effort involved in solving an eigenvalue problem, since it is a central component in all
methods. However, this is not possible to obtain explicitly, because it is an iterative process
for n > 2. Since some estimate of the eigensolver cost is necessary, a brief numerical
investigation was conducted using MATLAB which has a built-in flops counter. Two

matrices,A and B, were constructed with increasing sizeas follows (upper triangle

only):

5= = j=1,...,n

Ajj = B;; = " (5.61)

—E i S i=1,...,j.

The generated matrices, which are fully populated, real-valued, symmetric, positive defi-

nite, and diagonally dominant, were used to get estimates of the required number of flops
for the three basic matrix operations required here: generalized real, symmetric eigenso-

lutions, Au = ABu; multiplication of two square matriced, - B; and matrix inversion,

A 1. The results are shown in Fig. 5.4.
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Figure 5.4: Required number of floating point operations (flops) as a function of matrix
size for generalized eigensolution, matrix multiplication, and matrix inversion.
Note the slight “bumps” due to the iterative nature of the eigensolution.

The results in Fig. 5.4 confirm the*-proportionality of matrix inversion and multi-
plication. The eigensolution closely follows thé-curve, too. Hence, it is assumed that
n3-proportionality may be used for all three matrix operations to get fair comparisons.
Note that the iterative nature of the eigenvalue problem shows up in Fig. 5.4 as a few
slight “bumps”.

To compare the methods pseudo-quantitatively, estimates of the required flops during
statistical studies were obtained. The term “pseudo” is used because the flops count only
considers the three basic types of operations mentioned above, not the various adminis-
trative tasks, variable initialization, passing of variables, etc. Furthermore, the flops count
does not take efficient coding into consideration, such as using sparse matrix routines.
Hence, the results presented here should not be taken as the true “costs” required by ac-

tual analyses. However, they should provide a fair basis for a rough comparison of the
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methods.

The “initial conditions” for each method are the required finite element structural ma-
trices for the components. Table 5.1 outlines the model dimensions used in this compari-
son, which represent fairly typical dimensions for a finite element model of an industrial
bladed disk. Table 5.2 outlines the essential steps considered for each method. The upper
portion of Table 5.2 represents the model setup. The lower portion contains the required
steps for the mistuned forced response, which must be repeated for each new mistuning
pattern. The results are shown in Figs. 5.5 (model setup cost included) and 5.6 (model
setup cost excluded).

As Fig. 5.5 indicates, the mistuning projection method and REDUCE carry a similar
setup cost, due largely to the set of cyclic eigenvalue problems involving the fundamental
sector they have in common. Recall, the blades are massless in the REDUCE method, but
the problem size is unaffected by this fact. Note how insignificant is the effort required to
go from a C-B model to a SMART model. Of course, the set of cyclic eigenvalue problems
using the C-B model does result in an increased setup cost for the SMART model, but that
cost is trivial on this scale.

A mistuned forced response statistics simulation was carried out for Figs. 5.5 and 5.6
by calculating the mistuned response at 1000 sampled excitation frequencies for 100 mis-
tuning patterns. From Fig. 5.5, it is clear that the C-B model suffers from carrying all the
interface DOF in the reduced order model. It is equally clear that the mistuning projec-
tion in the physical domain severely degrades the performance of the mistuning projection
method. Note that even in the simplistic case of mistuning via Young’s modulus offsets
there is a significant number of operations required to project the mistuning. In contrast,
studying a sequence of mistuning patterns is relatively effortless with the SMART model.

Figure 5.6 shows the flops after the setup costs, to highlight the “long-term” perfor-
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Number of... Variable | Value
Blades N 50
Blade Interior (B) DOF np 2000
Disk Independent (Da) DOF N 1000
Disk-Blade Interfacel() DOF Ne 100
Blade Modes my, 3
Disk Modes (per harmonic) Ma 3

Table 5.1: Assumed model dimensions for flops count.

Calculation C-B | SMART | M. P. | RED.
Sector Normal Modes M X X
Blade Normal Modes X X X
Blade Constraint Modes X X

Disk Normal Modes X X

Disk Constraint Modes| X X

Model Assembly X X X
Modal Force X X X X
Mistuning Projection M X
Response Amplitudes | M M M M

Table 5.2: Essential steps during model construction and use in a forced response sta-
tistical study (M = Modal domain, M. P.=Mistuning Projection method,
RED.=REDUCE).
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Figure 5.5: Comparison of estimated cumulative numbers of floating point operations dur-
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mance of each method. REDUCE demonstrates good speed, and requires approximately
one and four orders of magnitude fewer flops per mistuning pattern than mistuning pro-
jection and C-B, respectively. However, it must again be emphasized that REDUCE lacks
the high accuracy of those two methods. As shown, SMART cuts the flops even further: it
is close to four orders of magnitude less computationally intensive per mistuning pattern
than mistuning projection. Thus, it is deduced that SMART is clearly the most appealing

method for performing vibration analyses of mistuned bladed disks.

5.9 Conclusions

Component mode synthesis (CMS) is an efficient technique for dynamic analyses of
complex structures. However, the applications of CMS to mistuned bladed disk assemblies
are remarkably scarce. In this first part of the two-part paper, it was shown how the Craig-
Bampton (C-B) method of CMS can be applied to mistuned bladed disks in a systematic
manner.

The primary contribution of this paper is the introduction of four new approaches for
efficient and realistic modeling of mistuned bladed disks. Two of the new methods are

modifications of the classical Craig-Bampton method by partial secondary modal analyses:

1. Modal interface formulation.

2. Modal interfaceplusdisk formulation.

These two methods result in comparable, significant order reduction beyond that provided
by the initial C-B formulation. The remaining two methods utilize the assumption of a

common deformation space for tuned and mistuned mode families:

3. Mistuning Projection Method:

Classical modal analysis of the tuned finite element model, followed by a projection
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of individual blade mistuning onto the retained system modes.

4. Secondary Modal Analysis Reduction Technique (SMART):
Formulation of a cyclic Craig-Bampton model, followed by classical modal analysis
of the full C-B model. The mistuning is input in the C-B modal space and then
projected to the SMART model via the blade portions of the retained secondary

modes.

This results in minimized reduced order models, while requiring projection of blade mis-
tuning data onto a selection of tuned modes.

A subset of the developed methods were compared by means of a theoretical count of
floating point operations required for model setup and use in statistical forced response
predictions. It was demonstrated that the most straightforward technique — the mistuning
projection method — suffers a high computational cost due to carrying out the mistuning
projections in the physical domain. In contrast, the SMART mistuning projections are per-
formed in the low-order modal domain. Furthermore, it was shown that SMART analyses
are exceptionally fast. Therefore, it is clear that the SMART approach is well-suited for

performing comprehensive studies of mistuned forced response statistics.



CHAPTER VI

Component-Mode-Based Reduced Order Modeling
Techniques for Mistuned Bladed Disks, Part Il:
Application

In this paper, the component-mode-based methods formulated in the companion paper
(Part I: Theoretical Models) are applied to the dynamic analysis of two example finite ele-
ment models of bladed disks. Free and forced responses for both tuned and mistuned rotors
are considered. Comprehensive comparisons are made among the techniques using full
system finite element solutions as a benchmark. The accurate capture of eigenfrequency
veering regions is of critical importance for obtaining high-fidelity predictions of the ro-
tor’s sensitivity to mistuning. Therefore, particular attention is devoted to this subject. Itis
shown that the Craig-Bampton component mode synthesis (CMS) technique is robust and
yields highly reliable results. However, this is achieved at considerable computational cost
due to the retained component interface degrees of freedom (DOF). It is demonstrated that
this problem is alleviated by a secondary modal analysis reduction technique (SMART).
In addition, a non-CMS mistuning projection method is considered. Although this method
is elegant and accurate, it is seen that it lacks the versatility and efficiency of the CMS-
based SMART. Overall, this work shows that significant improvements on the accuracy

and efficiency of current reduced order modeling methods are possible.
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6.1 Introduction

The blades of a bladed disk are intended to be identical, but in fact there are always
small, random differences among the blades, called mistuning. Mistuning can result in
blade forced response amplitudes and stresses that are much larger than those predicted
for a perfectly tuned rotor. (See Srinivasan [17] for a comprehensive survey of the liter-
ature.) Thus, mistuning has a critical impact on blade fatigue life in turbine engines, and
it is of great importance to be able to predict the mistuned forced response in an accu-
rate and efficient manner. Several recent studies have presented reduced order modeling
techniques that are capable of generating low order models of bladed disks from parent
finite element models (Irretier [18]; Zheng and Wang [19]; Kruse and Pierre [21, 22];
Castanieet al. [20]; Yang and Griffin [26, 27]; Bladlet al. [23]).

In the companion paper (Part I: Theoretical Models), some new reduced order model-
ing techniques were introduced that are well-suited for the efficient and accurate vibration

analysis of mistuned bladed disks. These techniques are summarized as follows:

e Craig-Bampton (C-B) Method: The C-B method (Craig and Bampton [29]) of
Component Mode Synthesis (CMS), formulated specifically for bladed disks, is em-
ployed. A cyclic symmetry description is used for the disk component. Each blade

is treated as a separate component.

e C-B method with secondary modal analysis on matrix partitions: The C-B
method is used to generate a primary reduced order model, and then a secondary
eigen-analysis is performed on partitions of the C-B mass and stiffness matrices. A
truncated set of these eigenvectors is used to transform the matrices to secondary
modal coordinates in order to further reduce the model size. In particular, there are

two choices of matrix partitions that are convenient for this secondary reduction:
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— constraint-mode degrees of freedom (DOF)

— constraint-mode plus disk-mode DOF

e Mistuning projection method: A classical modal analysis is performed on the full
finite element model, and then the individual blade mistuning is projected onto the

cyclic system modes.

e Secondary Modal Analysis Reduction Technique (SMART)A primary reduced
order model is generated using CMS (e.g., the C-B method), and then a secondary
modal analysis is performed on the full CMS matrices. Only the system modes of
interest are retained. Blade mistuning is introduced in the CMS matrices (blade
component DOF) and then projected from the primary modal coordinates to the

secondary modal coordinates.

In addition, the method of Castaniet al. [20] was revisited, which is here denoted RE-
DUCE. Since the code is being actively used in industry, REDUCE represents the current
state of the art.

In this paper, the above techniques are applied to simple, yet representative finite ele-
ment models of bladed disks. First, tuned free vibrations are considered, and the methods
are compared by studying their modal convergence trends. The eigenfrequency veerings
that occur when plotting natural frequencies versus number of nodal diameters have been
shown to play a crucial role in determining a bladed disk’s sensitivity to mistuning (Kruse
and Pierre [21]; Bladlet al. [54]). Therefore, the modal convergence study focuses on
how well the derived methods capture the eigenfrequencies in a particular veering region.

Next, it is demonstrated how well the methods represent mistuned, localized modes
of vibration. A modal convergence study is presented with respect to the capture of both

mistuned natural frequencies and mistuned mode shapes using the well-known Modal As-
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surance Criterion, or MAC (Allemang and Brown [63]). This study is relevant, since the
introduction of mistuning data differs among the methods and results in an approximation
for some of them. Hence, a good tuned representation does not necessarily translate to a
good mistuned representation.

Predictions of forced response amplitudes are then considered, for both tuned and mis-
tuned configurations. This is the primary application of these methods. The efficiency
and accuracy of the methods are examined via forced response frequency sweeps. The
SMART approach is also applied to a large-size model, using a C-B model as the inter-
mediate CMS basis. The excellent accuracy and tremendous computational savings that
result from using this approach are demonstrated.

This paper is organized as follows. The finite element models used in this study are
presented in Section 6.2. The validation of the developed methods begins with free vi-
bration results in Section 6.3, where particular emphasis is placed on the capture of tuned
natural frequency veerings and the mistuned mode shapes. Forced response results are
examined in Section 6.4. In Section 6.5, the SMART approach is validated for a large-size
model to further demonstrate the potential of this method. Finally, concluding remarks are

given in Section 6.6.

6.2 Description of Example Finite Element Models

Two different finite element models of mistuned bladed disks are used for the valida-

tion of the developed methods:

e A simple, “small” model (see Fig. 6.1) that allows for extensive studies of modal

convergence.

e A more realistic, “large” model (see Fig. 6.2) that is used to demonstrate the poten-

tial of the SMART approach.
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The finite elements are all eight-noded brick (linear solid) elements. It should be noted
that both meshes are relatively coarse compared to that of a typical industrial finite element
model, and they may not represent precisely the behavior of actual bladed disks with the
depicted geometries. However, this is not a concern for this study, since all of the methods
are applied to the same parent finite element models.

The material properties for both models are those of steel (see Table 6.1). However,
the models differ in the structural damping coeffici€gntused during the forced response.
Note that viscous damping is not considered in this study.

For the mistuned results, a single mistuning pattern is used for each model. The mis-
tuning patterns were sampled from a uniform distribution of mean zero, and one mistuning
value,,, is assigned to each blade. The mistuning is introduced to the full finite element

model by varying Young’s modulus in the blade elements:

E,=(146)E,, n=1,...,N, (6.1)

wheren is the blade number anll is the total number of blades. Note that the methods
developed in this study are not restricted to mistuning by variations in Young’s modulus.

However, individual mode mistuning is not considered in this paper.

Property Notation Value | Unit

Nominal Young’s Modulug  E, 2.00-10° | MPa

Poisson’s Ratio v 0.25 —

Mass Density 0 7.86 - 10 | kg/m?

Table 6.1: Material properties (generic steel) for both models.
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(@) (b)

Figure 6.1: Finite element meshes for the “small” example blisk: (a) the full model; (b)
the fundamental sector.

6.2.1 Small Example Finite Element Model

The smaller of the two finite element models that are analyzed in this study is shown
in Fig. 6.1. Due to its relatively low number of DOF, this model is used extensively in this
study. This model features 12 blades, each with length 60 mm and base width 7.5 degrees
(~13 mm). The blades are slightly tapered along the radial direction, from 5 mm thickness
at the base to 2 mm thickness at the tip. The disk is 5 mm thick. It has an outer radius of
100 mm, and an inner radius of 20 mm. The disk is clamped at the inner radius.

For the Craig-Bampton method, the fundamental sector in Fig. 6.1b is further substruc-
tured into a disk sector component (for a cyclic symmetry analysis) and a blade compo-
nent. Model data for the components are listed in Table 6.2. For the forced response, the
structural damping coefficient is taken toGe= 0.01.

The single mistuning pattern used for this model is taken from a uniform distribution
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Component Elements | Nodes| DOF
Cantilevered Blade 4 20 48
Disk Sector 20 60| 108
Disk-Blade interface — 4 12
Fundamental Sector 24 76| 168
Full Assembly 288| 768| 2016

Table 6.2: Basic model data for the small model.

Blade On Blade On Blade On

1 | -0.0276 5 0.0161 9 |-0.0107
2 0.0050 6 |-0.0112) 10 | -0.0090
3 0.0449 7 0.0132| 11 0.0161

4 | -0.0171 8 0.0207| 12 0.0351

Table 6.3: Single mistuning pattern for the small model.

of mean zero and standard deviation 3.0%. The mistuning paramgtetsed for each

blade are listed in Table 6.3.

6.2.2 Large Example Finite Element Model

The finite element model of the “large” test case rotor is depicted in Fig. 6.2. This
model is used in Section 6.5 as a more realistic case. This rotor has 24 blades. Each blade
has a base pitch of 30 degrees (measured from the axial direction), and a uniform twist of
an additional 30 degrees over its length. The base radius is 212 mm, and the blade length
is 68 mm. The rotor is fixed at the interfaces towards adjacent stages. This is believed to
provide a reasonable description of the dynamics of a bladed disk assembly.

As was done with the smaller model, the fundamental sector is substructured into a
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Figure 6.2: Finite element meshes for the “large” example blisk: (a) the full model; (b) the
fundamental sector.

Component Elements| Nodes| DOF
Cantilevered Blade 104 210 585
Disk Sector 372 651| 1521
Disk-Blade interface — 15 45
Fundamental sector 476 846| 2151
Full assembly 11,424 18,072| 51,624

Table 6.4: Basic model data for the large model.

disk sector and a blade component. The model data are found in Table 6.4. This model is
assigned a structural damping coefficientof 0.0025.

The single mistuning pattern is taken from a uniform distribution of mean zero and
standard deviation 5.0%. The corresponding mistuning paramejgrate listed in Ta-

ble 6.5.
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Blade On Blade On Blade On

1 |-0.00515 9 0.02930| 17 | -0.00415
2 | -0.01875| 10 0.02720|| 18 0.00430
3 |-0.01820| 11 0.02770| 19 0.01840
4 | -0.00390| 12 | -0.04925| 20 |-0.05475
5 | -0.05005| 13 | -0.08075| 21 0.02395
6 |-0.00850| 14 |-0.04905| 22 0.03810
7 0.01415)] 15 0.05935|| 23 0.04110

8 0.07620| 16 |-0.06925| 24 0.03930

Table 6.5: Single mistuning pattern for the large model.

6.3 Free Vibration

6.3.1 Tuned Assembly

In Fig. 6.3, an assessment is made of the small model’s tuned characteristics by plotting
the natural frequencies of the tuned system versus the number of nodal diameters. The
nearly horizontal connecting lines correspond to assembly modes that are dominated by
blade motion, while the slanted connecting lines correspond to disk-dominated modes.
The rapid increase of the eigenfrequencies of the disk-dominated modes is due to stiffening
of the disk as the circumferential wavelength decreases with increasing number of nodal
diameters.

Two significant eigenfrequency veering regions are highlighted in Fig. 6.3: one lo-
cated at one nodal diameter, around 3300 Hz (Veering #1); and a second located at three
nodal diameters, around 6500 Hz (Veering #2). Earlier studies (Kruse and Pierre [21];
Bladhet al. [54]) have shown that the characteristics of eigenfrequency veerings are cru-

cial in determining a design’s sensitivity to mistuning. Furthermore, it has been found
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Figure 6.3: Natural frequencies versus nodal diameters for the small example finite ele-
ment model. The circles show the natural frequency values, while the con-
necting lines are drawn to aid in visualization of the mode families and the
frequency veerings. The character of each family of blade-dominated modes
is indicated on the right (e.g., 1F = 1st flex mode).

that maximum mistuned forced response amplitudes are likely to occur in veering regions
(that is, when the frequency and engine order of excitation correspond to the frequency
and nodal diameters of a veering). Therefore, the ability to capture veering regions is an
important consideration when assessing the performance of a modeling method.

As pointed out in Part I, all methods considered in this study are complete, in the limit,
for the tuned case: they yield the finite element solution when all the component modes
are included in the model. Hence, for the tuned case, one may compare the performance
of the methods by examining their rates of modal convergence. In combination with the
veering discussion above, the methods are evaluated by comparing modal convergence

trends based on the eigenfrequency errors in the “Modal Convergence Region” of Fig. 6.3.
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Figure 6.4: Modal convergence trends in the region surrounding Veering #1 for the small
example model.

