" T?B+ HivT2b M/ +QMbi° BMib @ b2+QI
TOQHVKQ T?BbK M/ BM72 2M+2
"Q'Bb u FQ#QrbFB

hQ +Bi2 i?Bb p2 bBQM,

"Q Bbu FQ#QrbFBX :" T?B+ HivT2b M/ +QMbi BMib @ b2+QM/@Q /2"
r'21M;BM22°BM; (+bXal)X IMBp2 ' bBid S 'Bb@.B/2° Qi @ S "Bb 0AA- k)

> G A/, i2ZH@yyj8ddy3
?2i1iTbh,ffi2HX "+?Bp2b@Qmp2 i2bX7 fiZH@yyj8c
am#KBii2/ QM R 62# kyyN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

THESE

présentée a

I'Université Paris 7 Denis Diderot

pour obtenir le titre de
Docteur en Informatique

Types et contraintes graphiques :
polymorphisme de second ordre
et inféerence

soutenue par
Boris Yakobowski

le 17 Décembre 2008

Jury
Président Roberto Di Cosmo
Rapporteurs Stéphanie Weirich
Hugo Herbelin
Examinateurs Fritz Henglein

Alexandre Miquel
Directeur Didier Rémy

Remerciements

Ce travail n'aurait pas vu le jour sans l'aide, le concours etle soutien de nombreuses
personnes, que je tiens a remercier ici.

En premier lieu, merci a Didier pour avoir encadré cette thésg, tout particuliérement
pour sa disponibilité sans faille pendant ces 4 années. Enys de ses conseils scienti ques,
j'aurai également largement béné cié de son expertise gX, me permettant d'atteindre le
niveau enviable (?) de TgX utilisateur frustré mais capable.

Mes deux rapporteurs, Stephanie Weirich et Hugo Herbelin, ot eu la lourde tache de
relire mon imposant manuscrit; qu'ils soient ici remerciéspour leur intérét et leur persé-
vérance. Merci en particulier a Stephanie pour ses nombrees remarques, toujours d'une
grande pertinence. Merci également a Fritz Henglein et Aleandre Miquel pour m'avoir fait
I'nonneur de s'intéresser a mon travail. En plus de présidemon jury, Roberto Di Cosmo
m'aura initié a la recherche alors que je n'étais encore quiujeune padawan de Licence. Pour
tout cela, et bien d'autres choses encore, je lui suis a jamareconnaissant. En n, cette thése
aura également été l'occasion de discussions scienti qudsss enrichissantes. Merci donc a
Didier Le Botlan, Daan Leijen et Dimitrios Wytiniotis pour t outes leurs remarques et sug-
gestions sur mon travail.

Le projet Cristal , qui s'est sublimé enGallium pendant ma thése, est un environ-
nement de travail d'une richesse scienti que exceptionnéé. Qu'il me soit donc permis de
remercier ici tous ceux qui ont contribué a le faire vivre pemlant ces 4 années. En particu-
lier, merci a Xavier Leroy pour nous avoir fait béné cier de son savoir aussi encyclopédique
gu'éclectique, et a Sandrine Blazy, Damien Doligez, Alain Fisch et Michel Mauny pour leur
bonne humeur contagieuse. Merci également a Jacques Garug et Frangois Pottier pour
leurs remarques sur mon travail ; la Dé nition BE3.3, qui aurait d étre le bien moins élégant
Lemme[Z33, doit par exemple beaucoup a Francoissallium serait incomplet sans notre
projet frere Moscova ; merci a eux. Enn, séparés de nous uniqguement par la distane,
merci in niment & Daniel Hirschko et Yves Bertot pour m'avo ir fait découvrir et aimer les
théories de la programmation et de la preuve.

Primus inter pares parmi nos petits condisciples, merci & Yann pour nos internmables
discussions sur le typage et tant d'autres sujets, ainsi qugour m'avoir supporté comme
cobureau. Ma these aurait été fort di érente sans lui. De méne, merci a Zaynah pour
avoir été la toutes ces années. Méme si la teneur en typage desidiscussions aura été

bien moindre, elles auront été tout aussi enrichissantes. k) autre immense merci a mes
compagnons de 4éme année Jade et Benoit M. . Enn, je me dois demercier Benoit R.
(deuxiéeme cobureau, et premier Benoit chronologiquemenj,! ainsi que Nico et J.B. pour
toutes nos discussions dans mon bureau ou au coin café/thé.

Mon arrivée a PPS aura été l'occasion d'un véritable renouveau. En tout premer lieu,
je remercie Vincent qui m'aura donné l'opportunité fantastique de travailler sur Ocsigen .
Merci a Sam pour ses blagues nulles, mais aussi pour avoir dé€hé le labyrinthe des semaines
précédant la soutenance. Merci également a Grégoire pour tibes nos discussions, a Gim,
aux amis et collegues dWLIAFA (dont Claire et Julien) et des autres laboratoires parisiers,
en particulier Pierre, Aurélien, Mathieu, Matthieu et Davi d. Plus généralement, merci a
tous ceux avec qui j'ai eu la chance d'interagir ces 3 dernisrmois.

Merci a ma famille, tout particulierement mes parents et ma ®eur. Méme si je les ai
peu vus ces dernieres années, ils ont toujours été la pour mait j'espere qu'ils continueront
a I'étre longtemps. (Et j'espere avoir la possibilité de lesvoir plus souvent!)

En n, et surtout, merci a tous mes amis, pour m'avoir aidé a satir de mon -monde, et
avoir bien voulu me faire partager le leur. Merci donc & Annektaure, Frangois, Caro, Gilles,
Mathieu?!, Jeremy, Sébastien, Jordan, Luc et Benoft. Plus généralement, merci a tous les
MIMO1 et MIMO2, les nanars-clubiens, les Ulmiens non amaters de nanars, les Anciens
Martins, ainsi que tous ceux que j'oublie mais qui se reconritront. Merci pour tout, et bien
plus encore.

1Un troisiéme!
2Cf. note 1.

Contents

<

WO NN R PR

253 Partl]]]]_a.n_exphgl_[a.ng.ua.g_e_f_oLMlﬂ 13
2.5.4 Part

Vi

Contents

I E — = TS l

B_Representing rst- and second-order types by graphs | 17
Bl _Firstordertermd

B32 Anonymousvariableks.

8.3.3 Instantiation on graphic SystemEtyped

exible guanti cation to second-order graphic tvpes
B41 BevondsystemB oot

4__MLE graphic types |

KU1 RepresentingMI~graphictypes

11 From syntactictographid

M2l Whybindingallnode$,
K43 Well-formedness of graphictypds L
K31 Wel-formedpre-typeb

F graphic types |
B.1_Why rigid quantication?]

5.2 Shamng_[_h_e_msj_a_n_ae_ml_almh
B21 GreenMiFnodek

5.2.4 Inert and monomorphicnodds
5.3 Formal de nition of the instance relationd
B31 Permissiods

17
17
18
19
19

22
23
24
25
26
26
30
30
31
36

39
39

41
42
42

44
45
45
46
46
48

51

51

52
52
53
53

55
55
56

61
62

Contents Vii

5.4 Instance and pErmisSiolS . . . « « . v v e e 63
i S e e e e e e e e 63

5.4.1 _Change in permission
B.4.2__Ordering PErmissions B
5.4.3 Fvolution of permissions through instande 67

6 Properties of the instance relations | 69
6.1 __Reasoning on resfricted instande 69
|5_2_Q|;d_er_i_n,g the instance operations 70
6.3 Big-step instance subrelatiods 72

M-steo MAUSING . . . 72
6.3.2__Big-step mergi Tt 1o J R 74
i ictvped e 76

B4l Widenind 76

6.4.2 Constructor typd 77
[6.5 Canonical derivationdot 78
(6.6 Performing an instance operationearly 78

16.7_Reorganizing the instance modulo relatiods 81
6.7.1 Conuence of the instance relatiods 81

6.7.2 Reorganizing the instance modulo relations 86
[Z_Unication | 89

1 MiFunicationprobleml. 89
[Z2 Admissible problembk 90
23 Unicationalgorithm] 93
i jategraphb. %
.......................... 97

[7.41 Propertiesoftheunied 98
742 Soundnessobinil 101
ing admissibility and the binding trees of unierd 102

744 Completenessoblnif 104

45 Principality of Unif 105
[.4.6 _Unication modulo similarityl. 107

25 ComplexXitd v v o 108
[Z.6 _Generalized uni cation problems$, 109

[26.1 Generalized admissibility 109

[7.6.2 _Generalized uni cation algorithm 110
[Z.Z _Unication in restrictions of MLF 111

8.1 An informal comparison of the syntactic and graphic insance relations . . 113

B.1.1 Syntactic and graphicinstance 113
i8.1.2__Syntactic equivalence and graphic similaritly 114
B.1.3 _Comparison with the original syntactic relations 115

B,umnsjmmgraohic types to and from syntactic type$ 116
B.2.1__From graphic fo syntacticfypes 116
822 From syntactic to graphictype$ 118

8.3 A simple syntactic sugar to display typeb 120

viii Contents
B31 nliningboundd 121
B32 Algorithml 123
8.3.3 Inlining monomorphicnodes 25
IL_Graphic constraints | 127
[9__Graphic constraints | 129
9.1 An informal presentation of graphic constraint$ 129
011 OQurapproach 129
0.1.2 GraphicMIL tvpe inference without izatiom 130
0.1.3 (Graphic) type schemes and generalization 131
014 Typeinstanfiation « v o v v v 133
i i i i S e 134
0.2.1 A formal de nition of constraintsl. 134
022 Propertiesofconstraints 136
0.2.3 _Instance on graphic constrainis 138
9.2.4 Transforming constraint$ 139
10.2.5 _From graphic constraints to graphic typeb 139
0.2.6 1= 110 5 142
0.3 MIFand MI constraintd 142
04 Typingconstraintd, 144
[10 Semantics of constraints | 147
147
49
19
150
151
152
154
154
155
155
156
159
159
162
163
165
165
167
168
170
2 [ype inference in ML 173

Contents

[12.1 Solving acyclic constrainfls 173
211 Acyclicconstraintd 173

LLZJ_Z_S_Qhung_an_msla.numLad,%b 174
IJ_Z,_’L.S_S_Q_Mng an acyclic constraildt e e e 176
[12.2_Simplifying acyclic constraint$ L. 177

[12.2.1 Removing solved instantiation edgés 177

£ 179

[12.2.2_Salving closed subconstraint
[12.2.3 Splifinggennodes 79
[12.3 Typability in annotated and unannotated MLA. 181

[12.3.2 Type annotations o v v o 18

[12.4 Simplifying typing constraintd L. 184

[12.4.1 Simplifying the typing of variables 185
[12.4.2_Simplifying ML typing constraints 188
[12.43 Using the simplicationsrules 190

[12.5_Analyzing the complexity of type inference 190
[12.5.1 Practical complexity bound for MLF type inferencé 191
[12.5.2 Practical complexity bound for ML type inference in our systerh . 191
[12.5.3 FExact complexity bound for ML " type inferencé 192

2.6 Implementatiod, 192

{13 Constraints up to similarity or abstraction | 195

[13.1 Constraints and inverse instande 195
[13.1.1 Inverse instance operatiofs 195
[13.1.2 Properties of the modulo systemhs 196
[13.1.3 Shape of presolutions« « v v o q7
[13.1.4 Stability of presolution$« v oo 198

[13.2 Constraints up to similarityl 200

[13.3 Constraints up to abstraction o v oo 202
331 Typabilityin iMLF 202
[13.3.2 Properties ofiMLF presolution$ 203

[13.3.3 Reasoningin ImplicitMLT 204
1334 Expressivity of iMLF 205

14 xMLF,_a Church-style language for _ MLT 209
| | | Gt 1 [F
14.2 Types and tvoing_m]_esm 210

[14.2.1 Types, terms, and environmenis v v v e 210
422 Typeinstanck 211
14.2.3 TypingrulesforxMIT 214
43 Reduction inxMLF 216
1431 Typereductionruleb a6

432 Reducing only type applications 218

Contents

4.4 Typesoundness o o i P9
1441 Preservationoftypings 219

i -by- -by-name semdied 222

145 Conuence of reduction o i v 227
4.6 AformalproofofxMIF3 233
Fj 235

[15.1 Anintroductory exampldo e 235
%ﬁnﬁ& 235
................................. 236

[15.2 Translatable presolutions o o i 237
[15.2.1 Pitfalls of the translatiod 237
[15.2.2_\dentifying which operafions o franslaté 238
IJj_Z_S_RﬂmmLi_n,g operations on inert-locked nodes 239
524 Orderingthenodds 2a
xMLFtype abstractiond 245

[15.2.6 Scopesindetconstruct 248
[15.2.7 Translatable presolutionk 249

[15.3 Translating presolutions into xMI% L. 251

syntactic types$o 251
[15.3.2 Tvpes and environments of subtermis 252
1533 Typingenvironments. 54
[15.3.4 Computation CONEXES . . .« . v v v vt e 55
[15.3.5 Translating normalized derivations into computations 256
[15.3.6 Flaborating a translatable presolutioh 260
[15.3.7 Correctness of the franslatioh 262

[15.3.8 Translating fype annotations 263
[153.9 SoundnessofMIF. 263

.................... 264

[15.4 Obtaining simpler elaborated termb 265
[15.4.1 Creating optimized propagation witnessés 265

I]j_,_A._,ZJJ_sm,g the simpli cations rules on constrainté 266
presolutions ofeMlFand iMLW. 267

(1551 Preliminary result$ 267
[15.5.2 Translating aneMLF or iMLF presolutiod 269
ing the syntactic presentations of MLF into xMLE 270

[15.6.1 Tyvpe equivalence under boundls 270

15.6.2 Expressivity of aliasbounds 271

lV_Conclusions | 273
[16 Related works | 275

16.1 Type inference and second-order polymorphidm 275

Xi

Contents
16.2.1 Ecient type inference for MLl 283
[16.2.2 Tvpe inference using typing constrainds 283
6.3 Explicitlanguageb 284
[1Z Conclusion | 285
171 Ourworkinthe contextof MLW 285
172 Applications bevondMLE 286
073 Perspectivds 287
IV Appendix | 289
A The avours of MLH 291
A1 The MIFcubd 291
[A2 Existingvariantsl 292
IB_Syntactic ML relations | 293
Bihliography | 295
[index of de nitions | 301
[Abstract] 308

11

1.2

1.3

Notations and conventions

Conventions

In this document, we distinguish four kinds of formal results: lemmas, properties, corollaries,
and theorems. Alemma states a simple result, and is usually used to show other re#ts. A
corollary is a direct consequence of the previous results. georem is a fundamental result
of this document. A property is a simple but often used result that we implicitly use
inside proofs. Results and de nitions are numbered with repect to the current section.

Mathematical notations

The symbol , is used to give the formal de nition of an object, and means & equal by
de nition to. The symbol = signies that the left-hand side rewrites to the right-hand
one, but the converse might not be true in general (because ste side-conditions are missing
on the right-hand side).

We write logical conjunctions and disjunctions on multiple lines as shown below

N A N A

B , A"B — B , A_B

We write jAj the cardinal of a setA, A B the cartesian product of A and B, and A # B
the fact that A and B are disjoint (i.e. A\ B is empty). If a is a meta-variable ranging
over some setA, we write @ for an ordered sequence of elements &. Given a function f,
dom(f) and codon{(f) are respectively its domain and codomain.

Relations

In this document, a binary relation R over a setS is often seen as a set of pairs db, and
we write X R y for (x;y) 2 R. A function f can be seen as the binary relatiorR¢ verifying

xRey 0 y=1(x

Notations and conventions

1.4

141

1.4.2

We often view relations as (potentially non-deterministic) rewriting systems. Conse-
quently, we write f ;g for the inverse compositiong f . The semicolon notation emphasizes
the order in which the rewritings are done. Similarly, given two relations, we write R ; R°
for the composition of relations de ned by

x(R;RY9y 09 z; xRz”zRO%

Given a relation R, we write R * for its symmetric relation, R* its transitive closure
and R its re exive transitive closure. The kernel of R is the relation R\R 1. We also
use> for < ! when < is a relation symbol with a symmetric symbol. Finally, given two
relations R; and R, we write R; R , the relation (R1[R 2)

Graphs

Let G be an arbitrary directed graph with nodes N and edgesE labeled inL, i.e. E
N L N. We write

ng . n2G for (ng;liny)2E
Often, G may be left implicit and we simply write nj ! ' n,. We may also x alabell 2 L
and see!' as the binary relation f(n1;nz) j (nq ! ' nz)g.

Fixing one side of the arrow to a particular set of nodesS, we write (S!) and (! S9
for the set of nodes reached from a node i$, and reaching a node inS° respectively:

(St) , fn%9n2s;n! n% (¢ s% , fnjon°2s%nt1 n%
If Tis a string of labelsly :::lx, we write ng !'_ ny for ng i DNk 1 e 2 ng. We also
write n | n®if there exists a string of labelsl such that n !' n% andn !* nCif this

string is non-empty.

Directed acyclic graph

Given a directed graphG over a setN , we say that G is adirected acyclic graph abbreviated
asdag if no elementn of N is such that n " n.

Domination

Given a graph G over a setN, we say that G is rooted if there exists an elementr of N
such that all the elements of N are accessible fronr: 8n;r ! n.

Given two nodesn and n® of a rooted graph G, we say that n dominates n°, written
n! n% if for any sequenceng ! ni:::! ng with ng = r and ng = nC there exists
i such that n; = n. Intuitively, all the paths from the rootto n°contain n. The domination
relation is a partial order over the nodes ofN. Moreover, for any three nodesn;, n, and
ns, if nq! n3 and ny! ns, either nq! N, or ny! ni.

15

1.6

1.5. Types

Types

We assume the existence on an unspeci ed algebra of type cangctors , containing at
least the arrow constructor ! . In the examples we will sometimes use type constructors
such asint or list. Each constructor C comes with its arity, written arity(C); the arrow
constructor has arity 2. The meta-variable C ranges over .

First-order types, ML type schemes and second-order types are de ned by the follang
grammar:

t o= jCt First-order types
n= t] 8: ML type schemes
n= jC—j8: SystemF types
A rst-order type is either a type variable , or the application of a type constructor

respecting the arity of the constructor. ML type schemes only allow prenex quanti cation
i.e. at the front of the type. System F types are more general and allow type quanti cation
everywhere.

In the following, the metavariables , , and range over a denumerable set of type
variables. As usual, 8 binds to the right as far as possible, and the arrow construabr
associates to the right. That is,

8:8: (!)I 18 is 8: B: (" HYyr w8 (v oM

The free variables of a type are writtenftv.

Expressions
We reason on the expressions of the-calculus enriched with let constructions.
ax=xj (X)ajaajletx=aina

The metavariables x and y range over a denumerable set of variables. The expressions
(x) aand let x = a%in a bind x in a but not in a% The simultaneous capture-avoiding
substitution of a sequence of variablex by a sequence of expressiorsinside an expression
e’ is written eJe=].
In some cases, we annotate expressions orbound variables with types, resulting in the
grammar

0

a%i=xj (x)a’j (x:)a%j aa’j letx=alina’j (a:)

Type annotations will be de ned precisely in YTZ3P.

21

Introduction

Types in functional languages

Types are a key part of the design of statically typed functimal languages such as ML
(Milner| 1978) or Haskell (Peyton Jones| 2003). One of the reams of the success of these
languages is undoubtedly type inference, which relieves # programmer from the burden
of writing the types of the variables of the program. This fadlitates rapid prototyping and
code maintenance.

Both ML and Haskell are based at their core on the Damas-Milne type system (Damas
and Milner 1982). In this system, type inference is decidal®, and principal : a program
can be assigned a type that is more general than all its all othr possible types. This is a
very desirable property, as the compiler never needs to makarbitrary choices during type
inference. Moreover, type inference is total: the programrar never needs to write types to
make his program typecheck.

Another key part of the success of the Damas-Milner system ishe possibility to write
polymorphic functions, that can be applied to arguments of di erent types. For example, a
function computing the length of a list would receive type

8: list! int

Such a function can be applied to a list of any type. That is, while lists are required to be
homogeneousi(e. contain only one type of element), we can compute the length blists of
integers, of binary trees, of functions.. .

Using the fact that functions are rst-class in functional | anguages, we can also write
so-called iterators, such as the ubiquitousmap function over lists

8: 8: (!)! list ! list

This function uses its rst argument f to convert each elemente in the listto f e.

The form of polymorphism o ered by the Damas-Milner type system is somewhat weak,
as type quanti cation can only appear at the front of the type; the quanti cation is said to

5

Introduction

2.2

be prenex. For example, we cannot write a function that takesan iterator over lists such
as the function map above. Such a function would have type

8: 8: (!) list ! list) !

This type is not permitted, as and are introduced under an arrow constructor instead
of at the beginning of the type.

During the last 25 years, the system proposed by Damas and Miler has been a re-
markable point of equilibrium in the design space of progranming languages. While more
expressive systems have been proposed, they often were tooneplicated, or had unde-
cidable type inference, or were not a conservative extensioof ML... As a result, while
Damas-Milner has been enriched by many new constructions sh as quali ed types (Jones
1994), or generalized algebraic data types (Xiet_all 2003;|Joneset_all 2006; Pottier and
Régis-Gianad 2006), it still forms the core of our type systms.

Still, the form of polymorphism it o ers is sometimes too limited. Peyton Joneset al
(2007, Y2) provide a good survey on why second-order polynaitism can be needed. Let
us just mention the possibility to write functions taking it erators as arguments (as shown
above); generic programming, in which the compiler automaically generates some functions
(such as a pretty-printer) for the objects of a certain type; or the ability to encode invariants,
by embedding polymorphic arguments inside the datastructue.

From an expressivity point of view, we would like to obtain at least the same power
as the second-order polymorphic -calculus, also calledSystemF (Girardl 1972; IReynold$
1974). In SystemF, polymorphism can appear everywhere, and

8: t Hyrg : 1

is a valid type. Unfortunately, System F has undecidable type inferencel(Welld 1994).
Moreover, as shown by the next section, Systent has poor properties as a programming
language, in particular because it does not have principalytpes. As a result, over the years
a considerable amount of e ort has been devoted to nding a type system that combines the
expressivity of SystemF with the convenience of (at least some)ML-style type inference.

We give a summary of these works in[Y16.

Type inference and System F
We recall that the instance relation 6 ¢ in the implicit presentation of System F is de ned by
8T 6 8: [%] C# ftv(8T)

This relation allows instantiating the type variables quanti ed at the head of the type, and
generalizing on-the- y the newly introduced type variables.

Combining ML-style type inference with System F polymorphism is di cult, as type
inference in the presence of second-order polymorphism lda to two competing strategies:
should types be kept polymorphic for as long as possible, oronwversely, for as short as
possible? Unfortunately, those two paths are not con uent n general, leading to two correct
but incomparable types for an expression (assuming equal pyes for their subexpressions).

2.3

231

2.3. MLF

As an example, consider the expressionshoose igd where chooseand id are de ned by

id (x) x : 8: !
choose , (x) (y)if falsethenx elsey : 8: | !
(In the following, we abbreviate 8: ! as ig.)

