
�>���G �A�/�, �i�2�H�@�y�y�j�8�d�d�y�3

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�y�j�8�d�d�y�3

�a�m�#�K�B�i�i�2�/ �Q�M �R �6�2�# �k�y�y�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�:�`���T�?�B�+���H �i�v�T�2�b ���M�/ �+�Q�M�b�i�`���B�M�i�b �@ �b�2�+�Q�M�/�@�Q�`�/�2�`
�T�Q�H�v�K�Q�`�T�?�B�b�K ���M�/ �B�M�7�2�`�2�M�+�2

�"�Q�`�B�b �u���F�Q�#�Q�r�b�F�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�"�Q�`�B�b �u���F�Q�#�Q�r�b�F�B�X �:�`���T�?�B�+���H �i�v�T�2�b ���M�/ �+�Q�M�b�i�`���B�M�i�b �@ �b�2�+�Q�M�/�@�Q�`�/�2�` �T�Q�H�v�K�Q�`�T�?�B�b�K ���M�/ �B�M�7�2�`�2�M�+�2�X �a�Q�7�i�@
�r���`�2 �1�M�;�B�M�2�2�`�B�M�; �(�+�b�X�a�1�)�X �l�M�B�p�2�`�b�B�i�û �S���`�B�b�@�.�B�/�2�`�Q�i �@ �S���`�B�b �o�A�A�- �k�y�y�3�X �1�M�;�H�B�b�?�X ���i�2�H�@�y�y�j�8�d�d�y�3��

THÈSE

présentée à

l'Université Paris 7 � Denis Diderot

pour obtenir le titre de

Docteur en Informatique

Types et contraintes graphiques :
polymorphisme de second ordre

et inférence

soutenue par

Boris Yakobowski

le 17 Décembre 2008

Jury

Président Roberto Di Cosmo

Rapporteurs Stéphanie Weirich
Hugo Herbelin

Examinateurs Fritz Henglein
Alexandre Miquel

Directeur Didier Rémy

Remerciements

Ce travail n'aurait pas vu le jour sans l'aide, le concours etle soutien de nombreuses
personnes, que je tiens à remercier ici.

En premier lieu, merci à Didier pour avoir encadré cette thèse, tout particulièrement
pour sa disponibilité sans faille pendant ces 4 années. En plus de ses conseils scienti�ques,
j'aurai également largement béné�cié de son expertise TEX, me permettant d'atteindre le
niveau enviable (?) de �TEX utilisateur frustré mais capable�.

Mes deux rapporteurs, Stephanie Weirich et Hugo Herbelin, ont eu la lourde tâche de
relire mon imposant manuscrit ; qu'ils soient ici remerciéspour leur intérêt et leur persé-
vérance. Merci en particulier à Stephanie pour ses nombreuses remarques, toujours d'une
grande pertinence. Merci également à Fritz Henglein et Alexandre Miquel pour m'avoir fait
l'honneur de s'intéresser à mon travail. En plus de présidermon jury, Roberto Di Cosmo
m'aura initié à la recherche alors que je n'étais encore qu'un jeune padawan de Licence. Pour
tout cela, et bien d'autres choses encore, je lui suis à jamais reconnaissant. En�n, cette thèse
aura également été l'occasion de discussions scienti�questrès enrichissantes. Merci donc à
Didier Le Botlan, Daan Leijen et Dimitrios Vytiniotis pour t outes leurs remarques et sug-
gestions sur mon travail.

Le projet Cristal , qui s'est sublimé enGallium pendant ma thèse, est un environ-
nement de travail d'une richesse scienti�que exceptionnelle. Qu'il me soit donc permis de
remercier ici tous ceux qui ont contribué à le faire vivre pendant ces 4 années. En particu-
lier, merci à Xavier Leroy pour nous avoir fait béné�cier de son savoir aussi encyclopédique
qu'éclectique, et à Sandrine Blazy, Damien Doligez, Alain Frisch et Michel Mauny pour leur
bonne humeur contagieuse. Merci également à Jacques Garrigue et François Pottier pour
leurs remarques sur mon travail ; la Dé�nition 4.3.3, qui aurait dû être le bien moins élégant
Lemme 4.3.4, doit par exemple beaucoup à François.Gallium serait incomplet sans notre
projet frère Moscova ; merci à eux. En�n, séparés de nous uniquement par la distance,
merci in�niment à Daniel Hirschko� et Yves Bertot pour m'avo ir fait découvrir et aimer les
théories de la programmation et de la preuve.

Primus inter pares parmi nos petits condisciples, merci à Yann pour nos interminables
discussions sur le typage et tant d'autres sujets, ainsi quepour m'avoir supporté comme
cobureau. Ma thèse aurait été fort di�érente sans lui. De même, merci à Zaynah pour
avoir été là toutes ces années. Même si la teneur en typage de nos discussions aura été

iii

iv

bien moindre, elles auront été tout aussi enrichissantes. Un autre immense merci à mes
compagnons de 4ème année Jade et Benoît M. . En�n, je me dois deremercier Benoît R.
(deuxième cobureau, et premier Benoît chronologiquement !), ainsi que Nico et J.B. pour
toutes nos discussions dans mon bureau ou au coin café/thé.

Mon arrivée à PPS aura été l'occasion d'un véritable renouveau. En tout premier lieu,
je remercie Vincent qui m'aura donné l'opportunité fantastique de travailler sur Ocsigen .
Merci à Sam pour ses blagues nulles, mais aussi pour avoir défriché le labyrinthe des semaines
précédant la soutenance. Merci également à Grégoire pour toutes nos discussions, à Gim,
aux amis et collègues duLIAFA (dont Claire et Julien) et des autres laboratoires parisiens,
en particulier Pierre, Aurélien, Mathieu, Matthieu et Davi d. Plus généralement, merci à
tous ceux avec qui j'ai eu la chance d'interagir ces 3 derniers mois.

Merci à ma famille, tout particulièrement mes parents et ma soeur. Même si je les ai
peu vus ces dernières années, ils ont toujours été là pour moi, et j'espère qu'ils continueront
à l'être longtemps. (Et j'espère avoir la possibilité de lesvoir plus souvent !)

En�n, et surtout, merci à tous mes amis, pour m'avoir aidé à sortir de mon � -monde, et
avoir bien voulu me faire partager le leur. Merci donc à Anne-Laure, François, Caro, Gilles,
Mathieu1, Jeremy, Sébastien, Jordan, Luc et Benoît2. Plus généralement, merci à tous les
MIM01 et MIM02, les nanars-clubiens, les Ulmiens non amateurs de nanars, les Anciens
Martins, ainsi que tous ceux que j'oublie mais qui se reconnaîtront. Merci pour tout, et bien
plus encore.

1Un troisième !
2Cf. note 1.

Contents

Remerciements iii

Contents v

1 Notations and conventions 1
1.1 Conventions . 1
1.2 Mathematical notations . 1
1.3 Relations . 1
1.4 Graphs . 2

1.4.1 Directed acyclic graph . 2
1.4.2 Domination . 2

1.5 Types . 3
1.6 Expressions . 3

2 Introduction 5
2.1 Types in functional languages 5
2.2 Type inference and SystemF . 6
2.3 MLF . 7

2.3.1 MLF . 7
2.3.2 Enriching the types of SystemF 8
2.3.3 Syntactic MLF types . 9

2.4 Improving MLF . 10
2.5 Outline of this document . 11

2.5.1 Part I: graphic types and type instance 11
2.5.2 Part II: type inference with graphic constraints 12
2.5.3 Part III: an explicit language for MLF 13
2.5.4 Part IV: conclusions . 14

2.6 Published works . 14

v

vi Contents

I A graphical presentation of MLF types and type instance 15

3 Representing �rst- and second-order types by graphs 17
3.1 First-order terms . 17

3.1.1 De�nition of �rst-order terms . 17
3.1.2 Instance and uni�cation on �rst-order terms 18

3.2 Term-graphs . 19
3.2.1 De�nition . 19
3.2.2 Instance on term-graphs . 21
3.2.3 Uni�cation on term-graphs . 22
3.2.4 Anonymous variables . 23

3.3 Representing second-order types 24
3.3.1 Binding edges . 25
3.3.2 Anonymous variables . 26
3.3.3 Instantiation on graphic SystemF types 26

3.4 Adding �exible quanti�cation to second-order graphic t ypes 30
3.4.1 Beyond systemF . 30
3.4.2 Type instance in SystemF . 31
3.4.3 An informal semantics for the types of SystemF 36

4 MLF graphic types 39
4.1 RepresentingMLF graphic types . 39

4.1.1 From syntactic to graphic . 40
4.2 Pre-types . 41

4.2.1 Why binding all nodes . 42
4.3 Well-formedness of graphic types 42

4.3.1 Well-formed pre-types . 42
4.3.2 Invariants induced by well-formedness 44

4.4 Operators for building and transforming types 45
4.4.1 Grafting . 45
4.4.2 Projection . 46
4.4.3 Fusion . 46
4.4.4 Raising . 48

5 Instance on MLF graphic types 51
5.1 Why rigid quanti�cation? . 51
5.2 Shaping the instance relation . 52

5.2.1 GreenMLF nodes . 52
5.2.2 RedMLF nodes . 53
5.2.3 Nodes with a rigid edge . 53
5.2.4 Inert and monomorphic nodes . 53

5.3 Formal de�nition of the instance relations 55
5.3.1 Permissions . 55
5.3.2 Atomic instance operations . 56
5.3.3 The instance relation . 60
5.3.4 Instance modulo similarity . 61
5.3.5 Instance modulo abstraction . 62

Contents vii

5.4 Instance and permissions .. . 63
5.4.1 Change in permissions . 63
5.4.2 Ordering permissions . 65
5.4.3 Evolution of permissions through instance 67

6 Properties of the instance relations 69
6.1 Reasoning on restricted instance 69
6.2 Ordering the instance operations 70
6.3 Big-step instance subrelations 72

6.3.1 Big-step raising . 72
6.3.2 Big-step merging and weakening 74

6.4 Grafting atomic types . 76
6.4.1 Widening . 76
6.4.2 Constructor type . 77

6.5 Canonical derivations . 78
6.6 Performing an instance operation early 78
6.7 Reorganizing the instance modulo relations 81

6.7.1 Con�uence of the instance relations 81
6.7.2 Reorganizing the instance modulo relations 86

7 Uni�cation 89
7.1 MLF uni�cation problem . 89
7.2 Admissible problems . 90
7.3 Uni�cation algorithm . 93

7.3.1 Two intermediate graphs . 95
7.4 Correctness of the algorithm . 97

7.4.1 Properties of the uni�er . 98
7.4.2 Soundness ofUnif . 101
7.4.3 Relating admissibility and the binding trees of uni�ers 102
7.4.4 Completeness ofUnif . 104
7.4.5 Principality of Unif . 105
7.4.6 Uni�cation modulo similarity . 107

7.5 Complexity . 108
7.6 Generalized uni�cation problems . 109

7.6.1 Generalized admissibility . 109
7.6.2 Generalized uni�cation algorithm 110

7.7 Uni�cation in restrictions of MLF . 111

8 Relating the syntactic and graphic presentations of MLF types 113
8.1 An informal comparison of the syntactic and graphic instance relations . . 113

8.1.1 Syntactic and graphic instance 113
8.1.2 Syntactic equivalence and graphic similarity 114
8.1.3 Comparison with the original syntactic relations 115

8.2 Translating graphic types to and from syntactic types 116
8.2.1 From graphic to syntactic types . 116
8.2.2 From syntactic to graphic types . 118

8.3 A simple syntactic sugar to display types 120

viii Contents

8.3.1 Inlining bounds . 121
8.3.2 Algorithm . 123
8.3.3 Inlining monomorphic nodes . 125

II Graphic constraints 127

9 Graphic constraints 129
9.1 An informal presentation of graphic constraints 129

9.1.1 Our approach . 129
9.1.2 Graphic ML type inference without generalization 130
9.1.3 (Graphic) type schemes and generalization 131
9.1.4 Type instantiation . 133

9.2 Graphic constraints as an extension of graphic types 134
9.2.1 A formal de�nition of constraints 134
9.2.2 Properties of constraints . 136
9.2.3 Instance on graphic constraints 138
9.2.4 Transforming constraints . 139
9.2.5 From graphic constraints to graphic types 139
9.2.6 Interiors . 142

9.3 MLF and ML constraints . 142
9.4 Typing constraints . 144

10 Semantics of constraints 147
10.1 Expanding a type scheme . 147

10.1.1 Degenerate type schemes . 149
10.1.2 Flag and binding reset . 149

10.2 An example . 150
10.3 Solved constraint edges .. . 151
10.4 Solutions and presolutions of constraints 152

10.4.1 Presolutions and explicitly typed terms 154
10.5 Meaning of constraints . 154

10.5.1 Preserving presolutions .. 155
10.5.2 The di�erent �avours of MLF . 155

10.6 Relating the meaning ofML and MLF constraints 156

11 Reasoning on constraints 159
11.1 Removing unconstrained existential nodes 159

11.1.1 Raising and existential nodes 162
11.2 Solving uni�cation edges . 163

11.2.1 Uni�cation in ML constraints . 165
11.3 Removing degenerate instantiation edges 165
11.4 Eager propagation . 167
11.5 Normalized expansion solving 168
11.6 Stability of solved instantiation edges . 170

12 Type inference in MLF 173

Contents ix

12.1 Solving acyclic constraints . 173
12.1.1 Acyclic constraints . 173
12.1.2 Solving an instantiation edge 174
12.1.3 Solving an acyclic constraint . 176

12.2 Simplifying acyclic constraints . 177
12.2.1 Removing solved instantiation edges 177
12.2.2 Solving closed subconstraints 179
12.2.3 Splitting gen nodes . 179

12.3 Typability in annotated and unannotated MLF. 181
12.3.1 Unannotated terms . 181
12.3.2 Type annotations . 181

12.4 Simplifying typing constraints . 184
12.4.1 Simplifying the typing of variables 185
12.4.2 Simplifying ML typing constraints 188
12.4.3 Using the simpli�cations rules . 190

12.5 Analyzing the complexity of type inference 190
12.5.1 Practical complexity bound for MLF type inference 191
12.5.2 Practical complexity bound for ML type inference in our system . 191
12.5.3 Exact complexity bound for MLF type inference 192

12.6 Implementation . 192

13 Constraints up to similarity or abstraction 195
13.1 Constraints and inverse instance 195

13.1.1 Inverse instance operations .. . 195
13.1.2 Properties of the modulo systems 196
13.1.3 Shape of presolutions . 197
13.1.4 Stability of presolutions . 198

13.2 Constraints up to similarity . 200
13.3 Constraints up to abstraction . 202

13.3.1 Typability in iMLF . 202
13.3.2 Properties ofiMLF presolutions . 203
13.3.3 Reasoning in Implicit MLF . 204
13.3.4 Expressivity of iMLF . 205

III An explicit language for MLF 207

14 xMLF, a Church-style language for MLF 209
14.1 Why another explicit language forMLF? 209
14.2 Types and typing rules ofxMLF . 210

14.2.1 Types, terms, and environments 210
14.2.2 Type instance . 211
14.2.3 Typing rules for xMLF . 214

14.3 Reduction in xMLF . 216
14.3.1 Type reduction rules . 216
14.3.2 Reducing only type applications 218
14.3.3 SystemF as a subsystem ofxMLF 218

x Contents

14.4 Type soundness . 219
14.4.1 Preservation of typings . 219
14.4.2 Progress with call-by-value and call-by-name semantics 222

14.5 Con�uence of reduction . 227
14.6 A formal proof of xMLF ? . 233

15 Translating gMLF into xMLF 235
15.1 An introductory example . 235

15.1.1 Our approach . 235
15.1.2 Example . 236

15.2 Translatable presolutions . 237
15.2.1 Pitfalls of the translation . 237
15.2.2 Identifying which operations to translate 238
15.2.3 Removing operations on inert-locked nodes 239
15.2.4 Ordering the nodes . 243
15.2.5 Adding xMLF type abstractions . 245
15.2.6 Scopes in alet construct . 248
15.2.7 Translatable presolutions . 249
15.2.8 UsingxMLF as an internal language 250

15.3 Translating presolutions into xMLF . 251
15.3.1 Obtaining syntactic types . 251
15.3.2 Types and environments of subterms 252
15.3.3 Typing environments . 254
15.3.4 Computation contexts . 255
15.3.5 Translating normalized derivations into computations 256
15.3.6 Elaborating a translatable presolution 260
15.3.7 Correctness of the translation 262
15.3.8 Translating type annotations . 263
15.3.9 Soundness ofgMLF . 263
15.3.10Obtaining instance derivations . 264

15.4 Obtaining simpler elaborated terms . 265
15.4.1 Creating optimized propagation witnesses 265
15.4.2 Using the simpli�cations rules on constraints 266

15.5 Translating presolutions of eMLF and iMLF 267
15.5.1 Preliminary results . 267
15.5.2 Translating an eMLF or iMLF presolution 269

15.6 Translating the syntactic presentations of MLF into xMLF 270
15.6.1 Type equivalence under bounds 270
15.6.2 Expressivity of alias bounds .. . 271

IV Conclusions 273

16 Related works 275
16.1 Type inference and second-order polymorphism 275

16.1.1 More recent proposals . 278
16.2 Type inference forMLF . 283

Contents xi

16.2.1 E�cient type inference for ML . 283
16.2.2 Type inference using typing constraints 283

16.3 Explicit languages . 284

17 Conclusion 285
17.1 Our work in the context of MLF . 285
17.2 Applications beyondMLF . 286
17.3 Perspectives . 287

V Appendix 289

A The �avours of MLF 291
A.1 The MLF cube . 291
A.2 Existing variants . 292

B Syntactic MLF relations 293

Bibliography 295

Index of de�nitions 301

Abstract 308

1
Notations and conventions

1.1 Conventions

In this document, we distinguish four kinds of formal results: lemmas, properties, corollaries,
and theorems. Alemma states a simple result, and is usually used to show other results. A
corollary is a direct consequence of the previous results. Atheorem is a fundamental result
of this document. A property is a simple�but often used�result that we implicitly use
inside proofs. Results and de�nitions are numbered with respect to the current section.

1.2 Mathematical notations

The symbol , is used to give the formal de�nition of an object, and means �is equal by
de�nition to�. The symbol != signi�es that the left-hand side rewrites to the right-hand
one, but the converse might not be true in general (because some side-conditions are missing
on the right-hand side).

We write logical conjunctions and disjunctions on multiple lines as shown below

^
�

A
B

, A ^ B _
�

A
B

, A _ B

We write jAj the cardinal of a setA, A � B the cartesian product of A and B , and A # B
the fact that A and B are disjoint (i.e. A \ B is empty). If a is a meta-variable ranging
over some setA, we write a for an ordered sequence of elements ofA. Given a function f ,
dom(f) and codom(f) are respectively its domain and codomain.

1.3 Relations

In this document, a binary relation R over a setS is often seen as a set of pairs ofS, and
we write x R y for (x; y) 2 R . A function f can be seen as the binary relationR f verifying

x R f y () y = f (x)

1

2 Notations and conventions

We often view relations as (potentially non-deterministic) rewriting systems. Conse-
quently, we write f ;g for the inverse compositiong � f . The semicolon notation emphasizes
the order in which the rewritings are done. Similarly, given two relations, we write R ; R 0

for the composition of relations de�ned by

x (R ; R 0) y () 9 z; x R z ^ z R 0 y

Given a relation R, we write R � 1 for its symmetric relation, R + its transitive closure
and R � its re�exive transitive closure. The kernel of R is the relation R \ R � 1. We also
use > for < � 1 when < is a relation symbol with a symmetric symbol. Finally, given two
relations R 1 and R 2, we write R 1 � R 2 the relation (R 1 [R 2)�

1.4 Graphs

Let G be an arbitrary directed graph with nodes N and edgesE labeled in L , i.e. E �
N � L � N . We write

n1
l�! n2 2 G for (n1; l; n 2) 2 E

Often, G may be left implicit and we simply write n1
l�! n2. We may also �x a label l 2 L

and see l�! as the binary relation f (n1; n2) j (n1
l�! n2)g.

Fixing one side of the arrow to a particular set of nodesS, we write (S �!) and (�! S0)
for the set of nodes reached from a node inS, and reaching a node inS0 respectively:

(S �!) , f n0 j 9n 2 S; n �! n0g (�! S0) , f n j 9n0 2 S0; n �! n0g

If l is a string of labels l1 : : : lk , we write n1
l�! nk for n1

l 1�! : : : nk � 1
l k � 1�! nk . We also

write n ��! n0 if there exists a string of labels l such that n l�! n0, and n +�! n0 if this
string is non-empty.

1.4.1 Directed acyclic graph

Given a directed graphG over a setN , we say that G is a directed acyclic graph, abbreviated
as dag, if no element n of N is such that n +�! n.

1.4.2 Domination

Given a graph G over a set N , we say that G is rooted if there exists an elementr of N
such that all the elements ofN are accessible fromr : 8n; r ��! n.

Given two nodes n and n0 of a rooted graph G, we say that n dominates n0, written
n ����! n0, if for any sequencen0 �! n1 : : : �! nk with n0 = r and nk = n0, there exists
i such that ni = n. Intuitively, all the paths from the root to n0 contain n. The domination
relation is a partial order over the nodes ofN . Moreover, for any three nodesn1, n2 and
n3, if n1 ����! n3 and n2 ����! n3, either n1 ����! n2 or n2 ����! n1.

1.5. Types 3

1.5 Types

We assume the existence on an unspeci�ed algebra of type constructors � , containing at
least the arrow constructor ! . In the examples we will sometimes use type constructors
such asint or list. Each constructor C comes with its arity , written arity(C); the arrow
constructor has arity 2. The meta-variable C ranges over� .

First-order types, ML type schemes and second-order types are de�ned by the following
grammar:

t ::= � j C t First-order types
� ::= t j 8�: � ML type schemes
� ::= � j C � j 8�: � SystemF types

A �rst-order type is either a type variable � , or the application of a type constructor
respecting the arity of the constructor. ML type schemes only allow prenex quanti�cation
i.e. at the front of the type. System F types are more general and allow type quanti�cation
everywhere.

In the following, the metavariables � , � ,
 and � range over a denumerable set of type
variables. As usual, 8 binds to the right as far as possible, and the arrow constructor
associates to the right. That is,

8�: 8�: (� ! �) ! � ! 8
:
 !
 is 8�: (8�: ((� ! �) ! (� ! 8
: (
 !
))))

The free variables of a type are writtenftv.

1.6 Expressions

We reason on the expressions of the� -calculus enriched with let constructions.

a ::= x j � (x) a j a a j let x = a in a

The metavariables x and y range over a denumerable set of variables. The expressions
� (x) a and let x = a0 in a bind x in a but not in a0. The simultaneous capture-avoiding
substitution of a sequence of variablex by a sequence of expressionse inside an expression
e0 is written e0[e=x].

In some cases, we annotate expressions or� -bound variables with types, resulting in the
grammar

a0 ::= x j � (x) a0 j � (x : �) a0 j a0 a0 j let x = a0 in a0 j (a0 : �)

Type annotations will be de�ned precisely in Ÿ12.3.2.

2
Introduction

2.1 Types in functional languages

Types are a key part of the design of statically typed functional languages such as ML
(Milner 1978) or Haskell (Peyton Jones 2003). One of the reasons of the success of these
languages is undoubtedly type inference, which relieves the programmer from the burden
of writing the types of the variables of the program. This facilitates rapid prototyping and
code maintenance.

Both ML and Haskell are based at their core on the Damas-Milner type system (Damas
and Milner 1982). In this system, type inference is decidable, and principal : a program
can be assigned a type that is more general than all its all other possible types. This is a
very desirable property, as the compiler never needs to makearbitrary choices during type
inference. Moreover, type inference is total: the programmer never needs to write types to
make his program typecheck.

Another key part of the success of the Damas-Milner system isthe possibility to write
polymorphic functions, that can be applied to arguments of di�erent types. For example, a
function computing the length of a list would receive type

8�: � list ! int

Such a function can be applied to a list of any type. That is, while lists are required to be
homogeneous (i.e. contain only one type of element), we can compute the length of lists of
integers, of binary trees, of functions. . .

Using the fact that functions are �rst-class in functional l anguages, we can also write
so-called iterators, such as the ubiquitousmap function over lists

8�: 8�: (� ! �) ! � list ! � list

This function uses its �rst argument f to convert each elemente in the list to f e .

The form of polymorphism o�ered by the Damas-Milner type system is somewhat weak,
as type quanti�cation can only appear at the front of the type ; the quanti�cation is said to

5

6 Introduction

be prenex. For example, we cannot write a function that takesan iterator over lists such
as the function map above. Such a function would have type

(8�: 8�: (� ! �) ! � list ! � list) ! : : :

This type is not permitted, as � and � are introduced under an arrow constructor instead
of at the beginning of the type.

During the last 25 years, the system proposed by Damas and Milner has been a re-
markable point of equilibrium in the design space of programming languages. While more
expressive systems have been proposed, they often were too complicated, or had unde-
cidable type inference, or were not a conservative extension of ML. . . As a result, while
Damas-Milner has been enriched by many new constructions such as quali�ed types (Jones
1994), or generalized algebraic data types (Xiet al. 2003; Joneset al. 2006; Pottier and
Régis-Gianas 2006), it still forms the core of our type systems.

Still, the form of polymorphism it o�ers is sometimes too lim ited. Peyton Joneset al.
(2007, Ÿ2) provide a good survey on why second-order polymorphism can be needed. Let
us just mention the possibility to write functions taking it erators as arguments (as shown
above); generic programming, in which the compiler automatically generates some functions
(such as a pretty-printer) for the objects of a certain type; or the ability to encode invariants,
by embedding polymorphic arguments inside the datastructure.

From an expressivity point of view, we would like to obtain at least the same power
as the second-order polymorphic� -calculus, also calledSystemF (Girard 1972; Reynolds
1974). In SystemF, polymorphism can appear everywhere, and

(8�: � ! �) ! 8 �: � ! �

is a valid type. Unfortunately, System F has undecidable type inference (Wells 1994).
Moreover, as shown by the next section, SystemF has poor properties as a programming
language, in particular because it does not have principal types. As a result, over the years
a considerable amount of e�ort has been devoted to �nding a type system that combines the
expressivity of SystemF with the convenience of (at least some)ML-style type inference.
We give a summary of these works in Ÿ16.

2.2 Type inference and System F

We recall that the instance relation 6 F in the implicit presentation of System F is de�ned by

8�: � 6 F 8�: � [� 0=�] � # ftv(8�: �)

This relation allows instantiating the type variables quanti�ed at the head of the type, and
generalizing on-the-�y the newly introduced type variables.

Combining ML-style type inference with System F polymorphism is di�cult, as type
inference in the presence of second-order polymorphism leads to two competing strategies:
should types be kept polymorphic for as long as possible, or conversely, for as short as
possible? Unfortunately, those two paths are not con�uent in general, leading to two correct
but incomparable types for an expression (assuming equal types for their subexpressions).