The modal convergence for each method (except for mistuning projection, which is
irrelevant for the tuned case) is presented in Fig. 6.4. This figure shows the average percent
error among the six distinct eigenfrequencies in the Modal Convergence Region versus the
number of retained modes in the reduced order model (ROM). Note that there are actually
ten modes in this region: four double modes, and two single modes. However, to avoid
counting the double-mode errors twice, this region is evaluated at only the six distinct
eigenfrequencies. The results in Fig. 6.4 clearly illustrate the remarkable difference in both
accuracy and modal convergence rate between the standard C-B model and REDUCE.
However, it must be emphasized that the superiority of the C-B model is achieved at a
considerable expense in terms of minimum model size relative to REDUCE. As shown,
C-B does not capture this veering at all with fewer than around 200 DOF, while REDUCE
yields a fair veering representation with much fewer than 100 DOF.

Moreover, it is here demonstrated that the C-B representation may be improved upon
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by the partial secondary modal analyses on either the constraint-mode partition (modal in-
terface), or the disk-normal-mode plus constraint-mode partitions (modal disk+interface).
There are two principal beneficial effects of this: (1) a fair approximation of the veering
eigenfrequencies is obtained with a much smaller model than the smallest possible stan-
dard C-B model; (2) the characteristic modes representation yields the same accuracy level
with fewer DOF compared to the standard C-B model. However, the improvement gained
by the partial secondary modal analyses is nevertheless deemed insufficient in terms of
justifying the additional effort. Thus, these two methods are not considered in results
presented later in this paper.

The vertical line in Fig. 6.4 represents the SMART approach with a C-B model as
intermediate CMS basis. The implication of the vertical line is that the tuned SMART
model is always as accurate as the intermediate CMS model from which it derives, while
its size stays constant at the number of modes selected by the analyst. Hence, it may be
viewed as collapsing the C-B model onto an arbitrarily smatledimensional subspace.
Alternatively, a graphical interpretation using Fig. 6.4 would be to collapse a C-B model
of certain accuracy horizontally to the left onto a point on an arbitrarily positioned vertical
line. In Fig. 6.4, where only six modes are considered, the SMART model has only the
minimum six DOF. Note that using SMART for tuned free vibration analyses makes no

sense; it is included here only to aid in demonstrating the approach.

6.3.2 Mistuned Assembly

The small model is now mistuned by offsets in blade Young's modulus, in accordance
with Eq. (6.1) and Table 6.3. First, the selected methods’ representations of two mistuned
mode shapes are considered. The finite element mode shapes and the approximations

obtained through the various methods are depicted in Figs. 6.5 and 6.6. The obtained
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Figure 6.5: Reduced order model representations of mistuned mode shape number 37 for
the small example model.

mode shape representations come from first finding the maximum physical displacement
of any DOF in any blade. The physical displacements of the DOF where the maximum
was found are then plotted for each blade, normalized by the Euclidean norm &f the
displacements as

n

Ar=_Sm  p=1,...,N, (6.2)
N 2
\/ n=1 Zﬁz

wherez" is the displacement in physical coordinates for tfte blade’sm'™ DOF (the
DOF at which the maximum was found).

The two modes depicted in Figs. 6.5 and 6.6 belong to the second family of blade-
dominated system modes (2F, see Fig. 6.3) located around 3300 Hz. The two mode shapes
can be characterized as intermediately localized, which means that several blades partici-
pate in the motion, but there is still a clear dominance by one or two blades. This type of
intermediate localization has been shown to cause the most severe increases in resonant

forced response amplitudeSttarsson and Pierre [16]; Blad al. [54]).
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Figure 6.6: Reduced order model representations of mistuned mode shape number 38 for
the small example model.

The SMART model used here is based on an intermediate C-B model that incorpo-
rates the first seven normal disk modes and the first six normal blade modes (plus the
complete set of constraint modes). Furthermore, the 17 tuned modes that fall inside the
frequency range 3000-3500 Hz are selected for both the mistuning projection method and
the SMART approach. This means that the two models include all harmonics of the tuned
modes associated with the second family of blade-dominated modes. This completeness
in terms of harmonic content is a basic requirement for these methods.

Except for REDUCE, note the excellent agreement among eigenfrequencies in Figs. 6.5
and 6.6. The relative error is less than 0.02% for both modes. REDUCE, however, cannot
guite match these excellent results with errors around 0.3%. These results translate nicely
to the mode shapes as well, where the approximated shapes are virtually indistinguishable
from those obtained by full finite element analysis. Although REDUCE’s mode shape rep-

resentations are not as accurate, the method does an excellent job in capturing the relative
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Figure 6.7: Sensitivity of Modal Assurance Criterion (MAC) values (mistuned mode shape
number 38).

peaks as well as their locations.

Next, an aspect of method efficiency is investigated. All the obtained approximations
of natural frequencies and mode shapes are compared to the finite element results, in order
to establish how many system modes each method captures versus the number of possible
modes,m,. (i.e., the total number of DOF in the ROM). A system mode is regarded as
“captured” if the error is below a pre-defined tolerances—for natural frequencies, or
dmac fOr mode shapes. The obtained natural frequengfesare compared with the finite

element frequencieg;*, through straightforward fractions

]{;e_lééfa 1=1,...,my; jzla"'amfe? (63)
J

wheremy, is the total number of DOF in the full finite element model. If the above
inequality is satisfied for any/¢, then the natural frequengy is regarded as captured. In

a similar fashion, the approximated mode shapésare compared to the exact ones via
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MAC conformity:

(45" o)’
(057 0s) (0f"vf)

1- Sémaca izla"'amr; jzla"'amfea (64)

wherev,bjfe is the finite element mode shape of tfie mode. It is clear that when an exact
match between two mode shapes is obtained, the MAC ratio becomes one; it is between
zero and one in all other cases. However, it is not clear just how good a match a MAC
value of, for instance, 0.99 represents. To assess this38hemistuned mode shape

in Fig. 6.6 was perturbed by applying randomly generated scale factors to each blade’s
relative amplitude. The MAC conformity with respect to the unperturbed shape was then
computed. The resulting perturbed mode shapes are shown in Fig. 6.7 for MAC values
of 0.99 and 0.999. Note that a 1.0% deviation from a perfect match might be considered a
very good representation of the mode shape.

The two different tolerance levels (1.0% and 0.1%) were employed in order to get
an indication of how large the errors were among the unacceptable modes. The separate
results for natural frequencies and mode shapes are shown in Figs. 6.8-6.11. As indicated,
the straight liney = z, represents what could be called the “ROM Jackpot”, which means
that one system mode of desired accuracy is captured for each DOF in the ROM.

The C-B formulation suffers considerably from having a full, physical set of interface
DOF in the ROM. These DOF, the constraint modes, are of course necessary in order to
form the flexible motion of the otherwise fully constrained interfaces. However, they also
result in many purely computational modes, which have little or no physical meaning,
leading to the relatively poor efficiency displayed by the C-B method. Moreover, by re-
laxing the tolerance level to 1.0%, the results show that C-B gives only fair (0.1-1.0%)
representations of several modes.

Note that the REDUCE model quickly yields “recognizable” mode shapes. Moreover,
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observing the dramatic difference between Figs. 6.8 and 6.9, it is clear that most of the
natural frequencies fall between the two tolerance levels. However, these results show that
very few modes are predicted with high accuracy, which is evidenced by the very poor
progress as the number of retained modes increases for the smaller tolerance (Fig. 6.8).
This is consistent with the tuned results in Fig. 6.4.

In contrast, both the mistuning projection method and the SMART approach come
very close to the ideal “jackpot” state for the lower order modes. The capture of mistuned
natural frequencies (Figs. 6.8 and 6.9) is outstanding. Both methods also display excellent
efficiency in terms of mode shapes (Figs. 6.10 and 6.11), although they appear to be less
impressive in this respect. However, the mode match requirements imposed by the MAC
tolerances are very strict (see Fig. 6.7).

There is a notable deterioration in mode shape representation of the SMART model
as the mode numbers increase. Note that the missed mode shapes in Fig. 6.10 are not ac-
cepted even with the relaxed tolerance in Fig. 6.11. This may be explained, in part, by the
approximation implied by neglecting mistuning effects among the constraint modes in the
intermediate C-B model. First, for higher modes there is more and more local waviness in
the structure. Second, since the constraint modes are obtained by successive unit interface
DOF deflections, they are also very local in nature. Thus, it is hypothesized that the ne-
glected mistuning among the constraint modes has more impact as the order of the mode
increases. This is not a problem for the mistuning projection method, where the entire
physical blade stiffness matrices are re-scaled properly. (The mistuning projection method
does degrade somewhat for higher order modes, but to a much lesser extent.) Furthermore,
note that for this method (as opposed to the SMART model) several of the misrepresented
mode shapes are still within the relaxed tolerance level. This degradation is likely due

to the approximation incurred by representing the mistuned modes with a truncated set
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of tuned modes. Hence, while yielding accurate representations of the relatively smooth
blade shapes at lower modes, the effects of this approximation become more pronounced
for higher modes in which increasing local waviness is observed. However, in the limit,
the mistuning projection method will yield the exact solution in the particular case of mis-

tuning by Young’s modulus offsets.

6.4 Forced Response

In this section, engine order excitation is considered in the two veering regions indi-
cated in Fig. 6.3. For Veering #1, this implies an engine order one excitation (1E), which
for a 12-bladed assembly has a blade-to-blade forcing phase shift of 30 degrees. Veer-
ing #2 requires an engine order three excitation (3E) with a blade-to-blade forcing phase
shift of 90 degrees. In both cases, the force is a unit nodal [dad, 1) /v/3, applied to
one of the nodes on the blade tip. Hence, this force is able to excite all the fundamental
modes of the blade. This applied force was chosen arbitrarily, but it serves to verify the
accuracy of the reduced order models.

The amplitude metric employed here, the maximum blade deflection norm, is a scalar
value based on the Euclidean norm of the physical displacement vector of each blade. The

plotted norms (i.e., the maximum norms) are thus obtained at each driving frequency as

Ne+ng
A:max{A”}:max{ > |z§b|2}, n=1,...,N, (6.5)
\ j=1

where|2?| is the magnitude of the complex displacement in physical coordinates fgfthe
DOF of then'™ blade, and:, andn, are, respectively, the numbers of disk-blade interface
and blade interior DOF for one blade. As an alternative, it is realized that from any reduced
order model, the physical displacement vector forstHeblade,z", is recovered from a

modal expansion via some blade modal mafti®, asz® = U"q. Thus, the vector norms
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Figure 6.12: Forced response frequency sweep through Veering #1 for engine order one
(1E) excitation of the tuned small example model.

may be represented in an equivalent matrix notation as

A:max{A”}:max{\/q*U“*U“q}, n=1,...,N, (6.6)

wherex denotes the complex conjugate transpose. Note that the inner matrix products,
U™ U®, may be computed and saved prior to any forced response frequency sweeps or
extensive statistical simulations. This allows for fast computations of the blade norms
through low-order modal domain matrix projections, instead of tedious computations in
physical coordinates.

The resulting tuned and mistuned forced response amplitudes from frequency sweeps
over Veering #1 are illustrated in Figs. 6.12 and 6.13, respectively. Clearly, the excel-
lent accuracy displayed by C-B, SMART, and the mistuning projection method in free
vibrations translates nicely to the forced response. As demonstrated in Fig. 6.12, the tuned

response approximations are practically indistinguishable from the exact solution for these
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Figure 6.13: Forced response frequency sweep through Veering #1 for engine order one
(1E) excitation of the mistuned small example model (tuned FEM solution
included for reference).

methods. Also, the capture of the maximum amplitude and the general resonance behav-
ior over the frequency range is outstanding for these three methods. Again, the REDUCE
method lacks accuracy in comparison. In particular, in Fig. 6.12 REDUCE predicts a
wide separation of the two tuned resonant frequencies, while, in reality, they are very
close. Nevertheless, REDUCE gives a fair prediction of the mistuned peak amplitudes in
Fig. 6.13, which is the key quantity in studies of forced response statistics.

A second sample of the methods’ performances for the mistuned forced response is
shown in Fig. 6.14, which illustrates a frequency sweep through Veering #2 for an engine
order three (3E) excitation. Qualitatively, the results are similar to those for Veering #1,
despite very different circumstances in terms of principal blade motion (different blade
mode family) and engine order.

Another point of interest for the turbomachinery industry is blade-to-blade dispersion:
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Figure 6.14: Forced response frequency sweep through Veering #2 for engine order three
(3E) excitation of the mistuned small example model (tuned FEM solution
included for reference).
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blade-to-blade variations in maximum mistuned response amplitudes for a given rotor.

This is used to assess mistuning levels from experimental data, and it is also an impor-
tant aspect when matching computational models with experiments. Figure 6.15 displays
the maximum response amplitudes obtained for each blade from the forced response fre-
guency sweep of Fig. 6.13. Again, all methods but REDUCE produce results that are

virtually indistinguishable from the finite element values.

Based on the presented results, it is concluded that the C-B, SMART, and the mis-
tuning projection methods are all consistent, high-performance reduced order modeling
techniques suitable for mistuned bladed disks. Taking into consideration the differences
in efficiency and the final ROM sizes, it is clear that SMART must be considered to be the

premier method examined in this study.

6.5 Application of SMART to a Large-Size Model

The feasibility and performance of the SMART approach is further highlighted in this
section, where it is applied to the large-size model introduced in Section 6.2.2. The RE-
DUCE method is also included in this comparison to represent the current state of the
art.

The tuned natural frequencies of the large model are plotted versus the number of
nodal diameters in Fig. 6.16. The character of each family of blade-dominated modes is
indicated as flex (F), torsion (T), or axial/ledgewise bending (A). Note the excellent global
representation of the tuned characteristics displayed by the Craig-Bampton model. For its
subsequent use in the SMART approach, it was desirable to get a very accurate C-B model
that also spanned a fairly wide frequency band. Therefore, as many as 12 normal disk
modes and 16 normal blade modes were employed in its construction.

In contrast, the REDUCE model uses only 5 disk modes and 8 blade modes (312 DOF
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Figure 6.16: Natural frequencies versus nodal diameters for the large example model. The
character of each family of blade-dominated modes is indicated on the right,
where F=Flex, T=Torsion, and A=Axial (edgewise) bending.

in total), which is why the REDUCE model is missing certain system modes. Considering
this inequality in number of retained modes, it may seem unfair to compare the C-B and
REDUCE models. However, the improvement gained by including the same number of
modes in the REDUCE model as in the C-B model is fairly marginal (recall the poor modal
convergence displayed by the REDUCE method in Fig. 6.4).

First, the SMART representation of mistuned mode shapes is investigated. The mode
shapes are represented by the vector norms in accordance with Eq. (6.6), although scaled
to represent the relative blade deflection. Using the notation of Eq. (6.6), the relative blade
displacement norm for each blade is computed as

I = ,
\/25:1 q*U»Urq

n=1,...,N. (6.7)

Figures 6.17 and 6.18 illustrate th&" and135*™" mistuned mode shapes obtained with the
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single mistuning pattern listed in Table 6.5. Note from the mistuned natural frequencies
that the selected mode shapes are taken from the two families of blade modes that subse-
guently will be explored in terms of forced response. As indicated, the SMART models in
the respective frequency bands contain 26 and 31 modes (DOF), compared to 51,624 DOF
for the full mistuned finite element model. Hence, the model size is reduced by more than
three orders of magnitude, and yet the SMART models continue to exhibit excellent ac-
curacy in the mistuned case, both in terms of mistuned natural frequencies and mistuned
mode shapes. Even though the REDUCE model is approximately one order of magnitude
larger than the SMART model, it does not possess the same accuracy.

As shown in Fig. 6.16, the large model exhibits several significant veering regions.
This section focuses on the two indicated veering regions, which correspond to a 2E and
3E excitation for the forced response (30 and 45 degrees blade-to-blade forcing phase shift,
respectively). The external excitation force used here consists of a unit nodal load applied
in the axial direction on the tip of the blade’s leading edge. Again, this applied force was
chosen arbitrarily for the purpose of verifying the accuracy of the reduced order models.

Figure 6.19 depicts the tuned response in Veering #1, which exhibits well-separated
lower and upper resonances. As expected, the SMART model yields a close-to-perfect
match with the finite element solution, both in terms of resonant frequencies and peak am-
plitudes. It is further noted that REDUCE has slight offsets in the resonant frequencies,
despite adjustments. What is more disturbing, however, is the fact that the maximum tuned
amplitude is overestimated. Using this maximum tuned amplitude as reference in a statis-
tical analysis might result in significantiynderestimatedmplifications due to mistuning,
which is not acceptable.

The mistuned response in Veering #1 is depicted in Fig. 6.20. Note the severe am-

plification of the maximum resonant amplitude due to mistuning — well over 100% in
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Figure 6.19: Forced response frequency sweep through Veering #1 for engine order two
(2E) excitation of the tuned large example model.
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included for reference).
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Figure 6.21: Forced response frequency sweep through Veering #2 for engine order three
(3E) excitation of the mistuned large example model (tuned FEM solution
included for reference).

this case. Again, a slight, insignificant frequency shift is observed for the SMART model,
particularly in the group of resonances at the lower frequencies. The conformity is oth-
erwise excellent even for this highly complex resonance pattern. REDUCE yields a fair
approximation, although its frequency shift is more pronounced.

To consider another excitation case, the mistuned response in Veering #2 is depicted in
Fig. 6.21. Clearly, the disk-blade modal interaction is less critical in this veering, as there
is only a very modest amplification of the maximum resonant amplitude. This is explained
by the more shallow veering, which suggests strong disk-blade coupling beyond critical
levels from a mistuning sensitivity standpoint. As expected, a scenario similar to Fig. 6.20
is seen here in terms of accuracy. Note that even though REDUCE generally matches
the natural frequencies better than in the previous case, the predicted resonant amplitudes

are significantly worse. From the results presented in this section, it is concluded that the
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SMART approach can yield excellent accuracy and efficiency even with a large parent

finite element model.

6.6 Conclusions

The primary contribution of this paper is the application of two novel approaches for
the reduced order modeling of mistuned bladed disks. These two methods — the mistuning
projection method and the secondary modal analysis reduction technique (SMART) —
utilize the assumption that tuned and mistuned mode families span the same deformation
space. This results in very small reduced order models (ROMs), with matrix dimensions
on the order of the number of blades.

In the mistuning projection method, a classical modal analysis is performed on the
finite element model of a bladed disk. A coordinate transformation is performed to project
the blade mistuning from the finite element domain onto the tuned system modes. In
the SMART approach, a primary ROM is generated via component mode synthesis, and
then a secondary modal analysis is performed to generate a smaller, secondary ROM. The
mistuning data is implemented directly in the blade-component modal coordinates of the
primary ROM, and the mistuning is then projected onto the secondary ROM. Using a
low-order, modal-domain projection makes the SMART approach highly efficient.

The methods were compared in terms of modal convergence, mistuned mode shape
representation, and tuned and mistuned forced response amplitude predictions. It was
demonstrated that the mistuning projection and SMART methods outperform current tech-
niques: the new methods exhibit comparable or improved accuracy, while being far supe-
rior in computational efficiency. The SMART approach was shown to be exceptionally fast
for running simulations of mistuned rotor forced response. Thus, SMART appears to be
the most appealing method to date for comprehensive studies of forced response statistics

for mistuned bladed disks.