In System F, we can givechoose icthe following types 1 and

o8t) o) (1)

choose id @: 1 1@ 1) (2)
Those two types are incomparable for6 g, as none is more general than the other. Indeed,
the inner polymorphism of , cannot be recovered by instantiating ;. Conversely, up to
useless quanti cation, » has no other instance by6 ¢ than itself. The crucial information
that the two instances of g are linked, and that instantiating them together would be sound,
has been lost. This shortcoming is inherent to using Systenk types, which cannot express
that kind of dependency hence the language MLF, described below.

MLF

This section briey presents the MLF language (Le Botlan and Rémyl 2003), on which a
large part of this work is based. However, we purposefully do notgdinto details, as much
of the material covered here will be presented using quite dérent approaches elsewhere in
this document.

MIE

The MLFlanguage [Le Botlan and Rémj 2003; L e Botlan 2004) aims at smathly combining
the advantages of ML-style type inference with the expressiveness of Systerfr second-
order polymorphism. In MLF, terms are partially annotated. All functions that use their
parameters in a polymorphic way and only those need an annota tion. In particular, ML
terms never require one. In fact,MLF is a conservative extension ofML: all ML terms are
typable in MLF. Moreover, the full power of rst-class polymorphism is al available, as
any SystemF term can be typed by using type annotations (containing secad-order types).
Still, as in ML, all typable expressions have principal types.

MLF is a language with very good stability properties: the set ofwell-typed pro-
grams is invariant under a wide class of program transformabns, including let-expansion,
let-reduction, -expansion of functional expressions, reordering of arguemts, curry-
ing. .. Moreover, syntactic application receives no speciatreatment in typing rules: a; a
is typable if and only if apply a; a; is (apply being (f) (x) f x). Furthermore, since only
lambda-bound arguments that are used polymorphically needan annotation, it is very easy
for the user to predict where and which annotations to write. Finally, MLF is an impred-
icative type system, which allows for example embedding pgimorphism inside containers.
Thus (8: !)listis a valid type, quite di erent from the weaker 8: ((!)list).

MLF type inference is decidable. Moreover, it is also principal every well-typed source
program provided with some annotations has a principal type i.e. one of which all other
correct types areinstances Interestingly, the typing rules of MLF are a simple generalization

Introduction

2.3.2

2321

2.3.2.2

of the ones ofML, and are quite straightforward: the power of MLF does not come from its
typing rules, but from its types, which are described next.

Enriching the types of System F

MLF achieves the results above, and overcomes the lack of primzl types in SystemF, by
going beyond SystemF types. We describeMLF types below.

Flexible guanti cation

One solution to the lack of principal types in SystemF is to enrich the system with a new
form of (bounded) quanti cation, so that choose idreceives the type

, 8(>) !

Unlikein g ! iq4, the two occurrences of jq are linked in . Thus it is safe to instantiate
igd in the type above, and the variable is allowed to range over all the possible instances
of its bound 4, as indicated by the sign>. We say itis exibly bound. Of course, the two
occurrences of on both sides of the arrow must simultaneously pick the samenistance:
the weaker the argument, the weaker the result.
Afterwards, the type can be instantiated in the following ways:

1. We can decide that can no longer be instantiated, and freeze its bound. Thus
recover the type ! 4.

2. We can introduce a dummy quanti cation in front of , resultingin 8() 8(> i)
I, and decide that is instantiated with ! which is indeed an instance
of ig. Then the bound of can no longer be instantiated, and can safely be inlined.
We thus recover theFtype 8()(!)! (!) ofchooseid

More generally, exible quanti cation is used to postpone the moment at which the
operation of taking an instance is applied. The idea is to kep types as polymorphic as
possible, in order to be able to recover later just by (implic it) instantiation what they
would have been if some part had been instantiated earlier.

Rigid quanti cation

Flexible quanti cation, while expressive, is not yet su ci ent to encode all of SystemF. For
example, consider the function

f o, (X)) (x1; x'c")

It is not typable in ML, as the variablex is used on two arguments with incompatible types,
int and char. In System F, it can be given the type

q! int char
However, it would be incorrect to give it the type

8(> i) ! int char

2.3.3

2.3. MLF

Indeed, this type could be instantiated into
(int! int)! int char

which would erroneously allow the application of the succesor function to a character.
For reasons related to type inference (and partially desciied in the next paragraph), we
do not give to f the SystemF type above. Instead,MLF uses another form of quanti cation,
called hereafterrigidly -bounded quanti cation and written with an = sign. Then f is
given the type!
8(= i) ! int char

Rigid quanti cation cannot be (signi cantly) weakened by i nstantiation. Hence, it appears
when polymorphism isrequired, while exible quanti cation is present when polymorphism
is available.

Flexible versus rigid Flexible and rigid quanti cation are two forms of bounded quanti -
cation, and share the same syntax. However, there is a deepyametry between them:

exible quanti cation is used to obtain more expressive types, in order to have a
system with principal types;

on the contrary, rigid quanti cation is used to restrict the expressivity of types: in a
way, the type g ! int charis more general than the type8(= i4) ! int char

A system giving to the term f abovethetype 3! int charis described by Le Botlan
and Rémy (2007), and forms the basis of thémplicit presentation of MLF, in which

type annotations are never needed. However this system is me expressive than
SystemF, and thus cannot be used to perform type inference hence the introduction

of rigid quanti cation.

This question is detailed further in Y&1.

Syntactic ME types

This section brie y presents the formal de nition of MLF syntactic types, as it makes it
easier to refer to the original syntactic de nition later on.

MLF types are second-order types, but use the two forms of boundequanti cation
described in the previous section

tizjis ()
>J:

A syntactic second-order type is a rst-order type t, a bottom type ? (which stands for
the SystemF type 8:), or a quanti ed type 8() % Unlike in System F, variables
are always given bounds (that are themselves second-ordeypes) to range over. Bounds
are called rigid when introduced by the= ag, and exible when introduced by >.

IMore precisely, in MLF a type annotation 8() ! must be added on x in f in order to obtain this
type; otherwise f is untypable.

10

Introduction

24

| Examples Thetype 8: ! of SystemF can be represented ilMLF as
8(>?) ! (i)
We often omit trivial bounds and write 8() for8(> ?)

The SystemFtype (8: !)! (8: !) cannot be represented directly, as the
grammar forbids writing types such as 4! 4. We instead use an auxiliary variable with
a rigid bound and write

8(= i) ! (1)
Alternatively, we could have used two di erent bounds, as in
8(= i)8(= i) ! (D

From a type-soundness point of view, rigid bounds can alwaybe expanded, and there is no
di erence between the two types above. However, this is not he case from a type inference
point of view. This di erence is at the heart of MLF, and will be explained later.

In MLF, we can also write the type

8(> i) ! (2)

This time, » should be understood by the set of its instances, that is, altypes 8(=)

! such that is an instance of 4. In fact, ; is itself an instance of ,. The auxiliary
variable is used to share the two instances of on the left and right sides of the arrow.
Thus, » is quite di erent from the type

8(> i)8(%) ! ©° (3)

which stands for all types8(=)8(°= 9 ! Osuchthat and °areindependent
instances of iq.
Combining both forms of quanti cation, the type

8(= w8(% @) ! ° (4)

may be (roughly) understood as the set of allF-types 4 ! such that is an instance
of id -

Improving ML F
While MLFis a very powerful system, it could be improved in several way:

1. The original syntactic presentation of MLF (Le_Botlan and Rémy [2003) is quite tech-
nical, and most extensions of the system in this form requirea large amount of work.
Indeed, while type instance and a subrelation called abstretion play a key role in
MLF, they are de ned by purely syntactic means, with little intu itive support. For
a long time, these relations were mainly justied a posteriai by the properties of
MLF. A more semantic-based de nition has been proposed, but oyl for a signi cant
restriction of the language (Le Botlan and Rémy|20077).

25

251

2.5. Outline of this document 11

2. From an algorithmic point of view, the type inference algaithm based on syntactic
types has obvious sources of ine ciencies. It is likely it wauld not scale up well to
large, possibly automatically generated programs. Devisig a more e cient algorithm
was a question left open by Le Botlah (2004, page 221).

3. Although MLF has been proven sound|(Le Botlan 2004; Le Botlan and Rérhy 2007
this has so far been done by proving the soundness of a systearder than the one in
which type inference is performed. Indeed, proving subjecteduction of the surface
language requires to maintain and to actually transformtyp e annotations during
reduction. So far, nding an appropriate language to transform the annotations was
an open question, precluding the use oMLF as a typed internal language inside a
compiler.

4. The power of MLF has a price: MLF types are more general than SystenF types,
making them look unfamiliar to the user. Moreover, the bounded quanti cation used
insides types obfuscates the structure of the type, makinghiem quite di cult to read
and to interpret.

A large part of this work aims at solving the issues above. In grticular, Part Iof this
document develops an alternative representation oMLF types which drastically simpli es
the meta-theory of MLF, and allows for e cient algorithms. Part I[[Thtroduces an e xplicitly-
typed presentation of MLF, suitable for use as the core language of a typed compiler. Th
next section, which details our contributions, develop thase points further.

The avours of ML F The di erent versions of MLFthat have been studied so far, including
in this document, are summarized in Appendix[A (pageZalL).

Outline of this document

This section explains our contributions, as well as how thisdocument is structured. For
each point, we mention the chapter in which it is developed.

Partll: graphic types and type instance

The rst part of this document introduces an alternative rep resentation of MLF types as
graphs, and studies the instance relation and uni cation onthis presentation.

We recall the graphical representation of rst-order terms as term-dags, as well as of
the type instance relation on this presentation of types. Tem-dags are already used
to represent types in e cient ML type inference, and are well-known(Y3).

We generalize this presentation, rstto SystemF, and then to SystemF , an extension
of SystemF with exible quanti cation (¥3).

MLF types are derived from SystemF types by adding rigid quanti cation. We rep-

resent MLF types by graphic types (F®) which are the superposition of a term-dag
(representing the structure of the type) and of a binding tree (which indicates where
and how each node of the graphic type is bound), with further poperties relating the

Introduction

two. The existence of a graphic presentation foMLFtypes had already been suggested
(Le_Baotlan' 2004), but it was not su ciently well-understood to be used formally.

We express type instances on graphic types by adapting the instance relation of Sys-
tem F to rigid quanti cation (M3). Instance is simply the combination of four simple
atomic operations on graphic types. Two of those operationare already present on
term-dags, and the two others act on the binding tree. Valid nstances are controlled
through the use ofpermissions which ensure that the operations permitted on a node
are sound.

Furthermore, we de ne two équivalece relations and @ (M3). The rst relation
abstracts over useless binders on monomorphic type constctors such asint; two
types equivalent for should not really be distinguished. The second relation is
larger, and essentially identi es types that contain the same amount of polymorphism.
The relation (v [@) is used to de ne an implicit version of MLF, in which type
annotations are not needed (but in which type inference is nbpossible).

Using permissions avoids the strati cation of instance into two relations (abstraction
and instance) present in the syntactic versions ofMLF, and permits a simpler study
of the properties of instance(M8). The use of permissions also allows for a natural
extension of the instance relation (compared to the originhsyntactic relation), with
no technical overhead(Y8).2

Uni cation on graphic MLF types nds the smallest instance of two types for the
instance relation, and is sound, complete and principalM3). The algorithm follows
the same pattern as the instance relation: rst-order unic ation on the term-dags,
computation of the least binding tree that is an instance of the ones of the input types,
and a control of permissions rejecting some unsound uni ers Of these three steps,
only the third is not immediate. Moreover, our uni cation al gorithm has optimal
(linear) complexity.

We show that graphic types are more canonical than syntactictypes, as they factor
out most of the syntactical artifacts present in the latter (M8). We give algorithms
translating to and from syntactic MLFtypes in linear time (Y8). We propose a limited
form of syntactic sugar to display MLF types. Experimentally, using this sugar, most
terms have a SystemF-like type, much more readable than their real MLF type (¥8).

2.5.2 Partlll: type inference with graphic constraints

The second part of this document generalizes the graphic typs of the rst part to graphic
constraints. Indeed, we do not adapt the syntactic type inference algothm by replacing
its uni cation algorithm on syntactic types with the uni ca tion algorithm on graphic types:
repeatedly translating to and from graphic types would be bdh inelegant and ine cient,
losing the quite compact representation of graphic types. Mreover, we believe that the
graphic presentation is better suited for studying the metatheoretical properties of MLF.
Instead, we propose an entirely graphical presentation ofytpe inference.

2The instance relation has also been extended in a new syntact ic presentation of MLF (Le Botlan and
Rémy 2007), but this required a more complex de nition of the abstraction relation.

2.5. Outline of this document

13

We propose a small set ofgraphic constraints, featuring uni cation and instantia-
tion edges, existential nodes, and generalization level§f3). Interestingly, graphic
constraints are only a slight generalization of graphic types; thus the study of the
meta-theory of graphic constraints is quite light. Moreover, since our approach to
type inference is constraint-based, it is more general thajust a particular type infer-
ence algorithm; for example, we can de ne di erent strategies for solving a constraint.

Graphic constraints are in fact parameterized by a type sysem and the operation of
taking the instance of a type scheme. We instantiate this franework with the graphic
presentations of both ML and MLF, thus highlighting the strong ties between those
two systems and reproving that the former is a subsystem of te latter (MI0). In
particular, typing problems, which are obtained by translating -terms into graphic
constraints in a compositional manner, are the same in bottML and MLF (Y3) but
are interpreted with di erent instance relations.

Our constraints allow polymorphic recursion, and their soltions are in general unde-
cidable. However, a very natural subset of constraints (cdéd acyclic) has decidable
solutions. This subset includes in particular all the constaints that are obtained when
typing the -terms of YILB, which are not recursive.

We give a very simple algorithm to solve an acyclic constraih (\I2). The algorithm
is a simple generalization of the one used foML type inference, and is based on a
conjunction of uni cation and type generalization.

We prove that -terms that do not contain type annotations are typable in MLF if and
only if they are typable in ML. Thus the di erence between the two systems lies in
the type annotations in source terms, which are only availate in their full generality

in MLF (Y(12).

We study the theoretical complexity of solving typing constraints (MI2). We establish
the complexity of MLF type inference, and observe that our algorithm has optimal
complexity for both ML and MLF. Moreover, under reasonable assumptions, our algo-
rithm for type inference in MLF has linear complexity as in ML.

We compare the expressivity of the system we have studied (diad gMLF) with the
systemseMLF and iMLF that are obtained by taking as the type instance relation the
relationsv and v @ respectively (I3). eMLF and gMLF have the same expressivity.
This justi es our use of v, which is simpler from a meta-theoretical standpoint, instead
of v . iMLFis strictly more expressive, but this extra expressivity can be recovered
in gMLF through the use of type annotations.

2.5.3 PartIll: an explicit language for ML

The third part of this document introduces an explicit langu age forMLF, suitable as a typed
internal language.

We introduce xMLF, a Church-style version of MLF in which all type information is
explicit ({I3). Type instantiation in xMLF generalizes type instantiation in SystemF.
Moreover, all instantiation steps are made entirely explidét through the use of type
computations, which serve as witnesses for type instance.

14

Introduction

Reduction in xMLF is a combination of the usual -reduction, and of a set of six
reduction rules for type applications (fI3). All the rules preserve typing. Moreover,
reduction is con uent when performing strong reduction.

We show that xMLFis sound, for both call-by-value and call-by-name semantis (MIP).
This is the rst time that an MLF-based language is proven sound for call-by-name.
For languages with side e ects, we show that the value restigtion can be used in
xMLF.

Finally, we exhibit a translation from a solved typing constraint into a well-typed
xMLF term (MIB). This ensures in particular the soundness of our system of gphic
constraints. We also discuss the translation of the syntadt presentations of MLF into
xMLF (\I3).

2.5.4 PartIV: conclusions

2.6

To conclude this document, Y6 discusses related works, @YY summarizes our contri-
butions and present some research perspectives.

Published works

A preliminary version of Part [Jof this document has been pubished in (Rémy and
Yakobowski [2007), while Part[Il has been published in [(Rémy ad Yakobowski [2008);
Part s currently under submission for publication. The examples used inl(Yakobowski
2008) are taken from anMLF type-checker we have developed for this work.

Publications

Didier Rémy and Boris Yakobowski . From ML to MLF: Graphic type constraints
with e cient type inference. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP'08), Victoria, British Columbia, Canada,
pages 63 74. ACM Press, September 200&doi: [10.1145/1411203.1411216.
http://www.yakobowski.org/ictp08.htmli

Didier Rémy and Boris Yakobowski . A graphical presentation of MLF types
with a linear-time uni cation algorithm. In Proceedings of the 2007 ACM SIGPLAN
International Workshop on Types in Languages Design and Imfementation (TLDI'07),
pages 27 38. ACM Press, Nice, France, January 2007. ISBN 19%93-393-X. doi:
10.1145/1190315.1190321..
http://www.yakobowski.org/fldi07.html

Boris Yakobowski . Le caractére ~ a la rescousse - factorisation et réutilisain de code
grace aux variants polymorphes. In JFLA 2008 - Dix-neuviems Journées Francophones des
Langages Applicatifs, pages 63 77. INRIA, Etretat, January 2008. ISBN 2-7261-1295-11.
http://www.yakobowski.org/jfla08.html

Part

A graphical presentation of
MLF types and type instance

15

Representing rst- and second-order types
by graphs

Abstract

We introduce the formalism behind the graphs used in this document. Our rst
step is to see rst-order terms as trees (Y31), and then as gaphs (Y32). This graph
representation is often used in e cient algorithms for rst -order uni cation. It is also
very well-suited to MLF types, in which sharing is important.

The next two sections are intendedly more informal. We present a graphical rep-
resentation for System F types (M33), and extend it with exible quanti cation (Y3.C4).
The graphical representation of MLF types will build upon this presentation.

In order to remain general, Y31 and[Y3.2 are parameterized lan algebra of term con-
structors. First-order typescan be obtained by taking for the algebra of type constructors
of YI5.

3.1 First-order terms

3.1.1 De nition of rst-order terms

We view rst-order terms as trees, which we describe using tke notion of paths.

De nition 3.1.1 (Paths) A path is a sequence of integers. The empty path is written.
The concatenation of ©after is written 0

The metavariable ranges over paths. We often write © for O when there is no
ambiguity. In fact, since in the examples we never use integs greater than 2, we allow
writing 11 for 1 1. We extend concatenation to sets of paths by 0= f o) 2

;02 Q.

17

18

Representing rst- and second-order types by graphs

3.1.2

A rst-order term can be de ned as a partial function from the set of paths to the
constructors of the term.

De nition 3.1.2 (First-order terms) A (rst-order) term t over a set of variablesV is
a nite non-empty mapping from the set of pathsto [V that is pre x-closed and respects
arities. More precisely,t must verify

8 2domt): 8k2N; (k2domt) (1 k arity(t())

The restriction on the domain of t ensures that there is no gap in the structure oft, and
that the constructors have the correct number of arguments.

For rst-order types, this de nition coincides with the one given by the BNF grammar
of YIb (pag€I3), although the approaches are quite di erentThus, we use the metavariable
t to range over rst-order types, whichever the chosen de nition.

| Example First-order terms can be understood as trees: the trega) of Figure 321
represents the type

(v e o)
Equivalently, this type is the function
8
< ;L2 7 ()
11, 21 7!
12, 22 7!

This tree representation makes it easy to nd the subterm of aterm at a given path.

De nition 3.1.3 (Term projection) The projection of atermt at a path of dom(t) is
the term t= that maps any ©such that Oisindom()tot(9.

The projection of t at is also called the subterm oft rooted at

| Example Projecting the type (a) at paths 1 or 2 yields the same type !

Instance and uni cation on rst-order terms

De nition 3.1.4 (Substitution) A substitution is a mapping from variables to terms.
They are extended to a mapping from terms to terms by the usualcanonical morphism.

De nition 3.1.5 (Term instance) A term t°is an instance of a termt, which we write
t 61t if it is the image of t by some substitution ' .

De nition 3.1.6 (Uni cation on terms) Two terms t and t°are uni able if there exists
a substitution ' , called a uni er of t and t® such that' (t) and' (t% are equal. The unier"
is said to be principal if any other uni er can be writtenas ' © ' for some substitution" ©.

Alternatively, if terms are viewed up to -renaming of their variables, uni cation can
be de ned without explicitly resorting to substitutions. A term t%is a uni er of the terms
tandt®if t 61 t°and t 61 t% It is principal if any other uni er is also an instance of t%
This second de nition is actually easier to extend to richer types.

3.2

3.2. Term-graphs

19

Uni cation on rst-order terms is a well-known problem, whi ch admits principal so-
lutions. It can be solved in linear time, as shown byl Patersonand Wegman (1978); in
this algorithm, terms are represented as dags. Other algotiims (Huetl 1976; Martelli and
Montanari 1982) use union- nd structures and haven (n) time complexity (where is the
inverse of the Ackermann function). However, they run faste in practice and are simpler
to implement.

Interestingly, all three algorithms internally use a graph representation of terms, and
reinterpret the resulting graphs as terms. The use of the dagepresentation may be explicit
when algorithms are described imperatively, or left implidt as in Huet's algorithm.

Term-graphs

(C) f g

f1;29
1 2

f11;21g f12;22¢g

Figure 3.2.1 Several representationsof !)! (!).

3.2.1 De nition

When representing rst-order terms, it is sometimes convelent (and often more e cient)
to identify all variables with the same name. Following this convention, the representation
of the term (@) in Figure B2 is the dag(b) in the same gure.

Going one step further, inner nodes with identical subtreescan also be shared, as illus-
trated by graph (c). This enables sharing of common su xes, hence a more compadiut
also richer representation, where sharing of nodes assertsthe equality of nodes for the
relation projects to .

De nition 3.2.1 (Term-graphs) Lett be aterm and an equivalence relation on the
paths in dom(t). The relation is said to be:

Congruent if it is closed by su x, i.e.
8; O s8k; Onf k; 9 kg dom(t) =) k %k
Consistent if the image of an equivalence class by is a singleton.

Weakly consistentif the image of an equivalence class by contains at most one symbol
of (i.e. it possibly contains variables, and at most one constructoy.

20

Representing rst- and second-order types by graphs

3211

A term-graph is a pair of a termt and a consistent congruence on dom(t) such that
every variable appears in at most one equivalence clads. Those equivalence classes are
called nodes

Congruent relations ensure that when two paths are shared,le subtrees under those paths
are also shared. Consistent relations guarantee that di eent constructors are not mixed
together. Weakly consistent relations are used to reason ajut uni cation, which fuses
together variables and nodes with identical constructors.

We use the metavariablesg and n to range over term-graphs and nodes. We writeg and
g the underlying term and equivalence relation ofg (or g0 @and @o, for long names).