2.3. MLF 7

As an example, consider the expressionschoose id, where chooseand id are de�ned by

id , � (x) x : 8�: � ! �
choose , � (x) � (y) if false then x elsey : 8�: � ! � ! �

(In the following, we abbreviate 8�: � ! � as � id .)

In System F, we can givechoose idthe following types � 1 and � 2

choose id:
�

8
: (
 !
) ! (
 !
) (� 1)
(8�: � ! �) ! (8�: � ! �) (� 2)

Those two types are incomparable for6 F, as none is more general than the other. Indeed,
the inner polymorphism of � 2 cannot be recovered by instantiating � 1. Conversely, up to
useless quanti�cation, � 2 has no other instance by6 F than itself. The�crucial�information
that the two instances of � id are linked, and that instantiating them together would be sound,
has been lost. This shortcoming is inherent to using SystemF types, which cannot express
that kind of dependency�hence the language MLF, described below.

2.3 MLF

This section brie�y presents the MLF language (Le Botlan and Rémy 2003), on which a
large part of this work is based. However, we purposefully do not dig into details, as much
of the material covered here will be presented using quite di�erent approaches elsewhere in
this document.

2.3.1 MLF

The MLFlanguage (Le Botlan and Rémy 2003; Le Botlan 2004) aims at smoothly combining
the advantages of ML-style type inference with the expressiveness of SystemF second-
order polymorphism. In MLF, terms are partially annotated. All functions that use thei r
parameters in a polymorphic way�and only those�need an annota tion. In particular, ML
terms never require one. In fact,MLF is a conservative extension ofML: all ML terms are
typable in MLF. Moreover, the full power of �rst-class polymorphism is also available, as
any SystemF term can be typed by using type annotations (containing second-order types).
Still, as in ML, all typable expressions have principal types.

MLF is a language with very good stability properties: the set of well-typed pro-
grams is invariant under a wide class of program transformations, including let-expansion,
let-reduction, � -expansion of functional expressions, reordering of arguments, curry-
ing. . . Moreover, syntactic application receives no special treatment in typing rules: a1 a2

is typable if and only if apply a1 a2 is (apply being � (f) � (x) f x). Furthermore, since only
lambda-bound arguments that are used polymorphically needan annotation, it is very easy
for the user to predict where and which annotations to write. Finally, MLF is an impred-
icative type system, which allows for example embedding polymorphism inside containers.
Thus (8�: � ! �) list is a valid type, quite di�erent from the weaker 8�: ((� ! �) list).

MLF type inference is decidable. Moreover, it is also principal: every well-typed source
program provided with some annotations has a principal type� i.e. one of which all other
correct types areinstances. Interestingly, the typing rules of MLFare a simple generalization

8 Introduction

of the ones ofML, and are quite straightforward: the power of MLF does not come from its
typing rules, but from its types, which are described next.

2.3.2 Enriching the types of System F

MLF achieves the results above, and overcomes the lack of principal types in System F, by
going beyond SystemF types. We describeMLF types below.

2.3.2.1 Flexible quanti�cation

One solution to the lack of principal types in SystemF is to enrich the system with a new
form of (bounded) quanti�cation, so that choose idreceives the type

� , 8 (� > � id) � ! �

Unlike in � id ! � id , the two occurrences of� id are linked in � . Thus it is safe to instantiate
� id in the type above, and the variable � is allowed to range over all the possible instances
of its bound � id , as indicated by the sign> . We say it is �exibly bound. Of course, the two
occurrences of� on both sides of the arrow must simultaneously pick the same instance:
the weaker the argument, the weaker the result.

Afterwards, the type � can be instantiated in the following ways:

1. We can decide that� can no longer be instantiated, and �freeze� its bound. Thus we
recover the type � id ! � id .

2. We can introduce a dummy quanti�cation in front of � , resulting in 8 (�) 8 (� > � id)
� ! � , and decide that � is instantiated with � ! � �which is indeed an instance
of � id . Then the bound of � can no longer be instantiated, and can safely be inlined.
We thus recover theF type 8 (�) (� ! �) ! (� ! �) of choose id

More generally, �exible quanti�cation is used to postpone the moment at which the
operation of taking an instance is applied. The idea is to keep types as polymorphic as
possible, in order to be able to recover later�just by (implic it) instantiation�what they
would have been if some part had been instantiated earlier.

2.3.2.2 Rigid quanti�cation

Flexible quanti�cation, while expressive, is not yet su�ci ent to encode all of SystemF. For
example, consider the function

f , � (x) (x 1; x 'c')

It is not typable in ML, as the variablex is used on two arguments with incompatible types,
int and char. In System F, it can be given the type

� id ! int � char

However, it would be incorrect to give it the type

8 (� > � id) � ! int � char

2.3. MLF 9

Indeed, this type could be instantiated into

(int ! int) ! int � char

which would erroneously allow the application of the successor function to a character.
For reasons related to type inference (and partially described in the next paragraph), we

do not give to f the SystemF type above. Instead,MLFuses another form of quanti�cation,
called hereafter rigidly -bounded quanti�cation and written with an � = � sign. Then f is
given the type1

8 (� = � id) � ! int � char

Rigid quanti�cation cannot be (signi�cantly) weakened by i nstantiation. Hence, it appears
when polymorphism is required, while �exible quanti�cation is present when polymorphism
is available.

Flexible versus rigid Flexible and rigid quanti�cation are two forms of bounded quanti�-
cation, and share the same syntax. However, there is a deep asymmetry between them:

� �exible quanti�cation is used to obtain more expressive types, in order to have a
system with principal types;

� on the contrary, rigid quanti�cation is used to restrict the expressivity of types: in a
way, the type � id ! int � char is more general than the type8 (� = � id) � ! int � char.
A system giving to the term f above the type� id ! int � charis described by Le Botlan
and Rémy (2007), and forms the basis of theimplicit presentation of MLF, in which
type annotations are never needed. However this system is more expressive than
SystemF, and thus cannot be used to perform type inference�hence the introduction
of rigid quanti�cation.

This question is detailed further in Ÿ5.1.

2.3.3 Syntactic MLF types

This section brie�y presents the formal de�nition of MLF syntactic types, as it makes it
easier to refer to the original syntactic de�nition later on .

MLF types are second-order types, but use the two forms of bounded quanti�cation
described in the previous section

� ::= t j ? j 8 (� � �) �
� ::= > j =

A syntactic second-order type� is a �rst-order type t, a bottom type ? (which stands for
the System F type 8�: �), or a quanti�ed type 8 (� � �) � 0. Unlike in System F, variables
are always given bounds (that are themselves second-order types) to range over. Bounds
are called rigid when introduced by the = �ag, and �exible when introduced by > .

1More precisely, in MLF a type annotation 8 (�) � ! � must be added on x in f in order to obtain this
type; otherwise f is untypable.

10 Introduction

I Examples The type 8�: � ! � of SystemF can be represented inMLF as

8 (� > ?) � ! � (� id)

We often omit trivial bounds and write 8 (�) � for 8 (� > ?) � .

The System F type (8�: � ! �) ! (8�: � ! �) cannot be represented directly, as the
grammar forbids writing types such as� id ! � id . We instead use an auxiliary variable with
a rigid bound and write

8 (� = � id) � ! � (� 1)

Alternatively, we could have used two di�erent bounds, as in

8 (� = � id) 8 (
 = � id) � !
 (� 0
1)

From a type-soundness point of view, rigid bounds can alwaysbe expanded, and there is no
di�erence between the two types above. However, this is not the case from a type inference
point of view. This di�erence is at the heart of MLF, and will be explained later.

In MLF, we can also write the type

8 (� > � id) � ! � (� 2)

This time, � 2 should be understood by the set of its instances, that is, alltypes 8 (� = �)
� ! � such that � is an instance of� id . In fact, � 1 is itself an instance of� 2. The auxiliary
variable � is used to share the two instances of� on the left and right sides of the arrow.
Thus, � 2 is quite di�erent from the type

8 (� > � id) 8 (� 0> � id) � ! � 0 (� 3)

which stands for all types 8 (� = �) 8 (� 0 = � 0) � ! � 0 such that � and � 0 are independent
instances of� id .

Combining both forms of quanti�cation, the type

8 (� = � id) 8 (� 0> � id) � ! � 0 (� 4)

may be (roughly) understood as the set of allF-types � id ! � such that � is an instance
of � id .

2.4 Improving ML F

While MLF is a very powerful system, it could be improved in several ways:

1. The original syntactic presentation of MLF (Le Botlan and Rémy 2003) is quite tech-
nical, and most extensions of the system in this form requirea large amount of work.
Indeed, while type instance and a subrelation called abstraction play a key role in
MLF, they are de�ned by purely syntactic means, with little intu itive support. For
a long time, these relations were mainly justi�ed a posteriori by the properties of
MLF. A more semantic-based de�nition has been proposed, but only for a signi�cant
restriction of the language (Le Botlan and Rémy 2007).

2.5. Outline of this document 11

2. From an algorithmic point of view, the type inference algorithm based on syntactic
types has obvious sources of ine�ciencies. It is likely it would not scale up well to
large, possibly automatically generated programs. Devising a more e�cient algorithm
was a question left open by Le Botlan (2004, page 221).

3. Although MLF has been proven sound (Le Botlan 2004; Le Botlan and Rémy 2007),
this has so far been done by proving the soundness of a system larger than the one in
which type inference is performed. Indeed, proving subjectreduction of the surface
language requires to maintain�and to actually transform�typ e annotations during
reduction. So far, �nding an appropriate language to transform the annotations was
an open question, precluding the use ofMLF as a typed internal language inside a
compiler.

4. The power of MLF has a price: MLF types are more general than SystemF types,
making them look unfamiliar to the user. Moreover, the bounded quanti�cation used
insides types obfuscates the structure of the type, making them quite di�cult to read
and to interpret.

A large part of this work aims at solving the issues above. In particular, Part I of this
document develops an alternative representation ofMLF types which drastically simpli�es
the meta-theory of MLF, and allows for e�cient algorithms. Part III introduces an e xplicitly-
typed presentation of MLF, suitable for use as the core language of a typed compiler. The
next section, which details our contributions, develop those points further.

The �avours of ML F The di�erent versions of MLFthat have been studied so far, including
in this document, are summarized in Appendix A (page 291).

2.5 Outline of this document

This section explains our contributions, as well as how thisdocument is structured. For
each point, we mention the chapter in which it is developed.

2.5.1 Part I: graphic types and type instance

The �rst part of this document introduces an alternative rep resentation of MLF types as
graphs, and studies the instance relation and uni�cation onthis presentation.

� We recall the graphical representation of �rst-order terms as term-dags, as well as of
the type instance relation on this presentation of types. Term-dags are already used
to represent types in e�cient ML type inference, and are well-known(Ÿ3).

We generalize this presentation, �rst to SystemF, and then to SystemF , an extension
of SystemF with �exible quanti�cation (Ÿ3).

� MLF types are derived from SystemF types by adding rigid quanti�cation. We rep-
resent MLF types by graphic types (Ÿ4), which are the superposition of a term-dag
(representing the structure of the type) and of a binding tree (which indicates where
and how each node of the graphic type is bound), with further properties relating the

12 Introduction

two. The existence of a graphic presentation forMLFtypes had already been suggested
(Le Botlan 2004), but it was not su�ciently well-understood to be used formally.

� We express type instancev on graphic types by adapting the instance relation of Sys-
tem F to rigid quanti�cation (Ÿ5). Instance is simply the combination of four simple
atomic operations on graphic types. Two of those operationsare already present on
term-dags, and the two others act on the binding tree. Valid instances are controlled
through the use ofpermissions, which ensure that the operations permitted on a node
are sound.

� Furthermore, we de�ne two équivalece relations � and @�A� (Ÿ5). The �rst relation
abstracts over useless binders on monomorphic type constructors such asint; two
types equivalent for � should not really be distinguished. The second relation is
larger, and essentially identi�es types that contain the same amount of polymorphism.
The relation (v [@�A�)� is used to de�ne an implicit version of MLF, in which type
annotations are not needed (but in which type inference is not possible).

� Using permissions avoids the strati�cation of instance into two relations (abstraction
and instance) present in the syntactic versions ofMLF, and permits a simpler study
of the properties of instance(Ÿ6). The use of permissions also allows for a natural
extension of the instance relation (compared to the original syntactic relation), with
no technical overhead(Ÿ8).2

� Uni�cation on graphic MLF types �nds the smallest instance of two types for the
instance relation, and is sound, complete and principal(Ÿ7). The algorithm follows
the same pattern as the instance relation: �rst-order uni�c ation on the term-dags,
computation of the least binding tree that is an instance of the ones of the input types,
and a control of permissions rejecting some unsound uni�ers. Of these three steps,
only the third is not immediate. Moreover, our uni�cation al gorithm has optimal
(linear) complexity.

� We show that graphic types are more canonical than syntactictypes, as they factor
out most of the syntactical artifacts present in the latter (Ÿ8). We give algorithms
translating to and from syntactic MLF types in linear time (Ÿ8). We propose a limited
form of syntactic sugar to display MLF types. Experimentally, using this sugar, most
terms have a SystemF-like type, much more readable than their realMLF type (Ÿ8).

2.5.2 Part II: type inference with graphic constraints

The second part of this document generalizes the graphic types of the �rst part to graphic
constraints. Indeed, we do not adapt the syntactic type inference algorithm by replacing
its uni�cation algorithm on syntactic types with the uni�ca tion algorithm on graphic types:
repeatedly translating to and from graphic types would be both inelegant and ine�cient,
losing the quite compact representation of graphic types. Moreover, we believe that the
graphic presentation is better suited for studying the meta-theoretical properties of MLF.
Instead, we propose an entirely graphical presentation of type inference.

2The instance relation has also been extended in a new syntact ic presentation of MLF (Le Botlan and
Rémy 2007), but this required a more complex de�nition of the abstraction relation.

2.5. Outline of this document 13

� We propose a small set ofgraphic constraints, featuring uni�cation and instantia-
tion edges, existential nodes, and generalization levels(Ÿ9). Interestingly, graphic
constraints are only a slight generalization of graphic types; thus the study of the
meta-theory of graphic constraints is quite light. Moreover, since our approach to
type inference is constraint-based, it is more general thanjust a particular type infer-
ence algorithm; for example, we can de�ne di�erent strategies for solving a constraint.

� Graphic constraints are in fact parameterized by a type system and the operation of
taking the instance of a type scheme. We instantiate this framework with the graphic
presentations of both ML and MLF, thus highlighting the strong ties between those
two systems and reproving that the former is a subsystem of the latter (Ÿ10). In
particular, typing problems, which are obtained by translating � -terms into graphic
constraints in a compositional manner, are the same in bothML and MLF (Ÿ9)�but
are interpreted with di�erent instance relations.

� Our constraints allow polymorphic recursion, and their solutions are in general unde-
cidable. However, a very natural subset of constraints (called acyclic) has decidable
solutions. This subset includes in particular all the constraints that are obtained when
typing the � -terms of Ÿ1.6, which are not recursive.

We give a very simple algorithm to solve an acyclic constraint (Ÿ12). The algorithm
is a simple generalization of the one used forML type inference, and is based on a
conjunction of uni�cation and type generalization.

� We prove that � -terms that do not contain type annotations are typable in MLF if and
only if they are typable in ML. Thus the di�erence between the two systems lies in
the type annotations in source terms, which are only available in their full generality
in MLF (Ÿ12).

� We study the theoretical complexity of solving typing constraints (Ÿ12). We establish
the complexity of MLF type inference, and observe that our algorithm has optimal
complexity for both ML and MLF. Moreover, under reasonable assumptions, our algo-
rithm for type inference in MLF has linear complexity�as in ML.

� We compare the expressivity of the system we have studied (called gMLF) with the
systemseMLF and iMLF that are obtained by taking as the type instance relation the
relations v � and v @�A� respectively (Ÿ13). eMLF and gMLF have the same expressivity.
This justi�es our use of v , which is simpler from a meta-theoretical standpoint, instead
of v � . iMLF is strictly more expressive, but this extra expressivity can be recovered
in gMLF through the use of type annotations.

2.5.3 Part III: an explicit language for MLF

The third part of this document introduces an explicit langu age forMLF, suitable as a typed
internal language.

� We introduce xMLF, a Church-style version of MLF in which all type information is
explicit (Ÿ14). Type instantiation in xMLF generalizes type instantiation in SystemF.
Moreover, all instantiation steps are made entirely explicit through the use of type
computations, which serve as witnesses for type instance.

14 Introduction

� Reduction in xMLF is a combination of the usual � -reduction, and of a set of six
reduction rules for type applications (Ÿ14). All the rules preserve typing. Moreover,
reduction is con�uent when performing strong reduction.

� We show that xMLFis sound, for both call-by-value and call-by-name semantics (Ÿ14).
This is the �rst time that an MLF-based language is proven sound for call-by-name.
For languages with side e�ects, we show that the value restriction can be used in
xMLF.

� Finally, we exhibit a translation from a solved typing constraint into a well-typed
xMLF term (Ÿ15). This ensures in particular the soundness of our system of graphic
constraints. We also discuss the translation of the syntactic presentations ofMLF into
xMLF (Ÿ15).

2.5.4 Part IV: conclusions

To conclude this document, Ÿ16 discusses related works, while Ÿ17 summarizes our contri-
butions and present some research perspectives.

2.6 Published works

A preliminary version of Part I of this document has been published in (Rémy and
Yakobowski 2007), while Part II has been published in (Rémy and Yakobowski 2008);
Part III is currently under submission for publication. The examples used in (Yakobowski
2008) are taken from anMLF type-checker we have developed for this work.

Publications

Didier Rémy and Boris Yakobowski . From ML to MLF: Graphic type constraints
with e�cient type inference. In Proceedings of the 13th ACM S IGPLAN International
Conference on Functional Programming (ICFP'08), Victoria, British Columbia, Canada,
pages 63�74. ACM Press, September 2008.doi: 10.1145/1411203.1411216 .
http://www.yakobowski.org/icfp08.html

Didier Rémy and Boris Yakobowski . A graphical presentation of MLF types
with a linear-time uni�cation algorithm. In Proceedings of the 2007 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation (TLDI'07),
pages 27�38. ACM Press, Nice, France, January 2007. ISBN 1-59593-393-X. doi:
10.1145/1190315.1190321 .
http://www.yakobowski.org/tldi07.html

Boris Yakobowski . Le caractère ` à la rescousse - factorisation et réutilisation de code
grâce aux variants polymorphes. In JFLA 2008 - Dix-neuvièmes Journées Francophones des
Langages Applicatifs, pages 63�77. INRIA, Étretat, January 2008. ISBN 2-7261-1295-11.
http://www.yakobowski.org/jfla08.html

Part

I

A graphical presentation of

MLFtypes and type instance

15

3
Representing �rst- and second-order types

by graphs

Abstract

We introduce the formalism behind the graphs used in this doc ument. Our �rst
step is to see �rst-order terms as trees (Ÿ3.1), and then as graphs (Ÿ3.2). This graph
representation is often used in e�cient algorithms for �rst -order uni�cation. It is also
very well-suited to MLF types, in which sharing is important.

The next two sections are intendedly more informal. We present a graphical rep-
resentation for System F types (Ÿ3.3), and extend it with �exible quanti�cation (Ÿ3. 4).
The graphical representation of MLF types will build upon this presentation.

In order to remain general, Ÿ3.1 and Ÿ3.2 are parameterized by an algebra � of term con-
structors. First-order types can be obtained by taking for � the algebra of type constructors
of Ÿ1.5.

3.1 First-order terms

3.1.1 De�nition of �rst-order terms

We view �rst-order terms as trees, which we describe using the notion of paths.

De�nition 3.1.1 (Paths) A path � is a sequence of integers. The empty path is written� .
The concatenation of � 0 after � is written � � � 0. �

The metavariable � ranges over paths. We often write �� 0 for � � � 0 when there is no
ambiguity. In fact, since in the examples we never use integers greater than 2, we allow
writing 11 for 1 � 1. We extend concatenation to sets of paths by� � � 0 = f � � � 0 j � 2
� ; � 0 2 � 0g.

17

18 Representing �rst- and second-order types by graphs

A �rst-order term can be de�ned as a partial function from the set of paths to the
constructors of the term.

De�nition 3.1.2 (First-order terms) A (�rst-order) term t over a set of variablesV is
a �nite non-empty mapping from the set of paths to � [V that is pre�x-closed and respects
arities. More precisely, t must verify

8� 2 dom(t); 8k 2 N; (� � k 2 dom(t) () 1 � k � arity(t(�))) �

The restriction on the domain of t ensures that there is no gap in the structure oft, and
that the constructors have the correct number of arguments.

For �rst-order types, this de�nition coincides with the one given by the BNF grammar
of Ÿ1.5 (page 3), although the approaches are quite di�erent. Thus, we use the metavariable
t to range over �rst-order types, whichever the chosen de�nition.

I Example First-order terms can be understood as trees: the tree(a) of Figure 3.2.1
represents the type

(� ! �) ! (� ! �)

Equivalently, this type is the function
8
<

:

�; 1; 2 7! (!)
11; 21 7! �
12; 22 7! �

This tree representation makes it easy to �nd the subterm of aterm at a given path.

De�nition 3.1.3 (Term projection) The projection of a term t at a path � of dom(t) is
the term t=� that maps any � 0 such that � � � 0 is in dom(�) to t(� � � 0). �

The projection of t at � is also called the subterm oft rooted at � .

I Example Projecting the type (a) at paths 1 or 2 yields the same type� ! � .

3.1.2 Instance and uni�cation on �rst-order terms

De�nition 3.1.4 (Substitution) A substitution is a mapping from variables to terms.
They are extended to a mapping from terms to terms by the usualcanonical morphism.�

De�nition 3.1.5 (Term instance) A term t0 is an instance of a termt, which we write
t 6 T t0, if it is the image of t by some substitution ' . �

De�nition 3.1.6 (Uni�cation on terms) Two terms t and t0 are uni�able if there exists
a substitution ' , called a uni�er of t and t0, such that ' (t) and ' (t0) are equal. The uni�er '
is said to be principal if any other uni�er can be written as ' 0 � ' for some substitution ' 0.�

Alternatively, if terms are viewed up to � -renaming of their variables, uni�cation can
be de�ned without explicitly resorting to substitutions. A term t00 is a uni�er of the terms
t and t0 if t 6 T t0 and t 6 T t00. It is principal if any other uni�er is also an instance of t00.
This second de�nition is actually easier to extend to richer types.

3.2. Term-graphs 19

Uni�cation on �rst-order terms is a well-known problem, whi ch admits principal so-
lutions. It can be solved in linear time, as shown by Patersonand Wegman (1978); in
this algorithm, terms are represented as dags. Other algorithms (Huet 1976; Martelli and
Montanari 1982) use union-�nd structures and haven� (n) time complexity (where � is the
inverse of the Ackermann function). However, they run faster in practice and are simpler
to implement.

Interestingly, all three algorithms internally use a graph representation of terms, and
reinterpret the resulting graphs as terms. The use of the dagrepresentation may be explicit
when algorithms are described imperatively, or left implicit as in Huet's algorithm.

3.2 Term-graphs

(a) !

!

1

�

1

�

2

!

2

�

1

�

2

(b) f � g !

f 1g !

1

�

! f 2g

2

�

1 21 2

f 11;21g f 12;22g

(c) f � g !

f 1;2g !

1 2

f 11;21g �

1

� f 12;22g

2

Figure 3.2.1 � Several representations of(� ! �) ! (� ! �).

3.2.1 De�nition

When representing �rst-order terms, it is sometimes convenient (and often more e�cient)
to identify all variables with the same name. Following this convention, the representation
of the term (a) in Figure 3.2.1 is the dag(b) in the same �gure.

Going one step further, inner nodes with identical subtreescan also be shared, as illus-
trated by graph (c). This enables sharing of common su�xes, hence a more compact�but
also richer�representation, where sharing of nodes assertsthe equality of nodes for the
relation � projects to �.

De�nition 3.2.1 (Term-graphs) Let t be a term and � an equivalence relation on the
paths in dom(t). The relation � is said to be:

� Congruent if it is closed by su�x, i.e.

8�; � 0; 8k; � � � 0 ^ f � � k; � 0 � kg � dom(t) =) � � k � � 0 � k

� Consistent if the image of an equivalence class byt is a singleton.

� Weakly consistentif the image of an equivalence class byt contains at most one symbol
of � (i.e. it possibly contains variables, and at most one constructor).

20 Representing �rst- and second-order types by graphs

A term-graph is a pair of a term t and a consistent congruence� on dom(t) such that
every variable appears in at most one equivalence class.1 Those equivalence classes are
called nodes. �

Congruent relations ensure that when two paths are shared, the subtrees under those paths
are also shared. Consistent relations guarantee that di�erent constructors are not mixed
together. Weakly consistent relations are used to reason about uni�cation, which fuses
together variables and nodes with identical constructors.

We use the metavariablesg and n to range over term-graphs and nodes. We write_g and
~g the underlying term and equivalence relation ofg (or ���gfoo and ggfoo for long names).

The relation ~g partitions the paths of dom(_g) into disjoint equivalence classes that con-
stitute the nodes of g. We write dom(g) for this set of nodes. Since_g is constant on each
node, we may extend it to nodes by mapping each noden to the common value of _t on all
paths of n. We simply write g(n) for this value. Similarly, we extend the projection = into
a function from nodes to term-graphs.

I Example The dags (b) and (c) on Figure 3.2.1 are two term-graphs representing the
same term (� ! �) ! (� ! �). In the dag (b), only variable nodes are shared. This
term-graph has �ve nodes f � g, f 1g, f 2g, f 11; 21g and f 12; 22g. Here, we have drawn node
names; however, we usually leave them implicit.

Notice that the nodes f 1g and f 2g of (b) are congruent: for any path � , 1� and 2� have
the same constructor. Moreover, both nodes are labelled with the arrow symbol; hence,
the equivalence relation of (b) could be enriched with 1 � 2 while remaining congruent
and consistent. This results in exactly the equivalence relation of dag (c). Intuitively, the
subgraphs underf 1g and f 2g were identical in (b), and have been merged in(c).

In this simple example, only the nodesf 1g and f 2g have been merged; in more complex
cases, entire subgraphs may be shared. Notice that the (nameof a) node resulting from the
merge is the union of the (names of the) nodes that have been merged.

3.2.1.1 Designating nodes in graphs

When a graph is known, we often use a single path� as a short-name for the unique node
n to which � belongs, and writeh� i for n. For convenience, we extend this notation to sets
of paths. In particular, hni is n itself.

I Example In picture (c) of Figure 3.2.1,h12i and h22i refer to the same nodef 12; 22g.

