K. Adalberth, Energy use during the life cycle of single-unit dwellings: Examples, Building and Environment, vol.32, issue.4, pp.321-329, 1997.
DOI : 10.1016/S0360-1323(96)00069-8

K. Adalberth, Energy use in four multi-family houses during their life cycle, International Journal of Low Energy and Sustainable Buildings, vol.1, 2000.

F. Allard, C. Inard, and A. Roldan, Caractérisation théorique et expérimentale du comportement thermique d'une cellule d'habitation perturbée par des rayonnements de courtes et grandes longueurs d'onde, CNRS PIRSEM, 1985.

E. Amy-de-la-breteque, Etude du comportement thermique de modules photovoltaïques en vue de la prédiction de leur production électrique sur site, Thèse de doctorat, 2006.

V. Badescu, Simple and accurate model for the ground heat exchanger of a passive house, Renewable Energy, vol.32, issue.5, pp.845-855, 2007.
DOI : 10.1016/j.renene.2006.03.004

V. Badescu, B. Et, and . Sicre, Renewable energy for passive house heating: II. Model, Energy and Buildings, vol.352, issue.11, pp.1085-1096, 2003.

M. Bojic, N. Trifunovic, G. Papadakis, and S. Kyritsis, Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building, Energy, vol.22, issue.12, pp.1151-1158, 1997.
DOI : 10.1016/S0360-5442(97)00055-8

T. Boulard, E. Razafinjohany, and A. Baille, Heat and water vapour transfer in a greenhouse with an underground heat storage system part I. Experimental results, Agricultural and Forest Meteorology, vol.45, issue.3-4, pp.175-184, 1989.
DOI : 10.1016/0168-1923(89)90042-7

T. Boulard, E. Razafinjohany, and A. Baille, Heat and water vapour transfer in a greenhouse with an underground heat storage system part II. Model, Agricultural and Forest Meteorology, vol.45, issue.3-4, pp.185-194, 1989.
DOI : 10.1016/0168-1923(89)90043-9

P. Bourdoukan, Etude numérique et expérimentale destinée à l'exploitation des techniques de rafraîchissement par dessiccation avec régénération par énergie solaire, Thèse de doctorat, 2008.

I. Bryn, P. A. Et, and . Schiefloe, Atrium models for the analysis of thermal comfort and energy use. A report of task 12 Building Energy Analysis and Design Tools for Solar Applications, 1996.

R. Carrié, R. Jobert, M. Fournier, and H. V. Elslande, Perméabilité à l'air de l'enveloppe des bâtiments. Généralités et sensibilisation, CETE de Lyon, 2006.

F. Chlela, Développement d'une méthodologie de conception de bâtiments à basse consommation d'énergie, Thèse de doctorat, 2008.

F. Chlela, A. Husaunndee, C. Inard, and P. Riederer, Numerical Evaluation of Earth to Air Heat Exchangers and Heat Recovery Ventilation Systems, International Journal of Ventilation, vol.6, issue.1, 2007.
DOI : 10.1080/14733315.2007.11683762

URL : https://hal.archives-ouvertes.fr/hal-00312187

D. Chuard, Solar distribution computing program. IEA Task 12 Project A 3, 1992.

J. A. Clarke, The ESP system: towards a neuw generation of building energy analysis program. Dans les actes de: Building simulation, 1985.

C. Mendonça and K. , Modélisation thermo-hydro-aéraulique des locaux climatisés selon l approche zonale (prise en compte des phénomènes de sorption d humidité) Thèse de doctorat, 2004.

D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, Contrasting the capabilities of building energy performance simulation programs, Building and Environment, vol.43, issue.4, pp.661-673, 2007.
DOI : 10.1016/j.buildenv.2006.10.027

T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Transactions on Mathematical Software, vol.30, issue.2, pp.165-195, 2004.
DOI : 10.1145/992200.992205

M. De-paepe, A. Et, and . Janssens, Thermo-hydraulic design of earth-air heat exchangers, Energy and Buildings, vol.35, issue.4, pp.389-397, 2003.
DOI : 10.1016/S0378-7788(02)00113-5

B. Eckel, Thinking in Java, 2002.

W. Feist, Passive House Standard ? A Proven Energy Saver, Passivhaus Institut, 2006.

D. Feldman, D. Banu, D. Hawes, and E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard, Solar Energy Materials, vol.22, issue.2-3, pp.231-242, 1991.
DOI : 10.1016/0165-1633(91)90021-C

C. Flory-celini, Modélisation et positionnement de solutions bioclimatiques dans le bâtiment résidentiel existant. thèse de doctorat, 2008.