CHAPTER VII

Effects of Multi-Stage Coupling and Disk Flexibility on
Mistuned Bladed Disk Dynamics

The effects of disk flexibility and multi-stage coupling on the dynamics of bladed disks
with and without blade mistuning are investigated. Both free and forced responses are ex-
amined using finite element representations of example single- and two-stage rotor models.
The reported work demonstrates the importance of proper treatment of interstage (stage-
to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction
in eigenfrequency veering regions. The modified disk-blade modal interactions resulting
from interstage-coupling-induced changes in disk flexibility are found to have a significant
impact on (a) tuned responses due to excitations passing through eigenfrequency veering
regions, and (b) a design’s sensitivity to blade mistuning. Hence, the findings in this paper
suggest that multi-stage analyses may be required when excitations are expected to fall in
or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be
accounted for. Conversely, the observed sensitivity to disk flexibility also indicates that
the severity of unfavorable structural interblade coupling may be reduced significantly by
re-designing the disk(s) and stage-to-stage connectivity. The relatively drastic effects of
such modifications illustrated in this work indicate that the design modifications required

to alleviate veering-related response problems may be less comprehensive than what might
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have been expected.

7.1 Introduction

Dynamic analyses of bladed disks or blisks found in turbomachinery rotors typically
involve several idealizations of true conditions. Two such idealizations are of particular
interest to the investigation reported in this paper: (a) spatial repetitiveness (cyclic sym-
metry) of a single rotor stage; and (b) isolated, dynamically independent rotor stages.

The cyclic characteristic (a) enables analysts to reduce both modeling and computa-
tional efforts considerably by modeling and analyzing a fundamental disk-blade sector,
rather than the entire assembly. However, cyclic symmetry implies that all sectors are
identical, i.e., that the system is tuned. Over the past decades, many researchers have con-
clusively shown that this assumption can be a potentially disastrous idealization of a bladed
disk’s true behavior — see for instance Wagner [5], Dye and Henry [6], Ewins [7, 46], El-
Bayoumy and Srinivasan [9], Irretier [18], and Wei and Pierre [14, 15]. In reality, individ-
ual blades exhibit small structural differences — blade mistuning — which may stem from
manufacturing and material tolerances or in-service wear. These variations destroy cyclic
symmetry and thus require modeling the full bladed disk assembly. More importantly,
mistuning may lead to qualitatively different dynamic behavior than that experienced by
a perfectly tuned rotor. In particular, mistuning may inhibit the even distribution of vibra-
tion energy among blades, and therefore confine most of the energy to only a few blades.
This way, mode shapes may become spatially localized, and some blades may experience
forced response deflections that are much larger than those predicted by a tuned analysis.

Analyzing each stage independently in accordance with assumption (b) implies that
the analyst must choose some boundary conditions that best describe the constraints im-

posed by adjacent stages. In current practice, this is typically dealt with by imposing
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either fully clamped conditions or axial restraints alone, or by modeling adjacent stages
as uniformly distributed masses and stiffnesses (to preserve cyclicity). Such approximate
constraints may well yield reasonable descriptions of the “global” vibration characteris-
tics of a rotor stage in a multi-stage assembly. However, it may be suspected that the ap-
proximate boundary conditions will in general not accurately describe the disk flexibility
locally at the interstage (stage-to-stage) boundaries. This will lead to inconsistent repre-
sentations of the interaction between families of disk- and blade-dominated modes. The
disk-blade modal interaction in veering regions is a critically important factor in determin-
ing a design’s sensitivity to mistuning. Studies by Wei and Pierre [15] an@thyrsson

and Pierre [16] show that the severity of vibration energy localization is to a large extent
governed by the level of structural interblade coupling, which results from the disk-blade
modal interaction. Thus, when considering a rotor design from a mistuning sensitivity
point of view, misrepresentations of the disk flexibility and structural interstage coupling
can potentially result in severely misguided conclusions.

The purpose of this paper is to make evident the importance of accurate interstage
boundary modeling through inclusion of multi-stage effects. The multi-stage effects are
demonstrated using finite element models of simplified example single- and two-stage
rotors. The paper describes important general implications of multi-stage coupling on the
free and forced vibration characteristics of tuned and mistuned configurations. Its effect
on the response in eigenfrequency veering regions is given particular attention, since the
level of structural interblade coupling, and thus the mistuning sensitivity, are manifested
by the local veering characteristics.

This paper is organized as follows. Section 7.2 introduces the simple finite element
single- and two-stage models used in this study. Section 7.3 illustrates and discusses gen-

eral implications of multi-stage dynamics in the free and forced response, with and without
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blade mistuning. Section 7.4 demonstrates more specifically the impact of disk flexibil-
ity and structural interstage coupling on the forced response in eigenfrequency veering
regions, by using single- and multi-stage models with varying interstage boundary condi-
tions and disk flexibility. Important findings and conclusions from this study are summa-

rized in Section 7.5.
7.2 Description of Example Models

Figure 7.1 depicts the simple example single- and two-stage rotor models employed
in this study. A portion of the multi-stage model has been cut out in Fig. 7.1 in order to
better illustrate the assembled geometry. The models are constructed entirely from eight-
noded brick (linear solid) elements. It should be noted that the stage geometries are very
simple, and that the finite element meshes are very coarse, compared to those of typical
industrial finite element models. However, the modeled stages still exhibit the essential
characteristics of realistic rotors, such as disk- and blade-dominated mode families and
their interactions (i.e., eigenfrequency veerings).

The stage 1 model features 12 blades, each with length 60 mm and base width 7.5 de-
grees £13 mm). The blades are slightly tapered along the radial direction, from 5 mm
thickness at the base to 2 mm thickness at the tip. The stage 2 model features 16 blades,
each with length 48 mm. The stage 2 blades are otherwise identical to those of stage 1.
The stage 1 disk has an outer radius of 1200 mm, while the outer radius of the stage 2 disk
is 104 mm. Both disks have an inner radius of 20 mm, and both disks are clamped at
their respective outward rims. The two stages are considered to be welded together at the
interstage boundary. Moreover, a uniform structural damping coefficient of 0.5% is used
for both stages in the forced response, while any viscous damping is assumed negligible.

For the mistuned results, a single random mistuning pattern is used for each stage with
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Figure 7.1: Finite element meshes for the single- and two-stage example rotor models.
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the mistuning parameter distribution depicted in Fig. 7.2. The two mistuning patterns were
sampled from a uniform distribution of mean zeyo £ 0) and standard deviation 0.5%

(0 = 0.005), where one mistuning valué,, is assigned to each blade. Note that a 0.5%
standard deviation among the blade modal stiffnesses approximately corresponds to 0.25%
standard deviation among blade natural frequencies. Blade mistuning is introduced to the

finite element models by varying Young’s modulus in the blade elements:
E,=01+0,)E, n=1,...,N, (7.1)
wheren is the blade number andl is the total number of blades in the stage.

7.3 Features of Multi-Stage Response

Before proceeding to explore the free and forced response of multi-stage assemblies,
one important feature of any multi-stage model first needs to be clarified. When study-
ing coupled multi-stage models, the concept of “tuned” bladed disks becomes question-
able. Typically, adjacent stages will not have the same number of blades (sectors), and
the cyclicity and harmonic content of adjacent stages will therefore be incompatible. As
a result, coupling of individual stages to form multi-stage rotors will inherently introduce
some level of mistuning to the system. Note that the interstage coupling induces disk
mistuning, rather than the more commonly considered blade mistuning.

For the particular model used in this work, the level of mistuning induced by the inter-
stage coupling is very small. In fact, although frequency pair splitting is readily observed,
the relative frequency split induced by interstage coupling is only on the order of 0.001%
for the investigated model. As a result, “tuned” nodal diameter mode shapes are readily
identified for both stages, while no circumferential mode localization is observed due to
the interstage-coupling-induced mistuning alone. Consequently, the notation “tuned” will

therefore still be used in this work to denote cases where blade mistuning has not been
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added explicitly. Furthermore, note that the blade number combination of the employed
two-stage model (12 and 16 blades) may be somewhat unusual in that the two stages share
several nodal-diameter symmetries. As a result, the modal interstage coupling may be
stronger and the interstage-coupling-induced mistuning less pronounced for this model

compared to models with more “incompatible” blade number combinations (e.g., prime

numbers).

7.3.1 Free Vibrations
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Figure 7.3: Deformed finite element shapes for (a) a blade-dominated mode and (b) a disk-
dominated mode, which are both globally localized onto stage 2 (lower stage).

An interesting, but not unexpected, result in the free vibrations of multi-stage assem-
blies is that most mode shapes exhibit significant (global) localization onto either stage.
While this is common for most modes, it is particularly apparent for blade-dominated

modes. As illustrative examples, the deformed meshes pertaining to (a) a typical blade-
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dominated mode shape and (b) a typical disk-dominated mode shape that feature distinct
global localization onto stage 2 are shown in Fig. 7.3. The relative stage participations for
the lower modes of the investigated multi-stage model are plotted in Fig. 7.4. The relative
participation of stage for the k'" mode,R:, is obtained from a stage-wise comparison of

strain energies:
u}{TKiu{(

M .pT p’
Zp:l u, Kpuy

Ry =

(7.2)

whereu? is the stage portion of thek™™ mode shapeK, is the stage stiffness ma-
trix; and M is the total number of stages. In this representation, it is clear that relatively
few modes exhibit significant participation of both stages, which are here denoted system
modes. In fact, for this model, system modes only occur when disk-dominated modes of
both stages are relatively close in frequency. Note that blade mistuning does not alter the
stage participation factors to any significant degree, other than that the mistuning in some
instances changes the ordering of the modes, due to slight changes in natural frequencies.
Also, note that for other models it is quite possible that significant stage-to-stage inter-
action could be observed for families of blade-dominated modes, if they are sufficiently
close in frequency for two or more stages. To physically illustrate these two fundamental
mode types, one system mode and one globally localized mode are depicted in Fig. 7.5.
The system mode in Fig. 7.5a exhibits significant participation from both stages, where,
interestingly, stage 1 (upper) features more blade-dominated motion and stage 2 (lower)
displays a more disk-dominated motion. Moreover, Fig. 7.5b illustrates a mixed disk-blade
multi-stage mode shape that exhibits significant localization onto stage 1.

The dynamic characteristics of single-stage tuned bladed disks are conveniently sum-
marized in plots of natural frequencies versus the number of nodal diameters (harmonics),
as shown in Figs. 7.6 and 7.7. This data set is essentially a subset of the traditional Camp-

bell diagram [65]. The nearly horizontal connecting lines correspond to assembly modes
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Figure 7.4: Stage 1 strain energies relative to total multi-stage strain energies for “tuned”
and blade mistuned multi-stage modes below 8000 Hz.

that are dominated by blade motion. The characteristic blade motion of each family of
blade-dominated modes is indicated on the right of Figs. 7.6 and 7.7, where: F=Flexural,
A=Axial (edgewise bending); and T=Torsion. Moreover, modes located on the slanted
connecting lines are dominated by disk motion. The rapid increase of the eigenfrequen-
cies of the disk-dominated modes is due to stiffening of the disk as the circumferential
wavelength decreases with increasing number of nodal diameters.

For sufficiently low levels of interstage-coupling-induced mistuning, the nodal-diameter
representation of single-stage free vibration characteristics may also be useful for multi-
stage assemblies. Figure 7.8 illustrates two “tuned”, blade-dominated, and globally local-
ized multi-stage mode shapes, as represented by the deflection of a single blade tip DOF.
Mode 54 is seen to exhibit significant global localization onto stage 1, whereas mode 83
is globally localized onto stage 1. Together with Figs. 7.3 and 7.5, Fig. 7.8 clearly illus-

trates the tuned-like, spatially extended characteristic observed for the multi-stage mode
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Figure 7.5: Deformed finite element shapes for (a) a multi-stage system mode and (b) a
mode globally localized onto stage 1 (upper stage).

shapes, despite the mistuning induced by interstage coupling. Hence, by examining the
multi-stage mode shapes with respect to stage participation, zero crossings (for nodal di-
ameter designation), and, for certain particularly non-obvious system modes, single-stage
versus multi-stage natural frequency proximity, the multi-stage modes could be divided
into stage 1 and stage 2 frequencies as shown in Figs. 7.6 and 7.7. It should be noted that
this identification process may be infeasible for more realistic models that may feature
both more system modes and much more complex eigenfrequency veering regions. How-
ever, the stage identification is carried out here in order to better demonstrate the effect of
interstage coupling relative to traditional single-stage analyses.

For the identified stage 1 multi-stage natural frequencies in Fig. 7.6, it is observed

that the interstage coupling does not significantly alter the global characteristics from a
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Figure 7.8: Tuned multi-stage mode shapes 54 and 83, as represented by the normalized
deflection for one DOF at each blade tip.

clamped interstage single-stage representation. Clearly, however, the disk is more flex-
ible in the multi-stage model, which is manifested by the slight shift downwards of the
disk-dominated modes. In contrast, the blade-dominated are practically unchanged. The
shift of disk-dominated modes is also observed for stage 2 in Fig. 7.7. For stage 2, how-
ever, the inclusion of multi-stage effects clearly has a more dramatic effect on the global
characteristics as well. From having a group of three relatively close families of distinctly
blade-dominated modes in the single-stage representation, the multi-stage model exhibits
the presence of a second family of disk-dominated modes in the lower harmonics of this
region, due to the added disk flexibility. This is clearly a drastic change in the free vibra-
tion characteristics that is certain to affect the stage 2 forced response for excitations in
this region.

An important implication of the modified disk flexibility is that the characteristics of

the eigenfrequency veerings are also modified. An example of an affected eigenfrequency
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veering region is highlighted in Fig. 7.6. This veering modification means that the mix-
ture of blade and disk dominance, (i.e., the disk-blade modal interaction) among the two
mode pairs representing the veering is altered. As mentioned in the introduction, this
modification of the disk-blade modal interaction may have a critical impact on mistun-
ing sensitivity. For instance, consider the mistuned single- and multi-stage mode shapes
in Fig. 7.9, which correspond in natural frequency order to the tuned multi-stage mode
shapes depicted in Fig. 7.8. As illustrated in Fig. 7.9, the stage 1 mistuned mode shapes
(mode 54) are very different for single- and multi-stage representations. However, the two
representations do exhibit similar levels of “localization”, or lack thereof. On the other
hand, the levels of localization exhibited by the mistuned stage 2 mode shape (mode 83) in
single- and multi-stage representations are vastly different. Here, the single-stage model
predicts a strongly localized mode, while the “actual” multi-stage mode shape exhibits a
much milder deviation from a tuned, spatially extended behavior. Thus, from a mistun-
ing sensitivity perspective, multi-stage dynamic analyses may be needed in order to yield
sufficiently accurate representations of disk flexibility and structural interstage coupling.

This will be explored further in the sections to follow.

7.3.2 Forced Response

The forced response examples included in this section are based on stage-wise inde-
pendent engine order excitations, which are harmonic in time and differ only in phase
from blade to blade. The engine order excitations are applied to one stage at a time. This
will isolate and better demonstrate the effects of interstage coupling, as it eliminates any
subresonances that may be induced by adjacent stage excitations. Specifically, stage 1
is subjected to an engine order 10 (10E) excitation in the frequency range 4-5 kHz, and

stage 2 is subjected to an engine order 15 (15E) excitation in the frequency range 5-6 kHz.
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Figure 7.9: Mistuned single- and multi-stage mode shapes 54 and 83, as represented by
the normalized deflection for one DOF at each blade tip.

As indicated by the employed engine orders, it is here assumed that the pressure wakes
behind the stationary vanes immediately upstream are the dominating sources of excita-
tion. Whereas this excitation may be realistic from an engine order perspective, the blade
surface force applied here is highly unrealistic: a single point load on one blade tip node
in the axial direction (axis of rotation). However, while unrealistic, it is quite adequate
for demonstrative purposes. Furthermore, note that the applied engine order excitations
are equivalent to counterrotating engine order 2 (-2E) and 1 (-1E) excitations for stages 1
and 2, respectively. Hence, the applied excitations will pass through the harmonic 2 veer-
ing region of stage 1 (see Fig. 7.6), and through the harmonic 1 region of stage 2 that
exhibited a drastic change in the free vibration characteristics due to interstage coupling
(see Fig. 7.7).

Figures 7.10 and 7.11 depict each stage’s response amplitudes resulting from the above

excitations. The amplitudes are here represented by the axial displacement magnitude
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Figure 7.10: Stage 1 forced response from engine order 10 excitation (10E=-2E), using
tuned and mistuned finite element single- and multi-stage models.

of one blade tip node for the maximum responding blade in each stage. As shown in
Fig. 7.10, the shift in disk flexibility due to interstage coupling observed in Fig. 7.6 re-
sults in a significantly changed veering response behavior for stage 1. From the tuned
response, it is clear that the added disk flexibility has moved the mode pairs comprising
the veering to lower resonant frequencies. Furthermore, the upper mode pair, which was
clearly disk-dominated in the single-stage representation, exhibits much more blade par-
ticipation in the multi-stage response. Conversely, the lower mode pair goes from being
distinctly blade-dominated to having significant disk participation. As a consequence, the
disk-blade modal interaction has changed to make the sensitivity to mistuning much less
pronounced. This is clearly demonstrated by the mistuned results depicted in Fig. 7.10,
where the maximum amplitude magnification due to blade mistuning goes from 48% in
the clamped interstage case to only 25% in the multi-stage case.

Moreover, note that even when disregarding blade mistuning, the interstage coupling
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has a very significant effect on tuned response amplitude levels. The maximum tuned
response amplitude for the single-stage model is as much as 54% larger than for the multi-
stage model. Hence, a design based on the tuned single-stage response with applicable
safety factors, would in reality (i.e., in a multi-stage assembly) enjoy an additional safety
factor in this particular case. However, it must be emphasized that the design-endangering
opposite scenario might be just as likely to occur for other models.

The stage 2 forced response depicted in Fig. 7.11 demonstrates a similarly dramatic
change in response behavior due to interstage coupling. Here, the blade-dominated har-
monic 1 mode pair at 5620 Hz has “disappeared” in favor of two more disk-dominated
mode pairs at approximately 5270 Hz and 5890 Hz, respectively. The increased disk dom-
inance leads to a maximum tuned response amplitude for the multi-stage model that is 50%
lower than that of the single-stage stage 2 model, which features a more blade-dominated

response. Note that the stage 2 excitation case exhibits negligible mistuning sensitivity for
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both single- and multi-stage representations. Also, note that the blade-dominated family
of modes at 5320 Hz does not respond to the applied excitation, since the edgewise blade
motion (1A, see Fig. 7.7) of this mode family cannot be excited by the applied force.

An interesting observation is the existence of subresonances for the multi-stage model
in both tuned and mistuned configurations. For instance, consider the subresonance ap-
pearing for stage 1 in Fig. 7.10 at 4295 Hz. At this resonant frequency, the response is
dominated by the motion of a mixed disk-blade two-nodal-diameter mode pair (modes 47
and 48 in Fig. 7.4) with a stage 1 to stage 2 participation ratio of approximately 1:4, and is
thus localized to stage 2. Hence, even though the driving excitation is applied to the least
responsive part of this pair of system modes, stage 1's mode participation is sufficient
to generate resonance. A similar instance of subresonance occurs also for stage 2 near
5310 Hz, as seen in Fig. 7.11. This observation is important, since it demonstrates that
the capture of interstage flexibility alone may not be enough — adjacent stage dynamics
may also impact significantly the “true” dynamic behavior of a stage in a multi-stage rotor

assembly.

