.. Analyses and X. , 131 IV.I.3.2, IV.I.3.1. Réponses électrochimiques, p.132

I. I. Traitement-Électrochimique and .. , 135 IV.I.4.1. Evolution des réponses électrochimiques pendant le traitement, Evolution structurelle des nanoparticules, p.137

N. M. Markovic and P. N. Ross, Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review, Fuel Cells, vol.1, issue.2, pp.105-116, 2001.
DOI : 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9

M. Kaupp, La relativité et la chimie, Pour la Science, vol.342, pp.84-89, 2006.

B. 18-rajesh and K. R. Thampi, Preparation of a Pt???Ru bimetallic system supported on carbon nanotubes, Journal of Materials Chemistry, vol.10, issue.8, pp.1757-1759, 2000.
DOI : 10.1039/b002588g

V. R. Stamenkovic and . Fowler, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science, vol.315, issue.5811, pp.493-497, 2007.
DOI : 10.1126/science.1135941

R. Srivastava and P. Mani, Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt???Cu???Co Nanoparticles, Angewandte Chemie International Edition, vol.153, issue.47, pp.8988-8991, 2007.
DOI : 10.1002/anie.200703331

S. A. Grigoriev and E. K. Lyutikova, On the possibility of replacement of Pt by Pd in a hydrogen electrode of PEM fuel cells, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4438-4442, 2007.
DOI : 10.1016/j.ijhydene.2007.02.005

URL : https://hal.archives-ouvertes.fr/hal-00163416

R. Bashyam and P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature, vol.28, issue.7107, pp.63-66, 2006.
DOI : 10.1149/1.1836471

K. Kinoshita, Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes, Journal of The Electrochemical Society, vol.137, issue.3, pp.845-848, 1990.
DOI : 10.1149/1.2086566

H. Perez and J. Pradeau, Synthesis and Characterization of Functionalized Platinum Nanoparticles, Chemistry of Materials, vol.11, issue.12, pp.3460-3463, 1999.
DOI : 10.1021/cm991013i

S. Cavaliere-jaricot, « Films de Langmuir-Blodgett à base de nanoparticules de platine à enrobage organique modifié : élaboration, caractérisation et comportement électrochimique, Thèse de l'Université de Versailles Saint-Quentin-En-Yvelines, 2006.

H. Perez and R. M. Sousa, Elaboration and Electrical Characterization of Langmuir???Blodgett Films of 4-Mercaptoaniline Functionalized Platinum Nanoparticles, Chemistry of Materials, vol.13, issue.5, pp.1512-1517, 2001.
DOI : 10.1021/cm001183r

S. Cavaliere and F. Raynal, Direct Electrocatalytic Activity of Capped Platinum Nanoparticles toward Oxygen Reduction, Electrochemical and Solid-State Letters, vol.7, issue.10, pp.358-360, 2004.
DOI : 10.1149/1.1792259

H. Perez and V. Noël, Nanocomposite Langmuir-Blodgett films based on crownderivatized platinum nanoparticles : synthesis, characterization and electrical properties, Thin Solid Films, 2008.

S. Cavaliere-jaricot and A. Etcheberry, Electronic transfer through Langmuir???Blodgett layers of capped platinum nanoparticles: An electrochemical approach, Electrochimica Acta, vol.51, issue.27, pp.6076-5080, 2006.
DOI : 10.1016/j.electacta.2006.01.068

S. Cavaliere-jaricot and J. Haccoun, Oxygen reduction of pre-synthesized organically capped platinum nanoparticles assembled in mixed Langmuir???Blodgett films: Evolutions with the platinum amount and leveling after fatty acid removal, Electrochimica Acta, vol.53, issue.20, pp.5992-5999, 2008.
DOI : 10.1016/j.electacta.2008.03.043

URL : https://hal.archives-ouvertes.fr/hal-00091253

H. Perez and F. Raynal, Use of nanoparticles with a metal core and an organic double coating as catalysts and nanoparticles that are useful as catalysts. US Patent, 2008.