C. Gauthier, M. Lacroix, and H. Bernier, Numerical simulation of soil heat exchanger-storage systems for greenhouses, Solar Energy, vol.60, issue.6, pp.333-346, 1997.
DOI : 10.1016/S0038-092X(97)00022-4

M. K. Ghosal, G. N. Et, and . Tiwari, Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse, Energy Conversion and Management, vol.47, issue.13-14, pp.13-14, 2006.
DOI : 10.1016/j.enconman.2005.10.001

J. J. Giardina, Evaluation of ground coupled heat pumps for the state of wisconsin. Masters of science, p.7799, 1995.

V. Gnielinski, Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen, Forsch. Ing.-Wes, issue.1, pp.41-49, 1975.

D. W. Hawes, D. Banu, and D. Feldman, Latent heat storage in concrete. II, Solar Energy Materials, vol.21, issue.1, pp.61-80, 1990.
DOI : 10.1016/0165-1633(90)90043-Z

. Hensen, Modelling coupled heat and air flow: ping-pong Vs onions. Dans les actes de: 16th AIVC conference, 1995.

A. Hoh, T. Haase, T. Tschirner, and D. Müller, A combined thermo-hydraulic approach to simulation of active building components applying Modelica, les actes de: the 4th International Modelica Conference, 2005.

P. Hollmuller, Analytical characterisation of amplitude-dampening and phase-shifting in air/soil heat-exchangers, Final report Agence Internationale de l'Energie PCM (Phase Change Materials), state of art. ECBCS -Annex 44, subtask A: responsive building elements, Agence Internationalle de l'énergie, pp.4303-4317, 2002.
DOI : 10.1016/S0017-9310(03)00199-6

A. Joelsson and L. Gustavsson, A Life Cycle Energy Perspective on the Passive House Concept, The First International Conference on Building Energy and Environment, 2008.

R. Judkoff, J. Et, and . Neymark, International Energy Agency building energy simulation test (BESTEST) and diagnostic method, 1995.
DOI : 10.2172/90674

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.9153

W. Keilholz, P. Et, S. Sette-journée-thématique, and L. Rochelle, Les évolutions de TRNSYS -La version 16, 2005.

R. Kumar, S. Ramesh, and S. C. Kaushik, Performance evaluation and energy conservation potential of earth???air???tunnel system coupled with non-air-conditioned building, Building and Environment, vol.38, issue.6, pp.807-813, 2003.
DOI : 10.1016/S0360-1323(03)00024-6

F. Kuznik, J. Virgone, and J. Roux, Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation, Energy and Buildings, vol.40, issue.2, pp.148-156, 2008.
DOI : 10.1016/j.enbuild.2007.01.022

K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang et al., Experimental study of under-floor electric heating system with shape-stabilized PCM plates, Energy and Buildings, vol.37, issue.3, pp.215-220, 2005.
DOI : 10.1016/j.enbuild.2004.06.017

C. Maalouf, Etude du potentiel de rafra chissement d un sytème évaporatif à désorption avec régénération solaire, Thèse de doctorat, 2006.

W. H. Mcadams, Heat Transmission, 1954.

K. J. Mccartney, J. F. Et, and . Nicol, Developing an adaptive control algorithm for Europe, Energy and Buildings, vol.34, issue.6, pp.623-635, 2002.
DOI : 10.1016/S0378-7788(02)00013-0

G. Mihalakakou, M. Santamouris, and D. Asimakopoulos, Modelling the thermal performance of earth-to-air heat exchangers, Solar Energy, vol.53, issue.3, pp.301-305, 1994.
DOI : 10.1016/0038-092X(94)90636-X

L. Mora, Prédiction des performances thermo-aérauliques des bâtiments par association de modèles de différents niveaux de finesse au sein d un environnement orienté objet, Thèse de doctorat, 0196.

M. Musy, Génération automatique de modèles zonaux pour l étude du comportement thermoaéraulique des bâtiments, Thèse de doctorat, 1999.

J. Nataf, A direct translator from neutral model format to the SPARK simulation environment, Energy and Buildings, vol.23, issue.2, pp.131-139, 1995.
DOI : 10.1016/0378-7788(95)00938-8

J. Neymark, R. Et, and . Judkoff, International Energy Agency building energy simulation test and diagnostic method for heating, ventilating, and air-conditioning equipment models, HVAC BESTEST, 2002.
DOI : 10.2172/15000340

URL : http://www.osti.gov/scitech/servlets/purl/15000340

J. Noël, J. Roux, and J. Virgone, Présentation et perspectives du logiciel Codyba. Dans les actes de: Journée thématique SFT-IBPSA, mars, 2005.