7.4 \eering Response Sensitivity

7.4.1 Effects of Disk Flexibility

In this section, the influence of disk flexibility is investigated in more detail. This study
is motivated by the significant differences in eigenfrequency veering characteristics and re-
sponse that resulted from interstage-coupling-induced changes in disk flexibility shown in
the previous section. The effective disk flexibility is determined by design (geometry),
material, boundary conditions (interstage coupling), and operating conditions (excitation
engine orders, centrifugal stiffening). Hence, while interstage coupling has significant im-

pact as shown in the previous section, it is only one contributing factor out of several.
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Figure 7.12: Detailed view over the stage 1 eigenfrequency veering region indicated in
Fig. 7.6 (single-stage) using a pseudo-continuous interblade phase angle de-
scription for varying levels of disk flexibility (E = Young’s modulus).

However, a full-scale parametric study involving all factors is far beyond the scope of this
paper. Thus, to limit the simulation space, a clamped interstage single-stage representa-
tion of stage 1 is considered, where Young’s moduldsif the disk part is modified to
artificially simulate one or more of these factors.

Figure 7.12 shows the detailed behavior of the stage 1 model in the eigenfrequency
veering highlighted in Fig. 7.6 for different values of disk Young’s modulus. Note that
100% E corresponds to the stage 1 model used in Section 7.3. The results in Fig. 7.12
were obtained using the pseudo-continuous interblade phase angle representation outlined
in Bladhet al. [66], which enables computation of fictitious non-integer harmonic (nodal-
diameter) modes. This approach can be used effectively to obtain approximations of local
veering characteristics, such as local veering curvatures and a veering’s true distance to

an integer engine order excitation. The local lower (negative values) and upper (positive
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Figure 7.13: Upper and lower eigenfrequency curvatures in the stage 1 veering region in-
dicated in Fig. 7.6 (single-stage) using a pseudo-continuous interblade phase
angle description for varying levels of disk flexibility (E = Young’s modulus).

values) veering curvatures pertaining to the disk flexibility levels in Fig. 7.12 were com-
puted using a standard fourth order finite difference scheme and are plotted in Fig. 7.13. As
demonstrated by Fig. 7.12, the main effect of decreasing the disk flexibility (i.e., increasing
E) is to shift the location of the veering to lower interblade phase angles or nodal diame-
ters (i.e., from right to left), while the upward shift in blade-dominated mode frequencies
is marginal. This is consistent with the modifying effect of the interstage coupling on disk
flexibility observed in the previous section. Furthermore, it is clear from the resulting cur-
vatures in Fig. 7.13 that the disk flexibility variations have a rather mild effect on the local
curvatures, as the obtained maximum curvatures do not change significantly.

An important effect of the veering shift observed in Figs. 7.12 and 7.13 is that, as the
disk flexibility is decreased (i.e., increasiig, the lower integer harmonic (actual) mode

pair will go from disk-dominated (on slanted line) to blade-dominated (on horizontal line)
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Figure 7.14: Tuned stage 1 forced response from engine order 10 excitation (10E=-2E) us-
ing the single-stage finite element model for varying levels of disk flexibility
(E = Young’'s modulus).

via a mixed disk-blade mode type, and vice versa for the upper mode pair. Hence, at
some disk flexibility level, when the center of the veering is located at integer harmonic
two, both upper and lower mode pairs will be of the mixed disk-blade type. This has a
strong impact on the tuned forced response through the veering, as shown in Fig. 7.14.
As the lower mode pair goes from being largely disk-dominated to blade-dominated, its
resulting maximum blade tip response amplitudes increase monotonically, while, logically,
the opposite trend is observed for the upper mode pair response.

Interestingly, the mistuned responses depicted in Fig. 7.15 indicate that the maximum
mistuned response amplitude does not exhibit this monotonic behavior. Instead, there ex-
ists some intermediate disk flexibility level, or, equivalently, veering-excitation proximity
level, for which the amplification due to mistuning (i.e., the ratio of mistuned to tuned re-
sponse) has a local maximum. To further elucidate the significance of the veering shift, the

maximum tuned and mistuned responses were obtained as a function of closely spaced val-
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ues of disk Young’s modulus. These results are shown in Fig. 7.16, where both tuned and
mistuned responses from veering (-2E) excitation are shown to exhibit a distinct minimum
for a specific flexibility level. Looking at the resulting mistuned-to-tuned amplifications
in Fig. 7.17, it is observed that the flexibility level of minimum amplification corresponds
to the case of a perfectly centered veering. Furthermore, Fig. 7.17 clearly demonstrates
the existence of intermediate disk flexibility/veering-excitation proximity levels that yield
local amplification maxima on either side of a perfectly centered veering.

While the findings in this section are thoroughly consistent, much work remains to
get a clear picture of mistuning sensitivity, and, in particular, to get a firm basis for its
quantification. However, the findings in this section support the hypothesis that mistuning

sensitivity maxima are obtained for a delicate balance of disk and blade participation in
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the highest-responding eigenfrequency veering mode pair. It is hypothesized that signifi-
cant flexible blade motion is needed to “absorb” the engine order excitation applied to the
blades, which will then amplify the elastic differences in the blades (blade mistuning). The
disk motion is needed to communicate the vibration energy between sectors, leading to a
transfer of energy from low-responding blades to high-responding blades. For a scenario
in which the mode pair is too disk-dominated, the elastic discrepancies among the blades
will not be sufficiently amplified due to mostly disk-induced rigid-body participation of
the blades, hence the relative insensitivity to mistuning. In the other extreme, where the
mode pair is too blade-dominated, the relative insensitivity to mistuning is instead due to
the fact that sector-to-sector communication is largely disabled by the minimal disk partic-
ipation, even though the elastic blade differences are amplified. The proposed hypothesis
does not necessarily contradict existing ideas concerned with veering characteristics (lo-
cal curvature, veering-excitation proximity, etc.). However, if true, this consideration may
potentially make the issue of defining a quantitative measure of mistuning sensitivity even
more delicate. On the other hand, it may allow the analyst to more quickly identify poten-

tially “dangerous” veerings.

7.4.2 Effects of Interstage Coupling

In this section, it will be investigated whether there are some types of “standard” inter-
stage boundary conditions that will result in single-stage dynamic characteristics that could
be adequate for practical purposes. Clearly, it would be desirable to avoid multi-stage anal-
yses as far as possible, since they add significant complexity in terms of modeling, and, in
addition, make the task of interpreting the results more cumbersome.

As mentioned in the introduction, current practice is to analyze each rotor stage inde-

pendently, using a set of interstage boundary conditions that the analyst feels will best de-
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scribe the constraints imposed by adjacent stages. Typically, this implies imposing either
fully clamped conditions or axial restraints alone, or, in more elaborate cases, modeling
of adjacent stages as uniformly distributed masses and stiffnesses (to preserve cyclicity).
Clearly, the latter modeling approach will benefit from moving local boundary effects
well away from the part of interest by virtue of Saint-Venant’s principle [67]. However,

it will not take into account the incompatible harmonics of adjacent stages, and thus the
interstage-coupling-induced mistuning.

Figure 7.18 depicts the tuned natural frequencies versus the number of nodal diameters
for various plausible, “standard” interstage boundary conditions — i.e., combinations of
fixed radial (), tangential €), and axial ) directions — using the stage 1 model, plus the
corresponding results for the two-stage model. Note that the models used for this case are

the same as those in Section 7.3. As shown in Fig. 7.18, the imposed boundary constraints
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Figure 7.19: Detailed view over the eigenfrequency veering region indicated in Fig. 7.18.

yield a reasonable description of the “global” vibration characteristics of stage 1 compared
to the results obtained with the multi-stage model. However, these approximate boundary
conditions do not provide consistent representations in the eigenfrequency veerings, and
thus fail to accurately describe the interaction between families of disk-dominated modes
(slanted lines) and blade-dominated modes (horizontal lines). This unfortunate circum-
stance is clearly demonstrated in Fig. 7.19, which depicts a detailed view over the fre-
guency veering region indicated in Fig. 7.18. As shown, the upper disk-dominated mode
pair is fairly well represented by all boundary approximations, except for fully clamped
conditions. In contrast, the approximate representations of the lower mode pair exhibit
significant discrepancies from the “true” multi-stage behavior. While the fully clamped
approximation predicts an overly blade-dominated mode pair, the others predict too much
disk dominance. This is clearly a vital deficiency, since the disk-blade modal interaction

in veering regions is a critically important factor in determining a design’s sensitivity to
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mistuning, as shown in Section 7.4.1.

Figures 7.20 and 7.21 depict the forced response resulting from an excitation through
the veering in Fig. 7.19 (-2E). As expected, the upper resonance is approximated reason-
ably well by all the relaxed boundary conditions, since they also gave reasonable predic-
tions of the free modes of vibration. For the lower resonance, the approximations are well
off in terms of the resonant frequencies, which follows from the relatively wide scattering
of the predicted eigenfrequencies in Fig. 7.19. Note, however, that the relaxed bound-
ary conditions nevertheless yield reasonably accurate predictions of the maximum tuned
response, since these are disk-dominated responses. In the mistuned case, the relaxed ap-
proximations tend to exaggerate the amplification due to mistuning, but they still provide
reasonable approximations of the maximum mistuned response amplitude. Note that in
both the tuned and mistuned cases, the clamped condition does not yield responses that
are even reasonably close to the multi-stage responses. It also worth mentioning that, for
obvious reasons, the single-stage approximations are unable to display any subresonances
induced by adjacent stage dynamics exhibited by the multi-stage model.

It is realized that the model used in this study is highly simplified, and thus, it may not
be representative of multi-stage effects for more realistic models. Therefore, in an effort
to prove the findings of this study more general, two additional multi-stage cases are pre-
sented in this section, in which the stiffness of the disks and interstage rims is significantly
different from the original model. For the first case, the stiffness of the disks and interstage
rims is increased uniformly by using a Young’s modulf3 that is four times higher than
that of the original model. From plate vibration theory (e.g., Meirovitch [45]), it is found
that plate modal stiffness follow? ~ Eh?, whereh is the plate thickness. Hence, in
an approximate sense, the four-fold increase in Young's modulus corresponds to a model

with a two-fold increase in thickness for the disks and interstage rims. In the second case,
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Figure 7.20: Stage 1 tuned finite element forced responses from engine order 10 excitation
(10E=-2E) using different interstage boundary conditions, plus the “tuned”
multi-stage finite element response.
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Figure 7.21: Stage 1 mistuned finite element forced responses from engine order 10 ex-
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blade mistuned multi-stage finite element response.
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Figure 7.22: Detailed view over the eigenfrequency veering region indicated in the in-
serted plot of global free vibration characteristics (upper left). Included data
is for the tuned stage 1 rotor model using different interstage boundary con-
ditions, plus identified harmonics of the “tuned” two-stage model, with a
four-fold increase of Young’s modulus in the disk plus interstage rims.

only Young’s modulus of the disks are increased by a factor four, while the interstage rims
are unchanged. While this is clearly a very artificial way to alter a model, these two ad-
ditional cases are nevertheless believed to establish that similar interstage coupling effects
are likely to occur even though model characteristics may differ significantly.

An important observation made for both these additional cases is that the interstage-
coupling-induced mistuning here results in slight deterioration of the spatially extended
characteristic for a few blade-dominated modes of higher harmonics. Hence, the stiffer
disks increase the mistuning sensitivity of the two-stage model significantly, considering
the extremely low level of mistuning that is being induced by the interstage coupling.
Furthermore, since the eigenfrequency veering region under investigation in this section
is located at lower harmonics, the harmonics of the modes surrounding the veering are

readily identified in spite of this deterioration.
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Figure 7.23: Stage 1 tuned finite element forced responses from engine order 11 excitation
(11E=-1E) using different interstage boundary conditions, plus the “tuned”
multi-stage finite element response, with a four-fold increase of Young’s
modulus in the disk plus interstage rims.

The uniform stiffening of the entire disks leads to drastically different free vibration
characteristics, as shown in Fig. 7.22. The significantly stiffer stage 1 disk has shifted the
disk-dominated modes to higher frequencies to form a harmonic 1 veering instead of the
original harmonic 2 veering. Moreover, it is observed from Fig. 7.22 that the features of
the veering and the boundary approximations are reversed in this case. Here, the boundary
approximations exhibit significant discrepancies for the upper (disk-dominated) mode pair,
while the lower mode pair has too much blade dominance to be affected by the differing
disk flexibilities to any significant extent. Consequently, the approximations of the lower
blade-dominated resonance are tightly clustered in frequency, as depicted in Fig. 7.23.
Note, however, that all approximate boundary conditions predict similarly exaggerated
tuned maximum resonant amplitudes, overshooting the true multi-stage amplitude by 12—
21%.

When stiffening only the disks without the interstage rims, the free vibration charac-
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teristics are similar to the previous case in that the veering occurs at harmonic 1. How-
ever, upon closer examination, the local veering characteristics are found to be drastically
different, as depicted in Fig. 7.24. The more flexible interstage rims have shifted the disk-
dominated modes to slightly lower frequencies relative to the previous case. Therefore,
the veering is now comprised of an upper disk-dominated mode pair and a lower mode
pair that is very close to having significant disk participation. In this case, it is particularly
notable how well the natural frequency of the more blade-dominated lower mode pair is
approximated by the fully clamped condition, while the relaxed boundary conditions are
well off target. Recall that the fully clamped condition resulted in the worst approxima-
tions in the original disk flexibility case. However, for the upper mode pair, it is again
the clamped approximation that is the most off target. Hence, as shown in Fig. 7.25, the
clamped condition predicts the true multi-stage resonant frequency very well. However,
it is still off considerably in terms of expected maximum amplitude. The relaxed bound-
ary conditions, on the other hand, are well off target in terms of resonant frequency, and,
except for the “Fixed, z” case, well off in terms of maximum resonant amplitude as well.
The examples presented in this section demonstrate that interstage coupling and ad-
jacent stage dynamics have a significant impact on free and forced response behavior for
multi-stage rotor models with widely different characteristics. Furthermore, these exam-
ples show that there is no “standard” interstage boundary condition to be used in single-
stage analysis that will consistently yield sufficiently good approximations of true multi-
stage behavior. Rather, the performance of such boundary conditions is governed by local
veering characteristics, including disk-blade mode dominance, and can therefore only be

employed with confidence (if at all) on a case-to-case basis.
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7.5 Conclusions

This paper explored the effects of multi-stage coupling on the dynamics of bladed
disks with and without blade mistuning. Both free and forced responses of an example
two-stage finite element rotor were examined.

Several important implications of multi-stage coupling were identified in this work.
One important observation was that disk mistuning is inherent in the coupled multi-stage
system, due to different numbers of sectors for adjacent stages. Furthermore, the re-
ported work demonstrated the importance of proper treatment of interstage (stage-to-stage)
boundaries in order to yield adequate capture of a design’s disk-blade modal interaction
in eigenfrequency regions, also denoted structural interblade coupling. The modifications
to the disk-blade modal interactions resulting from structural interstage coupling effects
were found to have a significant impact on (a) tuned responses due to excitations passing
through eigenfrequency veering regions, and (b) a design’s sensitivity to blade mistuning.
Hence, the findings in this paper suggest that multi-stage analyses may in fact be required
when excitations are expected to fall in or near eigenfrequency veering regions or when
the sensitivity to blade mistuning is to be adequately accounted for.

Furthermore, the observations in this paper support the hypothesis that mistuning sen-
sitivity maxima are obtained for a delicate balance of disk and blade participation in the
highest-responding eigenfrequency veering mode pair. Significant flexible blade motion
is needed to “absorb” the applied engine order excitation, which will then amplify the
structural differences in the blades. The disk motion is needed to communicate the vibra-
tion energy between sectors, leading to vibration energy localization by partial reflections.
This consideration may allow the analyst to more quickly identify potentially “dangerous”

eigenfrequency veerings.
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The found sensitivity of eigenfrequency veering response complicates significantly the
dynamic analysis of multi-stage rotor systems. These findings suggest that multi-stage
analyses should be performed when excitations are expected to fall in or near eigenfre-
guency veering regions. However, the found sensitivity also opens up the possibility of
reducing the severity of unfavorable excitation cases by re-designing the disk(s) and inter-
stage connectivity. The relatively drastic effects of such modifications illustrated in this
work indicate that the design modifications required to alleviate veering-related response

problems may be less comprehensive than what might have been expected.



CHAPTER VIII

Reduced Order Modeling Techniques for Dynamic
Analysis of Mistuned Multi-Stage Turbomachinery Rotors

Recent findings indicate that structural interstage (stage-to-stage) coupling in multi-
stage rotors can have a critical impact on bladed disk dynamics by altering significantly
the flexibility of the disk. This affects local eigenfrequency veering characteristics, and
thus a design’s sensitivity to mistuning. In response to these findings, two reduced order
modeling techniques are presented that accurately capture structural interstage coupling
effects, while keeping model sizes at practical levels. Both free and forced responses of an
example two-stage rotor are examined using novel component-mode-based reduced order
modeling techniques for mistuned multi-stage assemblies. Both techniques employ an in-
termediate multi-stage model constructed by component mode synthesis (CMS), which is
further reduced by either: (a) partial secondary modal analyses on constraint-mode parti-
tions; or (b) a full-scale secondary modal analysis on the entire multi-stage CMS model.
The introduced techniques are evaluated using finite element results as a benchmark. The
proposed reduced order modeling techniques are shown to facilitate accurate multi-stage
modeling and analyses with or without blade mistuning, using only computationally inex-
pensive modal data from a cyclic disk sector and a single blade per stage. It is concluded

that a combination of approaches (a) and (b) is the most promising and practically feasible
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approach to the computationally efficient and accurate modeling of the dynamics of mis-
tuned multi-stage rotor assemblies. Furthermore, by alleviating the restriction to single-
stage analyses, the multi-stage modeling techniques will enable engineers to analyze the

dynamics of mistuned turbomachinery rotor assemblies with greater confidence.

8.1 Introduction

In studies of bladed disk vibration, the analyses are typically based on single-stage
models, in which the effects of adjacent stages are approximated by static interstage (stage-
to-stage) boundary conditions. Hence, the structural interstage coupling, as well as the
dynamics of adjacent rotor stages, are to a large extent ignored in such analyses. Recent
findings by Bladhet al. [1] indicate that interstage coupling can have a critical impact on
bladed disk dynamics by altering significantly the flexibility of the disk. This affects local
eigenfrequency veering characteristics, and thus interstage coupling is an important and
potentially decisive factor in determining a design’s sensitivity to mistuning. However,
while the efficient modeling of mistuned single-stage dynamics has received relatively
wide attention in the recent literature (Castargerl. [20]; Yang and Griffin [68]; Moy-
roudet al. [69]; Bladhet al. [70, 71]), the authors are not aware of any efforts to model
the dynamics of mistuned multi-stage rotor assemblies.