The relation g partitions the paths of dom(g) into disjoint equivalence classes that con-
stitute the nodes of g. We write dom(g) for this set of nodes. Sinceg is constant on each
node, we may extend it to nodes by mapping each noda to the common value oft_on all
paths of n. We simply write g(n) for this value. Similarly, we extend the projection = into
a function from nodes to term-graphs.

| Example The dags(b) and (c) on Figure [3ZZ7 are two term-graphs representing the
same term(!)! ('). Inthe dag (b), only variable nodes are shared. This
term-graph has ve nodesf g, flg, f2g, f11;21g and f 12, 22g. Here, we have drawn node
names; however, we usually leave them implicit.

Notice that the nodesf 1g and f 2g of (b) are congruent: for any path ,1 and 2 have
the same constructor. Moreover, both nodes are labelled wit the arrow symbol; hence,
the equivalence relation of(b) could be enriched with 1 2 while remaining congruent
and consistent. This results in exactly the equivalence reltion of dag (c). Intuitively, the
subgraphs underf 1g and f 2g were identical in (b), and have been merged ir(c).

In this simple example, only the nodesf 1g and f 2g have been merged; in more complex
cases, entire subgraphs may be shared. Notice that the (namaf a) node resulting from the
merge is the union of the (hames of the) nodes that have been nmged.

Designating nodes in graphs

When a graph is known, we often use a single path as a short-name for the unique node
n to which belongs, and writeh i for n. For convenience, we extend this notation to sets
of paths. In particular, i is n itself.

| Example In picture (c) of Figure[ZZ1,h12i and 22 refer to the same nodef 12; 22g.

More generally, given two term-graphsg and g° such that g ¢° (i.e. g° shares more
nodes thang), a noden of g can be translated unambiguously into a noden® of g°, by taking
the only node ofg® that is a superset ofn. We will often use n instead of n® when ¢®is the
result of a transformation applied to g.

| Example If n is the nodehli of graph (b) in Figure BZ1, we will freely usen for the
node f 1; 2g of graph (c).

In example drawings we usually leave arities implicit, as wealways write outgoing edges
downwards and from left to right.

1This last invariant is not strictly required, but there is no real advantage to using graphs if it is not
enforced (as substitution would then not be noticeably simp ler than on rst-order terms).

3.21.2

3.2.2

3.2. Term-graphs 21

Term-graphs as ordinary graphs

A term-graph g may be read as an ordinary graph whose nodes are the sdbm(g), and
whose edges are such that

n“n°0 n2domg)~ 1 k arty(g(n) ~hn ki =n°

In essence, we forget the underlying structure of nodes astseof paths, and treat them as
atoms. We use the termstandard graphsto refer to this view.

The two representations are isomorphic. The standard views sometimes necessary for
e ciency of algorithms, since otherwise maintaining the inner structure of nodes as set of
paths could be exponential in the size of the graph. Howeverthe named view is more
convenient in the formal development, for referring to node and to keep track of them
during a sequence of graph transformations.

Instance on term-graphs

Unsurprisingly, instance of term-graphs is two-fold: it is either an instance of the underlying
rst-order term g, which changes the structure of the term, or an instance of tle equivalence
relation g, which merges more nodes.

De nition 3.2.2 (Instance on term-graphs) A term-graph g°is aninstance of a term-
graph g, written gvg ¢° if 961 g°andg " Itis a reversible instance if moreover
— 40
a=g-
The equivalencerelation ¢ is the kernel of the instance relation. Thesimilarity relation
¢ is the symmetric re exive and transitive closure of the revesible instance relation.

Instance is an oriented relation, and its kernel is quite snall : two equivalent term-graphs
are in fact equal modulo -conversion.

Reversible instance only changes the representation of ters (by using more inner, hence
unimportant, sharing), but not their meaning as rst-order terms. In particular, g and g°
are similar if and only if g = g% Similarity is thus used to abstract over the sharing not
semantically meaningful that is brought by the use of term-gaphs.

Jo 01

O3 Os

04
o

[y
N

6'\)

Figure 3.2.2 Term-graph instance.

22

Representing rst- and second-order types by graphs

3.2.3

I Examples In Figure B2Z32, the term-graphsgs; and gs are two instances ofg;, through
the substitutions 7! ! and 7! ! respectively. The graphgs is also a reversible
instance ofg,, obtained by adding1l 2to gy. Thus those two graphs are also similar. In
this simple example, gz is an instance ofg,. In more complicated cases, one graph could
share more in one branch and less in the other.

The term-graph g, is also an instance ofy,, through the substitution ; 7! . However,
even thoughgs 6 1 g4 holds, g4 is not an instance ofgs. Indeed, the nodeshli and R2i are
shared ingsz but not in g4. Similarly, gs is an instance ofg, but the converse is not true.

. &

Figure 3.2.3 Valid instances in the examples of FiguredZ322

The various relations that hold in Figure BZZ2 are summarizd in Figure 32Z3. Plain
edges represent/ g, while dashed ones represent its reversible subset; all treitive or re-
exive edges have been omitted to simplify the drawing.

Notation We always use6 -derived symbols for instance on syntactic terms (such a$ 1
on the terms of the previous section, o6 for SystemF types), and v -derived symbols for
instance on terms represented by graphs.

Uni cation on term-graphs

On term-graphs, uni cation can be internalized. That is, it may be de ned on two nodes
of a same term-graph instead of between two term-graphs.

De nition 3.2.3 (Uni cation on term-graphs) A term-graph g°is a unier of two
nodesn and n® of a term-graph g if g° is an instance ofg that merges n and n? i.e.
9n%2 g% n% n;n% A unier g°of two nodes isprincipal if any other unier of those
nodes is an instance of)°.

| Example The term-graphsg;, gs and gs are uni ers of the nodeshli and i2i in go, with
o1 being a principal uni er. Similarly, g4 and gs are uni ers of the nodeshlli and h12 in
02, and g, is principal.

The uni cation of two nodes of g can be computed as the smallest weakly consistent,
congruent equivalence that containsg and identi es both nodes (Huel [1976).

Uni cation of term-graphs also computes their uni cation u p to similarity, i.e. uni-
cation on terms. More precisely, ifg® is a (principal) uni er of two nodes n; and n; in a
term-graph g, then g%n is a (principal) uni er of g=m and g=np, n being the node ofg®
that is a superset ofny and n,. This property, often overlooked in the literature, justi es

3.24

3.24.1

3.2. Term-graphs

23

the fact that term-graphs can be used instead of rst-order terms to perform rst-order
uni cation.

Anonymous variables

The last condition of De nition IZTJmplies that a variabl e is represented by a single node.
If we allow reading term-graphs modulo -conversion, we may advantageously draw variable
nodes anonymously. For that purpose, we introduce a new kinef node ?, called abottom
node to mean a variable . The bottom sign ? is not a true symbol (i.e. it is not an
element of) but a new pseudo-symbol that does not clash with other symbis during
uni cation.

We call anonymous a term-graph that uses ? nodes instead of named variables. An
example will be given in the next section.

Congruent nodes

On anonymous term-graphs, we can identify nodes that are theoot of entirely identical
subgraphs. (This was not possible on the named presentatignbecause we would have
needed to reason up to -conversion.)

De nition 3.2.4 (Congruent nodes) Given a term-graph g, we say that two nodesn;
and n, are congruent in g if they are distinct and verify

8;8%m; igm; %9(0h ny ighmy, G

The rst condition ensures that the subtrees undern; and n, have the same shape, and are
labelled by the same constructors. The second condition clols that the amount of sharing
is the same below each node.

By construction, two nodes n; and n, congruent in a term-graph g can be merged, by
adding to g the relation mn; i h ny, i for any valid

De nition 3.2.5 (Fusion) Given two congruent nodesn; and n, of a term-graph g, we
call fusion of n; and n; in g the term-graph g[h; = n5] verifying g[n1 = n;] = g and

gfi=na=9[(1 ; 2)j 12n1; 22ny 1 2 dom(g)

Notice that being congruent is a su cient condition for two n odes to be uni able, but not
a necessary one.

| Example The nodeshli and i2i are congruent in the anonymous term-graphsy; and
g, of Figure[32Z4. In both cases, their fusion is the term-grap gs. However, even though
n; and ny can be unied in g3 and g4, they are not congruent in those two term-graphs.
Indeed, in g, we havehlli 2 dom(gs) but H21i 2 dom(gs); hencegz=hli and gz=2i are
distinct. In g4, the amount of sharing between the two nodes di er: we have2li gy 22,
but hl1i g4 hl2i does not hold.

24

Representing rst- and second-order types by graphs

01 (87]

Figure 3.2.4 Congruent nodes

3.2.4.2 Small-step instance

3.3

De nition £Z7Ts essentially big-step, as it permits instantiating the skeleton and the equiv-
alence relation of a term-graph in a very general way. In the Bxt section we are going to
consider second-order types, on which some instance tramsmations are not permitted (as
they would be unsound w.r.t. the semantics of the types). Howver, with a big-step rela-
tion, deciding whether an operation is allowed or not is comficated. Hence we introduce a
small-step relation, in which operations are more atomic th us more easily checkable.

De nition 3.2.6 (Small-step instance on term-graphs) The small-step instance re-
lation on anonymous term-graphs is the re exive transitive closure of the two atomic trans-
formations de ned below

grafting a variable node,i.e. replacing a? -labelled node by a term-graph;
merging two congruent nodes.

An instance operation is reversible if it is a merging that dees not merge variable nodes.

It is straightforward to check that this de nition and De ni tion BZZ2 coincide: grafting
exactly corresponds to the substitution of a variable by a cbsed type, and merging merely
instantiates the equivalence relation of the term-graph inan atomic way.

Interestingly, the grafting operation is easier to descrite on anonymous term-graphs
than on term-graphs with named variables. Indeed, we need rtocheck that we are not
grafting a term-graph containing a variable already presenin the type (which would result
in a term-graph with two nodes for the same variable). Insteal, in essence we are always
grafting fresh variables, which can be merged a posteriori ith another variable if desired.

Representing second-order types

When representing types as trees, binders are traditionajl represented with an explicit node
labeled with a special symbol8 of arity two. For example, the System F type de ned by

=8: ! (8: I)

is usually represented as the tree (1) of Figur€&3311. Usindags (hence sharing at least the
variables), we obtain the representation (2).

3.3. Representing second-order types 25

(3) Binding edges (5) Anonymous variables

Figure 3.3.1 Representations of second-order types.

Notice that all graphs are not correct types, as variables mst be used within their scope.
In graph (2), the node211 could not have been the second child of nod&i, as has not
been introduced yet. However, we do not detail which graphs g well-formed any further
in this chapter, as this question will be treated in detail on MLF graphic types in YZ3B.

3.3.1 Binding edges

Unfortunately, representing quanti ers as special nodesmserted in the structure which will
need to be modi ed, for example when a variable is no longer el hides the underlying
common structure of all instances. A better solution is to irntroduce abinding edgebetween
the bound variable and the node at which it is bound. This is illustrated in graph (3), in
which there is a binding edge fromhli to the root for , and from h21i to h2i for

We orient the binding edge from the bound variable to its binding node. This is just a
convention, and we could have chosen the opposite directiQrour choice is slightly easier to
think about, as each variable node is bound to a single node, Wi a single node can be a
binding position for several variables.

Notice that this representation looses the order of adjacenbinders and makes useless
binders not representable two artifacts of the syntactic no tations that we are quite happy

2Except for nodes representing quanti cation of the form 8: , which have no binding edge.

26

Representing rst- and second-order types by graphs

3.3.2

3.3.3

to eliminate. For instance, the representation of all threetypes

will be the same, namely the graph (4) of FigureC3Z31l. Noticealso that the graphs (3)
and (4), which represent two types di ering only by the extru sion of a quanti er, have the
same skeleton. By using binding edges, the instances in thekeleton of a type or in its
binding structure become more orthogonal.

Anonymous variables

As for term-graphs, if we allow reading second-order types mdulo alpha-conversion, we
can use anonymous variables; in fact, we do so in the remaind®f this document. For the
type , we obtain the graph (5) of Figure[3:331.

Instantiation on graphic System F types

Figure 3.3.2 Instance on graphic SystemF types

Let us de ne the instance relation v ¢ on the graphic representation of Systen¥ types.
As SystemF types generalize rst-order types, we expeclv ¢ to generalizev . However, in
System F, not all variables can be instantiated. For example, the vaiable in (8: !
) ! is locked. Naturally, the same distinction exists in the grgphical presentation: a
bottom node can be instantiated if and only if it is bound to th e root.

Colors In drawings, we remind of the fact that a variable can be instantiated by drawing

it in green; conversely, we draw a locked variable in red. FoiSystem F, this might seem
overkill, as the distinction is always easy to make: green vaables are those bound on the
root, while red ones are bound on an inner node. However we Wigradually expand our
convention to more complicated systems, in which colors wilbe a useful visual remainder.

3.33.1

3.3.3.2

3.3. Representing second-order types 27

For brevity, in the text we refer to green or red variable s. This also o ers some
form of abstraction over systems that have related instanceelations. However, let us stress
that colors are only a visual help, and can always be deduceddm the instance relation of
the system under consideration.

Grafting

Consider the type de ned at the beginning of this section, which we have drawn vith
colors in Figure[3:3:2. We can instantiate it into the type ©of the same gure by replacing

the green variable by the type8: | | where is a fresh variable which is introduced
at the root of . We obtain the syntactic type
8: (8: !)Y (8: 1 (8: 1)

Notice in particular that the grafting operation of System F is more complex than the one

on term-graphs, as we must take into account the binding strieture of the graphs. When

grafting a type at a noden of a type % can have bound variables (which are left

unchanged by the grafting), but also free variables (which Bould be bound at the root of
0 after the grafting operation).

| Example When grafting 8: ! at hli in , the (free) variable becomes bound at
the root of ©.

Merging inner nodes

Interestingly, the graph %Cof Figure [3232 is another representation of the syntactic ype
given above. This time, the two occurrences o8 : ! are represented by distinct
subgraphs. However, since is quanti ed higher in the type, there is still only one node
corresponding to that variable.

As for term-graphs, using a graphic presentation brings sora redundancy into the rep-
resentation of types, which might di er by the amount of sharing they contain. As for
term-graphs, we capture those di erences by asimilarity relation ¢ that is the equiva-
lence relation induced by the reversible subset of this ingince relation.

Here, since ®and “represent the same syntactic type, they must be equivalentdr

g. In this simple example, the di erence between the two typesis very small: the nodes
hl2i and 222 are shared in © but notin 90 In par with the beginning of the chapter, we
choose to make °an instance of ®(i.e. %vg 9 as sharing increases when going from

OOtO O_

As discussed above, this instance must be reversible. Howen two variables (the nodes
hl2i and 222) are merged by the operation. This is in stark contrast with rst-order types,
where reversible instance only involves inner nodes, and mer variables.

A misleading and incorrect intuition would be to think that r ed variables can be
freely merged. If we consider the type ; of Figure 3332, which is a valid type for the
identity function, merging the nodes hlli and h12i would result in the syntactic type

(8: !)t (8:8% 1 9

This is of course unsound with respect to6 ¢, and such an instance is forbidden. More
generally, merging red variables is not permitted; indeedi,it is syntactically the same as

28

Representing rst- and second-order types by graphs

substituting one variable by the other, and the SystemF instance relation does not permit
instance on red variables.

However, we still have not explained why ®v g ©holds. The idea is that the two
variableshl2i and 222 were not directly merged. Instead two subgraphs containinghese
two variables and their binders were merged; in this particular case the subgraphs under
hli and R22i. Thus we have in fact merged two graphs that were -convertible one into the
other. From a semantic point of view, this kind of sharing in the type cannot be observed.
This is easily seen on 1; a function of this type returns something that has exactly type
8: 8: I | anditcan only receive as its argument an expression that ha exactly the
same type. Whether the representations of the argument and fothe return type are shared
or not is unimportant; those two types only contain red variables, and we cannot take a
semantically meaningful instance on those nodes. Thus theefation 1 v holds, the
instance being reversible.

A merging can be reversible only if does not result in the indiect merging of nodes
quanti ed higher in the type. (Indeed, this indirect mergin g would change the semantics
of the type, and could even be unsound.) We characterize nodethat result in such well-
behaved merging by the following de nition.

De nition 3.3.1 (Locally congruent nodes) = Two nodes n; and n, of a graph are
locally congruent if

ny; and n, are congruent in the term-graph g underlying ;

the binding edges undem; and n, are compatible with g[; = n,]

for any two distinct nodes n? and nJ under n; and n, respectively, if n¢ and n9 are
merged ing[n; = ny], then n$ and n9 are bound belown; and n.

From an operational point of view, restraining the merging gperation to locally congruent
nodes makes this operation more local: only binding edges ithe subgraphs undern; and
n, can be merged. It makes also easier to verify that red varialds are never merged.

Figure 3.3.3 Merging locally congruent nodes

| Example The nodeshlli and h12i are locally congruent in the type 2 of Figure [3233.
Indeed, while the nodeshl11li and h121i are bound abovehlli and hl2i, they are already
equal in 9; meanwhile the nodeshl12 and h122 are bound underhlli and l22i. Merging

3.3.3.3

3.3. Representing second-order types

29

hLli and M2 results in the type 9% Both 9 and 9°represent the syntactic type
8: (8: 1 HYyr @: 1 »n!

Conversely,hlli and h12i are not locally congruentin ,, ashl1li and h121i are bound
above the former nodes. Indeed, , represents the syntactic type

(8: 8%(@: 1)l (8: %)!

in which there are two distinct variables (and 9 quanti ed on the left of the toplevel
arrow.

Summary: instance in graphic System F

We can now formally de ne the instance relation for the graphical presentation of SystemF.
Compared to the instance relation on term-graphs, here aretie di erences:

1. In order to preserve type soundness, grafting is only pofide on green variables.
Moreover, it now takes into account the binders of the graftal types, as described
in Y333

2. Merging is limited to locally congruent nodes, in order tobe more atomic (Y33:312).
Moreover, red variables cannot be merged, again for soundse related reasons.

De nition 3.3.2 (Instance on graphic F-types) The instance relation v ¢ on graphic
System F types is the re exive transitive closure of the three following atomic instance
operations:

1. grafting a type at a green variable noden; the binding edge of n is implicitly
removed; the free variables of are bound at the root of the type in which the
grafting occurs.

2. merging two locally congruent non-variable nodes;
3. merging two green variable nodes.

An instance operation is reversible if and only if it of the seeond form, and we write ¢
the symmetric re exive transitive closure of reversible instance. Finally, we write v - the
instance modulo reversible instance relationve[) .

We do not speci cally require the merging of variables to be @ locally congruent nodes, as
it is in fact always the case (given the de nition of local congruence).

Notice that v and ¢ subsume {.e. extend) the relationsv g and g of Y3ZP when
the variables in the term-graph are considered to be implidly bound to the root. Moreover,
v is sound and complete w.r.t. to the instance relation6 ¢ on syntactic SystemF types:
given two syntactic F-types 1 and ,, and 1 and , two graphic representations of those
types, we have 1 6 o ifandonlyif 1vp ».

30

Representing rst- and second-order types by graphs

3.4
3.4.1

Adding exible quanti cation to second-order graphict ypes

Beyond system F

System F is poorly suited as a programming language with type inferene since, as we
mentioned in the introduction, it lacks principal types. Ev en simple terms such as

KO () 0y
can be typed with incomparable types,e.g.
8:8: I (!) (1)
and 8: I (8: ') (2)

System F One solution to remedy this problem is the systemF , proposed byl Mitchel
(1988). Roughly, the instance relation6 ¢ of F allows to soundly instantiate types along
6 ¢ on the right of an arrow (i.e. in a covariant position), and along > ¢ on the left of an
arrow (i.e. in contravariant position). In particular, the second type above is more general
than the rst:

8: I (8: I Y6 8:8: I (!)

Yet, F is not quite satisfactory. First, the contravariance of the instance relation is often
too powerful (and in fact rarely needed). Moreover, it goes gainst the idea of uni cation-
based type inference, which is at the heart ofML. Indeed, this would require performing
uni cation on the right of an arrow, but anti-uni cation ont he left.

More problematic, F still does not have principal types. Even though8: (!)!
(!) is a principal type for choose idin F (while this expression does not have a
principal type in System F), this property does not generalize to more complex exampke
For example, the term chooseg(choose i, can receive in particular the SystemF types

S (G) N (D L) (1)
@: ¢t)t opr@ o)ttt (2)
(@:)@ ot (@@t)@) (a)

In System F we can derive 1 6 ,,butnot ;1 6 3o0r > 6 3 indeed, we can
instantiate covariantly on the right of the toplevel arrow, resulting in

26 82 (C P)L (Dot (8 1) (8 1))

but we cannot transform8: (')! (!)into(8: !)! (8: I)onthe
left of the arrow.

As in System F, the lack of principal types in F stems from the fact that we cannot
express the correlation between two sub-typesd.g. the various instances of jq in the
examples above). We believe that this limitation is in fact inherent to using F types.

Flexible quanti cation ~ MLF follows an entirely di erent solution, and enriches the types
of SystemF with a new construction that indicates what parts of a type can be soundly

3.4.2

3.4. Adding exible quanti cation to second-order graphic types

31

Figure 3.4.1 MLFtypes for K ©

instantiated. In particular, unlike in F , this information is added explicitly, and is not
linked to the variance of the arrow constructor.

Let us give some examples, using the types df °. We have represented ; and , in
Figure BZ-1. However, inMLF, K © has principal type 3, which diers from , by adding
a binding edge from the nodef2i to the root. The node H2i corresponds to the root of the
type 8() ! ; since the binding edge of2i goes to the root, it indicates that i can be
instantiated. Then, by transitivity, the node h21i, which is bound at 2 and corresponds
to , can also be instantiated. Hence bothi2i and 21 are green. (Since the root allows
the nodes bound at it to be instantiated, we also draw it in green. This is essentially a
convention.)

Extending System F with binding edges to non-variable nodes can either be seensaa
restriction of MLF, or as a system in its own right. In this document we follow the second
approach, as it permits explainingMLFin a much simpler way. We call the resulting system
SystemF, where the curly F stands for exible F . However, we intendedly remain
informal, as studying SystemF is not the goal of this document:

most of the interesting properties of SystemF can be deduced from those oMLF;

System F has been studied in detail byl Le Botlan and Rémy /(2007), albé¢ion a
restricted version of the system presented heré.We will present one important result

in I3Z3B.

Instead, we use Systenf as an intermediary step to gain better intuitions.

Type instance in Systef

Let us review the operations that compose the instance reladn v ¢ of SystemF. We will
start by examining the types of K ' given in Figure BZZl. Since 3 is the principal type of
K% nMLF svg ;and 3vge , musthold.

3In [e_Botlan_and Rémy [(2007)] System F is called iMLF. However, in this document we use MLF
derived names, including iMLF, for systems based on graphic types.

32

Representing rst- and second-order types by graphs

3.4.2.1 Weakening

The operation transforming 3 into ; is the removal of the binding edge leaving fromh2i.
From a semantic point of view, it relinquishes the right to instantiate l2i (and h21i by
transitivity). We call this operation a weakening

Of course, it is sound only becausé?i is green? Otherwise, by weakening a red node
not bound at the root of the type, we could require a di erent amount of polymorphism
than what was requested, which is unsound. The inverse opetian (adding binding edges)
is unsound for the same reason.

