Synthèse et filtrage robuste de la commande pour des système manufacturiers sûrs de fonctionnement

Synthesis and robust filtering of control for dependable manufacturing systems

Ph.D. for the doctor title of the University of Reims Champagne-Ardenne
By Pascale MARANGE
November 05 2008

Supervised by Bernard RIERA (Professor) and François GELLOT (Assistant Professor)
Plan

1. Introduction
 1. Works Context
 2. Works in the domain
 3. Contribution of thesis works

2. Control validation approach by filter
 1. Definition of filter model
 2. System adaptation
 3. Method to define the safety constraints
 4. Discussion

3. Safety constraints verification
 1. Problematic
 2. Verification approach
 3. System model
 4. Discussion

4. Pedagogical applications
 1. Context
 2. Real system: Productis Machine
 3. Virtual system: Warehouse, ITS PLC
 4. Discussion

5. Conclusion and future works
Introduction

Work context

- Problematic:
 - How to secure Automated Production Systems (APS)?

- Use of APS raises problem of:
 - Security risks and damage
 - Maintenance time and qualify people
 - Important cost

- In the industrial case, several objectives:
 - Economic: reduced cost of manufacture, reduced cost of stock, maximum production
 - Humans: improving working conditions
 - Technical: reduce production cycles, increase product quality, improve systems flexibility, improve systems availability

- Possible malfunctions:
 - External: modification of customer demand, bad raw materials, breakdown…
 - Internal: material breakdown of calculator, plant wear, programming error…
Introduction

Work context

- An error at level of control programming:
 - A bad operator behavior
 - A bad control programming design

- Due to bad system vision, bad understanding of what to do, or it may be intentional

- It requires to:
 - Assure the plant safety
 - Assure that the specification (technical standard) is conformed
 - Adapt the system vision to the control designer

- Application:
 - Industrial case:
 - Systems more and more complex
 - Reduce the maintenance intervention and the start-up time
 - Pedagogical case:
 - Use Information and Communication Technology: Possibility of equipment collaborative use, remote practical work
Introduction

Work context

Requirements and ideas:

- To safe the system:
 - Usable in the real world
 - Adapted and time compatible with the controller
 - Independent from control

- To adapt the system to control designer by:
 - adapting the difficulty parameter (dimension, synchronization, hierarchization) but keeping the system as a whole
 - giving a comprehensible explanation in case of errors
Introduction
Works in the domain

- Definition of validation and verification terms
 - Validation: is the design conform to specification?
 - Verification: is the validation correctly defined?

- To analyze the system and to adapt it
 - System definition according to 2 axis: "Whole-Part" et "Means-End" (Lind, 1994)
 - Hierarchical analysis (Belhimeur, 1989)

- To ensure the control dependability
 - Validation/verification approach: simulation, reachability analysis (Kowalewshi et al., 1996), model checking (Gourguff, 2007; Barragan, 2007), Theorem Proving (Volker, 2002; Roussel 2002)
 - Monitoring approach (Zamaï, 1997; Lhoste, 1994; Cruette, 1991)
 - Synthesis approach (Ramadge, 1989; Wonham, 1987; Tajer, 2006)
Introduction
Works in the domain - in CReSTIC

- CReSTIC : Control synthesis works to get a sure determinist and no deadlocking control
- New orientation : support system for the control designer

Plant, control and constraints modeling (Philippot et al., 2004)

Adaptation of Kumar synthesis approach (Kumar, 1991)

Automatic mode : direct implementation (Tajer, 2005)

Semi-automatic mode : Help to control design
Introduction
Works in the domain - in CReSTIC

- First step: Plant model and constraints verification

- Second step: Control validation

Introduction

Works in the domain - in CReSTIC

Control validation

Constraints verification

Constraints

- AoSS: Automaton of stable situation
- SUP: Automaton of process admissible behaviour

Applications

- Control designer

Conclusion
Introduction
Works in the domain - in CReSTIC

- Plant model definition and control designer
 - Global plant model with Boolean automata at level actuator/sensor, doesn't consider the control designer, valves, temporal aspects and simultaneous evolutions

- Explanation generation in the case of errors
 - Verification phase by the expert:
 - The detected error depends of the control
 - The constraints sufficiency isn't verified
 - Validation phase by the control designer:
 - Detection of bad condition transition, bad outputs
 - The analysis requires to be made by an expert