To improve upon this situation, the focus of this paper is on the development of two
related reduced order modeling approaches for computationally feasible dynamic analy-
ses of mistuned multi-stage rotor systems. The two introduced reduced order modeling
techniques facilitate accurate multi-stage modeling and analyses featuring blade mistun-
ing, using inexpensive modal data from a cyclic disk sector and a single blade per stage.
The techniques are quite general in that the single-stage models could be derived using

any Component Mode Synthesis (CMS) formulation, with only a minimum of modifi-
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cations. The single-stage representations employed here are based on the cyclic CMS
implementation recently developed by Bladhal. [70], which uses the classical CMS
technique formulated by Craig and Bampton [29]. Moreover, both approaches are based
on single-stage models with clamped interstage boundaries, which are coupled together
through static constraint modes for all interstage degrees of freedom. One of the proposed
formulations then utilizes partial secondary modal analyses on the disk-to-blade and the
stage-to-stage interface matrix partitions, from which truncated sets of so-called “charac-
teristic constraint modes” (see Tahal. [61]) are retained for significant further model
reduction. The second approach uses a full-scale secondary modal analysis on the entire
multi-stage CMS model, analogous to the single-stage secondary modal analysis reduction
technique (SMART) that was developed by Blasthal. [70]. It is important to note that

in both formulations, the resulting reduced order models are exclusively in generalized
(modal) coordinates. Thus, the final sizes of the reduced order models are in both cases
independent of the size of the parent finite element models, which may be of arbitrary
complexity.

This paper is organized as follows. Section 8.2 outlines the proposed reduced order
modeling formulations. Section 8.3 presents a test case in which the introduced techniques
are applied to the dynamic analysis of a simple two-stage finite element model, including
brief modal convergence studies that aid in setting up the reduced order models. The
results presented in Section 8.3 serve to validate the reduced order modeling approaches
in the free and forced response, with and without blade mistuning. Important conclusions

from this study are summarized in Section 8.4.
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8.2 Reduced Order Modeling Techniques

The proposed techniques employ as their basis a cyclic implementation of the classical
Craig-Bampton (C-B) CMS method [29, 62, 24]. The cyclic C-B implementation for
single-stage models was thoroughly outlined in Bladhal. [70], and therefore it will
not be repeated in detail. However, the subsequent multi-stage coupling mandates certain
modifications to the single-stage theory. Hence, in the following, important differences
for the single-stage CMS model are first described, followed by two related extensions to

multi-stage reduced order modeling.
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8.2.1 Single-Stage CMS Model

A tuned N-bladed disk assembly can be divided intoidentical blades (b) and one
disk component (d), where it is assumed that the disk features cyclic symmetryi.e.,
identical sectors). A disk sector and a blade component are depicted in Fig. 8.1, which also
outlines the used index notation for the components and the interfaces with neighboring
components.

The fundamental difference between the single-stage formulation in Biaalh[70]
and the current work is that the interstage degrees of freedom (DOF) must be retained
as active DOF in the multi-stage CMS model. This implies that the total set of inter-
face DOF, which is here denotéd includes the interstage DOF sets7(), in addition
to the disk-blade interface DOF sef)( Note that cyclic constraints must be applied
to those interstage DOF that are located on the fringe of the cyclic disk interfaces (see
Bladhet al. [70] for details). With this setup, the cyclic C-B component formulation given
in Bladh et al. [70] may be followed exactly by letting all partitions pertaining to the

DOF-set be sub-partitioned as:

v

T

)
In the cyclic C-B implementation, the disk motion is represented as a linear combi-

nation of cyclic normal modes of the disk component with all interstage and disk-blade
interface DOF held fixed({A4, ®1), and cyclic static constraint mode&$. The latter

mode set is comprised of the static shapes of the disk component due to successive unit
displacements of each interface DOF with all other interface DOF held fixed. The two
mode sets are obtained for all harmonics= 0, ..., P, whereP is the highest possible

harmonic for anV-bladed disk, defined a8 = int [IV/2]. Note that this implies that the
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constraint modes pertaining to the interstage DOF (a subsk}pivill also be in cyclic
format. Also, note that the “tilde” notation is used throughout this paper to indicate when
a quantity is represented in cyclic coordinates.

The transformation from physical disk coordinates to C-B cyclic disk modal coordi-

natespd, yields the C-B mass and stiffness matrices for the disk component:

I /]dc
it = 7= , (8.2)
ﬁch ﬁcc,d 0 /‘%cc,d
where

fie. = Bdiag [&’ET [Mg,ss‘i’g + Mg,sr”
h=0

..... P

- g = pT [~ = v ~hT = -
Pccd = ]?:dolag[\l'g [Mg,ss‘l’3+Mg,sr]"‘MS,SP‘I’S"‘MS,FF]

..... P

~ = g T
Reed = ]?gla% [Kg,rr + Kg,sr‘l'g] :

.....

Bdiag [¢] denotes a pseudo-block-diagonal matrix (see Appendix B), with the argument
being theh™ “block”, and the range of harmonics, is shown. Note that there is no
coupling between the harmonics due to the orthogonality of the cyclic modes. More-
over, the physicald) matrix partitions appearing in Eq. (8.2) follow the formulation in
Bladhet al. [70], with the added sub-partitioning of tliepartitions as set forth in Eq. (8.1).
The condensed matrices in Eq. (8.2) are thus the C-B representation of a disk with free in-
terstage boundaries.

In a similar fashion, the motion of each blade is represented as a linear combination
of normal modes of the blade component clamped at the disk-blade inteffaceby,),
and a complete set of static constraint modeg, Recall that the blades are assumed
identical (tuned) at this point, and that the blades are not coupled other than through the
disk (unshrouded blades). Itis therefore sufficient to look at a single blade and then expand

to the N blades in the assembly.
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The transformation from physical blade coordinates to C-B blade modal coordinates,

pP, yields the C-B mass and stiffness matrices expanded fov allade components:

I I (024 Hbe I X Ab 0
. b NCE)
I ® /’LEC I ® ,LLCC,b 0 I ® K/C(.'.,b

where

Mbc = @g [MgBlIlb + Mg,y]
feep = UF [Mpp¥y, + Mp, | + My, + MY,
Kee,b = K»ty)fy + K%T,‘I’b,
and the symbok denotes the Kronecker product (see Appendix A).

The single-stage synthesis is achieved by satisfying displacement compatibility over

the disk-blade interfaces, which leads to the constraint:
=p) = (FoD)pj =Fpj =5, (8.4)

whereF is the real-valued Fourier matrix defined in Appendix B. Enforcing this constraint,
and separating the disk’s physical interfack gartitions into interstages(r) and disk-

blade interfacey) DOF, the synthesized system matrices for a single stage have the form:

Saa Sas SO’T
S = SES Sss SST ) (85)
ST ST S

whereS is K or M. The blocks pertaining to the interstage DOF towards the next stage
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(1) are:
M,; = figr Kor = Kor
flar 0
My = | fi,, Ko =1 %) | > (8.6)
0 0
M;: = fir- K =Frr

and similarly for thes DOF. The center partition in Eq. (8.5) corresponds to the C-B con-

densed mass and stiffness matrices for a rotor stage with clamped interstage boundaries:

T g, 0
Moo = | 33 fiyya + 10 precp FT (I ® MEC)
i 0 (I® ppe) P I |
_ Ag O 0 _
K = |0 FpatI®keep O ; (8.7)
0 0 Keb
where
K, = Bdiag l(ili?g 1+ 0% Ab] . (8.8)
- Il

Note that the formulation now includes blade mistuning in the form of Eq. (8.8). Intro-
ducing mistuning this way implies that blade mistuning is modeled by offsets in modal
stiffnesses\ — or, equivalently, offsets in natural frequencies— of the blades while

fixed at the disk-blade interface (cantilevered). Furthermore, the modal stiffnesses of the
my, retained cantilevered blade modes may be mistuned individually in this formulation.
When considering variations in Young’s modulus as the only source of blade mistuning,
the mistuning parametéf is replaced by,,, which then represents the offset of Young's

modulus from its nominal value for thé® blade.
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8.2.2 Engine Order Excitation Force

In this work, the external sources of excitation on the rotor stages are assumed to be
stage-wise independent engine order excitations, which are harmonic in time and differ

only in phase from blade to blade. The phase atfhélade,y,, is then given by:

_ 27C(n —1)

— (8.9)

Yn

where(C' is the engine order of the excitation. The external force vector for one stage can
then be expressed as:

Q= VNecy1 ®f, (8.10)

whereec; isthe(C' + 1)th column of the complex Fourier matrix defined in Appendix B,
and the column vectdrcontains the forces on the interior (B) DOF of a fundamental blade.
The restriction to interior blade DOF is not an absolute requirement, but it leads to a more
compact formulation, and it should be sufficient from a practical perspective.

Projection of the blade component modés, (and ¥,,) onto the physical blade force

vector described in Eq. (8.10) while enforcing the constraints of Eg. (8.4) yields the non-
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zero modal force partitions

0
() VNEE ec1 ® OLE

Fc
VNIE eci1 @ ULf

0L S - . (8.11)
0

cb
Fb

\/Nec+1 X @Ef J
Note how orthogonality between columnskbfandF of different interblade phase angles

simplifies the modal force partition pertaining to the constraint modes.

8.2.3 Multi-Stage Synthesis

Multi-stage assembly is achieved by requiring displacement compatibility over inter-
stage boundaries. Since the interstage DOF remain in cyclic coordinates, this is satisfied
by:

X = Fiapit = PiFpl = %, (8.12)
whereF; is the real-valued Fourier matrix based on stagaumber of bladesy;. P; is a
matrix containing a set of kinematic constraint equation coefficients (i.e., multi-point con-
straints in finite element terminology), which may be required to kinematically constrain
stage: + 1's o interstage boundary DOF to their counterparts on st&ge boundary.

Keepingx! as active coordinate from Eq. (8.12), the system matrices of a synthesized
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chain of rotor stages is obtained schematically as:

] , ]
si st 0
sm= 1o st gitl sitt o |, (8.13)
0 Sirlt  gir2
L 0 .
where
.| S+ PySL P PyUSL . | PySi, 0
Si = SHE
SE.P; Si s.,. 0

Again,S isK or M, andP;, , = FT | P,F; is the interstage transformation matrix result-
ing from Eq. (8.12).

Certain important implications of the multi-stage synthesis process should be noted.
First, it is realized that adjacent stages will typically not have the same number of blades
(i.e., N;s1 # N;). Hence, in general, the cyclicity of the single-stage representations is
therefore destroyed when stages are coupled together via EqQ. (8.12). As an important con-
sequence, the coupling of the stages will thus inherently introduce some level of mistuning
to the system wheW;,; # N;. Note that the interstage coupling induces disk mistuning,
rather than the more commonly considered blade mistuning. Second, it should be noted
that for large, industrial-size models with non-matching sector finite element meshes from
one stage to the next, the constraint coefficient m&gixnay be somewhat cumbersome
to generate. On the other hand, this process should be well suited for code implementa-
tion due to stage-wise spatial repetitiveness. Alternatively, the mBtroan be avoided
altogether (i.e.P; = I) by making sure during modeling that the disk meshes match up
perfectly at the interstage boundary. However, it should be noted that this may yield im-

practically large models in cases where the numbers of blades on adjacent rotor stages are
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particularly incompatible (e.g., prime numbers).

8.2.4 Options for Secondary Condensation

The CMS model of the multi-stage rotor in its present form is not practical, since all
disk-blade interface and interstage DOF remain in the physical (finite element) domain.
For realistic models, the associated matrix partitions may be of considerable size, making
the CMS model unsuitable for comprehensive dynamic analyses. To remedy this, a sec-
ondary condensation is suggested. To this end, there are several plausible ways in which
to proceed, as outlined below.

Option 1: At first glance, it may seem plausible to use the promising full secondary
modal analysis with mistuning projection as presented for mistuned single-stage dynamics
in Bladhet al. [70] (single-stage SMART). This would yield small, manageable models of
the individual stages that could be coupled together via interstage constraint modes to form
a multi-stage assembly. However, when using fixed interstage single-stage representations,
the deformation space spanned by the disk component after the secondary condensation
is often severely limited. Typically, only a few disk-dominated modes in eigenfrequency
veering region(s) are retained in the single-stage SMART model. As a result, the model
cannot adequately represent the added flexibility of the disk in a multi-stage assembly,
despite the set of interstage constraint modes. Naturally, retaining secondary modes in
a significantly wider range to include more veerings that feature disk-dominated modes
would improve the model. Unfortunately, this would also quickly defeat the purpose of
the single-stage SMART approach.

Option 2: Perform secondary modal analyses on the partitions that remain in physical
coordinates, i.e., the constraint-mode partitions. The idea of secondary modal analyses

on the constraint-mode partitions of a traditional C-B model to form truncated sets of
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so-called “characteristic constraint modes” was recently formulated byeTah [61]

for power flow analysis. This has been shown to reduce model sizes significantly, while
retaining a high level of accuracy. In this case, there are two types of constraint-mode
partitions present in the C-B model: stage-wise cyclic partitions pertaining to disk-blade
interfaces; and general structure partitions pertaining to interstage boundaries.

Option 3: Perform secondary modal analyses on the disk-blade constraint-mode plus
disk mode partitions, and on the interstage constraint-mode partitions. This way, only
the blade modal coordinates are kept intact for direct mistuning input. However, prior
experience with this approach has shown no advantages in size or modal convergence
compared to secondary modal analyses on the disk-blade interface partitions alone.

Option 4: Perform a full secondary modal analysis on the entire C-B multi-stage
model with stage-wise modal domain mistuning projections, analogous to the single-stage
SMART approach. The final multi-stage SMART model is likely to be minimal in size and
very accurate. However, a drawback of this approach is the size of the eigenvalue problem
that needs to be solved in order to obtain the secondary multi-stage modes.

In this study, options 2 and 4 have been selected as the most promising candidates, and
their theoretical formulations are presented below. Note that in the following, option 2 is
referred to as Characteristic Constraint Modes (CCM), and option 4 as Secondary Modal
Analysis Reduction Technique (SMART). The selected reduced order modeling processes

are depicted schematically in Fig. 8.2.

8.2.5 Characteristic Constraint Modes (CCM)

The constraint-mode partition for the disk-blade interface of each stage is represented

in cyclic coordinates. Therefore, the characteristic modes of the disk-blade interface of
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Figure 8.2: Schematic representation of the reduced order modeling processes for the
Characteristic Constraint Modes (CCM) and the full Secondary Modal Analy-
sis Reduction Technique (SMART) approaches.

each stage, /™!, are obtained successively for each harmanés:

[ch,h,i L Rebhi

cc,b

cc,d

where

(-cb h i
ch,d

ppehhi

cc,d

r-cb,h i
ch,b

and correspondingly favI

— W MR+ M| [ ot =0, h=0,....P,  (8.14)

h,i h,iT = hi
Kd,w + Kd,Sv‘I’dﬁ

*hiT [\rh,i Fh,i ~rh,i “rh,iT T hi ~rhi
ol [Muks®al + Mgk, | + MES, Bal + My

i
i Hcc,b 0
Feep OF

cb,hi
cc,b -

To study the response of a limited set of blade mode families, only a relatively small

number of interface modes is usually required for adequate accuracy. Typically, it is suf-

ficient to keep interface modes that represent interface motion due to blade torsion and
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flexural motion. This mode selection may be done manually, either by inspection of vi-
sualized shapes, or by the order of the interface generalized stiffnesses (usually, lower
generalized stiffness implies more “fundamental” interface motion). As a third option, the
modes may be selected in a more automated fashion via the commonly used Modal As-
surance Criterion (MAC) [63]. This implies selecting the modes based on how well they
conform with the global C-B eigenvectors of interest. The selected interface modes are

collected into a cyclic modal matrigs:

cc!?

and the corresponding eigenvalues are collected
into a diagonal generalized stiffness matﬁigqj.

In a similar fashion, truncated sets of characteristic constraint modes are obtained for
all the stage-to-stage interfaces in the multi-stage C-B model. From the definitions in

Egs. (8.2), (8.6), and (8.13), the eigenvalue problems take on the form:
K+ P KL Py - w? M+ P ML, P vl = 0. (8.15)

Note that these partitions have no cyclic properties, except in the speciaVgaséy;_;.

The selected characteristic interstage constraint modes are collected into a modal matrix
¥si and the corresponding eigenvalues are collected into a diagonal generalized stiffness
matrix As:.

The columns of@%! and ¥ represent, respectively, reduced bases for the motion
of the disk-blade and stage-to-stage interfaces pertaining td"teage. This gives sec-
ondary modal expansions of tifi¢ andpi portions of the C-B generalized coordinates
asp. = ¥%gl andp! = ¥iql, respectively, which yield the reduced CCM multi-stage

representation:

Mp, +Cp. + (1+Gj)Kp, =F,, (8.16)
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whereS denotes either masa/), viscous damping(), or stiffness [); andU is either

force (') or displacementy). The details of the vector partitions above that pertain to

stagei are expressed as:
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(8.18)

Note that only characteristic disk-blade interface constraint modes of harmgeicin-

volved in the secondary modal force projection, whedenotes the considered excitation

engine order. Correspondingly, the matrix partitions pertaining to stagey be written

as:
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0 000
B 00O
_ (8.19)
00
Sym L@ diag 2] /AL
i k=1,..., mp -
Ci = 0
A0 WETPYRL U 0
Ky = :
Azl 0
Gy K3y
P{'Fo, 000
. 0 00O
Kl = ~ T - i ,
Wil R, P 0 000
0 00O
where
K = Bdiag ldiag [1+5Z’i] ALl
n=1,..,N; | k=1,..., mp

i =I® i ; and¢* is the viscous damping coefficient associated withittieblade
component mode for stage

Note that the above equations of motion are written for frequency-domain solutions
for a single excitation engine order component at a time. By virtue of the orthogonality of
integer Fourier time-harmonic components [72], frequency domain solutions for different
engine orders may be linearly superposed in the time domain as

p(t) =D D, (8.20)

ces
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wheref is a set of excitation engine orders under consideration,.and the angular
rotor speedp(t) represents the combined forced response in generalized coordinates of a
multi-stage rotor assembly subjected to multiple engine orders of excitation, from which

maximum response amplitudes may be determined.

8.2.6 Full Secondary Modal Analysis (SMART)

The multi-stage SMART model is obtained by performing a full-scale secondary modal
analysis on the entire multi-stage C-B model. The secondary modal analysis is then based
on those modes that fall within a frequency range of interest for the dynamic analyses.
Since the blade modal coordinates will not be retained explicitly, this approach requires
projection of blade mistuning data. However, since the intermediate C-B representation
provides direct access to blade modal stiffnesses, this projection is carried out inexpen-
sively in the low-order modal domain.

