.. Taille-des-grains-et-propriétés-diélectriques, 39 1.4.3.1. Propriétés hyperfréquences de BaTiO 3, Taille des grains et comportements en fréquence, p.42

B. Des, E. Menees-sur-ba-1-x, S. , and T. , 43 1.5.1. Bilan des travaux effectués sur les propriétés hyperfréquences de Ba 1-x Sr x TiO 3 (x = 35, 40 et 55% molaires), 43 1.5.2. Etude du dopage des céramiques de Ba 0.6 Sr 0.4 TiO 3 sur leurs propriétés diélectriques, p.47

R. Et, C. De-ceramiques, and C. Sengupta, Quel taux de baryum choisir dans Ba 1-x Sr x TiO 3 ?, p.50

P. Des, . Phases, and .. Pour-l-'etude, 53 1.7.1. Le titanate de baryum-strontium, p.53

B. Des and P. , 79 3.3.1. Etude préliminaire, p.81

.. Influence-du-milieu-de-broyage, 86 3.3.3.1. Mise en évidence par dilatométrie de la pollution par les carbonates des poudres broyées dans l', ., vol.87

C. Des and C. , 96 3.5.1.1. Céramiques obtenues par frittage classique, p.100

.. Caractérisation-des-poudres-broyées and M. , 154 5.3.2.1. Par diffraction des rayons X, p.155

2. Serie, . Optimisation, . Protocole, . Influence, . La et al., 162 5.4.1. Mélanges des poudres dans l'alcool, Composites avec MgO, p.163

.. Résultats-de-la-deuxième-série-d-'expériences and M. De, 185 6.3.3.1. Céramiques composites à base, p.187

M. Du, C. Dielectrique, and D. Hyperfrequences, 190 6.5.1. Les modèles utilisés pour décrire un composite diphasé, ?

B. Kinoshita and A. Yamaji, Grain-size efffects on dielectric properties in barium titanate ceramics, J. Appl. Phys, vol.202, issue.47, p.371, 1976.

G. Arlt, D. Hennings, and G. D. With, Dielectric properties of fine???grained barium titanate ceramics, Journal of Applied Physics, vol.58, issue.4, pp.1619-1625, 1985.
DOI : 10.1063/1.336051

G. Rupprecht, Investigation of microwave properties of ferroelectrics, United States Air Force, 1960.

R. W. Babbitt, T. E. Koscica, and W. C. Drach, Planar Microwave Electro-optic Phase Shiftters, 1992.

J. B. Rao, D. P. Patel, and G. V. Trunk, Two low cost Phased Arrays, pp.119-124, 1996.

V. K. Varandan, V. V. Varandan, K. A. Jose, and J. F. Kelly, Electronically steerable leaky wave antenna using a tunable ferroelectric material, Smart Materials and Structures, vol.3, issue.4, pp.470-475, 1994.
DOI : 10.1088/0964-1726/3/4/009

J. Mathew, R. A. Meger, J. A. Gregor, and D. P. Murphy, Electronically steerable plasma mirror for surveillance radar applications, Proceedings of the 1996 IEEE National Radar Conference, 1996.
DOI : 10.1109/NRC.1996.510680

J. B. Rao, P. K. Hugues, G. V. Trunk, and J. C. Sureau, Affordable phased array for ship self-defense engagement radar, pp.32-37, 1996.

V. K. Varandan, V. V. Varandan, and K. A. Jose, Design and development of electronically tunable microstrip antennas, Smart Materials and Structures, vol.8, issue.2, pp.238-242, 1999.
DOI : 10.1088/0964-1726/8/2/009

S. F. Barnes, J. Price, A. Hermann, and Z. Zhang, and high temperature superconductors, Integrated Ferroelectrics, vol.8, issue.1-2, pp.171-184, 1995.
DOI : 10.1080/10584589508012311

C. M. Weil, R. G. Geyer, and L. Sengupta, Microwave dielectric characterisation of bulk ferroelectrics, J. Phys. IV, vol.8, pp.113-116, 1998.

M. Labeyrie, F. Guerin, T. M. Robinson, and J. P. Ganne, Microwave characterisation of ferroelectric Ba 1-x Sr x TiO 3 ceramics, IEEE Antennas and Propagation Society International Symposium, pp.710-713, 1994.