More generally, given two term-graphsg and g0 such that ~g � ~g0 (i.e. g0 shares more
nodes thang), a noden of g can be translated unambiguously into a noden0 of g0, by taking
the only node of g0 that is a superset ofn. We will often use n instead of n0 when g0 is the
result of a transformation applied to g.

I Example If n is the node h1i of graph (b) in Figure 3.2.1, we will freely usen for the
node f 1; 2g of graph (c).

In example drawings we usually leave arities implicit, as wealways write outgoing edges
downwards and from left to right.

1This last invariant is not strictly required, but there is no real advantage to using graphs if it is not
enforced (as substitution would then not be noticeably simp ler than on �rst-order terms).

3.2. Term-graphs 21

3.2.1.2 Term-graphs as ordinary graphs

A term-graph g may be read as an ordinary graph whose nodes are the setdom(g), and
whose edges are such that

n k�! n0 () n 2 dom(g) ^ 1 � k � arity(g(n)) ^ hn � ki = n0

In essence, we forget the underlying structure of nodes as sets of paths, and treat them as
atoms. We use the termstandard graphsto refer to this view.

The two representations are isomorphic. The standard view is sometimes necessary for
e�ciency of algorithms, since otherwise maintaining the inner structure of nodes as set of
paths could be exponential in the size of the graph. However,the named view is more
convenient in the formal development, for referring to nodes and to keep track of them
during a sequence of graph transformations.

3.2.2 Instance on term-graphs

Unsurprisingly, instance of term-graphs is two-fold: it is either an instance of the underlying
�rst-order term _g, which changes the structure of the term, or an instance of the equivalence
relation ~g, which merges more nodes.

De�nition 3.2.2 (Instance on term-graphs) A term-graph g0 is an instance of a term-
graph g, written g v G g0, if _g 6 T _g0 and ~g � ~g0. It is a reversible instance if moreover
_g = _g0.

The equivalencerelation � G is the kernel of the instance relation. Thesimilarity relation
� G is the symmetric re�exive and transitive closure of the reversible instance relation. �

Instance is an oriented relation, and its kernel is quite �small�: two equivalent term-graphs
are in fact equal modulo� -conversion.

Reversible instance only changes the representation of terms (by using more inner, hence
unimportant, sharing), but not their meaning as �rst-order terms. In particular, g and g0

are similar if and only if _g = _g0. Similarity is thus used to abstract over the sharing not
semantically meaningful that is brought by the use of term-graphs.

!

g0

�

1

�

2

!

g1

1 2

!

g2

!

1

�

!

2

�

1 21 2

!

g3

!

1 2

�

1

�

2

!

g4

!

1

�

!

2

1 2 1 2

!

g5

!

1 2

�

1 2

Figure 3.2.2 � Term-graph instance.

22 Representing �rst- and second-order types by graphs

I Examples In Figure 3.2.2, the term-graphsg3 and g5 are two instances ofg1, through
the substitutions
 7! � ! � and
 7! � ! � respectively. The graphg3 is also a reversible
instance of g2, obtained by adding 1 � 2 to ~g2. Thus those two graphs are also similar. In
this simple example, g3 is an instance ofg2. In more complicated cases, one graph could
share more in one branch and less in the other.

The term-graph g4 is also an instance ofg2, through the substitution �; � 7! � . However,
even though _g3 6 T _g4 holds, g4 is not an instance ofg3. Indeed, the nodesh1i and h2i are
shared in g3 but not in g4. Similarly, g5 is an instance ofg4 but the converse is not true.

g4

g5g0

g1

g2

g3

Figure 3.2.3 � Valid instances in the examples of Figure 3.2.2

The various relations that hold in Figure 3.2.2 are summarized in Figure 3.2.3. Plain
edges representv G, while dashed ones represent its reversible subset; all transitive or re-
�exive edges have been omitted to simplify the drawing.

Notation We always use6 -derived symbols for instance on syntactic terms (such as6 T

on the terms of the previous section, or6 F for SystemF types), and v -derived symbols for
instance on terms represented by graphs.

3.2.3 Uni�cation on term-graphs

On term-graphs, uni�cation can be internalized. That is, it may be de�ned on two nodes
of a same term-graph instead of between two term-graphs.

De�nition 3.2.3 (Uni�cation on term-graphs) A term-graph g0 is a uni�er of two
nodes n and n0 of a term-graph g if g0 is an instance of g that merges n and n0; i.e.
9n00 2 g0, n00 � n; n0. A uni�er g0 of two nodes isprincipal if any other uni�er of those
nodes is an instance ofg0. �

I Example The term-graphs g1, g3 and g5 are uni�ers of the nodesh1i and h2i in g0, with
g1 being a principal uni�er. Similarly, g4 and g5 are uni�ers of the nodes h11i and h12i in
g2, and g4 is principal.

The uni�cation of two nodes of g can be computed as the smallest weakly consistent,
congruent equivalence that contains~g and identi�es both nodes (Huet 1976).

Uni�cation of term-graphs also computes their uni�cation u p to similarity, i.e. uni�-
cation on terms. More precisely, if g0 is a (principal) uni�er of two nodes n1 and n2 in a
term-graph g, then _g0=n is a (principal) uni�er of _g=n1 and _g=n2, n being the node ofg0

that is a superset ofn1 and n2. This property, often overlooked in the literature, justi� es

3.2. Term-graphs 23

the fact that term-graphs can be used instead of �rst-order terms to perform �rst-order
uni�cation.

3.2.4 Anonymous variables

The last condition of De�nition 3.2.1 implies that a variabl e is represented by a single node.
If we allow reading term-graphs modulo� -conversion, we may advantageously draw variable
nodes anonymously. For that purpose, we introduce a new kindof node? , called a bottom
node to mean � a variable �. The bottom sign ? is not a true symbol (i.e. it is not an
element of �) but a new pseudo-symbol that does not clash with other symbols during
uni�cation.

We call anonymous a term-graph that uses ? nodes instead of named variables. An
example will be given in the next section.

3.2.4.1 Congruent nodes

On anonymous term-graphs, we can identify nodes that are theroot of entirely identical
subgraphs. (This was not possible on the named presentation, because we would have
needed to reason up to� -conversion.)

De�nition 3.2.4 (Congruent nodes) Given a term-graph g, we say that two nodesn1

and n2 are congruent in g if they are distinct and verify

^
�

_g=n1 = _g=n2

8�; 8� 0; hn1 � � i ~g hn1 � � 0i () h n2 � � i ~g hn2 � � 0i
�

The �rst condition ensures that the subtrees under n1 and n2 have the same shape, and are
labelled by the same constructors. The second condition checks that the amount of sharing
is the same below each node.

By construction, two nodes n1 and n2 congruent in a term-graph g can be merged, by
adding to ~g the relation hn1 � � i � h n2 � � i for any valid � .

De�nition 3.2.5 (Fusion) Given two congruent nodesn1 and n2 of a term-graph g, we

call fusion of n1 and n2 in g the term-graph g[n1 = n2] verifying
��� � ���
g[n1 = n2] = _g and

^g[n1 = n2] = ~g [
�

(� 1 � �; � 2 � �) j � 1 2 n1; � 2 2 n2; � 1 � � 2 dom(g)
	

�

Notice that being congruent is a su�cient condition for two n odes to be uni�able, but not
a necessary one.

I Example The nodesh1i and h2i are congruent in the anonymous term-graphsg1 and
g2 of Figure 3.2.4. In both cases, their fusion is the term-graph g5. However, even though
n1 and n2 can be uni�ed in g3 and g4, they are not congruent in those two term-graphs.
Indeed, in g2, we have h11i =2 dom(g3) but h21i 2 dom(g3); hence _g3=h1i and _g3=h2i are
distinct. In g4, the amount of sharing between the two nodes di�er: we haveh21i ~g4 h22i ,
but h11i ~g4 h12i does not hold.

24 Representing �rst- and second-order types by graphs

!

g1

!

? ?

!

? ?

!

g2

!

?

!

?

!

g3

? !

?

!

g4

!

? ?

!

?

!

g5

!

? ?

Figure 3.2.4 � Congruent nodes

3.2.4.2 Small-step instance

De�nition 3.2.2 is essentially big-step, as it permits instantiating the skeleton and the equiv-
alence relation of a term-graph in a very general way. In the next section we are going to
consider second-order types, on which some instance transformations are not permitted (as
they would be unsound w.r.t. the semantics of the types). However, with a big-step rela-
tion, deciding whether an operation is allowed or not is complicated. Hence we introduce a
small-step relation, in which operations are more atomic�th us more easily checkable.

De�nition 3.2.6 (Small-step instance on term-graphs) The small-step instance re-
lation on anonymous term-graphs is the re�exive transitive closure of the two atomic trans-
formations de�ned below

� grafting a variable node,i.e. replacing a ? -labelled node by a term-graph;

� merging two congruent nodes.

An instance operation is reversible if it is a merging that does not merge variable nodes.�

It is straightforward to check that this de�nition and De�ni tion 3.2.2 coincide: grafting
exactly corresponds to the substitution of a variable by a closed type, and merging merely
instantiates the equivalence relation of the term-graph inan atomic way.

Interestingly, the grafting operation is easier to describe on anonymous term-graphs
than on term-graphs with named variables. Indeed, we need not check that we are not
grafting a term-graph containing a variable already present in the type (which would result
in a term-graph with two nodes for the same variable). Instead, in essence we are always
grafting fresh variables, which can be merged a posteriori with another variable if desired.

3.3 Representing second-order types

When representing types as trees, binders are traditionally represented with an explicit node
labeled with a special symbol8 of arity two. For example, the System F type � de�ned by

� = 8�:� ! (8�:� ! �)

is usually represented as the tree (1) of Figure 3.3.1. Usingdags (hence sharing at least the
variables), we obtain the representation (2).

3.3. Representing second-order types 25

8

�

1

!

2

8

1

�

1

!

2

�

1

�

2

�

2

(1) Second-order term

8

!

2

8
1

!

2

�
1

�

2

1
2

1

(2) Second-order dag

!

!

2

�

1

�

2

1

(3) Binding edges

!

!

2

�

1

�

2

1

(4)

!

!

2

?

1

?

2

1

(5) Anonymous variables

Figure 3.3.1 � Representations of second-order types.

Notice that all graphs are not correct types, as variables must be used within their scope.
In graph (2), the nodeh211i could not have been the second child of nodeh2i , as � has not
been introduced yet. However, we do not detail which graphs are well-formed any further
in this chapter, as this question will be treated in detail on MLF graphic types in Ÿ4.3.

3.3.1 Binding edges

Unfortunately, representing quanti�ers as special nodes inserted in the structure�which will
need to be modi�ed, for example when a variable is no longer used�hides the underlying
common structure of all instances. A better solution is to introduce a binding edgebetween
the bound variable and the node at which it is bound2. This is illustrated in graph (3), in
which there is a binding edge fromh1i to the root for � , and from h21i to h2i for � .

We orient the binding edge from the bound variable to its binding node. This is just a
convention, and we could have chosen the opposite direction; our choice is slightly easier to
think about, as each variable node is bound to a single node, but a single node can be a
binding position for several variables.

Notice that this representation looses the order of adjacent binders and makes useless
binders not representable�two artifacts of the syntactic no tations that we are quite happy

2Except for nodes representing quanti�cation of the form 8�: � , which have no binding edge.

26 Representing �rst- and second-order types by graphs

to eliminate. For instance, the representation of all threetypes

8�: 8�: � ! (� ! �)
8�: 8�: � ! (� ! �)

8
: 8�: 8�: � ! (� ! �)

will be the same, namely the graph (4) of Figure 3.3.1. Noticealso that the graphs (3)
and (4), which represent two types di�ering only by the extru sion of a quanti�er, have the
same skeleton. By using binding edges, the instances in the skeleton of a type or in its
binding structure become more orthogonal.

3.3.2 Anonymous variables

As for term-graphs, if we allow reading second-order types modulo alpha-conversion, we
can use anonymous variables; in fact, we do so in the remainder of this document. For the
type � , we obtain the graph (5) of Figure 3.3.1.

3.3.3 Instantiation on graphic System F types

!

�

!

?

?

!

� 0

!

?

!

? ?

!

� 00

!

!

? ?

?

!

?

!

� 1

!

? ?

!

? ?

!

� 0
1

!

? ?

Figure 3.3.2 � Instance on graphic SystemF types

Let us de�ne the instance relation v F on the graphic representation of SystemF types.
As SystemF types generalize �rst-order types, we expectv F to generalizev G. However, in
System F, not all variables can be instantiated. For example, the variable � in (8�: � !
�) ! � is locked. Naturally, the same distinction exists in the graphical presentation: a
bottom node can be instantiated if and only if it is bound to th e root.

Colors In drawings, we remind of the fact that a variable can be instantiated by drawing
it in green; conversely, we draw a locked variable in red. ForSystem F, this might seem
overkill, as the distinction is always easy to make: green variables are those bound on the
root, while red ones are bound on an inner node. However we will gradually expand our
convention to more complicated systems, in which colors will be a useful visual remainder.

3.3. Representing second-order types 27

For brevity, in the text we refer to � green � or � red � variable s. This also o�ers some
form of abstraction over systems that have related instancerelations. However, let us stress
that colors are only a visual help, and can always be deduced from the instance relation of
the system under consideration.

3.3.3.1 Grafting

Consider the type � de�ned at the beginning of this section, which we have drawn with
colors in Figure 3.3.2. We can instantiate it into the type � 0 of the same �gure by replacing
the green variable by the type 8�: � ! � , where � is a fresh variable which is introduced
at the root of � 0. We obtain the syntactic type

8�: (8�: � ! �) ! (8
:
 ! (8�: � ! �))

Notice in particular that the grafting operation of System F is more complex than the one
on term-graphs, as we must take into account the binding structure of the graphs. When
grafting a type � at a node n of a type � 0, � can have bound variables (which are left
unchanged by the grafting), but also free variables (which should be bound at the root of
� 0 after the grafting operation).

I Example When grafting 8�: � ! � at h1i in � , the (free) variable � becomes bound at
the root of � 0.

3.3.3.2 Merging inner nodes

Interestingly, the graph � 00of Figure 3.3.2 is another representation of the syntactic type
given above. This time, the two occurrences of8�: � ! � are represented by distinct
subgraphs. However, since� is quanti�ed higher in the type, there is still only one node
corresponding to that variable.

As for term-graphs, using a graphic presentation brings some redundancy into the rep-
resentation of types, which might di�er by the amount of shar ing they contain. As for
term-graphs, we capture those di�erences by asimilarity relation � F that is the equiva-
lence relation induced by the reversible subset of this instance relation.

Here, since� 0 and � 00 represent the same syntactic type, they must be equivalent for
� F. In this simple example, the di�erence between the two typesis very small: the nodes
h12i and h222i are shared in� 0, but not in � 00. In par with the beginning of the chapter, we
choose to make� 0 an instance of� 00(i.e. � 00v F � 00) as sharing increases when going from
� 00to � 0.

As discussed above, this instance must be reversible. However, two variables (the nodes
h12i and h222i) are merged by the operation. This is in stark contrast with � rst-order types,
where reversible instance only involves inner nodes, and never variables.

A misleading�and incorrect�intuition would be to think that r ed variables can be
freely merged. If we consider the type� 1 of Figure 3.3.2, which is a valid type for the
identity function, merging the nodes h11i and h12i would result in the syntactic type

(8�: � ! �) ! (8�: 8� 0: � ! � 0)

This is of course unsound with respect to6 F, and such an instance is forbidden. More
generally, merging red variables is not permitted; indeed,it is syntactically the same as

28 Representing �rst- and second-order types by graphs

substituting one variable by the other, and the SystemF instance relation does not permit
instance on red variables.

However, we still have not explained why� 00 v F � 0 holds. The idea is that the two
variables h12i and h222i were not directly merged. Instead two subgraphs containingthese
two variables and their binders were merged; in this particular case the subgraphs under
h1i and h22i . Thus we have in fact merged two graphs that were� -convertible one into the
other. From a semantic point of view, this kind of sharing in the type cannot be observed.
This is easily seen on� 1; a function of this type returns something that has exactly type
8�: 8�: � ! � , and it can only receive as its argument an expression that has exactly the
same type. Whether the representations of the argument and of the return type are shared
or not is unimportant; those two types only contain red variables, and we cannot take a
semantically meaningful instance on those nodes. Thus the relation � 1 v F � 0

1 holds, the
instance being reversible.

A merging can be reversible only if does not result in the indirect merging of nodes
quanti�ed higher in the type. (Indeed, this indirect mergin g would change the semantics
of the type, and could even be unsound.) We characterize nodes that result in such �well-
behaved� merging by the following de�nition.

De�nition 3.3.1 (Locally congruent nodes) Two nodes n1 and n2 of a graph � are
locally congruent if

� n1 and n2 are congruent in the term-graphg underlying � ;

� the binding edges undern1 and n2 are compatible with ^g[n1 = n2]

� for any two distinct nodes n0
1 and n0

2 under n1 and n2 respectively, if n0
1 and n0

2 are
merged in g[n1 = n2], then n0

1 and n0
2 are bound belown1 and n2. �

From an operational point of view, restraining the merging operation to locally congruent
nodes makes this operation more local: only binding edges inthe subgraphs undern1 and
n2 can be merged. It makes also easier to verify that red variables are never merged.

!

� 2

!

!

? ?

!

? ?

�

!

� 0
2

!

!

? ?

!

?

�

!

� 00
2

!

!

? ?

�

Figure 3.3.3 � Merging locally congruent nodes

I Example The nodesh11i and h12i are locally congruent in the type � 0
2 of Figure 3.3.3.

Indeed, while the nodesh111i and h121i are bound aboveh11i and h12i , they are already
equal in � 0

2; meanwhile the nodesh112i and h122i are bound underh11i and h22i . Merging

3.3. Representing second-order types 29

h11i and h12i results in the type � 00
2 . Both � 0

2 and � 00
2 represent the syntactic type

(8�: (8�: � ! �) ! (8�: � ! �)) ! �

Conversely,h11i and h12i are not locally congruent in � 2, as h111i and h121i are bound
above the former nodes. Indeed,� 2 represents the syntactic type

(8�: 8� 0: (8�: � ! �) ! (8�: � 0 ! �)) ! �

in which there are two distinct variables (� and � 0) quanti�ed on the left of the toplevel
arrow.

3.3.3.3 Summary: instance in graphic System F

We can now formally de�ne the instance relation for the graphical presentation of SystemF.
Compared to the instance relation on term-graphs, here are the di�erences:

1. In order to preserve type soundness, grafting is only possible on green variables.
Moreover, it now takes into account the binders of the grafted types, as described
in Ÿ3.3.3.1.

2. Merging is limited to locally congruent nodes, in order to be more atomic (Ÿ3.3.3.2).
Moreover, red variables cannot be merged, again for soundness related reasons.

De�nition 3.3.2 (Instance on graphic F-types) The instance relation v F on graphic
System F types is the re�exive transitive closure of the three following atomic instance
operations:

1. grafting a type � at a green variable noden; the binding edge of n is implicitly
removed; the free variables of� are bound at the root of the type in which the
grafting occurs.

2. merging two locally congruent non-variable nodes;

3. merging two green variable nodes.

An instance operation is reversible if and only if it of the second form, and we write � F

the symmetric re�exive transitive closure of reversible instance. Finally, we write v �
F the

instance modulo reversible instance relation(v F [� F)� . �

We do not speci�cally require the merging of variables to be on locally congruent nodes, as
it is in fact always the case (given the de�nition of local congruence).

Notice that v F and � F subsume (i.e. extend) the relations v G and � G of Ÿ3.2.2 when
the variables in the term-graph are considered to be implicitly bound to the root. Moreover,
v �

F is sound and complete w.r.t. to the instance relation6 F on syntactic SystemF types:
given two syntactic F-types � 1 and � 2, and � 1 and � 2 two graphic representations of those
types, we have� 1 6 F � 2 if and only if � 1 v �

F � 2.

30 Representing �rst- and second-order types by graphs

3.4 Adding �exible quanti�cation to second-order graphic t ypes

3.4.1 Beyond system F

System F is poorly suited as a programming language with type inference since, as we
mentioned in the introduction, it lacks principal types. Ev en simple terms such as

K 0 , � (x) � (y) y

can be typed with incomparable types,e.g.

8�: 8�: � ! (� ! �) (� 1)

and 8�: � ! (8�: � ! �) (� 2)

System F� One solution to remedy this problem is the systemF� , proposed by Mitchell
(1988). Roughly, the instance relation6 F� of F� allows to soundly instantiate types along
6 F on the right of an arrow (i.e. in a covariant position), and along > F on the left of an
arrow (i.e. in contravariant position). In particular, the second type above is more general
than the �rst:

8�: � ! (8�: � ! �) 6 F� 8�: 8�: � ! (� ! �)

Yet, F� is not quite satisfactory. First, the contravariance of the instance relation is often
too powerful (and in fact rarely needed). Moreover, it goes against the idea of uni�cation-
based type inference, which is at the heart ofML. Indeed, this would require performing
uni�cation on the right of an arrow, but anti-uni�cation on t he left.

More problematic, F� still does not have principal types. Even though8�: (� ! �) !
(� ! �) is a principal type for choose idin F� (while this expression does not have a
principal type in System F), this property does not generalize to more complex examples.
For example, the term choose(choose id), can receive in particular the SystemF types

8�: ((� ! �) ! (� ! �)) ! ((� ! �) ! (� ! �)) (� 1)
(8�: (� ! �) ! (� ! �)) ! (8�: (� ! �) ! (� ! �)) (� 2)
((8
:
 !
) ! (8
:
 !
)) ! ((8
:
 !
) ! (8
:
 !
)) (� 3)

In System F� we can derive� 1 6 F� � 2, but not � 1 6 F� � 3 or � 2 6 F� � 3: indeed, we can
instantiate covariantly on the right of the toplevel arrow, resulting in

� 2 6 F� (8�: (� ! �) ! (� ! �)) ! ((8
:
 !
) ! (8
:
 !
))

but we cannot transform 8�: (� ! �) ! (� ! �) into (8
:
 !
) ! (8
:
 !
) on the
left of the arrow.

As in System F, the lack of principal types in F� stems from the fact that we cannot
express the correlation between two sub-types (e.g. the various instances of � id in the
examples above). We believe that this limitation is in fact inherent to using F types.

Flexible quanti�cation MLF follows an entirely di�erent solution, and enriches the types
of System F with a new construction that indicates what parts of a type can be soundly

3.4. Adding �exible quanti�cation to second-order graphic types 31

!

� 1

? !

?

!

� 2

? !

?

!

� 3

? !

?

!

� 0
1

? !

?

Figure 3.4.1 � MLF types for K 0

instantiated. In particular, unlike in F� , this information is added explicitly, and is not
linked to the variance of the arrow constructor.

Let us give some examples, using the types ofK 0. We have represented� 1 and � 2 in
Figure 3.4.1. However, inMLF, K 0 has principal type � 3, which di�ers from � 2 by adding
a binding edge from the nodeh2i to the root. The node h2i corresponds to the root of the
type 8 (�) � ! � ; since the binding edge ofh2i goes to the root, it indicates that h2i can be
instantiated. Then, by transitivity, the node h21i , which is bound at h2i and corresponds
to � , can also be instantiated. Hence bothh2i and h21i are green. (Since the root allows
the nodes bound at it to be instantiated, we also draw it in green. This is essentially a
convention.)

Extending System F with binding edges to non-variable nodes can either be seen as a
restriction of MLF, or as a system in its own right. In this document we follow thesecond
approach, as it permits explainingMLF in a much simpler way. We call the resulting system
System F , where the curly F stands for � �exible F �. However, we intendedly remain
informal, as studying SystemF is not the goal of this document:

� most of the interesting properties of SystemF can be deduced from those ofMLF;

� System F has been studied in detail by Le Botlan and Rémy (2007), albeit on a
restricted version of the system presented here.3 We will present one important result
in Ÿ3.4.3.

Instead, we use SystemF as an intermediary step to gain better intuitions.

3.4.2 Type instance in SystemF

Let us review the operations that compose the instance relation v F of SystemF . We will
start by examining the types of K ' given in Figure 3.4.1. Since� 3 is the principal type of
K 0 in MLF, � 3 v F � 1 and � 3 v F � 2 must hold.

3 In Le Botlan and Rémy (2007), System F is called i MLF. However, in this document we use MLF
derived names, including i MLF, for systems based on graphic types.

32 Representing �rst- and second-order types by graphs

3.4.2.1 Weakening

The operation transforming � 3 into � 2 is the removal of the binding edge leaving fromh2i .
From a semantic point of view, it relinquishes the right to instantiate h2i (and h21i by
transitivity). We call this operation a weakening.

Of course, it is sound only becauseh2i is green.4 Otherwise, by weakening a red node
not bound at the root of the type, we could require a di�erent amount of polymorphism
than what was requested, which is unsound. The inverse operation (adding binding edges)
is unsound for the same reason.

3.4.2.2 Raising

The operation transforming � 3 into � 1 can actually be decomposed into two atomic steps.
At �rst, we instantiate the type 8�: � ! � under h2i into the type
 !
 , where
 is a new
type variable introduced at the root. This results in the typ e � 0

1.5 Next, we can remove the
binding edge ofh2i by a weakening. Thus the following relation holds

� 3 v F � 0
1 v F � 1

From an operational standpoint, � 0
1 is obtained by extruding the binding edge ofh21i

along the binding edge ofh2i (i.e. the node on whichh21i is bound). We call this operation
raising.

Raising is sound only whenn is green. Indeed, from a semantical standpoint, raising a
node n loses the ability to quantify variables at the level of the binder of n. Hence it can
be permitted only if the node can be instantiated.

3.4.2.3 Grafting

!

� 3

? !

?

!

� 4

!

?

!

?

!

� 5

!

?

!

?

!

� 0
5

!

?

!

?

Figure 3.4.2 � Grafting in System F

Interestingly, compared to System F, raising and weakening simplify the operation of
replacing a green bottom node by a type. Indeed, instead of (1) adding a new type, (2)
binding its free variables to the root and (3) removing the binding edge, it is now possible
to replace the bottom node by a closed type. The free variables (if there are any) can be

4This is actually an over-simpli�cation. We will come back on this point later.
5The reason why h2i is hollow in � 0

1 is linked to previous footnote, and will be explained later.

3.4. Adding �exible quanti�cation to second-order graphic types 33

raised in a second time, and the binding edge of the bottom node can �nally be removed
by weakening, if needed. An example is given in the derivation

� 3 v F � 4 v F � 5 v F � 0
5

of Figure 3.4.2, where we substitute the variable� of � 3 (i.e. the nodeh1i) by � id , raise the
newly introduced type variable (node h11i), and �nally weaken h1i .

Moreover, �exible quanti�cation and raising allow quite a b it more freedom w.r.t. to
where to bind nodes. Indeed, after grafting a type� at a node n of a type � 0, the nodes
bound on the root of � can be raised to any of the nodes on whichn is transitively bound,
instead of only to the root of � 0 or to n.