The first step is to obtain the secondary modes from which to form the new reduced

basis. This is done using the entire C-B multi-stage model from Eq. (8.13) as:
K™ = WM™t = 0, (8.21)

The next step is to select a small subset of the obtained multi-stage modes. This subset
is then used to form a further reduced order model by classical modal analysis. In the
typical case, the analyst is likely to focus on a particular family of blade modes and/or
specific eigenfrequency veerings that are deemed critical due to engine operating condi-
tions for one stage at the time. The mode selection is then based on a frequency range
that encompasses the blade mode family (or families) of interest. Hence, the number of
modes needed, and thus the size of the multi-stage SMART model, can be taken to be as
low as on the order of the number of blades in the stage under investigation. However, it

is important to note that all harmoniés= 0, ..., P must be present for the investigated
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stage in the secondary mode set, in order to form an adequate basis for mistuned mode
shapes. The constraint-mode portions of the selected mode sh§pesge collected into
a modal matrixUs:c, while the normal-blade-mode portionsg},, are collected intdJsP.
The associated eigenvalues are collected into a generalized stiffness Ajatrix

As shown in Eg. (8.8), mistuning is represented in the C-B model by perturbing the
diagonal elements of the normal-blade-mollg) partition for each stage. These diagonal
elements represent the individual modal stiffnesses for each cantilevered blade mode of
each blade in a rotor stage. Using the selected modes as the basis for the secondary modal
expansion, mistuning enters into the SMART model by projecting these modal stiffness
perturbations onto the selected modes of the multi-stage assembly. Hence, the mistuning

projection for stage takes the form:

AL = UsPi"Bdiag ldiag [557] AL] Usbi, (8.22)

n=1,..., N; k=1,...,my ;

Note that only the mode shape portions pertaining to the blade normal modes fof stage
are involved in the projection.
With the mistuning projection in place, the SMART multi-stage model may be formu-
lated as
M .
q+Coa+ (1+Gy) lA;+ZAI€;‘] q=F3, (8.23)
=1

where

Chn = % Ushi” [I ® diag [2{'”] \/KL] Usbi
1=1 k= )

=1,..., my, i

M
T . T b.i
Fs — j :Ufr,lc,l ng,l +Uf121b,1 FE ,17

=1

andM is the total number of stages included in the model. Note that the stiffness deviation
projection matricesA XS, do not possess any particular matrix structure other than sym-

metry. Thus, in general, the multi-stage SMART stiffness matrix becomes fully populated
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when mistuning is introduced. As for the CCM model, the stated SMART multi-stage
equations of motion are intended for frequency-domain solutions for a single excitation
engine order component at a time. The linear time domain superposition for multiple

engine order response is analogous to Eg. (8.20).

8.3 Test Case: Simple Two-Stage Rotor Model

In this section, the derived reduced order modeling techniques are validated in the free
and forced response, both with and without blade mistuning. The technique validation is
carried out using full finite element solutions as benchmarks to assess the performances
of the CCM and SMART approaches. Figure 8.3 depicts the example single- and two-
stage rotor models, where a portion of the multi-stage model has been cut out in order to
better illustrate the assembled geometry. These finite element models, as well as the free
and forced response samples used in validating the techniques, are the same as those used
in Bladh et al. [1]. The reader is therefore referred to Blagthal. [1] for details on the
finite element models, as well as on the employed mistuning implementation and blade
mistuning patterns. It should be noted that the stage geometries are very simple, and that
the finite element meshes are very coarse, compared to those of typical industrial finite
element models. However, the modeled stages still exhibit the essential characteristics of
real rotors, such as disk- and blade-dominated mode families and their interaction (eigen-
frequency veerings). Also, since the reduced order models are derived from these same
parent finite element models, the unrealistic appearance of the models is not an issue for

technique validation.

8.3.1 Setup of CCM and SMART Reduced Order Models

To construct the reduced order models in a more rigorous manner, brief modal con-

vergence studies were conducted. The modal convergence studies also aid in exposing
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Figure 8.3: Finite element meshes for the single- and two-stage example rotor models
(from Bladhet al. [1]).

important properties of the proposed reduced order modeling techniques. The adopted
convergence measures are the mean and maximum of the frequency errors relative to the
tuned single- or multi-stage finite element models (as appropriate) for all obtained natural
frequencies below 8000 Hz.

Figure 8.4 depicts the single- and multi-stage modal convergence trends for proportion-
ally increasing number of retained disk and blade component normal modes in the primary
single-stage CMS models. Note that the results for the multi-stage model are here obtained
with the full sets of interface DOF in physical coordinates. Clearly, the single-stage rep-
resentations quickly converges to very low error levels by using only a few of the lower
component normal modes. However, while adequate for most engineering applications,
the error level of the multi-stage model is disproportionately higher. This is likely a result

of using fixed interstage disk components. While retaining only a few of the lower disk
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Figure 8.4: Single- and multi-stage modal convergence: mean and max relative frequency
error below 8000 Hz as a function of retained component normal modes in the
primary CMS model.

modes as is done here, the motion of the disk near the interstage boundaries is essentially
described through the interstage constraint modes alone. Clearly, this is not sufficient to
make the multi-stage accuracy comparable to that of single-stage representations. Hence,
in order to properly span the expanded deformation space required by the now flexible in-
terstage region, the multi-stage model would likely benefit significantly from higher-order
disk modes. Unfortunately, this would also increase model sizes beyond practical limits.
A possible remedy could be to use a formulation that employs free interstage disk compo-
nent modes. However, free interstage disk component modes may prove to give adverse
effects by instead exhibiting too much motion in interstage regions relative to the motion

in remaining portions of the disk component. The free interstage option is not considered
in this work, but this is clearly a topic for future investigations.

Based on the multi-stage modal convergence in Fig. 8.4, a total of 9 component modes



T T T T T T T T T T T T

—6— Mean: Disk-Blade

10" F O—‘—Q‘ —&— Mean: Interstage H

\ © - Max: Disk-Blade
\ € - Max: Interstage

\UE—O— ® Max Error of ]
\ = CCM Model

\
N

\

| ’

G-e-e-Brwogoe o
C-B Base Max Error

® Mean Error of ]
CCM Model

Relative Frequency Error [%]

C-B Base Mean Error

10 °F

1 2 3 4 5 6 7 8 9 10 11 12
Number of Characteristic Constraint Modes per Stage Sector

Figure 8.5: Modal convergence of multi-stage CCM model: mean and max relative fre-
quency error below 8000 Hz as a function of retained disk-blade interface and
interstage characteristic constraint modes.

(3 disk plus 6 blade modes) per stage sector are chosen for the CCM model, while 22 com-
ponent modes (10 disk plus 12 blade modes) per stage sector are chosen for the SMART
model. It is realized that this discrepancy may result in unfair comparisons between the
two models, but these choices are based on practical considerations: the number of re-
tained component modes has a direct impact on the size of the final CCM model, whereas
the size of the SMART model is determined by the number of retained secondary system
modes. Hence, for the SMART model, only the size of the secondary eigenvalue prob-
lem is affected by the number of retained component modes, and solving this eigenvalue
problem is a one-time effort.

Figure 8.5 shows the obtained modal convergence for the multi-stage CCM model for
an increasing number of retained characteristic constraint modes. The error levels obtained

without any truncation of characteristic constraint modes (i.e., with full, physical-domain
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interface partitions) are indicated in the plot as “C-B Base” errors, which correspond to
the multi-stage errors in Fig. 8.4, using 9 component modes. The convergence trends are
studied separately for disk-blade interface and interstage secondary condensations. Hence,
one partition type is kept intact (full) while condensing the other. It is observed from
Fig. 8.5 that there is a notable difference in modal convergence rates between the two types
of partial secondary condensation. The rapid convergence exhibited by the characteristic
disk-blade interface constraint modes is explained by the fact that a vast majority of the
compared modes (i.e., all modes below 8000 Hz) are blade-dominated. The accuracy of
these modes is heavily dependent on how well the motion over the disk-blade interface
is captured. Hence, any improvement in the disk-blade interface representation resulting
from an increased number of retained characteristic disk-blade interface constraint modes
leads to a dramatic reduction of the total error level. Moreover, it is clear from Fig. 8.5 that
the higher-order characteristic constraint modes provide only very marginal contributions
to the disk-blade interface representation in the considered frequency region. As shown,
the rate of modal convergence slows down considerably beyond the first six modes, which
is a positive indication of the suitability of this type of partial secondary condensation.

It is further noted that the errors induced by truncating interstage characteristic con-
straint modes appear to be relatively small. This is due to the relatively mild effect overall
on the natural frequencies from the interstage coupling, relative to the clamped interstage
single-stage representation (see Blatll. [1]). In particular, blade-dominated modes ex-
perience almost no shift in frequency at all. Hence, when looking at the error levels alone,
it may seem acceptable from a practical perspective to use only one or two interstage char-
acteristic constraint modes per stage sector. However, this would yield extremely poor
representations of what occurs in the frequency veering regions when introducing inter-

stage coupling. Closer examination of mode participation reveals that it may be critically
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important to have the retained fixed interstage disk component modeslanterstage
constraint modes available when reconstructing the motion of the multi-stage assembly.
As will be shown later on, rather subtle changes in the veering regions may lead to qual-
itatively altered responses. It is therefore concluded that a secondary condensation of the
interstage partitions may not be a recommended approach.

Based on the convergence trends in Fig. 8.5, a total of 6 characteristic constraint modes
per stage sector were retained in the CCM model for both disk-blade interface and inter-
stage partitions. The resulting mean and max errors for this configuration are included in
the right-hand portion of Fig. 8.5. Assuming that the modal convergence trends observed
for this particular model hold true also for more elaborate industrial models, the final size
of a CCM model can be expected to be a minimun@oﬁlo M Ni), whereN; is the
number of blades on stageand M is the number of included stages. In contrast, the
final size of the SMART model may be selected to be as lo® &3/;), depending on the
scope of the dynamic analyses to be performed. The sizes of the various finite element
and reduced order models used in this study are listed in Table 8.1. It is observed from
Table 8.1 that the model reductions achieved for the highly simplified multi-stage model
in Fig. 8.3 are relatively modest. However, it should be noted that the developed reduced
order models are entirely in modal coordinates. An important implication of this is that
the reduced model sizes are completely independent of the size of the parent finite ele-
ment model. It must therefore be emphasized that the reduced order models will remain
practically unchanged in size regardless of the levels of parent finite element model mesh
refinement and geometry sophistication. Hence, far greater and more impressive model
size reductions would result for more realistic, industrial-size models.

Finally, note that the partial secondary condensation is not used in the multi-stage

SMART model in the form it is presented in this paper. However, the modal convergence
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Model FEM | CCM | SMART

Stage 1 | 3168 | 180 | 14 (4-5kHz)

Stage 2 | 3360| 240 |32 (5-6 kHz)

Multi-stage| 6816 | 588 | 50 (4-6 kHz)

Table 8.1: Finite element and reduced order model sizes (DOF).

trends presented in Fig. 8.5 indicate that it may be advantageous to perform a secondary
condensation of the disk-blade interface partitions before performing a fullterbiary,

modal analysis on the entire multi-stage model. In fact, such an approach may even be
required for models that include many stages and/or contain sector finite element models

with highly detailed interface portions.

8.3.2 Free Vibrations

The tuned characteristics of the single-stage models are first considered, since they will
serve as references when examining the results obtained for the multi-stage model. The
dynamic characteristics of single-stage tuned bladed disks are conveniently summarized in
plots of natural frequencies versus the number of nodal diameters (harmonics), as shown
in Figs. 8.6 and 8.7. This data set is essentially a fixed rotor speed subset of the traditional
Campbell diagram [65]. In this representation, the modes on nearly horizontal connecting
lines correspond to assembly modes that are dominated by blade motion. The character-
istic blade motion of each family of blade-dominated modes is indicated on the right of
Figs. 8.6 and 8.7, where F=Flexural; A=Axial (edgewise bending); and T=Torsion. The
modes on slanted connecting lines correspond to disk-dominated modes. The rapid in-
crease of the eigenfrequencies of the disk-dominated modes is due to stiffening of the disk
as the circumferential wavelength decreases with increasing number of nodal diameters.

Figures 8.6 and 8.7 further demonstrates the excellent agreement between the “bench-
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Figure 8.6: Natural frequencies versus number of nodal diameters for the tuned stage 1
model with fixed interstage boundaries, as obtained with finite element and
reduced order models.

mark” finite element results and the results of both single-stage reduced order models. In
fact, the results are indistinguishable in these plots. Recall from Section 8.3.1 that the two
single-stage reduced order models use different sets of retained component modes, and, in
addition, the CCM model use only a truncated set of characteristic constraint modes for
the disk-blade interface. Clearly, the more severe mode truncation of the CCM model does
not degrade visibly its single-stage representation in the depicted frequency range.

Turning the attention to the multi-stage model, there are certain features of multi-
stage assemblies that first need to be addressed. As mentioned previously, the concept of
“tuned” bladed disks generally becomes questionable when individual stages are coupled
together, due to incompatible cyclicity properties of adjacent stages. However, the level of
mistuning induced by the interstage coupling is very small for this model, and, as a result,

“tuned” nodal diameter mode shapes are readily identified for both stages. Hence, the
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Figure 8.7: Natural frequencies versus number of nodal diameters for the tuned stage 2
model with fixed interstage boundaries, as obtained with finite element and
reduced order models.

“tuned” designation will still be used in this work to denote cases where blade mistuning
has not been added explicitly.

The retained tuned-like, spatially extended characteristic of the “tuned” multi-stage
mode shapes is clearly demonstrated in Fig. 8.8, which depicts two “tuned” blade-dominated
multi-stage mode shapes, as represented by the deflection of a single blade tip DOF. While
no stage-wise, or local, mode localization occurs, an interesting observation from Fig. 8.8
is that the depicted mode shapes exhibit significant (global) localization onto either stage.
In this particular case, mode 54 is seen to exhibit significant global localization onto
stage 1, whereas mode 83 is globally localized onto stage 2. This global localization
is common for most modes of the employed multi-stage model. For this model, modes
that exhibit significant participation of both stages, which are here denoted system modes,

only occur when disk-dominated modes of both stages are relatively close in frequency.
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Figure 8.8: “Tuned” multi-stage mode shapes 54 and 83, as represented by normalized
single blade tip DOF deflections for both stages.

Moreover, note the accurate “tuned” multi-stage mode shape representations of both CCM
and SMART reduced order models. The relative blade deflections, as well as the de-
grees of global localization, are well captured by both techniques. Note that even though
the depicted mode shapes have the appearance of being spatially extended, they differ
from perfectly tuned, cyclic single-stage mode shapes in one important aspect. Namely,
while the circumferential position of a perfectly tuned, cyclic mode shape is arbitrary, all
multi-stage mode shapes, no matter how tuned-like, are fixed circumferentially due to the
interstage coupling-induced mistuning. Hence, the slight discrepancies seen for mode 54
that may appear to be a simple circumferential shift are in fact shape errors. This circum-
stance is also evidenced by the nearly perfect matches for the blades experiencing the peak
deflections.

As indicated by Fig. 8.8, the nodal-diameter representation of single-stage free vibra-

tion characteristics can be used also for multi-stage assemblies, provided that the levels
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of interstage coupling-induced mistuning are sufficiently low. Hence, by examining the
multi-stage mode shapes with respect to global stage localization and zero crossings for
nodal diameter designation, the multi-stage modes can be divided into stage 1 and stage 2
modes. This mode identification process was carried out for FEM, CCM, and SMART
multi-stage models, and the results are shown in Figs. 8.9 and 8.10. It is clear from
Figs. 8.9 and 8.10 that both CCM and SMART reduced order models do an excellent
job in capturing the important effects of the increased flexibility in the interstage region,
when compared to clamped interstage single-stage representations. Both approaches yield
multi-stage natural frequencies that are virtually indistinguishable from the benchmark fi-
nite element solution. Only very slight offsets can be seen for the CCM model for the
disk-dominated harmonic 1 modes in the 4—6 kHz region for both stages. These discrep-
ancies will also manifest themselves in the forced response samples later on. Since this
paper focuses on the reduced order models and their performance, the reader is referred
to Bladhet al. [1] for further discussions on the important effects of structural interstage
coupling displayed in Figs. 8.9 and 8.10.

Finally, two examples of mistuned multi-stage mode shapes are depicted in Fig. 8.11.
These two modes correspond in natural frequency order to the “tuned” multi-stage mode
shapes depicted in Fig. 8.8. The blade mistuning has clearly destroyed the spatially ex-
tended characteristic exhibited by the corresponding “tuned” mode shapes. However, the
response of each stage does not exhibit significant localization. Note that the global lo-
calization onto either stage remains largely unchanged from Fig. 8.8 for both modes. The
performances of the CCM and SMART reduced order models are consistent with earlier
results. The CCM mode shapes conform well with finite element mode shapes, but they
do not match the exceptional accuracy of the SMART mode shapes. Note from Table 8.1

that the SMART model achieves this accuracy while being less than 10% the size of the
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Figure 8.11: Mistuned multi-stage mode shapes 54 and 83, as represented by normalized
single blade tip DOF deflections for both stages.

CCM model.
8.3.3 Forced Response

The forced response samples are based on stage-wise independent engine order exci-
tations. In one simulation, stage 1 is subjected to an engine order 10 (10E) excitation in
the frequency range 4-5 kHz. In a separate simulation, stage 2 is subjected to an engine
order 15 (15E) excitation in the frequency range 5-6.2 kHz. The applied blade force is
a single point load on one blade tip node in the axial direction (axis of rotation). This
blade force is clearly unrealistic, but it is adequate for demonstrative purposes. Further-
more, note that the applied discrete blade-to-blade engine order excitations are equivalent
to counterrotating engine order 2 (-2E) and 1 (-1E) excitations for stages 1 and 2, respec-
tively. Hence, the applied excitations will pass through the harmonic 2 veering region of

stage 1 and the harmonic 1 region of stage 2 (see Figs. 8.9 and 8.10). For bounded re-
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Figure 8.12: Tuned stage 1 forced response from engine order 10 excitation (10E=-2E)
using finite element and reduced order single- and multi-stage models.

sponses, the structural damping coefficient is arbitrarily taken @ be 0.005 (0.5%),
while viscous damping is assumed negligible.

Figure 8.12 depicts the tuned response amplitudes experienced by the stage 1 blades.
The amplitudes are here represented by the axial displacement magnitude of one blade
tip node for the maximum responding blade in the stage. As shown in Fig. 8.12, the
increased disk flexibility due to interstage coupling results in a significantly changed veer-
ing response behavior for stage 1 by moving the mode pairs comprising the veering to
lower resonant frequencies. The upper mode pair, which was clearly disk-dominated in
the single-stage representation, exhibits much more blade participation in the multi-stage
response. Conversely, the lower mode pair goes from being distinctly blade-dominated
to having significant disk participation. As a consequence, the sensitivity to mistuning is
much less pronounced for the multi-stage model (25% versus 48% amplitude magnifica-

tion), which is evident from the mistuned response in Fig. 8.13.
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using finite element and reduced order single- and multi-stage models. The
tuned stage 1 finite element single- and multi-stage responses are included
for reference.

There is a notable difference in accuracy between both tuned and mistuned CCM and
SMART reduced order models. The overly stiff CCM model provides a more blade-
dominated response at maximum resonance, which leads to an overestimated maximum
resonant amplitude. The predicted maximum tuned and mistuned multi-stage resonant am-
plitudes are within 0.4% for the SMART model, but only within 6% for the CCM model.
Note that the corresponding accuracy levels for the single-stage SMART and CCM rep-
resentations are 0.04% and 0.2%, respectively. Furthermore, an interesting observation in
Figs. 8.12 and 8.13 is that, while resonant frequencies and amplitudes are extraordinar-
ily well captured by the SMART model, well superior to the CCM model, the SMART
model’s off-resonance behavior is less accurate than that of the CCM model. Clearly,
the minimal SMART model does not contain the necessary information to yield adequate

capture of the quasi-static off-resonance response. However, this information appears to
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Figure 8.14: Tuned stage 2 forced response from engine order 15 excitation (15E=-1E)
using finite element and reduced order single- and multi-stage models.

be carried by the larger CCM model. This cannot be viewed as a serious deficit of the
SMART model, however, since the primary target is typically to obtain the best possible
estimate of maximum resonant amplitude, and the SMART approach is clearly unmatched
in this regard. Also, note that this behavior is distinctly different from the single-stage
response, where both reduced order model responses closely follow the finite element so-
lution both at and off resonance. Furthermore, note that both reduced order models provide
indications of the subresonance occurring at 4295 Hz, which is a phenomenon specific to
multi-stage response (see Blagtal. [1]).