M. Bibliographie, J. P. Bertin, J. Faroux, A. F. Renault, P. Devonshire et al., chapitre 13 : diélectriques et ferroélectriques dans Physique de l'état solide: Dunod Effect of Direct-Current on the Dielectric Properties of Barium Strontium Titanate Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices Microwave losses in incipient ferroelectrics as fonction of the temperature and the biasing field, Vendik, L. T. Ter-Martirosyan, and S. P. Zubko Etudes diélectriques en hyperfréquences de céramiques ferroélectriques de compositions dérivées de BaTiO3 Ph-D, Sciences des matériaux, pp.70-620, 1949.

S. Kazaoui, J. Ravez, C. Ellisalde, and M. Maglione, derived materials, Ferroelectrics, vol.59, issue.1, pp.85-99, 1992.
DOI : 10.1103/PhysRevB.42.6416

W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Journal of The Electrochemical Society, vol.124, issue.3, 1976.
DOI : 10.1149/1.2133296

L. Landau and E. Lifchitz, Electrodynamique des milieux continus, 1969.

A. K. Jonscher, Dielectric relaxation in solids, Journal of Physics D: Applied Physics, vol.32, issue.14, 1983.
DOI : 10.1088/0022-3727/32/14/201

J. C. Mage and M. Labeyrie, Les matériaux diélectriques pour résonateurs hyperfréquences, Electrique, vol.70, pp.6-13, 1990.

J. C. Mage, Les Matériaux Diélectriques pour Résonateurs Hyperfréquences, Congré Céramiques en Hyperfréquences et Nouvelles Applications, 1989.

W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State and Materials Science, vol.1, issue.5, pp.715-731, 1996.
DOI : 10.1016/S1359-0286(96)80056-8

A. Tagantsev, Mechanisms of Dielectric Loss in Microwave Materials, Congré Materials Issues for Tunable RF and Microwave Devices, 1999.
DOI : 10.1023/A:1007797131173

F. Perrot-sipple, Maîtrise de la taille de nanograins d'oxydes de structure pérovskite pour applications électrocéramiques : synthèse par chimie douce, broyage par attrition, 1999.

D. Bernache-assolant, Chimie-physique du frittage, 1993.

P. Sarrazin, Evolutions structurales et microstructurales d'une poudre lors de l'élaboration de pièces céramiques crues : cas de BaTiO 3, 1995.

N. Bernaben, Céramiques de BaTiO 3 à grains fins : comportement diélectrique en relation avec la microstructure Ph-D, Sciences des matériaux, 1996.

T. J. Carbone and J. S. Reed, Microstructure development in barium titanate : effects of physical and chemical properties, Ceram. Bull, vol.58, p.512, 1979.

J. Kanters, U. Eisele, and J. , Effect of initial grain size on sintering trajectories, Acta Materialia, vol.48, issue.6, pp.1239-1246, 2000.
DOI : 10.1016/S1359-6454(99)00433-4

N. Bernaben, A. Leriche, B. Thierry, and J. C. Niepce, Pure barium titanate ceramics : crystalline structure and dielectric properties as a function of grain size, Electroceramics, vol.5, pp.203-210, 1995.

D. Hennings, Barium titanate based ceramic materials for dielectric use, International Journal of High Technology Ceramics, vol.3, issue.2, pp.91-111, 1987.
DOI : 10.1016/0267-3762(87)90031-2

C. Valot, Diffraction des rayons X et microstructure en domaines ferroélectriques : cas de BaTiO 3 Ph-D, Sciences des matériaux, 1996.

M. P. Mcneal, S. Jang, and R. E. Newnham, Particle size dependent high frequency dielectric properties of barium titanate, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, pp.837-840, 1996.
DOI : 10.1109/ISAF.1996.598154

M. P. Mcneal, S. Jang, and R. E. Newnham, The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3), Journal of Applied Physics, vol.83, issue.6, pp.3288-3297, 1998.
DOI : 10.1063/1.367097

G. Arlt, U. Böttger, and S. Witte, Emission of GHz shear waves by ferroelastic domain walls in ferroelectrics, Applied Physics Letters, vol.63, issue.5, p.602, 1993.
DOI : 10.1063/1.109962

L. Zhang, W. L. Zhong, Y. G. Wang, C. L. Wang, and P. L. Zhang, Finite-size effects in ferroelectric solid solution, Journal of Physics D: Applied Physics, vol.32, issue.5, pp.546-551, 1999.
DOI : 10.1088/0022-3727/32/5/008

L. Zhang, W. L. Zhong, C. L. Wang, Y. P. Peng, and Y. G. Wang, Size dependence of dielectric properties and structural metastability in ferroelectrics, The European Physical Journal B, vol.11, issue.4, pp.565-573, 1999.
DOI : 10.1007/s100510051184

D. K. Ghodgaonkar, R. Hugues, F. Selmi, V. V. Varandan, and V. K. Varandan, Ferroelectric phase shifters for electrically steerable antenna system, 1992.