- Approach reliability at the level of system safety
 - Use of the supervisory control theory allows to assure a high reliability
 - Heavy step in models design and combinatory explosion
Introduction

Contribution of thesis works

Offline constraints verification
- Expert
- Constraints definition
 - Reachable prohibited positions?
 - NO
 - YES

Taking into account of human component
- Control designer
 - Knowledge
 - Know-how
- Expert

Control validation
- System
- Filter
- PLC
 - Control designer

On line control validation
- Expert
- Constrained plant model
 - Control designer
 - Control
 - Coherence
 - Off line control validation
 - System
Plan

1. Introduction
2. Control validation approach by filter
 1. Definition of filter model
 2. System adaptation
 3. Method to obtain the safety constraints
 4. Discussion
3. Safety constraints verification
4. Pedagogical applications
5. Conclusion and future works
At each PLC cycle, the control must validate all constraints before turning on outputs.
Control validation approach by filter
Definition of filter model

Points tackled in the thesis

Introduction Control validation Constraints verification Applications Conclusion
Control validation approach by filter
System adaptation

- Pedagogical case: more motivating working on a real system
- Encapsulation of non adapted control parts
- Adaptation of system vision by functional analyses

Plant Inputs \{Euc\}

System

Plant outputs \{Ec\}

Adaptation of system vision at the designer competence

System information

System

Functions \{Fi\}
Designer possibility: to activate or to deactivate a function

For a great function execution, the activation or deactivation conditions must be respected if not an alarm is set on

Two execution mode:
- **Semi-automatic mode**: control designer manages only the function activation
- **Controlled mode**: Control designer must manage the activation and the deactivation of a function, when the conditions become true.

Hypothesis: the function can't be reactivated on the way
Control validation approach by filter
Method to obtain the safety constraints

- Control validation during the PLC program execution
- Filter is placed between the plant and the controller
- Definition of logical constraints
Some constraints defined by logical equations to safe the system

Method to define the constraints

1. Divide the system into plant elements (EIPO)
2. Definition of plant elements interaction and interaction with the product by structural analysis
3. Definition of constraints for each “bad” situation
Control validation approach by filter
Method to obtain the safety constraints

3. Definition of constraints for each situation:
 - EIPO independently: allowing to take into account the designer’s errors,
 - EIPO in interaction: avoid the collisions between EIPO,
 - EIPO in interaction with the product: avoid the collisions between the product and EIPO

Use of constraints:

The set of constraints can be more constrained than the prohibited position but it ensures the system safety independently of control.
Control validation approach by filter
Method to obtain the safety constraints – Framework (1/3)

- Static Safety Constraints: represent a technical or physical impossibilities:
 \[X_{c_i} \land X_{c_j} = 0 \]

Generalization in the case of EIPO interaction:
\[f(X_{uc_k}) \land X_{c_i} \land X_{c_j} = 0 \]

Introduction
Control validation
Constraints verification
Applications
Conclusion
Dynamic Safety Constraints: occurrence of an event which is not compatible with a system situation

- The request of output activation or deactivation when the activation or deactivation conditions aren't true:
 \[\uparrow E_c^i \land \neg \text{Cond}_{aj} = 0 \]
 \[\downarrow E_c^i \land \neg \text{Condd}_j = 0 \]

- The request of output activation when the deactivation conditions are true:
 \[\uparrow A_v^1 \land \neg \text{re}_2 = 0 \]

\[\uparrow \text{Avancer}_1 \land \neg \text{re}_2 = 0 \]
Dynamic Safety Constraints: occurrence of an event which is not compatible with a system situation

- The occurrence of deactivation conditions in relation to the output:
 $\uparrow \text{Condd}_j \land x_{ci} = 0$

- The occurrence of activation conditions:
 $\text{Avancer} \land \uparrow \text{av} = 0$
Control validation approach by filter
Method to obtain the safety constraints – Explanations

- Automatic explanation generation
 - Static safety constraint:
 - Interdiction to send at the same time two outputs

- Dynamic safety constraint:
 - The request of output activation or deactivation when the activation or deactivation conditions aren't true:
 - Interdiction to send this output if the conditions aren't true
 - The request of output activation when the deactivation condition are true:
 - The outputs activation does not have any effects on the system
 - The occurrence of deactivation conditions in relation to the output:
 - The outputs must be deactivated when the deactivation conditions are true