The tuned and mistuned stage 2 forced responses depicted in Figs. 8.14 and 8.15
demonstrate an even more dramatic change in response behavior due to interstage cou-
pling. Here, the blade-dominated harmonic 1 mode pair in the clamped interstage single-
stage representation has been replaced by two more disk-dominated mode pairs. Conse-

guently, the maximum resonant amplitudes for the multi-stage model are much lower than
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Figure 8.15: Mistuned stage 2 forced response from engine order 15 excitation (15E=-1E)
using finite element and reduced order single- and multi-stage models. The
tuned stage 2 finite element single- and multi-stage responses are included
for reference.

those of the single-stage model. Note that stage 2 exhibits negligible mistuning sensi-
tivity for both single- and multi-stage representations. The performances of the CCM and
SMART models follow the trends seen in the stage 1 responses, although the differences in
accuracy and off-resonance behavior are even more pronounced in the stage 2 responses.
As mentioned in Section 8.3.2, the harmonic 1 multi-stage CCM modes in the considered
frequency region are slightly off target. This inaccuracy becomes quite obvious in the de-
picted responses, where the multi-stage CCM model is significantly stiffer than the parent
finite element model. Meanwhile, the SMART model yields excellent predictions of both
tuned and mistuned multi-stage maximum resonant amplitudes (within 1%), while, again,
providing a less accurate prediction of the off-resonance behavior.

It is obvious from the included forced response samples in Figs. 8.12—-8.15 that the

guality of the CCM model is inferior to that of the SMART model. This is largely due to
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the restrictions on the interstage deformation space imposed by the truncated set of char-
acteristic interstage constraint modes. Unfortunately, the only viable remedy is to keep
all interstage DOF in the CCM model, and this will render the CCM model completely
unsuitable for any comprehensive dynamic response analyses. In contrast, the use of trun-
cated sets of characteristic disk-blade interface constraint modes does not have nearly as
adverse effects on the model quality. It is therefore concluded that using a SMART ap-
proach, in combination with characteristic disk-blade interface constraint modes in the
intermediate CMS model, is the most promising and pragmatic approach to the compu-
tationally efficient and accurate modeling of the dynamics of mistuned multi-stage rotor

assemblies.

8.4 Conclusions

This paper explored the feasibility of reduced order modeling of multi-stage bladed
disk dynamics, with and without blade mistuning. Both free and forced responses of
an example two-stage rotor were examined using novel component-mode-based reduced
order modeling techniques for mistuned multi-stage assemblies. Two approaches were
investigated: (a) partial secondary modal analyses on constraint-mode partitions; and (b) a
full-scale secondary modal analysis on the intermediate multi-stage model constructed by
component mode synthesis. Finite element results were used as a benchmark to validate
the introduced techniques.

The two introduced reduced order modeling approaches were shown to facilitate multi-
stage modeling and analyses featuring blade mistuning, using only computationally inex-
pensive modal data from a cyclic disk sector and a single blade per stage. Approach (a)
resulted in good approximations of multi-stage free and forced responses. However, the

relatively large size of the reduced order model using this approach may be impractical
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for comprehensive dynamic analyses when the number of included stages increases. In
contrast, approach (b) was shown to yield exceptionally small reduced order models that
produced extremely accurate results in the free and forced response. The drawback of
this approach is that the secondary eigenvalue problem may be of considerable size for
more expansive models. Thus, it was concluded that a combination of the two approaches
(a) and (b) is the most promising and practical approach to the computationally efficient
and accurate modeling of the dynamics of mistuned multi-stage rotor assemblies. For this
combined approach, it is proposed that a secondary condensation of the disk-blade inter-
face partitions be performed by means of characteristic constraint modes, followed by a
tertiary modal analysis on the entire multi-stage model.

The computational tools developed in this work will enable engineers to analyze the
dynamics of mistuned multi-stage rotor assemblies with greater confidence by properly

accounting for the interstage boundary conditions.



CHAPTER IX

Current Topics in Bladed Disk Modeling

This chapter presents two topics that have been the subjects of preliminary investi-
gations pertaining to the modeling of mistuned bladed disk vibrations using component
mode synthesis (CMS). Finite-element-based CMS techniques are popular tools used in
structural dynamics analyses of complex structures for a wide array of applications. In
CMS, the original structure is subdivided into smaller substructures, or components, for
which normal modes are computed independently, and more inexpensively. The assem-
bled system is then represented by a truncated set of component modes through necessary
compatibility constraints applied in a systematic fashion. The result is highly-reduced
order models based on parent finite element models of arbitrary complexity. CMS tech-
nigues are usually characterized by the manner in which the component normal modes are
computed: (a) with fixed interfaces; or (b) with free interfaces. This order also happens to
coincide with the CMS development timeline (see Chapter I: Introduction). For surveys on
the development of CMS techniques, the interested reader is referred to the survey papers

by Craig [24] and by Seshu [25].

226
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9.1 Numerical Instability of Classical Free-Interface Component Mode
Synthesis Techniques

In general, the classical CMS methods perform very well, yielding reliable results
with highly-reduced order models. However, in this section it is shown that while the
fixed-interface CMS technique of Craig and Bampton [29] is highly robust and stable
in every aspect, the classical free-interface CMS methods incorporating residual effects
as formulated by Rubin [32] and by Craig and Chang [33] do have “built-in” numerical
instability. As far as the author is aware, this important and unfortunate circumstance has
not been documented in the open literature. The numerical instability occurs when there
are only very small residual contributions (i.e., for large numbers of retained component
modes), due to matrix ill-conditioning. This matrix ill-conditioning appears abruptly and
can have a devastating effect on the accuracy of these methods, as any likeness to the
behavior of the parent finite element model vanishes entirely. Moreover, there are no
means of determining the onset of these numerical probéepmri.

The numerical instability is not a concern for most engineering applications, where
only a very small fraction of the total number of component modes is retained. However,
it may be critically important to keep this in mind in certain special cases. Specifically,
in the context of mistuned bladed disk modeling employing the secondary modal analysis
reduction technique (SMART) developed by Blagtral. [70, 71], the primary purpose of
using CMS is to cast the model in a form that is better suited for input of blade mistuning,
rather than to achieve model reduction. Hence, for simpler “academic” models used in
parameter studies, where high model accuracy is desired, the number of retained modes
may well approach or even go beyond this unknown stability limit.

The numerical instability is demonstrated using a simple three-dimensional, two-component

finite element model with two different boundary conditions. The two different boundary
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Mode #3: 341.4 Hz Mode #4: 420.6 Hz

Figure 9.1: Deformed finite element meshes for the four lowest modes of the fixed-tip
two-component test model.

conditions serve the additional purpose of demonstrating the unavoidable approximation in
the case of an unconstrained component (i.e., a component featuring rigid-body modes).
Furthermore, a rather modest modification to the Craig-Chang formulation is presented
that alleviates the numerical instability suffered by the classical free-interface CMS tech-

nigues.

9.1.1 Test Model Description

The used test model is depicted in Figs. 9.1 and 9.2, which show the deformed meshes
for the four lowest modes when the non-interfacing end face of the smaller component
(6; right) is free and fixed, respectively. The model is constructed from second-order
brick elements (20-noded solids), and the two-component substructuring is shown in the
figures. The total number of unconstrained degrees of freedom (DOF) is 651 for the fixed-

tip model, and 675 for the free-tip model.
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Mode #1: 34.1 Hz Mode #2: 121.2 Hz
Mode #3: 154.5 Hz Mode #4: 228.7 Hz

Figure 9.2: Deformed finite element meshes for the four lowest modes of the free-tip two-
component test model.

It is assumed throughout the following that the unconstrained DOF of each component
are partitioned into interior) DOF and interfacel{) DOF. Hence, the physical (i.e., finite
element) mass and stiffness matrices and the displacement vectorettmponent are

represented as:

MO — MAa Mar Ko — Kaa Kar <O XA , (9.1)
OCT [0 aT (0% [0
Mar Mgpr Kar Kir Xr

and similarly for the3-component.

9.1.2 Classical CMS Formulations in Brief

e Fixed-Interface Method: Craig-Bampton.The Craig-Bampton (C-B) method has been
used extensively in previous chapters, but the main results are restated here for conve-
nience. The C-B method uses as component modal basis a truncated set (k) of component
normal modes of vibrationX,®), where the interface DOF are held fixed, and a complete

set (c) of static constraint mode®) induced by successive unit deflections of each inter-
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face DOF, while all other interface DOF are held fixed. This results in a transformation to

C-B generalized (modal) coordinatgs) @s:

X = = = Up. (9.2)

Using this modal basis, the condensed C-B ma$sa(d stiffness«) matrices for each

component become:

I Hkc A O Px
p= K= p= : (9.3)

fie  Hee 0 Fee Pe
where
fee = ®T[Maa¥ + Mar]
fee = PT[Maa¥ + Mar] + MArY + Mrr
kee = Kpr+KAp®.

The component assembly, or synthesis, is achieved by satisfying displacement com-

patibility over the component interfaces (i.e$ = x5), which becomes from Eq. (9.2):

xg = p% = pe = p = x}. (9.4)

This constraint equation leads to the synthesized C-B representation of a two-component

structure:
r T r T 4 \
I a0 A 00 pg
MOB = | o™ o b s | K =] 0 w24kl 0 p°® =1 p.
0 . 1 0 0 AP Pi |
(9.5)

e Free-Interface Method with Residual Flexibility: Craig-Chang. The Craig-Chang

(C?) method uses as component modal basis a truncated set (k) of component normal
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modes of vibration A,®), where all the interface DOF are free. A complete set (d)

of residual attachment mode¥) are then used to supplement the normal modes. The
residual attachment modes represent purely computational shapes induced in the residual
structure (i.e., after removing the flexibility represented by the retained normal modes) by
successively applied unit loads on each interface DOF with all other interface DOF free

and unloaded. This results in a transformation t@éneralized coordinates as:

XA NI 'IN Pk
X = = = Up. (9.6)
Xr or VYr Pd
In computing the residual attachment modes, one must distinguish between the case
of constrained components and the case of unconstrained components (i.e., “free-free”
structures such as blades), since the latter exhibit rigid-body m@deRecall that the
(B-component is unconstrained in the free-tip case. For a constrained component, the flex-
ibility matrix is simply the inverse of its stiffness matri& = K~=1. For an unconstrained
component, however, the stiffness matrix is singular, and its inverse therefore does not
exist. To circumvent this problem, a sufficient number of arbitrarily chosen DOF (r) are
constrained “artificially”, in order to eliminate all rigid-body translations and rotations.
Hence, a minimum of six non-colinear DOF must be held fixed in a three-dimensional
problem. Moreover, the r DOF-set cannot contain any component inteiffa&®JF, and
r is thus a subset of the interioAf DOF-set. Specifically for the free-tip test model in
Fig. 9.2, three of the four corner nodes on the tip of theomponent were held fixed

to serve as artificial constraints (i.e., nine DOF). With this additional DOF subdivision

A — [r A'], the component stiffness matrix may be re-partitioned as:

Krr KrA’ Krl"
Krr Krc
K= K;FA/ KAIAI KA’I‘ = s (97)
KT K.

T T
K Kar Krr
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whereK.. is the non-singular stiffness matrix of the artificially constrained component.

K. is used to form a “special” flexibility matrix:

00
G. = , (9.8)
0 K}
where it is noted that the entries pertaining to the artificially constrained DOF are identi-
cally zero. Then, by applying to the component an equilibrated load set that consists of any

applied external loads equilibrated by the d’Alembert force due to rigid-body acceleration,

the unconstrained component’s flexibility matrix is obtained as:
G=ATG.,A ; A=1-Mop.¢r. (9.9)

With the flexibility matrix in place for both constrained and unconstrained components,

the residual flexibility matrix is in both cases formed as:

r GI'
G—r = Al AT = G’ - G’k — G’ - QfA_]-@fr:‘[‘; (910)
I‘T r
AT G'l"]f'l

where ®; contains the retaineflexible normal modes, i.e., exclusive of any rigid-body
modes (if applicable). Henc&s = & for constrained components, wherdasis a subset
of @ for unconstrained components. In other words, the residual flexibility represents the
remaining flexibility of the system after thedastic contributions of the retained normal
modes have been removed. Note that in the limiting case wdlerormal modes are
retained,G* will be a null matrix. However, as will be shown later on, the diminishing
nature ofG" as the number of retained modes increases gives rise to numerical problems
far earlier than the limiting case.

Since the € method uses successive unit loads on the interface DOF to form the resid-

ual attachment modes, these mode shapes are simply the colu@hshatt pertain to the
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interface DOF:

LN %
T — | AT (9.11)
Yr IT
Using this modal basis, the condensedn@ass and stiffness matrices for each component

become:
I 0O A O Px

= K= p= . (9.12)
0 ‘I’TM‘I’ 0 ‘I’[‘ Pd

The component assembly is achieved by satisfying interface displacement compati-
bility and interface force equilibrium (i.ef¢ + f2 = 0), which after simplification (see

Craig [62]) result in the constraints:
X = BEpy + Pipg = Srpy + UEp) = Xp (9.13)
a e _ o, B _
fr +fr =pg +py =0. (9.14)

These two sets of constraint equations lead to the synthesizezp@sentation of a two-

component structure:

N I+ &2 M;®g — ®p M, dp 0.15)
T T '
| — & M7 I+ &0 M, &}
- A+ @K @ — Bp Kidp R
| - o0 KTag AP+ UK, B pl
where
ey B -1
K, = [¥¢+ @] (9.16)

M; = K [q/aTMaxpa+qlﬁTMﬂ\pﬂ] K.

Note that only the generalized coordinates pertaining to the component normal modes
of vibration remain in the final Erepresentation. This makes thé @odel particularly

compact, and therefore exceptionally efficient.
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e Free-Interface Method with Residual Flexibility and Inertia: Rubin. As in the C
method, the Rubin (R) method uses as component modal basis a truncated set (k) of com-
ponent normal modes of vibration (®), where all the interface DOF are free. However,
there is a distinct difference in the way the two methods capture residual flexibility effects.
Namely, the R technique retains the physical interface D&Y in order to solve for an
arbitrary force on the component interfadg)( while C uses residual attachment modes
induced by a pre-defined, complete set of successive unit loads on the interface DOF. In
addition, the R technique allows for inclusion of residual inertia by using a second-order
Maclaurin series expansion when solving for the interface force.

The procedures for obtaining the residual flexibility mat@x for both constrained
and unconstrained components follow theapproach exactly. With forces acting on the
component interface DOF only, the first-order (static) residual deflections of the interface
DOF are obtained as:

oot = GIpfr. (9.17)

Using Eq. (9.17) and assuming harmonic motion, the second-order residual deflections of

the interface DOF are obtained as:
PP = Gip (fr — MER) = (Gip + w?Hiyp) fr, (9.18)
whereH}- is the interface partition of the residual inertia matrix, which is computed as:

HY, HY,
H =| 2% 74T | —arMar (9.19)
Har Hpr
by virtue of orthogonality between retained and residual flexibility with respect to the mass
matrix, i.e.,GKMGT = 0 (see Rubin [32]).

The physical displacements of the interface DOF can now be represented as a super-

position of the truncated set of normal modes of vibration (including rigid-body modes, if
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applicable) and the second-order residual deflections from Eq. (9.18):
xp = ®rpy + U3 = @rpy + |Gy + w’Hiy fr. (9.20)

Using a second-order Maclaurin series expansian, ithe interface force may be solved

from Eq. (9.20) as:

fr ~ [Kip — ©’Mip| [xr — ®rpl, (9.21)
where
Kir = Gir Mir = Gir HirGir - (9.22)
In addition, the retained modes must satisfy dynamic equilibrium:
[A — wT] pic = BT fr.. (9.23)

Identification of mass and stiffness terms in Egs. (9.21) and (9.23) yields the condensed R

mass and stiffness matrices for each component as:

Hkk  HkD Kkk Px

p= K= p= : (9.24)
T T
Uk HrT Kxr krr Xr
where
MHkk = I + ‘I:’%MIIZT‘I’[‘ Kkk — A + q)gKi:T‘I’[‘
pr = — PEMEL kr = — PFKEp
prr = Mpp krr = Kpp.

The component assembly is achieved by satisfying displacement compatibility and

force equilibrium over the interface, resulting in the constraints:

a__ B
Xr = Xr

(9.25)

£+ £7 = [nir — w?ugr | PE + [sir — w?pfe] X2 + (9.26)

BT 2, BT

g

+ [“kr —w Mkr] py + [’frr‘ - WZlhﬁT] xp = 0.
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These two sets of constraint equations lead to the synthesized R representation of a two-

component structure:

Hik Hxr 0 Kkk KkT 0 Pk
R _ oT o T R _ oT o T R _
M™ = ugr e+ lff‘r Mﬁr K™= s sfp+ /ﬂf‘r “ir P =9 xr
I 0 Mﬁr Mﬁk | I 0 "Jir Hﬁk | \ Pi )
9.27)

Hence, comparing this model with thé @odel, the effects of residual inertia is included
in the R model (in an approximate sense) at the expense of retained physical interface

DOF.

9.1.3 A Stabilized Free-Interface CMS Method

The proposed stabilized free-interface CMS method is a simple modification of the
previously derived € method, and it will therefore be referred to as Stabilized Craig-
Chang (S@). In fact, it may even be appropriate to describe this approach as a less refined
C? method in that it takes one less step in using the constraints of Egs. (9.13) and (9.14).

Usingp3 = — p% = pq from Eq. (9.14) in Eq. (9.13) yields:
oipj — ppy + PR+ ¥F pa = 0. (9.28)

In the C method, the generalized coordinatgg which pertain to the complete set of
residual attachment modes and thus are equal in number to the physical interface DOF, are
solved from Eq. (9.28) to yield a particularly compact model. However, solvingfan

Eq. (9.28) assumes that the inverse[\bf; + \Ifﬁ] exists (sed<; in EqQ. (9.16)), and thus

that the conditioning of the summed interface residual flexibilities (see Eqg. (9.11)) is suf-
ficient. While this assumption is likely to be adequate for most engineering applications,

it will not be true when the numbers of retained component normal modes become suffi-

ciently large, since the residual flexibility partitions involved will approach null matrices.
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Hence, in order to yield a numerically stable formulation, the key is to avoid the inverse
of the summed residual flexibilities. The key difference between the classicab@od

and the proposed S@pproach is therefore that tipg coordinates are being retained in
the SC model, governed by Eq. (9.28). This leads to the synthesizéd&tesentation

of a two-component structure as follows:

I 0 O A* @Y 0 py
sc? _ scz _ o o sc? _
M™ =10 o0 o K" =|& w2+®), -2 | P~ =1 pa
0 0 I o - AP | px |
) ) ) ) (9.29)

Note that while the S€formulation leads to a numerically stable model, it is achieved at
the expense of a substantial increase in model size. This increased model size is clearly
undesirable, and it is therefore proposed that thé &fproach may serve as & @odel
quality assessment tool. The unstabferiodel may be checked against the stablé SC
model for consistency during the CMS model construction, before proceeding to compre-
hensive dynamic analyses using the more computationally efficientddel. Since the
SC model is based on exactly the same component modal quantities ag thedel,
such consistency checks can be made relatively inexpensively.

