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Abstract

Semantic matching of schemas in heterogeneous data sharing systems is time con-
suming and error prone. The dissertation presents a new robust automatic method
which integrates a large set of domain specific schemas, represented as tree struc-
tures, based upon semantic correspondences among them. The method also creates
the mappings from source schemas to the integrated schema. Secondly, the report
gives an automatic technique to compute complex matchings between two schemas.

Existing mapping tools employ semi-automatic techniques for mapping two schemas
at a time. In a large-scale scenario, where data sharing involves a large number of
data sources, such techniques are not suitable. Semi-automatic matching requires
user intervention to finalize a certain mapping. Although it provides the flexibilty
to compute the best possible mapping but time performance wise abates the whole
matching process. At first, the dissertation gives a detail discussion about the state
of the art in schema matching. We summarize the deficiencies in the currently
available tools and techniques for meeting the requirements of large scale schema
matching scenarios. Our approach, PORSCHE (Performance ORiented SCHEma
Mediation) is juxtaposed to these shortcomings and its advantages are highlighted
with sound experimental support.

PORSCHE associated algorithms, first cluster the tree nodes based on linguistic
label similarity. Then, it applies a tree mining technique using node ranks calcu-
lated during depth-first traversal. This minimises the target node search space and
improves time performance, which makes the technique suitable for large scale data
sharing. PORSCHE implements a hybrid approach, which also in parallel, incre-
mentally creates an integrated schema encompassing all schema trees, and defines
mappings from the contributing schemas to the integrated schema. The approach
discovers 1:1 mappings for integration and mediation purposes. Formal experiments
on real and synthetic data sets show that PORSCHE is scalable in time performance
for large scale scenarios. The quality of mappings and integrity of the integrated
schema is also verified by the experimental evaluation.

Moreover, we present a technique for discovering complex match (1:n, n:1 and
n:m), CMPV (Complex Match Proposition and Validation), between two schemas,
validated by mini-taxonomies. The complex match proposition part is an extended
version of schema matching part of PORSCHE. The mini-taxonomies are extracted
from the large set of domain specific metadata instances represented as tree struc-

tures. We propose a framework, called ExSTax (Extracting Structurally Coherent



Mini-Taxonomies) based on frequent sub-tree mining, to support our idea. It is the
extension of the tree mining method of PORSCHE. We further utilise the ExSTax

technique for extracting a reliable domain specific taxonomy.

Keywords
Data interoperability, XML schema tree, schema matching, schema mapping, schema
mediation, tree mining, large scale, ontology learning, mini-taxonomies, collabora-

tive ontology construction.



TITRE en francais : Intégration de Schémas Large Echelle
Resumé

La mise en correspondance sémantique appliquée a des schémas hétérogeénes dans
les systémes de partage de données est une tache fastidieuse et source d’erreurs. La
thése présente une nouvelle méthode automatique et robuste qui intégre un grand
nombre de schémas sous forme arborescente et de domaine spécifique. Elle permet
de découvrir des correspondances sémantiques entre eux. La méthode crée égale-
ment les mappings entre des schémas sources et le schéma intégré. Puis, le manuscrit
présente une technique pour découvrir d’une maniére automatique des correspon-
dances complexes entre deux schémas.

Les outils de mise en correspondance existants utilisent des techniques semi-
automatiques uniquement entre deux schémas. Dans un scénario a grande échelle,
ou le partage des données implique un grand nombre de sources de données, ces tech-
niques ne sont pas adaptées. De plus, la mise en correspondance semi-automatique
nécessite 'intervention de I'utilisateur pour finaliser les mappings. Bien qu’elle offre
la possibilité de découvrir les mappings les plus appropriés, les performances s’en
trouvent fortement dégradées. Dans un premier temps, le manuscrit présente en dé-
tails I’état de 'art sur la mise en correspondance. Nous expliquons les inconvénients
des outils actuellement disponibles pour répondre aux contraintes d’un scénario a
grande échelle. Notre approche, PORSCHE (Performance ORiented SCHEma
Mediation) évite ces inconvénients et ses avantages sont mis en évidence de maniére
empirique.

Le principe de I'algorithme de PORSCHE consiste a regrouper d’abord les nlJuds
de I'arbre selon la similarité linguistique de leurs labels. Ensuite, des techniques de
fouilles d’arbres utilisant les rangs des nlJuds calculés au moyen du parcours en
profondeur de ’arbre sont appliquées. Cela réduit ’espace de recherche d’'un nlJud
cible et améliore par conséquent les performances, ce qui en fait une technique
adaptée au contexte large échelle. PORSCHE implémente une approche hybride,
qui crée également en paralléle et de maniére incrémentale un schéma intégré qui
englobe tous les schémas, tout en définissant les correspondances entre ces derniers
et le schéma intégré. L’approche découvre des correspondances 1:1 dans un but
d’intégration et de médiation. Finalement, des expérimentations sur des jeux de
données réels et synthétiques montrent que PORSCHE passe a 1’échelle avec de
scénarios de grande échelle. La qualité des correspondances découvertes et I'intégrité
du schéma intégré sont également vérifiées par une évaluation empirique.

Par ailleurs, nous présentons une technique CMPV (Complex Match Proposition

et Validation), pour la découverte de correspondances complexes (1:n, n:1 et n:m),



entre deux schémas, validée par 'utilisation de mini-taxonomies. Cette partie est
une version étendue de I'aspect de mise en correspondance de PORSCHE. Les mini-
taxonomies sont extraites d’un vaste ensemble de métadonnées de domaine spécifique
représenté comme des structures arborescentes. Nous proposons un cadre, appelé
ExSTax (Extracting Structurally Coherent Mini-Taxonomies) basé sur la fouille
d’arbres pour appuyer notre idée. C’est ’extension de la méthode fouille d’arbres
de PORSCHE. Enfin, on utilise la technique ExSTax pour extraire une taxonomie

fiable spécifique a un domaine.

MOT-CLES

Interopérabilité des données, schéma XML sous forme arborescente, mis en corre-
spondance de schémas, mapping, intégration de schéma, fouille d’arbres, grande
échelle, apprentissage d’ontologie, mini-taxonomies, construction d’ontologies col-

laboratives.
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Chapter 1
Introduction

Schema matching is the process, which finds correspondences between elements of
two schemas. This dissertation studies the problem of large scale schema matching
and integration. Large scale scenarios can be categorized according to the input
set of schemas as (i) two large schemas or (ii) a large set of schemes. In our work
schemas are considered as tree structures for exploiting the contextual similarity
among them. It allows us to design a generic solution and utilize the tree mining
technique to tackle the large scale aspect. XML schema is a good example, which
possesses the tree structure.

In literature [25] several variations of schema matching problem have been re-
searched as ontology matching, ontology alignment, schema reconciliation, mapping

discovery, representation matching, discovering semantic correspondence.

1.1 Schema Matching and Integration

The word schema has its origin in Greek, meaning "shape" or "plan". From com-
puter science perspective it is defined as the description of the relationship of data/
information in some structured way or a set of rules defining the relationship.
Schema matching can be defined as the process of finding similarities between two
schemas. To support this process, different types of schema related information can
be exploited. For example schema structure, schema elements’ names and associated
data types and domain ranges over these data types or data instances etc. Schema
matching is the core activity in the integration of two or more schemas which has a
broad application context as discussed in section 1.2. Figure 1.1 presents one such

scenario.



<?xml version="1.0" encoding="UTF-8" 7>
<Abbeys>

<author />

<titlekeywords />

<parentcategory />

<pricerange />

<isbn />

<pubdate option />
</Abbeys>

<?xml version="1.0" encoding="UTF-8" 7>
<Dymocks>

<Title />

<Author />

<Department />

<ISBN />
</Dymocks>

<?xml version="1.0" encoding="UTF-8" 7>
<AmericanBookCenter>
<searchcritl />
<searchcrit2 />
<published>
<datefrom />
<datetill />
</published>
<onderwerp />
<sel publisher />
</AmericanBookCenter>

<?xml version="1.0" encoding="UTF-8" 7>
<bookery>

<lastname />

<firstname />

<Title />

<description />

<categorylD />
</bookery>

<?xml version="1.0" encoding="UTF-8" 7>
<Bookbeat>

<author />

<catalog />

<title />

<keyword />
</Bookbeat>

<?xml version="1.0" encoding="UTF-8" 7>
<Book-Place>
<ctitle />
<CAUTHOR />
<keyword />
<SEARCH_TEXT />
<IMPRINT />
<SearchFilters>
<FILTER binding code />
<FILTER reader code />
</SearchFilters>
</Book-Place>

Figure 1.1: XML schema instances of different web based query interfaces for book
searching.

Example 1.1 Querying Web Interfaces: Let us consider an example of a person
searching for good deals for books, for reading in her next holidays. There are hun-
dreds of web interfaces available for query purposes. She can not query each interface
and then compare each query result. The best answer to his problem would be a
virtual mediated interface which is mapped to each of the physical interfaces over
the web in the books domain. The results from each query are in turn integrated
and displayed according to her preferences. The first step in the implementation
of the virtual interface is the matching of all possible/ available interfaces over the
web in the specified domain. Once the mappings between the individual interfaces
and the integrated interface has been done, query processing and results display
processes can be initiated. The mediated schema with mappings can be cached for
future utilisation by other users with similar requirements. The web query interfaces
follow a hierarchical tree like structure as shown in figure 1.1 for books domain taken
from TEL-8 dataset '.e

Thttp: //metaquerier.cs.uiuc.edu/repository



We have developed a framework Performance Oriented Schema Mediation (dis-
cussed in chapter 5), having good time performance results with approximate schema
mappings from source to integrated schema. PORSCHE considers schemas as tree
structures. It employs a tree mining data structure (sub-trees of size one) based
on depth-first ordering of nodes, to find matchings among schemas for integration
and mediation. For the integration purposes simple matchings are considered. Our
second research work revolved around finding a solution for complex match discov-
ery. We extracted the matching part of PORSCHE and extended it to discover
complex matches between two schemas, Complex Match Proposition and Validation
(discussed in chapter 7). To further support the discovered complex match, we used
mini-taxonomies representing domain concepts to validate the discovered complex
matches. We extended the tree-mining part of PORSCHE, to find frequent grow-
ing sub-tree patterns in the large set of given schemas trees (ExSTax technique
discussed in chapter 6). The resulting frequent sub-trees are considered to be the

mini-taxonomies.

1.2 Application Context of Large Scale Schema
Matching

Over the years technology has made this world a web of digital information, where
digital systems are appearing at an exponential rate. At individual level, personal or
professional, or organisational level, there exists an unending list of digital devices
cooperating together to solve problems. Every day a new gadget hits the market,
creating a ripple-effect in its surrounding operating environment and giving rise to
new innovations in the field around it. The collaboration between these devices
eventuates in better performance and results. For us, the database people, this is
emergence of new form of data or information, which has to be utilised in the most
efficient and effective manner. The ability to exchange and use of data/information
between different devices (physical or logical), is the basic activity in any type of
system, usually referred to as data interoperability [84|. Thus the domain of data

interoperability has also evolved with emergence of new devices and systems.

1.2.1 Autonomy, Distribution and Heterogeneity Aspects of

Data Sources

Data source can be defined as anything from which data originates. It can be

a database within a DBMS, a simple text file or any other emerging new device



as discussed in preceeding section. Every data source has to know the meaning
encoded in the data (personal or of some other data source). It can be learned
primarily from the Schema, representing the data of the data source. For inception
of a system there are different levels, and each level can have its own description.
For example, in relational database systems, a database schema is a set of relations
and attributes. Thus for an application, a schema gives the best way to understand
the semantics of the underlying data instances.

Today, the whole scenario related to data sources is quoted as "data every-
where" [37]. And the participating data sources are presenting more and more au-
tonomous behaviour, with a much greater will to share their data. Some of the best
examples are the social and P2P network environments. Future implementations are
weighing for a broader virtul network platforms where individual environments like
Facebook (social network) can exchange data with bittorrent (P2P network). So,
we are going to encounter one of the biggest collaborating, autonomous, distributed

and heterogenic data environment.

1.2.2 Large Scale Scenarios

Schema matching is a basic task in almost every data intensive application in the
evergrowing dataspaces. The central platform being utilised to share the digital
information is the world wide web, which is evolving from an unstructured data
presenter to a more semantically structured and reasoning entity, termed as seman-
tic web. Semantic web provides a framework where machines can move one step
further, understand the structures of data, the contextual meaning of the data and
autonomously reason over it. Thus providing the ground for semantically richer
applications for large scale distributed information systems. Secondly, it is push-
ing the schema matching research to utilize the processing power not available in
the past and directly increasing the industry investment proportion in the matching
domain [21]%. In the recent years, several applications requiring large scale seman-
tic matching have emerged. These have been categorized as information sharing,
processing or delivering systems.

In the information sharing domain we have seen peer-to-peer (P2P) database
systems and the social network environments as the leading application development
and investment gainers. P2P started as simple file sharing application. Recently, the
schema based architectures are opening ways to share information between different

P2P networks. Similarly, initial social networks used simple user oriented tagging of

2Markets for semantic technology products and services will grow 10-fold from 2006 to 2010 to
more than 50 billion dollars worldwide



shared resources. And today these environments are adopting OWL based ontologies
following FOAF 3 standards.

Multi-agent and web services based systems represent the processing category
in schema matching domain. Multi-agent systems try to solve problems which are
difficult to be solved by one agent and require quick response, like online trading and
disaster management systems [91]. Agents have their own ontologies to process the
information, with the ability to learn and evolve over time. Several approaches have
been researched to handle web services composition and discovery; WSML * is one
of the standards, based on XML framework, for describing a web service. Similar to
multi-agent systems, web services are used to solve large problems. A single service
request can require several other inter-related services to be discovered and executed.

The core purpose of web is to deliver information as a result of user query.

° web interface query forms for backend databases [17], web

Web search engines
mashups ¢ are the examples of delivering systems. In these systems, information

resources are compared with the requested query, and results are presented to user.

Motivation

We have been motivated by these scenarios, to find a generic time performance
oriented solution for matching large number of data sources modeled as schemas,
which can be large within themselves. As we have seen in the above application
domains, we also need to integrate the data sources’ schemas based upon the dis-
covered matchings and create mappings from the sources schemas to the integrated

schema.

1.3 Objectives of the Dissertation

The central goal of the dissertation is that, for schema matching and integration
problem in the large scale scenario, we design an almost automatic technique with

approximate match quality and good time performance.

Explicitly, the objectives are:

e Analyse the state of the art in schema matching and integration, to learn the

available solutions and their applicability.

3Friend Of A Friend (FOAF) http://www.foaf-project.org

*Web Service Modeling Language (WSML) http://www.w3.org/Submission/WSML/
Shttp:/ /swse.deri.org

Shttp:/ /www.programmableWeb.com



e Outline the desiderata for the large scale schema matching and integration

scenarios.

e Develop a framework for schema matching (simple and complex) and integra-
tion with almost no user intervention in the matching phase and good time

performance.

e Provide within the framework, an apposite solution to handle different schema,

based data models like XML schema, relational data base etc.

e Design the solution, which can give good quality schema matching with min-
imum schema information, e.g., only the schema attributes names and the

hierarchical relationship between the attributes within the schema.

1.4 Contributions

In this section we explicitly outline our contributions to fulfill the above mentioned

objectives.

e The main contribution of this dissertation is our novel approach PORSCHE
(Performance ORiented SCHEma Mediation). The approach is almost auto-
matic and hybrid in nature. It is based on a tree mining technique supporting
large scale schema matching and integration. To support tree mining, we
model schemas as rooted ordered (depth-first) labelled trees. The idea pro-
vides a generic solution for any schema model which possesses a hierarchical

structure.

The approach employs node level clustering, based on node label similarity,
to minimise the target search space, as the source node and candidate target
nodes are in the same cluster. Label similarity is computed using tokenisation
and token level synonym and abbreviation translation tables. The technique
extends the tree mining data structure proposed in [104]. It uses ancestor/
descendant scope properties (integer logical operations) on schema nodes to
enable fast calculation of contextual (hierarchical) similarity between them.
The output is the mediated schema and a set of simple mappings from input

source schemas to the mediated (integrated) schema and vice versa.

The approach was implemented as a prototype. We report on experiments

using different real (OAGIS?, xCBL®) and synthetic scenarios, demonstrating:

"http:/ /www.openapplications.org
8http://www.xcbl.org



a) high performance for different large scale data sets, which shows that our

method is scalable and supports a large scale data integration scenario;

b) input schema selection options (smallest, largest or random) for the cre-
ation of initial mediated schema, allowing us to influence matching per-

formance;

¢) quality evaluation using precision, recall and F-measure as measures of

mapping quality;

d) analysis of the integrity of integrated schema with reference to complete-

ness and minimality measures;

e) quadratic time complexity of the PORSCHE algorithms.

e We further exploit the tree mining technique to extract mini-taxonomies, as
domain concepts, from the large scale input, and call it ExSTax(Extraction
of Structurally Coherent Mini-Taxonomies). The technique builds clusters of
similar terms based upon labels similarity of input schemas’ elements. The
similarity is computed using label’s syntactic, lexical and contextual (hierar-
chical) occurrence in the schema as in PORSCHE. Each cluster is represented
by a single symbol i.e., the most frequent label in the input set of schemas, in
each cluster. The tree mining algorithm identifies the frequent sub-tree pat-
terns as the mini-taxonomies. We report on experiments using different real
(COURSES ?) and synthetic scenarios, demonstrating quality of generated

mini-taxonomies using precision measure.

e We demonstrate the use of the automatically generated mini-taxonomies to
solve complex match problem between two schemas. The method proposes se-
mantically approximate complex mappings as 1:n (leaf node to non-leaf node),
n:1 (non-leaf node to leaf node) and n:m (non-leaf node to non-leaf node) us-
ing the simple mapping technique employed in PORSCHE. Then it utilises the
automatically extracted mini- taxonomies for the validation of the proposed
mappings. Non-leaf node implies a set of leaf nodes of subtree rooted at the

non-leaf node.

e ExSTax approach is further extended to automatically produce a trustable
basic domain taxonomy from the given set of domain specific schemas, implying

domain community consensus over it.

%http:/ /www.cise.ufl.edu/research /dbintegrate /thalia/



e Finally, the dissertation evince the relationship between the basic schema
matching techniques, research domains utilizing these techniques and the ap-
plication domains which benefit and propel this research. We propose a tax-

onomy of schema matching strategies with respect to large scale scenario.

1.5 Structure of the Dissertation

This dissertation is organised into 8 chapters. Current chapter introduced the prob-
lem of schema matching and its application domain in large scale scenarios. Chapter
2 outlines the problem definition for the large scale schema matching and integration.
In chapter 3, we give a detail account of state of the art in schema matching and
integration. Chapter 4 discusses the desiderata for solving the large scale schema
matching and integration problem. We present our approach (PORSCHE) for el-
ement level simple schema matching and integration in Chapter 5. In chapter 6
we discuss the mini-taxonomies generation and its validity. Our complex schema
matching technique and related evaluation is discussed in chapter 7. Conclusions

and future perspective of our research is given in chapter 8.



Chapter 2

Problem Definition

This chapter defines the main schema integration and mediation problem in the
large scale scenario, with reference to autonomy, distribution and heterogeneity [82]
aspects of schemas. First, we give the specific problems of schema integration,
simple schema matching and mediation based on the matchings, and secondly, we
address the problem of complex matching between two schemas. One of the goals of
the dissertation is to solve the schema matching problem, by inspecting minimum
details about the input schemas, with maximum automation. Therefore, we try to
exploit the schema elements names and the hierarchical structure of the elements
to find the matches. First, we discuss the notion of tree structure in the schema
models to aid us design a generic approach for solving the problem. This helps in

addressing the heterogeneity of the schemas.

2.1 Schema Trees

A schema defines a model to represent the data. There are several schema models
available e.g., relational, XML schema, ontology, object oriented representation, web
interface query form schema etc. Most of the models posses the hierarchical structure

and some can be converted to hierarchical structure |36, 18, 57].

books books
book detail
| book_id | title | | book_id |auth0r7id| pub_id | |b00k_id| | title |
author publisher —
|author_id|name| | pub_id |name| author publisher
IM |&I pub_id name

Figure 2.1: Relational database about books and corresponding schema tree.



From city or airport* To city or airport*

Departure date Departure time
| Jul 2008 j' 23 j | Any Time j
Wednesday
Return Date Return time CabinType| [Children
| Jul 2008 j' 24 j | Any Time j
I Depart | | Return |
Thursday

[D_Month| | [D_Time|[D_Month|| [D_Tim¢|

Traveler types Cabin type @ @

i | Coach L ]
Adults
| 1
(12-64 yrs) hd
Children I—_IO - [
(2-11 yrs) .
B IO_EI More search options
(65+ yrs)
Infants (0- I_O -
23 months)

Figure 2.2: ABS Travel web interface form and corresponding schema tree.

The tree structure for a data model inherently supports the contextual meanings
of the descendant nodes, thus making the matching process semantically more viable.
Tree structure in figure 2.1 shows the difference between the two nodes, the author
name and the publisher name with respect to their parent nodes. Secondly, devel-
oping algorithms for matching can depend upon recursive or incremental methods
for fast calculation of matches. For example, top-down approach with depth-first
traversal can help one match the parent node before the children, thus defining the
context for the children nodes. Thirdly, it can seamlessly support the expansion
scenario in the integration process. Non-existent similar nodes in target schema for
a certain source schema node, can be added as child node to the already matched
parent node.

Keeping in view the above mentioned features of tree structure, we propose a

schema to be treated as a tree structure. Following is the related definition:

Definition 2.1 (Schema Tree): A schema S = (V,E) is a rooted, labelled
tree[104], consisting of nodes V' = {0,1,...,n}, and edges £ = {(z,y) | x,y €
V'}. One distinguished node r € V' is called the root, and for all z € V| there is a
unique path from r to . Further, lab:V — L is a labelling function mapping nodes
to labels in L = {l,1ls,...}.

In the subsequent section we present the problem definitions for our work.

10



<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="arizonaCourses">
<xs:annotation>
<xs:documentation>University of Arizona</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Course" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Time" type="xs:string" minOccurs="0"/>
<xs:element name="Day" type="xs:string" minOccurs="0"/>
<xs:element name="Place" type="xs:string" minOccurs="0"/>
<xs:element name="Instructor" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Code" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

arizonaCourses

|Time| |P1ace| |Instructor|

Day

Figure 2.3: Arizona University Courses XML schema and corresponding schema
tree.

2.2 Schema Integration and Mediation

The most general approach for a data integration system is proposed in [62] as a
combination of a global schema, the sources, and the mapping from the sources to
the global schema. We use the word mediated schema instead of global schema.

Based on this approach we formally define the problem as:

Problem 1 (Schema Integration and Mediation): Given a set of schemas
S1, Sa,...8,, discover a schema S,,, which holds all concepts, existing in the set of
u schemas. And for each element s of S; where 1 < ¢ < u, create a mapping to the

most appropriate semantically matching element s, of 5,,,.

Keeping in view the above problem we try to devise a system which can per-
form well and abide by the large scale, heterogenic and semantic aspects (discussed
in next chapter) of todays distributed federated information systems. To handle
these aspects one needs to suggest solutions which can handle the diversity of the
data sources. To propose a uniform solution in this regard, we embarked upon the
hierarchical nature of data sources as discussed in the previous section. In next sub-
sections we divide this problem into sub-problems of schema integration, schema

matching and mediation, and complex matching.

11



2.2.1 Schema Integration

For creating an integrated system, one has to have an integrated schema encom-
passing all concepts of the source schemas. In research [5], different techniques have
been defined for creating an integrated schema incremental or holistic. Since we
are targeting the large scale scenario, one has to define the problem with minimum
pruning of the sources. Therefore, we take up the problem as an incremental schema
integration approach, supporting the matching and mediation features.

For an incremental schema integration approach, one has to have an initial seed
schema or the initial mediated schema. The system searches for concepts from
each input schema in the mediated schema, and concepts not found are added to
the mediated schema. With regard to initial mediated schema, we propose three

possible assumptions:

1. Initial mediated schema can be the smallest schema in size among the input

schemas.

2. Initial mediated schema can be the largest schema in size among the input

schemas.

3. Initial mediated schema can be any randomly selected schema among the input

schemas.

Our hypothesis regarding assumptions is that while creating the integrated schema;
assumption 1 supports more flexibility in extending the initial mediated schema and
assumption 2 give the advantage of minimum number of concepts added to the me-

diated schema thus improving the over all time performance in large scale scenario.

Problem 2 (Schema Integration): Given a set of schemas S;, Ss,...S,, select
one of the schema as the initial mediated schema S,,7,itie;- And then merge each

schema S; where 1 < i < u to the schema S,,1pitial-

Merge process requires the matching of elements from source schema to the initial

mediated schema, which is discussed in next sub-section.