K. Lee and J. Zhang, Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis, Journal of Applied Electrochemistry, vol.398, issue.103, pp.507-522, 2006.
DOI : 10.1007/s10800-006-9120-4

F. Yuan and H. Ryu, The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell, Nanotechnology, vol.15, issue.10, pp.596-602, 2004.
DOI : 10.1088/0957-4484/15/10/017

M. Carmo and V. A. Paganin, Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes, Journal of Power Sources, vol.142, issue.1-2, pp.169-176, 2005.
DOI : 10.1016/j.jpowsour.2004.10.023

J. Marie and S. Berthon-fabry, Platinum supported on resorcinol???formaldehyde based carbon aerogels for PEMFC electrodes: Influence of the carbon support on electrocatalytic properties, Journal of Applied Electrochemistry, vol.499, issue.153, pp.147-153, 2006.
DOI : 10.1007/s10800-006-9226-8

URL : https://hal.archives-ouvertes.fr/hal-00333782

A. Dicks, The role of carbon in fuel cells, Journal of Power Sources, vol.156, issue.2, pp.128-141, 2006.
DOI : 10.1016/j.jpowsour.2006.02.054

J. Fan and M. Wan, Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole, Journal of Applied Polymer Science, vol.9, issue.11, pp.74-2605, 1999.
DOI : 10.1002/(SICI)1097-4628(19991209)74:11<2605::AID-APP6>3.0.CO;2-R

A. Buldum and J. P. Lu, Contact resistance between carbon nanotubes, Physical Review B, vol.63, issue.16, p.161403, 2001.
DOI : 10.1103/PhysRevB.63.161403

L. Hu and D. S. Hecht, Percolation in Transparent and Conducting Carbon Nanotube Networks, Nano Letters, vol.4, issue.12, pp.2513-2517, 2004.
DOI : 10.1021/nl048435y

A. Kiebele and G. Grüner, Carbon nanotube based battery architecture, Applied Physics Letters, vol.91, issue.14, p.144104, 2007.
DOI : 10.1063/1.2795328

M. Kaempgen and M. Lebert, Multifunctional carbon nanotube networks for fuel cells, Appl. Phys. Lett, issue.094103, p.92, 2008.

J. Glory and A. Mierczynska, Dispersion Study of Long and Aligned Multi-Walled Carbon Nanotubes in Water, Journal of Nanoscience and Nanotechnology, vol.7, issue.10, pp.3458-3462, 2007.
DOI : 10.1166/jnn.2007.834

URL : https://hal.archives-ouvertes.fr/hal-00178993

K. L. Lu and R. M. Lago, Mechanical damage of carbon nanotubes by ultrasound, Carbon, vol.34, issue.6, pp.814-816, 1996.
DOI : 10.1016/0008-6223(96)89470-X

V. Lordi and N. Yao, Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst, Chemistry of Materials, vol.13, issue.3, pp.733-737, 2001.
DOI : 10.1021/cm000210a

C. Kim and Y. J. Kim, High performance of cup-stacked-type carbon nanotubes as a Pt???Ru catalyst support for fuel cell applications, Journal of Applied Physics, vol.96, issue.10, pp.5903-5905, 2004.
DOI : 10.1063/1.1804242

W. Li and C. Liang, Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells, Carbon, vol.42, issue.2, pp.423-460, 2004.
DOI : 10.1016/j.carbon.2003.10.033

W. Li and C. Liang, Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.107, issue.26, pp.6292-6299, 2003.
DOI : 10.1021/jp022505c

L. Han and W. Wu, A Direct Route toward Assembly of Nanoparticle???Carbon Nanotube Composite Materials, Langmuir, vol.20, issue.14, pp.6019-6025, 2004.
DOI : 10.1021/la0497907

D. Guo and H. Li, High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes, Journal of Colloid and Interface Science, vol.286, issue.1, pp.274-279, 2005.
DOI : 10.1016/j.jcis.2004.12.042

D. Guo and H. Li, High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles, J. Electroanal. Chem, vol.573, pp.197-202, 2004.