3.4.2.4 Merging

!

� 6

!

!

?

!

!

?

!

� 7

!

!

?

!

!

� 0
7

!

!

?

!

� 8

!

?

Figure 3.4.3 � Merging in System F

Let us now consider the merging of congruent nodes. As in System F, the nodes must
be locally congruent, so as not to merge nodes indirectly�thu s potentially losing some
polymorphism. Of course, this includes not indirectly merging variables. However, in
SystemF , this is also the case for inner nodes with binding edges. Indeed, by merging two
inner nodes, we lose the ability to instantiate the subgraphs under them in incompatible
ways.

I Example It is not possible to directly merge the nodesh1i and h2i in the type � 6 of
Figure 3.4.3: those two nodes are not locally congruent, as the nodesh12i and h21i are
bound above them.

Thus, as in SystemF , we only allow the merging of locally congruent nodes. Moreover,
the merging is reversible if and only the two nodes at the rootof the merging are unbound,
i.e. if we only alter the representation of types, not their meaning from a semantic stand-
point. Finally, for the usual soundness-related reasons, the merging of bound nodes is only
permitted if they are green.

I Example (continued) Let us consider again the merging ofh1i and h2i in � 6. Although
a direct merging is impossible, it is possible to start by merging h11i and h21i , as they are
both green and locally congruent. The resulting type is� 7, which can now be (reversibly)
instantiated into � 0

7.

34 Representing �rst- and second-order types by graphs

As mentioned above, the step� 6 v F � 7 is not reversible. Indeed, even though it merges
inner nodes (and not variables), those nodes are green, and allow the instantiation of the
nodes bound on them. In this case, the di�erence in the amountof sharingcan be observed.
Let us illustrate this by showing that splitting green nodes would be unsound. For the sake
of simplicity, we use a slightly simpler example. Consider the type � 8 of Figure 3.4.3, which
veri�es

� 3 v F � 4 v F � 8

(� 8 being the result of mergingh1i and h2i in � 4). Thus � 8 is a valid type for K 0, since� 3

is the principal type of K 0.
Moreover, � 8 is actually the principal type of the term choose id. In this case, it is

crucial for the two occurrences of� id on each side of the arrow to be correlated:choose id
could potentially return its argument. Thus, if � 8 is a valid type for this term, � 4 is not;
indeed

� 4 v F (int ! int) ! (char ! char)

holds, and the latter type is not valid for choose id. Hence � 8 v F � 4 cannot hold, as it
would be unsound.

3.4.2.5 Inert nodes

!

� 9

!

int int

!

� 10

!

?

!

� 0
10

!

?

!

� 11

!

!

?

!

� 110

!

!

?

!

� 00
11

!

!

?

!

� 000
11

!

!

?

Figure 3.4.4 � Inert nodes

Perhaps surprisingly, not all binding edges are semantically meaningful. As a simple
example, consider the nodesh11i and h12i of the type � 9 of Figure 3.4.4. Binding them
brings no additional expressivity to the type, as they are labelled by the monomorphic type
int, which contains no polymorphism. Thus, even though they arered, it is safe to weaken
them, and we allow this transformation. Moreover, this operation is reversible.

As a slightly more involved example, consider the type� 10 of this �gure. Even though
h1i is bound, no node is bound on it. Thus, the presence or the absence of the binding
edge does not allow taking semantically di�erent instances.6 In particular, given a term a
of type � 10, any term a0 such that a a0 is well-typed can also be soundly applied to a term

6Of course, this is true only because no instance operation al lows introducing a variable bound on h1i .
However, this property is true in System F .

3.4. Adding �exible quanti�cation to second-order graphic types 35

of type � 0
10 �and conversely. Moreover, in both cases, the return type is t he same: the type

of a0.
This means that we should not distinguish these two types fortype soundness; therefore,

they must be in relation by the reversible part of the instance relation. To do so, we allow the
weakening ofh1i ; furthermore, unlike proper weakenings�that really change the semantics
of the type by requiring di�erent amount of polymorphism�thi s operation is reversible.

As a last example, consider� 11. We can slightly generalize the reasoning above, by
considering applications of the form a a0 a00. This shows that the binding edge of the
node h11i is not semantically meaningful. In turn, � 0

11 shows that the one ofh1i is also
unimportant. Thus, we allow both the weakenings of h1i and h11i in � 11 (represented by
� 0

11 and � 00
11) as reversible operations. Notice that weakeningh1i transforms h11i into a red

node: nevertheless, when a node does not permit semantically meaningful instantiations,
its color is actually unimportant, as it can be soundly weakened.

Finally, generalizing one more step, it is actually safe to add or remove a binding edge
on all the nodes that will never permit instantiating a varia ble, which we call inert . This
also means that it is safe to raise or merge those nodes.

De�nition 3.4.1 (Inert nodes) A bound noden of a type � is inert if there is no variable
transitively bound on it. �

In the �gures of this section, all hollow-colored nodes wereinert.

3.4.2.6 Summary

Let us summarize what operations are in the instance relation of SystemF , as well as those
that are reversible.

De�nition 3.4.2 (Instance in System F) The instance relation of SystemF , written
v F , is the transitive re�exive closure of the relation de�ned by the following atomic instance
operations:

� grafting a closed type under a green bottom node;

� raising a green or inert node;

� merging two green, inert, or unbound nodes that are locally congruent;

� weakening a green or inert node.

The operations on unbound and inert nodes are reversible, and we write � F the transitive
symmetric re�exive closure of this relation. We write v �

F the instance modulo similarity
relation of System F , de�ned as (v F [� F)� . �

I Examples The various instances that hold in the �gures of this sectionare summarized
in Figure 3.4.5. Plain edges representv F , while dashed ones represent its reversible subset;
all transitive or re�exive edges have been omitted to simplify the drawing. For example,
� 0

11 � F � 00
11 holds, since� 0

11; � 00
11 v F � 000

11 hold, and both instances are reversible.

Importantly, v �
F extendsv �

F :

Lemma 3.4.3 Consider two SystemF types � and � 0. If � v �
F � 0, then � v �

F � 0. �

36 Representing �rst- and second-order types by graphs

� 3

� 2

� 0
1 � 1

� 4

� 8 � 10 � 11

� 0
11

� 00
11

� 0
10

� 5 � 0
5

� 6 � 7

� 0
7

� 000
11

Figure 3.4.5 � Instances in the examples of Ÿ3.4

Proof: All atomic operations of v �
F � 0 are in v �

F , except for grafting which can be simu-
lated by grafting, raising and weakening.

3.4.3 An informal semantics for the types of SystemF

A syntactic presentation of a restriction of System F , which we call Shallow-F has been
studied in detail by Le Botlan and Rémy (2007, Ÿ3). More precisely, the instance relations
of the two systems are the same, but the types of Shallow-F are a restriction of those of
System F (modulo the translation into syntactic types):

De�nition 3.4.4 (Shallow types) A System F type � is shallow if all its red nodes are
variables. �

In other words, shallow types disallow �exible quanti�cati on of inner nodes in red positions:
projecting a type on an unbound node results in a SystemF type. This means that types
are strati�ed, with �exible quanti�cation at the top, and Sy stem F types at the bottom.
By contrast, in System F alternating unbound and bound non-variables nodes is possible.

I Example The type � s of Figure 3.4.6 is shallow, but� ns is not: the projection of � ns at
the unbound nodeh11i is not an F type.

From a theoretical point of view, Shallow-F is an interesting restriction of System F ,
as it is possible to give a semantics to Shallow-F types as a set of SystemF type. We refer
to (Le Botlan and Rémy 2007, Ÿ3.2) for the exact de�nition, and will only give the general
idea below (adapting it to graphic types):

De�nition 3.4.5 (Informal semantics of shallow types) Let � be a shallow type.
The semanticsff ngg of a green noden of � is the set of F-types recursively de�ned by:

3.4. Adding �exible quanti�cation to second-order graphic types 37

� s !

!

!

? !

? ?

� ns !

!

!

? !

? ?

Figure 3.4.6 � Shallow and non-shallow types

� if n is a bottom node, ff ngg is the set of all SystemF types;

� if n is a non-variable noden with n1; : : : ; nk nodes bound atn, ff ngg is the closure
by v �

F of the set of (graphic SystemF) types obtained by replacing eachni with an
instance of a type in the semantics ofni .

The semantics of� is the semantics of its root. Two shallow types� and � 0 are in semantic
instance relation if ff � 0gg � ff � gg holds. �

It is proven by Le Botlan and Rémy (2007) that the syntactic MLF relation v @�A� , which
corresponds to the relation v �

F in System F , is sound w.r.t. to the semantic instance
relation de�ned above. Completeness is conjectured.

I Examples Let us write F for the set of all syntactic System F types (including types
with free variables). Using the semantics above, it is possible to prove that ff � 3gg and ff � 8gg
(i.e. the principal types for � (x) � (y) y and choose id) are the types of the form

f8 �: � 1 ! (8�: � 2 ! � 2) j � 1; � 2 2 Fg and f8 �: (8�: � ! �) ! (8�: � ! �) j � 2 Fg

Thus �exible quanti�cation captures the properties System F lacks:

� for � (x) � (y) y, the type variables in the instance of � id can be bound either at the
root of the type, or under the arrow;

� for choose id, the two instances of� id on both sides of the arrow are the same.

I Example: semantics of raising As a more complex example, the semantics of the type
� s of Figure 3.4.6 is the set of closed types of the form

8�: (8
: � 11 ! � 11) ! (8
: � 11 ! � 11)

where � 11 is in the semantics ofh11i , i.e. in the set
�

8�: � ! (8�: � 0 ! � 00) j �; � 0; � 002 F; ftv(�) # �; ftv(� 0) # �
	

38 Representing �rst- and second-order types by graphs

Notice the restrictions on the variables that can occur in � and � 0. This is due to the fact
that h111i is bound aboveh11i , (hence � cannot refer to �). Similarly, h1121i is bound
above h112i and � 0 cannot use a variable of� . Of course, the four occurrences of� 11 are
the same.

Let us now consider the semantics of the type obtained by raising h111i in � s. In this
case, the free variables of� in � 11 can only be quanti�ed at the root, and the semantics is
now of the form

8�: (� 11 ! � 11) ! (� 11 ! � 11)

with � 11 ranging over the same set as previously.

The di�erence between the shallow and non-shallow versionsof MLFare discussed further
in Appendix A.

4
MLFgraphic types

Abstract

In order to obtain MLF graphic types, we add rigid quanti�cation to the types
of System F (Ÿ4.1). We characterize those types as the superposition ofa �rst-order
skeleton and of a binding tree (Ÿ4.2), and isolate the graphsthat are well-scoped (Ÿ4.3).
Finally we present a few operators to transform MLF graphic types (Ÿ4.4).

The syntactic presentation of MLF types includes the �exible quanti�cation seen in the
previous chapter. However, polymorphism is requested through the use of rigid quanti�ca-
tion, and not by removing binding edges, as in SystemF . We follow the same approach in
graphic MLF types, and use a second type of binding edge. However we will not develop the
reasons behind this choice here, and postpone the explanations to Ÿ5. This chapter instead
focuses on the formal de�nition of graphic types.

4.1 Representing ML F graphic types

From a representational standpoint, the main di�erence between (graphic) SystemF and
MLF types is the introduction of a new kind of binding edge for rigid quanti�cation; in
drawings we use dashed lines.1

I Example Consider the types� 1, � 2, � 3, and � 4 of Figure 4.1.1. The nodeh1i is rigidly
quanti�ed in both � 1 and � 4, and �exibly quanti�ed in � 2 and � 3.

1 In generic diagrams where an edge can be indi�erently �exibl e or rigid, we use dashed-dotted edges.

39

40 MLF graphic types

!

� 1

!

1 2

?

1 2

!

� 2

!

1 2

?

1 2

!

� 3

!

1

?

1 2

!

2

?

1 2

!

� 4

!

1

?

1 2

!

2

?

1 2

� 1 = 8 (� = � id) � ! � � 3 = 8 (� > � id) 8 (� > � id) � ! �
� 2 = 8 (� > � id) � ! � � 3 = 8 (� = � id) 8 (� > � id) � ! �

Figure 4.1.1 � Examples of graphicMLF types.

4.1.1 From syntactic to graphic

The four types above are actually the graphic representation of the types introduced in
Ÿ2.3.3 and whose de�nition is recalled in the �gure. For readers familiar with the syntactic
presentation of MLF, we describe here how to translate a quanti�ed type8 (� � �) � 0; the
full algorithm is given in Ÿ8.2.2, but uses a few notations not yet introduced:

1. translate � 0 as if � was a variable;

2. translate � ;

3. replace the node corresponding to� in � 0 by � ;

4. bind that node to the root of � 0 according to � .

I Example The graph representing� 3 contains at the nodeh1i a subgraph representing
the bound � id of the variable � , and it is bound by a �exible edge.

I Another example The syntactic de�nition of the graphic type � on the left of Fig-
ure 4.2.1 is given at the bottom of the �gure. The nodeh11i corresponds to the variable
 .
This variable is �exibly quanti�ed at the level of � , which is represented by the nodeh1i ;
hence there is a �exible binding edge fromh11i to h1i . Similarly, � is rigidly quanti�ed at
the toplevel of � , hence the rigid edge fromh1i to h� i .

The structure of the underlying graph of � can also be read directly in the syntactic
MLF type. For example, the equation for the root of � is the rightmost part of the syntactic
de�nition of � , i.e. � ! � . Likewise, the equation for the node corresponding to� is � ! � ,
as indicated by the bound8 (� > � ! �).

Syntactic and graphic sharing MLFsyntactic quanti�cation 8 (� � �) � is used in particular
to denote sharing. In graphs, it is directly captured by the intrinsic sharing of dags�hence
our use of this representation. In both MLF and SystemF , the type � 3 of Figure 4.1.1, in
which the two occurrences of� id may be instantiated separately, is quite di�erent from � 2,
in which both sides of the arrow must be instantiated simultaneously. This is re�ected in
the graphic presentation by the fact that there are two copies of the graph representing� id

in � 3, but only one in � 2.

4.2. Pre-types 41

4.2 Pre-types

!

A pre-type �

!

?

!

?

= !

Its skeleton

!

?

!

?

+ �

Its binding tree

� �

=

 �
>

� �

>

� �

>

8 (�) 8 (� = 8 (
)
 !
) 8 (� > � ! �) � ! �

Figure 4.2.1 � Decomposition of anMLF graphic type

The formal de�nition of MLF graphic types is given in two steps. We start by de�ning a
set of graphs that contains all graphic types. Afterwards, we give a criterion characterizing
graphic types as well-scoped graphs (Ÿ4.3).

De�nition 4.2.1 A (graphic) pre-type � is a triple composed of:

1. A �rst-order anonymous term-graph �� , called the skeletonof � .

2. A set of binding edges�̂ , that forms an upside-down tree of domaindom(��) rooted
at h� i .

3. A set of binding �ags for all the nodes of �� but the root, i.e. a function �� mapping
each node indom(��) n fh� ig to one of the binding �ags > or = .2

The union of �̂ and �� is called the binding tree of � . �

The term-graph �� is the structure of the pre-type. It is �rst-order: all the in formation
related to binders, in particular where and how each node is bound, is contained in the
binding tree.

I Example The decomposition of the pre-type� of Figure 4.2.1 is given in the same �gure.
For the binding tree, we have exceptionally annotated the nodes of the binding tree with the
name of the corresponding syntactic type variable, and the binding edges with the binding
�ags of the nodes they correspond to.

Notations In the text, we write n �� (n0 2 � (resp. n �� _ n0 2 �) to mean that there
is a structure edge (resp. a binding edge) from n to n0 in � . We often drop �2 � � when �
is clear from the context. Notice that �� (arrows are downwards oriented, while�� _ ones
are upwards oriented. If � is a path, we write n ��� (n0 2 � to denote the fact there exists
a (structure) path � from n to n0 in _� , i.e. that n0 = hn � � i . We write n b�� _ n0 if n �� _ n0

and �� (n) = b. If n �� _ n0 2 � , we also write �̂ (n) (or simply n̂) for n0; we call n0 the binder
of n and we say that n is bound at n0.

2While we have chosen to attach the binding �ags to the nodes in stead of to the binding edges, this
is purely a matter of convention, as both views are isomorphi c. Our de�nition allows us to de�ne some
operations on pre-types in a simpler way, as �̂ and �� sometimes change independently.

42 MLF graphic types

We write _� and ~� for the term and equivalence de�ning �� , and � (n) for _� (n), i.e. the

symbol on the noden. We use the notations�� (� foo , �� _� foo and ����� � foo instead of �� foo , �̂ bar and
�� foo for wide arguments.

I Examples Consider the pre-types of Figure 4.3.1. We haveh1i =�� _ f � g 2 � 1. Hence,
the binder of h1i is �̂ 1h1i = f � g, and �� 1(h1i) is = . We also haveh� i �� (h1i �� (h12i 2 � 2

or, leaving � 2 implicit, h� i 12�� (h12i .

4.2.1 Why binding all nodes

The de�nition of graphic types implies that all nodes but the root have a binding edge.
From a theoretical standpoint, some nodes, such as those labelled with ground types like
int, need not be bound. However, this makes reasoning on the meta-theoretical properties
of graphic types more complicated. Instead, we require thatall nodes be bound, and de�ne
the instance relation so that the additional binding edges can be freely transformed (Ÿ5.3.4).
Then we prove that those supplementary edges are unimportant, as they �commute� with
type inference in a certain sense (Ÿ13.2). Finally, when translating graphic types into
syntactic types, for example for display purposes, those edges are entirely removed (Ÿ8.3.3).

4.3 Well-formedness of graphic types

(� 1) !

!

?

!

?

(� 2) !

!

!

? ?

Figure 4.3.1 � Invalid graphic types.

4.3.1 Well-formed pre-types

All pre-types are not well-formed types. Indeed, graphic types must have a binding tree
compatible with the lexical scoping of variables. Two ill-formed binding trees are presented
in Figure 4.3.1:

1. In the pre-type � 1, the node h21i is bound at a node that is not among its ancestors.
This is not permitted; in a syntactic presentation, the vari able would be bound on
the left branch and used on the right branch, out of its scope.

2. In the pre-type � 2, the bounds of the nodesh1i and h11i both depend on the bound
of the other node:

4.3. Well-formedness of graphic types 43

� if h1i is bound �rst: the equation of its bound is h11i ! h 11i , but h11i has not
been bound yet;

� if h11i is bound �rst: its bound is h111i ! h 112i , which refers to the nodeh112i .
This node is itself bound at h1i , which has not been bound yet.

In both cases, a variable is used outside of its scope. The second example is merely a
generalization of the �rst one to graphs with internal quant i�cation and internal sharing
of nodes. The invariant that variables are used in their scope is generally captured by the
notion of domination : a bound must be dominated by its binder. The very same invariant
exists for the graphic types of MLF, up to the fact that we must take into account binding
edges.3

De�nition 4.3.1 (Mixed paths) Let ^�(be the relation (�� () [(^ ��). Given some
nodesn1; :::; nk , we say that the sequencen1 ^�(n2 : : : ^�(nk � 1 ^�(nk is a mixed path
from n1 to nk ; this path is said to contain n if n = ni for some1 � i � k. �

I Example In the pre-type � 2 of Figure 4.3.1, the relationsf � g ^ �� h 11i 2�� (h112i hold,
and form a mixed path from f � g to h112i .

De�nition 4.3.2 (Domination for ^�() Let � be a pre-type,n and n0 two nodes of� .
We say that n dominates n0 and we write n ^��� (n0 if every mixed path from the root to
n0 contains n. �

I Example (continued) Consider again the pre-type� 1 of Figure 4.3.1; the mixed paths
betweenf � g and h11i are

f � g 1�� (h1i 1�� (h11i f � g ^ �� h 1i 1�� (h11i
f � g 1�� (h1i 2�� (h11i f � g ^ �� h 1i 2�� (h11i
f � g 1�� (h1i ^ �� h 11i f � g ^ �� h 1i ^ �� h 11i

All six paths contain h1i . Hence nodeh1i dominates nodeh11i . Conversely, nodeh1i does
not dominate h21i , as evidenced by the pathf � g 2�� (h2i 1�� (h21i . Similarly, in � 2, h1i
does not dominateh112i , since f � g ^ �� h 11i 2�� (h112i .

Well-formed types are simply the pre-types in which the binder of a node dominates the
node for the relation ^��� (.

De�nition 4.3.3 (Graphic types) The binding tree of a pre-type � is well-dominated if
every bound node is dominated by its binder,i.e. for all n and n0 in � , n �� _ n0 implies
n0 ^��� (n. A (graphic) type is a pre-type whose binding tree is well-dominated. �

In the following, we will nearly always consider MLF graphic types and, unless speci�ed
otherwise, we abbreviate �graphic type� by �type�. The metavariable � is used to range over
types.

3Or, more generally, for the types of System F and F in Ÿ3.3 and Ÿ3.4.

44 MLF graphic types

I Example (continued) As seen in the example above, neither� 1 nor � 2 are types, as they
are not well-dominated. In particular, �̂ 1(h21i) does not dominateh21i in � 1 and �̂ 2(h112i)
does not dominateh112i in � 2. Conversely, one can check that the pre-type� in Figure 4.2.1
is well-dominated.

4.3.2 Invariants induced by well-formedness

Well-domination is a fairly strong property, and it creates several invariants relating the
structure and the binding tree of a type. We give one of them below, which we often use
inside proofs.

n00

n0
+ +

n

�
+

Figure 4.3.2 � Invariant induced by well-domination

Lemma 4.3.4 For any type � , if n +�� _ n00 +�� (n0 ��� (n, then n0 +�� _ n00. �

This lemma is shown graphically in Figure 4.3.2, the conclusion being the highlighted edge.
Notice in particular that, by well-domination, n00dominates n0.

Proof: The proof is by induction on the integer k such that n (�� _)k n00.

. Case k = 1 : since n0 ��� (n, there exists a mixed path P of the form h� i +^ �� n0 ��� (n.
By well-domination, n̂ (which is also n00 in this subcase) is in P . Since by hypothesis
n00 is strictly above n0, n00 is in the subpath h� i +^ �� n0 (and is not n0). This proves
n0 +�� _ n00, which is the desired result.

. Case k = k0 + 1 > 1:
Let n000 be the node such that n +�� _ n000 �� _ n00. Consider a mixed path f � g ��� (
n00 +�� (n0 ��� (n. By iterating the well-domination property, this path must contain
n000. Since n000�� _ n00, n000 is strictly under n00. We compare the relative positions of
n000and n0 in the path n00 +�� (n0 ��� (n.

� If n000= n0: the result is proven, as n000�� _ n00 by hypothesis.

� If n000is strictly between n00 and n0: the conclusion is by induction hypothesis ap-

plied to n (�� _)k 0
n000 +�� (n0 ��� (n.

� If n000is strictly between n0 and n: the conclusion is by induction hypothesis ap-

plied to n000(�� _)1 n00 +�� (n0 ��� (n000.

4.4. Operators for building and transforming types 45

!

?

(� g)

!

?

(� 0
g)

!

!

?

(� 00
g)

!

!

? ?

!

? ?

(�)

!

!

? ?

!

?

(� m)

!

!

? ?

(� m 0)

!

!

? ?

!

? ?

(� r)

Figure 4.4.1 � Operations on graphs

4.4 Operators for building and transforming types

We conclude this chapter by de�ning a few operators to transform graphic types. Most of
them closely follow the instance operations of SystemF . However, the de�nitions of this
section do not take into account the fact that the operation is sound, as this point will be
treated in Ÿ5.

4.4.1 Grafting

We write � [� 0=n] for the replacement of a bottom noden of a type � by a type � 0; the
resulting type is described by� 0 for nodes belown and by � for the other nodes.

I Example In Figure 4.4.1, grafting the type � 0
g at the node h1i in the type � g results in

the type � 00
g .

De�nition 4.4.1 (Grafting) The grafting � [� 0=n] of a type � 0 at a node n in a type � is
de�ned by:

�
�� � ��
� [� 0=n] maps nm to � 0(m) for m 2 dom(� 0), and mapsm in dom(�) n f ng to � (m);

� ^� [� 0=n] is equal to ~� [n � ~� 0 wheren � ~� 0 is the set of pairs(n � m; n � m0) for m and m0

verifying m ~� 0 m;

�
�������
� [� 0=n] maps m in dom(��) to �� (m) and nm to �� 0(m) for all m 2 dom(�� 0);

�
���� _
� [� 0=n] is �̂ extended with the edgesnm �� _ nm0 for all m �� _ m0 2 � 0. �

Property 4.4.2 Given two types� and � 0, and n a bottom node of� , � [� 0=n] is a type. �

Proof: Let us call � 00 the grafting � [� 0=n]. The fact that � 00 is a pre-type is immediate,
and it remains to prove that � 00 is well-dominated. Let n0 be a node of � 00.

. If n0 2 dom(�), all the mixed paths from h� i to n0 are mixed paths in � . We conclude
by well-domination of � .

. Otherwise, n0 is of the form n � n00. By construction of � 00, all mixed paths from h� i to
n00 are the concatenation of a mixed path from h� i to n in � and of a mixed path from
h� i to n00 in � 0. The conclusion is thus by well-domination of � 0.

46 MLF graphic types

4.4.2 Projection

De�nition 4.4.3 (Closed nodes) A node n is closed if all the nodes in the subgraph
under n are transitively bound at n, i.e. if n +�� (n0 implies n0 +�� _ n. �

Given a closed noden, we write �=n for the projection of � at n, obtained by removing
all the nodes not undern and all the dangling edges, and renaming nodes accordingly (thus
making n the root node of the resulting graph).

I Example In Figure 4.4.1, projecting at the nodeh1i in � 00
g yields the type � 0

g. Projecting
at h1i or h2i in � is impossible, ash11i is not bound under h1i (and the resulting graph
would be ill-bound).

De�nition 4.4.4 (Projection) The projection �=n of a type � at a closed noden of � is
de�ned by:

�
���
�=n is _�=n .

� g�=n is such that � g�=n � 0 if and only if n� ~� n� 0.

�
�����
�=n maps a nodem to �� (nm)

�
�� _
�=n is de�ned by m �� _ m0 2 �=n if and only if nm �� _ nm0 2 � . �

Property 4.4.5 Let n be a closed node of a type� . The projection �=n is a type. �

Proof: Let � 0 be �=n . The fact that � 0 is a pre-type is immediate. For domination, consider
a node n0 of � 0 and a mixed path P from h� i to n0. Let P 0 be a mixed path from h� i to n
in � . By well-domination of � , n̂0 is in P 0 � P . Since n is closed, n̂0 cannot be contained in
P 0; hence it is in P . This is the desired result.

4.4.3 Fusion

Fusion is the generalization of the fusion operation on term-graphs to graphs with binding
edges. We formalize the fact that two nodes are congruent in such a graph by the following
de�nition.