Some constraints can be set but will lose their explanatory power
Taking into account the control designer:
- The expert defines functions to adapt the system to the control designer
- Functional analysis of system
- Encapsulation of programming part non adapted and execution mode: semi-automatic or controlled

Explanations generation in the case of error:
- Constraints definition by logical equations linked to an explanation
- The explanations aren't taken into account designer knowledge

Approach reliability at the level of system safety:
- Structural analysis of system
- Constraints definition is a difficult task. The proposed framework isn't a formal method
Plan

1. Introduction
2. Control validation by filter
3. Safety constraints verification
 1. Problematic
 2. Verification approach
 3. System model
 4. Discussion
4. Pedagogical applications
5. Conclusion and future works

Constraints verification

Taking into account of human component

Control validation

Expert

Constraints definition

Control designer

Knowledge

Know-how

Expert

Reachable prohibited positions?

YES

NO

On line control validation

Off line control validation

System

Filter

PLC

Control designer

Control

Constrained plant model

Coherence

System

Off line control validation
Safety constraints verification

Problematic

- The expert defines on the one hand the prohibited situations and on the other hand the constraints.

- Are we sure that the constraints are sufficient to avoid dangerous positions?

- Constraints verification for an interaction between EIPO and with the product.
Safety constraints verification

Problematic – Execution on a real system

- Taking into account the PLC cycle time
 - According to PLC cycle time, it is possible to have a collision between EIPO

- Presence of inertia in the system

Constraints:
- \(\text{Av}_\text{auto} \land \neg \text{h}_\text{auto} = 0 \)
- \(\text{De}_\text{auto} \land \neg \text{a}_\text{auto} = 0 \)
- \(\text{Av}_\text{auto} \land \text{De}_\text{auto} = 0 \)

These constraints aren't sufficient

The causality delays and the inertia effects must be taken into account in the verification

Hypothesis: “long” contact sensors
Safety constraints verification
Verification approach

- Use the same steps that for the constraints definition
- The constraints set of each interaction is verified independently from each other
- Modeling only EIPO concerned in the interaction
- Step:
 1. Regroup of the constraints by interaction
 2. Seek in the library, if the constraints set has already been verified
 3. Verify the constraints sufficiency
 4. Verify the constraints requirement
 5. Update the constraints library
Safety constraints verification

Verification approach - Steps

- a new EIPO interaction
- Set of formal properties
- Model Checker
 - UPPAAL
- Property verified?
 - Yes
 - Off line
 - On line
 - No
 - association constraints / explanations
- PLC model
 - reading inputs
 - Executing most permissive control
 - Filter
 - updating outputs
- Plant model
- Set of prohibited positions
- Set of constraints
- Filter
- robust filter
- PLC
- HMI
Safety constraints verification

Verification approach – Interaction between ELPO

System divided into ELPO

Interaction studied I_2 : EL_{PO2}, EL_{PO4}, EL_{PO5}

Definition of plant model

Constraints set

Set of prohibited positions

Verification of disjunction between the 2 sets

Set of reachable positions

Operating in the PLC
Safety constraints verification

Verification approach – Interaction with the product

Interaction studied I_2 :
EL_{PO1}, EL_{PO2}, EL_{PO3},
EL_{PO4}

System divided into El_{PO}

Constraints set

Definition of plant model

Operating in the PLC

Set of product states

Product model with a prohibited state

Verify that the plant does not lead the product towards the prohibited state when the constraints are applied
Safety constraints verification
System model – Works context

- The system \{Plant, controller, Product, computing environment\} is modeled in modular way for each plant element and each product
- Communicating automaton (Julliand, 2003)
- The modeling is performed with a PLC point of view. So, we consider the cyclic operating and response time that leads to simultaneous evolution at the plant and controller levels
- Work hypotheses
 - All evolution are observable by the PLC
 - Possibilities of simultaneous evolution \(E_c, E_{uc}\) for the PLC,
 - Causality time delay, taking into account inertia,
 - Verification in the worth case: Output updating has an effect on the system
Safety constraints verification
System model

- a new EIPO interaction
- Set of constraints
- Set of prohibited positions
- Plant model
- PLC model
- Model Checker
 - UPPAAL
 - Off line
- Propriety verified?
 - Yes
 - No
 - association constraints / explanations

- Reading of inputs
- Executing most permissive control
- Filter
 - updating outputs

- On line
 - robust filter
 - PLC
 - HMI

Introduction | Control validation | Constraints verification | Applications | Conclusion
Safety constraints verification
System model – Environment model

Classical PLC operation
Lecture Entrées !
Écriture Sortie !
Commande !