3.4.2.2 Raising

The operation transforming 3 into ; can actually be decomposed into two atomic steps.
At rst, we instantiate the type 8: ! under 2i into the type ! , where isanew
type variable introduced at the root. This results in the typ e 9.5 Next, we can remove the
binding edge ofl2i by a weakening. Thus the following relation holds

0
3VFE 1VF 1

From an operational standpoint, ¢ is obtained by extruding the binding edge of 21i
along the binding edge oft2i (i.e. the node on whichi21i is bound). We call this operation
raising.

Raising is sound only whenn is green. Indeed, from a semantical standpoint, raising a
node n loses the ability to quantify variables at the level of the binder of n. Hence it can
be permitted only if the node can be instantiated.

3.4.2.3 Grafting

Figure 3.4.2 Grafting in System F

Interestingly, compared to SystemF, raising and weakening simplify the operation of
replacing a green bottom node by a type. Indeed, instead of (ladding a new type, (2)
binding its free variables to the root and (3) removing the binding edge, it is now possible
to replace the bottom node by a closed type. The free variable (if there are any) can be

4This is actually an over-simpli cation. We will come back on this point later.
5The reason why H2i is hollow in 8 is linked to previous footnote, and will be explained later.

3.4. Adding exible quanti cation to second-order graphic types 33

raised in a second time, and the binding edge of the bottom noel can nally be removed
by weakening, if needed. An example is given in the derivatio

3VF 4VF 5VF 2
of Figure[3Z2, where we substitute the variable of 3 (i.e. the nodehli) by i, raise the
newly introduced type variable (node hlli), and nally weaken hii.

Moreover, exible quanti cation and raising allow quite a b it more freedom w.r.t. to
where to bind nodes. Indeed, after grafting a type at a noden of a type ¢ the nodes
bound on the root of can be raised to any of the nodes on which is transitively bound,
instead of only to the root of Cor to n.

3.4.2.4 Merging

Figure 3.4.3 Merging in System F

Let us now consider the merging of congruent nodes. As in Sysin F, the nodes must
be locally congruent, so as not to merge nodes indirectly thus potentially losing some
polymorphism. Of course, this includes not indirectly mergng variables. However, in
SystemF, this is also the case for inner nodes with binding edges. Irekd, by merging two
inner nodes, we lose the ability to instantiate the subgrapts under them in incompatible
ways.

| Example It is not possible to directly merge the nodeshli and R2i in the type ¢ of
Figure BZ3: those two nodes are not locally congruent, ashe nodeshl2i and R21i are
bound above them.

Thus, as in SystemF , we only allow the merging of locally congruent nodes. Moreeer,
the merging is reversible if and only the two nodes at the rootof the merging are unbound,
i.e. if we only alter the representation of types, not their meaning from a semantic stand-
point. Finally, for the usual soundness-related reasons,ite merging of bound nodes is only
permitted if they are green.

| Example (continued) Let us consider again the merging ohili and R2i in . Although
a direct merging is impossible, it is possible to start by meging h11i and H21i, as they are
both green and locally congruent. The resulting type is 7, which can now be (reversibly)
instantiated into 9.

34

Representing rst- and second-order types by graphs

3.4.25

As mentioned above, the step ¢ Vv 7 is not reversible. Indeed, even though it merges
inner nodes (and not variables), those nodes are green, andl@aw the instantiation of the
nodes bound on them. In this case, the di erence in the amounbf sharing can be observed.
Let us illustrate this by showing that splitting green nodes would be unsound. For the sake
of simplicity, we use a slightly simpler example. Consider he type g of Figure[32-3, which
veri es

3VF a4VF 8

(g being the result of merginghli and i2i in 4). Thus g is a valid type for K since 3
is the principal type of K ©,

Moreover, g is actually the principal type of the term choose id In this case, it is
crucial for the two occurrences of iy on each side of the arrow to be correlatedchoose id
could potentially return its argument. Thus, if g is a valid type for this term, 4 is not;
indeed

4VE (int! int)! (char! chay

holds, and the latter type is not valid for choose id Hence g vg 4 cannot hold, as it
would be unsound.

Inert nodes

Figure 3.4.4 Inert nodes

Perhaps surprisingly, not all binding edges are semanticy meaningful. As a simple
example, consider the nodedllli and hl2i of the type o of Figure IZ4. Binding them
brings no additional expressivity to the type, as they are lebelled by the monomorphic type
int, which contains no polymorphism. Thus, even though they arered, it is safe to weaken
them, and we allow this transformation. Moreover, this opemation is reversible.

As a slightly more involved example, consider the type 10 of this gure. Even though
hli is bound, no node is bound on it. Thus, the presence or the absee of the binding
edge does not allow taking semantically di erent instances® In particular, given a term a
of type 19, any term a° such that a a° is well-typed can also be soundly applied to a term

60f course, this is true only because no instance operation al lows introducing a variable bound on hii.
However, this property is true in System F.

3.4.2.6

3.4. Adding exible quanti cation to second-order graphic types

35

of type , and conversely. Moreover, in both cases, the return type is the same: the type
of a’.

This means that we should not distinguish these two types fortype soundness; therefore,
they must be in relation by the reversible part of the instance relation. To do so, we allow the
weakening ofhli; furthermore, unlike proper weakenings that really change the semantics
of the type by requiring di erent amount of polymorphism thi s operation is reversible.

As a last example, consider ;. We can slightly generalize the reasoning above, by
considering applications of the forma a a® This shows that the binding edge of the
node hlli is not semantically meaningful. In turn, 9, shows that the one ofhli is also
unimportant. Thus, we allow both the weakenings ofhli and hlli in 1; (represented by

9, and %9) as reversible operations. Notice that weakenindili transforms hi1i into a red
node: nevertheless, when a node does not permit semanticalmeaningful instantiations,
its color is actually unimportant, as it can be soundly weakened.

Finally, generalizing one more step, it is actually safe to dd or remove a binding edge
on all the nodes that will never permit instantiating a varia ble, which we call inert. This
also means that it is safe to raise or merge those nodes.

De nition 3.4.1 (Inert nodes) A bound noden ofatype isinert if there is no variable
transitively bound on it.

In the gures of this section, all hollow-colored nodes werédnert.

Summary

Let us summarize what operations are in the instance relatio of SystemF , as well as those
that are reversible.

De nition 3.4.2 (Instance in System F) The instance relation of SystemF, written
V k, is the transitive re exive closure of the relation de ned by the following atomic instance
operations:

grafting a closed type under a green bottom node;

raising a green or inert node;

merging two green, inert, or unbound nodes that are locally ongruent;

weakening a green or inert node.
The operations on unbound and inert nodes are reversible, ahwe write ¢ the transitive

symmetric re exive closure of this relation. We write v . the instance modulo similarity
relation of SystemF,denedas(Ve [) .

| Examples The various instances that hold in the gures of this sectionare summarized

in Figure BZ1. Plain edges represent g, while dashed ones represent its reversible subset;

all transitive or re exive edges have been omitted to simplfy the drawing. For example,
9 F 9holds, since ?;; Qvi %°hold, and both instances are reversible.

Importantly, v extendsv :

Lemma 3.4.3 Consider two SystemF types and % If v ©%then v °

36

Representing rst- and second-order types by graphs

s
Y —
Ve
-7 7
s
8 1 /s
7

© ©)

Figure 3.4.5 Instances in the examples of [Y314

I 1
Proof: All atomic operations of v Care in v, except for grafting which can be simu-

lated by grafting, raising and weakening.
L |

3.4.3 An informal semantics for the types of System

A syntactic presentation of a restriction of System F, which we call Shallow¥ has been
studied in detail by Le Botlan and Rémy (2007, Y3). More predely, the instance relations
of the two systems are the same, but the types of Shallow are a restriction of those of
SystemF (modulo the translation into syntactic types):

De nition 3.4.4 (Shallow types) A SystemF type is shallow if all its red nodes are
variables.

In other words, shallow types disallow exible quanti cati on of inner nodes in red positions:
projecting a type on an unbound node results in a Systent type. This means that types
are strati ed, with exible quanti cation at the top, and Sy stem F types at the bottom.
By contrast, in System F alternating unbound and bound non-variables nodes is poskle.

| Example The type ¢ of Figure[3Z8 is shallow, but s is not: the projection of s at
the unbound nodehlli is not an F type.

From a theoretical point of view, Shallow-F is an interesting restriction of SystemF,
as it is possible to give a semantics to Shallovi- types as a set of Systent type. We refer
to (Le Botlan and Rémy 2007, Y3.2) for the exact de nition, ard will only give the general
idea below (adapting it to graphic types):

De nition 3.4.5 (Informal semantics of shallow types) Let be a shallow type.
The semanticsf ngg of a green noden of is the set of F-types recursively de ned by:

3.4. Adding exible quanti cation to second-order graphic types 37

Figure 3.4.6 Shallow and non-shallow types

if n is a bottom node, f ngyis the set of all SystemF types;

by v - of the set of (graphic SystemF) types obtained by replacing eachn; with an
instance of a type in the semantics ofn;.

The semantics of is the semantics of its root. Two shallow types and ©are in semantic
instance relation if f %y f ¢y holds.

It is proven by Le Botlan and Rémy (2007) that the syntactic MLF relation v @, which
corresponds to the relationv . in System F, is sound w.r.t. to the semantic instance
relation de ned above. Completeness is conjectured.

| Examples Let us write F for the set of all syntactic System F types (including types
with free variables). Using the semantics above, it is posbie to prove that f sggandf ggg
(i.e. the principal types for (x) (y)y and choose i)l are the types of the form

8T 1! (8: 2! 2)j 1, 22Fg and f87T (8: !)! (8: !)j 2Fg
Thus exible quanti cation captures the properties System F lacks:

for (x) (y)y, the type variables in the instance of iy can be bound either at the
root of the type, or under the arrow;

for choose idthe two instances of iy on both sides of the arrow are the same.

| Example: semantics of raising As a more complex example, the semantics of the type
s of Figure[3Z8 is the set of closed types of the form

8T (8_ 11! 11) | (8_ 11 ! 11)
where 1; is in the semantics ofhlli, i.e. in the set

8: 1 (8: %1 9§j.; O 0ppfv()# ; ftv(Y#

38

Representing rst- and second-order types by graphs

Notice the restrictions on the variables that can occur in and © This is due to the fact
that M1% is bound abovehlli, (hence cannot refer to). Similarly, h1121 is bound
abovehl12 and ° cannot use a variable of . Of course, the four occurrences of 1; are
the same.

Let us now consider the semantics of the type obtained by raisg h111l in . In this
case, the free variables of in 1; can only be quanti ed at the root, and the semantics is
now of the form

87 (1! w)! (! 11)

with 11 ranging over the same set as previously.

The di erence between the shallow and non-shallow versionsf MLF are discussed further
in Appendix Bl

4.1

MLF graphic types

Abstract

In order to obtain MLF graphic types, we add rigid quanti cation to the types
of System F (MZ). We characterize those types as the superposition ofa rst-order
skeleton and of a binding tree (MZ2), and isolate the graphsthat are well-scoped (YZ3).
Finally we present a few operators to transform MLF graphic types (MZ3).

The syntactic presentation of MLF types includes the exible quanti cation seen in the
previous chapter. However, polymorphism is requested throgh the use of rigid quanti ca-
tion, and not by removing binding edges, as in Systent. We follow the same approach in
graphic MLF types, and use a second type of binding edge. However we wilbhdevelop the
reasons behind this choice here, and postpone the explanatis to Y. This chapter instead
focuses on the formal de nition of graphic types.

Representing ML F graphic types

From a representational standpoint, the main di erence between (graphic) SystemF and
MLF types is the introduction of a new kind of binding edge for rigd quanti cation; in
drawings we use dashed lines.

| Example Consider the types 1, 2, 3, and 4 of Figure LTI1. The nodehli is rigidly
quanti ed in both ; and 4, and exibly quantied in , and 3.

1In generic diagrams where an edge can be indi erently exibl e or rigid, we use dashed-dotted edges.

39

40

MLF graphic types

id) 8(> ig) !
id) 8(> ig) !

Figure 4.1.1 Examples of graphic MLF types.

4.1.1 From syntactic to graphic

The four types above are actually the graphic representatio of the types introduced in
ZZ3B and whose de nition is recalled in the gure. For reagrs familiar with the syntactic
presentation of MLF, we describe here how to translate a quanti ed type8 () % the
full algorithm is given in Y8222, but uses a few notations nbyet introduced:

translate Casif was a variable;
translate ;
replace the node corresponding to in %by ;

P w DD

bind that node to the root of °according to .

| Example The graph representing 3 contains at the nodehli a subgraph representing
the bound 4 of the variable , and it is bound by a exible edge.

I Another example The syntactic de nition of the graphic type on the left of Fig-
ure[LZ1 is given at the bottom of the gure. The nodehlli corresponds to the variable .
This variable is exibly quanti ed at the level of |, which is represented by the nodehli;
hence there is a exible binding edge fromhlli to hli. Similarly, is rigidly quanti ed at
the toplevel of , hence the rigid edge fromhli to hi.

The structure of the underlying graph of can also be read directly in the syntactic
MLF type. For example, the equation for the root of is the rightmost part of the syntactic
de nition of ,ie. ! . Likewise, the equation for the node correspondingto is !
as indicated by the bound8(> !).

Syntactic and graphic sharing MLF syntactic quanti cation 8 () isused in particular
to denote sharing. In graphs, it is directly captured by the intrinsic sharing of dags hence
our use of this representation. In both MLF and SystemF, the type 3 of Figure &1, in
which the two occurrences of iy may be instantiated separately, is quite di erent from »,
in which both sides of the arrow must be instantiated simultaneously. This is re ected in
the graphic presentation by the fact that there are two copies of the graph representing ig
in 3, but only one in 5.

4.2. Pre-types

41

4.2 Pre-types
A pre-type Its skeleton Its binding tree
= T + .
A
SO O 0

. .
@ @ o 0O
8()8(=8() ')Yyg(> 1) 1

Figure 4.2.1 Decomposition of an MLF graphic type

The formal de nition of MLF graphic types is given in two steps. We start by de ning a
set of graphs that contains all graphic types. Afterwards, we give a criterion characterizing
graphic types as well-scoped graphs [Y2.3).

De nition 4.2.1 A (graphic) pre-type is a triple composed of:

1. A rst-order anonymous term-graph , called the skeleton of

2. A set of binding edges”, that forms an upside-down tree of domaindom() rooted
athi.

3. A set of binding ags for all the nodes of but the root, i.e. a function mapping
each node indom() nfh ig to one of the binding ags > or =.2

The union of » and is called the binding tree of

The term-graph is the structure of the pre-type. It is rst-order: all the in formation
related to binders, in particular where and how each node is bund, is contained in the
binding tree.

| Example The decomposition of the pre-type of Figure[XZ1 is given in the same gure.
For the binding tree, we have exceptionally annotated the nales of the binding tree with the
name of the corresponding syntactic type variable, and the imding edges with the binding
ags of the nodes they correspond to.

Notations In the text, we write n (n°2 (resp. n _ n°2) to mean that there
is a structure edge (esp. a binding edge) fromn to n®in . We often drop 2 when

is clear from the context. Notice that (arrows are downwards oriented, while _ ones
are upwards oriented. If is a path, we writen (n®2 to denote the fact there exists
a (structure) path from nto n%in _ ie. that "= m i. Wewriten ® n%fn _ n°
and (n)=bh. Ifn _ n°2 | we also write *(n) (or simply n) for n% we call n® the binder
of n and we say thatn is bound at n°

2While we have chosen to attach the binding ags to the nodes in stead of to the binding edges, this
is purely a matter of convention, as both views are isomorphi c. Our de nition allows us to de ne some
operations on pre-types in a simpler way, as " and sometimes change independently.

42 MLF graphic types

We write _and ~ for the term and equivalence de ning , and (n) for (n), i.e. the

symbol on the noden. We use the notations 4o, fso and oo instead of tgo, “par and
foo fOr wide arguments.

| Examples Consider the pre-types of Figure[ZZ3Jl. We haveéili ~ f g2 ;. Hence,
the binder of hli is Ahli = f g, and ;(hli) is =. We also havehi (hli (Hh22 ,
or, leaving » implicit, hi ¢ hi2i.

4.2.1 Why binding all nodes

The de nition of graphic types implies that all nodes but the root have a binding edge.
From a theoretical standpoint, some nodes, such as those latled with ground types like
int, need not be bound. However, this makes reasoning on the metheoretical properties
of graphic types more complicated. Instead, we require thagll nodes be bound, and de ne
the instance relation so that the additional binding edges @n be freely transformed (¥5:314).
Then we prove that those supplementary edges are unimportan as they commute with
type inference in a certain sense [YT3.2). Finally, when tmslating graphic types into
syntactic types, for example for display purposes, those egks are entirely removed (Y8:313).

4.3 Well-formedness of graphic types

Figure 4.3.1 Invalid graphic types.

4.3.1 Well-formed pre-types

All pre-types are not well-formed types. Indeed, graphic types must have a binding tree
compatible with the lexical scoping of variables. Two ill-formed binding trees are presented
in Figure EE370:

1. In the pre-type 1, the nodeh21i is bound at a node that is not among its ancestors.
This is not permitted; in a syntactic presentation, the variable would be bound on
the left branch and used on the right branch, out of its scope.

2. In the pre-type », the bounds of the nodeshli and hl1li both depend on the bound
of the other node:

4.3. Well-formedness of graphic types

43

if hli is bound rst: the equation of its bound is hlli! h 11i, but hlli has not
been bound yet;

if L1 is bound rst: its bound is hl1li!'h 112, which refers to the nodehl13.
This node is itself bound at hli, which has not been bound yet.

In both cases, a variable is used outside of its scope. The saw example is merely a
generalization of the rst one to graphs with internal quanti cation and internal sharing
of nodes. The invariant that variables are used in their sco is generally captured by the
notion of domination: a bound must be dominated by its binder. The very same invarant
exists for the graphic types of MLF, up to the fact that we must take into account binding
edges®

De nition 4.3.1 (Mixed paths) Let ~(be the relation (()[(*). Given some
nodesny; ::;; ng, we say that the sequencen; ~(n:::~(ng 1 ~(ng is amixed path
from ny to ny; this path is said to contain n if n = n; forsomel i k.

| Example In the pre-type , of Figure 311, the relationsf g~ h 11i ¢ hl12 hold,
and form a mixed path from f gto h112.

De nition 4.3.2 (Domination for ~() Let be a pre-type,n and n°two nodes of .
We say that n dominatesn®and we writen ~ (nCif every mixed path from the root to
n® contains n.

| Example (continued) Consider again the pre-type 1 of Figure E31; the mixed paths
betweenf g and hlli are

fgt mi ¢ ni f grh 1i ¢ nai
fgt hi ¢ hi f grh 1i ¢ hii
fg ¢t Hi~rh 11 f g~h 1lirh 11

All six paths contain hli. Hence nodehli dominates nodehlli. Conversely, nodehli does
not dominate h21i, as evidenced by the pathf g ¢ hi ¢ 1. Similarly, in 5, Hii
does not dominatehl12, sincef g~ h 11i ¢ Hhl13.

Well-formed types are simply the pre-types in which the binder of a node dominates the
node for the relation™ (.

De nition 4.3.3 (Graphic types) The binding tree of a pre-type is well-dominated if
every bound node is dominated by its binder,i.e. for all n and n®in , n _ n%implies
n°~ (" n. A (graphic) type is a pre-type whose binding tree is well-dominated.

In the following, we will nearly always consider MLF graphic types and, unless speci ed
otherwise, we abbreviate graphic type by type . The metavariable is used to range over

types.

30r, more generally, for the types of System F and F in 33 and Y33.

44

MLF graphic types

4.3.2

| Example (continued) As seen in the example above, neither; nor » are types, as they
are not well-dominated. In particular, A (h21i) does not dominateh21i in ; and »(hL12)
does not dominatehl12 in ,. Conversely, one can check that the pre-type in Figure EEZ7
is well-dominated.

Invariants induced by well-formedness

Well-domination is a fairly strong property, and it creates several invariants relating the
structure and the binding tree of a type. We give one of them béw, which we often use
inside proofs.

Figure 4.3.2 Invariant induced by well-domination

Lemma 4.3.4 Foranytype ,ifn * n% { n® (n,thenn® * n®%

This lemma is shown graphically in Figure[Z32, the conclu®n being the highlighted edge.
Notice in particular that, by well-domination, n®dominates n°.

I
Proof: The proof is by induction on the integer k such that n (_)* n®

. Casek=1: sincen® (n, there exists a mixed path P of the form hi ~* n°® (n.
By well-domination, A (which is also n®in this subcase) is in P. Since by hypothesis
n%is strictly above n°% n%is in the subpath hi ~* n°(and is not n%. This proves
n® * n% which is the desired result.

. Casek=k’+1> 1
Let n®®be the node such thatn * n%® n% Consider a mixed path f g (

n® { n° (n. By iterating the well-domination property, this path must contain

n% Sincen® n% n%0js strictly under n® We compare the relative positions of

n°and n®in the path n® { n° (n.

If n°= n% the result is proven, as n°® _ n%by hypothesis.

If n%s strictly between n®and n®% the conclusion is by induction hypothesis ap-
piedton(_)< n% { n° (n.

If n%is strictly between n®and n: the conclusion is by induction hypothesis ap-
plied to %)1 n% t n® (no

4.4, Operators for building and transforming types 45

)

:" >
@

(a) ()

Figure 4.4.1 Operations on graphs

4.4 Operators for building and transforming types

We conclude this chapter by de ning a few operators to transbrm graphic types. Most of
them closely follow the instance operations of Systent. However, the de nitions of this
section do not take into account the fact that the operation is sound, as this point will be
treated in V3.

4.4.1 Grafting

We write [°=n] for the replacement of a bottom noden of a type by a type © the
resulting type is described by °for nodes belown and by for the other nodes.

| Example In Figure EEZ, grafting the type g at the node hli in the type ¢ results in
the type 9

De nition 4.4.1 (Grafting) The grafting [%n] of atype Cata noden in atype is
de ned by:

[%=n] mapsnm to Ym) for m 2 dom(9, and mapsm in dom() nfngto (m);

T %n)is equalto~[n ~“wheren ~Cis the set of pairs(n m;n m9 for m and m°
verifying m ~°m;

[°%=n] mapsm in dom() to (m) and nm to 9%m) for all m 2 dom(©9;

[%] is » extended with the edgesnm _ nmC®forallm _ m°2 ©

Property 4.4.2 Given two types and © and n a bottom node of , [%n]is a type.

I 1
Proof: Let us call “the grafting [%n]. The fact that is a pre-type is immediate,
and it remains to prove that is well-dominated. Let n° be a node of %
If n®2 dom(), all the mixed paths from hi to n° are mixed paths in . We conclude
by well-domination of

. Otherwise, n%is of the form n n% By construction of % all mixed paths from hi to
n®are the concatenation of a mixed path from hi to nin and of a mixed path from
hi to n®in % The conclusion is thus by well-domination of °

46

MLF graphic types

4.4.2 Projection

De nition 4.4.3 (Closed nodes) A node n is closed if all the nodes in the subgraph
under n are transitively bound at n, i.e. if n { n%impliesn® * n.