De�nition 4.4.6 (Binding-congruent nodes) Consider two nodesn1 and n2 of a type

� congruent in �� . Let � 0 be ^�� [n1 = n2]. Then n1 and n2 are binding-congruent in � if

8n; 8n0; n � 0 n0 =) ^
�

�̂ (n) � 0 �̂ (n0)
�� (n) = �� (n0)

�

The �rst condition asserts that binding edges can be merged,while the second checks that
this is also the case for binding �ags. The fusion operation is possible on binding-congruent
nodes, and merges them.

4.4. Operators for building and transforming types 47

I Example In Figure 4.4.1, fusing the nodesh11i and h21i in � yields type � m . More
interestingly, the nodesh1i and h2i can be fused in both� and � m , resulting in � m 0. Notice
that the binding edges h11i �� _ f � g and h21i �� _ f � g of � are fused in� m 0, as a side-e�ect
of fusing h1i and h2i .

De�nition 4.4.7 (Fusion) The fusion � [n1 = n2] of two binding-congruent nodesn1 and
n2 of � is de�ned by

�
������� (
� [n1 = n2] is �� [n1 = n2];

�
���������
� [n1 = n2] is the quotient of �� by ^� [n1 = n2]

�
������� _
� [n1 = n2] is the quotient of �̂ by ^� [n1 = n2] �

The result below (which we afterwards use to prove that fusion returns types) expresses
that fusion preserves domination.

Lemma 4.4.8 Let � be a type, n1 and n2 two binding-congruent nodes of� . Let � 0 be
� [n1 = n2]. Let ����! be the domination relation corresponding to either^ �� , �� (or
^�(. For any n and n0 of � if n ����! n0 in � , then n ����! n0 in � 0. �

Proof: Consider a mixed path P 0 between f � g and n0 in � 0. We rewrite the nodes in P
by removing all the occurrences of the paths under n2 (for example f � g ^ �� n1 [n2 ^ ��
(n1 [n2) � P 0 is rewritten into f � g ^ �� n1 ^ �� n1 � P 00). Let us justify that the resulting
path P is valid in � .

. An edge �� (of � 0 is rewritten into a valid edge �� (of � by congruence ofn1 and n2 .

. An edge ^ �� of � 0 is rewritten into an edge ^ �� of � by well-domination of � and
binding-congruence of n1 and n2 .

Thus P is a correct path from f � g to n0 in � . By the hypothesis n ����! n0 2 � , P
contains n. Thus P 0 also contains n, which is the desired result.

Property 4.4.9 Let � be a type,n1 and n2 two binding-congruent nodes of� . The fusion
� [n1 = n2] is a type. �

Proof: Let � 0 be � [n1 = n2]. The well-formedness of �� 0, �̂ 0 and �� 0 are by de�nition of
binding-congruent nodes. The preservation of well-domination is by Lemma 4.4.8.

4.4.3.1 Local congruence

The de�nition of locally congruent nodes (De�nition 3.3.1) is still correct on graphic MLF
types. However, we give an alternative, slightly more formal, de�nition below.

De�nition 4.4.10 (Locally congruent nodes) Two nodes n1 and n2 of a type � are
locally congruent if they are binding-congruent in � and

8� 6= �; hn1� i ~� hn2� i _ hn1� i +�� _ n1 ^ hn2� i +�� _ n2 �

48 MLF graphic types

4.4.4 Raising

Given a node n of a type � such that n ��� _ n0 � 0

�� _ n00 holds, the operation of raising n
consists in lifting the binding edgen �� _ n0 above the edgen0 �� _ n00, resulting in the edge
n ��� _ n00. The resulting pre-type is called the raising of n in � , and is written � " n.

I Example In Figure 4.4.1, the type � r is the raising of the nodeh22i in � .

De�nition 4.4.11 (Raising) The raising � " n of a node n in a type � is the pre-type
de�ned by

�
�� (
� " n is �� ;

�
�����
� " n is �� (n);

�
��� _
� " n is �̂ , except onn where it is n �� _ �̂ (�̂ (n)) . �

� !

!

?

!

� i !

!

?

!

� 0 !

!

?

!

� 00 !

!

?

!

Figure 4.4.2 � Raising and well-domination

Raising and well-domination Raising at arbitrary nodes can result in ill-dominated pre-
types. In the type � of Figure 4.4.2, raising the nodeh12i results in the ill-dominated type
� i , as shown by the mixed path

h� i ^ �� h 12i �� (h11i

which does not contain the binder ofh11i , i.e. the node h1i .
In the case of� and � i , the structure path h12i �� (h11i prevents the raising of h12i .

Syntactically, the bound of h12i depends on the bound ofh11i , and h12i cannot thus be
introduced �rst. This property can be generalized, and exactly characterizes the set of
nodesn which can be raised while preserving well-domination.

De�nition 4.4.12 (Raisable node) Given a type � and a bound noden 2 � , n is raisable
in � if no other node bound onn̂ can be reached fromn. Formally,

8n0; n0 �� _ n̂ =) n 6+�� (n0 �

4.4. Operators for building and transforming types 49

I Example The nodeh11i is raisable in the type � of Figure 4.4.2, but not h12i . However,
h12i is raisable in � 0, sinceh11i and h12i are no longer bound at the same node.

Property 4.4.13 � " n is a type i� n is raisable in � . �

Proof: We let � 0 = � " n, n0 = �̂ (n), n00= �̂ (n0) (in particular, n00= �̂ 0(n)).

. If n is not raisable: we show that � 0 is not well-dominated.

Let m be a node bound onn0 in � such that n +�� (m. Thus, in � 0 we have mixed paths
of the form f � g �^�(n00^ �� n +�� (m. Those mixed path does not contain �̂ 0(m) = n0,
as n0 is strictly under n00 and strictly above n'. Hence � 0 is not well-dominated.

. If n is raisable: It is immediate to see that �� 0 and �� 0 are correct, as they are unchanged
by the raising. The fact that �̂ 0 forms a tree is also immediate. Let us show that � 0 is
well-dominated. We consider a node m and a mixed path � 0 from f � g to m in � 0. Let
� be the mixed path obtained by replacing the edge n ^ �� n00 by n ^ �� n0 ^ �� n00 (if it
appears in � 0). By construction, � is a valid mixed path between f � g and m in � . We
must prove that �̂ 0(m) is in � 0.

� If m = n and n �� _ n00 is in � 0: by the �rst hypothesis �̂ 0(m) is n00, hence the con-
clusion by the second.

� If m = n (1) and n �� _ n00 is not in � 0 (2): By well-domination of � and (1), n0

and n00 are in � . By (1), n00 is �̂ 0(m). Hence �̂ 0(m) is in � 0, since � = � 0 by (2).

� If m 6= n and n �� _ n00 is not in � 0: by those hypotheses, �̂ (m) = �̂ 0(m) and � =
� 0. We conclude by well-domination of � .

� If m 6= n, n �� _ n00 is in � 0 and �̂ (m) 6= n0:
By well-domination of � , m0 = �̂ (m) is in � . Since m0 is not n0, then m0 is in � 0 too
(as this part of � is shared with � 0). Since m 6= n, m0 is �̂ 0(m), hence the conclusion.

� If m 6= n (3), n �� _ n00 is in � 0 (4) and �̂ (m) = n0 (5): by (4), n �� _ n0 �� _ n00 is
in � . Thus � is in particular of the form h� i �^�(n00 ^ �� n0 ^ �� n �^�(m. By (3),
we moreover haven +^�(m, hence alson +�� (m. Together with (4), this contradicts
the fact that n is raisable in � .

4.4.4.1 Raising multiple nodes

Instead of raising a single node, we are sometimes interested in raising all the nodes bound
on a given noden.4 We call this operation a multi-raising .

De�nition 4.4.14 (Multi-raising) Given a type � and a noden of � di�erent from the
root, the multi-raising of n in � is the graph � 0 verifying �� = �� 0, �� = �� 0 and

8n0; �̂ 0(n0) = _
�

�̂ (n) if n0 �� _ n 2 �
�̂ (n0) if n0 6��_ n 2 �

�

4This operation will mostly be useful in Part II, when we compa re type inference in ML and in MLF.

50 MLF graphic types

I Example Multi-raising the node h1i of the type � of Figure 4.4.2 results in the type
� 00. Notice that raising n changes the binding edge ofn, while multi-raising it changes the
binding edges of the nodes bound onn.

Multi-raising is an interesting operation, because it doesnot require checking for rais-
ability (or equivalently for well-domination).

Property 4.4.15 Given a type � and a noden of � , the multi-raise of n in � is a type. �

Proof: Let S be the set of nodes bound onn in � . It su�ces to order this set by �� (�

(the lowest nodes being �rst), and to raise the nodes of S in this order.

5
Instance on MLFgraphic types

Abstract

We explain the introduction of rigid quanti�cation in MLF types (Ÿ5.1). The in-
stance relation of MLF is obtained by adapting the instance relation of System F to
this form of quanti�cation (Ÿ5.2). In fact, we obtain two rel ations, one permitting type
inference, but not the other. We formally de�ne the �rst one i n Ÿ5.3.3, the second in
Ÿ5.3.5. A third relation, designed to abstract over inessential details on nodes without
polymorphism is also introduced (Ÿ5.3.4).

5.1 Why rigid quanti�cation?

The SystemF instance modulo reversible instance relationv �
F generalizes the corresponding

relation v �
F of System F (Lemma 3.4.3). Moreover,v �

F is sound and complete w.r.t. the
syntactic instance relation 6 F of SystemF. Hencev �

F extends this last relation. In parallel,
MLF is designed to be an extension ofML and the syntactic typing rules of MLF are those of
ML, modulo the richer types and type instance relation�exactly as is the case for SystemF.
Thus, if the instance relation on MLFgraphic types v allowed all the operations ofv �

F , type
inference in MLF would likely be undecidable�just as in System F (Wells 1994).

Rigid quanti�cation is introduced in MLF to �nd a retriction of v �
F suitable for type

inference. Thus, although the two forms of quanti�cation share a similar syntax, there is a
profound asymmetry between them:

� �exible quanti�cation is introduced to obtain more express ive types, and more prin-
cipal type derivations;

� rigid quanti�cation is used to restrict the expressivenessof types, in order make type
inference decidable.

51

52 Instance on MLF graphic types

From a semantic point of view, and without delving too much into the details yet, rigid
edges have the same role as the absence of binding edges in System F graphic types: they
forbid the merging or the instantiation of variables. Hence, there is a very simple way to
transform an MLF type into the corresponding SystemF type.

De�nition 5.1.1 (Mapping from MLF to System F) We write + the injection from
MLF types to SystemF graphic types that removes all rigid edges from its argument. �

The MLF instance relation is obtained by adapting v �
F to the richer binding structure

of graphic types. In fact, we simultaneously de�ne two relations:

v @�A� is the largest relation of the two, and comprises all the possible transformations: it is
designed to be sound and complete w.r.t.v �

F (modulo +).

v is a restriction of v @�A� that permits type inference.

Those two relations de�ne two di�erent versions of MLF, with type inference being possible
only in the smallest of the two. The interest of the �rst system lies mainly in its expressivity.

The decision to put a transformation in v @�A� but not in v is somewhat arbitrary at this
point. Indeed, by de�nition it cannot be explained by type soundness, and is only justi�ed
by the fact that the system based onv allows type inference. Another design guideline is
that v should be as large as possible, in order to obtain a system as expressive as possible.

5.2 Shaping the instance relation

In this section, we review informally the operations ofv �
F and adapt them to rigid quan-

ti�cation.
Nodes are partitioned according to the operation they permit. As in System F , this

partition includes red, green and inert nodes. There is alsoa new category, called orange
nodes. For type inference purposes we also isolate a subset of inert nodes, called monomor-
phic. This section also makes precise whether or not an operation is allowed in both v @�A�

and v , or only in v @�A� . A formal de�nition of v and v @�A� is also given in Ÿ5.3.3 and Ÿ5.3.5.
In the �rst three subsections below, we suppose that the nodes discussed are not inert.

They will be handled separately in Ÿ5.2.4.

5.2.1 Green MLF nodes

In MLF, green nodes are the same as in SystemF : they are transitively bound to the root:

(>�� _)� h� i

Three operations on green variables and green inner nodes (grafting, merging, raising)
are directly �inherited� from v �

F , and are all in v . Moreover, since the symmetric operations
are unsound in general (thus not inv �

F), they are neither in v nor in v @�A� .
Weakening a green node (i.e. removing its binding edge in F) is also possible, but we

must change it slightly, as we require all nodes to be bound. Thus, on graphicMLFtypes, we
change the (�exible) binding edge into a rigid one; we again call this operation weakening.
Notice that it exactly corresponds to the informal semantic of rigid edges.

Weakening is in both v and v @�A� . Moreover, as inF , the symmetric operation would be
unsound (once polymorphism is requested, it must be given),and it is forbidden.

5.2. Shaping the instance relation 53

5.2.2 Red MLF nodes

In System F , the red nodes are the bound nodes which are not connected to the root by
binding edges. It is straightforward to adapt this de�nitio n to graphic types: red nodes are
�exibly bound nodes with a rigid edge above them, i.e.

>�� _ (��� _)� =�� _ (��� _)� h� i

Remember that, in the general case, transforming such a nodeis unsound, as its polymor-
phism is requested�in MLF by the rigid edge above. Thus no instance operation is allowed
on those nodes.

5.2.3 Nodes with a rigid edge

The handling of the nodes that have no binding edge in SystemF � i.e. that have a rigid
binding edge in MLF graphic types�is more subtle. The easy cases are the transforma-
tion of a rigid edge into a �exible one, and the substitution of a rigidly bound variable,
which would for example allow to transform (8 (�) �) ! (8 (�) �) into int ! (8 (�) �).
Both operations are clearly unsound, as they would allow requiring less polymorphism than
originally requested, and they are forbidden.

Next, merging of locally congruent unbound nodes is possible in SystemF , and is part
of the reversible instance relation. In order to allow the same expressiveness, the relation
v @�A� allows raising and merging, but also lowering and splitting, the nodes with rigid edges.
However our key design choice is to disallow the last two operations in v , i.e. to only allow
in this relation the raising and merging of nodes with rigid edges. This very restriction is
what keeps type inference decidable.

In the following, we draw nodes with rigid edges in orange, thus completing our �tra�c
lights� metaphor. Green nodes allow true instances (that change the semantics of the type),
orange nodes only allow transformations changing the representation of types (but not their
semantics, and types are in particular invariant modulo +) and red nodes disallow instance
entirely.

5.2.4 Inert and monomorphic nodes

In order to be slightly more general, we add the possibility for a type constructor to be
intrinsically polymorphic.

De�nition 5.2.1 (Polymorphic symbols) The set of type constructors� is supposed to
be partitioned into two sets of regular and polymorphic type constructors, the ! constructor
being regular. The symbol? is considered to be polymorphic.1 We write Poly the set of
polymorphic symbols. �

This de�nition allows to easily model type constructors representing polymorphic type ab-
breviations, such astype t = 8�: � ! � . However, in the remainder of this section we will
not use this possibility in the examples, and? can safely be thought as the only polymorphic
symbol.

1We recall that ? is not part of �

54 Instance on MLF graphic types

!

�

!

!

?

!

?

!

int int

!

� 1

!

!

?

!

?

!

int int

!

� 2

!

!

?

!

int int

!

� 3

!

!

?

!

int

Figure 5.2.1 � Inert and monomorphic nodes

Terminology In the following, we say that n is an intrinsically polymorphic node in � if
� (n) is a polymorphic symbol.

5.2.4.1 Inert nodes

Let us adapt the de�nition of inert nodes to rigid quanti�cat ion and polymorphic symbols.
In System F , a node is inert if there is no variable transitively (�exibl y) bound on it. In MLF
graphic types, a node is inert if all the polymorphic symbolsbelow the node are protected
by at least one rigid edge.

De�nition 5.2.2 (Inert nodes) Let � be a graphic type. A noden of � is inert if it is not
intrinsically polymorphic, and if there is a rigid edge betweenn and any other intrinsically
polymorphic node n0 below n. Formally,

8n0; n0 ��� _ n ^ � (n0) 2 Poly =) n0 ��� _ =�� _ ��� _ n �

I Example Figure 5.2.1 shows the SystemF type

� , (� id ! � id) ! (int ! int)

as well as three possibleMLF graphic representations of this type� 1, � 2 and � 3. Indeed, the
relation + (� i) � F � holds for i in 1 : : : 3. Moreover, all the hollow-colored nodes in theMLF
types are inert.

As de�ned by the previous sections,v @�A� is too restrictive. Indeed, we have not permitted
transforming inert nodes, which is permitted by v F . Indeed, v �

F also allows to raise, lower,
merge, split, weaken and strengthen (the inverse operationof weaken) those nodes. Thus
v @�A� also allows all those transformations, and� 1 v @�A� � 2 v @�A� � 3 v @�A� � 1 holds.

Conversely, in order to preserve the decidability of type inference,v only allows merging,
raising and weakening inert nodes. (However, this means that � 1 v � 2 v � 3 still holds.)

5.2.4.2 Monomorphic nodes

The fact that inert nodes cannot be e.g. unmerged or lowered byv may seem unfortunate.
Indeed, it means that the binding edge of a node labelled by a ground type constructor such
as int is signi�cant. Thus, we should distinguish the types � 2 and � 3 of Figure 5.2.1.

5.3. Formal de�nition of the instance relations 55

Happily, this is in fact not the case. On a subset of inert types�those with no variables
under them�we can allow unmerging, unraising and unweakening without losing decidabil-
ity of type inference.

De�nition 5.2.3 (Monomorphic nodes) Let � be a graphic type. A node n is
monomorphic if n and all the nodes bound under it have non-polymorphic symbols. For-
mally,

8n0; n0 ��� _ n =) � (n0) =2 Poly �

Of course, as for inert nodes, this de�nition only involves the binding tree. In particular,
there can be polymorphic symbols undern for �� (. However, since polymorphism is only
requested through the binding tree, we need not make such a distinction.

Perhaps surprisingly, we nevertheless do not add unmerging, unraising and unweakening
on monomorphic nodes inv . Indeed, it in fact holds (Ÿ13.2) that this would not add
expressiveness to the type system. Hence we keepv as simple as possible. Moreover, as
it is oriented towards �more sharing�, we can use e�cient �rs t-order uni�cation algorithms
that implement uni�cation exactly for v .

Representing inert and monomorphic nodes In the following, we represent monomorphic
nodes in white. Inert nodes, which allow the same transformations as orange nodes, are
represented as hollow orange nodes.

5.3 Formal de�nition of the instance relations

5.3.1 Permissions

In the syntactic presentation of MLF, �nding what transformations are allowed at a given
position in a type is not readily apparent, at it is determined by contextual inference rules
and the strati�cation between the abstraction and instance relations. In graphic types, the
allowed transformations are obtained by looking at the color of the node. However, as we
stressed in Ÿ3, colors are only a visual help. Indeed, they are solely determined by the shape
of the binding tree above the node (for green, orange and red)or below the node (for white,
i.e. inert nodes). We introduce the notion of �ag path to determine the non-white colors.

De�nition 5.3.1 (Flag path) Let � be a type, n a node of � . The �ag path of n in � ,
written � � (n) is the sequence of binding �ags� such that h� i �^ �� n. �

We write � (n) when � is implicit from context. Notice that the �ag path is read by f ollowing
binding edges in theinverse direction of the one in � .

I Example In the type � 1 of Figure 5.2.1, � � 1 (h11i) = (> =)

The de�nition below gives the exact de�nition of colors as we have used them so far.
Since colors de�ne which operations are allowed on a given node, we also use the term of
permission. Permissions are also summarized in Figure 5.3.1.

56 Instance on MLF graphic types

Permission Name Flag Path

G Green > �

O Orange � � =
R Red � � = > +

I Inert De�nition 5.2.2
M Monomorphic De�nition 5.2.3

G

O

R

Figure 5.3.1 � Permissions

De�nition 5.3.2 (Permissions) A node n of a type � is said to havepermission p if

p = M: n is monomorphic in �
p = I: n is inert in �
p = G: n is not inert in � and � � (n) is of the form > �

p = O: n is not inert in � and � � (n) is of the form (> j=) � =
p = R: n is not inert in � and � � (n) is of the form (> j=) � = > +

The permissions ofn in � are written P� (n). If n has permissionp, it is said to be a p node.�

Notice that G, O, R and I are disjoint sets of nodes (and that each node has exactly oneof
those permissions), as they usually require distinct treatment in proofs. However I nodes
can beM nodes. Those two choices are only a matter of presentation; we could have instead
said that all nodes at > � �ag path have G permission, or that I and M nodes are distinct.

Disregarding the fact it can be inert, a simple way to �nd whether a node isG, O or R
is to follow its �ag path in the automation given at the right o f Figure 5.3.1. The state G
is the initial state, i.e. the permission of the root.

I Example Consider the nodeh11i of type � 1 in Figure 5.2.1, whose �ag path is> = . We
�rst follow the �exible edge from G to itself, and then the rigid edge from G to O; h11i is
indeed orange, as it is not inert,

5.3.2 Atomic instance operations

Instance is composed of the four operations grafting, merging, raising and weakening in-
troduced in the previous sections and formally de�ned below. All four transformations are
displayed schematically in Figure 5.3.2, with the permissions permitting the transformation.
Nodes in blue have either green, orange or inert permission.Smaller nodes, in light grey,
have permissions either irrelevant or unconstrained by theother nodes and edges in the
drawing.

I A concrete example Figure 5.3.3 introduces a sequence of types, each of which isin a
particular form of instance relation with it successor. The type � 1 is actually a valid type
(albeit not the principal one) for the term K 0 de�ned by

� (x) � (y : 8 (�) � ! �) y (K 0)

5.3. Formal de�nition of the instance relations 57

?
v G

� 00
�n1

�

�

� n2

�

�

v M

� n
�

�

� n
�

v R

� n

�

�

n �
>

v W
�

n �
=

n �

>

v W

n �

=

n :
>

v W

n :
=

Figure 5.3.2 � Schematic depiction of the atomic instance operations

By construction of instance, all the types � 2 : : : � 8 are instances of� 1, hence valid types
for K 0. In � 8 the nodesh1i and h2i are merged. Thus, schematically, the instance steps
of Figure 5.3.3 prove that K 0 and the identity function can be put inside an homogeneous
container such as a list. Indeed,� 8 is a common instance of� 1 and of the principal type
8 (�) � ! � of the identity function.

5.3.2.1 Grafting

De�nition 5.3.3 (Grafting) A type � 0 is the (instance-)grafting of � 00at n in � if n is a
bottom node with green permission in � and � 0 is � [� 00=n]. We write Graft(� 00; n) for the
function � 7! � 0. �

Notice that a node can become inert or monomorphic by grafting, if the root of � 00 is itself
inert or monomorphic.

I Example In Figure 5.3.3, � i = Graft(� i =h1i ; h1i)(� 1) holds for 2 � i � 7.

58 Instance on MLF graphic types

(� 1) !

? !

!

?

!

?

(� 2) !

!

!

? ?

!

? ?

!

!

?

!

?

(� 3) !

!

!

? ?

!

? ?

!

!

?

!

?

(� 4) !

!

!

? ?

!

? ?

!

!

?

!

?

(� 5) !

!

!

? ?

!

? ?

!

!

?

!

?

(� 6) !

!

!

?

!

?

!

!

?

!

?

(� 7) !

!

!

?

!

?

!

!

?

!

?

(� 8) !

!

!

?

!

?

Figure 5.3.3 � Example of type instance.

5.3.2.2 Merging

As in SystemsF and F , merging is only possible on locally congruent nodes�otherwise the
control of permissions would much more complicated.

De�nition 5.3.4 (Merging) A type � 0 is the (instance-)merging of the nodesn1 and n2

in � if:

1. � 0 is � [n1 = n2];

2. n1 and n2 have non-red permissions2;

3. n1 and n2 are locally congruent.

We write Merge(n1; n2) for the function � 7! � 0. �

As usual, some subparts of the subgraphs undern1 and n2 can already be shared, hence
the overlap in the sketch of Figure 5.3.2.

2By de�nition, n1 and n2 have the same permissions: their �ag path and the binding tre e under them
are identical.

5.3. Formal de�nition of the instance relations 59

(�) !

!

? ?

!

? ?

(� m) !

!

? ?

!

?

(� m 0) !

!

? ?

Figure 5.3.4 � Merging and local congruence.

I Examples In Figure 5.3.3, the following two relations are veri�ed:

� 6 = (Merge(h111i ; h112i) ; Merge(h121i ; h122i))(� 5) � 8 = Merge(h1i ; h2i)(� 7)

Consider next the types � , � m and � m 0 of Figure 5.3.4. The type � m 0 is � [h1i = h2i] but
not Merge(h1i ; h2i)(�). Indeed the nodesh11i and h21i fail condition 3, since they are not
bound under h1i and h2i in � .

In this particular case, the transformation can be decomposed into two atomic mergings
that both satisfy condition 3:

� m = Merge(h11i ; h21i)(�) � m 0 = Merge(h1i ; h2i)(� m)

However, such a decomposition does not always exist. In our example, had h11i and h21i
been red, the �rst merging would not have been possible.

5.3.2.3 Raising

De�nition 5.3.5 (Raising) A type � 0 is the (instance-)raising of n in � if n has non-red
permissions in� , and � 0 = � " n. We write Raise(n) for the function �̂ 7! �̂ 0. �

I Example In Figure 5.3.3, � 3 is the raising of h121i in � 2, while � 4 is the raising of h122i
in � 3.

5.3.2.4 Weakening

De�nition 5.3.6 (Weakening) A type � 0 is the (instance-)weakening ofn in � if n has
green or inert permissions in� , and � and � 0 coincide except for the binding edgen >�� _ n0

in � , which is replaced byn =�� _ n0 in � 0. We write Weaken(n) for the function � 7! � 0. �

I Example In Figure 5.3.3, � 7 is the weakening ofh11i in � 6, while � 5 is the weakening of
the inert node h12i in � 4.

In the following, we order binding �ags by (>) < (=) , following the transformation
induced by a weakening.

De�nition 5.3.7 (Order on binding �ags) We write
�
< the order de�ned by (>)

�
< (=) ,

(>)
�
< (>) and (=)

�
< (=) . �

60 Instance on MLF graphic types

5.3.3 The instance relation

De�nition 5.3.8 (Instance subrelations) We write v G , v M , v R and v W for the re-
�exive transitive closures of the relations respectively de�ned by

� v G
1 � 0 , 9n; 9� 00; � 0 = Graft(� 00; n)(�)

� v M
1 � 0 , 9n1; n2; � 0 = Merge(n1; n2)(�)

� v R
1 � 0 , 9n; � 0 = Raise(n)(�)

� v W
1 � 0 , 9n; � 0 = Weaken(n)(�) �

Instance is simply the union of all forms of instance operations.