PLC operation taking into account the filter
Lecture Entrées !
Écriture Sortie !
Commande !
Contraintes !

PLC operation managing the plant evolution
Lecture Entrées !
Écriture Sortie !
Évolution Po !
Commande !
Contraintes !

PLC operation with the verification stage
Lecture Entrées !
Vérification EI !
Écriture Sortie !
Commande !
Contraintes !

Reconstruction d’information !
Modèles de reconstruction
Contraintes !
Modèle de contraintes

Contraintes !
Évolution Po !

Calcul du sens -> modèle S
Sim_PO !
Positions PO -> modèle P
Évolution Produit !
Positions Produit

Contraintes !
Évolution Po !

Contraintes !
Écriture Sortie !
Commande !

Contraintes !
Écriture Sortie !
Commande !

Contraintes !
Écriture Sortie !
Commande !

Introduction
Control validation
Constraints verification
Applications
Conclusion
Safety constraints verification
System model – Environment model

Variables used in the different models

<table>
<thead>
<tr>
<th>Plant model</th>
<th>PLC variables</th>
<th>System variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction model</td>
<td>L</td>
<td>Sens</td>
</tr>
<tr>
<td>Positions model</td>
<td></td>
<td>Pos</td>
</tr>
<tr>
<td>Product model</td>
<td></td>
<td>Pro</td>
</tr>
<tr>
<td>Outputs model</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Model of constraints evolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruction model</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Constraints model</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Writing model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading, Updating, Constraints models

Constraints model

\[G : h == 0 \land AV == 1 \]

\[F : \text{Contraintes ?} \]

\[M : \text{erreur} = 1 \]

Updating model

\[G : \text{erreur} = 1 \]

\[F : \text{Ecriture Sorties ?} \]

\[M : \text{AV=0, RE=0, DE=0, MO=0} \]

Reading model

\[G : \text{Lecture_{entrées ?}} \]

\[F : \text{AV_auto=AV, RE_auto=RE, DE_auto=DE, MO_auto=MO} \]
Safety constraints verification
System model – Outputs model

- Represent the most permissive control of EIPO
- Case of a double effect cylinder (AV, RE) piloted by a valve 5/2 with 2 sensors (a, r)
Safety constraints verification
System model

- a new EIPO interaction
- Set of formal properties
- Model Checker
 - UPPAAL
- Off line

- Plant model
- PLC model
 - Reading of inputs
 - Executing most permissive control
 - Propriety verified?
 - Ye
 - association constraints / explanations
 - No

- On line
 - robust filter
 - PLC
 - HMI

- Set of prohibited positions
- Set of constraints
- Executing most permissive control
- Filter
- updating outputs

Introduction
Control validation
Constraints verification
Applications
Conclusion
Safety constraints verification
System model – Functional chain

- Control
- Process (Effectors)
- Outputs model
- Acquisition chain
- Conditioners
- Sensors
- Actions chain
- Direction model
- Plant model
- Product model
- Pre-actuator
- Actuator

Introduction
Control validation
Constraints verification
Applications
Conclusion
Safety constraints verification
System model – Direction model

- To take into account the EIPO technology
- To model the inertia effects and causality delay

```cpp
int Force()
{
    if((A&&!B)==1) {F=F+f;}
    if(!A&&B)==1) {F=F-f;}

    if (F>fmax){F=fmax;}
    if (F<-fmax){F=-fmax;}
    return(F);
}

bool sensp()
{
    Sp=(F≥frp)?1:0;
    return(Sp);
}

bool sensm()
{
    Sm=(F≤frm)?1:0;
    return(Sm);
}
```
Safety constraints verification
System model – Positions model