T. Matsumoto and T. Komatsu, Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catalysis Today, vol.90, issue.3-4, pp.277-281, 2004.
DOI : 10.1016/j.cattod.2004.04.038

Z. Liu and X. Lin, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells, Langmuir, vol.18, issue.10, pp.4054-4060, 2002.
DOI : 10.1021/la0116903

M. M. Waje and X. Wang, on carbon paper for fuel cells, Nanotechnology, vol.16, issue.7, pp.395-400, 2005.
DOI : 10.1088/0957-4484/16/7/013

G. Girishkumar and T. D. Hall, Single Wall Carbon Nanotube Supports for Portable Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.110, issue.1, pp.107-114, 2006.
DOI : 10.1021/jp054764i

G. G. Wildgoose and C. E. Banks, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications, Small, vol.7, issue.479, pp.182-193, 2006.
DOI : 10.1002/smll.200500324

J. M. Planeix and N. Coustel, Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis, Journal of the American Chemical Society, vol.116, issue.17, pp.7935-7936, 1994.
DOI : 10.1021/ja00096a076

B. C. Satishkumar and E. M. Vogl, The decoration of carbon nanotubes by metal nanoparticles, Journal of Physics D: Applied Physics, vol.29, issue.12, pp.3173-3176, 1996.
DOI : 10.1088/0022-3727/29/12/037

K. 58-mcelrath and K. Smith, Fuel cell electrode comprising carbon nanotubes. US Patent, pp.197638-197639, 2003.

C. Sun and L. Chen, Nanotubes with High Electrochemical Activity, Chemistry of Materials, vol.17, issue.14, p.3749, 2005.
DOI : 10.1021/cm050107r

C. Chen and C. F. Chen, Growth and characteristics of carbon nanotubes on carbon cloth as electrodes, Diamond and Related Materials, vol.14, issue.3-7, pp.770-773, 2005.
DOI : 10.1016/j.diamond.2004.12.038

R. Hayre and S. Lee, A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading, J. Power Sources, vol.109, pp.483-493, 2002.

P. Serp and R. Feurer, Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor, Journal de Physique IV (Proceedings), vol.12, issue.4, pp.29-36, 2002.
DOI : 10.1051/jp4:20020074

H. Daimon and Y. Yamamoto, Fuel cell and membrane electrode assembly. US Patent, pp.142428-142429, 2005.

Y. Liang and H. Zhang, Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells, Carbon, vol.43, issue.15, pp.3144-3152, 2005.
DOI : 10.1016/j.carbon.2005.06.017

B. 65-rajesh and V. Karthik, Pt???WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells???, Fuel, vol.81, issue.17, pp.2177-2190, 2002.
DOI : 10.1016/S0016-2361(02)00162-X

G. Che and B. B. Lakshmi, Metal-Nanocluster-Filled Carbon Nanotubes:?? Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, vol.15, issue.3, pp.750-758, 1999.
DOI : 10.1021/la980663i

H. C. Choi and M. Shim, Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes, Journal of the American Chemical Society, vol.124, issue.31, pp.9058-9059, 2002.
DOI : 10.1021/ja026824t

W. Chen and J. Y. Lee, Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process, Materials Letters, vol.58, issue.25, pp.3166-3169, 2004.
DOI : 10.1016/j.matlet.2004.06.008

M. Carmo and V. A. Paganin, Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes, Journal of Power Sources, vol.142, issue.1-2, pp.169-176, 2005.
DOI : 10.1016/j.jpowsour.2004.10.023

Y. Xing, Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes, The Journal of Physical Chemistry B, vol.108, issue.50, pp.19255-19259, 2004.
DOI : 10.1021/jp046697i

N. Rajalakshmi and H. Ryu, Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material, Journal of Power Sources, vol.140, issue.2, pp.250-257, 2005.
DOI : 10.1016/j.jpowsour.2004.08.042

C. Wang and M. Waje, Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes, Nano Letters, vol.4, issue.2, pp.345-348, 2004.
DOI : 10.1021/nl034952p