De�nition 5.3.9 (Instance) The instance relation on typesv is the re�exive transitive
closure(v G [v M [v R [v W)� of all forms of instances. �

I Example Coming back to Figure 5.3.3, we have seen in the previous section that

� 1 v G � 2 v R � 3 v R � 4 v W � 5 v M � 6 v W � 7 v M � 8

holds. Hence,� 1 v � 8 holds by de�nition of v . A shortened decomposition of this fact is

� 1 v G � 7 v M � 8

Moreover, some operations could be performed in a di�erent order. However, the weakening
of nodeh21i must always be performed after the nodesh211i and h212i have been merged.
Indeed, both nodes are red after the weakening, which prevents any further operation on
them.

Notations Consider a@-like relation symbol such asv . In the remainder of this document,
for any valid X and Y, we let @X Y be @X � @Y . Thus v is just v GRMW . We also let AX be
the symmetric relation of @X , and allow any meaningful combinations of those notations,
as well as with the relations@X

1 .

By construction, the instance relation of MLF is a re�nement of the instance relation on
term-graphs.

Property 5.3.10 Given two types� and � 0, � v � 0 implies �� v G �� 0. �

Proof: By induction on a derivation of � v � 0. Once the binding tree and the permissions
checks are removed,v G and v M become subrelations of v G, while v R and v W do not
change the underlying term-graph at all.

Instance is an oriented relation. Since graphic types have anonymous variables, � -
conversion is directly captured by the representation of types, and non-re�exive instance
steps permanently change the type.

Lemma 5.3.11 The kernel of v is equality. �

5.3. Formal de�nition of the instance relations 61

Proof: Non-re�exive instance strictly decreases lexicographically the measure (� N1(�);
N2(�)) , where

N1(�) is the number of paths � such that � (�) is not ? .
Raise, Merge and Weaken leave N1 unchanged. For Graft, suppose the operation is
Graft(�; n):
. if � is reduced to ? , the instance is re�exive;
. if � is not ? , the number of non-bottom paths strictly increases, as all p aths � such

that � � n are no longer labelled by ? .
N2(�) is the sum of the binding heights of the nodes of � plus the number of �exibly bound

nodes of � .

Raising strictly decreases at least one binding height, and does not change the number
of �exible nodes. Merging strictly decreases the number of nodes, hence the sum of
the binding heights (and possibly the number of �exible node s). Weakening keeps the
binding height unchanged and strictly decreases the number of �exible nodes.

Notice that this measure is not well-founded, as N1(�) can grow arbitrarily.

5.3.4 Instance modulo similarity

As in the systems seen in Ÿ3, the instance relation is too �ne-grained: we wish to read types
modulo some inessential details, using a similarity relation that abstracts over them.

By design, MLF similarity only captures �simple� semantic equivalences. In particular,
reasoning modulo similarity preserves decidability of type inference. Precisely, similarity
captures the di�erences in both the sharing and the binding of monomorphic nodes.

De�nition 5.3.12 (Similarity) We write v m , v r and v w for the subrelations ofv M , v R

and v W that only merge, raise or weaken monomorphic nodes,i.e. the transitive closures
of the relations

� v m
1 � 0 , 9n1; n2 monomorphic in � ; � 0 = Merge(n1; n2)(�);

� v r
1 � 0 , 9n monomorphic in � ; � 0 = Raise(n)(�)

� v w
1 � 0 , 9n monomorphic in � ; � 0 = Weaken(n)(�)

We call reversible instance the subrelation v rmw of v . We call similarity , written � ,
the equivalence relation(v rmw [w rmw)� and instance modulo similarity, written v � , the
relation (v [�)� . �

Types are meant to be understood modulo similarity; in fact, when we display them in
syntactic form, we entirely remove the binding edges and thesharing on monomorphic
nodes. However, we often express results forv alone, as they are both stronger than for
v � , and easier to establish.

I Example Consider again Figure 5.2.1. The relation

� 3 = (Raise(h21i) ; Raise(h22i) ; Merge(h21i ; h22i))(� 2)

holds, and all the nodes involved are monomorphic. Thus� 3 is a reversible instance of
� 2, and both types are similar. Likewise, in Figure 5.3.3, the types � 4 and � 5 are similar,

62 Instance on MLF graphic types

since� 5 = Weaken(h12i)(� 4) holds, and this weakening is monomorphic. Of course, in more
complicated cases one type is not necessarily a reversible instance of the other.

Unsurprisingly, � is exactly the reversible part of v � .

Lemma 5.3.13 The kernel of v � is � . �

Proof: Consider two types � and � 0 such that � v � � 0 v � � , and a derivation I of this
result. We show that an operation of v n v rmw cannot be undone, and hence cannot
appear in I .

. I cannot contain a non-re�exive grafting (1), as _� and _� 0 would be di�erent.

. the binding heights of non-monomorphic nodes (and the fact t hat the nodes are non-
monomorphic) are preserved by v M , wm , v W , ww and strictly decrease for at least one
node by v R n v r . Moreover, they are preserved by v r and w r : since non-monomorphic
paths are upwards-closed for �� _ , those two operations cannot be used to lower or raise
a node above a non-monomorphic node to change the binding height of the latter. Thus,
together with (1), I cannot contain a non-monomorphic raising (2).

. the number of non-monomorphic nodes is preserved by� and v W , and strictly decreases
by v M n v m . Thus, by (1) and (2), I cannot contain a non-monomorphic merging.

. the number of paths � such that �� (�) = (>) and h� i is non-monomorphic is stable by
� and v M , and strictly decreases by v W n v w . Thus, by (1) and (2), I cannot contain
a non-monomorphic weakening.

Thus, by the four points above, I only contains similarity steps.

5.3.5 Instance modulo abstraction

The (instance modulo) abstraction relation is used to abstract over all the notational details
brought by the introduction of rigid quanti�cation to Syste m F types. In particular, it
allows freely transforming nodes with rigid edges, as well as all inert nodes.

De�nition 5.3.14 (Abstraction) We write @� M , @� R and @� W for the subrelations ofv M ,
v R and v W that only merge, raise and weaken inert or orange nodes,i.e. the transitive
closures of the relations

� @� M
1 � 0 , 9n1; n2 inert or orange in � ; � 0 = Merge(n1; n2)(�);

� @� R
1 � 0 , 9n inert or orange in � ; � 0 = Raise(n)(�)

� @� W
1 � 0 , 9n inert in � ; � 0 = Weaken(n)(�)

We call abstraction the subrelation @� of v de�ned as @� MRW . We write @�A� the equivalence
relation de�ned by (@� [A�)� . We call instance modulo abstraction, written v @�A� , the relation
(v [@�A�)� . �

I Example In Figure 5.2.1,

� 2 = (Weaken(h1i) ; Merge(h11i ; h12i))(� 1)

Sinceh1i is inert and both h11i and h12i are orange, this operations is an abstraction. Thus
both � 1 @� � 2 and � 1 @�A� � 2 hold.

5.4. Instance and permissions 63

Notice that the following inclusions hold by construction:

(�) � (@�A�) (v rmw) � (@�) � (v) � (v �) � (v @�A�)

The relation v @�A� de�nes the implicit version of MLF, where type annotations are not needed
in source terms. Conversely, type inference is no longer decidable in this system.

We conclude this section by proving that @�A� is exactly the reversible part of v @�A� .

Lemma 5.3.15 The kernel of v @�A� is @�A� . �

Proof: The proof is the same as for Lemma 5.3.13, replacing �non-monomorphic� by �green�
and the subrelations of � by the corresponding relations in @�A� . The only di�erence is the
fact that green paths and nodes are not stable, but instead decrease, byv W .

5.4 Instance and permissions

In this last section, we characterize instance through an entirely operational point of view�
as opposed to the semantic one used when de�ning instance in the previous sections. We
also characterize how permissions evolve through instance.

5.4.1 Change in permissions

As a small (but important) technical result, we identify all the atomic instance operations
that change the permissions of a node. This result is particularly useful inside proofs, when
we need to assert that some permissions do not change. (However we will also use a more
abstract presentation, given in Ÿ5.4.3.)

Lemma 5.4.1 (Change in permissions) Let � be a type, andn a type of � such that an
atomic instance operation o is applied to n. Let � 0 be o(�). If there exists a noden0 of � 0

with di�erent permissions in � and � 0, then necessarily one of the following holds

� o = Graft(� 00; n) for some type � 00, n and n0 are green in � , n ��� _ n0, and n0 is
monomorphic or inert in � 0.

� o = Weaken(n), n and n0 are green in � and one of the following holds:

� n0 = n and n0 is orange in � 0

� n0 +�� _ n and n0 is red in �

� n +�� _ n' and n0 is inert in �

� o = Raise(n), n0 = �̂ (n) and either

� n is orange or inert in � , n0 is inert in � and monomorphic in � 0, or

� n and n0 are green in � , and n0 is monomorphic or inert in � 0 �

64 Instance on MLF graphic types

Proof: Since the permissions of a noden00 are entirely determined by the binding edges
and the binding �ags of the nodes above and below n00(for �� _), we have necessarily either
n ��� _ n0 or n0 ��� _ n. The proof is by case disjunction on o.

. If o is a merging: the binding tree and the binding �ags are entirely unchange d in � 0,
hencen0 has exactly the same permissions in� and � 0.

. If o is a grafting : by de�nition of grafting, n has green permissions. The nodes above
n (which are necessarily also green) can become inert or monomorphic depending on
the binding tree of the type grafted, or remain green. There i s no node undern, since
it is a variable.

. If o is a weakening: we proceed by case disjunction on the permissions ofn in � .

� If n is green: by de�nition of green, there exists an intrinsically polym orphic node

n00 such that n00(>�� _) � n in � . This path still exists in � 0, thus n is orange in � 0.

Next, consider a node n0 such that n +�� _ n0. Necessarily, it is green. Hence, it can
only remain green, or become inert if n is in the only �ag path to an intrinsically
polymorphic node.
Finally, consider a node n0 such that n0 +�� _ n in � . If n0 is inert or monomorphic in � ,
it is also inert or monomorphic in � 0: the binding tree under this node is unchanged
in � 0. Otherwise, there exists an intrinsically polymorphic nod e n00 such that n00(>�� _
) � n0, in both � and � 0 (1). If n0 is red, since n is green, we haven0 > ��� _ n 2 � , with
(=) somewhere in � . This binding path is the same in � 0; together with (1), this
shows that n0 is red in � 0. If n0 is orange, we haven0 = ��� _ instead, but the reasoning
is the same. If n0 is green, it becomes red in� 0.

� If n is red: the weakening is forbidden.

� If n is orange: the weakening is impossible, asn is already rigidly bound.

� If n is monomorphic: the permissions of n and of the nodes below are unchanged,
since monomorphic nodes are only concerned with binding edges, not with binding
�ags. For the nodes above, consider n0 such that n +�� _ n0.

� If n0 is not inert : the �ag path witnessing this fact cannot go through n. Hence
this �ag path still exists in � 0, and since the �ag path above n0 is unchanged, n0

has the same permissions in� 0.

� If n0 is monomorphic: the binding edges under it are unchanged (only the binding
�ag of n is changed), and it is still monomorphic in � 0.

� If n0 is inert : there are already rigid edges on all the �ag paths under n0; adding
a new rigid edge under n0 does not change this fact.

� If n is inert : the permissions of n and of the nodes below are unchanged, since the
binding trees under all those nodes are unchanged. The conclusion for the nodes
above n is the same as in the previous case.

. If o is a raising: The automaton of Figure 5.3.1 does not �count� the number of binding
�ags it sees, but merely their alternation. Thus it returns t he same color forn in � and
� 0 (2): the only problematic case would be if n was �exibly bound, and if it was bound
above a rigid edge (making it possibly green after the raising), but this case is forbidden
by permissions. Since the binding tree and the binding edgesbelow n are unchanged,
by (2), n and the nodes bound on it have the same permissions in� and � 0.

The permissions of the nodesn0 above n̂ are unchanged:

� if n0 is monomorphic in � : the result is immediate, as no polymorphic node can be
transitively bound on n0 in � 0, since none exists in �

5.4. Instance and permissions 65

� if n0 is non-inert in � : there exists a �exible �ag path to an intrinsically polymor -
phic node n00 in � . In � 0 this �ag path might have changed through the raising of
n, but n00 is still accessible from n0. Since the �ag path above n0 is unchanged, the
permissions of n0 are unchanged.

� if n0 is inert but not monomorphic in � 0: there is a �ag path to an intrinsically
polymorphic node n00 in � 0, this �ag path containing an edge = . After the raising
this path might have changed, but at least one edge = still exists, as permissions
disallow raising a �exible edge above a rigid one. Hence n0 is still inert in � 0.

For n̂ itself, since the �ag path above n̂ is unchanged in � 0, the color returned by
the automation for n0 is the same in � and � 0. Hence, n can only become inert or
monomorphic (3), which is possible since n is no longer bound on it. We proceed by
case analysis on the permissions ofn in � .

� If n is green: n̂ must also be green, which is the desired result together with (3).

� If n is orange: n̂ can be anything but monomorphic (monomorphic nodes are down-
wards closed). If it is inert, it can become monomorphic, or r emain inert. It it is not
inert, the �ag path witnessing this fact cannot involve n (which is rigidly bound),
and n̂ has the same permissions in� 0.

� If n is inert and not monomorphic : as aboven̂ can be anything but monomorphic.
If it is inert, the result is also as above. If it is not inert, t he �ag path still cannot
involve n, as n is inert. The conclusion is as above.

� If n is red: this case is impossible by permissions.

� If n is monomorphic: raising n does not change the permissions of̂n at all. Indeed,
the �ag path above n0 is unchanged, and so are all the �ag paths to a polymorphic
node under n0.

Notice a very important corollary of this result: red nodes never disappear through an
instance operation (and they only appear through weakening). This result is not overly
surprising, as it already holds in SystemF , and the interpretations of red nodes inMLFand
this system are supposed to be the same.

Property 5.4.2 Nodes with red permissions are preserved byv @�A� . �

Proof: By Lemma 5.4.1, it is immediate that instance preserve red n odes, as the only nodes
for which permissions change are green or inert ones. It remains to prove the result for
A� . The only problematic case is for weakenings, which can introduce red nodes. However,
this is only the case for the weakening of a green node, which is not part of @� ; hence, the
inverse operation is not part of A� either.

5.4.2 Ordering permissions

An interesting way to characterize permissions is to order them according to the operations
they allow.

De�nition 5.4.3 (Order on permissions) Let @be a subrelation ofv @�A� . We say that
< is an order on permissions for @if P < P0 implies that any operation of @possible on a
node with permissionP is also possible on a node with permissionP0. �

66 Instance on MLF graphic types

In particular, two di�erent permissions can be equal for @if they allow the same transfor-
mations.

I Example We have R < O < G for v . Moreover, I and M are equal for this relation.

Unsurprisingly, the ordering between permissions change depending on whether we con-
sider v , v rmw , @� , v � or v @�A� . We give �ve suitable orders below.

Lemma 5.4.4 The transitive and re�exive closure of the orders � v , � rmw , � @� , � � and
� @�A� of Figure 5.4.1 are correct permission orders for the relationsv , v rmw , @� , v � and
v @�A� respectively. �

� v

M; I; G

O

R

� rmw

M

G; I; O; R

� @�

M; I; O

G; R

� �

M

I; G

O

R

� @�A�

M; I

G O

R

An arrow from P to P0 means thatP < P0

Figure 5.4.1 � Order on permissions

The proof of this result is immediate by examining the �ve relations; we however give some
details below.

In each case,R is the lowest permission, as it never permits any operation.The order
� rmw is the simplest: v rmw only allows transformations on monomorphic nodes. Similarly,
@� only allows raising, merging and weakening, and only on monomorphic, inert or orange
nodes.

For � v , as expected we haveG > O > R. At �rst, it might seem strange to also
have G equal to I or M, as the �rst permission allows grafting but not the last two. But
G � v I; M also holds by reasoning as follows: grafting can be vacuously said to be allowed on
monomorphic or inert nodes, as it is only possible on variables, which cannot be momorphic
or inert. Moreover, our convention of making G, I and M equal is much more convenient to
work with. The order � � is essentially similar to � v , except that it distinguishes M from
I and G. Indeed, M nodes can be freely transformed bywrmw in v � , which is not the case
for I and G nodes.

The ordering for � @� is quite di�erent. First, we cannot merge G with I and M: the last
two permissions allow unsharing alongA� , but not G. In parallel, we cannot mergeO with
I or M, as O does not allow grafting. As a result,G and O are incomparable, and both less
general than M and I, resulting in the order � @� . (Another possibility would be to merge

5.4. Instance and permissions 67

M, I and O, as we did for � @� , and to make G incomparable with those three permissions,
as the �rst three allow unsharing and G allows grafting. However this order would be less
practical to work with for the use we present in the next section.)

5.4.3 Evolution of permissions through instance

Armed with those orders, we can study how permissions changewhen a type is transformed
by an instance operation. The results are mostly as one wouldexpect. In particular, all
the transformations but weakening preserve permissions, or slightly increase them (because
some nodes can become inert or monomorphic). Weakening decreases permissions for� v ,
� rmw and � � ; we discuss weakening for� @�A� below.

Property 5.4.5 Let � be a type, � 0 another type obtained by transforming� . Let � be a
path of � . Let P (resp. P') be the permissions of the node at� in � (resp. � 0).

� if � v M � 0 then P' = P for all �ve orders

� if � v G � 0 then P' > P for all �ve orders.

� if � v R � 0 then P' > P for all �ve orders

� if � v W � 0 then P' < P for � v , � rmw and � �

� if � � � 0, then P' = P for all the orders

� if � @�A� � 0, then P' = P for � @�A� . �

Proof: All the results are direct consequences of Lemma 5.4.1; we however give some details
below.

Merging does not change permissions at all. Grafting can change green nodes into
monomorphic or inert nodes, which increases or preserves permissions for all the orders.
Raising changes green or inert nodes into inert or monomorphic ones, i.e. it increases
permissions for all the orders. Weakening changes green nodes into red, orange or inert
ones, which indeed decreases permissions for the given orders.

For � : grafting is no longer possible; weakening and raising do not change permissions, as
they only do so when applied on green, orange or inert nodes, which cannot be changed
by v rmw . Thus v rmw does not change permissions at all, and thusw rmw does not either.

For @�A� : by the same reasoning as above, only the raising of an orangenode can change
permissions. This operation can only change an inert node into a monomorphic one, but
we have I = M for � @�A� , hence the result.

This result is quite useful in proofs, as it is a good layer of abstraction on top of Lemma 5.4.1.

Notice that weakening is not monotonic for � @�A� : green nodes can become orange, red
or inert. This is a beginning of explanation on why type inference is not possible whenv @�A�

is used as the instance relation. Since weakening increasesthe permissions of some nodes,
using a weakening during type inference (on a node on which this weakening is not strictly
required as this step) might yield a better type. However this could also make type inference
fail later, since weakening also decreases permissions. Thus, in order to be complete, type
inference would at least need to backtrack sometimes duringinference.

68 Instance on MLF graphic types

Convention In the following, we almost always reason onv . Hence, when we write that
permissions increase, decrease, or remain stable, this must be understood with respect to
� v . There are a few exceptions, explicitly mentioned in the text.

6
Properties of the instance relations

Abstract

In this chapter, we study the various instance (sub)relatio ns. Since instance is not
noetherian, we isolate some subrelations of instance that have this property (Ÿ6.1). We
show that v can be reorganized so that instance derivations always follow a certain
order (Ÿ6.2). We characterize �big-step� versions of v R and v MW , thus removing the
need for decomposing an instance derivation into atomic operations (Ÿ6.3). For grafting
(which is already a big-step operation), we instead show that we can proceed by small,
atomic steps (Ÿ6.4). We show that, under certain conditions, an instance operation
inside an instance derivation can be brought at the beginnin g of the derivation (Ÿ6.6).
Finally, we show that most of the subrelations of instance ar e con�uent, and that v �

and v @�A� can be reorganized so that all instance operations are performed �rst (Ÿ6.7).

The results of this chapter are mostly technical, and used mainly inside proofs. However
the de�nitions of Ÿ6.3 and Ÿ6.4 are used when discussing the uni�cation algorithm in Ÿ7.

Proving instance-related results Many proofs of this document have similar structure, as
they proceed by induction on a given instance derivation. However, very often, we need
the derivation to be constrained. For example, some operations need to appear before
some others. The results of this chapter are in particular used to obtain those constrained
derivations.

6.1 Reasoning on restricted instance

Grafting can increase the size of the skeleton of a type in an arbitrary way, and v is not a
noetherian relation. However, all other instance subrelations are noetherian. This provides
a powerful reasoning mechanism whenever the structure of the types is guaranteed not to
grow arbitrarily.

69

70 Properties of the instance relations

De�nition 6.1.1 (Structure de�nedness) Consider two types � and � 0. We say that �
is structurally less-de�ned than � 0 if

8� 2 dom(�); ^

8
<

:

� 2 dom(� 0)

_
�

� (�) = ?
� (�) = � 0(�)

�

It is immediate that only grafting changes structure-de�nedness.

Property 6.1.2 Let � and � 0 be two types. If � v G � 0, then � is less-de�ned than � 0. If
� (v RMW [w RMW) � 0, � and � 0 have the same structure de�nedness. �

In particular, structure-de�nedness is completely invariant by � and @�A� .

De�nition 6.1.3 (Restricted instance) Consider a type� . We write v j � the restriction
of the instance relation to graphic types with structure less-de�ned than the one of � , i.e.

� 1 v j � � 2 , � 1 v � 2 ^ � 2 is structurally less-de�ned than � �

Of course, this implies that � 1 is also less-de�ned than� .

Property 6.1.4 Let � be a type. The restriction of v j � to non-re�exive instance steps is
noetherian. �

Proof: The result is immediate by the proof of Lemma 5.3.11, as the lexicographic order
of this proof becomes well-founded: for any type � 0 and � 00 such that � 0 v j � � 00, � N1(� 0)
and -N1(� 00) are greater than � N1(�).

6.2 Ordering the instance operations

The subrelations of the instance relation are almost entirely orthogonal: grafting only in-
volves �� (and mainly changes _�), while merging, raising and weakening only alter~� , �̂ and
�� respectively. This orthogonality is quite convenient whenstudying the properties of v , as
it makes commutations between the di�erent operations quite simple. In fact, it is possible
to strongly constrain the instance relations and subrelations so as to obtain more canonical
derivations (resulting in much simpler proofs): graftings can always occur �rst, followed by
raisings, and then mergings and weakenings interleaved. This �exibility is actually one of
the keys to an e�cient implementation of uni�cation (Ÿ7).

Lemma 6.2.1 The instance relation v is equal to the relation v G ; v R ; v MW . �

Proof: The inclusion v G ; v R ; v MW � v is by de�nition of v . For the other inclusion,
Figure 6.2.1 shows that v 1 ; v 1 is included in v G ; v R ; v MW (1): provided the left-hand
side of the equations is de�ned, the equalities presented in this �gure hold. All cases use
Property 5.4.5 to justify that there are enough permissions to do the rewriting. In all the

6.2. Ordering the instance operations 71

� Raise(n) ; Graft(� 0; n0) != Graft(� 0; n0) ; Raise(n)
Raising does not create new green nodes, hence the grafting can be done �rst.

� Weaken(n) ; Graft(� 0; n0) != Graft(� 0; n0) ; Weaken(n)

� Merge(n1; n2) ; Graft(� 0; n0)
!
=

8
>>>>>><

>>>>>>:

Graft(� 0; n0) ; Merge(n1; n2)
if n0 6+�� _ hn1 [n2i after merging

Graft(� 0; n1�) ; Graft(� 0; n2�) ; Merge(n1; n2)
if after merging n0 +�� _ hn1 [n2 i

and hn1 [n2i ��� (n0

� Weaken(n) ; Raise(n0) != Raise(n0) ; Weaken(n)

� Merge(n1; n2) ; Raise(n0) !=

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Raise(n0) ; Merge(n1; n2)

if after merging n0 6��� _ hn1 [n2i
Raise(n1) ; Raise(n2) ; Merge(n1; n2)

if after merging n0 = hn1 [n2i

Raise(n1�) ; Raise(n2�) ; Merge(n1; n2)
if after merging n̂0 +�� _ hn1 [n2i ��� (n0

Raise(n1�) ; Raise(n2�) ; Merge(n1�; n 2�) ; Merge(n1; n2)
if after merging n̂0 = hn1 [n2i ��� (n0

Figure 6.2.1 � Reordering instance

cases but the �rst (which is justi�ed in the �gure), we move an operation restricting or
preserving permissions behind an operation increasing or preserving permissions.
Next, consider two types � and � 0 such that � v � 0, and a derivation I of this result.
We must show that rewriting I according to the rules of Figure 6.2.1 terminates. No-
tice that these rules either preserve the number of atomic in stance steps or strictly in-
crease this number, and that no re�exive step is introduced. By (1), it is immediate that
(v 1 j � 0 ; v 1 j � 0) � (v G j � 0 ; v R j � 0 ; v MW j � 0). Since v j � 0 is noetherian, the rewriting rules
that strictly increase the number of atomic instance steps c an only occur �nitely many
times. Hence it su�ces to show that the rules that preserve th e number of instance op-
erations can also be applied only �nitely many times; we call these rules R. Let us write
I as o1 ; o2 ; : : : ; ok , i.e. as the sequence as atomic instance steps that transform� into
� 0. The rules of R are such that they rewrite op ; oq into oq ; op . It is immediate that
each application of a rule strictly decreases the number of inversions between the instance
operations w.r.t. the correct order, i.e. the well-founded measure s de�ned by

s(o1 ; o2 ; : : : ; ok) = jf (p; q) j op ; : : : ; oq is not of the form
Graft(�; �) � ; Raise(�) � ; (Merge(�; �) [Weaken(�)) � gj

Other simple decompositions (e.g. v R ; v MW ; v G) are not possible in the general case.
Grafting must occur �rst, as it introduces new nodes which might need to be raised later.

72 Properties of the instance relations

Weakening must occur last, because it restricts permissions. Merging and weakening must
be interleaved because the former requires the binding �agsto be congruent�hence the
need to weaken some nodes.

De�nition 6.2.2 (Ordered instance derivations) A sequence of elementary instance
transformations is called ordered when it respects the ordering of Lemma 6.2.1. �

I Example The proof of � 1 v � 8 in Figure 5.3.3 is ordered.

6.3 Big-step instance subrelations

Proving that two types are in instance relation a priori requires to exhibit a derivation
of this result in term of atomic instance steps. Since this can become quite tedious, we
introduce �big-steps� relations that compare the shapes oftwo types and asserts they are
instance of one another.

6.3.1 Big-step raising

Raising can only be applied to raisable nodes. In order to prove that � v R � 0, we should
thus prove that all nodes raised in the derivation are raisable (or alternatively that all
intermediary types are well-dominated); this makes proofsquite complicated. An alternative
is to de�ne a relation that compares the binding trees of two well-dominated types, and
asserts that one is the result of performing multiple raising in the other.