Between a and b
\[\text{Vers } a=1 \& \& t \geq \delta \]
\[\text{Vers } a=1 \& \& t \leq 0 \]
\[\text{evolu} _ \text{position} \]
\[\text{M} : a=1, t= \text{t} _ \text{cap} \]

\[\text{Vers } b=0 \& \& t \geq \text{tcap} - \delta \]
\[\text{Vers } b=0 \& \& t < \text{tcap} - \delta \]
\[\text{evolu} _ \text{position} \]
\[\text{M} : b=0, t= \text{t} _ \text{inter} \]

Repos
\[\text{Vers } b=0 \& \& t < \text{t} _ \text{cap} \]
\[\text{Vers } b=0 \& \& t \geq \text{t} _ \text{cap} \]
\[\text{evolu} _ \text{position} \]
\[\text{M} : t=0, a=0 \]

Vers a
\[\text{Vers } b=0 \& \& \text{Vers } a=0 \]
\[\text{evolu} _ \text{position} \]
\[\text{M} : t= \text{t} _ \text{cap} - \delta, a=1 \]

Vers b
\[\text{Vers } a=1 \& \& t < \text{t} _ \text{cap} - \delta \]
\[\text{Vers } a=1 \& \& t \geq \text{t} _ \text{cap} - \delta \]
\[\text{evolu} _ \text{position} \]
\[\text{M} : t= \text{t} + \delta, a=0 \]

\[\text{evolu} _ \text{position} \]
Safety constraints verification
System model – Product model

- To model the product evolution according to the plant positions
- Product evolution

- Product model
Safety constraints verification

System model

- a new EIPO interaction
- Set of formal properties
 - Plant model
 - UPAPAAL
- Model Checker
- Propriety verified?
 - Ye
 - association constraints / explanations
 - No
 - Set of prohibited positions
 - Set of constraints
 - Reading of inputs
 - Executing most permissive control
 - Filter
 - updating outputs
 - robust filter
 - PLC
 - HMI

Introduction
Control validation
Constraints verification
Applications
Conclusion
Safety constraints verification
System model – Verification model

- For an interaction between EIPO:

\[\text{P1} : A[] \neg(\text{Verif.erreur})\]

- For an interaction with the product:

\[\text{P2} : A[] \neg(\text{Etat_produit.produit_perdu})\]

The definition of the formal properties is simple because there are few EIPO considered in interaction.
Safety constraints verification
System model – Animation

Constraints

\[AV_{\text{auto}} \land \neg h_{\text{auto}} = 0 \]
\[DE_{\text{auto}} \land \neg a_{\text{auto}} = 0 \]
\[AV_{\text{auto}} \land DE_{\text{auto}} = 0 \]
\[\downarrow AV_{\text{auto}} \land a_{\text{auto}} = 0 \]
\[\downarrow DE_{\text{auto}} \land h_{\text{auto}} = 0 \]

Or

\[\downarrow AV_{\text{auto}} \land \neg b_{\text{auto}} = 0 \]
\[\downarrow DE_{\text{auto}} \land \neg d_{\text{auto}} = 0 \]

Outputs model

Direction model

Position model

Introduction
Control validation
Constraints verification
Applications
Conclusion
Safety constraints verification

Discussion

- Verification approach
 - Formal verification of constraints
 - Using of model checker (UPPAAL)

- Plant model
 - The outputs, direction and positions models proposed are generic,
 - The change of EIPO technology modifies only the direction model
 - Taking into account the product presence doesn't increase the complexity of the plant model.
 - Definition of the product models can be a difficult task
Plan

1. Introduction
2. Control validation approach by filter
3. Safety constraints verification
4. Pedagogical applications
 1. Context
 2. Real system: Productis Machine
 3. Virtual system: Warehouse, its PLC
 4. Discussion
5. Conclusion and future works
Pedagogical applications

Context

- To allow to make control a real system by learners
- To safe system
- To adapt the level difficulty

- Real system: Productis machine to illustrate the system adaptability
- Virtual system: ITS PLC to illustrate the verification method
Pedagogical applications

Real system: Productis machine

The system is composed of 46 outputs and 64 inputs.
Pedagogical applications
Real system: Productis machine

- Outputs numbers / Execution mode
 - 5 functions for each station
 - 20 functions
 - Replace functions in chronological order
 - Semi-automatic mode
 - 18 functions
 - Programming by software PL7
 - Controlled Mode