M. Labeyrie, F. Guerin, T. M. Robinson, and J. P. Ganne, Microwave characterisation of ferroelectric Ba 1-x Sr x TiO 3 ceramics, IEEE Antennas and Propagation Society International Symposium, pp.710-713, 1994.

R. I. Wolfson, Phase shift device using voltage-controllable dielectrics, 1994.

L. C. Sengupta and S. Sengupta, Breakthrough advances in low loss, tunable dielectric materials, Materials Research Innovations, vol.2, issue.5, pp.278-282, 1999.
DOI : 10.1007/s100190050098

L. Wu, Y. Chen, Y. Chu, and Y. Tsai, Ceramics, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 9B, pp.5612-5615, 1999.
DOI : 10.1143/JJAP.38.5612

URL : https://hal.archives-ouvertes.fr/hal-00848932

S. B. Herner, F. A. Selmi, V. V. Varadan, and V. K. Varadan, The effect of various dopants on the dielectric properties of barium strontium titanate, Materials Letters, vol.15, issue.5-6, pp.317-324, 1993.
DOI : 10.1016/0167-577X(93)90087-E

Y. Chiang and T. Takagi, Grain-Boundary Chemistry of Barium Titanate and Strontium Titanate: II, Origin of Electrical Barriers in Positive-Temperature-Coefficient Thermistors, Journal of the American Ceramic Society, vol.27, issue.7, pp.3286-3291, 1990.
DOI : 10.1111/j.1151-2916.1990.tb06451.x

P. Blanchard, J. Baumard, and P. Abelard, Effects of Yttrium Doping on the Grain and Grain-Boundary Resistivities of BaTiO3 for Positive Temperature Coefficient Thermistors, Journal of the American Ceramic Society, vol.65, issue.3, pp.1068-1072, 1992.
DOI : 10.1111/j.1151-2916.1992.tb05539.x

Z. Yu, C. Ang, Z. Jing, P. M. Vilarinho, and J. L. Baptista, Dielectric properties of from to Hz in the temperature range 85 - 700 K, Journal of Physics: Condensed Matter, vol.9, issue.14, pp.3081-3088, 1997.
DOI : 10.1088/0953-8984/9/14/023

L. Wu, Y. Chen, Y. Chou, Y. Tsai, and S. Chu, Dielectric properties of Al 2 O 3 -doped barium strontium titanate for application in phased array antennas Jpn

L. Wu, Y. Chen, C. Huang, Y. Chou, and Y. Tsai, Direct-Current Field Dependence of Dielectric Properties in Alumina-Doped Barium Strontium Titanate, Journal of the American Ceramic Society, vol.49, issue.1, pp.1713-1719, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01455.x

Y. Chen, L. Wu, Y. Chou, and Y. Tsai, Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate, Materials Science and Engineering: B, vol.76, issue.2, pp.95-100, 2000.
DOI : 10.1016/S0921-5107(00)00415-3

L. C. Sengupta, S. Stowell, E. Ngo, M. E. Day, and R. Lancto, Barium strontium titanate and non-ferroelectric oxide ceramic composites for use in phased array antennas, Integrated Ferroelectrics, vol.22, issue.1-2, pp.77-88, 1995.
DOI : 10.1080/10584589508012302

E. Ngo, S. Stowell, L. C. Sengupta, M. E. Day, and R. Lancto, Fabrication and Characterization of Barium Strontium Titanate and Non-Ferroelectric Oxide Composites, MRS Proceedings, vol.62, pp.45-50, 1995.
DOI : 10.1111/j.1151-2916.1989.tb09726.x

L. C. Sengupta and S. Sengupta, Novel ferroelectric materials for phased array antennas, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.44, issue.4, pp.792-797, 1997.
DOI : 10.1109/58.655193

L. C. Sengupta, E. Ngo, M. E. O-'day, S. Stowell, and R. Lancto, Fabrication and characterisation of barium strontium titanate and non-ferroelectric oxide composites for used in phased array antennas and other electronic devices, IEEE Transactions on ultrasonics, ferroelectrics and frequency control, pp.622-625, 1994.