2.2.2 Simple Schema Matching and Mediation

In literature, there have been several formal definitions of schema matching problem.
Our approach for schema matching problem is an extension of the research described
in [86]. The problem is defined from the perspective of a schema integration per-

spective.
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Problem 3 (Simple Schema Matching): Given two schemas Ssource and Syediated;
for each element s, of Ssource, discover the most appropriate, semantically matching,

element s, of S,cdiated-

The problem is also called 1:1 matching. It focuses on discovering semantic
matches like author is similar to writer. The problem emphasizes the discovery of
possible similar matches for a source schema element in the mediated schema, which
can be 0 or more. In case of more than one semantically similar elements in target
mediated schema, one of the matches has to be selected as the final match. In
literature, schema matching problem definition is also supported by the assumption
that the problem has to be solved by utilising all available information. It can
be categorised as schema description, data instances, constraints, previous match
results, heuristics and user input. Since we are tackling the problem in the large
scale scenario, we assume the input for the problem is just the schema elements’
labels and their corresponding tree structures.

Problem 3 emphasizes existing matches from the source to target schemas. In
the integration scenario, this definition has to be further extended by the medi-
ation aspect. From mediation one means to say, there must exist a mapping for
each element of source schema in the mediated schema. This can only be fulfilled,
if the semantically similar elements for source schema elements are non-existent in
mediated schema, and the source schema elements must be added to the mediated
schema. With reference to the definition of integrated system requirements given in

[62], we present the schema mediation problem as:

Problem 4 (Schema Mediation): Given two schemas Ssouree and Spediated, CT€-
ate a mapping for each element s; of Sgyuce to the most appropriate, semantically

matching, element s,, of S,,cqiated-

This problem definition emphatically covers the mediation aspect required in a
schema integration and mediation system. And it also subsumes the problem 3 of

simple schema matching. We cover the solution to this problem in chapter 5.

2.2.3 Complex Schema Matching

Complex schema matching covers the match cardinality aspect where more than
one element from any source or target schema, participate in one matching. It is

designated as 1:n, n:1 and n:m schema matching. The 1:n and n:1 matching can be

13



discovered with the help of element level matching but the n:m schema matching
requires the schemas’ structural metadata also [86]. The complex matching scenario
covers two matching aspects; first, discovery of n elements in a match and second how
these n elements participate in the match. For example, an element price from source

schema is matched to a combination of two elements in target schema as (price *taz).

Problem 5 (Complex Schema Matching): Given two schemas Surce and
Starget, €ach representing a set of concepts Cypurce and Cigrger respectively. Each
concept ¢ belonging to Csource OF Ciarger is Tepresented by set of elements of the
respective schema.

(i) Discover for each concept csource Of schema Sgpuree, represented by the set of
n elements {ss, Ss2, ..., Ssn}, semantically similar concept cyqrger Of schema Syqrget,
represented by the set of m elements {s;1, S, ..., St} where {n,m > 1}.

(ii) Let O={o1,09,...,0;} be a set of operators and R={ry,rs,...,r;} be a set of
rules for applying these operators. Discover the expressions which bind together the
n elements for representing csource and m elements for representing ciqrger using O

and R.

We present an approach for solving the first part of the problem 5 in chapter 6.

2.3 Conclusion

In this chapter we have outlined the several problems in schema matching and in-
tegration scenario. We had first defined the main problem of schema integration
and mediation, and then presented the sub-problems of schema integration, simple
element matching and mediation and complex schema matching, which make up the
basic research problem targeted in this report. We have also proposed the use of
tree representation of schemas for exploiting the structural matching of schemas. In
next chapter we present the state of the art in schema matching and integration

with reference to the outlined research problems.
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Chapter 3

State of the Art in Schema Matching

and Integration

In this chapter we discuss the state of the art in schema matching and integration
research. Previous work on schema matching was developed in the context of schema
translation and integration [9, 24, 48], knowledge representation [43, 93|, machine
learning, information retrieval [27] and multidatabase management systems [98]. All
these approaches aimed to provide a good quality matching but require significant
human intervention |9, 27, 24, 43, 48, 64, 66|. However, they missed to consider
the performance aspect, which is equally important in a large scale scenario (large

schema or a large number of schemas to be matched).

Our target in this chapter is to present a classification of the schema matching
research from its application point of view. We highlight this aspect because of the
mushrooming and the dynamic nature of the large scale data intensive applications.
Indeed, evolving large scale distributed information systems are further pushing the
schema matching research to utilize the processing power not available in the past
and directly increasing the industry investment proportion in the matching domain.
This chapter reviews the latest application domains in which schema matching is
being utilized. It also gives a detailed insight about the desiderata for schema
matching and integration in the large scale scenarios. Another panorama which
is covered by the survey is the shift from manual to automatic schema matching.
Finally we present the state of the art in large scale schema matching, classifying
the tools and prototypes according to their input, output and execution strategies

and algorithms.
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3.1 Schema Heterogeneity

Before we discuss the schema matching, we would present a synopsis of its require-
ment in the database world. Initially database or data source concept was considered
to be a single centralised entity. But with the passage of time and advancement of
technology, data sources within a system adopted the distribution property. Thus,
in early eighties, giving rise to distributed database environments (DDE): a single
system catering for numerous data sources, physically apart, connected through a
network. The autonomy and heterogeneity level of the contributing data sources
also increased in parallel. As a result we were presented with the Multidatabase
Systems. Such a system has a global schema which mediates with the schemas of
the independent data sources (autonomy), making up the system. A very detail
discussion about the placement of different types of DBMSs, with reference to the
heterogeneity, autonomy and distribution of data sources is given in [82]. In Fig-
ure 3.1, we present a simplified view (extracted from [82]) of the three important

dimensions regarding distributed database management systems.

1 Distribution
---------- L]
/| Distributed !
e :Heterogeneous 1
/' 1 Multidatabase :
1
e 3
Autonomy
Heterogeneity

Figure 3.1: Placement of Distributed Heterogeneous Multidatabase System with
reference to Heterogeneity, Distribution and Autonomy aspects

Today, with the ever growing deep web and semantic web in the focus, Dis-
tributed Heterogeneous Multidatabase System (DHMS) seems to be the most related
data sources management system. Although not referenced directly, the concept of
Dataspaces and related Dataspace Support Platform (DSP) in [37] show very sim-
ilar characteristics to that of DHMS of the nineties. so, we have a transition from
DHMS to DSP, both requiring the same level of mediation between heterogeneous
schemas.

As discussed in the start of the chapter, previous implementations for media-
tion process required human intervention. A specific example is work authored in

[98], presenting a fine architecture to scale the heterogeneity aspect of distributed
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database systems using mediators, manually defined, and wrapper components. To-
day, the heterogeneity scale, governed by deep web and concepts like dataspaces
require an automatic approach to mediate between the schemas of the contributing

data sources. It is just out of the reach of manual implementation.
3.2 Revisiting the Schema Matching Problem

Y - Research Domains

Z - Application -
Domains -
X - Basic Match Research

Figure 3.2: Schema Matching Dimensions

In this section, we present a classification of schema matching problem along
three dimensions; basic match research, related research domains in schema match-
ing and application domains dependent upon data interoperability. We focus on
each dimension and show how these dimensions are interlinked, with the help of an
example. Further, we give an overview of the research domain of large scale schema

matching.

3.2.1 The Three Dimensions of Schema Matching

Schema matching has been researched from various perspectives by researchers be-
longing to different research and application domains. While reviewing the numerous
approaches and techniques, we came to understand that schema matching is related
to three different interlinked dimensions: (i) basic match research, related (ii) re-
search domains and (iii) application domains. The three dimensions (Figure 3.2)
are related as: algorithms are developed for Basic Match Techniques for exploiting
some Research Domain, which is in turn responsible to carry out the objective of a
certain Application Domain.

Considering the example in figure 3.3, we can state the link between the three
dimensions as: (i) Basic match techniques applied to query interface attributes
(based on attribute label, default value, data type, list of available values etc.)
and their structural aspects, (ii) for query interface forms schema integration and
mediation, (iii) in the application domain of querying the web based books resources.

Knowledge extraction for schema matching is done by exploiting two entities,

(i) data and (ii) schema; structure describing the data. The availability of the two
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[5]datefrom

[1]Abbeys [1]Dymocks
[2]author [2]Title
[3]titlekeywords [3]Author
[4]parentcategory [4]Department
[5]pricerange [5]ISBN
[6lisbn
[7]pubdate_option [1]bookery>

[2]lastname

[1]AmericanBookCenter [3]firstname
[2]searchcrit1 [4]Title
[3]searchcrit2 [5]description
[4]published [6]categorylD

[6]datetill [1]Book-Place
[7]onderwerp [2]ctitle
[8]sel_publisher [3]CAUTHOR
[4]keyword
[1]Bookbeat [5]SEARCH_TEXT
[2]author [6]IMPRINT
[3]catalog [71SearchFilters
[4]title [8]FILTER_binding_code
[5]keyword [QJFILTER reader_code

Figure 3.3: Hierarchical representation of query interfaces over the web for Books
domain

entities is governed by the application specific constraints. For example data security,
where direct data access is restricted and only controlled access through schema is
granted. There are large number of techniques researched for schema matching with

respect to data instances and schemas (section 3.4).

Table 3.1: Dimensions of Schema Matching - Basic Match Research

X - Basic Match Research Level

Linguistic based Element
Constraints based Element

Graph based Structure

Data Instance/Machine Learning based Element/Structure
Use of External Oracle Element/Structure

Basic match techniques (table 3.1)exploit the granularity aspect of a schema.
It can be seen as the match algorithm development process for a certain entity
in the schema. The entity can be the most basic constituent of schema e.g., field
in a relational database schema table |7, 12], or the whole schema structure itself
exploited, using some graph match techniques [24, 66, 75]. A combination of basic
match techniques are utilized to resolve problems indicated in Table 3.2. Detail
discussion on these techniques is given in section 3.4.

In research domain (data interoperability) (table 3.2), Schema Integration [5]
can follow three possible approaches (i) binary incremental : two schemas are inte-

grated at a time, following an upward binary tree pattern, (ii) clustering incremental
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: clusters of schemas are created based upon some similarity function, an integrated
schema is generated for each cluster and the resulting schemas are further grouped
into clusters and so on [89, 60|, or (iii) holistic : all schemas are pruned together
and integrated [50] .

Table 3.2: Dimensions of Schema Matching - Research Domains
Y - Research Domains Type

Schema Integration Binary /Holistic
Schema Mapping Generation Cardinality
Schema/ Mapping Evolution
Ontology Alignment Binary /Holistic
Match Quality Evaluation

While comparing schemas, there is high probability that source element can
have more than one matches in the target schema. One match has to be ranked
the best manually or automatically, for the mapping purpose. The cardinality of
mapping [86] demonstrates the numeric relationship of element correspondences.
Semantically speaking, it is the number (combination) of elements in each of the
two schemas, representing the same concept; 1:1, 1:n, n:1 and n:m element map
cardinality.

The temporal changes to a schema and its effects on the existing mappings also
provide another research domain. Since the web is an evolving entity, the schema
evolution and related mapping evolution require attention. Methods like domain
level corpus based schema matching [65] demonstrate how to maintain a repository
of schemas, concepts representations and related mappings for subsequent handling
of temporal changes in the constituent schemas of the domain. In another research
work [99], the authors show how the changes in a schema are used to rewrite the
queries representing the mappings. The research benefits from CLIO [52] which
generates queries as the mappings expressions.

The ontology concept has been around since the early 90s. Today it is vigor-
ously used in different applications requiring interoperability. Ontologies are used
for knowledge representation and are similar to schemas to a certain extent; as both
describe data domain with the help of terms with constrained meanings [93]. Tech-
niques used for schema matching have been tailored for ontology matching (ontology
alignment) [35].

Another similar research area, which has emerged as a by product of research in
agents communication, is the tracking of changes in the source ontologies of agents

called ontology evolution [81]. Since agents are independent entities, following their

19



own rules, they require different techniques for comparing and registering of changes

within their and the counter-part agent ontology.

The most challenging research domain has been the match quality evaluation.
Measures like precision (the proportion of retrieved and relevant mappings to all
the mappings retrieved) and recall (the proportion of relevant mappings that are
retrieved, out of all relevant mappings available) [34, 39|, have been borrowed from
information retrieval domain. These metrics have been customized to quantify the

quality of schema matching but still require a lot of work.

Table 3.3: Dimensions of Schema Matching - Application Domains

Z - Application Domains Type

Data Warehousing static

Message Translation static
E-Commerce static
Catalogue Integration static/dynamic
Web Services Discovery and Integration dynamic
Agents Communication dynamic
Enterprise Information Integration static/dynamic
Data Mashups static/dynamic
Schema based P2P Database Systems dynamic
Federated Systems static/dynamic
Business Processes Integration static

Query Answering (Web/Distributed Systems) static/dynamic
Ontology Management static/dynamic

The application domains for schema matching research can have a long list.
Some prominent and latest fields are enumerated in table 3.3. The application
domains can be categorized with reference to the time line and the data interoper-
ability static or dynamic aspect. Late 80s and early 90s have been dominated by
the static nature of matching. For example, in applications like Data Warehousing,
Message Translation, E-commerce [86], the source schemas have been created and
their matching and integration is one time fixed process. Whereas the applications of
late 90s and current era, have a much dynamic nature propelled by the internet and
its changing technologies. The concepts like Web Services, P2P Databases, Large
Scale Querying [93], demand techniques which can support the independence and
changing nature of contributing sources. A detail review of the current trends and

related applications is given in section 3.3.
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3.2.2 Large Scale Schema Matching

We take our motivation from the current trends of large scale dynamic aspect of
schema matching. Large scale schema matching can be categorized into two types
of problems depending upon the input, (i) two large size schemas (with thousands
of nodes). For example bio-genetic taxonomies [24|, (ii) a large set of schemas
(with hundreds of schemas and thousands of nodes). For example hundreds of web
interface forms (schemas) related to books domain [50, 102].

The schema matching tools available today can be used for applications which re-
quire matching of two large schemas. [24] and [78] demonstrate that with some mod-
ification to the available tools/infrastructures, the required goals can be achieved.
Research in [24] breaks down the bio-genetic taxonomies into fragments and apply
their matching tool COMA-++ [3| on pairs of these fragments to find similarities
between the two taxonomies. Whereas, work in [78] uses three levels of matching;
using CUPID [66] for lexical analysis of nodes using external oracles, then apply-
ing Similarity Flooding [75], fix point computation algorithm based on the idea
of neighborhood affinity, and in last phase the hierarchical matching finds similar
descendants. The ideas work well in case of two schemas but when the scenario
has large number of schemas, the formalization, techniques and algorithms for the
problem change.

For us the motivating scenario lies in the integration of large number of schemas
with automated matching aspect. Today this problem is specifically encountered
in applications like schema based P2P database systems, query answering over the
web, web services discovery /integration and data mashups in enterprise information
integration. The problem has been researched using holistic matching or incremen-
tal pair-wise matching and integration algorithms, using recursive [75|, clustering
[76, 94, 102] and mining [50, 89| techniques. The automation factor is a must to
solve this problem. Since large number of schema matching can not be handled
semi-automatically, the notion of approximate semantic matching rather than exact

match, with performance has been advocated [50, 102].

3.3 New Application Domains for Data Interoper-
ability
Schema matching research has its roots in schema integration applications in dis-

tributed database systems. The task is to produce a global schema from indepen-

dently constructed schemas. The requirements for such an integration have been
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presented in [5, 95]. The research highlights the issues in schema integration of rela-
tional schemas, the integrity of integrated schema and different possible techniques
to integrate schemas (binary or n-ary). Data Warehousing, Message Translation
[86], E-commerce, B2B, B2C [93] applications are examples of implementation of

this research.

Today, from the artificial intelligence view point the research in this domain
revolves around ontologies. Ontology is a way to describe data elements along with
inter-element relationship rules, based upon object oriented techniques but coded
in a semi-structured way. In the last couple of years domain specific ontologies
have been incorporated in the data integration processes, demonstrating acceptable
results [35]. But the core problems faced in the changing world for communication

and integration are the same, whether it is ontologies or schemas [47, 49] .

The latest trends in applications development requiring data interoperability
can be explicitly attributed to the technologies harnessing the web. For example
ontologies alignment [35], integration of XML data on the web [76] etc. In the
subsequent subsections we give the current application domains motivating our work

on schema matching.

3.3.1 Web Services Discovery and Integration

Initial concept of web was to share scientific research, followed by web sites for ad-
vertisement of products and services. Next the business community used it to do
transactions with their customers, followed by secure business transactions between
two e-business ventures, called B2B systems. This gave rise to the web service con-
cept i.e., set of functions which can be invoked by other programs over the web.
So, to achieve a certain goal, the user/program has to first discover the services,
perform some matching to select the appropriate services, do some planning for exe-
cution of the services to get to the subgoals and finally combine the subgoals [54] to
achieve the main goal. One approach to search for web services is to access a UDDI
(Universal Description, Discovery, and Integration - standard for centralized service
repositories) Business Registry (UBR) as the search point. Web service providers
register their services with the UBRs for subsequent usage by others. Another ap-
proach is to use web search engines which restrict their search to WSDL (Web Service
Description Language) files only [4]. WDSL is an XML based language standard
for describing a web service. The need for matching and merging is quite evident,
as web services have to be searched against user goal requirements, compared and

integrated for subgoals achievement.
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3.3.2 Data Mashups in Enterprise Information Integration

Data Mashups is the most recent buzz word in the Enterprise Information Integra-
tion (EIT) domain. Its definition can be: making new knowledge by joining available
information. Web mashups are emerging at a rapid pace. Programmable.com pro-
vides a list of such mashups. A typical web mashup joins information from related
web sites. For example a mashup website about cars can get quotes about a certain
car from quotes websites, pictures and reviews from cars forums along with video
footage from some social network like youtube.com. Thus the information resources
can range from a simple database table to complex multimedia presentation i.e., the
search can be on any structured or unstructured data.

Thus the core concept in mashups is to extract some new necessary knowledge
from all these sources existing in different formats. This is a new challenging issue in
information extraction and integration. The research aim is to provide light and fast
protocols which can work through different meta models and types of documents [49).
At the enterprise level, the mashup idea helps in building quick situational applica-
tions, for some transient need in the enterprise, complementing the more robust and
scalable integration technologies that the enterprises invest in.

An example of enterprise mashup implementation is done at IBM as Information
Mashup Fabric (MAFIA) [56]. In MAFIA the data input are complimented with
those normally not covered by traditional EII systems, e.g., emails, presentations,
multimedia data etc. In the coming years, mashups will open up a new enterprise
application market, providing business users and IT departments with a quick and
inexpensive approach to develop and implement applications, requiring matching

and joining data in diverse formats.

3.3.3 Schema based P2P Database Systems

One of the latest emerging research field in databases over the web is P2P Databases [48].
There have been numerous successful P2P systems delivered in the last couple of
years. Traditionally, the P2P systems have been simple file sharing systems which
can self tune, depending upon the arrival and departure of contributing peers.
Industrial-strength file sharing P2P systems, like Kazaa and bitTorrent, allow the
peer autonomy of participation but they still restrict the design autonomy of how to
describe the data. Secondly, sharing of data objects described by one P2P system
are not available in another P2P setup. Today, the P2P technology has transformed
into sharing of any kind of data, whether it is semi structured XML data or continu-

ous multimedia streaming [73]. The next generation of data sources are going to be
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totally independent of each other, i.e., they will have the design autonomy, utilizing
their own terminologies for their data structuring, with capabilities to interact with
others. For querying these data sources some matching method will be required
to broker between their structures, giving rise to the new generation of application

research of schema based P2P data sharing systems [63].

3.3.4 Querying over the Web

Query processing has two intrinsic problems; understanding the query and then find-
ing the results for it. The web contains vast heterogeneous collections of structured,
semi-structured and unstructured data, posing a big challenge for searching over it.
Deep Web [50] scenario highlights this aspect. Firstly, the heterogeneity problem al-
lows the same domain to be modeled using different schemas. As we have discussed
in the example for our motivation. Secondly, it is very difficult to define the bound-
ary of a domain. For example, traveling and lodging are inter-linked for tourist
information web sites. Continuous addition of new content further complicates the

problem for searching and integrating the results.

3.3.5 Online Communities

People have been using online spaces to communicate, since the beginning of the
internet. Today, with the available resources for the web, these communities have
mushroomed to an unprecedented level. These virtual connections of people are
also called social networks. Every community has a purpose or goal with a target
audience. For example, videos or photos sharing communities or simple forums
regarding a specific subject. To be more business oriented, distributed work groups
within companies and between companies use online community to build their team,
keep in touch and even work on projects together. Sometimes, one can find more
exact answers to queries from specific online community rather than from search
engine.

Whatever the reason for the community, it needs a structure to support the
underlying collaborative data. The data sources can be as diverse as discussed in
mashups. In such virtual communities there is no central authority to monitor the
structure and the performance. Users can join and leave, contribute or simply use
the resources like P2P systems. In such a scenario, the matching of data resources is
an extreme problem in schema matching domain. The problem complexity is further
elevated if we consider an inter community communication. With the semantic web

around the corner, this domain requires lots of attention.
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There are very few studies in this area. In [72], authors show a question answer
based technique to solve the match problem in online communities. The method
automatically generates questions for element names which are not possible to be
compared. Choices are presented to several users and then the results are heuristi-

cally evaluated to assess the correct match.

3.3.6 Agents Communication

Agents Communication can be considered as a dialogue between two intelligent
entities. Each agent works out its actions according to its own intelligence or on-
tology. When two independent agents come in contact for the first time, they need
some protocol to translate the message of one agent into the ontology of the other
agent [93]. For subsequent encounters the agents may utilize the mappings discov-
ered and stored within them. To answer the query of its user, an agent may have
to interact with a number of other agents, compare and integrate their responses,
just like web services. Only agents have inbuilt mechanisms to learn and counter
the changes around them. P2P Ontology Integration [10] proposes a framework
for agents communication in a P2P network. Its main feature is that, it efficiently
tries to map dynamically only the parts of ontologies, which are required for the
communication.

The above set of application domains have one thing in common, they encounter
dynamic information requirements, changing over time and process web scale data.
It is very difficult to achieve desired performance oriented goals with research re-
volving around semi-automatic schema matching and integration approach. The

scenarios require an automatic intelligent and self-tuning solution.

3.4 Schema Matching Techniques

This section gives an overview of the basic techniques used in the schema matching
and integration research. Schema comprises of some basic entities called elements.
The composition of elements within the schema follows rules outlined by a data
model. To date, a number of algorithms have been devised and implemented for
finding correspondences between schemas. These algorithms have been dependent
on techniques of string matching, linguistic similarities or constraints likeliness at
element level or higher schema structure level. Graph algorithms utilised in schema
matching are special form of constraints matching [93| for managing structural sim-

ilarity. In some cases, these algorithms are further supported by data instances of
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schemas.

3.4.1 Element Level

Schema matching is a complex problem, which starts by discovering similarities
between individual schema elements. Every element, disregarding the level of gran-
ularity, is considered alone for a match. The techniques used, basically rely on
the element’s name and associated description, using basic string matching ap-
proaches adapted from the information retrieval domain [30]. These approaches
include string prefix, suffix comparisons, soundex similarities and more sophisti-
cated algorithms based on string distance. There is a large list of these algorithms
with various variations researched over time. The mainly talked about approaches
are the n-gram and the edit distance!. For example Google use n-gram for statistical
machine translation, speech recognition, spelling correction, information extraction

and other applications.

Linguistic techniques are based on the tokenisation, lemmatisation and elimi-
nation. The idea is to extract basic sense of the word used in the string. And
then find its contextual meaning [13, 30] i.e., meaning extraction according to the
elements around it. These techniques have been adopted from linguistic morpho-
logical analysis domain. The algorithms are further enriched to provide synonym,
hypernym, hyponym similarities by using external oracles, dictionaries, thesauri like

WordNet [41], domain specific ontologies or upper level ontologies [79].

Constraints similarity is data model dependent. One of the basic constraints found
in almost every model is the element type e.g. integer, string etc. Different data
models have their own lists of constraints. Relational model has primary key con-
straint to bind different attributes data in a tuple or foreign key constraint to relate
to table elements. Similarly, is-a and has-a relationship constraints in object oriented
model and parent-child relationship in hierarchical structure of XML data model.
These relationship constraints help in extracting the relative contextual concept of

an element.

3.4.2 Structure Level

Structure level matching is referred as matching a combination of elements from

one schema to another schema [86]. The algorithms developed are based on graph

!Listing with detail available at http://www.dcs.shef.ac.uk /~sam /stringmetrics.html
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matching research. It can also utilize external oracles like known patterns [33],
ontologies |27] or corpus of structures [65] to recognize the similarity. It also helps
in solving n:m complex match problem.

Today, almost every schema matching implementation uses some form of graph
structures for internal representation of schemas. Graph matching is a combinato-
rial problem with exponential complexity. Researchers use directed acyclic graphs
or trees to represent schemas, ontologies or taxonomies, to reduce the complexity
aspect of the problem. In generic schema matching tools (which can take as input
different data model schemas) the graph structures are flexible enough to support the
possible input schema elements and perform mapping. Nearly all schema match re-
search projects based on graphs, use the notion of neighborhood affinity to compute
the similarity match value for individual elements. This aspect has been presented
in Similarity Flooding algorithm [74].