- 46 functions for each outputs
- Programming by software

- Novices: Activity with children from kindergarten
 - Outputs numbers / Execution mode
 - Difficulty
 - 5 functions for each station
 - 20 functions
 - Replace functions in chronological order
 - Semi-automatic mode
 - 18 functions
 - Programming by software PL7
 - Controlled Mode

- Control design beginner: Practical Work in IUT
- Control design Expert: Practical Work in Master pro

- Novices: Activity with 10 years old children

96 constraints are required to safe the system

Introduction
Control validation
Constraints verification
Applications
Conclusion
This automatic warehouse system is composed of a transelevator, a rack, an entry bay and an exit bay.

The automatic monorail, delivers boxes to the transelevator. The boxes are delivered and retrieved by the forks, followed by an automatic movement of the elevator. The rack is subdivided into 50 cells, which are identified by a number. The monorail retrieves the boxes from the transelevator.
- The warehouse is reduced to one dimension
- The position b represents the rack position
- The positions a and c represent the entry and exit position
- The forks go out at the position s to take the product in position a and to position c to discharge
- The forks go out at the position r to take or to discharge the product in the stock (position b)
- A movement sensor $cmvt$ measures the warehouse movement
Pedagogical applications

Virtual system: Automatic warehouse - System analysis

<table>
<thead>
<tr>
<th>Functions</th>
<th>Actuators</th>
<th>Possible fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>To manage an automatic warehouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To supply with box</td>
<td>To go to position (p_{\text{entry}})</td>
<td>A, B (interaction with S and R)</td>
</tr>
<tr>
<td></td>
<td>To take a product at the entry bay</td>
<td>S (interaction with A and B) (interaction with the product)</td>
</tr>
<tr>
<td></td>
<td>To go to desired position (p_i)</td>
<td>A, B (interaction with S and R)</td>
</tr>
<tr>
<td></td>
<td>To put the product to the rack</td>
<td>R (interaction with A and B) (interaction with the product)</td>
</tr>
<tr>
<td>To discharge box</td>
<td>To go to desired position (p_i)</td>
<td>A, B (interaction with S and R)</td>
</tr>
<tr>
<td></td>
<td>To put the product to the rack</td>
<td>R (interaction with A and B) interaction with the product)</td>
</tr>
<tr>
<td></td>
<td>To go to position (p_{\text{exit}})</td>
<td>A, B (interaction with S and R)</td>
</tr>
<tr>
<td></td>
<td>To take a product at the exit bay</td>
<td>S (interaction with A and B)</td>
</tr>
</tbody>
</table>

- **Movement with the forks (PF1)**
- **Stopping to intermediate position (PF2)**
- **already a product in the transelevator (PF3)**
- **To go out in the bad way (PF4)**
- **Transelevator in movement (PF5)**
- **already a product in the rack (PF6)**
- **(PF4, PF5)**
- **(PF3, PF4, PF6)**
- **(PF1, PF2)**
- **(PF1, PF2)**
Pedagogical applications
Virtual system : Automatic warehouse – Constraints definition

- **PF1** : Movement with the forks
 - $\uparrow A \land \neg o = 0 \ (C_1)$: prohibited to activate A if the forks aren’t in position o
 - $\uparrow B \land \neg o = 0 \ (C_2)$: prohibited to activate B if the forks aren’t in position o
 - $\downarrow S \land \neg s = 0 \ (C_3)$: prohibited to deactivate S if the forks aren’t in position s
 - $\downarrow R \land \neg r = 0 \ (C_4)$: prohibited to deactivate R if the forks aren’t position r
 - $A \land (S \lor R) = 0 \ (C_5)$: prohibited to activate A at the same time that R or S
 - $B \land (S \lor R) = 0 \ (C_6)$: prohibited to activate B at the same time that R or S

- **PF2** : Stopping to intermediate position
 - $\downarrow A \land \text{cmvt} = 0 \ (C_7)$: prohibited to deactivate A if the movement sensor cmvt is turned on
 - $\downarrow B \land \text{cmvt} = 0 \ (C_8)$: prohibited to deactivate B if the movement sensor cmvt is turned on