De�nition 6.3.1 (Big-step raising) Given two types � and � 0, we say that � 0 is a big-
step raising of � , written � v R\ � 0, if and only if

^

8
>><

>>:

(1) �� = �� 0

(2) �� = �� 0

(3) �̂ 0 � (�̂)+

(4) 8n; �̂ 0(n) 6= �̂ (n) =) P � (n) 6= R

�

The �rst two points assert that the underlying term-graphs a nd all the binding �ags are
equal in � and � 0. The third point veri�es that a binding edge of � 0 is in the transitive
closure of the binding edges of� . The fourth point ensures that a raised node has enough
permissions.

Next, we characterize raisings in which the nodes lowest in the type are raised �rst.

De�nition 6.3.2 (Bottom-up raising) A sequenceRaise(n1) ; : : : ;Raise(nk) is said to be
a bottom-up raising if

i > j =) : (nj
+�� (ni) �

If two types verify � v R\ � 0, it is easy to obtain a bottom-up raising for � v R � 0: we can
raise any node amongst the lowest ones, and iterate this stepuntil no node remains to be
raised. This is not the case ife.g. we choose a top-down ordering, as some nodes might not
be raisable at �rst.

6.3. Big-step instance subrelations 73

Lemma 6.3.3 Consider two types such that� v R\ � 0. Then there exists a bottom-up
derivation Raise(n1) ; : : : ; Raise(nk) such that � 0 = (Raise(n1) ; : : : ; Raise(nk))(�) and which
proves � v R � 0. �

Proof: Let m(�; � 0) be the measure de�ned by

m(�; � 0) =
X

n 2 dom(�)

k j n � 1 ���� k�������������� _ �̂ 0(n) 2 �

The proof is by induction on m(�; � 0). If this number is 0, all the nodes of � are bound at
the same node in � and � 0. Since � v R\ � 0 holds, � = � 0 and the empty sequence proves
the result. Otherwise, let n be a node lowest for �� (among those such that �̂ (n) 6= �̂ 0(n).
Let us �rst prove that n can be raised in � .

. n is raisable in � : we proceed by contradiction, and assume there existsn0 bound at
�̂ (n) in � such that n +�� (n0. The mixed path h� i ��� (�̂ 0(n) ^ �� n +�� (n0 is valid in
� 0. Moreover this path does not contain �̂ 0(n0): this node is equal to �̂ (n) (as otherwise
n0 would be raised before n), and �̂ (n) is strictly above n and strictly below �̂ 0(n)
(indeed, �̂ (n) 6= �̂ 0(n) by hypothesis, and point 3 of the de�nition of v R\ implies that
n +�� _ �̂ 0(n) 2 �). Thus � 0 would not be well-dominated: contradiction.

. n is not red in � : by point 4 of the de�nition of v R\ .

Let � 00 be Raise(n)(�). We have proven � v R � 00. Let us next prove � 00v R\ � 0. All points
but the third in the de�nition of v R\ are immediate since � v R\ � 0 holds. For point 3,
consider a binding edgen0 �� _ �̂ 0(n0) of � 0. By hypothesis, n0 +�� _ �̂ 0(n0) 2 � and we must
prove that n0 +�� _ �̂ 0(n0) 2 � 00. In � , if n0 +�� _ �̂ 0(n0) is not of the form n0 ��� _ n �� _ �̂ (n),
the result is immediate. Suppose then that we have n0 ��� _ n �� _ �̂ 0(n0) 2 � . The node n0

cannot be n: we have �̂ (n) 6= �̂ 0(n) by hypothesis on n. Thus n0 is strictly below n, which
contradicts the choice of n as lowest node. Thus � 00v R\ � 0 holds.

Finally, we have m(� 00; � 0) = m(�; � 0) � 1 by de�nition of � 00and m. Since � 00v R\ � 0 holds,
by induction hypothesis there exists a bottom-up raising fo r � 00 v R � 0. Together with
Raise(n)(�), this forms a bottom-up derivation for � v R � 0, which is the desired result.

As v R is also included inv R\ , we can prove the equality of these two relations.

Lemma 6.3.4 The relations v R and v R\ are equal. �

Proof: The direction � v R\ � 0 =) � v R � 0 is by Lemma 6.3.3.

The direction � v R � 0 =) � v R\ � 0 is by induction on a derivation of � v R � 0. If � = � 0,
the result is immediate. Otherwise, let � 00 be such that � v R

1 � 00 v R � 0. By induction
hypothesis, � 00 v R\ � 0 holds (1). By de�nition of raising, it is immediate that � v R\ � 00.
Thus it su�ces to show that v R\ is transitive. For the �rst two points of the de�nition,
this is by transitivity of equality. For the fourth point, it is a consequence of the fact that
raising does not remove or introduce red nodes. For the third point, we have ^� 00 � (�̂)+

and �̂ 0 � (^� 00)+ by � v R\ � 00 and � 00v R\ � 0. Then (^� 00)+ � ((�̂)+)+ by the �rst inclusion,
this last expression being equal to (�̂)+ . By transitivity of inclusion we have �̂ 0 � (�̂)+ ,
which is the desired result.

74 Properties of the instance relations

6.3.2 Big-step merging and weakening

As we have done forv R , we can characterize a big-step merging and weakening operation,
and prove that it is derivable using the usual atomic operations. We also isolate derivations
that occur bottom-up. We moreover require that weakenings in those derivations occur
before mergings.

De�nition 6.3.5 (Big-step merging-weakening) We say that � 0 is a big-step merging-
weakeningof � , written � v MW \ � 0 if

^

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(1) _� = _� 0

(2) �̂ = �̂ 0

(3) ~� � ~� 0

(4) 8n; 8n0; ^

8
<

:

n 6~� n 0

n ~� 0 n0

�̂ (n) = �̂ (n0)
=) P � (n) 6= R

(5) 8n; �� (n)
�
< �� 0(n)

(6) 8n; �� 0(n) 6= �� (n) =) P � (n) 6= R

�

The �rst two points ensure that the underlying tree and the bi nding edges are unchanged.
The third point ensures that � 0 merges more nodes than� , while the fourth veri�es that
permissions are veri�ed for the merging. The condition �̂ (n) = �̂ (n0) makes sure that we
do not check permissions for nodes that are indirectly merged. The �fth point checks that
binding �ags are either unchanged, or that �exible edges aretransformed into rigid ones.
The last point checks that all the weakenings are allowed.

De�nition 6.3.6 (Bottom-up merging-weakening) A sequencei 1 ; : : : ; i m is a bottom-
up merging-weakeningif it veri�es

� for any p, op is either Merge(n1; n2) or Weaken(n)

� if np is transformed by op and nq is transformed by oq (e.g. np = Merge(np; n) or
Merge(n; np) or Weaken(np)), and if np

+�� (nq, then p > q

� if op is Merge(n; n0) or Merge(n0; n) and oq is Weaken(n), then q < p �

Given a derivation � v MW \ � 0, we can �nd a derivation of this result in terms of a
bottom-up derivation � v MW � 0. It is simply obtained by �nding the lowest node to
transform, and performing the required operation.

Lemma 6.3.7 Consider two type � and � 0 such � v MW \ � 0 holds. Then there exists a
bottom-up merging-weakening derivationo1 ; : : : ; ok such that � 0 = (o1 ; : : : ; ok)(�) and which
witnesses� v MW � 0. �

Proof: Let m be the measure de�ned by

m(�; � 0) =
�
�f (n; n 0) j n 6~� n 0 ^ n ~� 0 n0g

�
� +

�
�f n j �� (n) = (>) ^ �� 0(n) = (=) g

�
�

6.3. Big-step instance subrelations 75

The proof is by induction on m(�; � 0). If this number if 0, we have � = � 0 since � v MW \ � 0,
and the empty derivation proves the result. Otherwise, let n be a node lowest in � for �� (
among the nodesn such that either

1. �� (n) 6= �� 0(n)
2. there exists n0 distinct from � such that n ~� 0 n0 and �̂ (n) = �̂ (n0).

Let us justify that n exists: if
�
� f n j �� (n) = (>) ^ �� 0(n) = (=) g

�
� is not 0, at least one node

veri�es point 1. Otherwise, jf (n; n 0) j n 6~� n 0 ^ n ~� 0 n0gj is not 0. Let n1 and n2 be two
nodes merged in� but not in � 0. If they are not bound to the same node in � , we consider
their binders. Necessarily, they must be merged in � 0, as otherwise �̂ 0 would not be a tree.
Moreover, by hypothesis, �̂ (n1) and �̂ (n2) are distinct. We can thus iterate this step until
we �nd two binding ancestors n0

1 and n2 ' of n1 and n2 bound on the same node, andn0
1

and n0
2 verify point 2.

There are now two cases:

. n veri�es point 1 : we let � 00 be Weaken(n)(�). The relation � v W � 00 holds by point 6
of the de�nition of v MW \ . Notice also that we have m(� 00; � 0) = m(�; � 0) � 1
Let us show that � 00v MW \ � 0. All points of De�nition 6.3.5 but the permissions related
ones are immediate, since� v MW \ � 00 and �� 0(n) = (=) . By Lemma 5.4.1, a node n0 of
� becomes red inWeaken(n)(�) only if n0 +�� _ n. But n0 cannot verify the hypotheses of
points 4 and 6 of the de�nition of v MW \ , as otherwise we would have chosen it before
n. Thus points 4 and 6 still hold in � 00, and � 00v MW \ � 0 holds.

. n veri�es point 2 but not point 1 : we let � 00 be Merge(n; n 0)(�). The nodes n and
n0 are binding-congruent, as the subgraphs under them is the same as the subgraph
under the node in which they are merged in � 0. They are also locally congruent, as
otherwise we could have chosen a node strictly undern to merge. Moreover n and n0

are not red by point 4 of the de�nition of v MW \ . Thus � v M � 00 holds. We also have
m(� 00; � 0) < m (�; � 0), since at least two more nodes are merged. Finally, � 00 v MW \ � 0

holds: all points are immediate since � v MW \ � 00, n and n0 are merged in � 0, and
merging preserves permissions.

In both cases we have proven � v MW
1 � 00, � 00 v MW \ � 0 and m(� 00; � 0) < m (�; � 0). By

induction hypothesis we obtain a bottom-up derivation of � 00v MW � 0. Together with the
operation transforming � into � 00, this forms a bottom-up derivation of � v MW � 0, which
is the desired result.

Notice that a top-down approach woul be impossible in general, as weakening a node higher
in the type might prevent further merging or weakening some lower nodes.

Lemma 6.3.8 Given two types� and � 0, � v MW \ � 0 if and only if � v MW � 0. �

Proof: The direction � v MW \ � 0 =) � v MW � 0 is by Lemma 6.3.7.
For the direction � v MW � 0 =) � v MW \ � 0, we proceed by induction on � v MW � 0. If
� = � 0 the result is immediate. Otherwise, let � 00 be such that � v MW � 00 v MW � 0. By
induction hypothesis, we have � 00 v MW \ � 0, and we must prove that � v MW \ � 0 holds.
All the cases of De�nition 6.3.5 except cases 4 and 6 are immediate by de�nition of v MW .
For those points: any node not red in � 00 is not red in � either, as merging and weakening
restrict permissions. Moreover, the nodes transformed between� and � 00are not red either,
by de�nition of v MW . This is su�cient to conclude.

76 Properties of the instance relations

6.4 Grafting atomic types

6.4.1 Widening

Lemma 6.2.1 implies that instance derivations may always start by performing all the graft-
ing. However there are many possibilities as to which type tograft. As already mentioned,
in Figure 5.3.3, the relation � 1 v G � i holds for 2 � i � 7. In � 2, we have grafted a �big�
type (in terms of number of nodes), but with a simple structure: there is no sharing, and
all binders are �exible. Conversely, in � 7 we have directly grafted a complicated type. Even
though this makes the derivation � 1 v � 8 shorter, from a reasoning point of view working
with � 2 is much easier than with � 7. This section shows that this form of �simple� graftings
is always possible.

De�nition 6.4.1 (Widening) Given a �rst-order term with anonymous variables t, we
de�ne its widening 4 (t) by:

�
�� (
4 (t) is the unique tree-like term-graph whose skeleton ist, and such that every node
is reduced to a single path in g4 (t).

�
�� _
4 (t) binds all the nodes to their ancestor,i.e.

�� _
4 (t) = f n �� _ n0 j n0 �� (ng;

�
�����
4 (t) binds all the nodes with a �exible �ag. �

I Example In Figure 5.3.3, the subgraph� 2=h2i is exactly the widening of _� 2=h2i .

Lemma 6.4.2 Let � be a type. The relation4 (_�) v � holds. �

Proof: Let � 0 be 4 (_�). We are going to exhibit an ordered derivation of � 0 v � . Let � r be
the pre-type that has the structure of � 0, but in which the nodes have been raised as in� .
Formally, �� r = �� 0, �� r (n) = (>) for any n, and n �� _ n0 2 �̂ r () n0 +�� (n 2 � r ^ n �� _
n0 2 �̂ . It is immediate that �̂ r is well-formed, as it binds any node which is not the root
to one of its ancestors.
Let us �rst prove that � r is well-dominated. Consider a node n and a mixed path P from
f � g to n in � r . Since � shares more nodes than� r , P is also a valid path in � . By well-
domination of � , �̂ (n) is contained in P . Since there is no sharing in � r , the node of P
which extends to �̂ (n) is restricted to a single path, and is also �̂ r (n) by de�nition of the
binding tree of � r . Thus ^� r (n) is in P , which is the desired result.
Let us now show that � 0 v R � r v MW � holds. All the nodes of � 0 are bound to their
immediate ancestor. Hence we have�̂ r � (�̂ 0)+ . Moreover, all the nodes of � 0 have a
�exible �ag, hence non-red permissions. Thus the instance � 0 v R\ � r holds, and � 0 v � r

holds by Lemma 6.3.4.

We also have ~� r � ~� , since ~� r = ~� 0 and no node is shared in � 0, and �� r (n)
�
< �� (n) for any

n, as all nodes of � r are �exibly bound. Finally, no node of � r is red, since they all are
�exibly bound. Thus the relation � r v MW \ � holds, and � r v MW � holds by Lemma 6.3.8.

More generally, given a noden grafted inside an instance derivation, we can isolate the
tree under n and graft its widening.

6.4. Grafting atomic types 77

Lemma 6.4.3 Let � 0 be an instance of a type� , and n a bottom node of� that is not a
bottom node in � 0. Let � n be 4 (_� 0=n). Then � v G � [� n =n] v � 0. �

Proof: For � v G � [� n =n]: necessarily n must be green in � , as it is grafted between � and
� 0 and no instance operation transforms a non-green node into a green one. Thus n can
be grafted in � .

For � [� n =n] v � 0: consider an ordered derivation (Lemma 6.2.1) of � v � 0, and let � g be
the type such that � v G � g v R ; v MW � 0. Without loss of generality, we can suppose that
all the graftings under n occur �rst, as grafting under two distinct nodes commute. Le t � 0

g

be the type after those grafting. It su�ces to prove that � [� n =n] v � 0
g to obtain the result.

By de�nition of grafting, n is closed in � 0
g , and we can project � 0

g at this node. Then it
su�ces to prove that 4 (_� 0=n) v � 0

g=n (which we do below). Indeed, we can transform such
a derivation I into a derivation I 0 of � [� n =n] v � 0

g by changing any operation o of I on a
node n0 in an operation on n � n0.

By Lemma 6.4.2, we have 4 (
� � �
� 0

g=n) v � 0
g=n. Since no grafting occurs under n between � 0

g

and � 0, we have _� 0=n = _� g
0=n. Since moreover

�� �
� 0

g=n is equal to _� g
0=n, we have 4 (_� 0=n) =

4 (_� g
0=n) = 4 (

� � �
� 0

g=n). This proves 4 (_� 0=n) v � 0
g=n, which is the desired result.

As a direct consequence:

De�nition 6.4.4 (Minimal grafting) Let � and � 0 be two types such that � v � 0. Let
ni 2 1::k

i be the bottom nodes of� that are not bottom nodes in � 0. The minimal grafting of
� w.r.t. � 0, written � [� 0=?], is de�ned by1

� [� 0=?] , � [� n 1 =n1] : : : [� n k =nk] where � n i = 4 (_� 0=ni) �

Corollary 6.4.5 Let � 0 be an instance of a type� . The relation � v G � [� 0=?] v � 0 holds.�

Notice that � [� 0=?] is the smallest type � 00 (w.r.t. the ordering induced by the instance
relation) such that � v G � 00v � 0 holds and _� 0 and _� 00coincide. Indeed, the derivation of
� [� 0=?] v � 0 does not use any grafting, as both sides already have the sameskeleton.

6.4.2 Constructor type

In order to be even more small-step, we further decompose thegrafting operation: instead
of grafting the entire widening of a term, we create the widening node by node.

De�nition 6.4.6 (Constructor type) Let C be a type constructor. Theconstructor type
for C is the type whose root is labelled byC, and whose children are all distinct, �exibly
bound, and labelled by? . �

1The de�nition does not depend on the order of n i 2 1::k
i as grafting at nodes n1 , : : :, nk commutes.

78 Properties of the instance relations

I Example The constructor type for the type int is the type reduced to a single node
labelled by int. The constructor type for the arrow constructor is the type !

? ?

.

Lemma 6.4.7 Given an instance � 0 of a type � , there exists instance derivation of� v � 0

of the form � v G � g v RMW � 0, with all operations in � v G � g grafting constructor types.�

Proof: By Lemma 6.2.1 we can consider an ordered derivation � v G � g v R ; v MW � of
� v � 0. It is then immediate that � v G � g can have the required shape, by Corollary 6.4.5,
the de�nition of widening and the de�nition of constructor t ypes.

6.5 Canonical derivations

As a summary of Ÿ6.2, Ÿ6.3 and Ÿ6.4, we introduce the notion ofcanonical derivations.
(The name is slightly improper, as there usually exists morethan one canonical derivation.
Derivations can be made fully canonical by addinge.g. a left-to-right bias.)

De�nition 6.5.1 (Canonical instance derivation) An instance derivation � v � 0 is
canonical if it is of the form � v G � g v R � r v MW � 0, and if

� all types grafted in � v G � g are constructor types;

� the raisings in � v R � r are done bottom-up, as per De�nition 6.3.2;

� the operations in � r v MW � 0 are done bottom-up, as per De�nition 6.3.6. �

As an immediate corollary of our previous results, we can always assume without loss of
generality that an instance derivation is canonical.

Property 6.5.2 Given an instance � 0 of a type � , there exists a canonical derivation of
� v � 0. �

6.6 Performing an instance operation early

Given a derivation � v � 0 containing an operation o, it is sometimes necessary to move this
operation at the beginning of the derivation. This section shows that, when this operation
can be applied to � , the relation � v o(�) v � 0 holds, with some restrictions only if o is a
weakening.

Lemma 6.6.1 Let � and � 0 be such that� v � 0. Let n be a node of� such that� (n) = ? and
� 0(n) 6= ? . Let � n be the constructor type for� 0(n). The relation � v G

1 Graft(� n ; n)(�) v � 0

holds. �

Proof: Necessarily n has green permissions in� , as it must be grafted in the derivation
� v � 0. Hence� v G

1 Graft(� n ; n)(�) holds. For the second part of the conclusion, consider a

6.6. Performing an instance operation early 79

canonical derivation � v G � 0
g v R ; v MW � 0. The type grafted under n in this derivation is

� n by construction of canonical derivations. We can move this g rafting �rst, by commuting
it with the other graftings. Thus, Graft(� n ; n)(�) v � 0

g holds, which implies the result.

Lemma 6.6.2 Let � and � 0 be such that� v � 0. Let n be a node such that� v R
1 Raise(n)(�)

holds, and �̂ (n) 6= �̂ 0(n). Then Raise(n)(�) v � 0 holds. �

Proof: Let us call � 00= Raise(n)(�). Consider a canonical derivation � v G � g v R � r v MW

� 0 of � v � 0. It is su�cient to prove � 00v G ; v R � r .

The grafting operations I G transforming � into � g can be applied unchanged to � 0, as
grafting and raising commute. Thus, let � 0

g be I G (� 00), which is also equal to Raise(n)(� g)
(1). The relation � 00v G � 0

g holds: raising increases permissions. Hence it su�ces to prove
� 0

g v R � r , or equivalently � 0
g v R\ � r (Lemma 6.3.4).

The points 1 and 2 of De�nition 6.3.1 are immediate. For point 4, let us prove that all the
nodes bound di�erently in � 0

g and � r are also bound di�erently in � g and � r , which implies
the result as � g v R\ � r . By (1), this result is immediate for all the nodes but n. For n, by
hypothesis �̂ (n) 6= �̂ 0(n), and moreover �̂ (n) = �̂ g (n) and �̂ 0(n) = �̂ r (n), by de�nition of
canonical derivations. Thus ^� g (n) 6= �̂ r (n) (2).

Thus it remains to prove that �̂ r � (�̂ g
0)+ (for point 3). Since � g v R � r , we also have

� g v R\ � r and �̂ r � (�̂ g)+ . The binding trees of � g and � 0
g di�er only by the binding edge

on n. Suppose �̂ r � (�̂ g
0)+ does not hold. Then, there necessarily exists a noden0 of

� g such that n0 ��� _ n �� _ �̂ g (n) 2 � g (3) and n0 �� _ ^� g (n) 2 � r (4). By (2) we have
n0 6= n. Hence n0 +�� _ n �� _ ^� g (n) 2 � g . In � r , consider a mixed path P of the form
h� i �^ �� �̂ r (n) ^ �� n +�� (n0. By (4), �̂ r (n0) = �̂ g (n), and this node is strictly below ^� r (n)
(by (3) and because n is raised at least once between� g and � r), and strictly above n.
Hence P does not contain �̂ r (n0): this contradicts the well-formedness of � r .

Lemma 6.6.3 Let � and � 0 be such that� v � 0. Suppose there existsn1 and n2 merged in
� 0 such that � v M

1 Merge(n1; n2)(�) holds. Then Merge(n1; n2)(�) v � 0 holds. �

Proof: Let � 00 be Merge(n1 ; n2)(�). Consider a canonical derivation � v G � g v R � r v MW

� 0 of � v � 0. We are going to prove that � 00v G � 0
g v R � 0

r v MW \ � 0, where � 0
g = � g [n1 = n2]

and � 0
r = � r [n1 = n2]. (It is immediate that n1 and n2 are binding-congruent in � g and � r ,

as they can be merged in� , and are merged in � 0.) We call twin nodes two distinct nodes
n0

1 and n0
2 such that there exists � such that n0

1 = hn1 � � i and n0
2 = hn2 � � i . Notice that

n0
1 cannot be above n0

2 , as � 0 would be cyclic; symmetrically, n0
2 cannot be above n0

1 .

Let us consider a derivation I g of � v G � g . We can commute the grafting in I g such that
two twin nodes are grafted immediately one after the other, a s the graftings of two nodes
where neither one is above the other commute. Then, the derivation I 0

g de�ned by removing
from I g the occurrences ofGraft(� 0

2 ; n0
2) when I g contains Graft(� 0

1 ; n0
1) ; Graft(� 0

2 ; n0
2), and

n0
1 and n0

2 are twin nodes is a witness of � 00v G � 0
g .

Next, consider a derivation I r of � r v R � r . Again, we can commute the di�erent raisings
so that two twin nodes are raised one after the other, as raising two nodes not one above
the other commute. As above, we can transform I r into I 0

r by removing the raising of the
second twin node, and I 0

r is a witness of � 0
g v R � 0

r .

80 Properties of the instance relations

It remains to prove that � 0
r v MW \ � 0. By Lemma 6.3.8, we already have � r v MW \ � 0 (1).

The points 1, 2, 5 and 6 of De�nition 6.3.5 are immediate. For p oint 3, the relation ~� r
0� � 0

is a consequence of (1) and of the fact that n1 and n2 are merged in � 0. Finally, consider
two nodes n0

1 and n0
2 verifying the hypotheses of point 4 in � 0

r , i.e. n0
1 6~� r

0 n0
2 (2), n0

1 ~� 0 n0
2

(3) and �̂ r
0(n0

1) = �̂ r
0(n0

2) (4). We need to prove that n0
1 and n0

2 are not red in � 0
r . Without

loss of generality, we assume thatn0
1 and n0

2 are expressed as nodes of� r .

By (2) and the de�nition of � 0
r , we have n0

1 6~� r n0
2 (5). If �̂ r (n0

1) = �̂ r (n0
2), by (1), (5)

and (3), n0
1 and n00

2 are not red in � r (6). Otherwise, if �̂ r (n0
1) 6= �̂ r (n0

2), by (4) and the
de�nition of � 0

r , the nodes n0
1 , n0

2 are under n1 and n2 respectively. Moreover, since n1 and
n2 are binding congruent in � r , the binders in � r of n0

1 and n0
2 must also be under and n1

and n2 (otherwise, we would have �̂ r (n0
1) = �̂ r (n0

2)). In this case, n0
1 and n0

2 are indirectly
merged, and we cannot use (6). However there exists two nodessymmetrical to n0

1 and n0
2

which are merged directly. We detail this case below.
Let � , � 1 and � 2 be such that �̂ r (n0

i) = hn i � � i for 1 � i � 2,
n0

1 = hn00
1 � � 1 i and n0

2 = hn00
2 � � 2 i . Let also n000

2 be hn00
1 � � 2 i .

Since n1 and n2 are merged in � 0, and by (3), we have n0
1 ~� 0

n000
2 (7). Moreover, n0

1 and n000
2 are distinct in � r (8), as

otherwise (2) would not hold. Finally, �̂ r (n0
1) = �̂ r (n000

2) (9),
by de�nition of � , � 1 and � 2 and � r . Thus, by (1), (8), (7)
and (9), n0

1 and n000
2 are not red in � r (and by symmetry n0

2

is not red in � r either) (10).

:

n1

n00
1

��

n0
1

� 1

n000
2

� 2

n2

n00
2

��

n0
2

� 2

In both cases ((6) and (10)), n0
1 and n0

2 are not red in � r . Fusion preserves permissions as
it does not change the binding tree. Hence n0

1 and n0
2 are not red in � 0

r either, which is the
desired result.

For weakening, the result does not hold in the general case: by weakening too early, we
might prevent some valid transformations later in the derivation. However, if the noden to
be weakened must be merged with a rigidly bound noden0, and both nodes are congruent
(up to the binding edge of n), we can usen0 as a �witness�: indeed, the transformations
which would become impossible undern are already impossible undern0. Alternatively, if
n is inert, weakening n does not change the permissions of the other nodes, and the result
also holds.

Lemma 6.6.4 Let � and � 0 be such that� v � 0. Let n be a node �exibly bound in� and
rigidly bound in � 0. Suppose that� v W

1 Weaken(n)(�) holds. Suppose also that either

1. n is inert;

2. there exists a noden0 rigidly bound in � , merged with n in � 0, such that the subgraphs
consisting of the nodes transitively bound onn or n0 are the same in� .