Given a closed noden, we write =n for the projection of at n, obtained by removing
all the nodes not undern and all the dangling edges, and renaming nodes accordinglyhus
making n the root node of the resulting graph).

| Example In Figure EEZ, projecting at the nodehti in °yields the type §. Projecting
at hli or i2i in is impossible, ashlli is not bound under hli (and the resulting graph
would be ill-bound).

De nition 4.4.4 (Projection) The projection =n of a type at a closed noden of is
de ned by:

=n is =n.
&n issuchthat &%n Cifandonlyifn ~n ©
=n maps a hodem to (nm)

=nisdenedby m _ m%2 =nifandonlyif nm _ nm°2

Property 4.4.5 Let n be a closed node of a type. The projection =n is a type.

I 1
Proof: Let °be =n. Thefactthat Cis a pre-type is immediate. For domination, consider
anoden®of %and a mixed path P from hi to n° Let P°be a mixed path from hi to n
in . By well-domination of , A%isin P® P. Sincen is closed, A° cannot be contained in

P% hence it is in P. This is the desired result.
L |

4.4.3 Fusion

Fusion is the generalization of the fusion operation on termgraphs to graphs with binding
edges. We formalize the fact that two nodes are congruent inugh a graph by the following
de nition.

De nition 4.4.6 (Binding-congruent nodes) Consider two nodesn; and n, of a type
congruentin . Let Cbe [rﬁ = ny]. Then ny and n; are binding-congruentin if

An) 079
(M= ()

The rst condition asserts that binding edges can be mergedwhile the second checks that
this is also the case for binding ags. The fusion operation$ possible on binding-congruent
nodes, and merges them.

8n;8n% n n0 =) A

4.4, Operators for building and transforming types 47

| Example In Figure EEZ1, fusing the nodeshlli and 21 in yields type . More
interestingly, the nodeshli and 2i can be fused in both and |, resulting in 0. Notice
that the binding edgeshlli _ f gandh1li _ f gof are fusedin no, as a side-e ect
of fusing hli and h2i.

De nition 4.4.7 (Fusion) The fusion [n; = n3] of two binding-congruent nodesn; and
n, of is de ned by

rgz] is [n1 = nyl;

[Ny =
[n1 = ny] is the quotient of by [nAl = ny]
[n1 = n3] is the quotient of ~ by [nAl = ny]

The result below (which we afterwards use to prove that fusim returns types) expresses
that fusion preserves domination.

Lemma 4.4.8 Let be a type,n; and n, two binding-congruent nodes of . Let © be
[Ny = ny]. Let! be the domination relation corresponding to either , (or
A(. For any n and n®of if n! n%in , thenn! n%in ©

I 1
Proof: Consider a mixed path P° betweenf g and n®in ° We rewrite the nodes in P
by removing all the occurrences of the paths under n, (for example f g* ni[na »
(n1[n2) PPisrewritteninto f g~ n: A n: P%. Let us justify that the resulting
path P is valid in

. Anedge (of Cisrewritten into a valid edge (of by congruence ofn; and n.
. An edge © of ©is rewritten into an edge ~ of by well-domination of and
binding-congruence of n1 and n..

Thus P is a correct path from f gto n°in . By the hypothesis n! n2 P

contains n. Thus P°also contains n, which is the desired result.
L |

Property 4.4.9 Let be a type,n; and n, two binding-congruent nodes of . The fusion
[Ny = ny] is a type.

I 1
Proof: Let °be [n; = n,]. The well-formedness of ° ~%and © are by de nition of

binding-congruent nodes. The preservation of well-domination is by Lemma EZ.3]
L |

4.4.3.1 Local congruence

The de nition of locally congruent nodes (De nition 331 is still correct on graphic MLF
types. However, we give an alternative, slightly more formd de nition below.

De nition 4.4.10 (Locally congruent nodes) Two nodes n; and n, of a type are
locally congruent if they are binding-congruent in and

8 6;m1i~m2i_hn1i "_nl"hnzi "_ng

48

MLF graphic types

4.4.4 Raising

Given a noden of a type suchthatn _ n® n%holds, the operation of raisingn
consists in lifting the binding edgen _ nCabove the edgen® _ n% resulting in the edge
n _ n% The resulting pre-type is called theraising of n in , and is written " n.

| Example In Figure EZ, the type , is the raising of the nodeh22i in

De nition 4.4.11 (Raising) The raising " n of a noden in a type is the pre-type
de ned by

Lo
nis ;
"nis (n);
" is #, except onn whereitisn _ ~("(n)).

Figure 4.4.2 Raising and well-domination

Raising and well-domination Raising at arbitrary nodes can result in ill-dominated pre-

types. In the type of Figure 22, raising the nodehl2 results in the ill-dominated type
i, as shown by the mixed path

hi~h 120 (hlii

which does not contain the binder oftl1i, i.e. the node hli.

In the case of and i, the structure path h12i (hlli prevents the raising ofhl12i.
Syntactically, the bound of hl2 depends on the bound oftlli, and hl2 cannot thus be
introduced rst. This property can be generalized, and exadly characterizes the set of
nodesn which can be raised while preserving well-domination.

De nition 4.4.12 (Raisable node) Givenatype andaboundnoden 2 |, nisraisable
in if no other node bound onn can be reached fromn. Formally,

8n%n® A=) n BN

4.4, Operators for building and transforming types

| Example The nodehlli is raisable in the type of Figure 242, but not h12i. However,
hi2i is raisable in © sincehlli and hl12i are no longer bound at the same node.

Property 4.4.13 "nisatypei nis raisable in

I
Proof: Welet °= " n, n°=~(n), n%=~(nY% (in particular, n%=~9n)).

If n is not raisable: we show that ©is not well-dominated.

Let m be a node bound onn®in suchthatn { m. Thus, in °we have mixed paths
oftheform f g~ (n®~ n { m. Those mixed path does not contain ~%(m) = n°,
asn®is strictly under n°and strictly above n'. Hence °is not well-dominated.

If nis raisable; Itis immediate to seethat °and Care correct, as they are unchanged
by the raising. The fact that ~°forms a tree is also immediate. Let us show that Cis
well-dominated. We consider a node m and a mixed path °from f gto min © Let

be the mixed path obtained by replacing the edge n* n%byn~ n°~ n®%fit
appears in 9. By construction, is a valid mixed path between f gand min . We
must prove that ~%m) isin ©

If m=nandn _ n%sin % bythe rsthypothesis ~%m) is n® hence the con-
clusion by the second.

If m=n(l)andn _ n%isnotin °(2): By well-domination of and (1), n°
and n®are in . By (1), n®is AYm). Hence"Y(m) isin © since = °by (2).

If ménandn _ n%isnotin % by those hypotheses,~(m) = ~%m) and =

% We conclude by well-domination of
If ménn _ n%sin %and ~(m) & n%
By well-domination of , m®=~(m) isin . Sincem®is not n° then m%is in °too
(as this part of is shared with 9. Sincem 6 n, m%is ~%m), hence the conclusion.
If mén(@3),n _ n%isin °@)and A(m)=n°(): by@, n _ n®° _ n%is
in . Thus is in particular of the form hi ~(n%~ n°~ na(m. By (@3),
we moreover haven ~{ m, hence alson { m. Together with (4), this contradicts
the fact that n is raisable in

4.4.4.1 Raising multiple nodes

Instead of raising a single node, we are sometimes interestén raising all the nodes bound
on a given noden.* We call this operation a multi-raising .

De nition 4.4.14 (Multi-raising) Given a type and a noden of dierent from the
root, the multi-raising of n in is the graph Overifying = 9 = Cand

Mn) ifn® _n2

8n’ M) = _ Mn% ifn® 6 n2

4This operation will mostly be useful in Part Il, ldhen we compa re type inference in ML and in MLF.

50

MLF graphic types

| Example Multi-raising the node hli of the type of Figure 42 results in the type
%0 Notice that raising n changes the binding edge of, while multi-raising it changes the
binding edges of the nodes bound om.

Multi-raising is an interesting operation, because it doesnot require checking for rais-
ability (or equivalently for well-domination).

Property 4.4.15 Given a type and a noden of , the multi-raise of n in is a type.

I
Proof: Let S be the set of nodes bound onn in . It suces to order this set by (

(the lowest nodes being rst), and to raise the nodes of S in this order.
L

5.1

Instance on MLF graphic types

Abstract

We explain the introduction of rigid quanti cation in ~ MLF types (M&1). The in-
stance relation of MLF is obtained by adapting the instance relation of System F to
this form of quanti cation (Y52 In fact, we obtain two rel ations, one permitting type
inference, but not the other. We formally de ne the rst one i n Y&3B, the second in
=35. A third relation, designed to abstract over inessertial details on nodes without
polymorphism is also introduced (YI-3.4).

Why rigid quanti cation?

The SystemF instance modulo reversible instance relatiorv . generalizes the corresponding
relation v o of SystemF (Lemma [ZZ3). Moreover,v . is sound and complete w.r.t. the
syntactic instance relation 6 r of SystemF. Hencev . extends this last relation. In parallel,
MLF is designed to be an extension oML and the syntactic typing rules of MLF are those of
ML, modulo the richer types and type instance relation exactly as is the case for Systenk.
Thus, if the instance relation on MLF graphic typesv allowed all the operations ofv £, type
inference in MLF would likely be undecidable just as in System F (Welld 1994).

Rigid quanti cation is introduced in MLF to nd a retriction of v . suitable for type
inference. Thus, although the two forms of quanti cation share a similar syntax, there is a
profound asymmetry between them:

exible quanti cation is introduced to obtain more express ive types, and more prin-
cipal type derivations;

rigid quanti cation is used to restrict the expressivenessof types, in order make type
inference decidable.

51

52

Instance on MLF graphic types

5.2

5.2.1

From a semantic point of view, and without delving too much into the details yet, rigid
edges have the same role as the absence of binding edges int8ysF graphic types: they
forbid the merging or the instantiation of variables. Hence there is a very simple way to
transform an MLF type into the corresponding SystemF type.

De nition 5.1.1 (Mapping from MLF to System F) We write + the injection from
MLF types to SystemF graphic types that removes all rigid edges from its argument

The MLF instance relation is obtained by adapting v ¢ to the richer binding structure
of graphic types. In fact, we simultaneously de ne two relations:

v @ s the largest relation of the two, and comprises all the posble transformations: it is
designed to be sound and complete w.r.tv o (modulo +).

v is a restriction of v @ that permits type inference.

Those two relations de ne two di erent versions of MLF, with type inference being possible
only in the smallest of the two. The interest of the rst system lies mainly in its expressivity.
The decision to put a transformation in v ® but not in v is somewhat arbitrary at this
point. Indeed, by de nition it cannot be explained by type soundness, and is only justi ed
by the fact that the system based onv allows type inference. Another design guideline is
that v should be as large as possible, in order to obtain a system agpressive as possible.

Shaping the instance relation

In this section, we review informally the operations ofv o and adapt them to rigid quan-
ti cation.

Nodes are partitioned according to the operation they permi. As in System F, this
partition includes red, green and inert nodes. There is als@ new category, called orange
nodes. For type inference purposes we also isolate a subsétimert nodes, called monomor-
phic. This section also makes precise whether or not an opetian is allowed in both v ®
and v, or only in v ®. A formal de nition of v andv @ is also given in ¥5.313 and[Y5.3.5.

In the rst three subsections below, we suppose that the nods discussed are not inert.
They will be handled separately in YoZW.

Green Mtnodes

In MLF, green nodes are the same as in Systef: they are transitively bound to the root:
() hi

Three operations on green variables and green inner nodesr@fting, merging, raising)
are directly inherited from v ., and are allinv . Moreover, since the symmetric operations
are unsound in general (thus not inv), they are neither in v nor in v @.

Weakening a green nodei(e. removing its binding edge inF) is also possible, but we
must change it slightly, as we require all nodes to be bound. Tus, on graphicMLFtypes, we
change the (exible) binding edge into a rigid one; we again all this operation weakening.
Notice that it exactly corresponds to the informal semantic of rigid edges.

Weakening is in bothv and v ®. Moreover, as inF, the symmetric operation would be
unsound (once polymorphism is requested, it must be given)and it is forbidden.

5.2.2

5.2.3

5.24

5.2. Shaping the instance relation

53

Red ME nodes

In System F, the red nodes are the bound nodes which are not connected tdé root by
binding edges. It is straightforward to adapt this de nitio n to graphic types: red nodes are
exibly bound nodes with a rigid edge above them,i.e.

~ () T (_) hi

Remember that, in the general case, transforming such a nodis unsound, as its polymor-
phism is requested in MLF by the rigid edge above. Thus no instance operation is allong
on those nodes.

Nodes with a rigid edge

The handling of the nodes that have no binding edge in Systenf i.e. that have a rigid
binding edge in MLF graphic types is more subtle. The easy cases are the transfoma-
tion of a rigid edge into a exible one, and the substitution of a rigidly bound variable,
which would for example allow to transform (8())! (8())intoint! (8()).
Both operations are clearly unsound, as they would allow regiring less polymorphism than
originally requested, and they are forbidden.

Next, merging of locally congruent unbound nodes is possiklin SystemF, and is part
of the reversible instance relation. In order to allow the sane expressiveness, the relation
v @ allows raising and merging, but also lowering and splitting the nodes with rigid edges.
However our key design choice is to disallow the last two opeations in v, i.e. to only allow
in this relation the raising and merging of nodes with rigid edges. This very restriction is
what keeps type inference decidable.

In the following, we draw nodes with rigid edges in orange, this completing our trac
lights metaphor. Green nodes allow true instances (that clange the semantics of the type),
orange nodes only allow transformations changing the repentation of types (but not their
semantics, and types are in particular invariant modulo +) and red nodes disallow instance
entirely.

Inert and monomorphic nodes

In order to be slightly more general, we add the possibility br a type constructor to be
intrinsically polymorphic.

De nition 5.2.1 (Polymorphic symbols) The set of type constructors is supposed to
be partitioned into two sets of regular and polymorphic type constructors, the! constructor
being regular. The symbol? is considered to be polymorphict We write Poly the set of
polymorphic symbols.

This de nition allows to easily model type constructors representing polymorphic type ab-
breviations, such astypet = 8: I . However, in the remainder of this section we will
not use this possibility in the examples, and? can safely be thought as the only polymorphic
symbol.

1We recall that ? is not part of

54

Instance on MLF graphic types

5.24.1

5.24.2

Figure 5.2.1 Inert and monomorphic nodes

Terminology In the following, we say that n is an intrinsically polymorphic node in if
(n) is a polymorphic symbol.

Inert nodes

Let us adapt the de nition of inert nodes to rigid quanti cat ion and polymorphic symbols.
In System F , a node is inert if there is no variable transitively (exibl y) bound on it. In MLF
graphic types, a node is inert if all the polymorphic symbolsbelow the node are protected
by at least one rigid edge.

De nition 5.2.2 (Inert nodes) Let be a graphictype. A noden of isinertifitis not
intrinsically polymorphic, and if there is a rigid edge betweenn and any other intrinsically
polymorphic node n° below n. Formally,

8n%n® _n~r (MY2Poly=) n® = n
| Example Figure B2 shows the SystenF type
v (Cig! @)! (int! int)

as well as three possiblVILF graphic representations of this type 1, » and 3. Indeed, the
relation + (;) ¢ holds foriin 1:::3. Moreover, all the hollow-colored nodes in theMLF
types are inert.

As de ned by the previous sections,v @ is too restrictive. Indeed, we have not permitted
transforming inert nodes, which is permitted by v ¢ . Indeed, v . also allows to raise, lower,
merge, split, weaken and strengthen (the inverse operatiomf weaken) those nodes. Thus
v @ also allows all those transformations, and 1 v® ,v® ;v @ ; holds.

Conversely, in order to preserve the decidability of type irference,v only allows merging,
raising and weakening inert nodes. (However, this means tha ; v , v 3 still holds.)

Monomorphic nodes

The fact that inert nodes cannot be e.g. unmerged or lowered byv may seem unfortunate.
Indeed, it means that the binding edge of a node labelled by ampund type constructor such
asint is signi cant. Thus, we should distinguish the types , and 3 of Figure[22Z].

5.3
5.3.1

5.3. Formal de nition of the instance relations 55

Happily, this is in fact not the case. On a subset of inert types those with no variables
under them we can allow unmerging, unraising and unweakening without losing decidabil-
ity of type inference.

De nition 5.2.3 (Monomorphic nodes) Let be a graphic type. A noden is
monomorphic if n and all the nodes bound under it have non-polymorphic symbd. For-
mally,

8n%n® n= (n%2Poly

Of course, as for inert nodes, this de nition only involves the binding tree. In particular,
there can be polymorphic symbols undem for (. However, since polymorphism is only
requested through the binding tree, we need not make such a sfiinction.

Perhaps surprisingly, we nevertheless do not add unmerginginraising and unweakening
on monomorphic nodes inv. Indeed, it in fact holds (MI32) that this would not add
expressiveness to the type system. Hence we keep as simple as possible. Moreover, as
it is oriented towards more sharing , we can use e cient rst-order uni cation algorithms
that implement uni cation exactly for v .

Representing inert and monomorphic nodes In the following, we represent monomorphic
nodes in white. Inert nodes, which allow the same transformBions as orange nodes, are
represented as hollow orange nodes.

Formal de nition of the instance relations

Permissions

In the syntactic presentation of MLF, nding what transformations are allowed at a given
position in a type is not readily apparent, at it is determined by contextual inference rules
and the strati cation between the abstraction and instance relations. In graphic types, the
allowed transformations are obtained by looking at the colo of the node. However, as we
stressed in |13, colors are only a visual help. Indeed, theyasolely determined by the shape
of the binding tree above the node (for green, orange and red)r below the node (for white,
i.e. inert nodes). We introduce the notion of ag path to determine the non-white colors.

De nition 5.3.1 (Flag path) Let be a type, n a node of . The ag path of nin
written ~ (n) is the sequence of binding ags™ such that hi ~ n.

We write ~(n) when is implicit from context. Notice that the ag path is read by f ollowing
binding edges in theinverse direction of the one in

| Example Inthe type ; of Figure 2Z1,~ ,(hl) = (>=)

The de nition below gives the exact de nition of colors as we have used them so far.
Since colors de ne which operations are allowed on a given m®, we also use the term of
permission. Permissions are also summarized in FigurEE5.3.1.

56

Instance on MLF graphic types

5.3.2

‘ Permission‘ Name ‘ Flag Path

G Green > |

O Orange = -
R Red =>" @,/
I Inert De nition £221 L
M Monomorphic | De nition 52231 @

Figure 5.3.1 Permissions

De nition 5.3.2 (Permissions) A node n of a type is said to havepermission p if

n is monomorphic in

n is inert in

nis notinertin and ™ (n) is of the form >
nis notinertin and ™ (n) is of the form (>j=
nis notinertin and™ (n) is of the form (>j=

T T T T T
[I | I N N
TOOTE

) =
) =>"
The permissions ofn in are written P (n). If n has permissionp, it is said to be ap node

Notice that G, O, R and | are disjoint sets of nodes (and that each node has exactly onef
those permissions), as they usually require distinct treament in proofs. Howeverl nodes
can beM nodes. Those two choices are only a matter of presentation; @wcould have instead
said that all nodes at> ag path have G permission, or that | and M nodes are distinct.

Disregarding the fact it can be inert, a simple way to nd whether a node isG, O or R
is to follow its ag path in the automation given at the right o f Figure EE371. The state G
is the initial state, i.e. the permission of the root.

| Example Consider the nodehlli of type ; in Figure B2, whose ag path is>=. We
rst follow the exible edge from G to itself, and then the rigid edge from G to O; hll is
indeed orange, as it is not inert,

Atomic instance operations

Instance is composed of the four operations grafting, mergyg, raising and weakening in-
troduced in the previous sections and formally de ned below All four transformations are
displayed schematically in Figure[5:3P, with the permissbns permitting the transformation.
Nodes in blue have either green, orange or inert permissionSmaller nodes, in light grey,
have permissions either irrelevant or unconstrained by theother nodes and edges in the
drawing.

I A concrete example Figure B33 introduces a sequence of types, each of whichiis a
particular form of instance relation with it successor. Thetype ; is actually a valid type
(albeit not the principal one) for the term K ° de ned by

() (y:8() ')y (K9

5.3.2.1

5.3. Formal de nition of the instance relations

57

VW
s =
B \
n n

3 {
n n

Figure 5.3.2 Schematic depiction of the atomic instance ogrations

By construction of instance, all the types ,::: g are instances of 1, hence valid types
for KO In g the nodeshli and i2i are merged. Thus, schematically, the instance steps
of Figure [E-33 prove that K © and the identity function can be put inside an homogeneous
container such as a list. Indeed, g is a common instance of ; and of the principal type
8() ! of the identity function.

Grafting

De nition 5.3.3 (Grafting) A type Cis the (instance-)grafting of ®atnin ifnisa
bottom node with green permission in and %is [°&n]. We write Graft(°n) for the
function 7! ©

Notice that a node can become inert or monomorphic by graftim, if the root of %is itself
inert or monomorphic.

| Example In Figure B33, ;| = Graft(j=hli;hli)(1) holds for2 i 7.

Instance on MLF graphic types

Figure 5.3.3 Example of type instance.

5.3.2.2 Merging

As in SystemsF and F, merging is only possible on locally congruent nodes otherwise the
control of permissions would much more complicated.

De nition 5.3.4 (Merging) A type Cis the (instance-)merging of the nodesn; and n,
in if:

1. %is [ny = ny];

2. n; and n, have non-red permissions

3. n; and n; are locally congruent.

We write Mergeg(ny;n,) for the function 7! °©.

As usual, some subparts of the subgraphs unden; and n, can already be shared, hence
the overlap in the sketch of Figure[3P.

2By de nition, n1 and ny have the same permissions: their ag path and the binding tre e under them
are identical.

5.3.2.3

5.3.24

5.3. Formal de nition of the instance relations 59

Figure 5.3.4 Merging and local congruence.

| Examples In Figure B233, the following two relations are veri ed:
6 = (Mergg(hl1li; h112); Mergghl21i; h122))(s) g = Mergghli; h2i)(7)

Consider next the types , n and o of Figure B234. The type mo is [hli = h2i] but
not Mergghli; 2i)(). Indeed the nodeshlli and H21i fail condition Bl since they are not
bound under hli and 2 in

In this particular case, the transformation can be decomposd into two atomic mergings
that both satisfy condition 8]

m = Mergghlli; R21i)() mo = Mergg(hli; 2i)(m)

However, such a decomposition does not always exist. In ourxample, had hlli and R21i
been red, the rst merging would not have been possible.

Raising
De nition 5.3.5 (Raising) A type Cis the (instance-)raising ofn in if n has non-red
permissions in , and °= " n. We write Raisén) for the function » 7! 7,

| Example In Figure 233, 3 is the raising of 121 in ,, while 4 is the raising of 122
in 3.