- **PF3** : already a product in the transelevator
 - $\uparrow S \land a \land \text{product_in_trans} = 0 \ (C_9)$: prohibited to activate S if the transelevator is in position a and if a product is already in the transelevator

- **PF4** : To go out in the bad way
 - $\uparrow S \land \neg c \lor \neg a = 0 \ (C_{10})$: prohibited to activate S if the transelevator isn’t in position a or c
 - $\uparrow R \land \neg b = 0 \ (C_{11})$: prohibited to activate R if the transelevator isn’t in position b

- **PF5** : Transelevator in movement
 - $\uparrow S \land \text{cmvt} = 0 \ (C_{12})$: prohibited to deactivate S if the movement sensor cmvt is turned on
 - $\uparrow R \land \text{cmvt} = 0 \ (C_{13})$: prohibited to deactivate S if the movement sensor cmvt is turned on
Pedagogical applications
Virtual system: Automatic warehouse – Constraints verification

- 3 points to verify:
 - The reachable positions by the transelevator and the forks
 - The possibility of several boxes on a single stock position
 - The possibility of several boxes on the transelevator
Pedagogical applications
Virtual system: Automatic warehouse – Model for the verification

- Model definition
 - For the Forks

```c
int vitesse()
{
    if((UA&&!UB)==1) {V=V+v;}
    else{
        if((!UA&&UB)==1) { V=V-v;}
        else {
            if ((!UA&&!UB)==1 && !z && !o) {V=V-v;}
            else {
                if((!UA&&!UB)==1 && z) {V=V+v;}
                else {if((!UA&&!UB)==1 &&o){V=0;}}
            }
        }
    }
    if (V>vmax){V=vmax;}
    if (V<-vmax){V=-vmax;}
    return(V);
}

bool sensp()
{
    Sp=(V>=vrp)?1:0;
    return(Sp);
}

bool sensm()
{
    Sm=(V<=vrm)?1:0;
    return(Sm);
}
```
Pedagogical applications

Virtual system: Automatic warehouse – Model for the verification

- The reachable positions by the transelevator and the forks

<table>
<thead>
<tr>
<th>Transelevator positions</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 75 constraints to safe the system
- Test on UPPAAL and implement with PL7_pro
Pedagogical applications

Real system
- First role of the filter: to safe the system
- Second role: to bring an explanation in the case of errors
- To test with various levels of students, to define various levels of system granularity

Virtual system
- Role to bring an explanation
- Show the approach limits, when the sensors number is insufficient
Plan

1. Introduction
2. Control validation approach by filter
3. Constraints verification
4. Pedagogical applications
5. Conclusion and future works
Conclusion and future works

Conclusion

- Questions tackled in this PHD thesis:
 - How to ensure the safety according to the control errors and to check that the control respects the specifications?
 - How to take into account the human component?
 - How to ensure that the approach is dependable?

- Two validation approaches have been proposed
 - Validation approach off line by synthesis
 - Validation approach on line by filter

- To take into account the control designer
 - Functions definition inside the filter

- To guarantee the safety taking care of the implementation
 - Sufficiency verification by model checking,
 - Definition of a system model: computing environment, plant, most permissive control, product
Conclusion and future works

Future works

- Validation approach by filter
 - To develop the functional validation filter
 - To use the Allen's algebra (Allen, 1983)
 - Generation of an explanation adapted to the level of the system validation filter:
 - To adapt the information supplied by the system validation filter
 - To bring an explanation on the safety constraints without redefining the constraints at the functional level
 - To use the traces supplied by UPPAAL for Human adapted explanations
Constraints verification approach
- To verify that all the constraints are necessary
- To raise the assumptions about inertia and product:
 - Not inertia: Use of temporal information (time of activation of an outputs, outputs sequence …)
 - One product: to consider several products in the same state
- To propose a hybrid model of the direction model

To develop a software to define the constraints automatically

To extend the use of this work within the industrial framework
Synthèse et filtrage robuste de la commande pour des systèmes manufacturiers sûrs de fonctionnement

Synthesis and robust filtering of control for dependable manufacturing systems

Merci pour votre attention
Obrigado para a vossa atenção

Ph.D. for the doctor title of the University of Reims Champagne-Ardenne
By Pascale MARANGE
November 05 2008

Supervised by Bernard RIERA (Professor) and François GELLOT (Assistant Professor)