G. Girishkumar and K. Vinodgopal, Carbon Nanostructures in Portable Fuel Cells:?? Single-Walled Carbon Nanotube Electrodes for Methanol Oxidation and Oxygen Reduction, The Journal of Physical Chemistry B, vol.108, issue.52, pp.19960-19966, 2004.
DOI : 10.1021/jp046872v

M. Watanabe and S. Saegusa, High platinum electrocatalyst utilizations for direct methanol oxidation, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.271, issue.1-2, pp.213-220, 1989.
DOI : 10.1016/0022-0728(89)80076-2

V. M. Jalan and C. L. Bushnell, Method for producing highly dispersed catalytic platinum, 1979.

G. Girishkumar and M. Rettker, Single-Wall Carbon Nanotube-Based Proton Exchange Membrane Assembly for Hydrogen Fuel Cells, Langmuir, vol.21, issue.18, pp.8487-8494, 2005.
DOI : 10.1021/la051499j

Y. Mu and H. Lian, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.109, issue.47, pp.22212-22216, 2005.
DOI : 10.1021/jp0555448

J. J. Gray and R. T. Bonnecaze, Adsorption of colloidal particles by Brownian dynamics simulation: Kinetics and surface structures, The Journal of Chemical Physics, vol.114, issue.3, pp.1336-1381, 2000.
DOI : 10.1063/1.1319317

Z. Adamczyk and K. Jaszczolt, Irreversible adsorption of particles at random-site surfaces, The Journal of Chemical Physics, vol.120, issue.23, pp.11155-11162, 2004.
DOI : 10.1063/1.1712967

P. Schaaf and J. Voegel, Irreversible deposition/adsorption processes on solid surfaces, Annales de Physique, vol.23, issue.6, 1998.
DOI : 10.1051/anphys:199806001

T. R. Jensen and M. L. Duval, Nanosphere Lithography:?? Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles, The Journal of Physical Chemistry B, vol.103, issue.45, 1999.
DOI : 10.1021/jp9926802

M. M. Miller and A. A. Lazarides, Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment, The Journal of Physical Chemistry B, vol.109, issue.46, pp.21556-21565, 2005.
DOI : 10.1021/jp054227y

T. Maoka, Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid???I. Effects of platinum content in the catalyst layer and operating temperature of the electrode, Electrochimica Acta, vol.33, issue.3, pp.371-377, 1988.
DOI : 10.1016/0013-4686(88)85031-X

J. Giner and J. M. Parry, Methods for Characterizing the Structure and Electrochemical Behavior of Teflon-Bonded Pt Electrodes, Journal of The Electrochemical Society, vol.116, issue.12, p.12, 1969.
DOI : 10.1149/1.2411664

J. Bico, « Mécanismes d'imprégnation : surfaces texturées, bigouttes, poreux, Thèse de l, 2000.

J. Clavilier and R. Faure, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.107, issue.1, pp.205-209, 1980.
DOI : 10.1016/S0022-0728(79)80022-4

P. N. Ross, Structure sensitivity in the electrocatalytic properties of Pt, J. Electrochem, 1979.

A. J. Bard and L. R. Faulkner, Electrochemical methods -Fundamentals and Applications, 1980.

Z. G. Estephan and L. Alawieh, Oxygen Reduction at Nanostructured Electrodes Assembled from Polyacrylate-Capped Pt Nanoparticles in Polyelectrolyte, The Journal of Physical Chemistry C, vol.111, issue.22, pp.8060-8068, 2007.
DOI : 10.1021/jp0687091

X. Sun and R. Li, Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings, Chemical Physics Letters, vol.379, issue.1-2, pp.99-104, 2003.
DOI : 10.1016/j.cplett.2003.08.021

M. M. Maye and J. Luo, X-ray Photoelectron Spectroscopic Study of the Activation of Molecularly-Linked Gold Nanoparticle Catalysts, Langmuir, vol.19, issue.1, pp.125-131, 2003.
DOI : 10.1021/la0264116