Weakening

De nition 5.3.6 (Weakening) A type Cis the (instance-)weakening ofn in if n has
green or inert permissions in , and and ° coincide except for the binding edgen ~ n°

in , which is replaced byn =~ n%in % We write Weaker{n) for the function 7! ©

| Example In Figure B33, 7 is the weakening ofhlli in ¢, while 5 is the weakening of
the inert node hl2i in 4.

In the following, we order binding ags by (>) < (=), following the transformation
induced by a weakening.

De nition 5.3.7 (Order on binding ags) We write < the order de ned by (>) < (=),
)< ()and(®) < (3.

Instance on MLF graphic types

5.3.3 The instance relation

De nition 5.3.8 (Instance subrelations) We write v©&, vM vR and vW for the re-
exive transitive closures of the relations respectively e ned by

vé O 9m;9 % 0= Graft(On)()
v 0 9ng;ny; %= Merge(ng;ny)()
vl 0 9n; %= Rais¢n)()

vy 0 9n; 9= Weakerfn)()

Instance is simply the union of all forms of instance operains.

De nition 5.3.9 (Instance) The instance relation on typesv is the re exive transitive
closure(ve [v M [v R[v W) of all forms of instances.

| Example Coming back to Figure[2333, we have seen in the previous sech that

M

w
7V 8

M w

1V 2V 3V 4V 5V 6V

holds. Hence, 1 v g holds by de nition of v. A shortened decomposition of this fact is

G M

1V 7V 8

Moreover, some operations could be performed in a di erent cder. However, the weakening
of nodeh21i must always be performed after the nodes?11 and 212 have been merged.
Indeed, both nodes are red after the weakening, which preves any further operation on
them.

Notations Consider a@-like relation symbol such asv . In the remainder of this document,
for any valid X and Y, we let @Y be @ @"'. Thusv is just v RMW e also letAX be
the symmetric relation of @, and allow any meaningful combinations of those notations,
as well as with the relations @.

By construction, the instance relation of MLF is a re nement of the instance relation on
term-graphs.

Property 5.3.10 Giventwo types and % v Cimplies vg °

I 1
Proof: By induction on a derivation of v ° Once the binding tree and the permissions
checks are removed,v ® and v™ become subrelations ofv g, while vR and vV do not

change the underlying term-graph at all.
L |

Instance is an oriented relation. Since graphic types have rmonymous variables, -
conversion is directly captured by the representation of types, and non-re exive instance
steps permanently change the type.

Lemma 5.3.11 The kernel of v is equality.

5.34

5.3. Formal de nition of the instance relations

61

I Proof: Non-re exive instance strictly decreases lexicographically the measure (Ni(); |
N2()), where
Ni() is the number of paths suchthat ()isnot ?.
Raise Merge and Weakenleave N1 unchanged. For Graft, suppose the operation is
Graft(;n):
if is reduced to ?, the instance is re exive;
if is not ?, the number of non-bottom paths strictly increases, as all p aths such

that n are no longer labelled by ? .
N2() is the sum of the binding heights of the nodes of plus the number of exibly bound
nodes of .

Raising strictly decreases at least one binding height, and does not change the number
of exible nodes. Merging strictly decreases the number of nodes, hence the sum of
the binding heights (and possibly the number of exible node s). Weakening keeps the
binding height unchanged and strictly decreases the number of exible nodes.

Notice that this measure is not well-founded, as N1() can grow arbitrarily.

Instance modulo similarity

As in the systems seen in[¥3, the instance relation is too nerained: we wish to read types
modulo some inessential details, using a similarity relatn that abstracts over them.

By design, MLF similarity only captures simple semantic equivalences. In particular,
reasoning modulo similarity preserves decidability of type inference. Precisely, similarity
captures the di erences in both the sharing and the binding d monomorphic nodes.

De nition 5.3.12 (Similarity) We write v™,v" andv Y for the subrelations ofvM , v R
and v that only merge, raise or weaken monomorphic noded,e. the transitive closures
of the relations

vl 9 | 9ns;n; monomorphicin ;%= Merge(ng;ny)();
vi 9 , 9n monomorphicin ; 0= Raisén)()
v¥% © 9n monomorphicin ; 0= Weaker{n)()

We call reversible instancethe subrelation v™ of v. We call similarity , written
the equivalence relation(v™ [w ™) and instance modulo similarity, written v , the
relation (v[) .

Types are meant to be understood modulo similarity; in fact, when we display them in
syntactic form, we entirely remove the binding edges and thesharing on monomorphic
nodes. However, we often express results far alone, as they are both stronger than for
v , and easier to establish.

| Example Consider again Figure[52Z1l. The relation
3 = (Rais€h21i) ; Raiséh22i) ; Mergg(21i; 22))(2)

holds, and all the nodes involved are monomorphic. Thus 3 is a reversible instance of
2, and both types are similar. Likewise, in Figure[2:338, the ypes 4 and s are similar,

62

Instance on MLF graphic types

5.3.5

since s = Weaker{hl2)(4) holds, and this weakening is monomorphic. Of course, in more
complicated cases one type is not necessarily a reversiblestance of the other.

Unsurprisingly, is exactly the reversible part ofv

Lemma 5.3.13 The kernel ofv s

Proof: Consider two types and °such that v Ov , and a derivation | of this
result. We show that an operation of v n v ™ cannot be undone, and hence cannot
appear in | .

. | cannot contain a non-re exive grafting (1), as _and _°would be di erent.

. the binding heights of non-monomorphic nodes (and the fact t hat the nodes are non-
monomorphic) are preserved byv™ , w™, vV w" and strictly decrease for at least one
node by v R nv'. Moreover, they are preserved by v " and w": since non-monomorphic
paths are upwards-closed for _ , those two operations cannot be used to lower or raise
a node above a non-monomorphic node to change the binding heght of the latter. Thus,
together with (1), | cannot contain a hon-monomorphic raising (2).

. the number of non-monomorphic nodes is preserved by andv ", and strictly decreases
by v™ nv™. Thus, by (1) and (2), | cannot contain a non-monomorphic merging.

. the number of paths such that ()=(>) and h i is non-monomorphic is stable by

and v M and strictly decreases by v nv™. Thus, by (1) and (2), | cannot contain
a non-monomorphic weakening.

Thus, by the four points above, | only contains similarity steps.
L |

Instance modulo abstraction

The (instance modulo) abstraction relation is used to abstact over all the notational details
brought by the introduction of rigid quanti cation to Syste m F types. In particular, it
allows freely transforming nodes with rigid edges, as wellsall inert nodes.

De nition 5.3.14 (Abstraction) We write @', @} and @V for the subrelations ofv ™ ,
vR and vW that only merge, raise and weaken inert or orange noded,e. the transitive
closures of the relations

@' ° , 9ng;nyinertororangein ; 9= Merggny;no)();
@ ° , 9ninertororangein ; 0= Raisén)()
@ ©° , O9ninertin ; 0= Weaker{n)()

We call abstraction the subrelation @of v de ned as @'RY . We write @ the equivalence
relation de ned by (@ A) . We call instance modulo abstraction written v @, the relation

vl @ .
| Example In Figure B2,
2 = (Weaker{hli) ; Merge(hl1i; h12i))(1)

Sincehli is inert and both hlli and hl2i are orange, this operations is an abstraction. Thus
both 1 @ 2 and 1 @ 2 hold.

5.4

5.4.1

5.4. Instance and permissions

63

Notice that the following inclusions hold by construction:

() (® v™) @ () (v) (9

The relation v ® de nes the implicit version of MLF, where type annotations are not needed
in source terms. Conversely, type inference is no longer diefable in this system.

We conclude this section by proving that @ is exactly the reversible part ofv @.

Lemma 5.3.15 The kernel of v @ is @.

I 1
Proof: The proof is the same as for Lemmal5.3.TB, replacing non-maomorphic by green

and the subrelations of by the corresponding relations in @. The only di erence is the

fact that green paths and nodes are not stable, but instead decrease, byv V.
L |

Instance and permissions

In this last section, we characterize instance through an etirely operational point of view
as opposed to the semantic one used when de ning instance irhé previous sections. We
also characterize how permissions evolve through instance

Change in permissions

As a small (but important) technical result, we identify all the atomic instance operations
that change the permissions of a node. This result is particlarly useful inside proofs, when
we need to assert that some permissions do not change. (Howavwe will also use a more
abstract presentation, given in YoZ1B.)

Lemma 5.4.1 (Change in permissions) Let be atype, andn a type of such that an
atomic instance operation o is applied ton. Let °%beo(). If there exists a noden® of ©
with di erent permissions in ~ and © then necessarily one of the following holds

o = Graft(°On) for some type % n and n®are greenin , n _ n% and n®is
monomorphic or inert in ©.

0= Weaker{n), n and n® are green in and one of the following holds:

n®= n and n®is orange in °

+

n® * nandnis red in

n * n'and n%is inert in
0= Rais¢n), n°=~(n) and either

n is orange or inert in , n%is inertin and monomorphic in © or

n and n®are green in , and n®is monomorphic or inert in ©

64

Instance on MLF graphic types

Proof: Since the permissions of a noden® are entirely determined by the binding edges
and the binding ags of the nodes above and below n®(for _), we have necessarily either

n

_ n%orn® _ n. The proof is by case disjunction on o.

If ois a merging: the binding tree and the binding ags are entirely unchange din °

-h 0 0

encen” has exactly the same permissions in and

. If ois a grafting: by de nition of grafting, n has green permissions. The nodes above

n (which are necessarily also green) can become inert or monororphic depending on
the binding tree of the type grafted, or remain green. There i s no node undern, since
it is a variable.

If ois a weakening we proceed by case disjunction on the permissions ofn in

If nis green by de nition of green, there exists an intrinsically polym orphic node
0

n®such that n"°Y >) nin . This path still exists in ©, thus n is orange in

Next, consider a node n® such that n * n®% Necessarily, it is green. Hence, it can
only remain green, or become inert if n is in the only ag path to an intrinsically
polymorphic node.

Finally, consider a node n°such that n® * nin . If n%is inert or monomorphicin ,
it is also inert or monomorphic in % the binding tree under this node is unchanged
in % Otherwise, there exists an intrinsically polymorphic nod e n®such that n°{ ~_
) n% inboth and ©°(1). If n%is red, sincen is green, we haven® >~ n 2 , with
(=) somewhere in—. This binding path is the same in % together with (1), this
shows that n®is red in ° If n®is orange, we haven® *_ instead, but the reasoning
is the same. Ifnis green, it becomes red in °.

If nis red: the weakening is forbidden.
If nis orange the weakening is impossible, asn is already rigidly bound.

If n is monomorphic: the permissions of n and of the nodes below are unchanged,
since monomorphic nodes are only concerned with binding edgs, not with binding

ags. For the nodes above, consider nsuchthat n * n°

If n%is not inert: the ag path witnessing this fact cannot go through n. Hence
this ag path still exists in ~ ° and since the ag path above n°is unchanged, n°
has the same permissions in °.
If n®is monomorphic: the binding edges under it are unchanged (only the binding
ag of n is changed), and it is still monomorphic in °.
If n%is inert: there are already rigid edges on all the ag paths under n% adding
a new rigid edge under n® does not change this fact.
If nisinert: the permissions ofn and of the nodes below are unchanged, since the
binding trees under all those nodes are unchanged. The condlsion for the nodes
above n is the same as in the previous case.

. If ois araising: The automaton of Figure £:3Tldoes not count the number of binding

ags it sees, but merely their alternation. Thus it returnst he same color forn in and
9(2): the only problematic case would be if n was exibly bound, and if it was bound
above a rigid edge (making it possibly green after the raising), but this case is forbidden
by permissions. Since the binding tree and the binding edgesbelow n are unchanged,
by (2), n and the nodes bound on it have the same permissions in and °

The permissions of the nodesn® above i are unchanged:

if n®is monomorphic in : the result is immediate, as no polymorphic node can be
transitively bound on n%in ° since none exists in

5.4.2

5.4. Instance and permissions 65

if n®is non-inertin : there exists a exible ag path to an intrinsically polymor -
phic node n®in . In °this ag path might have changed through the raising of
n, but n%is still accessible from n°. Since the ag path above n°is unchanged, the
permissions of n® are unchanged.

if n%is inert but not monomorphic in there is a ag path to an intrinsically
polymorphic node n®in Y this ag path containing an edge =. After the raising
this path might have changed, but at least one edge = still exists, as permissions
disallow raising a exible edge above a rigid one. Hencen®is still inertin ~ °

0.

For n itself, since the ag path above A is unchanged in ° the color returned by
the automation for n°is the same in and ° Hence, n can only become inert or
monomorphic (3), which is possible since n is no longer bound on it. We proceed by
case analysis on the permissions oh in

If nisgreen N must also be green, which is the desired result together with (3).

If nis orange A can be anything but monomorphic (monomorphic nodes are down-
wards closed). If it is inert, it can become monomorphic, or r emain inert. It it is not
inert, the ag path witnessing this fact cannot involve n (which is rigidly bound),
and f has the same permissions in °.

If nis inert and not monomorphic : as aboven can be anything but monomorphic.
If it is inert, the result is also as above. If it is not inert, t he ag path still cannot
involve n, asn is inert. The conclusion is as above.

If nisred: this case is impossible by permissions.
If n is monomorphic: raising n does not change the permissions ofi at all. Indeed,

the ag path above n°is unchanged, and so are all the ag paths to a polymorphic

node under n°.
L |

Notice a very important corollary of this result: red nodes never disappear through an
instance operation (and they only appear through weakeniny This result is not overly
surprising, as it already holds in SystemF , and the interpretations of red nodes inMLF and
this system are supposed to be the same.

Property 5.4.2 Nodes with red permissions are preserved by ®.

I 1
Proof: By Lemma BZT], it is immediate that instance preserve red n odes, as the only nodes

for which permissions change are green or inert ones. It remans to prove the result for
A . The only problematic case is for weakenings, which can introduce red nodes. However,
this is only the case for the weakening of a green node, which § not part of @; hence, the
inverse operation is not part of A either.

Ordering permissions

An interesting way to characterize permissions is to order hem according to the operations
they allow.

De nition 5.4.3 (Order on permissions) Let @be a subrelation ofv ®. We say that
< is anorder on permissions for @if P < P implies that any operation of @ possible on a
node with permissionP is also possible on a node with permissiof®.

66

Instance on MLF graphic types

In particular, two di erent permissions can be equal for @ if they allow the same transfor-
mations.

| Example We haveR < O< Gfor v. Moreover, | and M are equal for this relation.

Unsurprisingly, the ordering between permissions changeepending on whether we con-
siderv,vi™ @ v orv® We give ve suitable orders below.

Lemma 5.4.4 The transitive and re exive closure of the orders , mw, @ and

@ of Figure [5:47] are correct permission orders for the relationsv, v'™ @ v and
v @ respectively.

M;I; G rmw @ I;IG M; |
| - N | /N
e} M M;1;0 0 G o)
| | I | N/
R GIl;OR GR R R

An arrow from P to P° means thatP < P°

Figure 5.4.1 Order on permissions

The proof of this result is immediate by examining the ve relations; we however give some
details below.

In each case,R is the lowest permission, as it never permits any operation.The order

rmw 1S the simplest: v ™" only allows transformations on monomorphic nodes. Similaly,
@ only allows raising, merging and weakening, and only on mormorphic, inert or orange
nodes.

For , as expected we haveG > O > R. At rst, it might seem strange to also
have G equal to | or M, as the rst permission allows grafting but not the last two. But
G I;M also holds by reasoning as follows: grafting can be vacuoys$aid to be allowed on
monomorphic or inert nodes, as it is only possible on varialds, which cannot be momorphic
or inert. Moreover, our convention of making G, | and M equal is much more convenient to
work with. The order is essentially similar to , , except that it distinguishes M from
I and G. Indeed, M nodes can be freely transformed byv™" in v , which is not the case
for I and G nodes.

The ordering for g is quite di erent. First, we cannot merge G with | and M: the last
two permissions allow unsharing alongA, but not G. In parallel, we cannot mergeO with
I or M, as O does not allow grafting. As a result,G and O are incomparable, and both less
general than M and I, resulting in the order g. (Another possibility would be to merge

5.4.3

5.4. Instance and permissions

M, I and O, as we did for g, and to make G incomparable with those three permissions,
as the rst three allow unsharing and G allows grafting. However this order would be less
practical to work with for the use we present in the next secton.)

Evolution of permissions through instance

Armed with those orders, we can study how permissions changehen a type is transformed

by an instance operation. The results are mostly as one wouleéxpect. In particular, all

the transformations but weakening preserve permissions,raslightly increase them (because

some nodes can become inert or monomorphic). Weakening deases permissions for ,
mw and ; we discuss weakening for g below.

Property 5.4.5 Let be a type, © another type obtained by transforming . Let be a
path of . Let P (resp. P') be the permissions of the node at in (resp. 9.

if vM OthenP'= P for all ve orders

if vS OthenP'> P for all ve orders.
if vR OthenP'> P for all ve orders

if vW OthenP'<Pfor ,, mw and
if 0 then P' = P for all the orders

if @ C°thenP' =Pfor g.

I 1
Proof: All the results are direct consequences of Lemmda®. 21 ; we lbowever give some details
below.

Merging does not change permissions at all. Grafting can change green nodes into
monomorphic or inert nodes, which increases or preserves pemissions for all the orders.
Raising changes green or inert nodes into inert or monomorphic ones, i.e. it increases
permissions for all the orders. Weakening changes green nods into red, orange or inert
ones, which indeed decreases permissions for the given ords.

For : grafting is no longer possible; weakening and raising do nd change permissions, as
they only do so when applied on green, orange or inert nodes, vhich cannot be changed
by vi™ . Thus v'™ does not change permissions at all, and thusw™" does not either.

For @: by the same reasoning as above, only the raising of an orangenode can change
permissions. This operation can only change an inert node into a monomorphic one, but
we havel = M for g, hence the result.

This result is quite useful in proofs, as it is a good layer of bstraction on top of Lemmal>Z1].

Notice that weakening is not monotonic for g: green nodes can become orange, red
or inert. This is a beginning of explanation on why type inference is not possible whewv @
is used as the instance relation. Since weakening increastt® permissions of some nodes,
using a weakening during type inference (on a node on which B weakening is not strictly
required as this step) might yield a better type. However this could also make type inference
fail later, since weakening also decreases permissions. U9) in order to be complete, type
inference would at least need to backtrack sometimes duringnference.

68

Instance on MLF graphic types

Convention In the following, we almost always reason orv . Hence, when we write that
permissions increase, decrease, or remain stable, this ntuse understood with respect to
v - There are a few exceptions, explicitly mentioned in the tex.

6.1

Properties of the instance relations

Abstract

In this chapter, we study the various instance (sub)relatio ns. Since instance is not
noetherian, we isolate some subrelations of instance that have this property (YEZI). We
show that v can be reorganized so that instance derivations always follow a certain
order (MB2). We characterize big-step versions ofv R and v "W | thus removing the
need for decomposing an instance derivation into atomic operations (YI&3). For grafting
(which is already a big-step operation), we instead show that we can proceed by small,
atomic steps (Y&3). We show that, under certain conditions, an instance operation
inside an instance derivation can be brought at the beginnin g of the derivation (YEG).
Finally, we show that most of the subrelations of instance ar e con uent, and that v
and v @ can be reorganized so that all instance operations are perfemed rst (YEZ].

The results of this chapter are mostly technical, and used manly inside proofs. However
the de nitions of I3 and Y61 are used when discussing thailcation algorithm in YTI

Proving instance-related results Many proofs of this document have similar structure, as
they proceed by induction on a given instance derivation. Havever, very often, we need
the derivation to be constrained. For example, some operatins need to appear before
some others. The results of this chapter are in particular usd to obtain those constrained
derivations.

Reasoning on restricted instance

Grafting can increase the size of the skeleton of a type in anrhitrary way, and v is not a
noetherian relation. However, all other instance subrelaibns are noetherian. This provides
a powerful reasoning mechanism whenever the structure of # types is guaranteed not to
grow arbitrarily.

69

70

Properties of the instance relations

6.2

De nition 6.1.1 (Structure de nedness) Consider two types and ° We say that
is structurally less-de ned than 9 if

8

< 2dom(9
8 2dom(); ", ()=7

o ()= %)

It is immediate that only grafting changes structure-de nedness.

Property 6.1.2 Let and ©°be two types. If v© O then is less-de ned than ©. If
(vRMW [y RMW Yy 0" and ©have the same structure de nedness.

In particular, structure-de nedness is completely invariant by and &.

De nition 6.1.3 (Restricted instance) Consider a type . We write vj the restriction
of the instance relation to graphic types with structure less-de ned than the one of , i.e.

1V 2, 1V 2 N s structurally less-de ned than
Of course, this implies that ; is also less-de ned than .

Property 6.1.4 Let be a type. The restriction ofvj to non-re exive instance steps is
noetherian.

I 1
Proof: The result is immediate by the proof of Lemma £3T7T] as the Iexicographic order
of this proof becomes well-founded: for any type ®and ®suchthat °vj % Ni(9
and -N1(% are greater than Ni().

Ordering the instance operations

The subrelations of the instance relation are almost entiréy orthogonal: grafting only in-
volves (and mainly changes), while merging, raising and weakening only alter~, ~ and

respectively. This orthogonality is quite convenient whenstudying the properties ofv , as
it makes commutations between the di erent operations quite simple. In fact, it is possible
to strongly constrain the instance relations and subrelatons so as to obtain more canonical
derivations (resulting in much simpler proofs): graftings can always occur rst, followed by
raisings, and then mergings and weakenings interleaved. Tk exibility is actually one of
the keys to an e cient implementation of uni cation (Y7

Lemma 6.2.1 The instance relation v is equal to the relationv © ;v R ;v MW

R MW

Proof: The inclusion v¢:vR :v v is by de nition of v . For the other inclusion,
Figure B2Z shows that v 1 ; v 1 is included in v ® ;v R ; vMW (1): provided the left-hand
side of the equations is de ned, the equalities presented in this gure hold. All cases use
Property £ Z.5]to justify that there are enough permissions to do the rewriting. In all the

6.2. Ordering the instance operations

Raisén) ; Graft(®n9 = Graft(®n%; Raisgn)
Raising does not create new green nodes, hence the graftingrcbe done rst.