In large scale scenarios, structure level matching techniques help in enhancing
the performance of the match implementations, by using neighborhood search al-
gorithms [32]. In literature holistic [50] or level-wise algorithms (children-parent
relationships) [66, 24| have been used to determine the correspondences among two
schemas.

Another variation of structure level matching is based on taxonomy of ontologies.
For example bounded path matching [32] takes two paths with links between classes,
defined by the hierarchical relations, compare terms and their positions along these
paths, and identify similar terms. Super(sub)-concepts rules oriented match follows
the idea that if super-concepts are the same, the actual concepts are similar to
each other. Another related interesting measure called upward cotopy distance [35]
measures the ratio of common super classes to find similarity of classes of two tax-
onomies.

Structure level matching also follows model-based techniques. The graph (tree)
matching problem is decomposed into a set of node matching problems. Each
node matching problem is translated into a propositional formula, namely pairs
of nodes with possible relations between them. And finally the propositional for-
mula is checked for validity. Research in [43] demonstrates the effectiveness of this

technique but with worst time performance, when compared to other available tools.

3.4.3 Use of Data Instances and Machine Learning

Data instance in schema matching is used in two ways. First, if the schema informa-
tion is very limited or not available, instance data is used to create a representation

of the data [11]. For example from any XML document, a basic tree hierarchy of
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elements can be extracted. Even, if the schema is available, data instances can
augment the schema matching by giving more insight about the schema element
semantics [52]. For example city names encountered in data instances (found in a
general list of city names) can help infer that the field is a component of address
field.

In second case data instances are used in schema matching for training machine
learning algorithms. In [27], XML schema inner nodes are matched by comparing
concatenated values of their corresponding leave nodes using learning techniques,
e.g., address is a composition of street, zip and city. In another research [22], n:m
mapping expressions are predicted, involving arithmetic functions, like totalprice is
equal to price-+(price*taxrate). First, it uses an external global domain ontology to
map the elements and then find the function by employing the data instances with
a set, of arithmetic and string concatenation rules .

The drawbacks in use of data instances can be either the bulk of data to be
analysed, thus down-grading the performance or the verification of the quality and
granularity of data instance, which may require some cleansing technique [59]. In the
dynamic environment where the load of schemas itself is quite large, data instance

approach is difficult to implement because of its drawbacks.

3.5 Match Strategies

Large Scale Schema Matching and Integration Tuning approach
Approaches
€« ——
\ Pre-Match
|
|
Incremental Holistic |
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Figure 3.4: Taxonomy for Large Scale Schema Matching and Integration Strategies

Different schema match research projects have shown that single match algorithm is
not enough to have a quality match. It is necessary to employ a range of algorithms,
applied in a sequence or parallel, optimized for the application domain. Researchers
have followed different strategies depending on application domain or researcher’s

objectives. The strategy is basically governed by the input and output requirements
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of the match tool.

Input aspect of the tool outlines the information about the entities, available for
matching. For example schema-based vs data instance-based or the tool is for some
explicit input domain or not. The output requirements depend upon the research
domain, in which the tool is to be utilized. The output can also dictate the tool
to be manual, semi-automatic or automatic. For example, web services require an
automatic environment and comparison of two large bio-genetic ontologies can be
worked out with a semi-automatic tool, where possible matches are presented to the
user to select the appropriate one as the mapping.

The execution part is responsible for rest of the categorisation of schema match-
ing tools. Namely, internal vs external [86|, syntactic vs semantic [93] and Hy-
brid |66, 43| vs composite [24] approaches. Some latest developments in matching
approaches are being guided by the large scale scenarios like P2P data networks,
semantic web, query over the web and semantic grid services. These large scale
scenarios are being dealt with using techniques which can retrieve good match re-
sults directly or enhance [61, 77| the already existing results automatically. In some
work, performance with approximate mapping is being preferred over exact map-
ping [50, 89).

In next sub-section, we give an account of the strategies adopted by the re-
searchers or which can be exploited for large scale schema matching. Figure 3.4

shows a classification of these strategies, with inter-strategy relationships.

3.5.1 Schema Fragmentation Approach

In the domain of semi-structured data, more and more schemas are being defined in
XML, a standard language adopted by W3C. It is being widely used in E-business
solutions and other data sharing applications over the web. Over time, the emergence
of distributed schemas and namespaces concepts has introduced more complexity to
the matching problem.

Research work in [24] demonstrates, how these emergent problems can be tack-
led. The authors propose the idea of fragmentation of schemas for matching pur-
poses. The approach, first creates a single complete schema , including the instances
for the distributed elements or namespaces used in the schema. In second step the
large schema instance is broken down into logical fragments which are basically
manageable small tree structures. The tool COMA++ [3] is used to compare each
fragment from source schema to each fragment of target schema for correspondences,
with the help of GUI and human input. The approach decomposes a large schema

matching problem into several smaller ones and reuses previous match results at the
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level of schema fragment. The authors have reported satisfactory results.

In [53|, the authors apply the fragmentation (partitioning) approach on large
class hierarchies extracted from ontologies. Each partition is called a block with an
anchor class. Matches for anchor classes are pre-detected, thus elements of blocks

with similar anchors are further matched in the system.

3.5.2 Clustering Approach

Clustering refers to the grouping of items (items can be schemas or elements of
schemas) into clusters such that items in one cluster are more similar to one another
(high affinity) and those in separate clusters are less similar to one another (low
affinity). The level of similarity can vary from application or technique which is using
clustering approach. Since the schema matching problem is a combinatorial problem
with an exponential complexity, clustering works as an intermediate technique and
improves the efficiency of the large scale schema matching. In schema matching and
integration, clustering can be considered at element level or schema level.

Element Level clustering can be applied on a single schema or holistically on the
given set of schemas. The authors of [94] give a generic approach using the element
level clustering method to detect element clusters in schema repository which are
probably similar to a given personal source schema. Personal schema is then fully
compared to detected list of clusters. So, rather comparing and applying all match
algorithms on all schema elements in the repository, only a subset of elements are
considered.

In our work [89](chapter 5), element clustering is applied at the holistic level of
schemas. The work is directed toward large scale schema integration. Initially, a set
of clusters is created, in which each cluster have linguistically similar label elements.
Intuitively, the nodes having similar labels are also clustered together. The largest
size schema in the input schemas is considered as initial mediated schema. Each
input schema is compared to the mediated schema. The source element is only
compared to the elements found in its cluster belonging to the mediated schema.

Schema Level clustering is an extended version of element level clustering. The
approach clusters together schemas which show some level of elements’ similarity
among them. In [60], the authors demonstrate a recursive algorithm which finds
similar elements in XML DTDs and creates their clusters. In second step, it performs
the integration on each DTD cluster. The process goes on until one global DTD has
been created.

A very comprehensive review on XML schema clustering techniques is given in
[20].
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3.5.3 Data Mining Approach

Data Mining is the technique for finding similar patterns in large data sets. Very re-
cently, it has been used as schema matching method. Work in [50, 96] highlights this
method for matching and integrating deep web schema interfaces. He et al. in [50]
use a positive correlational algorithm based on heuristics of schema attributes. [96]
applies negative correlational method to match and integrate schemas. Correlational
mining refers to detection of elements existing together, along with their sequences,
in a schema; and statistical evaluation of the frequencies of such existences.

Tree mining approach is a variation of data mining, in which data is considered
to posses a hierarchical structure. It shows more affinity to XML schemas, which are
intrinsically tree structures. Our approach, explained in chapter 5, demonstrates a
method which combines the element clustering and a tree mining method. The work
provides a time performance oriented solution for integrating large set of schema
trees, resulting in an integrated schema along with mappings from source to the

mediated schema.

3.5.4 Strategies for Enhancing Match Results

There has been a lot of work on schema matching but proof of exact results in the
semantic world has been hard to achieve. In most of the research the quality of
results has been said to be approximate [86, 80, 93]. As a result of these observa-
tions new avenues of research opened up for finding ways to achieve the maximum

correctness in schema matching. Following are the approaches under active research.

Pre-Match Strategies: Pre-match methods typically deal with the matching tool’s
execution strategies, called tuning match strategies. These approaches try to en-
hance the quality of mappings of current schema matching tools, which have the
ability to rearrange the hybrid or composite execution of their match algorithms.
Defining external oracles, the criteria for their use and adjustment of parametric
values, like thresholds, for different algorithms is also part of pre-match. The work
in [61] provides a framework capitalizing on instance based machine learning. The
authors describe the use of synthetic data sets to optimize a matching tool, for good
match results when applied to a similar real scenario. The tuning module execution

is totally separate from the actual tool working.

Post-Match Strategies: These strategies are concerned with improving the already

obtained results from a schema matching tool. OMEN [77] Ontology Mapping En-
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hancer, provides a probabilistic framework to improve the existing ontology mapping
tools using a bayesian network. Is uses pre-defined meta-rules which are related to
the ontology structure and the meanings of relations in the ontologies. It works on
the probability that if one knows a mapping between two concepts from the source
ontologies (i.e., they match), one can use the mapping to infer mappings between
related concepts i.e., match nodes that are neighbors of already matched nodes in
the two ontologies.

Manakanatas et al.[70] work is a post-match phase prototype application. It has
an interface to detect the best map, from the set of mappings for a source schema
element produced by COMA++. It uses WordNet as the linguistic oracle to filter
the COMA++ results, in case there are more than one possible mappings for a
source element to target schema. This minimises the human intervention.

One of the latest results in detecting the best match results, according to the user
preferences, using fuzzy logic has been demonstrated in [46]. The work also enhances
COMA ++ results for deriving best semantic mappings. The research proposes to

apply fuzzy sets theory utilizing pre-defined user preferences.

3.5.5 GUI aspect

User perception is getting more importance in the schema matching tools in the form
of investments in the graphical user interface development for the generic schema
matching tools. Current schema matching tools interfaces only support subject
domain experts with good computer science background. And schema matching
tools in large scale scenarios still lack the initiatives in user interface development.
However, with matching becoming need of today, in the ever expanding data inte-
gration domain, new user centric graphical environments are emerging to support
the matching tasks [100].

These environments have augmented the match task in pre-match, amid-match
and post-match phases. Pre-match phase interface provide the facility to define a
domain or application specific strategy, to align the different schema matching al-
gorithms. It can include manual configuration of various parameters of the match
algorithms selection or specification of auxiliary information like synonyms, abbre-
viations and other domain specific constraints [3].

The post-match phase uses different measures to select the best correspondence,
for an element from a set of possible matches which show the semantic equivalence
aspect for that element [3, 8, 52]. Tools like CLIO [52], COMA++ [3] and Microsoft
BizTalk Mapper [8] generate the possible mappings along with degree of match. And

then graphically allow the user to select the mappings according to her expertise
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Figure 3.5: Three cases for selecting the best match: COMA++

(figure 3.5).

The amid-match phase interface interactively solves the matching problem, with
the user help. Schema matching environment SCIA [100] (explained in section
3.5.1) provides a much detail interface. It focuses on minimum user intervention
based on some pre-defined rules regarding the contextual matching of elements.
The match process executes, matching schemas trees in a top down way. If the
system encounters problem in matching some non-leaf node, it pauses and demands

the user to provide a match solution.

3.5.6 Top-k Methods

Top-k mappings method, semi-automatically, tries to find not the best but k best
possible matches from which user can select the most appropriate. Thus, intuitively
increasing the recall measure of the quality of mappings. There exists two variations
(i) element level and (ii) schema level top-k mappings. In former case the matches
are presented for each element. Whereas in latter, top-k possible sets of mappings
for whole schema are considered.

In literature, there are very few works regarding schema level top-k mappings.
Several schema matching tools analyse the target search space in an iterative manner,
which can be considered as top-K approach. Most of these tools, find element level
top-k matches. For example, the CLIO [52| tool calculates the best matches and
the user has to select or reject the matches. A rejection results in re-evaluation for
next best possible match for that element. Thus producing a highly user dependent
iterative system. LSD [26] also works in the similar fashion; accepting the rejection
as a constraint for its learning process. In contrast, COMA++ [24], presents the
user with the best matches with match confidence higher than the defined threshold.
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There is no fix value for k in this case. The user can select one of the proposed
matches or reject all. Another approach presented in QOM [32], also works in the
similar fashion; reutilising the results from previous iteration and proposing a new
set of k matches. It demonstrates a more robust, almost automatic approach with
good quality and time performance results.

[38] presents an automatic approach which finds top-k possible sets of mappings
between two schemas. Next, the similarity between the sets is analysed heuristically,
resulting in a set of mappings which are most frequent in all the sets. The author
gives very solid results and arguments to support the high recall value for this set.

Another variation of the technique is discussed in [90]. The authors demonstrate
an automatic technique for generating top-k mediated schemas along with mappings
from input schemas to the integrated schemas. First, the algorithm generates possi-
ble clusters of similar elements among the input schemas and then produces a set of
probabilistic mediated schemas with probability values i.e., top probable schemas.
Further, the probabilistic mappings are computed from input schemas to the proba-
bilistic mediated schemas. Queries from users are applied on the probabilistic medi-
ated schemas and data results are statistically evaluated for same query. Similarity
in results, provides a way to verify the integrity of probabilistic mediated schemas
and helps in constructing the deterministic mediated schema with mappings.

A somewhat similar approach as above is given in [19]. Authors demonstrate a
method to generate all possible integrated schemas, without duplicates, from a set
of input schemas, along with mappings. These schemas are merged, based upon user

defined constraints in an interactive manner to generate the final integrated schema.

3.5.7 Discussion

In the preceding sub-sections, we have discussed some recent strategies to enhance
the quality of results of schema matching and integration. These techniques supple-
ment the already existing basic schema matching and integration algorithms, and
also highlight the fact that structural comparison of schemas is an essential part of
schema matching process. The semantic aspects or concepts hidden in the schemas
can be extracted with the help of algorithms exploiting the structures of schemas or
taxonomies of ontologies. These algorithms search for contextual meaning of each
node within the graph(tree) structure representing the schema/ontology.

Another aspect, quite evident in schema matching research is the use of GUI and
interactive user input at pre-match, post-match and during the match process. The
probabilistic, uncertainty and fuzzy logic based methods are also being exploited at

data and schema level, to come up with good map results for data interoperability.
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Use of clustering and data mining approaches are becoming more frequent to tackle
the large scale scenario.

The quality evaluation of schema mapping is also an open research problem. It
can be divided into two parts, Correctness and Completeness. Correctness follows
the idea that the mappings discovered are correct, and completeness means every
possible mapping has been discovered. The current measures utilised to evaluate the
quality of a match tool, have been derived from the information retrieval domain.
Specifically the precision measure and the recall measure are most widely used to
verify the quality [23]. Some variances of recall and precision are given as F-measure,
the weighted harmonic mean of precision and recall measures, and Fall-out which
is the proportion of irrelevant mappings that are retrieved, out of the all irrelevant
mappings available. A theoretical and empirical evaluation of schema matching

measures is explained in [34, 40].

3.6 Overview of Large Scale Schema Matching Tools

The previous surveys [86, 93, 103| incorporate solutions from schema level (meta-
data), as well as instance level (data) research, including both database and artificial
intelligence domains. Most of the methods discussed in these surveys compare two
schemas and work out quality matching for the elements from source schema to tar-
get schema. Some of the tools also suggest the merging process of the schemas, based
on the mappings found in match step. In this section, we review the effectiveness of

schema matching tools with respect to large scale scenario.

3.6.1 Tools: Matching Two Large Schemas

COMA +-+[3| is a generic, composite matcher with very effective match results. It
can process the relational, XML, RDF schemas as well as OWL ontologies. Internally
it converts the input schemas as graphs for structural matching and stores all the
information in MYSQL as relational data. At present it uses 17 element/structure
level matchers which can be selected and sequenced according to user’s requirements.
For linguistic matching it utilizes user defined synonym and abbreviation tables,
along with n-gram name matchers. Structural matching is based on similar path
and child /parent similarities.

Similarity of pairs of elements is calculated into a similarity matrix. It has a very
comprehensive graphical user interface for candidate match selection and merging.

For each source element, elements with similarity higher than the threshold are dis-
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played to the user for final selection. The COMA-++ supports a number of other
features like merging, saving and aggregating match results of two schemas for reuse.
An approach described in [24], uses COMA-++ for matching large taxonomies by
fragmenting them. The source and target schemas are broken down into fragments.
Each source schema fragment is compared to the target schema fragments one by
one for a possible match. Then, best fragment matches are integrated to perform
schema level matching. Thus, this approach provides a mechanism for large scale

matching and merging of two schemas.

PROTOPLASM [9] target is to provide a flexible and a customizable infrastruc-
ture for combining different match algorithms. Currently CUPID [66] implementa-
tion and Similarity Flooding (SF) [74] algorithms are being used as basic match-
ers. A graphical interface for it has been proposed and demonstrated by the name
of BizTalk Mapper [8]. It is based on the human computer interaction research
presented in [42] and is very heavily dependent on Microsoft technologies. PRO-
TOPLASM supports numerous operators for computing, aggregating, and filtering
similarity matrices. By using a script language, it provides the flexibly for defining
and customizing the work flow of the match operators. SQL and XML schemas,

converted into graphs internally, have been successfully matched.

Mork and Bernstein [78] present a case study of matching two large ontologies
of human anatomy, using PROTOPLASM infrastructure. They use an extended
version of hierarchical algorithm, which goes one step further than COMA-++. The
similarity of descendants is used to evaluate ancestor similarity, to child-grandparent
level. The authors argue that the hierarchical approach produced disappointing re-
sults because of differences in context. They report that a lot of customization was

required to get satisfactory results.

CLIO [52] has been developed at IBM. It is a complete schema mapping and man-
agement system. It has a comprehensive GUI and provides matching for XML and
SQL schemas (Object Relational databases converted into relational with the help
of a wrapper function). It uses a hybrid approach, combining approximate string
matcher for element names and Naive Bayes learning algorithm for exploiting in-
stance data. It also facilitates producing transformation queries (SQL, XQuery, or
XSLT) from source to target schemas, depending upon the computed mappings. Its
interface gives the user the facility to augment the schema semantics or the data
instance (to support users expertise) in the pre-match phase and selection of best

among the candidate matches in the post-match phase.
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Another project, TOMAS [99], has added a new module to CLIO. It arms CLIO
with the capability to handle the temporal changes in already mapped schemas and
produce the required changes in the existing mappings. The work also presents a

simple and powerful model for representing schema changes

SCIA [100] is a semi-automatic schema mapping system for data integration. It
creates executable mappings in the form of views between two schemas, similar
to CLIO. It provides an automatic matching mechanism for simple element level
matching. In parallel, it finds points in the schemas, where user input is necessary.
These points are computed where there exists ambiguous contextual information of
a pair of matching elements. The authors research is based on the argument that
human perception works well to select a better mapping from a given set of possible
matches. But humans are not good and fast enough to identify mismatched portions
of the schemas and matches missed by the tool. The system handles schemas as tree
structures and tries to find context based matches. During the matching process, it
interactively asks specific questions to resolve these problems. For example, SCIA
asks the user how to proceed, if no match is found for a non-leaf node, with a sig-

nificantly large subtree rooted at that node.

QOM (Quick Ontology Matching) [32] is a semi-automatic ontology (RDF based)
mapping tool. It uses heuristics to classify candidate mappings as promising or
less promising. It uses multiple iterations, where in each iteration the number of
possible candidate mappings is reduced. It employs label string similarity (sorted
label list) in the first iteration, and afterward, it focuses on mapping change prop-
agation. The structural algorithm follows top down (level-wise) element similarity,
which reduces time complexity. In the second iteration, depth-first search is used
to select the appropriate mappings from among the candidate mappings. QOM has
been incorporated into a complete schema matching tool called FOAM (Framework

for Ontology Alignment and Mapping) [31].

GLUE |[27] is the extended version of LSD (Learning Source Descriptions) [26],
which finds ontology,/ taxonomy mapping using machine learning techniques. The
system is input with set of data instances along with the source and target tax-
onomies. Glue classifies and associates the classes of instances from source to target
taxonomies and vice versa. It uses a composite approach, as in LSD, but does not
utilize global schema (as in LSD). LSD uses composite approach to combine differ-

ent matchers (a meta-learner combines predictions of several machine learning based
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matchers).

LSD has been further utilized in Corpus-based Matching [65], which creates a
corpus of existing schemas and their matches. In this work, input schemas are first
compared to schemas in the corpus before they are compared to each other. Another
extension based on LSD is IMAP [22|. Here, the work utilizes LSD to find 1:1 and
n:m mapping among relational schemas. It provides a new set of machine-learning
based matchers for specific types of complex mappings expressions. For example,
name is a concatenation of firstname and lastname. It also provides the information

about the prediction criteria for a match or mismatch.

3.6.2 Tools: Matching and Integrating Large Set of Schemas

MOMIS [6] is a heterogeneous database mediator. One of its components ARTEMIS
is the schema integration tool which employs schema matching to integrate multiple
source schemas into a virtual global schema for mediation purposes. The tool oper-
ates on hybrid relational-OO model. It first calculates elements similarity based on
name and data type, thus acquiring all possible target elements. Further, external
dictionary WordNet is utilized to compute the synonym, hypernym relationship be-
tween elements. In next step, structural similarity of elements is computed as the
fraction of the neighbor elements showing name similarity exceeding a threshold over
all neighbor elements. For each pair of elements, the name and structural similarity
are aggregated to a global similarity using a weighted sum. According to the global
similarities, similar elements are clustered using a hierarchical clustering algorithm

for supporting complex match determination.

Wise-Integrator [51] is a schema integration tool. It uses schema matching to
find correspondences among web search forms so that they can be unified under
an integrated interface. First, a local interface is selected and then incrementally
each input form is compared against it. The attributes without a match candidate
in the local interface, are added to it. Wise-Integrator employs several algorithms
to compute attribute similarity. Namely exact and approximate string matching,
along with dictionary lookup for semantic name similarity. It also utilises specific
rules for compatibility of data types supported by value scales/units and default
values. For each pair of elements, the similarities predicted by the single criteria
are simply summed to obtain a global weight. Elements showing the highest global
weight exceeding a threshold are considered matching. One of the elements from
each matchings pair, is selected as the global attribute to be used in the integrated

interface.
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DCM framework (Dual Correlation Mining) [50] objective is similar to Wise-Integrator.
It focuses on the problem of obtaining an integrated interface for a set of web search
forms holistically. The authors observe that the aggregate vocabulary of schemas in
a (restricted) domain, such as book, tends to converge at a small number of unique
concepts, like author, subject, title, and ISBN; although different interfaces may use
different names for the same concept. The research proposes a statistical approach,
extracted from data mining domain, based on the assumptions: independence of
elements, non-overlapping semantics, uniqueness within an interface, and the same
semantics for the same names. The algorithm identifies and clusters synonym ele-

ments by analyzing the co-occurrence of elements in different interfaces.

PSM (Parallel Schema Matching) [96], is another implementation of holistic schema
matching, for a given set of web query interface schemas. The objectives are similar
to DCM algorithm, but PSM improves on DCM on two things; first DCM negative
correlation computation between two elements to identify synonyms may give high
score for rare elements but PSM does not. And secondly the time complexity of
DCM is exponential with respect to the number of elements whereas for PSM it
is polynomial. PSM, first holistically detects all the distinct elements in the input
schemas, assuming synonym elements do not coexist in the same schema. In second
phase, it generates pairs of candidate synonym elements. This pair generation is de-
pendent on a threshold calculated by the number of cross-occurrences (if elementl
is in schemal and element?2 is in schema2 or vice versa) in different pairs of schemas.
The results of the experiments in this work show that it has the ability to find 1:1

and n:m matches quite efficiently.

ONTOBUILDER |87] is a generic multipurpose ontology tool, which can be used
for authoring, and matching RDF based ontologies. Its interface also supports the
process of matching web search forms for generating an integrated form. Onto-
Builder generates dictionary of terms by extracting labels and field names from web
forms, and then it recognizes unique relationships among terms, and utilizes them in
its matching algorithms. The tool uses spacial attribute precedence based algorithm
to calculate the semantics of each attribute in the form i.e., sequencing of concepts

within the form.

PORSCHE (Performance Oriented Schema Matching) [89] presents a robust map-

ping method which creates a mediated schema tree from a large set of input XML
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schemas (converted to trees) and defines mappings from the contributing schema to
the mediated schema. The result is an almost automatic technique giving good per-
formance with approximate semantic match quality. The method uses node ranks
calculated by pre-order traversal. It combines tree mining with semantic label clus-
tering which minimizes the target search space and improves performance, thus
making the algorithm suitable for large scale data sharing. The technique adopts
a holistic approach for similar elements clustering in the given set of schemas and
then applies a binary ladder incremental [5] schema match and integrate technique
to produce the mediated schema, along with mappings from source schemas to me-

diated schema.