J. Luo and V. W. Jones, Thermal Activation of Molecularly-Wired Gold Nanoparticles on a Substrate as Catalyst, Journal of the American Chemical Society, vol.124, issue.47, pp.13988-13989, 2002.
DOI : 10.1021/ja028285y

F. Raynal and A. Etcheberry, Characterization of the unstability of 4-mercaptoaniline capped platinum nanoparticles solution by combining LB technique and X-ray photoelectron spectroscopy, Applied Surface Science, vol.252, issue.6, pp.2422-2431, 2006.
DOI : 10.1016/j.apsusc.2005.05.042

URL : https://hal.archives-ouvertes.fr/hal-00083909

N. S. 96-pesika and K. J. Stebe, Kinetics of Desorption of Alkanethiolates on Gold, Langmuir, vol.22, issue.8, pp.3474-3476, 2006.
DOI : 10.1021/la052286x

B. I. Rosario-castro and E. R. Fachini, Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes, Langmuir, vol.22, issue.14, pp.6102-6108, 2006.
DOI : 10.1021/la0522193

C. A. Widrig and C. Chung, The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.310, issue.1-2, pp.335-359, 1991.
DOI : 10.1016/0022-0728(91)85271-P

J. Solla-gullon and E. Lafuente, Electrochemical characterization and reactivity of Pt nanoparticles supported on single-walled carbon nanotubes, Electrochimica Acta, vol.52, issue.18, pp.5582-5590, 2007.
DOI : 10.1016/j.electacta.2006.11.051

M. Faraday, Experimental relations of gold (and other metals) to light, Phil. Trans. Roy, 1857.

J. 101-turkevich and P. C. Stevenson, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, p.55, 1951.
DOI : 10.1039/df9511100055

M. Brust and M. Walker, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid???Liquid system, J. Chem. Soc., Chem. Commun., vol.19, issue.7, pp.801-802, 1994.
DOI : 10.1039/C39940000801

M. J. Hostetler and J. E. Wingate, Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:?? Core and Monolayer Properties as a Function of Core Size, Langmuir, vol.14, issue.1, pp.17-30, 1998.
DOI : 10.1021/la970588w

T. Herricks and J. Chen, Polyol Synthesis of Platinum Nanoparticles:?? Control of Morphology with Sodium Nitrate, Nano Letters, vol.4, issue.12, pp.2367-2371, 2004.
DOI : 10.1021/nl048570a

L. Yan and C. Marzolin, Formation and Reaction of Interchain Carboxylic Anhydride Groups on Self-Assembled Monolayers on Gold, Langmuir, vol.13, issue.25, pp.6704-6712, 1997.
DOI : 10.1021/la970762g

Y. Shon and H. Choo, Organic reactions of monolayer-protected metal nanoparticles, Comptes Rendus Chimie, vol.6, issue.8-10, pp.1009-1018, 2003.
DOI : 10.1016/j.crci.2003.08.008

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

M. Pinault and V. Pichot, Evidence of Sequential Lift in Growth of Aligned Multiwalled Carbon Nanotube Multilayers, Nano Letters, vol.5, issue.12, pp.2394-2398, 2005.
DOI : 10.1021/nl051472k

URL : https://hal.archives-ouvertes.fr/hal-00084691

M. Pinault and M. Mayne-l-'hermite, Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects, Diamond and Related Materials, vol.13, issue.4-8, pp.1266-1269, 2004.
DOI : 10.1016/j.diamond.2003.12.015

URL : https://hal.archives-ouvertes.fr/hal-00085009

B. E. Conway, Electrochemical oxide film formation at noble metals as a surface-chemical process, Progress in Surface Science, vol.49, issue.4, pp.331-452, 1995.
DOI : 10.1016/0079-6816(95)00040-6

D. R. Lide and . Ed, Handbook of chemistry and physics, 1995.

F. Raynal and A. Etcheberry, Quantitative analysis and thickness dependence study of Langmuir-Blodgett films of functionalized platinum nanoparticles by X-ray photoelectron spectroscopy, Applied Surface Science, vol.236, issue.1-4, pp.198-207, 2004.
DOI : 10.1016/j.apsusc.2004.04.028