Weaker(n) ; Graft(®n% = Graft(%n9 : Weaker(n)

S Graft(%n%; Mergg(ni;n,)
% if " My [n,i after merging
Merge(ny; n,) ; Graft(%n9 £ Graft(%ny); Graft(%ny); Merge(ni;ny)
§ if after merging n® * My [nai
andmi[nai (n°

Weaker(n) ; Raisén® = Raisén?) : Weaker(n)

g Rais€n®) ; Merge(ny;ny)
if after merging n® 6 My [nai
Rais€n) ; Raisé€n,) ; Mergg(ny; ny)
if after merging n°= My [nyi
Rais€n,); Rais¢n,); Merggni;ny)
if after merging n® * my[nai (n°
Rais€n,); Raisén,); Merggni ;n »); Merggni;ny)
' if after merging n°= [nai (n°

Merge(n1; n) ; Raisén®) =

Figure 6.2.1 Reordering instance

cases but the rst (which is justi ed in the gure), we move an operation restricting or
preserving permissions behind an operation increasing or eserving permissions.
Next, consider two types and %such that v ©° and a derivation | of this result.
We must show that rewriting | according to the rules of Figure E2Z1 terminates. No-
tice that these rules either preserve the number of atomic instance steps or strictly in-
crease this number, and that no re exive step is introduced. By (1), it is immediate that
(Vijo;vijo) (vCjo;vRjo;vM¥ jo). Sincevj ois noetherian, the rewriting rules
that strictly increase the number of atomic instance steps can only occur nitely many
times. Hence it su ces to show that the rules that preserve th e number of instance op-
erations can also be applied only nitely many times; we call these rulesR. Let us write
| aso;;02;:::; 0k, i.e. as the sequence as atomic instance steps that transform into
° The rules of R are such that they rewrite o, ; 0q into 0q ; 0p. It is immediate that
each application of a rule strictly decreases the number of inversions between the instance
operations w.r.t. the correct order, i.e. the well-founded measure s de ned by

S(01;02;:::;0¢) = jf(pP;@ jop;:ii;0qis not of the form
Graft(;) ;Raisg) ;(Merge(;)[Weaken()) gj

Other simple decompositions €.g. vR ; vMW v ©) are not possible in the general case.
Grafting must occur rst, as it introduces new nodes which might need to be raised later.

72

Properties of the instance relations

6.3

6.3.1

Weakening must occur last, because it restricts permission Merging and weakening must
be interleaved because the former requires the binding aggso be congruent hence the
need to weaken some nodes.

De nition 6.2.2 (Ordered instance derivations) A sequence of elementary instance
transformations is called ordered when it respects the ordering of Lemmd&.Z11.

| Example The proof of 1 v g in Figure 233 is ordered.

Big-step instance subrelations

Proving that two types are in instance relation a priori requires to exhibit a derivation
of this result in term of atomic instance steps. Since this ca become quite tedious, we
introduce big-steps relations that compare the shapes otwo types and asserts they are
instance of one another.

Big-step raising

Raising can only be applied to raisable nodes. In order to pree that v R © we should
thus prove that all nodes raised in the derivation are raisalle (or alternatively that all

intermediary types are well-dominated); this makes proofgjuite complicated. An alternative
is to de ne a relation that compares the binding trees of two well-dominated types, and
asserts that one is the result of performing multiple raisirg in the other.

De nition 6.3.1 (Big-step raising) Given two types and ©, we say that Cis a big-
step raising of , written v R 9 if and only if

8
(1 =°
@ = o
3 (3 " ()
" (4) 8n; ") 8~(n) =) P ()6 R

AN

The rst two points assert that the underlying term-graphs a nd all the binding ags are
equal in and ° The third point veri es that a binding edge of Cis in the transitive
closure of the binding edges of . The fourth point ensures that a raised node has enough
permissions.

Next, we characterize raisings in which the nodes lowest intte type are raised rst.

De nition 6.3.2 (Bottom-up raising) A sequenceRaisén);:::; Raisé€ny) is said to be
a bottom-up raising if

i>jp =) (o T om)

If two types verify vR' 0 jtis easy to obtain a bottom-up raising for v® & we can
raise any node amongst the lowest ones, and iterate this stepntil no node remains to be
raised. This is not the case ife.g. we choose a top-down ordering, as some nodes might not
be raisable at rst.

6.3. Big-step instance subrelations

Lemma 6.3.3 Consider two types such that vR © Then there exists a bottom-up

proves vR O

I
Proof: Let m(; 9 be the measure de ned by
X
m(; 9= kjn * & "n)2
n2dom()

The proof is by induction on m(; 9. If this number is 0, all the nodes of are bound at
the same node in and © Since vR® O%holds, = °and the empty sequence proves
the result. Otherwise, let n be a node lowest for (among those such that ~(n) & ~ %n).
Let us rst prove that n can be raised in

. n_is raisable in _: we proceed by contradiction, and assume there existsn® bound at
A(n)in suchthatn { n% The mixed path hi (~%n)~ n { n%isvalidin
% Moreover this path does not contain ~%n%: this node is equal to ~(n) (as otherwise
n® would be raised before n), and ~(n) is strictly above n and strictly below 7%n)

(indeed, ~(n) & ~%n) by hypothesis, and point 3 of the de nition of v ®' implies that
n * AYn)2). Thus °would not be well-dominated: contradiction.
. n_isnotredin : by point 4 of the de nition of v’ .

R 00,, R\

Let “pe Raisgn)(). We have proven vR @ Let us next prove v ° All points
R\

but the third in the de nition of v R are immediate since v % holds. For point 3,

consider a binding edgen® _ ~%n% of ° By hypothesis, n® * 2%n% 2 and we must
prove that n® * ~n% 2 % in | ifn® * AYn%isnotoftheform n® _ n _ ~(n),
the result is immediate. Suppose then that we haven® _ n _ ~%n% 2 . The noden®

cannot be n: we have ~(n) 6 ~°(n) by hypothesis on n. Thus n®is strictly below n, which
contradicts the choice of n as lowest node. Thus “v R ©holds.

Finally, we have m(@ 9= m(; 9 1bydenitionof %andm. Since v Cholds,

by induction hypothesis there exists a bottom-up raising for ®v® 0 Together with

Raisén)(), this forms a bottom-up derivation for v < © which is the desired result.

As v R is also included inv R | we can prove the equality of these two relations.

Lemma 6.3.4 The relations vR and v R are equal.

I
Proof: The direction v® °=) vR Cjs by LemmaE33.

The direction vR 0 = v R Ojs by induction on a derivation of vR °If = ©
the result is immediate. Otherwise, let “be such that v§ %vR® 9 By induction
hypothesis, “°v® %holds (1). By de nition of raising, it is immediate that yR©

Thus it su ces to show that v R is transitive. For the rst two points of the de nition,

this is by transitivity of equality. For the fourth point, it is a consequence of the fact that
raising does not remove or introduce red nodes. For the third point, we have oo N
and 2 (™* py vR %and ©yR 0 Then (™" ((*)*)* by the rstinclusion,
this last expression being equal to (*)*. By transitivity of inclusion we have ~° (*)*,
which is the desired result.

74

Properties of the instance relations

6.3.2 Big-step merging and weakening

As we have done forv R, we can characterize a big-step merging and weakening opeian,
and prove that it is derivable using the usual atomic operatons. We also isolate derivations
that occur bottom-up. We moreover require that weakenings n those derivations occur
before mergings.

De nition 6.3.5 (Big-step merging-weakening) We say that ©is a big-step merging-
weakeningof , written v MW\ Ojf

S 1 _=_°
(2) AN =n0
@ ~ 2 3
< n6n°
. (4) 8n;8n% A n-Pnpo =) P (n)6R
©Mn) =7 (n9

(5) 8n; (n)< Hn)

(6) 8n; An)& (n) =) P (n)6R
The rst two points ensure that the underlying tree and the bi nding edges are unchanged.
The third point ensures that ° merges more nodes than , while the fourth veri es that
permissions are veri ed for the merging. The condition ~(n) = ~ (n% makes sure that we
do not check permissions for nodes that are indirectly merg& The fth point checks that

binding ags are either unchanged, or that exible edges aretransformed into rigid ones.
The last point checks that all the weakenings are allowed.

De nition 6.3.6 (Bottom-up merging-weakening) A sequence ;:::;ip is abottom-
up merging-weakeningif it veri es

for any p, o, is either Mergg(ny; ny) or Weaker{n)

if ny is transformed by o, and nq is transformed by oq (e.9. ny = Merggnp;n) or
Merge(n; np) or Weaker(np)), and if n, { ng, then p>q

if 0, is Merge(n; n% or Mergg(n® n) and oq is Weaker{n), then g < p

Given a derivation vMW'\ 0 we can nd a derivation of this result in terms of a
bottom-up derivation vMW 0 |t is simply obtained by nding the lowest node to
transform, and performing the required operation.

Lemma 6.3.7 Consider two type and °such vMW' 0nholds. Then there exists a

witnesses vMW 0

I
Proof: Let m be the measure de ned by

m(; 9= f(mnYjn6n® n-"n% + fnj (nN)=(>)" An)=(=) g

6.3. Big-step instance subrelations

The proof is by induction on m(; 9. If this numberif 0, we have = O°since v™W'\ O

and the empty derivation proves the result. Otherwise, let n be a node lowest in for (
among the nodesn such that either

1. (n)6 Yn)
2. there exists n° distinct from such that n ~°n®and ~(n) =~ (n9.

Let us justify that n exists: if fnj (n)=(>)" %n)=(=) g is not O, at least one node
veri es point 1. Otherwise, jf(n;n%jn6n°~ n ~°n%;jis not 0. Let n; and n; be two
nodes merged in butnotin ° If they are not bound to the same node in , we consider
their binders. Necessarily, they must be merged in °, as otherwise ~° would not be a tree.
Moreover, by hypothesis, ~(n1) and ~(nz) are distinct. We can thus iterate this step until
we nd two binding ancestors n? and n,' of n1 and n, bound on the same node, andn}
and n3 verify point 2.

There are now two cases:

. n veries point1: welet ®beWeakenn)(). The relaton v ®holds by point 6
of the de nition of v ™“W' | Notice also that we have m(© 9= m(; 9 1
Let us show that v MW\ 9 Al points of De nition 6[Z5Hut the permissions related
ones are immediate, since vM™"W' %and 9%n)= (=) . By Lemma EZI a noden® of

becomes red inWeaken(n)() only if n® * n. But n°cannot verify the hypotheses of
points 4 and 6 of the de nition of v MW\ 35 otherwise we would have chosen it before
n. Thus points 4 and 6 still hold in % and v M"' % holds.

. n veries point 2 butnot point1 : we let % be Merge(n;n%(). The nodes n and
n% are binding-congruent, as the subgraphs under them is the same as the subgraph
under the node in which they are merged in % They are also locally congruent, as
otherwise we could have chosen a node strictly undern to merge. Moreover n and n°
are not red by point 4 of the de nition of vM™¥' . Thus v™ holds. We also have

m(% 9<m(; 9, since at least two more nodes are merged. Finally, ®v "W\ 0
holds: all points are immediate since v™"W' % n and n® are merged in °

merging preserves permissions.

In both cases we have proven v)W 0 0yMW Oangm(@ % <m(; 9. By
induction hypothesis we obtain a bottom-up derivation of v MW 0 Together with the
operation transforming into % this forms a bottom-up derivation of v™%W © which

is the desired result.
L |

, and

Notice that a top-down approach woul be impossible in generlaas weakening a node higher
in the type might prevent further merging or weakening some bwer nodes.

Lemma 6.3.8 Given two types and © vMW\ Ojfandonlyif vMW O

[
Proof: The direction v™W' 0=) yMW Oig by L emma B3
For the directon vMW 0 =) vMW' 0 we proceed by induction on vMW O |f

= Othe result is immediate. Otherwise, let be such that v MW 0yMW 0 gy

\%
00,, MW\ MW\

induction hypothesis, we have v % and we must prove that v ° holds.
All the cases of De nition EC35Jexcept cases 4 and 6 are immedate by de nition of v "W |
For those points: any node not red in “is not red in either, as merging and weakening
restrict permissions. Moreover, the nodes transformed between and are not red either,
by de nition of vMY | This is su cient to conclude.

76

Properties of the instance relations

6.4
6.4.1

Grafting atomic types

Widening

Lemmal&Z1 implies that instance derivations may always srt by performing all the graft-
ing. However there are many possibilities as to which type tograft. As already mentioned,
in Figure B233, the relation ; v© ; holds for2 i 7. In ,, we have grafted a big
type (in terms of number of nodes), but with a simple structure: there is no sharing, and
all binders are exible. Conversely, in 7 we have directly grafted a complicated type. Even
though this makes the derivation ; v g shorter, from a reasoning point of view working
with 5 is much easier than with ;. This section shows that this form of simple graftings
is always possible.

De nition 6.4.1 (Widening) Given a rst-order term with anonymous variables t, we
de ne its widening 4 (t) by:

4 Et) is the unique tree-like term-graph whose skeleton i, and such that every node
is reduced to a single path in8(t).

4 () binds all the nodes to their ancestor,i.e. 4 (T)= fn _ n%n® (ng;
4 (t) binds all the nodes with a exible ag.
| Example In Figure BE23:3, the subgraph ,=h2i is exactly the widening of ,=HPi.

Lemma 6.4.2 Let be atype. The relations () v holds.

I 1
Proof: Let °beas (). We are going to exhibit an ordered derivation of °v . Let . be
the pre-type that has the structure of , but in which the nodes have been raised as in .
Formally, (= ©° ((n)=(>)foranyn,andn _ n°24 (0 n° { n2 ,~n _
n®2 A, Itis immediate that % is well-formed, as it binds any node which is not the root
to one of its ancestors.

Let us rst prove that , is well-dominated. Consider a node n and a mixed path P from
f gtonin ;. Since shares more nodes than ;, P is also a valid path in . By well-
domination of , ~(n) is contained in P. Since there is no sharing in ,, the node of P
which extends to ~(n) is restricted to a single path, and is also % (n) by de nition of the

binding tree of . Thus % (n) is in P, which is the desired result.

Let us now show that °vR ., vM¥ holds. All the nodes of ° are bound to their

immediate ancestor. Hence we have % (*9*. Moreover, all the nodes of ° have a
exible ag, hence non-red permissions. Thus the instance OvR | holds, and °v
holds by Lemma E234.

We also have v+ ~, since + = ~%and no node is shared in © and (n) < (n) for any
n, as all nodes of ;, are exibly bound. Finally, no node of ; is red, since they all are

exibly bound. Thus the relaton vM™"' holds, and ; v™¥ holds by LemmaE33.
L |

More generally, given a noden grafted inside an instance derivation, we can isolate the
tree under n and graft its widening.

6.4.2

6.4. Grafting atomic types

77

Lemma 6.4.3 Let ©be an instance of a type , and n a bottom node of that is not a
bottom node in © Let , bes (_%n). Then v©® [,=n]v °

Proof: For v ¢ [,=n]: necessarilyn must be green in , as it is grafted between and
% and no instance operation transforms a non-green node into agreen one. Thusn can
be grafted in

For [n=n]v % consider an ordered derivation (Lemma BEEZT) of v © andlet 4 be

the type suchthat v¢ 4vR;vM¥ O without loss of generality, we can suppose that

all the graftings under n occur rst, as grafting under two distinct nodes commute. Le t

be the type after those grafting. It su ces to prove that [n=n]vVv ,_f,’ to obtain the result.

By de nition of grafting, n is closed in ¢, and we can project ¢ at this node. Then it
su ces to prove that 4 (_%=n) v 2=n (which we do below). Indeed, we can transform such
a derivation | into a derivation 1°0of [,=n]v ¢ by changing any operation o of | on a
node n®in an operation on n n°

By Lemma EZ2, we haves (J=n) v g$=n. Since no grafting occurs under n between ¢

and ° we have _%=n = _4%n. Since moreover J=nis equal to ¢%=n, we haves (_"=n) =
4 (g%n) = 4 (J=n). This proves 4 (_%=n) v J=n, which is the desired result.

As a direct consequence:

De nition 6.4.4 (Minimal grafting) Let and ©be two types such that v O Let

ni21K pe the bottom nodes of that are not bottom nodes in % The minimal grafting of

w.rt. 9 written [%?], is de ned by?!

[=?] , [n,=ml:i:i[n.=mk] where o, = 4 (%=n)
Corollary 6.4.5 Let °be an instance of a type . The relation v©¢ [=?]v %holds.

Notice that [°=?] is the smallest type % (w.r.t. the ordering induced by the instance
relation) such that v© %y Oholds and °and 2°coincide. Indeed, the derivation of
[=?]v O%does not use any grafting, as both sides already have the sans&eleton.

Constructor type

In order to be even more small-step, we further decompose thgrafting operation: instead
of grafting the entire widening of a term, we create the widering node by node.

De nition 6.4.6 (Constructor type) Let C be a type constructor. The constructor type
for C is the type whose root is labelled byC, and whose children are all distinct, exibly
bound, and labelled by ? .

1The de nition does not depend on the order of n:““k as grafting at nodes n1, :::, ny commutes.

78

Properties of the instance relations

6.5

6.6

| Example The constructor type for the type int is the type reduced to a single node
labelled by int. The constructor type for the arrow constructor is the type .

Lemma 6.4.7 Given an instance °of a type , there exists instance derivation of v °
of the form v & 4 vRMW 0 with all operations in v ¢ 4 grafting constructor types.

Proof: By Lemma EZ we can consider an ordered derivaton v©¢ gvR® ;vMW of

v % Itis then immediate that v © 4 can have the required shape, by Corollary EZ3,

the de nition of widening and the de nition of constructor t ypes.
L |

Canonical derivations

As a summary of Y&PR, Y83 andYH.4, we introduce the notion o&nonical derivations.
(The name is slightly improper, as there usually exists moreghan one canonical derivation.
Derivations can be made fully canonical by addinge.g. a left-to-right bias.)

De nition 6.5.1 (Canonical instance derivation) An instance derivation v Ois
canonical if it is of the form v© gvR [vMW 0 and if

all types grafted in v © 4 are constructor types;

the raisings in vR | are done bottom-up, as per De nition E.3.4;

the operations in , vMW 0are done bottom-up, as per De nition E234.

As an immediate corollary of our previous results, we can ahlays assume without loss of
generality that an instance derivation is canonical.

Property 6.5.2 Given an instance ° of a type , there exists a canonical derivation of
0
v

Performing an instance operation early

Given a derivation v 9 containing an operation o, it is sometimes necessary to move this
operation at the beginning of the derivation. This section $ows that, when this operation
can be applied to , the relation v o() v ©holds, with some restrictions only if o is a
weakening.

Lemma 6.6.1 Let and °besuchthat v ° Letn beanodeof suchthat (n)= ? and
%n) 8 ?. Let , be the constructor type for %n). The relation v § Graft(n;n)()v ©°
holds.

[[
Proof: Necessarily n has green permissions in , as it must be grafted in the derivation

v % Hence v ¢ Graft(,;n)() holds. For the second part of the conclusion, consider a

6.6. Performing an instance operation early 79

canonical derivation v JvR ;v ° The type grafted under n in this derivation is

n by construction of canonical derivations. We can move this grafting rst, by commuting
it with the other graftings. Thus, Graft(n;n)() v g holds, which implies the result.

MW

Lemma 6.6.2 Let and °be suchthat v © Letn be anode such that v} Raisén)()
holds, and~(n) 6 ~9n). Then Raisgn)() v °holds.

Proof: Letus call = Raisgn)(). Consider a canonical derivaton v©¢ 4vR® | vMW

%of v O ltissucienttoprove ®v¢;vR .
0

The grafting operations |g transforming into ¢ can be applied unchanged to °, as
grafting and raising commute. Thus, let ¢ be Ic(9, which is also equal to Raisén)(o)
(1). The relation v © g holds: raising increases permissions. Hence it su ces to prove
JvR . orequivalently Jv® . (LemmaE33).

The points 1 and 2 of De nition 63T hre immediate. For point 4, let us prove that all the

nodes bound di erently in S and . are also bound dierently in 4 and , which implies
theresultas 4 v . By (1), this result is immediate for all the nodes but n. For n, by
hypothesis ~(n) 6 ~%n), and moreover ~(n) = ~4(n) and ~%n) = ~,(n), by de nition of

canonical derivations. Thus %(n) 6 * (n) (2).

Thus it remains to prove that % (9" (for point 3). Since 4 v® |, we also have
gV® rand 4 (%)". The binding trees of ¢ and ¢ dier only by the binding edge
on n. Suppose % (%9* does not hold. Then, there necessarily exists a noden® of
gsuchthat n® _ n _ 74(n)2 4((3)andn® _ 4(n) 2 . (4). By (2) we have
n®6 n. Hencen® * n _ #4(n) 2 4. In ., consider a mixed path P of the form
hir Am)~ n { n%By(4), 2(n%= 74(n), and this node is strictly below % (n)
(by (3) and because n is raised at least once between ¢ and), and strictly above n.

Hence P does not contain 4 (n%: this contradicts the well-formedness of .

Lemma 6.6.3 Let and °be suchthat v ° Suppose there existsi; and n, merged in
Osuch that v)" Mergg(ni;nz)() holds. ThenMergg(ni;nz)() v °holds.

I |
Proof: Let be Merge(ni;n2)(). Consider a canonical derivation v & 4vR® vMW
%of v ° We are going to prove that ®v ¢ JvR® OvMW' O where 9= g[ni = n;]
and °= ([n: = ny]. (Itis immediate that n; and n; are binding-congruentin 4 and .,
as they can be merged in , and are merged in °) We call twin nodes two distinct nodes
n? and n9 such that there exists such that n9 = hny i and nd = > i. Notice that

n? cannot be abovend, as °would be cyclic; symmetrically, n$ cannot be aboven?.

Let us consider a derivation 14 of v© 4. We can commute the grafting in |4 such that
two twin nodes are grafted immediately one after the other, a s the graftings of two nodes
where neither one is above the other commute. Then, the derivation | de ned by removing

from |4 the occurrences of Graft(;nJ) when |4 contains Graft({;n?); Graft(9;n2), and
ng and nJ are twin nodes is a witness of ®v ¢ .

Next, consider a derivation |, of . vR . Again, we can commute the di erent raisings

so that two twin nodes are raised one after the other, as raising two nodes not one above
the other commute. As above, we can transform |, into 1° by removing the raising of the

second twin node, and 1/ is a witness of Jv® 2.

80

Properties of the instance relations

It remains to prove that 2vM™"' © By Lemma E3Z8 we already have , vMW' 0(1),
The points 1, 2, 5 and 6 of De nition €35 hre immediate. For p oint 3, the relation +° °
is a consequence of (1) and of the fact thatn, and n, are merged in ° Finally, consider
two nodes n$ and n3 verifying the hypotheses of point 4in °, i.e. n &°n3 (2), ny ~°nJ
(3) and 49n?) = 7. %n3) (4). We need to prove that n? and n$ are notred in 2. Without

loss of generality, we assume thatn and n? are expressed as nodes of; .

By (2) and the de nition of 2, we haven{ & n3 (5). If 4(n2) = ~ (nd), by (1), (5)

and (3), n? and nQare not red in , (6). Otherwise, if %4(nd) 6 ~ (n3), by (4) and the
de nition of °, the nodesn?, n$ are under n; and n» respectively. Moreover, sincen; and
n, are binding congruent in , the binders in , of n? and n3 must also be under and n;
and n2 (otherwise, we would have %4 (n?) = 2, (n3)). In this case, n? and n3 are indirectly
merged, and we cannot use (6). However there exists two nodessymmetrical to n? and n3
which are merged directly. We detail this case below.

Let , ;and >besuchthat A(n®)=t; iforl i 2
n?=mP siandnd=mP ,i. Letalso nIbe MP ,i.
Sincen; and n; are merged in ° and by (3), we have n§ ~°
n3® (7). Moreover, n§ and n%are distinct in , (8), as
otherwise (2) would not hold. Finally, 4 (n?) = ~,(n3% (9),
by de nition of , ;1 and , and .. Thus, by (1), (8), (7)

and (9), n? and n3®are not red in ; (and by symmetry n3
is not red in ; either) (10).