Bellflower is a prototype implementation for work described in [94]. It shows
how personal schema for querying, can be efficiently matched and mapped to a large
repository of related XML schemas. The method identifies fragments within each
schema, of the repository, which will best match to the input personal schema, thus
minimizing the target search space. Bellflower uses k-means data mining algorithm
as the clustering algorithm. The authors also demonstrate that this work can be
implemented as an intermediate phase within the framework of existing matching
systems. The technique does produce a time efficient system but with some reduc-

tion in quality effectiveness.

3.6.3 Summarizing the Tools

In tables 3.4 and 3.5 we give a quick comparison of the above discussed schema
matching tools and prototypes. The comparison in table 3.4 has been devised to give
a general outlook of tools, highlighting the use of GUI, match cardinality supported
by the tool, use of external oracles and related application domains. Table 3.5 gives
a much deeper insight into the algorithms used by the tools with respect to input,
output and execution aspects.

The analysis of the prototype tools for schema matching or ontology alignment
domains shows that most of the techniques used are the same. For example, two
most cited schema matching tools PROTOPLASM and COMA-++ follow similar
match characteristics and architecture, the only difference is that PROTOPLASM
framework is hybrid in nature whereas COMA -+ is composite, thus providing more
flexibility. The tools adopt hybrid techniques for better and automatic approach.
Structure level matching has been adopted by all, except for some web search inter-
face schema integrators, since query form field attributes follow more of a sequence

than hierarchical structure. For semantic comparison of element labels, external
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Table 3.4: Schema Matching Tools and Prototypes Comparison - General

Tool GUI |Approach |Card. |Ext Orc Internal Research Domain
Rep
BELLFLOWER No Hybrid 1:1 - Directed Schema Matching
Graph
CLIO Yes |Hybrid 1:1 - Rel. Model,|Schema Matching,
Directed Mapping Evolution
Graph
COMA++ Yes |Composite |1:1 Domain Syn,|Directed Schema Matching
Abr Thesuri |Graph and Merging
DCM No Hybrid nm |- - Schema Integration
GLUE No Composite |[nim |- Attribute Data Integration
based
MOMIS Yes |Hybrid n:m Thesuri Directed Schema Integration
Graph
ONTO BUILDER Yes |Hybrid 1:1, - Graph Create/Match ~ On-
1:n tologies
PORSCHE No Hybrid 1:1,1:n [Domain Syn,|Tree Schema Integration
Abr Thesuri and Mediation
PROTOPLASM Yes |Hybrid 1:1 Wordnet Graph Schema Matching
PSM No Hybrid nm |- - Schema Integration
QOM No Hybrid 1:1 Dom. Tree Ontology Alignment
Thesuri
SCIA Yes |Hybrid n:im |Thesuri Tree, Graph |Data Integration
WISE INTEGRATOR |Yes |Hybrid 1:1 General Attribute Web Search form In-
Thesuri based tegration

oracle like WordNet dictionary or reference domain ontology is quite frequent. The
notion of neighborhood likelihood for next possible match is followed by most of the
matching tools e.g., PROTOPLASM, MOMIS, QOM, SCIA and GLUE. This fea-
ture is also intuitively used for search space optimization. Another characteristic for
search space optimization in large scale scenario is clustering of elements/schemas,
showing some similarity at the pre-processing level e.g., element name similarity
based on edit distance or synonymous meaning, demonstrated in XClust [60] and
QOM.

It appears that most prototypes aim to provide good quality matchings, with lack
in time performance. Today, the application domains like the genomic or e-business,
deal with large schemas. Therefore, the matching tool should also provide good
performance and if possible automatic mapping generation. In the future, matching
systems should try to find a trade off between quality and performance. A recent
work in this domain has been proposed in [28], which uses decision tree concept

based on machine learning algorithm.

3.7 Conclusion

In this chapter we have provided a broad overview of the current state of the art of

schema matching, in the large scale schema integration and mediation for data in-
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Table 3.5: Schema Matching Tools and Prototypes Comparison - Strategy based

[Tool [Input [Output [Match Algorithms (Level wise) |
Element Stucture/(Data Ins.)
Str.|Ling.| Const|
BELLFLOWER XSD Schema Yes |- - K-means data mining
Matches
CLIO SQL,XSD |Mappings Yes |- Yes |(Naive Byes Learner)
(Query)
COMA++ XSD,XDR, [Mappings, Yes [Yes |[Yes |Path: biased to leaf nodes
RDF,OWL |Merged
Schema
DCM Web Query|Mappings be-|Yes |- Yes |Correlational Mining
Interface |tween all input
schemas
GLUE DTD,SQL, |[Mappings, Yes |- Yes [(Whirl/Bayesian Learners)
Taxonomy [IMap functions
MOMIS Rel,O0 Global View |Yes|Yes |Yes |[Schema Clustering, Neigh-
data model borhood Affinity
ONTO BUILDER RDF Mediated On-|Yes|Yes |- Elements Sequencing
tology
PORSCHE XSD  In-|Mediated - |Yes |- Elements Clust, Tree Mining
stance Schema
PROTOPLASM XDR, Mappings Yes|Yes |Yes |Path (Parent,Child,Grand
SQL,RDF Child), Iterative Fix Point
Computation
PSM Web Query|Mappings be-|Yes |- Yes |Correlational Mining
Interface |tween all input
schemas
QOM RDF(S) Mappings Yes |- Yes |Neighborhood Affinity, Tax-
onomic Structures
SCIA Rel,DTD, |Mappings Yes|Yes |Yes |Iterative Fix Point Compu-
XSD,0WL |(Query) tation, Path
WISE INTEGRATOR |Web Query|Integrated Yes |Yes |[Yes |Clustering
Interface  |Schema

teroperability. We also tried to provide an insight on current emergent technologies
driving the match research, like data mashups and P2P database networks. We have
seen in this study that although two decades have passed but there are issues that
still require to be investigated in schema matching and integration. This is because
of the dynamic nature of today’s application domains. Future prospective of schema
matching is in the large scale, which is mainly related to schemas and ontologies
in P2P, data grids, agents , web services and virtual social communities based net-
works. The schema matching research and tools study have provided us with the
insights about the requirements for schema matching and integration application
development. Based on these insights, next chapter explains the desiderata for the
large scale schema matching and integration, before we move on to our approach in

chapter 5.
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Chapter 4

Requirements and Ingredients for
Large Scale Schema Matching and

Integration

Schema matching and integration relies on discovering correspondences between sim-
ilar elements in a number of schemas. Several different types of schema matching
|9, 24, 27, 43, 64, 66, 86, 93| have been studied, demonstrating their benefits in differ-
ent scenarios. And in data integration schema matching is of central importance[5].
In this chapter we present the requirements and constraints in the large scale schema
matching and integration scenarios. The content of this chapter has been chalked

out after analysing the state of the art in schema matching.

4.1 Matching, Mapping and Integration

Most mapping tools match two schemas with human intervention |9, 27, 24, 43, 32,
64, 66]. The goals of research in this field are typically differentiated as matching,
mapping or integration oriented. A Matching tool finds possible candidate corre-
spondences from a source schema to a target schema. A Mapping is an expression
which distinctly binds elements from a source schema to elements in the target
schema, depending upon some function. Integration is the process of generating a
schema which contains the concepts present in the source input schemas. Another
objective, mediation, is mapping between each source schema and the integrated
schema. The objective behind our work is to explore the ensemble of all these as-
pects in a large set of schema trees, using scalable syntactic and semantic matching

and integration techniques. The target application area for our research is a large
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scale scenario, like WSML! based web service discovery and composition, web based
e-commerce catalogue mediation, schema based P2P database systems or web based

querying of federated database systems.

4.2 Match Cardinalities

Match cardinality defines the participation ratio of elements in matches. It is driven
by the level of schema granularity and automation allowed by a certain matching
framework. For example, finest level of granularity in XML schema matching can
be comparison of attributes of elements in the schema or in a relational schema the
attributes within a table [86]. Considering the other constraints within the schema
makes the match granularity more coarser and uncertain, e.g., a complex XML
element is matched to a simple XML element. Pertaining to these considerations,

match cardinality is categorized as follows:

4.2.1 Local Cardinality

The matches which are defined at element level between the elements of two schemas

are basically called local matches. These can be:
e Simple Match is the most basic element level match type, given as
(i) 1:1 match - one element from source schema is matched to one element

in the target schema

(ii) 1:n match - one element from source schema is matched to a combination

of more than one elements in the target schema

(iii) n:1 match - a combination of more than one elements from source schema

is matched to one element in the target schema

e Complex Match is structural level match, given as (iv) n:m match - a com-
bination of more than one element from source schema is matched to a com-

bination of more than one elements in the target schema (Example 4.1).

4.2.2 Global Cardinality

The overall matches between two schemas can also show another aspect, i.e., the
number of times a certain element from a schema participates in the matches be-

tween the two schemas. If every element only participates in at most in one match,

"'Web Service Modeling Language, http://www.w3.org/submission/WSML
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we call it simple global cardinality and if any element shows its participation in more
than one match, it is called complex global cardinality. The global cardinality is

stated at schema level as 1:1, 1:n, n:1 and n:m.

Example 4.1 (Complex Match): A concept "totalPrice" in source schema is
mapped to a combination of "price" and "tax" elements in target schema, with the

mapping expression calculated as (total Price)soyrce <> (price + (price * tax))iarget-®

Generally, in schema matching literature, one finds the discussion on local cardi-
nality. However, the schema matching and integration research requires considera-
tion on the global cardinality issue also. Allowing complex global cardinality can
create problems in an automatic matching and integration process. However, a
semi-automatic match tool for matching two schemas with complex global cardi-
nality allowed, like COMA++ [3] or SCIA [100], augments the quality of match

results.

4.3 Desiderata for Schema Mediation

Schema mediation can be defined as integration of a set of input schemas into a sin-
gle global schema, with concepts mappings from the input schemas to the integrated
schema, also called the mediated schema. There are numerous issues in the semantic
integration of a large number of schemas. Beside mapping quality, the performance
and integrity of the integrated schema are also very important. For example, the Se-
mantic Web, by definition, offers a large-scale environment where individual service
providers are independent. In such a situation the mappings can never be exact,
rather they are approximate [27, 43, 50|. And with hundreds of services available,
searching and selecting the required service needs to be fast and reliable enough to
satisfy a user query. Following, is a brief discussion of the desiderata for schema

integration and mediation.

4.3.1 Feasibility and Quality of Schema Mapping and Inte-
gration

The quality of mappings depends on the number and types of matching algorithms

and their combination strategy, for instance their execution order. To produce high

quality mappings, matching tools apply a range of match algorithms to every pair of

source and target schema elements. The results of match algorithms are aggregated
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to compute the possible candidate matches which are then scrutinised by users
who select the best/most correct candidate as the mapping for the source schema
element(s) to the target schema element(s). COMA+-+[24] and S-Match[43] follow
this technique and create a matrix of comparisons of pairs of elements and then
generate mappings. The final mapping selection can also be automated, depending
upon some pre-defined criteria (match quality confidence), for example, choosing
the candidate with the highest degree of similarity. QOM][32] and RONDOI75] use
a variation of these techniques. The mapping algorithms used are applied to each
pair of schemas of size amenable to human inspection. Large schemas, anything
in excess of 50 elements, make human intervention very time consuming and error-
prone. Therefore, automated selection of best mappings from the source to the
target schema is a must in a large scale scenario.

The second aspect regarding the large scale scenario is the requirement for batch
schema integration, where schemas may contain thousands of elements. Often, an
integrated schema is to be created and mappings from source schemas to the inte-
grated schema have to be produced, and this is to be done quickly and reliably. This
requires both matching and integration. These tasks are not supported by most of
the existing tools. For example COMA-++, S-Match, QOM and RONDO do not

provide them.

4.3.2 Schema Integration Approaches and Integrity Measures

Integrating a batch of schemas is a specific application of schema matching.
Schema integration can be holistic, incremental or iterative (blend of incremen-
tal and holistic), as surveyed in [5|. The binary ladder (or balanced incremental
integration) approach can be implemented as a script which automates the merging
process, based on algorithms like QOM and SF. For example, in a binary ladder
implementation, the result of merging the first two schemas is consecutively merged
with subsequent schemas. |50, 96|, on the other hand, discuss mining techniques and
apply an n-ary integration approach (all schemas exploited holistically), to generate
an integrated schema, along with approximate acceptable mappings. An iterative
approach first finds clusters of schemas, based on some similarity criteria, and then
performs integration at cluster level iteratively|60, 85, 94|. Although the iterative
process is automatic and robust, the mediation aspect is very difficult to implement
on top of those approaches.

The main purpose of schema integration in an information system is to hide the
complexity of the underlying data sources and schemas from the user. The user

accesses the integrated schema (mediated schema) to find a service or an answer
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to a query. Batista and colleagues [71] explain the quality aspects of the integrity

of a mediated schema in an information system. They highlight three quality criteria.

Schema completeness, computed as completeConcepts/allConcepts is the percent-
age of concepts modelled in the integrated schema that can be found in the source

schema. Completeness is indicative of the potential quality of query results.

Minimality, calculated as nonRedundant Elements/all Elements, measures the com-

pactness of the integrated schema and is normally reflected in query execution time.

Type consistency, measured as consistent Elements/all Elements spans all the in-
put and mediated schemas. It is the extent to which the elements representing the
same concept are represented using the same data types. It is a measur of congruence

of input schemas.

4.3.3 Validity of Mappings

In the large scale scenario, it is very difficult to evaluate the quality of discovered
mappings. The only possible way is to apply the developed approach on small
enough scenario, whose results can be manually verified. The resulting mappings
are evaluated in the light of the standard quality assurance measures. In liter-
ature [23, 34, 39|, there are two main measures extracted from the information

retrieval research domain:

e Precision Measure: The proportion of retrieved and relevant mappings to all

the mappings retrieved

e Recall Measure: The proportion of relevant mappings that are retrieved, out

of all relevant mappings available

Another measure, F-measure (similar to Fmeasure(«) in information retrieval) is

a combination of precision and recall measures. It is given as

9 (PrecisionxRecall)
(Precision+Recall)

Authors in [74] developed another measure , Accuracy, to estimate the effort required
to identify the non-relevant retrieved mappings and adding the relevant mappings

not retrieved. It is also known as overall [23] and given as

Recall x (2 — 5—2—)

Precision
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4.3.4 Time Performance

Time performance is an open issue in schema matching [86, 93|, governed by schema
size, the number of schemas to match and matching algorithms. The complexity of
the matching task for a pair of schemas is typically proportional to the size of both
schemas and the number of match algorithms employed, i.e. O(njxnsza), where
ny and ns are the counts of elements in the source and the target and a is the
number of algorithms used |24, 43, 66|. Selection of the best matches from a set of
possible matches increases the complexity of the problem. In schema integration and
mediation, in addition to the parameters discussed above, as there are more than
two schemas, we may consider instead the batch size (number of schemas) and the
order in which the schemas are compared and integrated. The performance of the
integration and mapping process can be improved by optimising the target search
space for a source schema element. Minimising the search space by clustering will

improve time performance.

4.4 Schema Mediation Tool GUI Features

In chapter 3 we gave a discussion on matching tools like SCTA [100], COMA++ [3],
CLIO [52] and BizTalk Mapper [8]. These tools have graphical user interfaces (GUI)
supporting the match process. Analysis of these tools helped us in chalking out the
general features a tool must possess. The study also showed us that the GUI features

should support the three possible phases of the matching process, as given below:

e Pre-match phase : Phase for pre-processing of the input schemas for match-

ing and adjustment of different match confidence parameters.

e Mid-match phase : Interface for user intervention supporting and stream-

lining the on-going match process.

e Post-match phase : Phase supporting the refinement of the matches discov-

ered by the tool’s algorithms.

The above mentioned tools have been designed primarily for matching two schemas,
pre-processed into tree structures. The trees are shown in two adjacent panels.
COMA++ provided a composite approach for the use of algorithms, providing an
interface for selecting/editing the match algorithms for optimal results. In all tools
the match results are shown as lines flowing between elements of two schemas, sup-

porting global cardinality, with each match line demonstrating the match confidence
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value. The user has the option to select the best results, according to her exper-
tize/knowledge. SCIA provided a unique mid-match feature: where the algorithms
could not work out a contextual aspect of match for a certain element, the match
process was halted and user prompted to solve the problem (with options, in the
form of questions). The work showed that this helped in finding better subsequent
matches. CLIO and SCIA also provided the facility to generate SQL/XQuery queries
as mapping expressions.

These tools provide the basic GUI techniques required to match and merge two
small schemas (with fewer than 100 elements). But in case of a large scale scenario
for schema matching and integration, where the number of schemas can be more
than two, or each schema size goes into thousands, we need to explore some better
graphical representations without decreasing the overall performance. That requires
optimizing the memory usage of the system.

Another point which surfaced during the study of schema matching, was the
lack of a proper framework for benchmarking the tools. We evaluated a match
algorithm based on expert matches. We feel that the GUI objects used in the
matching tools could be customised to produce a simpler multi-user interface for
marking the matches by the experts, in a collaborative manner. This could automate
the benchmarking process for the tool for the large scale scenarios and the evaluation

of performance in different domains.

4.5 Mining Techniques in Schema Matching

Mining for data or knowledge is generally viewed as the process of analysing large
amounts of data and extracting relevant information. It revolves around finding
data patterns that are frequent in the given large amount of data, which is sim-
ilar to schema matching in that it tries to find similar concepts among a set of
schemas. Data mining techniques are classified according to the structure of the
data, for example, raw text data, relational data, graph data, sequential streaming
data constrained by time, etc.

Data mining potential for large scale schema matching has been demonstrated
in research [50, 96|, as discussed in chapter 3. Bernstein et al. in [9] propose the
application of data mining in their framework for schema matching. But work in
[50, 96] demonstrates how schemas can be abstracted as transactions, since tradition-
ally data mining is applied on transactional data. The authors apply positive and
negative correlational mining of attributes in the schemas, demonstrating the power

of data mining algorithms in finding complex matches in the deep web scenario.
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Tree mining techniques extract similar sub tree patterns from a large set of trees
and predict possible extensions of these patterns. In pattern-growing techniques,
the pattern size starts from one and is incrementally augmented. There are different
techniques |2, 104] which mine rooted, labelled, embedded or induced, ordered or
unordered sub-trees. The basic function of tree mining is to find sub-tree patterns
that are frequent in the given set of trees, which is similar to schema matching
activity that tries to find similar concepts among a set of schemas abstracted as trees.
Keeping this idea in mind, we researched a cross-disciplinary approach, i.e., schema
matching and integration using tree mining approach with high quality matches and

good time performance.

4.6 Conclusion

In this chapter we have summarized the desiderata for large scale schema matching
and integration. We explicitly differentiated between the matching, mapping and
integration processes. The issue of match cardinality in schema integration has been
outlined. Other than the quality of matches and integrity of mediated schema, the
importance of the time performance aspect has been also presented. The possible
role of mining techniques in large scale schema integration with reference to data
mining and tree mining has been covered in this chapter. Further, we gave some
basic graphical user interface requirements in schema matching tool development.
In next chapter, we present our approach for schema matching and integration
which uses a hybrid technique to match and integrate schemas and create mappings
from source schemas to the mediated schema. To enhance the time performance and

lower the cost of data integration, we try to remove the need for human intervention.

50



Chapter 5

PORSCHE: Simple Schema
Matching and Integration

Semantic matching of schemas in heterogeneous data sharing systems is time con-
suming and error prone. Existing mapping tools employ semi-automatic techniques
for mapping two schemas at a time. In a large-scale scenario, where data shar-
ing involves a large number of data sources, such techniques are not suitable. In
this chapter, we present a new robust automatic method which discovers semantic
schema matches in a large set of XML schemas, incrementally creates an integrated
schema encompassing all schema trees, and defines mappings from the contributing
schemas to the integrated schema. Our method, PORSCHE (Performance ORiented
SCHEma mediation), utilises a holistic approach which first clusters the nodes based
on linguistic label similarity. Then, it applies a tree mining technique using node
ranks calculated during depth-first traversal. This minimises the target node search
space and improves performance, which makes the technique suitable for large scale

data sharing.

5.1 Preliminaries

Omnipresence of XML as a data exchange format on the web and the presence of
metadata available in that format forces us to focus on schema matching, and on
matching for XML schemas in particular. We represent schemas as trees in our
approach, as discussed in chapter 2 (Def. 2.1).

Schema matching finds similarities between elements in two or more schemas.
There are three basic match cardinalities at element level [86], as discussed in chap-
ter 4. Since we are matching schema tree structures (elements are nodes), where

the leaf nodes hold data, we place more emphasis on leaf node matching. Our cate-
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gorisation of node match cardinalities is driven by the node’s leaf or non-leaf (inner

node) status.

i) 1:1 - one node of source schema corresponds to one node in the target schema,
leaf:leaf or non-leaf:non-leaf.

ii) 1:n - one node in the source schema is equivalent to a composition of n leaves in
the target schema; leaf:non-leaf, where a source leaf node is mapped to a subtree
containing n leaf nodes in the target.

iii) n:1 - n leaves in source schema compositely map to one leaf in the target schema,
non-leaf:leaf, allowing a subtree with n leaves in a source to be mapped to a target

leaf.

Example 5.1 (Match Cardinality): For 1:1, cardinality is straightforward. For
I:n, consider Figure 5.1. A match is found between Syu-cename[2], child of writer,
and Syqrgernamel[2], child of author, with children first and last. We have a 1:2 map-
ping (name)source : (name/ first, name/last)rger. Also, there is a match between
Ssourcepublisher[4] and Sygpgerpublisher([5], with a 1:1 mapping (publisher /name) source :

(publisher)iarget-®

Semantically speaking, a match between two nodes is fuzzy. It can be either an
equivalence or a partial equivalence. In a partial match, the similarity is partial. It

is highlighted in the following example.

Example 5.2 (Partial Match): In source schema Name = ‘John M. Brown’,

is partially matched to LastName = ‘Brown’ and FirstName = ‘John’ in the target,

because Name also contains the Middlelnitial = ‘M’. e

Ssource | b0|0k[0] | Starget | book[0] |

| writer[1] | [ info[3] | [ title[7] | [author[1]] [publisher(5]] [ title[6] |

| name[2] | [ publisher[4] | [ isbn[6] | [ name[2] |

[ firstf3] | [ lastf4] |

Figure 5.1: Example schema trees showing labels and depth-first order number for
each node.
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5.1.1 Definitions

Semantic matching requires the comparison of concepts structured as schema ele-
ments. Labels naming the schema elements are considered to be concepts and each
element’s contextual placement information in the schema further defines the se-
mantics. For example, in Figure 5.1, Ssoyrcename[2] and Sigpgeinamel[5] have similar
labels but their tree contexts are different, which makes them conceptually disjoint.
Considering the XML schema as a tree, with reference to schema tree definition given
in chapter 2, the combination of the node label and the structural placement of the
node defines the concept. To identify the node placement in the tree structure, we
traverse each schema using the depth-first algorithm. We alocate an integer value to
each node, as shown in Figure 5.1. Here, we present the definitions used in schema
matching and integration.

Schema tree nodes bear two kinds of information: the node label and the node
number allocated during depth-first traversal. Labels are linguistically compared
to calculate label similarity (Def. 5.1, Label Semantics). Node number is used to

calculate the node’s tree context (Def. 5.3, Node Scope).

Definition 5.1 (Label Semantics): A label [ is a composition of m strings, called
tokens. We apply the tokenisation function tok which maps a label to a set of tokens
T, = {t1,ta, ..., t,}. Tokenisation [43] helps in establishing similarity between two
labels.

tok : L — P(T), where P(T') is a power set over T.

Example 5.3 (Label Equivalence): FirstName, tokenised as {first, name}, and

NameFirst, tokenised as {name, first}, are equivalent, with 100 % similarity.e

Label semantics corresponds to the meaning of the label (irrespective of the node it
is related to). It is a composition of meanings attached to the tokens making up the
label. As shown by Examples 5.3-5.5, different labels can represent similar concepts.
We denote the concept related to label [ as C(1).