As a final remark, note that the R method cannot be stabilized, since the inversion
of residual flexibilities is inherent in solving for the interface force by the second-order

Maclaurin series expansion in Eq. (9.21).

9.1.4 Modal Convergence and Numerical Stability Issues

In this section, the modal convergence trends are investigated for the four derived tech-
nigues, using the simple two-component test model with fixed- or freg-tipmponent.
The convergence measure is the relative errors of the CMS model representations for the

four lowest natural frequencies versus reference finite element values.
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Figure 9.3: Convergence of the four lowest natural frequencies of the fixed-tip model rel-
ative to finite element results for the considered CMS methods.
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Figures 9.3 and 9.4 depict the convergence trends using the fixed- and freée-tip
components, respectively. In both cases, it is notable how quickly the two classical free-
interface CMS techniques —*@nd R — converge to yield highly accurate reduced order
models. The €model is particularly impressive, reaching excellent accuracy levels with
only very few DOF in the model due to the eliminated interface DOF. Moreover, beyond
certain numbers of retained normal modes, both these techniques exhibit sudden onsets
of dramatic deterioration in model quality. Beyond these points, natural frequencies and
mode shapes bear little or no resemblance with the reference solutions. In contrast, while
clearly sufficiently accurate for most applications, the C-B ané i@8@dels display slower
modal convergence than the classical free-interface CMS techniques for both test models.
On the other hand, both these methods are unconditionally stable, as would be predicted
from their respective formulations. Note that the steady improvement in accuracy as the
number of retained component normal modes increases continues for these two methods
until all component normal modes are included.

As mentioned in the earlier discussion, the onset of this apparent numerical instabil-
ity for the classical free-interface CMS methods is prompted by the inversion of residual
flexibility matrix partitions, either separate (R) or summed)(CThese matrices become
progressively more ill-conditioned as the number of retained normal modes (i.e., the re-
tained flexibility) increases, and they will, in theory, eventually become null matrices. The
direct coupling between the condition of the residual flexibility matrix (cend [G*])
and the numerical instability is clearly illustrated in Fig. 9.5, which depicts the behavior
of the fixed-tip R model as a demonstrative example. As shown, the onset of numerical
instability at just over 300 CMS DOF is clearly marked by a nearly two orders of magni-
tude degrading shift in residual flexibility matrix conditioning. Moreover, the later onset

of instability exhibited by the €model is explained by the inversion of the summed resid-
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ual flexibility matrices, as opposed to the separate inversions of component-wise matrices
of the R model, since this means that both matrices involved must be sufficiently close to
null matrices to make the sum ill-conditioned.

Furthermore, an interesting common property of tRiea@d R models is the lack of
further improvement beyond the initial rapid convergence. The error levels stay practically
stationary, even if large numbers of component modes are added into the models. It is
hypothesized that the improvement from the additional retained modes may be balanced by
degrading residual matrix conditioning in this stationary region. Moreover, note that these
stationary error levels differ by approximately a factor two between the fixed- and free-tip
cases. One reason for this difference may be the application of artificial constraints to
the free-tips-component in order to eliminate rigid-body motion during the construction
of the C and R models. This implies that the flexibility associated with the artificially

constrained DOF is not properly captured, and these DOF must therefore be chosen with
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care.
Clearly, the found numerical instability of the classical free-interface CMS methods is
of little practical importance for “normal” engineering applications. Unless a very large
fraction of the total number of component normal modes is retained, this is not likely to
present a problem. However, as mentioned previously, there may be special cases, partic-
ularly in studies of highly simplified “academic” models, where this numerical instability
can become a factor, and where the awareness of this limitation of classical free-interface

CMS methods may become critical.

9.2 *“Optimal” Component Mode Basis for Dynamic Analyses of Mis-
tuned Bladed Disks

In Chapter V, a highly accurate and computationally efficient secondary modal analysis
reduction technique (SMART) was developed for dynamic analyses of mistuned bladed
disks. This technique employs a two-step approach: first, component mode synthesis
(CMS) is used to isolate the blade properties and to provide a primary reduced order
model; second, a modal analysis is performed on the CMS model to generate a very
small reduced order model based on the global modes in a frequency range of interest.
The SMART formulation in Chapter V employed a cyclic Craig-Bampton method with
fixed-interface component normal modes to form the intermediate CMS model. However,
it is realized that there may be other CMS approaches that provide better intermediate
CMS representations of bladed disks. To this end, there are primarily three CMS model
properties that are of particular interest: (a) fast modal convergence; (b) “natural” normal
mode selection; and (c) suitability to blade mistuning input. The “optimal” method should
exhibit all three of these properties. As a result, equally or more accurate CMS models

would then be obtained using fewer and more easily-identified retained modes, compared
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to the present cyclic Craig-Bampton models.

The two classical free-interface CMS methods by Craig and Chang [33] and by Ru-
bin [32], which were reviewed and discussed in the previous section, may be considered
as alternative CMS bases for the SMART approach. These methods include the contribu-
tions of residual flexibility and inertia for accelerated modal convergence. Furthermore,
when considering the physical behavior of a realistic bladed disk assembly, it is realized
that the disk-blade interfaces and thus the blades are likely to follow the motion of the
much stiffer disk. Conversely, motion of the much more flexible blades will likely have
a minimal impact on the disk, except for local deformations at the disk-blade interfaces.
This implies that using fixed-interface normal modes for the disk component may not be
ideal from a modal convergence perspective, and a free-interface CMS approach should
therefore provide a better component mode basis for the disk component. However, from
the same physical consideration, the flexible blade motion is likely to be much closer to
a fixed-interface (i.e., cantilevered) representation than a free-interface (i.e., “free-free”)
representation, which would thus favor a fixed-interface (Craig-Bampton) CMS approach.
Therefore, in an attempt to optimize the representations of both components, a new hybrid-
interface CMS method is developed that uses a free-interface disk component and a fixed-

interface blade component.

9.2.1 A Hybrid-Interface CMS Approach

The proposed hybrid-interface CMS implementation (H) is based on a free-interface
disk component following the Craig-Chang*jCapproach and a fixed-interface (Craig-
Bampton; C-B) blade component. The key difference between using a hybrid-interface
representation and using the same representation for both components is a slightly more

complicated and less straightforward set of constraint equations to ensure displacement
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compatibility and force equilibrium over the component interface. Usingf@f@nulation
for the a-component and a C-B formulation for tliecomponent from Section 9.1, the

constraint equations take the form:
xp = ®Epy + ¥Epg = pd = xp (9.30)

T
£ + £ = p§ — Wity P + KB — Wl DL = 0. (9.31)

These two sets of constraint equations lead to the synthesized H representation of a two-

component structure:

1 agt g B g o7 i |
MY = el eg e MO T 0 W (9.32)
| Hiee A |
A BB B o | M
K% = | okl 9 [+ wp7k2 ] wg 0 P" =1 pj
0 0 R | Pi |

The definitions of the various modal component quantities appearing in Eg. (9.32) are

found in Section 9.1 for the respective methods-(Craig-Changj? = Craig-Bampton).

9.2.2 Modal Convergence Trends

In this section, the modal convergence trends are investigated for the various derived
methods — C-B, & R, SC, and H — using a simple two-component model in the shape
of a highly simplified disk-blade sector as shown in Fig. 9.6. The test model is constructed
from linear brick elements (8-noded solids). Moreover, as Fig. 9.6 indicates, only the
inner hub of the “disk” component is fully constrained while all other boundaries are free,
resulting in a total of 198 unconstrained finite element DOF. The simple test model in

Fig. 9.6 may not be ideal, since it is not coupled by cyclic symmetry constraints to form
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Figure 9.6: Finite element mesh for simple two-component disk-blade sector model.

a multi-sector assembly, nor is the normally very large difference in stiffness between the
disk and the blade components properly accounted for. However, the model is nevertheless
believed to be adequate for a preliminary validation and performance evaluation of the H
approach.

The obtained modal convergence trends are depicted in Fig. 9.7. The modal conver-
gence for each method is measured as the average relative error for the five lowest natural
frequencies compared to reference finite element values. Note that, based on the numerical
precision of input data, the resulting numerical precision limit can in this case be expected
to be approximately) (10~°)-O (10~*). As expected, the classical free-interface CMS
techniques (Eand R) exhibit numerical instability for this model, too. An important ob-
servation from Fig. 9.7 is that the onsets of instability occur at significantly lower fractions
of the total number of component normal modes for this test medeb@o) compared to
the results in Section 9.1(50%). It is further noted that the S@nethod is a robust per-
former. However, the SCapproach does not possess the convergence rates and accuracy

levels of the other techniques considered.
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Figure 9.7: Convergence of the five lowest natural frequencies of the simple two-
component disk-blade sector model in Fig. 9.6 relative to finite element results
for the considered CMS methods.

The performance of the?dnodel is once again (see Section 9.1) extremely impres-
sive for “normal”, practical numbers of retained component modes, since this model is the
only one that does not retain any DOF pertaining to the interface. Hence, from a modal
convergence perspective, thé@ethod is clearly the most appealing approach. However,
the C method fails in that it does not provide a “natural” mode selection in bladed disk
applications, since it is constructed from the normal modes of a “free-free” blade, includ-
ing a set of rigid-body modes. This mode set is not ideal in that the normal modes will
not conform with the characteristic motion of blade-dominated assembly modes (e.g., first
flex (1F), second torsion (2T), etc.), which instead closely follow the normal modes of a
fixed-interface (i.e., cantilevered) blade. Furthermore, in the context of blade mistuning,
it is reasonable to assume that experimental measurements of blade natural frequencies

are obtained for a cantilevered configuration, rather than for “free-free” blades. Hence,
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in cases where differing mistuning levels for individual blade mode types (i.e., individual
mode mistuning) are to be considered,’aade representation requires computationally
expensive projections of extracted stiffness deviations in the finite element domain, similar
to the mistuning implementation for shrouded blades presented in Chapter IV.

Figure 9.7 further shows that the C-B and H techniques exhibit very similar over-
all performances, displaying fast modal convergence. Both these techniques satisfy the
“natural” mode selection criterion in terms of blade normal modes, and the H approach
satisfies this criterion also with respect to disk normal modes. Furthermore, blade mis-
tuning input is particularly straightforward in both C-B and H models, since the modal
stiffnesses of the cantilevered blades are readily accessible. It is important to note that the
novel H approach consistently yields more accurate reduced order models than C-B. In
addition, the H technique is likely to perform even better (versus C-B) when applied to
models that feature more realistic differences in stiffness between disks and blades. The
improved performance exhibited by the H approach may become a critical advantage in
certain applications, where it may be imperative to minimize the CMS model while retain-
ing straightforward blade mistuning input (e.g., multi-stage analysis, mistuning identifica-
tion). Thus, the preliminary results presented in this section indicate that a hybrid-interface
CMS method may provide an optimal basis for dynamic analyses of mistuned bladed disks

when using a component mode approach.



CHAPTER X

Conclusions

The effects of mistuning (i.e., small, unavoidable variations in blade properties) on
bladed disk dynamics continue to be of concern to the turbomachinery community. The
potential for vibration energy localization and therefore dramatic increases in forced re-
sponse amplitudes and stresses is likely to place significant constraints on blade design
optimization. The complicating effect of mistuning on bladed disk response predictions
is twofold: (a) mistuning destroys the traditionally assumed cyclic symmetry of a rotor,
and thus requires full assembly modeling; and (b) mistuning is a random quantity, requir-
ing blade fatigue life assessments based on reliable forced response statistics. These two
considerations imply that using traditional analysis techniques such as finite element anal-
ysis is not practical, since full assembly models are often prohibitively large and therefore
unsuitable for comprehensive statistical analyses. It is thus essential to be able to pre-
dict accurately the dynamics of mistuned bladed disks using highly reduced order models.
Only when such reduced order models meet very demanding standards in terms of accu-
racy and computational efficiency can mistuning considerations enter as an integral part of
the turbomachinery rotor design process.

The doctoral research documented in this dissertation has addressed this industry-wide

need through the development of several high-performance reduced order modeling tech-

247



248

niques that enable highly accurate and computationally efficient dynamic analyses of mis-
tuned bladed disks. The presented work has resulted in significant advances on each of the

two critical fronts — reduced order modatcuracyand computationadfficiency

10.1 Dissertation Contributions

Significant contributions of this dissertation include:

e Successful extension of the technique by Castastieal. [20] to bladed disk as-
semblies featuring shrouded blades. The extended formulation uses projection of
individual blade mode mistuning onto the cyclic modes of the blade-shroud-ring as-
sembly. This included the formulation of a novel technique for extracting stiffness

deviations from experimentally obtained blade frequency data.

e Successful formulation, implementation, and validation of a state-of-the-art reduced
order modeling technique for the dynamic analysis of mistuned bladed disks — a
secondary modal analysis reduction technique (SMART). The SMART approach
uses a cyclic implementation of a fixed-interface component mode synthesis tech-
nique as an intermediate reduced order model basis. A secondary modal analysis
is performed on the intermediate model, from which only a small number of sys-
tem modes of interest are retained. Blade mistuning is input in the intermediate
generalized coordinates and projected onto the secondary generalized coordinates
in the low-order modal domain. This results in highly accurate and computationally
efficient minimized models that are exceptionally well suited for comprehensive

analyses of response statistics.
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Figure 10.1: Example results from a mistuning sensitivity analysis based on comprehen-
sive response statistics for the industrial compressor stage model depicted in

Fig. 3.1.
Method DOF Estimated CPU Amplitude Error
FEM 126,846| 6,000,000 min. (11 years) (reference)
REDUCE 435 10,000 min. (7 days) 1-10%
SMART 31 5 min. 0.01-0.1%

Table 10.1: Computational efficiency and accuracy trends of developed techniques, with
reference to the mistuning sensitivity analysis results in Fig. 10.1.

An example application of the SMART approach is shown in Fig. 10.1, with method
performance data listed in Table 10.1. This table also includes estimates for the ref-

erence finite element model (FEM) and the reduced order model by Casteali¢?0] (RE-

DUCE) for comparison.
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e Thorough investigation and documentation of important effects of disk flexibility
and interstage coupling on the response behavior and mistuning sensitivity of bladed

disks.

e Formulation and validation of a SMART approach for accurate and efficient reduced
order modeling of mistuned multi-stage rotor assemblies, capable of accurately cap-

turing potentially critical interstage coupling effects.

10.2 Future Research

Based on the work presented in this dissertation, some ideas for future research are

summarized as follows.

e Further efforts are required to establish the “optimal” component mode basis for the
SMART approach. Preliminary results in Chapter IX indicate that a hybrid-interface
component mode synthesis approach with a cyclic free-interface disk component
and a fixed-interface blade component may be the most appropriate and practical

representation for mistuned bladed disks.

e To make the SMART approach useful as a design tool in industrial applications, it is
imperative that aerodynamic coupling is incorporated into the formulation and vali-
dated thoroughly. In the current format, where blades are represented in real-valued
cyclic fixed-interface form, this may be achieved relatively easily. Assuming that
aerodynamic analyses use fixed-interface blade modes employing complex-form
cyclic symmetry, the resulting aerodynamic coefficients (any combination of mass,
viscous damping, structural damping, and stiffness entries) may be transformed into
an equivalent real-valued cyclic representation that can be introduced directly to the

intermediate model in the SMART approach.
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e The significant impact of interstage coupling revealed in this work implies that
single-stage analysis may not always be appropriate. However, in order to model
the system efficiently and interpret the results clearly, it is certainly desirable to
analyze one rotor stage at a time. Hence, it is suggested that single-stage represen-
tations that incorporate interstage coupling effects in some condensed form may be
the most feasible and appropriate manner to realistically model and analyze the dy-
namics of mistuned bladed disks. One such “suspended single-stage” representation
can be obtained from the multi-stage formulation in Chapter VIII by including the
adjacent stages but neglecting their dynamic content (i.e., by assuming zero retained
normal modes for the adjacent stages). The interstage flexibility and inertia are then
condensed onto the interstage degrees of freedom via projections of adjacent stage

mass and stiffness matrices onto the static interstage constraint modes.

e To obtain more complete and realistic models of bladed disks, it is further suggested
that present linear techniques formulated primarily for the accurate capture of mis-
tuning effects (e.g., SMART) be merged with concurrently developed non-linear
techniques for accurate modeling of blade friction dampers and intershroud friction.
Shrouds and dry friction dampers are frequently used to reduce the vibratory re-
sponse of blades, and the inclusion of such model features in reduced order model

representations is likely to be of significant value to the turbomachinery community.
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APPENDIX A

The Kronecker Product

The Kronecker product of two matrices is defined as:

CL21B a22B e CLQNB
A®B=
CLNlB CLNQB Ce CLNNB

Selected useful properties of the Kronecker product:
(A®B)(C®D)=(AC)® (BD)

(A®B) '=A"'@B™!

(A®B)T= AT BT

CLHB CL12B e alNB

(A1)

(A.2)

(A.3)

(A.4)
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APPENDIX B

Circulant Matrices

The mass and stiffness matrices of any linear cyclic system may be cast in circulant
or block-circulant form. Hence, the application of cyclic symmetry in this paper makes
frequent use of the properties of circulant matrices and their eigenvectors. The properties
of circulant matrices are thoroughly examined in Davis [73]. The general form of a square

circulant matrix is:

ct Cop ... CN
. Cy €1 ... CN_—1
C =circ (¢, ¢,...,0cn5) = ) (B.1)
Cy C3 ... C1

All circulant matrices of ordeN possessV independent eigenvectors. In particular, they

share the same set of eigenvectors that make up the complex Fourier ibatrix,

E= [ekl] y Gk & \/_lﬁeja(iil)(kil)a kal = ]-7 R Na (BZ)

wherej = /—1 anda = 27/N. In addition, there exists an “almost-equivalent” real-

valued form of Eq. (B.2):

F=|f, fie fis o fac fas o fnjo | = (B.3)
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B x 0 ]
VN N o=
ﬁ \/%cosa \/%sina _\/_IN
— \/_IN %cos 2x \/%Sin2a \/Lﬁ ,
3 —1 N-1
L \/LN \/%COS(N— Do \/%sm(N— Do --- ¢ \/)N |

where the last column only exists/f is even.

Note that botHE andF are orthonormal, or unitary, such tHatE = FTF = I, where
I is an identity matrix of sizeV, andx denotes the Hermitian adjoint (complex conju-
gate transpose). In addition, this implies tl&t! = E* andF ! = FT, such that the
transformation productB*CE andFT CF are similarity transformations [64].

The reason behind calling “almost-equivalent” td is that the columns df are not
true eigenvectors of?, and hence, the similarity transformati¥ CF will not yield a
diagonalized matrix. However, it will result in a matrix where all non-zero elements will
be grouped int@ x 2 blocks (“double” harmonics) on the diagonal, except for the )
and, for N even, thegN, N) elements (“single” harmonics). This matrix type is referred
to as pseudo-block-diagonal.

These properties are readily extended to the case of block-circulant matrices by ex-
pandingE andF asE ® I andF ® I, respectively. The scalaf then represents a matrix

block C;, whereC; andI are of the same size.
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