In both cases ((6) and (10)), n? and n3 are not red in . Fusion preserves permissions as

it does not change the binding tree. Hencen§ and n$ are not red in ° either, which is the
desired result.

For weakening, the result does not hold in the general case:ybweakening too early, we
might prevent some valid transformations later in the derivation. However, if the noden to
be weakened must be merged with a rigidly bound noda®, and both nodes are congruent
(up to the binding edge of n), we can usen® as a witness : indeed, the transformations
which would become impossible unden are already impossible undem®. Alternatively, if
n is inert, weakening n does not change the permissions of the other nodes, and theswt
also holds.

Lemma 6.6.4 Let and °be such that v © Let n be a node exibly bound in and
rigidly bound in ° Suppose that v Weaker{n)() holds. Suppose also that either

1. nis inert;

2. there exists a noden® rigidly bound in , merged withn in © such that the subgraphs
consisting of the nodes transitively bound om or n° are the same in .

Then Weaker{n)() v °holds.

I
Proof: In this proof proof, we use under for transitively bound on.

Let % be Weaker(n)(). Consider a canonical derivaton v¢& 4 v® , vMW 0pf
v % Let ¢ be Weaken(n)(¢) and = Weaken(n)(). Those types exist, asn is
exibly bound in both 4 and , asitis exibly bound in . We are going to prove that

OOVG SVR rOVMW\ 0.

6.7

6.7.1

6.7. Reorganizing the instance modulo relations

81

Consider three instance derivations lg, |+ and | transforming into 4, ¢ into and
into °respectively. We rst prove that none of these derivations ¢ an contain an operation
on a green node undern (1).

Subcasel (n is inert): immediate, as there is no green node undern.

Subcase2: Let G (n) be the subgraph of the nodes undern in . SinceG (n) = G (n9

and n and n® are merged in % G o(n) = G ¢(n% and G o(n) = G g(n°) necessarily
hold. (2). Thus, the symmetrical node under n° needs to be transformed in the same
way. However, since n®is rigidly bound in and G (n) = G (n9, this symmetrical

node is red in (and in all its instances, since instance preserve red nodek

Next, by Lemma BEZZT] permissions decrease for , in ,_f,’and 2 (compared to 4 and)
only for n and the green nodes undern (3). Moreover, by the same lemma, n itself is
either orange (if it was green in), or has the same permissions in and (in all the
other cases). In particular, n is not red (4).

Let us now prove our main result. By (1), no grafting takes pla ce under n; hence lq
witnesses v ¢ é’ Moreover, by (1), (3) and (4), all the nodes under n and raised

between 4 and , can still be raised in O as they are not red. Hence I witnesses

OvR 0,
It remains to prove that 2 v™W © We cannot use Iy, as n is already red in 2
However, by LemmaEZ8, we have . v™W' °(5), and it suces to prove °vMW' ©
The points 1, 2, 3 and 5 of De nition €£35Jare immediate by (5) and the de nition of ?
(for point 5). For points 4 and 6, the nodes to transform betwe en °and ° are the same
as those that must be transformed between , and ° up to n. All those nodes but n still
have non-red permissions in 2 by (1) and (3), while n is not red by (4). Thus Py MW 0

holds, which is the desired result.

Reorganizing the instance modulo relations

In this section, we study the relationships betweenv, v and v ®, and show that the last
two relations can be reorganized so that all the instance stes can occur rst. In particular,
this is the rst step in proving that using v as the instance relation does not signi cantly
increase the expressiveness dfLF.

Con uence of the instance relations

As a preliminary result, this section studies the con uenceof all the subrelations of instance,
including the subrelations of @ and v'™" . Since we reason simultaneously on , @ and
v'™ “we must consider all three orders ,, @ and mw . By Property we thus
have the following results for those orders:

grafting and raising increase or preserve permissions;
merging preserves permissions;
weakening is not monotonic w.r.t. those three orders.
In the following, we consider two relations @ and @ which range independently overv, @

and v'™" . As usual, we write e.g. @, the restriction of @ to one-step instance, and@"
for X 2 fG;R;M;W g the relation @\v *. Our goal is to show that, if @ and @ are not

Properties of the instance relations

simultaneously v , they are locally con uent. The remainder of the section proceeds by case
disjunction on the subrelations of @ and @. However, before doing so, we introduce a small
technical result which rules out some impossible cases.

Lemma 6.7.1 Consider a type , and two nodesn and n®such thatn _ n% Let o and o®

be two operations of @ and @ respectively, such that @o(n)() and @0oA(n9(). Then
we also have @o(n)().

I
Proof: We proceed by case disjunction on @ and @.

Case @=v'™ : thennlisa monomorphic node. So isn, as monomorphic nodes are
downwards-closed. Thus o(n) is also in @.

Case@= @and @ = v: then n%is orange or inert. Green nodes are upwards-closed,
hencen is not green. This shows that o(n) is also in @.

In all the other cases: we have @ @, hence the result.

Lemma 6.7.2 The following diagram is veri ed

12

@ @

34@\/|

I 1
Proof: Let ni, nz, n3 and ns be the four nodes such that 12 = Merge(ni;n2)() and

34 = Merge(nsz; na)() (in particular, n; 6 n, and nz 6 ns). The degenerate case where
fni;n2g = fns;nsgis immediate, as 12 = 34. We proceed by case disjunction.

+

If n1 7 n3 holds (or one of the symmetrical cases)
"

By de nition of merging, n> n3 also holds. The type

%= Merge(ni;nz)(24) = (Merge(n?; nd) ; Merge(nz; na))(12)

(where n? and n3 are the nodes corresponding ton; and n, under n,) closes the diagram.
Indeed, by deniton of % 2 @' %and 1 (@ ;@) °hold, since merging
preserves permissions. LemmdB.Z11 shows that 1, @ ° holds.

In all the other cases: we show that the two operations commute, i.e. that the type

0= Merge(ni;n2)(34) = Merge(ns;na)(12)

closes the diagram. Since merging preserves permissionst su ces to prove that one of
the merging does not prevent the other by changing the term-graph under only one of
the two nodes.

Without loss of generality, suppose that merging ni and n, changes the term-graph
under n3 or ng; we can also suppose thatng { n;. Let be suchthatnz (nj.
Sincen; & n3 (otherwise we would be in the rst case), by well-domination we have
My (ns. By Lemma EEZ4, we havenz * Y. By local congruence of nz and ng,
since n; is not transitively bound on ns, we havelns i = hns i. Sincelns i is ny, the
subgraph under n; is shared betweenns and n4, which is the desired result.

6.7. Reorganizing the instance modulo relations

Lemma 6.7.3 The following diagram is veri ed

1
Proof: Let n1 and n; be the two nodes such that ; = Raiséni)() and > = Raisénz)().

The degenerate casen; = n» is immediate. We distinguish between two cases:

Ifny _ n22 (or the symmetric case): we show that °below closes the diagram

= Raisdn:)(2) = (Raisén:) ; Raisén2))(1)

This type is well-dominated. Indeed, n; is raisable in > asn; is raisable in , = 3,
and the nodes bound on”(n1) (which is also n, and %»(n1)) are the same in and ».
Since raising increases permissions, we have so far provery @% %and ; (@R ; @) °

Lemma EZ-1 shows that ; @ °holds.

In all the other cases: we show that the two operations commute, and that the diagra m
is closed by

= Raisgni)(2) = Rais€n,)(1)

Since raising increases permissions, it su ces to justify t hat °is well-dominated. We
do this by showing that n» is raisable in ;. Consider nz = "y(n2). This node is also
~(nz), as n2 has not been raised in 1. Let nJ be a node bound onns in 1 other than
n2. We need to show that n, { n9 2 ; does not hold.

If n isni: by case hypothesis, we know that n; was not bound on n, in . Thus,
let NP be the node such thatn; _ n® ng 2 . By contradiction, suppose
that n, { ng holds in ;. This relation also holds in . Consider a mixed path
hi~(n3™ ny { niin . By well-domination, n%is contained in this path.
Necessarily, it is in the path n, { ni (as it is below n3). Thus, since n, 6 n3, we
haven, { n%in , both nodes being bound on ns. This contradicts the fact that

n, is raisable in ,and n, { ni does not hold.

If nY is not n1: then nd is also bound onnsz in . Sincen; is raisable in , we have

n, 6 n3. This relation still holds in ;.

Lemma 6.7.4 The following diagram is veri ed

1
Proof: Let ni, n2 and n be such that » = Merge(ni;n2)() and , = Raisgn)(). We

proceed by case disjunction on the position of n w.r.t. n; and n,. In the following we do
not detail permissions, as raising and merging increase them.

84

Properties of the instance relations

If n _ ni (or the symmetric case): we show that the type below closes the diagram

°= Raisdn)(m)

Let us rst justify that n is raisable in . By contradiction, suppose there exists n°

bound on = (n) suchthatn { n°2 . Let besuchthatn®= m i. By de nition

of congruent nodes, the nodeln i is also in . Moreover, by de nition of binding

congruent-nodes, we have”(n) = ~ (n%. This contradicts the fact that n is raisable in
. Hencen is indeed raisable in m and » @ °holds.

Next, we prove that , @ ° We proceed by case disjunction onn _ nj.

Casen = n;: then °=(Raisdn); Merge(ni;n2))()

The fact that n; is raisable in is by symmetry with n; in , as the subgraph
under n, in is the same as the subgraph undern; in . Moreover, n; and n, are
locally congruent in Raisén;)(r), as the subgraphs under them are unchanged from

.Thus @ ; @" °holds. Lemma[EZ shows that ; @ °also holds.

Casen _ ni: then °= (Raisdn®); Merge(n;n®); Merge(ni;n.))(r), n° being
the node symmetric to n under n».

n® can be raised in by symmetry with nin . Let ?be Raisé¢n®)(;) and =
Merge(n;n®)(9. The nodesn and n® are binding-congruent in 2, sinceny and n,
are binding-congruent in this type, and n and n® are under n; and n;. Similarly, n;

and n are binding-congruent in % Let us prove that both sets of nodes are locally
congruent.
Merging n and n® in % Consider a non-empty path such that bn i and m® i

are distinctin 2. Let us call n? and n$ those two nodes; we must prove that they
are bound on n and n® respectively.

By deniton of 2 for1 i 2, we have 4%n? =~ (n?. By local congruence
ofny and nz in , we haven?® * n;. The casen? _ nj is impossible, asn and
n® would not have been raisable in . Thus n® * _ n;. By well-domination,
necessarily the nodes undern; in those paths are n and n®, i.e. n? * n and
nd * nS. This is the desired result.

Merging n; and n, in °® Consider a non-empty path such that hn; i and
hn, i are distinctin > Necessarily,n1 i and hn, i are not n, n® as those nodes
are merged in °(1). By local congruence ofn; and np in , for 1 i 2

i i * ni 2 . Sincer(n)= ™Mni) (by (1)), we have i i * ni2 ©
This is the desired result.
So far, we have proven (@ ;@ ;@") ° By Lemma BEZI we have in fact
r @ ° which is the desired result.
Casen * ni: then °=(Raisén®);Merge(n;n®))(), n® being again the node
symmetric to n under n». This case is similar to the two above.
In all the other cases: we show that the two operations commute, and that the diagra m
is closed by

%= Merge(ni;n2)()= Raisdn)(m)

Raising n does not change the fact that n; and n, are locally congruent, as n is either
strictly above ni and n», or on disjoint binding paths (and local congruence is only
concerned with the nodes below n; and n;). This shows that °is a correct type,
which implies that n is raisable in by Property £ZI3] Thus we have , @ °and
. @ ° which is the desired result.

6.7. Reorganizing the instance modulo relations

85

The three previous results have shown that raising and mergig are locally con uent. The

con uence itself is immediate by Newman's Lemma, as raisingand merging are noetherian.

Similar results do not hold for v © andv W : grafting two di erent types at the same node
usually results in incompatible types, while weakening twodi erent nodes one above the

other must be done bottom-up, as the top-down strategy is ofen forbidden by permissions.

However, if at least one of the operations is an abstractiontep, the various relations are
con uent. The remainder of this section considers these sutases.

Lemma 6.7.5 The relation v$ commutes with@and v ™" .

I 1
Proof: Immediate: the grafting takes place on a green bottom node, and this part of the

type cannot be transformed by @ or v'™ .
L |

(More generally, v § together with v or v } are locally con uent. Since this result is not
useful to us, we do not prove it here. However the proof is verysimilar to all the other
proofs in this section.)

Lemma 6.7.6 If (@ @ 6 (Vv ;Vv), the following diagram is veri ed

I
Proof: Let n and n®be suchthat @} . and @ w. The type

= Raisgn)(w) = Weaken(n%(r)

closes the diagram. Indeed:

. n % has more permissions in ; than in (raising increases permissions), and it is still
exibly bound. Hence it can be weakened by @ in .

If @Y is @V orv", n has the same permissions in ,, and in , as only the weakening
of a green node changes permissions (LemmB®41). Moreoven is still raisable in ,
as both = and = 4,.

If @V is the weakening of a green node,@® is either v or @, and the permissions of
orange, inert and monomorphic nodes are unchanged by@" (Lemma EZT).

In both cases n can be raised by @R in .

Lemma 6.7.7 If (@ @ 6 (Vv ;Vv), the following diagram is veri ed

a

Properties of the instance relations

I 1
Proof: As for LemmaB.Z8, the two operations commute. The reasoning on the permissions

after the weakening is also the same.
L |

Lemma 6.7.8 If (@ @) 6 (Vv ;Vv), the following diagram is veri ed

@' @

I 1
Proof: Let n, n; and n, of be such that ; = Merge(ni;n2)() and w = Weaken(n)().
We distinguish whether n is under or above ny or n;:

If n _ ni1 (up to permutation of n; and nz): We prove that the graph

%= Weaken(n)(m) = (Weaken(n®) ; Merge(n1;n2))(w)

where n® is the node symmetric to n under n, closes the diagram. It is immediate that
m @V © as merging preserves permissions.
For w @ ° we rsthave , @' Weaken(n®)(w) (we call this last type %: n® has
the same permissions asn in by symmetry, and it also has the same permissions in
and ., as the weakening ofn does not change the permissions ofn®, which is not
above or belown. By Lemma BEZ1 « @ % also holds.
It remains to prove that @ ©° The local congruence ofn; and nz in ®is an
immediate consequence of the local con uence of those nodesn , as = and
0= A For permissions, by Lemma [2Z7, weakening only changes thke permissions of
green nodes, and only if the weakening occurs on a green nodelf @' is@" orv"v,
the weakening is not on a green node. If@" isv%, @ isnot v™, and n; and n;
are not green. Thus the permissions ofn; and n, are the same in , w and ¢ and

©@" %holds.
If ny * n (upto permutation of n; and ny): the two operations commute, and the

type °de ned below closes the diagram.

%= Weaken(n)(m)= Merge(ni;n2)(w)

It is immediate that » @Y °as merging preserves permissions. For, @ ©° the
reasoning is exactly the same as for proving °@" °in the previous case.

In all the other cases: the two transformations commute, as they occur on disjoint
binding paths.

6.7.2 Reorganizing the instance modulo relations

The results of the previous section show that any combinatio of v, v'™ or @with either
@or v™" s locally con uent. This result generalizes to con uence.

6.7. Reorganizing the instance modulo relations

87

Lemma 6.7.9 If @is not v, the following diagram is veri ed

_@.

\
@{7 @
@
I 1
Proof: Let , 1and > besuchthat @ :and @ 2. In particular we have @j , 1,
where @j , is de ned by restricting @ as we did for v in De nition 6[I-31 Since both

@j , and @ are noetherian, by Newman's lemma it su ces to show that @j , and @ are
locally con uent.

Consider three types ° P and 2suchthat °@j, {and °@ 2. By Lemmas EZJZ,
E73, 673,673, 676671 andE.8@ and @ are locally con uent, i.e. there exists
Qsuch that Y @ “and 2 @ ° By Property @I Zlappliedto ? @ % %is as

structure-de ned as ° Thus 2 @j, %also holds, which is the desired result.
L |

As a direct consequence, alternatingv and A steps insidev ® does not augment its
expressivity. Instead, all A steps can be done in one step and be pushed at the end of the
derivation. Similar results hold by considering®, v and instead ofv @.

Lemma 6.7.10 The following equalities between relations are veri ed:

@=(@:A) ()=(v™ w™) (vO=(viA) (v)=(viwm™)

I 1
Proof: In each case, one inclusion is by de nition. The other inclu sion is by induction on

the number of inversions of the form A ; @, which rewrite to @ ; A by Lemma EZ9.
L |

Importantly, v and v ® are howevernot equal to (W™ ;v) and (A ; v): some of
the operations which would need to be done at the beginning othe derivation would be on
green or non-monomorphic nodesi.e. notin A or w'™" .

One important consequence of Lemm&&.710 is the fact that urcation is not signif-
icantly more complex forv and v @ than for v. For example, the v ®-solutions of a
uni cation problem P are all the instances byA of the v -solutions of P. Thus, the un-
decidability of type inference in the system usingv @ as its instance relation is not due
to uni cation (but to the interaction between instance and g eneralization, as we will show
in YICZ3).

As a last consequence, let us study the structure induced by@and v ™" on types.

Property 6.7.11 Let be a type, and let@ be either@or v'™ . Let S be the set of
types equal to for the equivalence relation induced by@, i.e.

s=f°% (@ A %

Then (S ; @ is a nite join semi-lattice.

88 Properties of the instance relations

I 1
Proof: S is nite, as f © | (@:A) % is equal to f © | (@[A) % (by
Lemma [EZZ10), both @ and A are noetherian, and there are nitely many types ° such
that @ %or A O The existence of a join is by LemmaEZd.

This result implies in particular the existence of a normal form for @and v™" , which we
call maximally instantiated. We conjecture that the lattice above is also a meet semi-ldice.

7.1

Uni cation

Abstract

We study the uni cation problem for MLF types. We show that unifying two nodes
inside a type is more general than unifying two di erent type s (XZZ1). We isolate a very
general subset of uni cation problems on which uni cation i s complete and principal
(MZ2). We present the uni cation algorithm (Y13, and pro ves its correctness (KZH).
We also show that the algorithm has linear complexity (YZR] . We introduce a slightly
more general form of unication problem, which we also solve (MZB). Finally, we
discuss uni cation in variants of MLF (MZ1).

MLF uni cation problem

A rst possibility for de ning uni cation in MLF is to use the usual approach of unifying
two types.

De nition 7.1.1 (Type uni cation) Atype Yis atype unier of the types ; and , if
1v %and ,v @

However, we prefer to internalize uni cation, as we did for term-graphs (Y3:ZB).

De nition 7.1.2 (Node uni cation) Given a type , atype Cis anode unier of a set
of nodesN of if Cis an instance of in which all the nodes of N are merged. Moreover,
Ois a principal unier if any other unier of N in is an instance of °.

Node uni cation is more general than type uni cation. In fac t, the latter class of prob-
lems can be encoded into the former, as we prove below.

Lemma 7.1.3 A type , is a unier of two types ; and ; if and only if the type 0 is a
uni er of the nodes hli and I2i in the type of Figure [T

89

Uni cation

()

Figure 7.1.1 Encoding type uni cation into node uni catio n.

1
Proof: Assume there exists atype y suchthat i1; v . Letl; andl; betwo derivations

witnessing 1 v 4 and > v respectively. Let 12 (resp. 19) be the derivations obtained
from 11 (resp. 12) by replacing all the nodes n by h1 ni (resp. 2 ni). Then I? and 17
can be applied to (in any order, as they operate on distinct parts of the type), and yield

atype ° Then, by construction of 12 and 13, Merge(hli; H2i) can be applied to ° Hence
Al
O exists.

For the converse direction, assume a unier 2 of the required form exists. Let | be
a canonical derivation witnessing this last result. By de n ition of bottom-up merging-

weakening, the last operation of | is Merge(hli; h2i). From there, it is easy to extract from

| two derivations I; and I, proving 1v , and 2v .
L

Consequently, in the following, uni cation will always m ean node unication .

7.2 Admissible problems

Figure 7.2.1 A problem without a principal solution.

Node uni cation is in fact too liberal: some problems can have a non-principal set of
solutions, as we describe below. Consider the problem of unifying the nodeshlli and R21i
in the type of Figure[ZZ1]. A rstunieris : the two nodes have been raised once,
and then merged. However, the type 0 obtained by merging the nodeshli and i which

1This was not the case in the syntactic presentation of MLF, as uni cation under pre xes (Lé_Botlan

2004) which is used for unifying syntactic types is more ex pressive than type uni cation, but less than
node uni cation.

7.2. Admissible problems 91

indirectly merges hlli and 21 is another unier. There does not exist a uni er more
general than those two ones, as there is an incompatible choé to be made between raising
the edges (and merging the leaves), which irreversibly ingtntiates the binding structure, or
merging the upper nodes, which irreversibly instantiates he upper nodes of the underlying
term-graph.

Fortunately, it is possible to characterize an important set of problems that admit prin-
cipal solutions; we call admissible those problems. They include in particular uni cation
under the root of the type, as used to encode uni cation of twodi erent types.

De nition 7.2.1 (Admissible problems) Given a type and a set of nodesN of , we
say that (;N) is an admissible problem (or that N is admissible for) if the set of nodes

fA%9n2N; 9n%2 : A { n (n%

is totally ordered by the domination relation (induced by (. We call admissibility
ancestors this set.

It is di cult to give an intuition of this de nition without a ctually proving that it ensures
principality of uni cation problems. Very roughly, non pri ncipality cases always originate
from a merging/raising competition, as illustrated on the example of Figure [ZZ1. In
admissible problems, such potential con icts always occurbetween nodes whose binders
are in domination relation. This ensures that the conict can only be solved by raising, as
merging would create cycles in the structure.

| Example In Figure [Z7, the setN = fh11i;R1ig is not admissible for or ° Indeed,
the admissibility ancestors arehli and i, and they are not comparable for (in
or ©

We characterize a few set of nodes that are guaranteed to be aussible. In particular,
they subsume the problems encoding uni cation under the rod.

Property 7.2.2 Consider a type and a nodem of
1. Any subset of(m () is admissible for .
2. Any subset of(m ~) is admissible for .

3. Any set fm%m° wherem® * mand m® _ m is admissible for .2

I
Proof: We consider a setN of nodes, and prove that N is admissible for

1. If N is a subset of(m (): it suces to show that all the admissibility ancestors

dominate m for (, as the dominators of a node are totally ordered by the domi-
nation relation. Let n°be a node such thath® { n (n°with n 2 N. We show
that A° (which is an admissibility ancestor) dominates m.

By de nition of n®and n, there exists mixed paths of theform hi (m (n (
n° By well-domination, this path contains n% above n. If A is m, the result holds,
as domination is re exive. Otherwise n"° { m (n (n% By Lemma E334,

+

m * A%holds, which shows that A° dominates m for ~ (, hence also for (

2This last case corresponds to the uni cation under pre x use d in the syntactic presentations of MLF.

	Remerciements