Example 5.4 (Synonymous Labels): WriterName, tokenised as {writer, name},
and AuthorName, tokenised as {author, name} are equivalent (they represent the

same concept), since ‘writer’ is a synonym of ‘author’.e

Semantic label matching minimises the search space of possible mappable target

nodes [43, 104]. The derivation of concept similarity in two schemas is initiated
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by comparing their labels. Similarity between labels is either equivalence or partial

equivalence, or no similarity, as defined below.
a. Equivalence : C(l,) = C({,)
b. Partial Equivalence : C(l,)=C(l,)

i) More Specific (Is part of) : C(l,)CC(l,)
ii) More General (Contains) : C(l,)2C(l,)
iii) Overlaps : C(l,) N C(l,)# 0

c. No Similarity : C(l,) N C(l,)= 0

Example 5.5 (Label Similarity): As AuthorName and WriterName are equiva-
lent (Example 5.4), we write AuthorName = WriterName. Also, AuthorLastName
C AuthorName, as LastName is conceptually part of name. Conversely, Author-
Name O AuthorLastName. MiddleLastName and FirstNameMiddle overlap, as they

share tokens {name, middle}.e

Definition 5.2 (Node Clustering): To minimise the target search space (see
Sec. 4.3), we cluster all nodes, based on label similarity. The clustering function can
be defined as VT : L — P(V') where P(V) is the power set over V. VT returns for
each label [ € L a set of nodes v; C V', with labels similar to [. Figure 5.2 illustrates

N 7N

author  novelist writer
Xs2 X1 X23 X49

Figure 5.2: Node Clustering. In zg,, s is the schema number and n is the node
number within the schema.

node clustering. Here, the cluster contains nodes {5z, 711, T23, T42} bearing synony-

mous labels {author, novelist, writer}.

Definition 5.3 (Node Scope): In schema S each node x € V is numbered ac-
cording to its order in the depth-first traversal of S (the root is numbered 0). Let
SubTree(z) denote the sub-tree rooted at z, and x be numbered X, and let y be the
rightmost leaf (or highest numbered descendant) under z, numbered Y. Then the
scope of z is scope(z)=[X, Y]. Intuitively, scope(z) is the range of nodes under x, and
includes z itself, see Fig. 5.3. The count of nodes in SubTree(z)is Y — X + 1.
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Definition 5.4 (Node Semantics): Node semantics of node x, C,, combines
the semantics of the node label I, C'(l,), with its contextual placement in the tree,
TreeContext(z) [43], via function NodeSem.
C, : x — NodeSem(C(l,), TreeContext(x)).

TreeContext of a node is calculated relative to other nodes in the schema, using

| book[0,7] |

[writer[1,2]] [ info[3,6] | [ title[7,7] |

|name[2,2]| |publisher[4,5]| | isbn[6,6] |

name[5,5]
Figure 5.3: Example schema tree with labels and [number,scope| for each node.

node number and scope (Example 5.7).

Definition 5.5 (Schema Mediation)

INPUT: A set of schema trees SSet = {51,5, ...,S,}

OUTPUTS:

a) An integrated schema tree S,, which is a composition of all distinct concepts C,,
in SSet (see Def. 5, and|71]).

Sm=/\ H(C)

zeS; i=1

where |4 is a composition operator on the set of schemas which produces a tree
containing all the distinct concepts (encoded as nodes). The tree has to be complete
(see integrated schema integrity measure, Sec. 5.3 and|71]) to ensure correct query
results.

b) A set of mappings M = {my, ma, ...m,} from the concepts of input schema trees
to the concepts in the integrated schema. The integrated schema S,, is a composition
of all nodes representing distinct concepts in SSet. During the integration, if an
equivalent node is not present in .S,,, a new edge e/ is created in S, and the node is

added to it, to guarantee completeness.

5.1.2 Scope Properties

Scope properties describe the contextual placement of a node[104]. They explain

how structural context (within a tree) can be extracted during the evaluation of
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node similarity. The properties represent simple integer operations.

Unary Properties of a node x with scope [X,Y]:
Property 1 (Leaf Node(x)): X=Y.
Property 2 (Non-Leaf Node(x)): X < Y.

Example 5.6 (Leaf and Non-Leaf) : See Fig. 5.3. Property 1 holds for title[7,7]
which is a leaf. Property 2 holds for writer{1,2] which is an inner node. Intuitively,

properties 1 and 2 detect simple and complex elements in a schema.e

Binary Properties for x [X,Y], z4[Xq, Ya], 2.[Xa, Ya), and z,.[ X, Y, ]:

Property 3 (Descendant (z,z,), x4 is a descendant of z): X; >X and Y, <Y.
Property 4 (DescendantLeaf (x,x,)): This combines Properties 1 and 3. X; >X
and Y; <Y and X,; =Y.

Property 5 (Ancestor (z,z,), x, is an ancestor of x): (complement of Prop-
erty 3) X, <X and Y, >Y.

Property 6 (RightHandSideNode (z,z,), =, is Right Hand Side Node of
x with Non-Overlapping Scope): X, > Y.

Example 5.7 (Node Relationships): See Fig. 5.4. Siget — property 5 holds

Ssource [book[03]] Starget [book{0.7] ]
[author[1,2]] [ title[3,3] | [writer[1,2]] [ info[3,6] | | title[7,7] |
[ name[2,2]| [publisher[4,5]| [ isbn[6,6] |

Figure 5.4: Source and target schema trees.

for nodes [4,5] and [5,5], as Ancestor([5,5],[4,5]), so publisher[4,5] is an ancestor
of name|5,5]. Also Ancestor([4,5],[0,7]) holds for book|0,7] and publisher|4,5]. In
Starget, RightHandSideNode([4,5],[6,6]) holds, implying node labelled isbn is to
the right of node labelled publisher.e

Example 5.8 (Using Scope Properties) : The task is to find a mapping for
Ssourccauthor/name in the target schema Sirger (Fig. 5.4). Siarger has two nodes
called name: |2,2] and [5,5]. We assume synonymy between author and writer, top

down traversal, and Ssuurccauthor being already mapped to writer [1,2]. We per-
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Input Schema Trees

Pre-Mapping
Schema Node Scope Distinct Label
Calculation List Creation
b 4
Node Mapping Label Conceptualisation
Mediated Mediated Linguistic Algorithms:
Schema Schema Tokenisation,
¢ Tree 4 Creation = Elimination,
Lemmatisation etc.
Node Label U
Context Context Identifying Token Level
Mining [\ | Matching Synonym, Hypernym etc
== Ir
Repository

Thesauri, Abbreviations
Label Concepts, Mappings

Figure 5.5: PORSCHE architecture consists of three modules: pre-mapping, label
conceptualisation and node mapping.

form the descendant node check on [2,2] and [5,5] with respect to writer{1,2]. Using
Prop. 3, Descendant([5,5],[1,2])=false implies [5,5] is not a descendant of [1,2],
whereas Descendant([2,2],[1,2]) is true. Thus, [2,2] is a descendant of [1,2], and

author/name is mapped to writer/name.

5.2 PORSCHE

PORSCHE is a method, which accepts a set of XML schema trees. It outputs an

integrated schema tree and mappings from source schemas to the integrated schema.

5.2.1 PORSCHE Architecture

PORSCHE architecture (see Fig. 5.5) supports the complete semantic integration
process involving schema trees in a large-scale scenario. The integration system is
composed of three parts: i) Pre-Mapping, ii) Label Conceptualisation and iii) Node
Mapping, supported by a repository which houses oracles and mappings.

The system is fed a set of XML Schema instances. Pre-Mapping module processes
the input as trees, calculating the depth-first node number and scope (Def. 4) for

each of the nodes in the input schema trees. At the same time, for each schema tree
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a listing of nodes is constructed, sorted in depth-first traversal order. As the trees
are being processed, a sorted global list of labels over the whole set of schemas is
created (see Sec. 5.2.2).

In Label Conceptualisation module, label concepts are derived using linguistic
techniques. We tokenise the labels and expand the abbreviated tokens using an
abbreviation oracle. Currently, we utilise a domain specific user defined abbreviation
table. Further, we make use of token similarity, supported by an abbreviation table
and a manually defined domain specific synonym table. Label comparison is based
on similar token sets or similar synonym token sets. The architecture is flexible
enough to employ additional abbreviation or synonym oracles or arbitrary string
matching algorithms.

In Node Mapping module, the Mediated Schema Creator constructs the initial
mediated schema from the input schema tree with the highest number of nodes
augmented with a virtual root. Then it matches, merges and maps. Concepts from
input schemas are matched to the mediated schema. The method traverses each
input schema depth-first, mapping parents before siblings. If a node is found with
no match in the mediated schema, a new concept node is created and added to the
mediated schema. It is added as the rightmost leaf of the node in the mediated
schema to which the parent of the current node is mapped. This new node is used
as the target node in the mapping. The technique combines node label similarity
and contextual positioning in the schema tree, calculated with the help of properties
defined in Section 5.1.

The Repository is an indispensable part of the system. It houses oracles: thesauri
and abbreviation lists. It also stores schemas and mappings, and provides persistent

support to the mapping process.

5.2.2 Algorithms and Data Structures

In this section, we discuss the hybrid algorithms used in PORSCHE. We make as-
sumptions presented in [50, 96| which hold in single domain schema integration.
Schemas in the same domain contain the same domain concepts, but differ in struc-
ture and concept naming, for instance, name in one schema may correspond to a
combination of FirstName and LastName in another schema. Also, in one schema
different labels for the same concept are rarely present. Further, only one type of
match between two labels in different schemas is possible, for example, author is a
synonym of writer.

Pre-Mapping comprises a number of functions: 1) depth-first, scope and parent

node number calculation, 2) creation of data structures for matching and integration:
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Algorithm : preMap
Data: SSet : Set of Schema Trees of size u
Result: ¥, YLL, j
¥ : List of lists of nodes (one list per schema) of size u, initially empty;
each node list /N L sorted on depth-first order
YLL : Global sorted list of labels
j : Schema tree identifier, initialized to 0
begin
for each schema S; € S do
Vi < nodeScope(@, RootNodeg,, &)
Y — VUV
L; — lab(V;)
if + = 1 then
| 9LL «— sort(L;)
else
| 9LL — mergeLabelLists(L;,% LL)

© 0 N O A W N

10 Jj « initialMediatedSchema( ¥ andom| Ysmatiest| Yiargest)
11 end

Figure 5.6: Pseudocode of Pre-Mapping.

schema node list (. NL) for each schema and global label list (¢ LL), and 3) iden-
tification of the input schema from which the initial mediated schema is created.
SNL and 4LL are later updated by the Node Mapping module (see Fig. 5.11).

Pre-Mapping requires only one traversal of each input schema tree (Fig. 5.6).

Algorithm : nodeScope
Data: p,c, V
p : parent node list element, ¢ : current node, V : nodes list
Result: V
1 begin
2 x + New nodesListElement(c)
3 x.number «— length(V)
4 z.parentNode < p
5 z.right MostNode «— &
6
7
8

Add z to V
if ¢ has no children then
| update(z, x)

for each child of ¢ do
10 L nodeScope(z, child, V)

11 end

©

Figure 5.7: Pseudocode for node scope calculation and node list creation.

Algorithm nodeScope (Fig. 5.7) is a recursive method, called from the preMap al-
gorithm (L6.3)* for each schema, generating a schema node list (.”NL?). Tt takes as

input the current node, its parent reference, and the node list. In its first activation,

'Lx.y refers to line y of algorithm in figure x
2SNL: Schema Nodes List
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Algorithm : update

Data: z., z.
z. : Current nodes list element
z, : Right most node element of current nodes list element
begin
ze.right MostNode «— x,
if . = Root Node then
L update(z..parentNode, x,)

AW N =

5 end

Figure 5.8: Pseudocode for updating scope entries in . N L.

reference to the schema root is used as the current node: there is no parent, and
SNL is empty. A new node list element is created (L7.2-6) and added to .’ N L.
Next, if the current node is a leaf, a recursive method update (Fig. 5.8) is called.
This adjusts the rightmost node reference for the current . NL element and then
goes to adjust its ancestor entries in ./ NL. This method recurses up the tree till
it reaches the root, and adjusts all elements on the path from the current node to
the root. Next, in nodeScope (L7.9-10), the method is called for each child of the
current node.

After calculating node scope, preMap adds the new . NL to its global list of
schemas and creates a global (sorted) label list (¢LL) (L6.5-9). (L6.10) chooses
the largest (smallest or random) schema tree for subsequent formation of the initial
mediated schema. & LL? creation is a binary incremental process. .’ N L of the first
schema is sorted and used as an initial ¢ LL (L6.6-7) and then .’ NLs from other
schemas are iteratively merged with the ¢ LL, as follows.

mergeLabelLists (see Fig. 5.9) is a variant of merge sort. At (1.9.7-8), we skip
labels shared between . NL and ¢ LL and add links between them, to keep track
of shared labels. Multiple occurrences of the same label within an .’ N L, however,
are needed, as they help us in identifying labels attached to distinct nodes, e.g. au-
thor/name is different from publisher/name. If more distinct nodes with the same
label are encountered in the matching process, they are handled in an overflow area.
In the ¢4 LL, multiple occurrences of the same label are equivalent to the largest
number of their separate occurrences in one of the input schemas. This is further

explained with the help of the following example.

Example 5.9 (Repeated Labels) : Assume three input schema trees: 57, S, and
S3. Their . N Ls before merge sort are: S;{book, author, name, info, publisher,

3GLL: Global Label List
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Algorithm : mergeLabelLists

12
13

14
15

16

Data: Ly, Lo : Label lists for merging
Result: YLL : Sorted list of merged label lists, initially empty
begin

sort(Lq)

while length(L1) > 0 A length(Ly) > 0 do
if first(L1) < first(Ly) then

append first(Lq) to ¥ LL

Ly « rest(Lq)

if first(L1) = first(L2) then

L L2 — I‘eSt(Lg)

else

append first(Ly) to YLL
L L2 — I‘eSt(Lg)

if length(L,) > 0 then
L append rest(Lq) to ¥ LL

if length(L2) > 0 then
L append rest(L1) to Y LL

end

Figure 5.9: Pseudocode for label list merging, based on merge sort.

Algorithm : labelSimilarity

11

Data: YLL, simType
YLL : Global label list
simType : Similarity type for labels
Result: YLL : Global label list with inter-label similarity links
begin
var Set of token sets 7
(7, 9LL) « tok(9LL)
if simType = synonymTokenSetSimilarity then
L adjust TokenSynonymSimilarity ( Union of token sets € )

for each l; € YLL do
for each l; € rest(4LL) do
if I, = = 1; A B similarity(l;,l;) then
if T; = T then
L LadjustLabelSimilarity(li,lj)

end

Figure 5.10: Pseudocode for label similarity derivation, based upon tokenisation

(tok).

name, title}, Sy{book, writer, name, publisher, address, name, title} and S3{book,
author, address publisher, address, name, title}. The sorted ¢ LL is {address, ad-

dress, author, book, info, name, name publisher, title, writer}.e

Label conceptualisation is implemented in labelSimilarity (Fig. 5.10). The method
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Algorithm : mediation
Data: 7, j
¥ : List of lists of nodes (one list per schema) of size u; each node list
S NL sorted on depth-first order;
j : Input schema identifier
Result: M, V,,
M : Set of mapping, initially empty
Vin : Mediated schema nodes list
begin
Vi < initialMediatedSchemaNodesList(V}, x roor)
for each V € ¥ do
for each node x € V do
L, < lab(x)
L,s « similarLabels(L,, V,,,)
if L, — 0 then
Vi — VT(Lzsl)
if |Vi| =1 then
| (m,at) — oneMatch(xz, Vi, V;n)
else
L (m, xt) «— multipleMatch(z, Vi, V)

Ise
(xt, Vi) < addNewNode(Vy,, x)
| (m,2t) < mapOneToOne(z, zt)

_M<—MUm

© 0 N OO A W N

[t
N = O

[
[
o

[
wm

-
=]

17 end

Figure 5.11: Pseudocode for schema integration and mapping generation.

creates similarity relations between labels, based on label semantics (Def. 2). This
method traverses all labels, tokenises them (with abbreviations expanded), and com-
pares them exhaustively. If similarity is detected, a link is added in ¢4 LL recording
label similarity between two list entries.

After Pre-Mapping phase, PORSCHE carries out Node Mapping (see Fig. 5.11,
mediation), which accomplishes both schema matching and integration. This han-
dles the semantics of node labels, along with the tree context, to compute the map-
ping. The algorithm accepts as input a list of . NLs (#') and the identifier of the
input schema with which other schemas will be merged (). It outputs the mediated
schema node list (.# SNL*), V,,, and a set of mappings M, from input schema nodes
to the mediated schema nodes.

First, the initial mediated schema tree which works as a seed for the whole process
is identified. To this purpose, a clone of the largest ./ NL is created with a new
ROOT node, V,, (L11.2). The new root node allows us to add input schema trees
at the top level of the mediated schema whenever our algorithm does not find any

similar nodes. This is required to support the completeness of the final mediated

4MSNL: Mediated Schema Nodes List
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schema.

We use three data structures mentioned in the preceding paragraphs: (a) input
SNLs, v (b) YLL, and (c) #4SNL, V,,. Here, we give a brief explanation of
attributes associated with the node objects in each data structure. ¥ holds u .’ N Ls,
representing each input schema, where each element of the list has attributes {depth-
first order number, scope, parent, mapping data {mediated schema node reference,
map type}}. G LL element attributes are {label, link to similar label}. V,,’s elements
comprise attributes {depth-first order number, scope, parent, list of mappings{input
schema identifier, node number}}. Data structures (a) and (c) are further sorted
according to the order of (b), i.e. sorted ¥ LL, where each node object is placed
aligned with its label (see Tab. 5.1). This helps in the clustering of similar nodes
(Def. 3) and speeds up mapping, as similar nodes can be looked up via an index
lookup. In mapping data in ¥, the mediated schema node reference is the index
number of the node in .#Z SN L to which it has been matched, and maptype records
mapping cardinality (1:1, 1:n or n:1).

Algorithm : oneMatch
Data: z,V;,V,,
x : Source node
Vi : Set of one target node xty
Vin : Mediated schema tree node list
Result: m, zt
m : Mapping
at : Target node in V,,
1 begin
2 if (Leaf(z)ALeaf(xt1)) V (—Leaf(x )A—Leaf(xt,)) then
3 if ancestorMap(x,xt1 ) then
4 | (m,at)— mapOneToOne(x, xt;)
5
6
7

else
(xt, Vi) — addNewNode(V,,z)
(m, at)«— mapOneToOne(z, zt)

8 if Leaf(x)N\—Leaf(xt1) then

9 | (m,xt)— mapOneN(x, zt,)
10 if = Leaf(x)ALeaf(xt1) then

11 | (m,t)— mapNOne(x, zt,)
12 end

Figure 5.12: Pseudocode for matching one target node.

During mediation a match for every node (I.5.11.4) of each input schema (1.5.11.3)
is calculated, mapping it to the mediated schema nodes. For each input node z, a
set V; of possible mappable target nodes in the mediated schema is created, pro-
ducing the target search space for x. The criterion for the creation of this set of

nodes is node label equivalence or partial equivalence (L5.11.5,6). V; can have zero
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Algorithm : multipleMatch

Data: z,V;,V,,

x : Source node

Vi ¢ Set of n(> 1) target nodes

Vin : Mediated schema tree node list
Result: m, zt

m : Mapping

at : Target node in V,,

begin

descendantCheck «— false

for each node xt; € V; do

if descendant(z,xt;) then

\; (m, at) < mapOneToOne(z, xt;)

descendantCheck «— true
break

B I = T B NVU VR

if —descendantCheck then

®

9 (xt, Vi)« addNewNode(V,,,,x)
10 | (m,xt) < mapOneToOne(z, xt)
11 end

Figure 5.13: Pseudocode for matching several target nodes.

(L5.11.13), one (L5.11.9) or several (L5.11.11) nodes.

If there is only one possible target node in the mediated schema, method one-
Match (Fig. 5.12) is executed. (L5.12.2,8,10) compare the tree context of nodes
x (input node) and zt; (possible target node in V;), to ensure that a leaf node is
mapped to another leaf node. Second check, ancestorMap (1.5.12.3), ensures that
at some point up the ancestor hierarchy of x and xt; there has been a mapping,
in accordance with Prop. 5. This guarantees that subtrees containing z and xt;
correspond to similar concept hierarchies. This increases the match confidence of
nodes x and xt;.

Alternatively, if the target search space V; has more than one node, algorithm
multipleMatch (Fig. 5.13) is executed. Here, we check the descendant Prop. 3
(L5.13.4) for each node zt in V; (L5.13.3). Descendant function verifies if xt lies
in the sub-tree of the node to which the parent is mapped, that is within the scope.
The function returns true for only one node or none.

Method addNewNode (L5.11.14,5.13.9,5.12.6) adds a new node zt as the right-
most sibling of the node to which the parent of x is mapped. Adding a new node
requires a scope update: the ancestor and right hand side nodes of the new node
have now a larger scope. Properties 5 and 6 are used to to find the ancestor and
right hand side nodes. For ancestor nodes, scope is incremented, and for right hand
side nodes, both node number and scope are incremented.

Mapping method mapOneToOne, creates a 1:1 map from x to xt, whereas mapO-
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neN creates a mapping from z (a leaf) to a set of leaves in the subtree rooted at xt
(non-leaf), which is a 1:n mapping. This mapping is considered to be an approxi-
mate mapping but follows the semantics of leaves mapping to leaves. And, similarly,
mapNOne is a composite mapping of leaves under z, to leaf xt. Node Mapping al-
gorithm (Fig. 5.11) integrates all input nodes into the mediated schema and creates

corresponding mappings from input schemas to the mediated schema.

5.2.3 A Schema Integration Example

Figure 5.14 shows two trees after Pre-Mapping. A list of labels created in this
traversal is shown in Table 5.1a. The two nodes with the same label name but
different parents are shown (labels with index 2 and 3). The last entry in the
list is the ROOT of the mediated schema. In the label list the semantically similar
(equivalent or partially equivalent) labels are detected: author (index 0) is equivalent

to writer (index 7).

S, Sy

lauthor{1,2]| [ price[3.3] | [writer[1,2]] [ pub[3.4] | [ title[5,5] |

| name[2,2] | | name[4,4] |

Figure 5.14: Input Schema Trees S, and .S;.

Table 5.1: Before Node Mapping. Schema column entry is (node number, scope,
parent).

a. Global Label List

0 1 2 3 4 5 6 7 8
author| book |name |[name |price |pub |title |writer | ROOT

b. Input Schema Matrix

Sa [120 [03-1 |221 33,0
Sb 05-1 |221 [443 340 [550 [120
c. Initial Mediated Schema
| | (1,60 [332 [554 | 451 661 |231 [06-1 |

A matrix of size ug (here 2x9) is created, where u is the number of schemas and ¢
the number of distinct labels in the 4 LL, see Tab. 5.1b. Each matrix row represents
an input schema tree and each non-null entry contains the node scope, parent node
link, and the mapping, which is initially null. Matrix columns are alphabetically

ordered. The larger schema, 5, Fig. 5.14, is selected for the creation of the initial
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Table 5.2: After Node Mapping. *Column entry is (node number, scope, parent,
mapping). **Bold numbers refer to sourceSchema.node.
a. Global Label List

0 1 2 3 4 5 6 7 8
author | book name |name |price |pub |title |writer |ROOT
b. Mapping Matrix *
Sa 1,2,0,7 |0,3,-1,1 | 2,212 3,3,04
Sb 0,5,-1,1 |2,21,2 {4,433 3,4,0,5|55,0,6|1,20,7

c. Final Mediated Schema **
1,7,0, 3,3,2, 55,4, 7,71, 45,1, 6,6,1, 2,3,1, 0,7,-1
1.0,2.0 12,22 (2.4 1.3 2.3 2.5 1.1,2.1

mediated schema S,,. A list of size ¢, Tab. 5.1c, is created to hold S,,, assuming the

same label order as in Tab. 5.1a and 5.1b.

The node mapping algorithm takes the data structures in Tab. 5.1 as input,
and produces mappings shown in Tab. 5.2b and the integrated schema in Tab. 5.2c.
In the process, the input schema S, is mapped to the mediated schema S,,, i.e.
extended schema Sy. The mapping is taken as the column index (Tab. 5.2b, in bold)
of the node in S,,. Saving mappings as column index gives us the flexibility to add
new nodes to S,,, by appending to it. Scope values of some nodes may be affected,
as explained previously, because of the addition of new nodes, but column indices of
all previous nodes remain the same. Intuitively, none of the existing mappings are
affected.

Node Mapping for input schema S, (Tab. 5.1b row 1) starts from the root node
Sa[0,3]book. Tt follows the depth first traversal of the input tree, to ensure that
parent nodes are mapped before the children. S,[0,3| has only one similar node in the
mediated schema tree S, i.e., node 1 at index 1. So entry 1 at index 1 for S, records
the mapping (5,0, 3], Siu[1, 6]), see Tab. 5.2b. Information regarding mapping is also
saved in the mediated schema node as 1.0 (node 0 of schema 1). Next node to map in
Sq s [1,2]author, similar to S,,[1,2]writer. Both nodes are internal and the method
ancestorMap returns true since parent nodes of both are already mapped. The
resulting mapping for node with label author is entry 7. For node with label 2 name,
there are two possibilities, label 2 (index 2) and label 3 (index 3) in the mediated
schema. Descendant is true for node at index 2 (author/name,writer/name), and

false for 3 (author/name,pub/name). Hence, 2 is the correct match.