Then Weaken(n)(�) v � 0 holds. �

Proof: In this proof proof, we use �under� for �transitively bound on�.

Let � 00 be Weaken(n)(�). Consider a canonical derivation � v G � g v R � r v MW � 0 of
� v � 0. Let � 0

g be Weaken(n)(� g) and � 0
r = Weaken(n)(� r). Those types exist, as n is

�exibly bound in both � g and � r , as it is �exibly bound in � . We are going to prove that
� 00v G � 0

g v R � 0
r v MW \ � 0.

6.7. Reorganizing the instance modulo relations 81

Consider three instance derivations I g , I r and I m transforming � into � g , � g into � r and � r

into � 0 respectively. We �rst prove that none of these derivations c an contain an operation
on a green node undern (1).

. Subcase1 (n is inert) : immediate, as there is no green node undern.

. Subcase2: Let G� (n) be the subgraph of the nodes undern in � . SinceG� (n) = G� (n0)
and n and n0 are merged in � 0, G� 0

g
(n) = G� 0

g
(n0) and G� 0

r
(n) = G� 0

r
(n0) necessarily

hold. (2). Thus, the symmetrical node under n0 needs to be transformed in the same
way. However, since n0 is rigidly bound in � and G� (n) = G� (n0), this symmetrical
node is red in � (and in all its instances, since instance preserve red nodes).

Next, by Lemma 5.4.1, permissions decrease for� v in � 0
g and � 0

r (compared to � g and � r)
only for n and the green nodes undern (3). Moreover, by the same lemma, n itself is
either orange (if it was green in �), or has the same permissions in � and � 00 (in all the
other cases). In particular, n is not red (4).
Let us now prove our main result. By (1), no grafting takes pla ce under n; hence I g

witnesses � 00 v G � 0
g . Moreover, by (1), (3) and (4), all the nodes under n and raised

between � g and � r can still be raised in � 0
r , as they are not red. Hence I 0

r witnesses
� 0

g v R � 0
r .

It remains to prove that � 0
r v MW � 0. We cannot use I m , as n is already red in � 0

r .
However, by Lemma 6.3.8, we have� r v MW \ � 0 (5), and it su�ces to prove � 0

r v MW \ � 0.
The points 1, 2, 3 and 5 of De�nition 6.3.5 are immediate by (5) and the de�nition of � 0

r

(for point 5). For points 4 and 6, the nodes to transform betwe en � 0
r and � 0 are the same

as those that must be transformed between � r and � 0, up to n. All those nodes but n still
have non-red permissions in � 0

r by (1) and (3), while n is not red by (4). Thus � 0
r v MW \ � 0

holds, which is the desired result.

6.7 Reorganizing the instance modulo relations

In this section, we study the relationships betweenv , v � and v @�A� , and show that the last
two relations can be reorganized so that all the instance steps can occur �rst. In particular,
this is the �rst step in proving that using v � as the instance relation does not signi�cantly
increase the expressiveness ofMLF.

6.7.1 Con�uence of the instance relations

As a preliminary result, this section studies the con�uenceof all the subrelations of instance,
including the subrelations of @� and v rmw . Since we reason simultaneously onv , @� and
v rmw , we must consider all three orders� v , � @� and � rmw . By Property 5.4.5, we thus
have the following results for those orders:

� grafting and raising increase or preserve permissions;

� merging preserves permissions;

� weakening is not monotonic w.r.t. those three orders.

In the following, we consider two relations@� and @�� which range independently overv , @�
and v rmw . As usual, we write e.g. @� 1 the restriction of @� to one-step instance, and@�� X

for X 2 f G; R; M; W g the relation @�� \ v X . Our goal is to show that, if @� and @�� are not

82 Properties of the instance relations

simultaneously v , they are locally con�uent. The remainder of the section proceeds by case
disjunction on the subrelations of@� and @�� . However, before doing so, we introduce a small
technical result which rules out some impossible cases.

Lemma 6.7.1 Consider a type� , and two nodesn and n0 such that n ��� _ n0. Let o and o0

be two operations of@� and @�� respectively, such that� @� o(n)(�) and � @�� o0(n0)(�). Then
we also have� @�� o(n)(�). �

Proof: We proceed by case disjunction on @�� and @� .

. Case @�� = v rmw : then n0 is a monomorphic node. So isn, as monomorphic nodes are
downwards-closed. Thus o(n) is also in @�� .

. Case @�� = @� and @� = v : then n0 is orange or inert. Green nodes are upwards-closed,
hencen is not green. This shows that o(n) is also in @�� .

. In all the other cases: we have @� � @�� , hence the result.

Lemma 6.7.2 The following diagram is veri�ed

� � 12

� 34 �

@� M
1

@�� M
1

@� M

@�� M

�

Proof: Let n1 , n2 , n3 and n4 be the four nodes such that � 12 = Merge(n1 ; n2)(�) and
� 34 = Merge(n3 ; n4)(�) (in particular, n1 6= n2 and n3 6= n4). The degenerate case where
f n1 ; n2g = f n3 ; n4g is immediate, as � 12 = � 34 . We proceed by case disjunction.

. If n1
+�� _ n3 holds (or one of the symmetrical cases):

By de�nition of merging, n2
+�� _ n3 also holds. The type

� 0 = Merge(n1 ; n2)(� 34) = (Merge(n0
1 ; n0

2) ; Merge(n3 ; n4))(� 12)

(where n0
1 and n0

2 are the nodes corresponding ton1 and n2 under n4) closes the diagram.
Indeed, by de�nition of � 0, � 34 @� M � 0 and � 12 (@� M ; @�� M) � 0 hold, since merging
preserves permissions. Lemma 6.7.1 shows that� 12 @�� M � 0 holds.

. In all the other cases: we show that the two operations commute, i.e. that the type

� 0 = Merge(n1 ; n2)(� 34) = Merge(n3 ; n4)(� 12)

closes the diagram. Since merging preserves permissions, it su�ces to prove that one of
the merging does not prevent the other by changing the term-g raph under only one of
the two nodes.
Without loss of generality, suppose that merging n1 and n2 changes the term-graph
under n3 or n4 ; we can also suppose thatn3

+�� (n1 . Let � be such that n3
��� (n1 .

Since n1 6+�� _ n3 (otherwise we would be in the �rst case), by well-domination we have
n̂1

+�� (n3 . By Lemma 4.3.4, we have n3
+�� _ n̂1 . By local congruence of n3 and n4 ,

since n1 is not transitively bound on n3 , we have hn3 � i = hn4 � i . Since hn3 � i is n1 , the
subgraph under n1 is shared betweenn3 and n4 , which is the desired result.

6.7. Reorganizing the instance modulo relations 83

Lemma 6.7.3 The following diagram is veri�ed

� � 1

� 2 �

@� R
1

@�� R
1

@� R

@�� R

�

Proof: Let n1 and n2 be the two nodes such that � 1 = Raise(n1)(�) and � 2 = Raise(n2)(�).
The degenerate casen1 = n2 is immediate. We distinguish between two cases:

. If n1 �� _ n2 2 � (or the symmetric case): we show that � 0 below closes the diagram

� 0 = Raise(n1)(� 2) = (Raise(n1) ; Raise(n2))(� 1)

This type is well-dominated. Indeed, n1 is raisable in � 2 as n1 is raisable in � , �� = �� 2 ,
and the nodes bound on �̂ (n1) (which is also n2 and �̂ 2(n1)) are the same in � and � 2 .
Since raising increases permissions, we have so far proven� 2 @� R � 0 and � 1 (@� R ; @�� R) � 0.
Lemma 6.7.1 shows that � 1 @�� R � 0 holds.

. In all the other cases: we show that the two operations commute, and that the diagra m
is closed by

� 0 = Raise(n1)(� 2) = Raise(n2)(� 1)

Since raising increases permissions, it su�ces to justify t hat � 0 is well-dominated. We
do this by showing that n2 is raisable in � 1 . Consider n3 = �̂ 1(n2). This node is also
�̂ (n2), as n2 has not been raised in � 1 . Let n0

2 be a node bound onn3 in � 1 other than
n2 . We need to show that n2

+�� (n0
2 2 � 1 does not hold.

� If n0
2 is n1 : by case hypothesis, we know that n1 was not bound on n2 in � . Thus,

let n00
2 be the node such that n1 �� _ n00

2 �� _ n3 2 � . By contradiction, suppose
that n2

+�� (n1 holds in � 1 . This relation also holds in � . Consider a mixed path
h� i �^�(n3 ^ �� n2

+�� (n1 in � . By well-domination, n00
2 is contained in this path.

Necessarily, it is in the path n2
+�� (n1 (as it is below n3). Thus, since n2 6= n0

2 , we
have n2

+�� (n00
2 in � , both nodes being bound on n3 . This contradicts the fact that

n2 is raisable in � , and n2
+�� (n1 does not hold.

� If n0
2 is not n1 : then n0

2 is also bound on n3 in � . Since n2 is raisable in � , we have
n2 6�� (n0

2 . This relation still holds in � 1 .

Lemma 6.7.4 The following diagram is veri�ed

� � m

� r �

@� M
1

@�� R
1

@�

@��
�

Proof: Let n1 , n2 and n be such that � m = Merge(n1 ; n2)(�) and � r = Raise(n)(�). We
proceed by case disjunction on the position of n w.r.t. n1 and n2 . In the following we do
not detail permissions, as raising and merging increase them.

84 Properties of the instance relations

. If n ��� _ n1 (or the symmetric case): we show that the type below closes the diagram

� 0 = Raise(n)(� m)

Let us �rst justify that n is raisable in � m . By contradiction, suppose there exists n0

bound on �_� m (n) such that n +�� (n0 2 � m . Let � be such that n0 = hn � � i . By de�nition
of congruent nodes, the node hn � � i is also in � . Moreover, by de�nition of binding
congruent-nodes, we have�̂ (n) = �̂ (n0). This contradicts the fact that n is raisable in
� . Hence n is indeed raisable in � m and � m @�� R � 0 holds.
Next, we prove that � r @� � 0. We proceed by case disjunction on n ��� _ n1 .

� Case n = n1 : then � 0 = (Raise(n2) ; Merge(n1 ; n2))(� r)
The fact that n2 is raisable in � r is by symmetry with n1 in � , as the subgraph
under n2 in � r is the same as the subgraph undern1 in � . Moreover, n1 and n2 are
locally congruent in Raise(n2)(� r), as the subgraphs under them are unchanged from
� . Thus � r @�� R ; @� M � 0 holds. Lemma 6.7.1 shows that � r @� � 0 also holds.

� Case n �� _ n1 : then � 0 = (Raise(ns) ; Merge(n; n s) ; Merge(n1 ; n2))(� r), ns being
the node symmetric to n under n2 .
ns can be raised in � r by symmetry with n in � . Let � 0

r be Raise(ns)(� r) and � 00
r =

Merge(n; n s)(� 0
r). The nodes n and ns are binding-congruent in � 0

r , since n1 and n2

are binding-congruent in this type, and n and ns are under n1 and n2 . Similarly, n1

and n2 are binding-congruent in � 00
r . Let us prove that both sets of nodes are locally

congruent.

� Merging n and ns in � 0
r : Consider a non-empty path � such that hn� i and hns � i

are distinct in � 0
r . Let us call n0

1 and n0
2 those two nodes; we must prove that they

are bound on n and ns respectively.
By de�nition of � 0

r , for 1 � i � 2, we have �̂ r
0(n0

i) = �̂ (n0
i). By local congruence

of n1 and n2 in � , we have n0
i

+�� _ n i . The casen0
i �� _ n i is impossible, asn and

ns would not have been raisable in � . Thus n0
i

+�� _ �� _ n i . By well-domination,
necessarily the nodes undern i in those paths are n and ns , i.e. n0

1
+�� _ n and

n0
2

+�� _ ns . This is the desired result.

� Merging n1 and n2 in � 00
r : Consider a non-empty path � such that hn1 � i and

hn2 � i are distinct in � 00
r . Necessarily, hn1 � i and hn2 � i are not n, ns as those nodes

are merged in � 00
r (1). By local congruence of n1 and n2 in � , for 1 � i � 2.

hn i � i +�� _ n i 2 � . Since �̂ (n i �) = ^� 00
r (n i �) (by (1)), we have hn i � i +�� _ n i 2 � 00

r .
This is the desired result.

So far, we have proven � r (@�� R ; @�� M ; @� M) � 0. By Lemma 6.7.1, we have in fact
� r @� � 0, which is the desired result.

� Case n +�� _ �� _ n1 : then � 0 = (Raise(ns) ; Merge(n; n s))(�), ns being again the node
symmetric to n under n2 . This case is similar to the two above.

. In all the other cases: we show that the two operations commute, and that the diagra m
is closed by

� 0 = Merge(n1 ; n2)(� r) = Raise(n)(� m)

Raising n does not change the fact that n1 and n2 are locally congruent, as n is either
strictly above n1 and n2 , or on disjoint binding paths (and local congruence is only
concerned with the nodes below n1 and n2). This shows that � 0 is a correct type,
which implies that n is raisable in � m by Property 4.4.13. Thus we have � m @�� R � 0 and
� r @� M � 0, which is the desired result.

6.7. Reorganizing the instance modulo relations 85

The three previous results have shown that raising and merging are locally con�uent. The
con�uence itself is immediate by Newman's Lemma, as raisingand merging are noetherian.

Similar results do not hold for v G and v W : grafting two di�erent types at the same node
usually results in incompatible types, while weakening twodi�erent nodes one above the
other must be done bottom-up, as the top-down strategy is often forbidden by permissions.
However, if at least one of the operations is an abstraction step, the various relations are
con�uent. The remainder of this section considers these subcases.

Lemma 6.7.5 The relation v G
1 commutes with@� and v rmw . �

Proof: Immediate: the grafting takes place on a green bottom node, and this part of the
type cannot be transformed by @� or v rmw .

(More generally, v G
1 together with v M

1 or v R
1 are locally con�uent. Since this result is not

useful to us, we do not prove it here. However the proof is verysimilar to all the other
proofs in this section.)

Lemma 6.7.6 If (@� ; @��) 6= (v ; v), the following diagram is veri�ed

� � r

� w �

@� R
1

@�� W
1

@� R
1

@�� W
1

�

Proof: Let n and n0 be such that � @� R
1 � r and � @�� W

1 � w . The type

� 0 = Raise(n)(� w) = Weaken(n0)(� r)

closes the diagram. Indeed:

. n 0 has more permissions in � r than in � (raising increases permissions), and it is still
�exibly bound. Hence it can be weakened by @�� W in � r .

. If @�� W is @� W or v w , n has the same permissions in� w and in � , as only the weakening
of a green node changes permissions (Lemma 5.4.1). Moreovern is still raisable in � w ,
as both �� = �� w and �̂ = �̂ w .
If @�� W is the weakening of a green node,@� R is either v r or @� R , and the permissions of
orange, inert and monomorphic nodes are unchanged by@�� W (Lemma 5.4.1).
In both cases n can be raised by @� R in � w .

Lemma 6.7.7 If (@� ; @��) 6= (v ; v), the following diagram is veri�ed

� �

� �

@� W
1

@�� W
1

@� W
1

@�� W
1

�

86 Properties of the instance relations

Proof: As for Lemma 6.7.6, the two operations commute. The reasoning on the permissions
after the weakening is also the same.

Lemma 6.7.8 If (@� ; @��) 6= (v ; v), the following diagram is veri�ed

� � m

� w �

@� M
1

@�� W
1

@�

@��
�

Proof: Let n, n1 and n2 of � be such that � r = Merge(n1 ; n2)(�) and � w = Weaken(n)(�).
We distinguish whether n is under or above n1 or n2 :

. If n ��� _ n1 (up to permutation of n1 and n2): We prove that the graph

� 0 = Weaken(n)(� m) = (Weaken(ns) ; Merge(n1 ; n2))(� w)

where ns is the node symmetric to n under n2 closes the diagram. It is immediate that
� m @�� W � 0, as merging preserves permissions.
For � w @� � 0, we �rst have � w @�� W Weaken(ns)(� w) (we call this last type � 00): ns has
the same permissions asn in � by symmetry, and it also has the same permissions in
� and � w , as the weakening of n does not change the permissions ofns , which is not
above or below n. By Lemma 6.7.1, � w @� W � 0 also holds.
It remains to prove that � 00 @� M � 0. The local congruence of n1 and n2 in � 00 is an
immediate consequence of the local con�uence of those nodesin � , as �� 00 = �� and
^� 00 = �̂ . For permissions, by Lemma 5.4.1, weakening only changes the permissions of

green nodes, and only if the weakening occurs on a green node.If @�� W is @� W or v w ,
the weakening is not on a green node. If @�� W is v W , @� M is not v M , and n1 and n2

are not green. Thus the permissions of n1 and n2 are the same in � , � w and � 0, and
� 00@� M � 0 holds.

. If n1
+�� _ n (up to permutation of n1 and n2): the two operations commute, and the

type � 0 de�ned below closes the diagram.

� 0 = Weaken(n)(� m) = Merge(n1 ; n2)(� w)

It is immediate that � m @�� W � 0 as merging preserves permissions. For� w @� M � 0, the
reasoning is exactly the same as for proving� 00@� M � 0 in the previous case.

. In all the other cases: the two transformations commute, as they occur on disjoint
binding paths.

6.7.2 Reorganizing the instance modulo relations

The results of the previous section show that any combination of v , v rmw or @� with either
@� or v rmw is locally con�uent. This result generalizes to con�uence.

6.7. Reorganizing the instance modulo relations 87

Lemma 6.7.9 If @�� is not v , the following diagram is veri�ed

� �

� �

@�

@��

@�

@��
�

Proof: Let � , � 1 and � 2 be such that � @� � 1 and � @�� � 2 . In particular we have � @� j � 1 � 1 ,
where @� j � 1 is de�ned by restricting @� as we did for v in De�nition 6.1.3. Since both
@� j � 1 and @�� are noetherian, by Newman's lemma it su�ces to show that @� j � 1 and @�� are
locally con�uent.

Consider three types � 0, � 0
1 and � 0

2 such that � 0 @� j � 1 � 0
1 and � 0 @�� � 0

2 . By Lemmas 6.7.2,
6.7.3, 6.7.4, 6.7.5, 6.7.6, 6.7.7 and 6.7.8,@� and @�� are locally con�uent, i.e. there exists
� 00 such that � 0

1 @�� � 00 and � 0
2 @� � 00. By Property 6.1.2 applied to � 0

1 @�� � 00, � 00 is as
structure-de�ned as � 0. Thus � 0

2 @� j � 1 � 00 also holds, which is the desired result.

As a direct consequence, alternatingv and A� steps insidev @�A� does not augment its
expressivity. Instead, all A� steps can be done in one step and be pushed at the end of the
derivation. Similar results hold by considering @�A� , v � and � instead of v @�A� .

Lemma 6.7.10 The following equalities between relations are veri�ed:

(@�A�) = (@� ; A�) (�) = (v rmw ; wrmw) (v @�A�) = (v ; A�) (v �) = (v ; wrmw) �

Proof: In each case, one inclusion is by de�nition. The other inclu sion is by induction on
the number of inversions of the form A�� ; @� , which rewrite to @� ; A�� by Lemma 6.7.9.

Importantly, v � and v @�A� are howevernot equal to (wrmw ; v) and (A� ; v): some of
the operations which would need to be done at the beginning ofthe derivation would be on
green or non-monomorphic nodes,i.e. not in A� or wrmw .

One important consequence of Lemma 6.7.10 is the fact that uni�cation is not signif-
icantly more complex for v � and v @�A� than for v . For example, the v @�A� -solutions of a
uni�cation problem P are all the instances byA� of the v -solutions of P. Thus, the un-
decidability of type inference in the system usingv @�A� as its instance relation is not due
to uni�cation (but to the interaction between instance and g eneralization, as we will show
in Ÿ13.3).

As a last consequence, let us study the structure induced by@� and v rmw on types.

Property 6.7.11 Let � be a type, and let@ be either @� or v rmw . Let S� be the set of
types equal to� for the equivalence relation induced by@, i.e.

S� = f � 0 j � (@[A)� � 0g

Then (S� ; @) is a �nite join semi-lattice. �

88 Properties of the instance relations

Proof: S� is �nite, as f � 0 j � (@ ; A) � � 0g is equal to f � 0 j � (@[A) � 0g (by
Lemma 6.7.10), both @ and A are noetherian, and there are �nitely many types � 0 such
that � @ � 0 or � A � 0. The existence of a join is by Lemma 6.7.9.

This result implies in particular the existence of a normal form for @� and v rmw , which we
call maximally instantiated. We conjecture that the lattice above is also a meet semi-lattice.

7
Uni�cation

Abstract

We study the uni�cation problem for MLF types. We show that unifying two nodes
inside a type is more general than unifying two di�erent type s (Ÿ7.1). We isolate a very
general subset of uni�cation problems on which uni�cation i s complete and principal
(Ÿ7.2). We present the uni�cation algorithm (Ÿ7.3), and pro ves its correctness (Ÿ7.4).
We also show that the algorithm has linear complexity (Ÿ7.5) . We introduce a slightly
more general form of uni�cation problem, which we also solve (Ÿ7.6). Finally, we
discuss uni�cation in variants of MLF (Ÿ7.7).

7.1 MLF uni�cation problem

A �rst possibility for de�ning uni�cation in MLF is to use the usual approach of unifying
two types.

De�nition 7.1.1 (Type uni�cation) A type � 0 is a type uni�er of the types � 1 and � 2 if
� 1 v � 0 and � 2 v � 0. �

However, we prefer to internalize uni�cation, as we did for term-graphs (Ÿ3.2.3).

De�nition 7.1.2 (Node uni�cation) Given a type � , a type � 0 is a node uni�er of a set
of nodesN of � if � 0 is an instance of� in which all the nodes ofN are merged. Moreover,
� 0 is a principal uni�er if any other uni�er of N in � is an instance of� 0. �

Node uni�cation is more general than type uni�cation. In fac t, the latter class of prob-
lems can be encoded into the former, as we prove below.

Lemma 7.1.3 A type � u is a uni�er of two types � 1 and � 2 if and only if the type � 0
u is a

uni�er of the nodes h1i and h2i in the type � of Figure 7.1.1. �

89

90 Uni�cation

(�) !

�

� 1

�

� 2

(� 0
u) !

�

� u

Figure 7.1.1 � Encoding type uni�cation into node uni�catio n.

Proof: Assume there exists a type� u such that � 1 ; � 2 v � u . Let I 1 and I 2 be two derivations
witnessing � 1 v � u and � 2 v � u respectively. Let I 0

1 (resp. I 0
2) be the derivations obtained

from I 1 (resp. I 2) by replacing all the nodes n by h1 � ni (resp. h2 � ni). Then I 0
1 and I 0

2

can be applied to � (in any order, as they operate on distinct parts of the type), and yield
a type � 0. Then, by construction of I 0

1 and I 0
2 , Merge(h1i ; h2i) can be applied to � 0. Hence

� 0
u exists.

For the converse direction, assume a uni�er � 0
u of the required form exists. Let I be

a canonical derivation witnessing this last result. By de�n ition of bottom-up merging-
weakening, the last operation of I is Merge(h1i ; h2i). From there, it is easy to extract from
I two derivations I 1 and I 2 proving � 1 v � u and � 2 v � u .

Consequently, in the following, � uni�cation � will always m ean � node uni�cation �.

7.2 Admissible problems

(�) !

!

? ?

!

? ?

(� u) !

!

? ?

!

?

(� 0
u) !

!

? ?

Figure 7.2.1 � A problem without a principal solution.

Node uni�cation is in fact too liberal: some problems can have a non-principal set of
solutions, as we describe below.1 Consider the problem of unifying the nodesh11i and h21i
in the type � of Figure 7.2.1. A �rst uni�er is � u : the two nodes have been raised once,
and then merged. However, the type� 0

u obtained by merging the nodesh1i and h2i �which

1This was not the case in the syntactic presentation of MLF, as uni�cation under pre�xes (Le Botlan
2004)�which is used for unifying syntactic types�is more ex pressive than type uni�cation, but less than
node uni�cation.

7.2. Admissible problems 91

indirectly merges h11i and h21i �is another uni�er. There does not exist a uni�er more
general than those two ones, as there is an incompatible choice to be made between raising
the edges (and merging the leaves), which irreversibly instantiates the binding structure, or
merging the upper nodes, which irreversibly instantiates the upper nodes of the underlying
term-graph.

Fortunately, it is possible to characterize an important set of problems that admit prin-
cipal solutions; we call admissible those problems. They include in particular uni�cation
under the root of the type, as used to encode uni�cation of twodi�erent types.

De�nition 7.2.1 (Admissible problems) Given a type � and a set of nodesN of � , we
say that (�; N) is an admissible problem (or that N is admissible for �) if the set of nodes

f n̂0 j 9n 2 N; 9n0 2 �; n̂0 +�� (n ��� (n0g

is totally ordered by the domination relation ���� (induced by �� (. We call admissibility
ancestors this set. �

It is di�cult to give an intuition of this de�nition without a ctually proving that it ensures
principality of uni�cation problems. Very roughly, non pri ncipality cases always originate
from a merging/raising competition, as illustrated on the example of Figure 7.2.1. In
admissible problems, such potential con�icts always occurbetween nodes whose binders
are in domination relation. This ensures that the con�ict can only be solved by raising, as
merging would create cycles in the structure.

I Example In Figure 7.2.1, the setN = fh11i ; h21ig is not admissible for � or � 0. Indeed,
the admissibility ancestors areh1i and h2i , and they are not comparable for ���� (in �
or � 0.

We characterize a few set of nodes that are guaranteed to be admissible. In particular,
they subsume the problems encoding uni�cation under the root.

Property 7.2.2 Consider a type� and a nodem of � :

1. Any subset of(m �� () is admissible for � .

2. Any subset of(m ^ ��) is admissible for � .

3. Any set f m0; m00g where m0 +�� _ m and m00�� _ m is admissible for � .2 �

Proof: We consider a setN of nodes, and prove that N is admissible for � .

1. If N is a subset of (m �� (): it su�ces to show that all the admissibility ancestors
dominate m for ���� (, as the dominators of a node are totally ordered by the domi-
nation relation. Let n0 be a node such that n̂0 +�� (n ��� (n0 with n 2 N . We show
that n̂0 (which is an admissibility ancestor) dominates m.
By de�nition of n0 and n, there exists mixed paths of the form h� i ��� (m �� (n ��� (
n0. By well-domination, this path contains n̂0 above n. If n̂0 is m, the result holds,
as domination is re�exive. Otherwise n̂0 +�� (m �� (n ��� (n0. By Lemma 4.3.4,
m +�� _ n̂0 holds, which shows that n̂0 dominates m for ^�(, hence also for �� (.

2This last case corresponds to the uni�cation under pre�x use d in the syntactic presentations of MLF.

	Remerciements