L. Sengupta, Ceramic ferroelectric composite material BSTO-magnesium based compound, 1997.

L. C. Sengupta, E. Ngo, S. Sengupta, and S. Stowell, Multi-process synthesis of novel ferroelectric oxide ceramic composites for use in phased array antennas, Proceedings of 20th Army Science Conference, pp.15-126, 1996.

L. C. Sengupta, E. Ngo, S. Stowell, M. O. Day, and R. Lancto, Ceramic ferroelectric composite material BSTO-MGO, 1995.

L. C. Sengupta, E. Ngo, and J. Synowczynski, Fabrication and characterization of ferroelectric composite ceramics, Integrated Ferroelectrics, vol.35, issue.1-4, pp.181-190, 1997.
DOI : 10.1063/1.357978

B. L. Rao, D. P. Patel, and L. C. Sengupta, Phased array antennas based on bulk phase shifting with ferroelectrics, Integrated Ferroelectrics, vol.35, issue.1-4, pp.307-316, 1998.
DOI : 10.1080/10584589508012302

R. G. Geyer, J. Krupta, L. Sengupta, and S. Sengupta, Microwave properties of composite ceramic phase shifter materials, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, pp.851-854, 1997.
DOI : 10.1109/ISAF.1996.598159

J. Synowczynski, L. C. Sengupta, and L. H. Chiu, / MgO composite ceramics, Integrated Ferroelectrics, vol.96, issue.1-4, pp.341-352, 1998.
DOI : 10.1103/PhysRev.145.391

L. C. Sengupta, J. Synowcyznski, and L. H. Chiu, composite ceramics, Integrated Ferroelectrics, vol.1, issue.1-4, pp.287-296, 1997.
DOI : 10.1103/PhysRev.146.526

J. W. Liou and B. S. Chiou, Dielectric tunability of barium strontium titanate/silicone-rubber composite, Journal of Physics: Condensed Matter, vol.10, issue.12, pp.2773-2786, 1998.
DOI : 10.1088/0953-8984/10/12/015

L. Keller, ICDD Grant-in-Aid, 1982.

L. W. Coughanour and V. A. Deprosse, Phase equilibria in the system MgO-TiO_2, Journal of Research of the National Bureau of Standards, vol.51, issue.2, pp.85-88, 1953.
DOI : 10.6028/jres.051.010

G. Kimmel and J. Zabicky, XRPD Analysis of Stable and Metastable Magnesium Titanate Phases, Materials Science Forum, vol.278, issue.281, pp.278-281, 1998.
DOI : 10.4028/www.scientific.net/MSF.278-281.624

A. Beauger, J. C. Mutin, J. C. Niepce, J. C. Niepce, G. T. Halder et al., Synthesis reaction of metatitanate BaTiO 3 Granulométrie et non-stoéchiométrie dans BaTiO 3 . Maîtrise et incidence sur les propriétés diélectriques About the mechanism of the solid-way synthesis of barium metatitanate Analysis of the broadening of powder pattern peaks using variance integral breadth, and fourier coefficients of the line profile The use of the voigt fonction in determining microstructural properties from diffraction data by means of pattern decomposition, thèse de Doctorat, Chimie-Physique. Dijon: Université de Bourgogne National Institute of Standards and Technology Special Publication, 1992. [9] D. Bernache-Assolant, Chimie-physique du frittage, pp.3543-3550, 1962.

L. C. Sengupta and S. Sengupta, Breakthrough advances in low loss, tunable dielectric materials, Materials Research Innovations, vol.2, issue.5, pp.278-282, 1999.
DOI : 10.1007/s100190050098

M. Labeyrie, F. Guerin, T. M. Robinson, and J. P. Ganne, Microwave characterisation of ferroelectric Ba 1-x Sr x TiO 3 ceramics, IEEE Antennas and Propagation Society International Symposium, pp.710-713, 1994.

H. A. Sauer and S. S. Flaschen, Choice of electrodes in study and use of ceramic semiconducting oxides, Ceramic Bulletin, vol.39, pp.6-304, 1960.

J. C. Mage, Les matériaux diélectriques pour résonateurs hyperfréquences, Electrique, vol.64, pp.41-49, 1984.

J. C. Mage and M. Labeyrie, Les matériaux diélectriques pour résonateurs hyperfréquences, Electrique, vol.70, pp.6-13, 1990.