The last node to map in S, is [3,3|price. There is no node in S,, with a similar
label, so a new node is added to .S,,, recorded by an entry in the column with

label ‘price’ in the mediated schema (Tab. 5.2¢). A new node is created as the
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Figure 5.15: Mediated Schema with mappings.

rightmost sibling of the node in the mediated tree to which the parent node of
current input node is mapped, i.e. as child of book. The scope and parent are
accordingly adjusted for the new node, and for its ancestors, and for right hand side
nodes, scope and number are adjusted. There is no effect on the existing mapping
information. Finally, a mapping is created from the input node to this new target
node.

If a new node is added in the middle of the tree, its ancestor’s scope is incremented
by one. And, accordingly, right hand side nodes (satisfying Property 6) have their
order numbers and scopes incremented by one. The implementation keeps track
of the columns for the next node according to depth-first order. Thus, the final
mediated schema tree can be generated from the final mediated schema row by a
traversal starting from the ROOT. The mediated schema with mappings (dotted

lines) is shown in Fig. 5.15.

5.2.4 Complexity Analysis

The worst-case time complexity of PORSCHE can be expressed as a function of the
number of nodes in an input schema, n on average, where the number of schemas is

u. The algorithm has the following phases.

e Data structure creation - all input schemas are traversed as trees (depth-first)
and stored as node lists (. N Ls), a global list of node labels (4 LL) is created,
and one of the schemas is selected as the base for the mediated schema, with

time complexity O(nu).

e Label List sorting - the number of labels is nu and sort time complexity for
the global list is O(nulog(nu)).

e Label similarity - we compare each label to the labels following it in the list.

Time complexity of O((nu)?).

67



e Node contextual mapping - nodes are clustered, based on node label similarity.
Worst case is when all labels are similar and form one cluster of size nu. We
compare each node once to all other nodes, using tree mining functions. At
worst, nu nodes are compared to nu nodes, with time complexity O((nu)?).
Realistically, there are multiple clusters, much smaller than nu, which improves

performance.

Overall time complexity is O((nu)?), with space complexity O(n(u)?), as the largest
data structure is a matrix of size nu? used in the schema mapping process.

The theoretical time and space complexity of PORSCHE is similar to other
algorithms we surveyed (Sec. 2). Because we perform only one full traversal of all the
schemas and reuse the memory-resident data structures generated in the traversal
of the fist schema, instead of performing repeated traversals used in alternative
approaches which use a script to repeatedly merge any two schemas, we can generate
a mediated schema faster than other approaches. Our experiments confirm the

complexity figures derived above, in next section.

5.3 Experimental Evaluation

We examine both the time performance and quality of schema mediation, with

respect to mapping quality and mediated schema integrity.

Table 5.3: Schema domains used in the experiment.

Domain OAGIS | XCBL | BOOKS
Number of Schemas 80 44 176
Average nodes per schema | 1047 | 1678 8
Largest schema size 3519 | 4578 14
Smallest schema size 26 4 D

5.3.1 Performance Evaluation

Performance is evaluated as the number of schemas or nodes processed versus the
time required for matching, merging and mapping. We selected three sets of schema
trees from different domains, shown in Tab. 5.3. OAGIS and xCBL are real schemas,
whereas BOOKS are synthetic schemas.

Experiments were performed with different numbers of schemas (2 to 176). Al-

gorithm performance was timed under three different similarity scenarios:

A) Label String Equivalence,
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Figure 5.16: BOOKS: integration time (ms) as a function of the number of schemas.

B) Label Token Set Equivalence,

C) Label Synonym Token Set Equivalence.

Figure 5.16 shows a comparison of three similarity scenarios, A, B, and C, for
sets of 2, 4, 8, 16, 32, 64, 128, and 176 schemas from BOOKS. There is no visible

difference in the performance of various matchers. This is possibly due to the fact

that synthetic schemas vary little in their labels.
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Figure 5.17: Comparison of schema integration times (seconds) for real web schemas.
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Figure 5.17 shows time in seconds for OAGIS and xCBL. The execution time for
PORSCHE depends upon the number of schemas to be integrated, and appears to be

quadratic in the number of nodes, as predicted by the complexity analysis (Sec. 4.4).
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Figure 5.18: Integration of OAGIS schemas.
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Figure 5.19: Integration of xCBL schemas.

Figures 5.18 and 5.19 show the time in seconds against the number of nodes processed
for the three similarity methods (A, B, and C), for xCBL and OAGIS schemas. xCBL
schemas (Fig. 5.19) are slower to match than OAGIS schemas (Fig. 5.18). This is
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due to the higher average number of nodes in xCLB schemas. It takes approximately
600 s to match 80 OAGIS schemas, while 44 xCLB schemas require about 800 s.
In both cases there is a slight difference in matching times for categories A, B and
C (Fig. 5.18 and 5.19), due to different label matching strategies. A is the fastest,
as it works only on the labels. B is slightly slower, as labels have to be tokenised,
and C is the slowest, as one needs to match synonyms as well. These evaluation
cases show that PORSCHE has acceptable performance on an office PC for a large

number of schemas.

5.3.2 Mapping Quality

Mapping Quality

0.8
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Pr eci si on

Di fferent Scenari os
PORSCHE SF mmmm COVA++

Figure 5.20: Precision for PORSCHE, COMA ++ and Similarity Flooding for 8 pairs
of schemas.

As available benchmarks focus on two schemas at a time, and our approach
targets a set of schemas, we can only compare mapping quality for two schemas at
a time. From the set of 176 books schemas we randomly selected 5 pairs of schemas
(sizes ranging between 5 and 14 nodes), from purchase order one schema pair (schema
sizes 14 and 18 nodes), and from OAGIS two schema pairs (schema sizes from 26
to 52 nodes)®. We computed mapping quality for COMA++ and SF:Similarity
Flooding (RONDO) and compared those to PORSCHE. The quality of mappings
is evaluated using precision, recall and F-measure. The results are summarised
in Figures 5.20, 5.21, 5.22 and 5.23. For PORSCHE, similarity uses token level

synonym lookup. The comparison shows almost equivalent mapping quality for

>Schemas and results detail at http://www.lirmm.fr/PORSCHE /results/
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Figure 5.22: F-measure for PORSCHE, COMA++ and Similarity Flooding for 8

Figure 5.21: Recall for PORSCHE, COMA++ and Similarity Flooding for 8 pairs
pairs of schemas.

of schemas.

similarity. Similarity

(book /author is matched to author/book).
72

, since both are driven by similar user defined pre-match
PORSCHE has also been evaluated within our benchmark, XBenchMatch|29)].

flooding demonstrates better recall than PORSCHE or COMA++. The results also
demonstrate local schema differences. Books2 is the hardest case, and we discovered

effort of constructing synonym tables used to derive label

PORSCHE and COMA +-+
that it contained inverted paths
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Figure 5.23: Global comparison of quality metrics.

The benchmark uses precision, recall, F-measure, overall measure, and other met-
rics of structural schema proximity. Structural proximity measures are based on
differences in the number and size of sub-trees shared between input and mediated
schemas, and schema proximity compares two schema trees which are being matched.
PORSCHE demonstrated good results in comparison with COMA+-+ and RONDO
(Similarity Flooding).

5.3.3 Mediated Schema Integrity

We gave a brief overview of the integrated schema quality evaluation in Sec. 4.3.
Since our test domains are XML schema instances with only element label in-
formation, type consistency can not be evaluated. In the following, we consider
only completeness and minimality. As discussed in Sec. 2.2 and algorithm imple-
mentation (Fig. 5.11, 5.12 and 5.13), when a match is not found in the mediated
schema, a new concept node is added to it. Mapping from source schema tree
to the new node is then established. This demonstrates that PORSCHE inher-
ently fulfills the completeness criterion of mediated schema integrity. To evalu-
ate minimality, we take the pairs of schemas considered in mapping quality eval-
uation. For each pair of schemas we perform matching and merging. The re-
sulting integrated schema is scrutinised manually for redundancies. The results
(minimality = 1 — (redundantNodes/total Nodes)) are shown in Fig. 5.24. An
inspection of integrated schemas showed that minimality decreased where input

schemas being matched had inverted paths. To further investigate the integrity
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Figure 5.24: Minimality of PORSCHE schema integration for the selected pairs of

schemas.
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Figure 5.25: Minimality in PORSCHE for 176 book schemas. 176 experiments are
shown (along the x-axis), with each schema selected, in turn, as the initial mediated

schema.

of our approach, we calculated the minimalty of the integrated schema created by
merging 176 books schemas (small in size and amenable to human inspection). We
used an ideal integrated schema (manually created, containing 17 nodes) to assess
redundancy. A batch of 176 experiments was performed, each selecting one schema

as the seed mediated schema. Figure 5.25 shows that minimality fluctuates between

0.68 and 0.85.
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5.4 Comparison to other Tools

Most schema-matching systems compare two schemas at a time and aim for quality
matching but require significant human intervention. CUPIDI[66], COMA -+ |24],
S-Match[43], QOM|32|, GLUE|27] are some of these tools presented in this section.
Several surveys|24, 86, 93] argue that extending the matching to data integration is
time consuming and limited in scope. Matching of two large bio-medical taxonomies
has been demonstrated by Do and Rahm using COMA-++-, and Mork and Bernstein
[78] using CUPID and similarity flooding (RONDO[75]). Quick Ontology Match-
ing (QOM) matches large ontologies with performance in view. Large scale schema
matching has also been investigated in the web interface schema integration|[50, 96|
using data mining. PORSCHE’s goal is to match, merge and map in a hybrid man-
ner, whereas most of the tools separate the two activities of matching and integrat-
ing, which makes them unsuitable for automated integration scenarios, as needed in
e-commerce.

COMA-++(24] is one of the most recent matching and merging tools. It is a
composite matcher producing quality matches for a pair of schemas. It provides
an extensible platform which can combine several matchers. It uses user defined
synonym and abbreviation tables as a pre-mapping effort. It has a comprehensive
interface for navigating through the matches produced by the software. The user
verifies and selects or edits the match results to finalise the mapping between the
two schemas. Based on these mappings, COMA++ can also generate a merged
schema, which has to be validated by the user. The authors of COMA-++ give a
comprehensive evaluation of match quality results but do not quantify the quality of
the merged schema. In large scale schema matching, COMA+-+ requires a significant
amount of human intervention. First, the user should identify fragments in the two
schemas to be mapped. This aims to manage the namespace/ include characteristics
of XML schemas. Then, individual fragments from the source schemas are mapped
to fragments of the target schema, one by one, and match results are saved in
a relational database for subsequent comparison. COMA-++ uses a bottom up
hierarchical approach: if leaves are similar, then parent nodes may also be similar.
In PORSCHE we use a reverse approach: given similarity between parent or ancestor
nodes, we discover similarity among the descendants. We believe that our approach
is more appropriate in single domain schemas with large tree depth, which requires
matching of the structural context of descendant nodes in a robust manner.

S-Match[43] is a hybrid matcher which carries out semantic matching by using the
WordNet dictionary. It tackles the matching as a propositional satisfiability problem.
It demonstrates better mappings than COMA++ and CUPID|66] but has worse
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performance. S-Match employs 16 (13 element level and 3 structural level) match
algorithms. It does not fulfill the requirement for merging and creating mappings
from the source to the integrated schema. PORSCHE specifically addresses the data

integration needs of large environments where efficiency is important.

Mork and Bernstein [78] present a case study of matching two large ontolo-
gies of human anatomy. They use lexical and hierarchical matching modules from
CUPIDI66] and a structural algorithm called Similarity Flooding|75] to find map-
pings. The hierarchical algorithm goes one step further than COMA++. The simi-
larity of descendants is used to evaluate ancestor similarity, and the approach is not
limited just to parent-child relationships. The authors argue that the hierarchical
approach produced disappointing results because of differences in context. They
report that a lot of customisation was required to get satisfactory results. Our ap-
proach, in comparison, considers only top-down similarity, and looks for matching
ancestors only. It seems that further research is needed to properly define the role of
node context in XML, in particular the scope of context, in terms of node distance

and structure within a tree.

QOM|[32] is a semi-automatic (RDF based) ontology mapping tool. It uses heuris-
tics and ontological structures to classify candidate mappings as promising or less
promising. It uses multiple iterations, where in each iteration the number of possi-
ble candidate mappings is reduced. It employs label string similarity (sorted label
list) in the first iteration, and, afterwards, it focuses on mapping change propa-
gation. The structural algorithm follows top down (level-wise) element similarity,
which reduces time complexity. PORSCHE matching also uses label similarity using
linguistic rather than lexical algorithms. In QOM, in the second iteration, depth-
first search is used to select the appropriate mappings from among the candidate
mappings.

Another interesting schema matching domain under active research is matching
across query interfaces of structured web databases. Web page layout forms a hier-
archy backed by a database schema. For certain Web domains, such as travel, these
interfaces are very numerous. [50, 96| handle holistically the integration of these
structured layouts as a mining problem. He and colleagues [50] observe that Web
database query interfaces in the same domain are usually semantically similar, as a
label is often unambiguous in a domain but it can have several meanings in a dic-
tionary, and synonymous labels are rarely co-present in the same schema. However,
grouping of elements such as LastName and FirstName under the same parent is
common, as those together form a larger concept. He et al.[50] utilise data mining

techniques on the input forms and data ranges, for elements available from the web
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pages. The technique is more biased towards the accuracy of integration than perfor-
mance. Thus, it is ideal for scenarios where the schemas are small, as in web query/
data interfaces. Our method targets tree schema structures (or schemas which can
be converted to trees) which come with minimum information (just element labels)
and each schema can have thousands of elements. This gives PORSCHE a much
broader application domain.

Clustering, both at the element and schema level, is often used in matching and
merging. Smiljanic and co-authors|94] suggest element clustering within a schema, in
a repository of schemas which are matched to a given person schema. The technique
shows how the combinatorial nature of the matching problem can be reduced to
polynomial, and, further, to linear complexity, by using element clustering. The
method only caters for schema matching. Lee et al. [60] present an integration
method based on the clustering of similar DTDs of XML sources. The method works
incrementally, by creating clusters of similar schemas. Similar schema selection is
based on element similarity. The solution uses external oracles defining element
similarity. It mainly focuses on the integration process but lacks the mediation
aspect.

Instance level schema matching tools work on a sample mapping set. They use
data and example sets to learn a strategy to compute equal instances and concepts,
and are characterised by a high time complexity. For example, GLUE[27] uses Re-
laxation Labelling to calculate schema mappings: mapping assigned to an entity is
typically influenced by the features of the node’s neighbourhood in the graph. Multi-
ple iterations have to be performed to confirm a mapping. Overall, such methods are
slow. An advantage of instance based learners is their capability to learn mapping

expressions, as illustrated in iMAP|22], a variant implementation of GLUE.

5.5 Lessons Learned

Implementing PORSCHE gave us a good insight into the existing schemas and their
properties. We learned that newer standard schemas available on the web can be
used together with linguistic techniques, and that string similarity should not be the
sole criterion for label matching. Element names are now becoming more structured
and meaningful, and new matching techniques are increasingly based on external
oracles like WordNet. Linguistic label similarity can help in minimizing the target
search space for matching very significantly. In a large scale scenario, performing
clustering just once will enhance performance. The application of tree mining further

reduces the time to select the correct target for mapping.
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For schema integration purposes, the selection of one of the schemas as the seed
for the initial mediated schema follows no fixed rule. We tried random, the small-
est and the largest schema from the input set of schemas as the initial selection.
However, using such heuristics showed that the selection depending on schema size
does not boost performance. Rather, it is the structure of the initial seed schema
which influences performance: if the initial mediated schema contained more fre-
quent sub-trees shared with the set of input schema trees, the speed of matching
improved.

Overall, the architecture of PORSCHE is flexible, and can accommodate new
syntactic and linguistic similarity algorithms. Most importantly, PORSCHE is scal-
able, as demonstrated, and can be used in large-scale data integration. At present,
it uses a limited array of linguistic methods but its domain specific matching quality
is approximately equivalent to other current tools.

In the future, we will investigate the application of this technique in information
systems based on P2P architectures. Secondly, we want to enhance the linguistic
matching part of the system. Our study of the tree mining technique reveals that it
can be utilised to identify relationships between the elements and groups of elements
within a single tree and in a forest of schema trees. This will help in identifying sub-
sumptions and overlaps for n : m complex mappings|83]. Another possible extension

is the development of persistent indexes for incremental matching.

5.6 Conclusion

We have presented a novel schema integration method, PORSCHE, which has shown
very promising results for large scale schema integration. It uses a tree based depth-
first traversal algorithm for matching, merging and mapping a set of schema trees.
To improve performance, we adapted a technique from tree mining used in the
clustering of similar node labels. This minimises the target search space for a node
match and improves performance. PORSCHE uses an optimistic top down depth-
first match traversal (parents are mapped before children, and the left sub-tree is
traversed before the right sub-tree), since our assumption is that we utilise it in a
domain specific environment. This helps in using the structural contextual semantics
of nodes for better quality matching.

The originality of our method is fourfold. First, we support automated schema
matching. Second, we not only generate matches, but also build an integrated
schema at the same time. Third, our approach scales to hundreds of schemas.

Fourth, the use of tree mining techniques for schema matching is also new in this
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field. Next two chapters are devoted to our approach for complex matching. First
the idea of mini-taxanomies is presented along with their uses. And following that we
show how these mini-taxonomies can be used to verify complex matchings between

two schemas.
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Chapter 6

Applying Tree-Mining for Domain

Taxonomy Discovery

Today, ontologies are being used to model a domain of knowledge in the semantic
web [1]. OWL is considered to be the main language for developing such ontologies.
It is based on the XML model, which inherently follows the hierarchical structure. In
this chapter we demonstrate an automatic approach for emergent semantics model-
ing of ontologies. We follow the collaborative ontology construction method without
the direct interaction of domain users, engineers or developers. A very important
characteristic of an ontology is its hierarchical structure of concepts. We consider
large sets of domain specific hierarchical structures as trees and apply frequent sub-
tree mining for extracting common hierarchical patterns. The evaluation of the
technique shows that these hierarchical patterns are good enough to represent and
describe the concepts for the domain ontology. We utilise these patterns as mini-
taxanomies to validate complex matches. The method is described in next chapter
regarding complex match discovery. The technique further demonstrates the con-
struction of the taxonomy of domain ontology. In this regard we consider the largest
frequent tree or a tree created by merging the set of largest frequent sub-trees as the
taxonomy. We argue in favour of the trustabilty for such a taxonomy and related
concepts, since these have been extracted from the structures being used within the

specified domain.

6.1 Ontology Engineering Overview

Discussion on ontology building and utilisation has been around since early 90s.
Ontology has been defined in [45] as an explicit, formal specification of a shared

conceptualisation of a domain of interest. Formalization aspect highlights the ma-
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chine readability of the ontology and shared conceptualization points toward its
acceptance by the users of the domain. Initial ontology development endeavors re-
sulted in the form of DAML! and OIL 2 languages. Today the features of the two
languages have been extended to OWL3, based on XML model.

Initial focus in ontology design has been the manual technique but with the pas-
sage of time more and more semi-automatic techniques have emerged, facilitated by

ontology editing tools*. The semi-automatic approach called ontology learning [15].

Ontology learning is a combination of tasks organised as a layered approach,
in the manner of increasing complexity. The tasks are enumerated by Paul Buite-
laar et al. in [15] as term extraction, synonym and translation detection, concept

formulation, concept hierarchies, relations, rule derivation and axiomatization.

Concept hierarchy, also called taxonomy (is-a relation), is a tree structure of
classifications for a given set of ontological objects. It is considered to be the ontology
backbone. At the top of this structure is a single classification, the root node,
that applies to all objects. Nodes below this root are more specific classifications
that apply to subsets of the total set of classified objects. So, for instance, in
common schemes of books, the root is called "Book", followed by nodes for the
type: Art, Science, Fiction, Sports, etc. And each instance of "Book" concept can

have properties like author, title, publisher etc. (Figure 6.1)

author | | publisher || title |

| writer |'""'

Figure 6.1: Ontology taxonomy example.

Our work is a step toward automatic conceptualisation of an ontology for a
certain domain, already populated with a large set of user defined hierarchical meta
data structures for diverse applications. For example, XML schemas, taxonomies or
entities from which hierarchical structures can be extracted, like web based query

interface forms, can be used.

!DAML: Darpa agent Markup Language - http://www.daml.org/

201IL: Ontology Interface Layer - http://www.ontoknowledge.org/oil/

30OWL: Web Ontology Language - http://www.w3.org/ TR /owl-features/

“Protege is a free, open source ontology editor and knowledge-base framework;
http://protege.stanford.edu/
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6.2 Related Work

One of the foremost techniques applied for ontology learning has been term extrac-
tion from text. Similar terms are clustered together for further analysis of inter term
relations or taxonomy. These methods have their roots in natural language process-
ing research [16]. Buitelaar et al. present their OntoLT approach as a plug-in for
Protégé ontology editor. The authors define preconditions using XPATH expres-
sions over the XML based linguistic annotations. The rules help in constructing or
extending an ontology. The preconditions revolve around the linguistic constructs
in a sentence, for example, the subject in the sentence corresponding to a certain
morphological stem of a word.

Term similarity computation has been researched in two ways, primarily by using
readily available lexical resources like Wordnet®, and secondly, by devising clustering
algorithms based on the syntactic similarity of the terms. Information retrieval
techniques [92] based on term indexing and data mining methods [50] provide the
space for such algorithms.

There is no definite definition available for concept formation. Our approach
follows the hierarchical representation of concepts [33] which can be extended, upon
receiving further information about the concept. The extension idea has been anal-
ysed in [69] as binary relation extraction of terms and recommendations have been
made for use of data mining co-occurrence algorithms. These methods can ulti-
mately provide an incremental approach for ontology learning.

World wide web has also been extensively exploited in this regard. [101] describe
a tool which analyses the web resources like Wikipedia, Wiktitionary, along with
domain corpus for domain ontology learning. These resources are exploited against
a set of candidates extracted from a set of ontology instances using the linguistic
context. Another work by Maedche et al. [67| details two algorithms, top-down
and bottom-up approaches, for deducing taxonomic relations from the web based
on heuristics. Our approach presents a similar top-down method, by applying tree-
mining on the available hierarchical structures in a domain. In [44], the authors
present the use of semi-structured schemata (XML and RDF based resources) for
constructing a domain ontology, manually and semi-automatically.

Another interesting research for ontology generation is the use of tables extracted
from the web and other resources. Authors in [97] argue that the extraction of
relational knowledge from tables is much easier than exploiting the text corpus. The

research describes a comprehensive framework for assembling human created tables.

®http://wordnet.princeton.edu

83



The approach canonicalises each table information, generates a mini-ontology from
it and then incrementally merges the mini-ontologies.

Social collaborative networks present a new range of emerging semantics on the
web. In such environments users set up lightweight conceptual structures, assigning
arbitrary keywords, called tags, to resources. Such conceptual structures are also
called folksonomies. Research work in [55] presents a data mining technique for
discovering shared conceptualisations in folksonomies. The technique extends the
data mining task of discovering all closed itemsets to frequent tri-concepts (user, tag
and resource) extraction. With social networks gaining more ground, standards are
also evolving for them. FOAF ©(Friend of a Friend) ontology standard is one such
example, providing a structural data model for the folksonomies and paving the way

for tree mining techniques in the social network environments.

6.3 Our Approach: ExSTax

In this section, we present our approach, ExSTax (Extraction of Structurally Co-
herent Mini-Taxonomies), for detection of ontological concepts as mini-taxonomies,
from the available domain specific hierarchical structures. We discuss the architec-
ture, and the related definitions and methods in length to clarify the novelty of our
method.

We utilize the concepts of Schema Tree (Definition 1.1), Label Semantics (Defini-
tion 5.1) and Node Scope (Definition 5.3) and node scope properties of Descendant
(Property 3), Ancestor (Property 5) and Right-hand-side node (Property 6) as given

in section 5.1.

6.3.1 Architecture

The architecture of our approach for ontology taxonomy learning through tree min-
ing is shown in Figure 6.2. The approach is composed of five modules: (i) Pre-Phase,
(ii) Similar Terms Computation and Clustering, (ii) Concepts Formulation, (iv) Sim-
ilar Mini-Tazonomies Generation and (v) Trustable Base Taxonomy Construction,
supported by a repository which houses oracles and concept taxonomies.

The system is fed a set of hierarchical structures (schema trees). Pre-Phase
module processes the input as trees, calculating the depth-first node number and
scope (Definition 5.3) for each of the nodes in the input schema trees. At the same

time, for each tree a listing of nodes is constructed, sorted in depth-first traversal

Shttp://xmlns.com /foaf/0.1/
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order. As the trees are being processed, a sorted global list of distinct node labels,
over the whole set of input, is created. The process is similar to pre-mapping part
of PORSCHE architecture described in section 5.2.1.

In Similar Terms Computation and Clustering module, similarity is derived for
the tree nodes labels of the input trees. We tokenise the labels and expand the
abbreviated tokens using an abbreviation oracle. Currently, we utilise a domain
specific user defined abbreviation table. Further, token similarity is supported by
a manually defined domain specific synonym table. Label comparison is based on
similar token sets or similar synonym token sets (described in section 5.2.1 as label

conceptualisation). The architecture is flexible enough to employ additional abbre-

Input Hierarchical Structures

Pre-Phase
Schema NOd? Scope Terms Extraction
Calculation
Similar Terms
Concepts ALLN Computation and
Formulation (l_$> Clustering
ﬂ : Similar

Trustable Base Mini-Taxonomies

Taxonomy Construction Generation

N7 A V.4

— Repository I

Thesauri, Abbreviations, Similar Terms,
Mini-Taxonomies, Base Taxonomy

Figure 6.2: Architecture for the tree mining of ontology concepts and taxonomy.

viation, synonym oracles or arbitrary string matching algorithms. To further refine
the similarity, we employ the structural aspect. Label instances at nodes in different
trees are compared for ancestor level label instance similarity (Property 2). Any
such occurrence helps in re-enforcing the similarity of the current pair of labels and
removes any ambiguity. Based on similarity, the terms are clustered together.

In our approach, a concept is considered to be a small tree structure, referred to
as a mini-taxonomy. Concepts Formulation module discovers these mini-taxonomies.

We utilise an extended version of the frequent sub-tree mining approach described
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in [104] for this purpose. Once the set of mini-taxonomies has been extracted, the
set is fed to the Similar Mini-Taxonomies Generation module. At this stage all
possible similar mini-taxonomies are generated with the help of already computed
similar label clusters. The set of largest possible frequent sub-trees, from the output
of concepts formulation module, acts as the input of Trusted Base Taxonomy Con-
struction module. If there is just one tree, it is considered as the base taxonomy,
else all the sub-trees in the set are merged together to produce the base taxonomy.

The Repository is an indispensable part of the system. It houses oracles: thesauri
and abbreviation lists. It also stores extracted terms, inter-term similarity, mini-
taxonomies representing concepts and trustable base taxonomy. It also provides

persistent support to the taxonomy learning process.

6.3.2 ExSTax Algorithm and Data Structures

The algorithm implementing the Concept Formulation process acts as the kernel of
our approach. It iterates, by extracting growing frequent sub-trees from a given
set of trees. The sub-tree frequency support in the forest of trees is a user defined
parameter. The algorithm takes as input the list of labels, with similar labels linked
together to form a cluster (each cluster can have one or more labels). First task
performed by the algorithm is to compute the frequency of each label in the forest of
trees (Figure 6.4a). Next, within each cluster, the label with the highest frequency
in the forest of input trees is taken as the symbol representing the cluster. The
frequency of the cluster symbol is computed by adding frequencies of all the labels
in the cluster. Logically, all node labels in a cluster are replaced by the cluster
symbol in the input set of trees (Figure 6.4b).

We consider symbol as the representation of a sub-tree. For example, the symbol
for a sub-tree with one node is the node label, and the symbol representing the tree
S1 in Figure 6.3 is "book-author-name//publisher-name//title" (- and / delimiters
are used to signify the downward and upward traversal within the tree, respectively).

From here on the process executes similar to frequent sub-tree mining algorithm
given in [104]. In the first iteration, the process finds frequent sub-trees with size 1
(Figure 6.4b), and creates the vertical list data structure for further joining, referred
to as join-list. Join-list entry is a composition of three elements; (i) tree number
in which the sub-tree occur, (ii) the node numbers sequence representing the sub-
tree which is the prefix of the rightmost node in the sub-tree, and (iii) scope of the
right most node in the sub-tree. Only sub-trees with frequency equivalent or greater
than the threshold are kept in the list. Threshold frequency is computed as support
multiplied by number of the input schemas divided by hundred.
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In the second pass, a new list of join-lists is created. Each frequent size 1 sub-tree
is joined with every other size 1 sub-tree in the first join-list. The joining process
first evaluates the similarity of element (i) and (ii) of the sub-tree join-list entries.
If the pair passes the similarity test, it is subjected to Property 2 test. If the pair
passes the Property 2 i.e., descendant test is true for the pair, a new symbol for the
sub-tree of size 2 is created. If the sub-tree symbol does not exist in the second list,
it is added to the list. The join-list entry of the symbol is added to its respective
list. Likewise, subsequent size 2 sub-trees are added to the list. At the end of this
iteration, frequency of each sub-tree is computed and only sub-trees with equivalent
or higher frequency than threshold are kept in the list. The iterative process keeps
executing till the sub-tree list does not have any frequent sub-trees. For joining sub-
trees of size 2 or greater, Property 3 (cousin test) is also evaluated for computing a
prospective candidate sub-tree symbol.

The last list of sub-trees contains either one or more sub-trees. This list acts
as the input for computing the base taxonomy for the given set of hierarchical

structures.
6.4 A Mini-Taxonomies Extraction Example

S, book[0,5] S, [ book[0,7] ]

lauthor{1,2]| [publisher[3.4]| | title[5,5] |  [writer{1,2]] [Tnfo[3,6] | [ title[7,7] |

| name[2,2] | | name[4,4] | | name[2,2] | |publisher[4,5]| | isbn[6,6] |
Sy [author[0,4]]

general[1,3] detail[4,6] [name[1,11] [ birth[2,2] | [ownbook[3,4]]
[Titte[2,2] | [author(3,3]] [price[5,5] | [publisher[6,6]]

Figure 6.3: Input set of 4 trees for learning base taxonomy using tree mining.

Figure 6.3 shows four trees after Pre-Phase. A list of labels created in this
traversal is enumerated in Figure 6.4a with the similar labels clusters. Incremen-
tal execution of ExSTax algorithm is demonstrated in Figure 6.4b. There are six
iterations before the algorithm stops, when it is not possible to generate any larger

frequent sub-trees. The sub-tree generated in the last iteration can be considered as
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a. Symbols List with frequency and
Similar clusters (author, writer), (book, ownbook) and (detail, info)

author book birth detail general info isbn name ownbook price publisher title writer
2 3 1 1 1 1 1 5 1 1 3 4 2

b. Symbols representing sub-tree of size 1-6 with frequency greater than threshold and
vertical join lists {tree number, prefix sub-tree, [number, scope (of right most node)]}

author  book detail name publisher title
L[1,2] L0551  2,[3,6] 1,[22] 1,[34] L,[5,5]
2,[1,2]  2,[0,7]  3,[4,6] 1,[44] 2,451 2,[7.7]

3,[3,31  3,,[0,6] 2,[2,2]  3,[6,6] 3,[2.2]
4,[0,4]  4,[34] 2,[5.5] 4,[4,4]
4”[1’1]
* - indicates downwards move and /upwards move in the tree structure

author-name book-author book-detail book-name book-pub book-title detail-pub pub-name
1,1,[2,2] 1,0,[1,2] 2,0,[3,6] 1,0,[2,2] 1,0,[3,4] 1,0,[5,5] 2,3,[4,5] 1,3,[4,4]
2,1,[2,2] 2,0,[1,2] 3,0,[4,6] 1,0,[44] 2,0,[45] 20,7,7] 3,4,[6,6] 2,4,5,5]
4,0,[1,1] 3,0,[3,3] 2,0,[2,2] 3,0,[6,6] 3,0,[2,2]

2,0,[5,5] 4,3,[4,4]

book-author/detail, book-author-name, book-author/name, book-author/pub, book-authorttitle,
book-detail/pub, book-name/pub, book/name/title, book-pub-name, book-pub/title

book-author/detail-pub, book-author-name//name, book-author-name//pub,
book-author-name//title, book-author/name/title, book-author/pub-name, book-author/pub/title,
book-name/pubttitle, book-pub-name//title

book-author-name//namettitle, book-author-name//pub-name,
book-author-name//pub/title, book-author/pub-name//title

book-author-name//pub-name//title
1,01234,[5,5]  2,01245,[7,7]

Figure 6.4: List of frequent sub-trees symbols, size 1 to 6 with 50% support in the
input trees.

the base taxonomy for the given set of hierarchical structures. Figure 6.5 illustrates

the taxonomy structure generated for the scenario.

The six iterations are presented in the six panels of Figure 6.4b. First iteration
takes into account sub-trees of size one. Prefix sub-tree indicates the sub-tree to
which the current node is the right most node. In first iteration the prefix data
structure is empty, since there is no prefix sub-tree. Each sub-tree symbol’s (e.g.
author, book, author-name, book-author/detail) vertical list entry is paired with
other symbols’ vertical list entries. The joining of vertical lists results in a structure
of size two i.e., one sub-tree can only be descendant of the other in this case. The
sub-trees which are present in at least two of the input trees (50% support), are

added to the second list. In vertical list entry, last number in prefix entry denotes
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| book |
I

| author | | publisher || title |

| name | | name |

Figure 6.5: Trusted extracted taxonomy.

the number of the right most node of the prefix sub-tree (Figure 6.4b).

In subsequent iterations, both descendant test (Property 1) and cousin test
(Property 3) are applied to come up with frequent sub-trees. Consider the cre-
ation of mini-taxonomy "book-author/pub" from the second iteration in the example
by joining subtrees of size 2. Let symbol "book-author" list, list A, be joined to
symbol "book-pub" list, list B. List A, entity 1,0,/1,2] is joinable to list B entity
1,0,/3,4]/, since the schema and prefix elements of the two entities are similar. Prop-
erty 1, descendant test, is not true for the two entities but the cousin test is true
i.e., the right most node scopes are not overlapping (Property 3). Similarly for list
A, entity 3,0,/3,3]is joinable to list B entity 3,0,/6,6] and it also passes the Property
3. This supports the 50 percent threshold frequency, and implies that the sub-tree
with symbol "book-author/pub" is a frequent sub-tree of size 3.

Panels 3-5 present the symbols of extracted frequent sub-trees (mini-taxonomies)
of sizes 3 to 5. The last panel of Figure 6.4b gives sub-tree with symbol composed
of six labels. There are two vertical list elements, with the 50% support condition.

The sub-tree (Figure 6.5) is present in input structures 1 and 2 (Figure 6.3).

6.5 Evaluation

The prototype implementation uses Java 5.0. A PC with Intel Xeon, 2.33 GHz
processor and 2 GB RAM, running Windows XP was used. We have selected two
data sets”, BOOKS (synthetic) and COURSES (real) as the input structures for our
experiments.

We examined the semantic quality of generated mini-taxonomies using the preci-
sion measure. Our target was to generate semantically meaningful taxonomic struc-
tures. Therefore, we manually scrutinized the generated tree patterns and computed
the share of semantically applicable sub-trees among all found. With reference to
Figure 4 structure Sy, a sub-tree structure "book[0,5]-name[2,2]/name[4,4]" is con-

sidered to be invalid, since it is semantically meaningless. Based on these consider-

"http://www.lirmm.fr/PORSCHE/TaxonomyLearning/
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Figure 6.6: Precision of ExSTax for eight sets of tree structures from Books domain.

ations we show the precision measure computed from the experiments. Figure 6.6
shows the precision of 8 sets of input structures comprising of 8, 16, 50, 75, 100, 125,
150 and 176 trees taken from BOOKS. The results are computed for three different
tree mining support values, 37, 50 and 75 percent.

In the other experiment performed on the COURSES domain of XML schema, in-
stances, with support value set to 25 percent, we retrieved with precision nearly equal

to 1. The base taxonomy generated in this experiment was Course-Title/Instructor/Room/Time.

Discussion

The experimental results show the precision measure for Books domain to be between
0.65 and 0.8 and support the validity of our idea of mini-taxonomies extraction. The
number of mini-taxonomies generated increased with decrease in the value of the tree
mining support parameter and vice versa. Therefore, we selected the support values
range (37-75), where results could be verified manually. Secondly, it is quite difficult
to estimate the recall measure in the experiments because of the large number of

possible outputs. Devising a system for this purpose is out of the scope of current

Table 6.1: Characteristics of schema trees used in the experiments.

Domain BOOKS | COURSES
Number of Schemas 176 42
Average nodes per schema 8 8
Largest schema size 14 17
Smallest schema size 5) 2
Schema, Tree Depth 3 4
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work. Further, we would tend to research the finding of valid patterns missing from
the generated set, to estimate the recall measure. Another observation made is that
ExSTax algorithm shows exponential scalability with respect to the size of input
tree structures. Since we are concerned with the semantic validity of the output, we

have not taken into account the time complexity of the algorithm.

6.6 Conclusion

We have introduced a novel cross-discipilinary technique based on tree mining, for
ontology taxonomy learning. The core idea behind this work is to demonstrate the
applicability of tree mining techniques for ontology taxonomy extraction in a large
scale scenario. The technique inherently supports the collaborative ontology learning
by holistically exploiting the already available hierarchical structures in the domain.

We have investigated its scalability with respect to the number of schemas. The
experimental results demonstrate that our approach scales to hundreds of schemas.
The linguistic matching of node labels uses tokenisation, abbreviations and syn-
onyms. Our method provides an almost automated solution to the large scale do-
main specific taxonomy learning problem.

In next chapter we evaluate the advantages of the automatically extracted mini-
taxonomies for the discovery of n:m complex mappings in the context of research
described in [33].
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Chapter 7
Complex Match Discovery

Match cardinality aspect in schema matching is categorized into simple element level
matching and complex structural level matching. Simple matching comprises of 1:1,
1:n and n:1 match cardinality, whereas n:m match cardinality is considered to be
complex. Most of the existing approaches and tools give good 1:1 local and global
match cardinality but lack the capabilities for handling the complex cardinality
issue. In this chapter we demonstrate an automatic approach for the creation and
validation of n:m schema mappings. Our technique is applicable to hierarchical
structures like XML Schema. Basic idea is to propose an n:m node mapping between
children (leaf nodes) of two matching non-leaf nodes of two schemas. The similarity
computation of the two non-leaf nodes is based upon the syntactic and linguistic
similarity of node labels supported by similarity among the ancestral paths from
nodes to the root. The n:m mapping proposition is then verified with the help of
mini-taxonomies extracted from a large set of same domain schema trees. The mini-
taxonomies are automatically extracted using frequent sub-tree mining approach:
the higher the frequency, the higher the confidence of reliability!. The verification
algorithm performs a comparison between the mini-taxonomies and the subtrees
rooted at non-leaf nodes, which assures the authenticity of proposed n:m mapping.
We support our approach with the help of quality evaluation experiments. We also

present arguments to support our approach for large scale semantic web usage.

7.1 Related Work

Simple matching with quality has been successfully demonstrated in [3, 43, 74|
by utilising element level and structural level schema knowledge. There has been

very limited work on complex schema mapping. Use of data instance and machine

I'ExSTax - Method for automatic extraction of mini-taxonomies described in chapter 6
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learning techniques for simple and complex schema matching has been shown in
[27, 22| for relational and XML schemas. [100| presents a user-centric approach
using fixed point iteration algorithm similarity flooding (SF) [74] and other linguistic

techniques to calculate complex mappings.

Authors in [22]| demonstrate a semi-automatic tool called iMAP, which discovers
1:1 and 1:n mappings between two relational schemas. The approach utilises machine
learning algorithms on data instances to predict 1:n mapping expressions. It employs
knowledge like past complex matches, domain integrity constraints, and overlap
data. In [50], He et al. describe a mining technique for integrating a large number
of web query interfaces, considered as schemas. The proposed framework holistically
exploits the set of input schemas, thus exploring the contextual information beyond
two schemas. The algorithms DCM and MGC make it feasible to compute the n:m
schema matching. The iMAP and DCM/MGC approaches exploit schemas with low
tree depth (schema considered as hierarchical structures) and show a very limited

use of structural matchers.

Another interesting work regarding XML document transformation [58] presents
comprehensively the 1:1, 1:n and n:1 schema matching between two schemas. The
algorithms used in this work are massively dependent on schema structural infor-
mation. The proposed method worked in two steps. First, preliminary matchings
between leaf nodes of the two schemas are computed using an external domain on-
tology and leaf node similarity. In the second step the contextual aspect of nodes is
computed as path similarity, i.e., similarity between the ancestor nodes of the cur-
rent nodes being matched. In the same application domain, work by Boukottaya and
Vnoirbeek [14] further enhances the contextual aspect of the nodes. The approach
takes into account three levels of context similarity: ancestor, child and leaf. The

two research works help in exploiting the hierarchical structures with larger depth.

Our approach as given in [89], presents a large scale schema integration frame-
work, which uses a top down matching approach. The technique follows the idea
that some level of ancestor similarity is a must for an element down the hierarchy.
Linguistic and tree mining algorithms are used to compute element level matchings.
Likewise, QOM [32] is a robust, time performant method for RDF based schema and
ontology matching. Use of ontologies/mini-ontologies for finding complex matchings
has also been demonstrated in some works. Embley et al. in [33] use manually cre-
ated mini-ontologies for domain specific concepts, to generate n:m correspondences

between two schemas.
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7.2 Complex Matching - Our Approach

In this section we describe our approach toward complex match discovery. We base
our work on the concepts of Hierarchical Structure/Schema as tree, Label Semantics
and Node Scope and scope properties (Ancestor and Right-hand-side node) as given

in section 5.1. Specifically, we use the following scope properties.

Node Scope - Binary Properties for x [X,Y], z,[X,, Y,], and z,.[X,, Y,]:

e Property (Ancestor (z,z,), =, is an ancestor of z): X, <X and Y, >Y.

e Property (RightHandSideNode (z,x,), x, is Right Hand Side Node of x
with Non-Overlapping Scope): X, > Y.

7.2.1 Architecture

The architecture of our approach for complex match discovery is shown in Figure
7.1. The approach is composed of five modules: (i) Pre-Phase, (ii) Similar Terms
Computation and Clustering, (iii) Mini- Tazonomies Generation, (iv) Simple Schema
Matching, and (v) Complex Match Proposition Validation, supported by a repository
which houses oracles and concepts’ mini-taxonomies, schemas and match results for
future reuse.

First, the system is provided a set of XML schema instances. Pre-Phase module
processes the input as trees, calculating the depth-first node number and scope
(Figure 7.4) for each of the nodes in the input schema trees. At the same time,
for each schema tree a listing of nodes is constructed, sorted in depth-first traversal
order. As the trees are being processed, a sorted global list of labels over the whole
set of schemas is created by the Terms Eztraction sub-module.

In Similar Terms Computation and Clustering module, label concepts are com-
puted using linguistic techniques. We tokenise the labels and expand the abbreviated
tokens using an abbreviation oracle. Currently, we utilise a domain specific user de-
fined abbreviation table. Further, we make use of token similarity, supported by an
abbreviation table and a manually defined domain specific synonym table. Label
comparison is based on similar token sets or similar synonym token sets. The ar-
chitecture is flexible enough to employ additional abbreviation or synonym oracles
or arbitrary string matching algorithms. Similar labels are clustered together and
each cluster is represented by a label from the respective cluster, which is the most
frequent label within the set of input schemas.

Mini-Tazonomies Generation module uses a tree mining approach to extract

frequent sub-trees from the set of schema trees. We use frequent pattern growth

95



Input of Large Set
of Hierarchical
Structures

Input of two
schemas

qu—

—d

Pre-Phase

i

Similar Terms Computation and Clustering

{4 {4

Simple Schema Mini-Taxonomies
Matching Generation

4 4

Complex Match Proposition Validation

4

Repository

Schema Node Scope

Calculation Terms Extraction

Thesauri, Abbreviations, Similar Terms,
Mini-Taxonomies, Input Schemas and Match Results

Figure 7.1: Architecture for complex match discovery using automatically generated
mini-taxonomies.

mining algorithm based on research in [104]. During the process all labels within
a cluster of similar labels are logically replaced by the cluster representative label.

This helps in computing the right count of frequency for a label concept [88].

Simple Matching module, generates simple matchings based upon labels’ linguis-
tic similarity and node’s contextual similarity using node scope values. The node
scope criterion is used to evaluate the ancestor similarity factor with good time
performance. We utilise almost the same tree mining technique for matching as de-
scribed in chapter 5 for PORSCHE. Complex match proposition validation (CMPV)
module forms the main core of this research work. We use a novel algorithm to vali-
date the proposed complex matches with the help of automatically generated domain
specific mini-taxonomies. We provide a detailed discussion about it in the following

sections.

The Repository is an indispensable part of the system. It houses oracles: thesauri
and abbreviation lists. It also stores schemas and mappings, and provides persistent

support to the mapping discovery process.
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Algorithm : nodeScope
Data: p,c, V, d
p: parent node list element, c: current node,
V. nodes list, d: node depth
Result: V
1 begin
x « New nodesListElement(c)
x.number «— length(V')
z.parentNode «— p
z.right MostNode «— &
x.depth «— d
Add z to V
if ¢ has no children then
| update(z, z)
10 d—d+1
11 for each child of ¢ do
12 L nodeScope(z, child, V, d)

13 end

© O N o ok WwN

Figure 7.2: Algorithm for schema tree node scope calculation, also computing node
depth.

7.2.2 Simple Match Discovery

In this section we describe the Simple Schema Matching module. Before we move
on, first we give a brief description of Pre-Phase module. The Pre-Phase module
is similar to the Pre-Mapping module of PORSCHE, discussed in chapter 5. The
basic difference lies in the computation of the node depth value for each node in a
schema tree. The depth feature is introduced in the nodeScope algorithm as given
in figure 7.2. Parameter d gives the depth level within the tree during the depth-
first traversal. We utilise the node depth value for adjusting the match confidence
related to ancestor mapping. At the start of the recursive algorithm for node scope
calculation, value of d is 0, reflecting level 0 or root node level. d is incremented at
1.7.2.10, before the recursive call for next level (L.7.2.12)%. Terms Extraction method
executes similar to Label Conceptualisation module of PORSCHE.

Simple Schema Matching module is a customized form of the Node Mapping
module of PORSCHE method. In this case we only match two schemas, looking for
possible mappings based upon the linguistic and contextual (ancestor) similarities.
The method suggests mappings with cardinality 1:1, 1:n, n:1 or n:m. Overall, the
data structures utilised in simple schema matching are similar to the ones discussed

in section 5.2.2.

The proposed n:m complex matchings are then validated with the help of mini-

2Lx.y refers to line y of algorithm in figure x
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Algorithm : SimpleMatch
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Data: Vi, V; Lists of nodes of Schema 1 and 2 respectively

L, Source list V7 node label

Ly Set of labels of candidate nodes in target list V5

Vi Set of candidate nodes in target list V5
xt Target node
« Similarity Confidence
(8 Match Type
begin
for each node xz € V7 do
L, < lab(z)
L,y « similarLabels(L,, V3)
if L,y — 0 then
V, — VT(Lon)
Qtemp < 0.0
a «— 0.0
for each node xt; € V; do
a; «— ancestorMap(z, zt;)
if oy > ayemp then
Qtemp O
a <— Oy
xt — xt;

if (Leaf(x )ALeaf(xt)) then

| 0«11
else
if (—~Leaf(x )N —Leaf(xt)) then
| B — nn
else
if (Leaf(x )\ —Leaf(xt)) then
| G — 1n
else
if (=Leaf(z )\ —Leaf(xt)) then
L L 8 «—nl

end

Figure 7.3: Algorithm for simple matching between two schemas.

taxonomies representing possible concepts. After the validation process, the actual
n:m mapping from a set of elements from source schema to a set of elements in target
schema is created. New set data structures representing the n and m elements and

n:m mapping representation are introduced at this point.

During simple match process, a match for every node (1.7.3.8) from source schema

tree list V

V; of possible mappable target nodes in the target schema is created, producing
the target search space for x. The criterion for the creation of this set of nodes is

node label equivalence or partial equivalence (L.7.3.9-10). V; can have one or several

to target schema tree list V5 is calculated. For each input node z, a set
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(L7.3.11) candidate target nodes. Next step is the ancestor map existence check. The
method returns a value o based on the ancestor node mapping and the structural
proximity of the mapping node to the current node. If the target search space V; has
more than one node, method ancestorMayp is executed for each perspective matching
node (L7.3.15-20). The candidate target node with the highest a value is selected
as the mappable target node.

In ancestorMap method two functions are executed in parallel. Firstly, it checks
for map existence for some ancestor node of current source node and secondly the
proximity of the ancestor node from the current node. Ancestor node check is
performed by utilising the ancestor node scope property, and if a map exists, then the
proximity is calculated and returned as «. To proceed further, another added check
is confirmed that the target schema node to which the source schema ancestor node
is mapped to, is also an ancestor of the candidate target node. This is a variation of
upward cotopy distance discussed in research [68]. The ancestor map checking also
helps us partially to solve the inverted node mapping problem (discussed below).

The technique searches for an ancestor node xa of the current source node z,
which has a mapping to a node ya in the target schema such that ya is an ancestor
node of suggested target node y. The rule discards ancestor nodes which do not
fulfil this criteria. Example 7.1 describes this advantage.

The following formula shows the ancestor map structuaral proximity formula.
a = 1/(ddifs+ddify)

where ddif, is the depth difference between the current source node and the ances-
tor node for which a mapping exists and ddif; is the depth difference between the
candidate target node and the ancestor node in target schema to which the source
ancestor node is mapped to. The maximum value for « is 0.5, i.e., when the source
schema ancestor node is the parent of current source node (ddif;=1) and the tar-

get schema node to which it is mapped to is the parent node of candidate target
node(ddi f;=1).