B. W. Hakki, P. D. Coleman-bernaben, A. Leriche, B. Thierry, J. C. Zhang et al., Pure barium titanate ceramics : crystalline structure and dielectric properties as a function of grain size Size dependence of dielectric properties and structural metastability in ferroelectrics Structural transformations in transformer materials of barium-titanate-zirconate, dielectric resonator method of measuring inductive capacities in the millimeter range Défauts ponctuels par substitution et conséquences sur les transitions de phase Thèse de doctorat en Materials Sciences Condensateurs céramiques multicouches à électrodes internes en nickel, pp.402-410, 1955.

C. Etude-de-faisabilité-de-doctorat, F. Dijon-paris, E. Batllo, J. C. Duverger, J. C. Jules et al., Granulométrie et non-stoéchiométrie dans BaTiO 3 Maîtrise et incidence sur les propriétés diélectriques, Thèse de doctorat en Sciences des matériaux. Dijon: Université de Bourgogne Dielectric and E.P.R. studies of Mn doped barium titanate Solid state chemistry and dielectric behaviour in BaTiO 3 for multilayer ceramic capacitors British Ceramic Proceedings, Electroceramics, pp.113-118, 1987.

A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen et al., Microwave Dielectric Loss of Titanium Oxide, Journal of the American Ceramic Society, vol.80, issue.7, pp.95-100, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01154.x

E. Duverger, B. Jannot, J. C. Jules, and J. C. Niepce, Influence on the phase transitions of barium titanate of the manganese valency, introduced as a substituant in the titanium site, Phase Transitions, vol.36, issue.1-4, pp.17-21, 1991.
DOI : 10.1016/0038-1098(87)90007-X

S. Kazaoui, Etudes diélectriques en hyperfréquences de céramiques ferroélectriques de compositions dérivées de BaTiO 3, Thèse de doctorat en Sciences des matériaux. Bordeaux, 1991.

S. Kazaoui, J. Ravez, C. Ellisalde, M. Maglione, N. D. Drobyshevskaya et al., Barium magnotitanate BaMg 6 Ti 6 O 19 with the magnetoplumbite structure, High frequency dielectric relaxation in BaTiO 3 derived materials Réalisations et caractérisations de composites multi-couches, pp.85-99, 1990.

O. F. Mossotti, Analytical discussion of the influence which the action of a dielectric medium exerts on the distribution of the electricity on the surfaces of several electric bodies dispersed in it, dictionary of scientific biography, p.547, 1974.

H. A. Lorentz, The theory of Electrons, 1909.

J. C. Maxwell-garnett, Colours in Metal Glasses and in Metallic Films, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.203, issue.359-371, p.385, 1904.
DOI : 10.1098/rsta.1904.0024

V. M. Shalaev, Electromagnetic properties of small-particle composites, Physics Reports, vol.272, issue.2-3, pp.61-138, 1996.
DOI : 10.1016/0370-1573(95)00076-3

P. G. De-gennes, la percolation : un concept unificateur, La Recherche, vol.7, pp.919-927, 1976.

E. Guyon and S. Roux, Les matériaux hétérogènes, La Recherche, vol.18, pp.1050-1058, 1987.

L. D. Landau and E. M. Lifshitz, Elektrodinamika sploshnoj sredy. moscow: Nauka, 1982.

J. P. Clerc and G. Giraud, La percolation, Annales de Physique, vol.8, 1983.

L. K. Van-beek, Dielectric behaviour of heterogeneous systems, Prog. Dielectr, vol.7, pp.69-114, 1967.

A. Largeteau, Elaboration, caractérisation et modélisation de céramiques magnétodiélectriques à couches d'arrêt, p.Bordeaux, 1990.

K. W. Wagner, Die Isolerstoffe der Electrotechnik, Berlin: H. Schering, 1924.

R. E. Meredith and C. W. Thobias, Resistance to Potential Flow through a Cubical Array of Spheres, Journal of Applied Physics, vol.31, issue.7, p.1270, 1960.
DOI : 10.1063/1.1735816

C. J. Böttcher, The dielectric constant of crystalline powders, Recueil des Travaux Chimiques des Pays-Bas, vol.184, issue.2, pp.47-51, 1945.
DOI : 10.1002/recl.19450640205

D. Polder and J. H. Van-santen, The effective permeability of mixtures of solids, Physica, vol.12, issue.5, p.17, 1946.
DOI : 10.1016/S0031-8914(46)80066-1