Example 7.1 (Inverted Node Similarity): Consider the two schema trees
S and S5 in figure 7.4. Top-down depth first matching traversal guides us to match
51]0,5]book <-> S5]0,5|book, S;[1,5]author <-> Sy|1,5]|writer (author is synonym of
writer). Next, we have S1[2,2|name <-> S5[3,3|name with o = 0.33 and following
is the Sy[3,5]address <-> S5[2,5]address. This overcomes the problem when address
and name have a sibling relationship in source schema tree and a parent child rela-

tionship in target schema tree.e

99



Depth

5t [book[0,5]] =========== S, :
author[1,5]| =========== )
%'B_ﬂ, ----------- )
mEa ] 3

-
[ street[4,4]| [ city[5,51 | = | name[3,3]]| [street[4,4]| [ city[5,5] |
T T A ’

Figure 7.4: Input hierarchical structures with partial inverted node scenario.

After selecting the best match for the source node, the method proposes the type
of mapping. By default it is a 1:1 mapping, since we are comparing one node from
source schema to one node in target schema. Our method is more XML schema ori-
ented where leaf nodes denote the real data values. Therefore we propose the type
of mapping biased toward the leaf nodes. We extend the match type proposition

given in section 5.1 with n:m match possibility.

i) 1:1 - one node of source schema corresponds to one node in the target schema,
leaf:leaf or non-leaf:non-leaf.

ii) 1:n - one node in the source schema is equivalent to a composition of n leaves in
the target schema; leaf:non-leaf, where a source leaf node is mapped to a set of n
leaf nodes of the subtree rooted at the non-leaf node in the target schema.

iii) n:1 - n leaves in source schema compositely map to one leaf in the target schema,
non-leaf:leaf, allowing a set of n leaf nodes of the subtree rooted at the non-leaf node
in the source schema, to be mapped to a target leaf.

iv) n:m - n leaves in source schema compositely map to a composition of m leaves
in the target schema; non-leaf:non-leaf, allowing a set of n leaf nodes of the subtree
rooted at the non-leaf node in the source schema, to be mapped to a set of n leaf

nodes, of subtree rooted at the non-leaf node in target schema.

Possible match type selection is handled in simple match algorithm with the help
of parameter  (L3.21-31). The value of /3 is set to 11 for 1:1, 1n for 1:n, nl for n:1
and nn for n:m match. Finally, the map function creates the possible mapping from
source node to target node (L.3.32). The n:m complex match propositions between
non-leaf nodes are further exploited in the complex match proposition validation

module. The algorithm is given in Figure 7.5.
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7.2.3 Mini-Taxonomy Snippets Aspect

Before we move to the complex match proposition validation part, we present another
data structure, Mini-Taxonomy Snippets, which helps in the validation process. In
this section we present briefly our approach for detection of these Mini-Taxonomy
Snippets or ontological concepts, as hierarchical structures, from available domain
specific schema tree structures. A domain concept is considered to be a small tree
structure which we call a Mini-Taxonomy. The idea is similar to research done in
[33]. However, we follow the automatic approach rather than the manual snippet
designing in [33|. The detailed explanation is given in chapter 6 [88|.

The technique has an iterative nature based on incrementally extracting frequent
sub-trees from a given set of trees. The sub-tree frequency in the forest of trees is a
user defined parameter. The algorithm takes as input the list of terms, with similar
terms linked together to form a cluster (each cluster can have one or more terms).
First task performed by the algorithm is to compute the frequency of each term in
the forest of trees. Next, within each cluster, the term with the highest frequency
in the forest of trees is taken as the symbol representing the cluster. The frequency
of the cluster symbol is computed by adding frequencies of all the terms in the
cluster. From here on the algorithm executes similar to frequent growing sub-tree
mining algorithm given in [104]. The similar label cluster symbols are treated as the
starting labels for the data structure showing frequent sub-tree patterns. After the
process is complete, we have a list of sets of mini-taxonomies. Each list represents
a set of mini-taxonomies of same size. Next, we replicate this list of sets of mini-
taxonomies, by replacing the cluster level similar labels in the list. This produces
all possible mini-taxonomies which can be considered as concept representation,

frequently utilised by domain users.

7.2.4 Complex Match Proposition Validation

The basic idea behind the CMPV (Complex Match Proposition Validation) is to
validate the n:m match propositions created in the simple matching module. Our
approach tries to utilise small conceptual taxonomies already generated from a large
number of schemas within a specific domain, as detailed above. For simplicity, we
structure these mini-taxonomies as individual XML schema instances and generate
a data structure MiniTax for them, similar to the input source and target schema,
using the same nodeScope algorithm given in Figure 7.2.

Algorithm ComplexMatchV alidation takes as input Vi, V5 (source and target

schema node lists respectively) and MiniTax (List of lists of mini-taxonomy nodes).
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Algorithm : ComplexMatchValidation
Data: Vi, Vo, MiniTax
Vi, Vo : Lists of nodes of schema 1 (source) and 2(target) respectively
MiniTax : List of lists of mini-taxonomies
Each mini-tazonomy list, mT,Vi and Va sorted on depth-first order

1 sLeaf : Set of labels of leaf nodes of non-leaf node of V1

2 tLeaf : Set of labels of leaf nodes of non-leaf node of Vs

3 mTsLeaf, mTtLeaf : Sets of labels of leaf nodes of mini-tazonomy
4 F, F; : Boolean flags

5 begin

6 for each node x € V7 do

7 F, « false

8 F, « false

9 if (—Leaf(x) N exists(map(x,xt,B,c)) A B= nn) then
10 // xt is non-leaf node in V5

11 sLeaf « leafNodesLabels(x)

12 tLeaf < leafNodesLabels(xt)

13 L, « lab(x)

14 L, «— lab(xt)

15 for each mT € MiniTax do

16 Liwrroot < lab(mTroot) // mTroot is root node of mT
17 if (-Fs A Lyrroot = Ly) then

18 mTsLeaf « leafNodesLabels( Ly, rroot)

19 if sLeaf C mTsLeaf then
20 L Fy «— true
21 if (-F; A Liy7root = Lat) then
22 mTtLeaf < leafNodesLabels(Ly,1roo0t)
23 if tLeaf C mTtLeaf then
24 L F}; < true
25 if F;, A F; then
26 | break
27 if F;, A F; then
28 [« nn
29 map(leafNodes(z),leafNodes(zt),5)
30 end

Figure 7.5: Algorithm for validation of complex matching between two schemas.

The algorithm traverses each node x of source schema, V;, with a n:m map type
(marked as nn) to xt node of target schema V5 (L7.5.6,9). The objective of the
algorithm is to certify that the leaf nodes of the sub-tree rooted at such a node z in
the source schema can form an n:m mapping with the leaf nodes of sub-tree rooted at
node zt in the target schema. The algorithm extracts leaf node labels from sub-tree
rooted at x into a temporary set data structure sLeaf and similarly populates a data
structure tLea f for xt (L7.5.11,12). Next, the algorithm traverses the MiniTax data
structure (L7.5.15) for mini-taxonomies with root node label similar to node labels

of x and xt (1.7.5.17,21). Further, the leaf node labels of these mini-taxonomies are

102



extracted into temporary set data structures mT'sLeaf (root label similar to = label)
and mT'tLeaf (root label similar to xt label) at 1.7.5.18,22. Finally, the validation
check is executed, i.e., checking if sLeaf is a subset of mT'sLeaf and tLeaf is a
subset of mTtLeaf. If such mini-taxonomies are found in MiniT ax, it certifies that
the concepts at x and xt are similar. Their respective leaf nodes can form a n:m
mapping (L5.27-29), since the mini-taxonomies have been frequently used in the

domain, which utilises the collective intelligence over a specific domain.

7.3 A Complex Match Validation Example

S,

book
[libinfo] [ pub | [writer ]

I~

| month | [ year | [ name |address]| Iauthorl [ mm | | yy |

[y |

Figure 7.6: Two schema (trees) S; and Sy used in complex match discovery.

Figure 7.6 shows two schema trees from the books domain. A list of correspon-
dences is shown in Figure 7.7, after the execution of simple matching (Figure 7.3).
The simple match algorithm discovers one to one matches between two correspond-
ing elements of the two schemas. In parallel, it also proposes any possible complex
match, according to the leaf/non-leaf status of the elements participating in the
mapping. The possible complex match propositions are shown in brackets.

The scenario presents one n:1 and four n:m complex match situations. The n:1
match given by Sj.author[12,13]<—>S;.writer[10,10] proposes that all leaf nodes
of Sj.author[12,13] compositely correspond to Ss.writer[10,10]. This establishes
the fact that the data at element Sj.name[13,13] matches data represented by
Sy.writer[10,10].

The analysis of the four complex matches shows that two propositions, S;.books|[0,15]<—
>55.book|0,12] and S;.library[1,7]<—>S5.1ib-info[1,5], have large sub-trees rooted at
non-leaf elements, which presents a collection of concepts rather than a single con-
cept. This fact is verified by scanning the scope of the non-leaf nodes. The possibility
of such large sub-trees to be frequent in the domain is very rare.

The scrutiny of other two complex match propositions (S5.date[3,6]<—>S;.dat|2,4],
Si.publisher[9,11]<—>S5.pub|6,9]) shows that small sub-trees reside at the elements
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S1 S2
books [0,15] 11 (n:m) book [0,12]
library [1,7] 1:1 (n:m) lib-info [1,5]
lib-id [2,2] ——_| 1:1 (n:m) dat [2.,4]
date [3,6] 1 mm [3,3]
month [4,4] \1\ vy [4,4]
day [5,5] ——— lib-id [5,5]
year [6,6] pub [6,9]
category [7,7] 1:1 (n:m) / nam [7,7]
detail [8,15] 1:1 — street [8,8]
publisher [9,11] // city [9.9]
name [10,10] | 1:1 (n:1) — writer [10,10]
etiivers (11017 / Afbir T
author [12,13] — _ | title [12,12]
name [13,13] 1:1
price [14,14]
title [15,15] — |

Figure 7.7: Element level mappings between schemas S; and Sy after execution of
simple match algorithm; complex match propositions are shown in brackets.

of interest.

= s B ":
E [ date | | dat | 4 1 |publishe] [ pub | -
- [ - o
[ month |/ [ year | \ [yy | | name | | nam | Icityl
| day | laddress| [street]
(a) (b)

Figure 7.8: Mini-taxonomies extracted from large input of books domain schemas,
using ExSTax method for complex match validation.

The validation of these proposed complex matchings is done by the Complex-
MatchValidation algorithm given in Figure 7.5. For this purpose the set of already ac-
quired mini-taxonomies (using ExSTax method) are considered. There are two mini-
taxonomies, shown in Figure 7.8.(a) presents the mini-taxonomy representing the
date concept. It can be represented by date, dat or some other similar string, as the
root node for the concept. The leaf node collection of month, day, year, mm, yy rep-
resent attributes describing the concept. Within one instance of the mini-taxonomy,
the presnece of synonymous leaf nodes is not possible e.g., if month and mm are syn-
onymous then the two nodes will not exist together in a mini-taxonomy with root
node date or dat. (b) shows mini-taxonomies representing publisher information
regarding name and address.

The execution of the validation algorithm occurs for each of the four n:m proposi-
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S

S,

books [0,15]

book [0,12]

library [1,7]
lib-id [2,2]

lib-info [1,5]
dat [2,4]

date [3,6]

day [5,5]
year [6,6]

detail [8,15]

price [14,14]
title [15,15]

month [4,4]

category [7,7] ~

publisher [9,11] —|
name [10,10] — |
address [11,11]
author [12,13]
name [13,13] _---

1
1
| ——
1
1
1

1
L
_I'

/

Figure 7.9: Mappings between schemas S; and S5 after the execution of the complex

match valdation algorithm.

tions. In case of S;.books|0,15]<—>S5.book|0,12] and S, library[1,7]<—>Ss.writer|[1,5],
no mini-taxonomy is found with root element similar to books or book and library or
lib-info. As a result the two propositions are discarded and only the 1:1 simple match

is considered. In the other two cases the algorithm finds frequent mini-taxonomies
in the form of date-month/day/year, dat-mm/yy, publisher-name/address and pub-
nam /street/city?. The algorithm substantially authenticates the propositions and
creates two more complex mappings as S;.(month[4,4],day|[5,5], year|6,6]) <—>Ss.(mm
[3,3],yv[4,4]) and S;.(name[10,10],address[11,11]) <—>S5.(nam|7,7], street|[8,8],city[9,9]).

The final mappings are shown in Figure 7.9

Table 7.1: Characteristics of domain schema trees used in the mini-taxonomy com-

putation experiments.

:" mm [3,3]
----- 1 yy [4.4]
[ lib-id [5,5]
| pub [6,9]

1" nam [7,7]

1 street [8,8]
=<7 city [9,9]
L— writer [10,10]

isbn [11,11]
| title [12,12]

Domain BOOKS1 | BOOK |JOBS | AUTO AIR REAL | COURSES
SEARCH TRAVEL | ESTATE

Type Synthetic Real Real Real Real Real Real
Number of Schemas 176 19 20 14 20 14 42
Average nodes per schema 8 6 5 5 14 9 8
Largest schema size 14 12 8 10 21 20 17
Smallest schema size 5 3 4 3 6 4 2
Schema Tree Depth 3 2 2 2 2 2 4

n:m match propositions 2 2 1 1 3 2 2

3-and / delimeters denote downward and upward traversal within the tree, respectively
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7.4 FEvaluation

The prototype implementation uses Java 5.0. A PC with Intel Xeon, 2.33 GHz
processor and 2 GB RAM, running Windows XP was used. We selected several data
sets, BOOKS1, BOOKSEARCH *, JOBS, AUTO, AIRTRAVEL, REALESTATE
and COURSES as the input for our experiments. Characteristics of these sets of
schemas in given in Tab. 7.1.

A manual analysis of the real domain schemas showed that only very small
number of sets of elements (sets of leaf nodes representing some concept) could
participate in a complex mapping. Since such sets are rare, finding them as frequent
mini-taxonomies is even more scarce. Following is a possible list of concepts for

which n:m mappings may exist in the above schemas.
(i) date/depart/return : month,day,year <—> mm,yy <—> month,day,time

(ii) address/location : name,address <—> nam,street,city <—> streetl, street2,city

<—> addressl,address2 <—> AreaCode,Country <—> city,state

(iii) telephone: tel res;tel off <—> morn tel, even telnight tel <—> tel mobile,
tel fix

(iv) name : firstName,lastName <—> f name,mi,l name

(v) passengers : adult,child,infant <—> adult,senior,child
<—> adult_12-65,adult 65,child 2-4, child 5-12,infant

(vi) return/depart : month,day <—> month,day,year,time

(vii) schedule : days,time,room <—> DayTime,room <—>Times, Place <—> Time-

Begin, TimeEnd,Room,Building <—> time,building
(viii) car model : vfrom,vto <—> fyear,tyear

To verify our CMPV method, we added some of these sets of elements to several
real schemas, to extract them as mini-taxonomies. Our implementation showed the

expected results, since the overall test scenarios have been synthetically generated.

Discussion
The idea of using mini-taxonomies works well, if their leaf nodes can represent some
real complex matches with a contextual map at ancestor level. And the ancestor

level mapping is highly dependent on label matching. Working with real world

*http:/ /metaquerier.cs.uiuc.edu/repository
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schemas showed (i) the possibility of a complex match is very limited, and (ii) the
label matching framework should be exceptionally good.

Considering the first issue of complex match possibility, the manual scrutiny of
above mentioned schemas showed a very small number of n:m matches. For example,
in 20 schemas of ATRTRAV EL domain (with average of nodes per schema equal
to 14), there were three concepts, passengers, return and depart, which could
be considered for a complex match. But the second issue of good label matching
framework deficiency gives poor quality match results. For example, there were 13
different labels for passenger concept in the domain, i.e., How many travelers are
going, Number of passengers, NumAdults, adultsChildren, persons, adultnoChildno,
passengers, number of travelers, how many people are going, num-pax, travelers,
who is going on this trip, passengers-adults-num. Computing a high frequency of
passengers concept (mini-taxonomies) existence was infeasible because of the multi-
word, cryptic labels also including homonyms.

Our idea has some similarity to Embley et al. [33] work, which uses manually
created concept ontology snippets for complex match discovery. Our approach tries
to show that matching can be done automatically in a scenario using a large number
of domain schemas. Secondly using the ancestor level contextual map, the simple
match results overcome the inverted parent-child match problem. This makes the
system more robust and dependable. Although the approach is similar to upward
cotopy distance measure, it is more flexible in execution. We do a top-down traversal
during the match process, i.e. parents are matched before children. Therefore, the
nearest ancestor with an adequate match in the target schema is enough to verify

the context.

7.5 Conclusion

In this chapter, we have presented an automatic approach for discovering a com-
plex match. It is based on a tree mining technique supporting large size schema
matching. It extends the tree mining data structure proposed in [104| and exploites
ancestor scope properties (integer logical operations) on schema nodes to enable
fast calculation of contextual (hierarchical) similarity between them. Its originality
lies in the use of mini-taxonomies in complex match discovery. Mini-taxonomies
are frequent subtrees within this forest of schema trees. Furthermore, our approach
is implemented as a prototype and validated by experiments using different real
schemas.

Firstly, the method computes simple element level matchings between two schemas.
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The algorithm linguistically matches node labels and uses ancestor level match exis-
tence (in ontology matching called upward cotopy distance) for this purpose. At this
point, the matches have 1:1 cardinality, but our method also proposes the possible
complex matches intrinsically. Our approach is based on the leaf or non-leaf status
of the node, putting forward the match proposition that when a non-leaf node is
matched to a non-leaf node, there is the probability of an n:m match between the
leaf nodes of the two non-leaf nodes. The algorithm CMPYV certifies this proposition,
indirectly utilising the collective intelligence of the domain users. This is achieved
by using mini-taxonomy snippets, extracted from a large number of input schemas
developed by users and used over the specific domain.

The work presented in this chapter has lots of prospective applications. Our
approach can provide an automatic matching environment, supported by the col-
lective intelligence of the domain users. In the future, we plan to extend the label
level matching techniques. We intend to utilize state of the art lexical matchers and
dictionaries. Secondly, we will be extending the idea of evolving schema matchings
in the large scale scenario. Finally, our aim is to fully incorporate our technique
for web based interface form (containing hierarchical nested fields) matching and
collaboration among different metadata based virtual social environments.

Next chapter summarizes this dissertation and provides the insights for further

extending our techniques and their applications.
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Chapter 8

Conclusion and Future Research

Perspectives

This is the concluding chapter of our dissertation presenting three aspects of our
research work. Firstly, we give a summary of our contributions in the large scale
schema matching and integration scenario. Secondly, we enumerate the limitations
and related issues not covered by our proposed systems. Finally, we conclude by
highlighting the future research directions in the field of schema matching and inte-

gration.

8.1 Main Contributions

In this section, we give a summary of our contributions in the field of large scale

schema matching and integration.

8.1.1 State of the Art

In this thesis we have presented a detailed account of the state of the art in schema
matching and integration from the large scale perspective. Chapter 3 gave the
reasons why schema matching is a must module for any data intensive application.
The problem’s multi-dimensional aspects have been highlighted in detail as the basic
schema matching functions, the related research domains like schema integration,
and the application domain of this research. We also described the possible match
strategies, using cross disciplinary techniques like mining and clustering, to handle
the large scale scenario. Further, a discussion on methods for enhancing the match
results is given in chapter 3. Finally, an analysis of available tools is provided,

with respect to a simple two schema match and a large set of schemas integration
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scenarios.

8.1.2 Desiderata for Schema Mediation

After analysing the state of the art in schema matching and integration, we have
presented the desiderata for large scale schema matching and integration in chapter
4. We have mentioned the different aspects of schema matching and integration in
a large scale scenario. The quality of mappings, integrity of the integrated schema,
related measures and the time performance requirements have been described in the
chapter. The match cardinality issues in the schema integration scenario are also
highlighted. The chapter concludes by giving a brief outlook on the viability of

mining and graphical user interface techniques for the large scale match scenarios.

8.1.3 Performance Oriented Schema Mediation

In chapter 5, we presented a new robust automatic method which discovers seman-
tic schema matches in a large set of XML schema instances, incrementally creates
an integrated schema encompassing all schema trees, and defines mappings from
the contributing schemas to the integrated schema. Our approach implements the
main desiderata for large scale schema matching and integration as described in
chapter 4. The method, PORSCHE (Performance ORiented SCHEma mediation),
utilizes a holistic approach which first clusters the nodes based on linguistic label
similarity. Then it applies a tree mining technique using node ranks calculated
during depth-first traversal. This minimizes the target node search space and im-
proves performance, which makes the technique suitable for large scale data sharing.
This shows the applicability of clustering and tree mining aspect in matching as pro-
posed in chapter 3, thus giving a novel dimension for handling the large scale schema

matching problem.

8.1.4 Framework for Complex Matching

Complex schema matching is within itself a complete research topic. In chapter 7 we
have presented an automatic framework for discovering complex matches between
two schemas. The technique utilizes an extended version of PORSCHE method, to
discover possible complex matches. The approach first proposes the possibility and
then verifies the propositions using already available hierarchical structures called
mini-taxonomies. The mini-taxonomies are concept representation within a certain

knowledge domain.
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8.1.5 Mini-Taxonomies and Domain Ontology Discovery

We used growing pattern tree mining for the automatic extraction of mini-taxonomies
used in a complex match framework. In chapter 6, we have demonstrated an au-
tomatic approach for emergent semantics modeling of ontologies. We followed the
collaborative ontology construction method without the direct interaction of domain
users, engineers or developers. A very important characteristic of an ontology is its
hierarchical structure of concepts. We considered large sets of domain specific hi-
erarchical structures as trees and applied frequent sub-tree mining for extracting
common hierarchical patterns. These sub-tree patterns intuitively modeled the ba-
sic domain concepts. Further extending the technique helped us generate the basic

domain ontology taxonomy.

8.2 Remaining Issues

Although we tried to address the large scale schema matching and integration prob-
lem to the maximum extent, but still there are limitations, as in any type of research.
In this section we summarize the limitations and the issues not handled by our pro-

posed systems but are related to schema matching.

8.2.1 The Limitations

In broad, our approach handles schemas represented as trees, and we have imple-
mented only the XML schema instance wrapper to verify our approach. For a proper
generic implementation, we need to develop other conversion wrapper methods i.e.,
for relational (supported by JDBC or ODBC), object oriented databases, OWL
ontologies or XDR schemas. Secondly, we have only used some specific linguistic
features of tokenisation and synonym matching, although the framework is flexible
enough to benefit from other string matching functions like n-gram and edit distance

for better results.

Another limitation of our system is that the main PORSCHE framework does not
incorporate the complex matching algorithm for integration and mediation purposes.
This requires more intelligent software to select automatically between a complex
map and simple matches, in a hybrid framework for the integration and mediation

of a large number of schemas.
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8.2.2 Open Issues

One of the main related problems is the maintenance of mappings during schema
evolution. Schema evolution can either be a change in the existing schema or an
addition/ removal of a schema in the input set of schemas. Firstly, schema evolution
can affect the integrity of the mediated schema, and, further the mappings need to
be upgraded. Another related problem in schema evolution and maintenance is data
model dependency. Overall, this is a very complex problem, which is inherently a
complete field of research in computer science.

In large scale matching, tools are guided by two basic parameters, match quality
and time performance. Therefore, implementations in this field need to self-tune
to provide a balance between the two aspects. Another related research problem
is the development of correctness/completeness metrics and benchmark tools for
evaluating schema matching and integration systems.

Our work highlights the trade off between time performance and map quality. It
lacks the discussion between time performance and the map complexity. Although
it can be deduced that one can have better time performance if simple mappings
are considered. The relation between mapping complexity and overall quality of
mappings is another dimension which requires more research work, depending upon

the domain of application.

8.3 Future Directions

We conclude our discussion by enumerating some explicit future research concerns

in the perspective of our research detailed in the dissertation.

e Extending PORSCHE framework with more linguistic/lexical matchers, along
with research technique for complex match discovery for large scale schema

integration purposes.
e Large scale schema matching and integration as web service.

e Large scale schema matching and integration in schema based P2P database

systems.

e Application of our matching research in domain specific large scale social net-

work environments.

e Large scale schema matching and integration using parallel computing tech-

niques.
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e Techniques for visualization of mappings in multi-schema (more than 2) inte-

gration.

e Multi-user graphical user interface to handle large scale semi-automatic schema

matching and integration.

e Domain specific ontology extraction from a large set of input schemas (repre-
senting different data models) and their instances in the same knowledge do-
main using mining techniques. And, learning all aspects of domain ontology,
comprising of term extraction, synonym and translation detection, concept for-

mulation, concept hierarchies, relations, rule derivation and axiomatization.
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