O. Fanger, P. Et, and J. Toftum, Extension of the PMV model to non-air-conditioned buildings in warm climates, Energy and Buildings, vol.34, issue.6, pp.533-536, 2002.
DOI : 10.1016/S0378-7788(02)00003-8

B. A. Peavy, A note on response factors and conduction transfer functions, ASHRAE Transactions, vol.84, 1978.

B. Peuportier, Le projet européen REGENER Analyse du cycle de vie des bâtiments. Ecole des mines de Paris, 1998.

B. Peuportier, Life cycle assessment applied to the comparative evaluation of single family houses in the French context, Energy and Buildings, vol.33, issue.5, pp.443-450, 2001.
DOI : 10.1016/S0378-7788(00)00101-8

B. Peuportier, Eco-conception des bâtiments: bâtir en préservant l'environnement. Paris, les Presses de l'Ecole des mines, 2003.

J. Roux, Proposition de modèles simplifiés pour l'étude du comportement thermique des bâtiments, Thèse de doctorat. Institut National des Sciences Appliquées de Lyon, p.201, 1984.

P. Sahlin, IDA solver, a tool for building and energy systems simulation. Dans les actes de: Building simulation, 20-22 aout, 1991.

P. Sahlin, Modelling and Simulation Methods for Modular Continuous Systems in Buildings. Department of Building Sciences, Royal Institute of Technology, S-100 44, p.187, 1996.

T. Salomon, R. Mikolasek, and B. Peuportier, Outil de simulation thermique du bâtiment, COMFIE. Dans les actes de: Journée thématique SFT-IBPSA, mars TRNSYS 16 user's manuel, 2004.

L. Serres, Etude de l'impact d'une perturbation thermique locale de type tache solaire. Influence sur le confort thermique, Thèse de doctorat. Institut National des Sciences Appliquées de Toulouse, 1997.

L. Serres, A. Trombe, and J. H. Conilh, Study of coupled energy saving systems sensitivity factor analysis, Building and Environment, vol.32, issue.2, pp.137-148, 1997.
DOI : 10.1016/S0360-1323(96)00039-X

URL : https://hal.archives-ouvertes.fr/hal-00811912

T. Soontornchainacksaeng, Etude expérimentale et théorique du comportement thermique d'un échangeur air-sol. Application à l'habitat individuel Institut National des Sciences Appliquées de ToulouseEfficient solution strategies for building energy system simulation, Thèse de doctorat, pp.309-317, 1993.

E. F. Sowell, M. A. Et, and . Moshier, Application of the SPARK Kernel. Dans les actes de: Building simulation, Eindoven, International Building Performance Simulation Association, 2003.

E. F. Sowell, M. A. Moshier, P. Haves, and D. Curtil, Graph-Theoretic Methods in Simulation Using SPARK, High Performance Computing Symposium of the Advanced Simulation Technologies Conference, 2004.

L. Stephan, P. Tittelein, E. Wurtz, and B. Souyri, Achieving thermal comfort using natural ventilation ? Effect of internal finishing. Dans les actes de: The 29th AIVC Conference on advanced building ventilation and environmental technology for addressing climate change issues, pp.14-16, 2008.

P. A. Strachan, G. Kokogiannakis, and I. A. Macdonald, History and development of validation with the ESP-r simulation program, Building and Environment, vol.43, issue.4, pp.601-609, 2008.
DOI : 10.1016/j.buildenv.2006.06.025

S. Thiers, B. Et, and . Peuportier, Thermal and environmental assessment of a passive building equipped with an earth-to-air heat exchanger in France, Solar Energy, vol.82, issue.9, pp.820-831, 2008.
DOI : 10.1016/j.solener.2008.02.014

URL : https://hal.archives-ouvertes.fr/hal-00877106

C. Thormark, A low energy building in a life cycle???its embodied energy, energy need for operation and recycling potential, Building and Environment, vol.37, issue.4, pp.429-435, 2002.
DOI : 10.1016/S0360-1323(01)00033-6

P. Tittelein, E. Wurtz, and G. Achard, Simulation numérique de l'interaction de systèmes énergétiques du bâtiment à l'aide d'une plateforme de simulation basée sur le solveur SPARK, les actes de: 18° Congrès Français de Mécanique (CFM2007), p.815897, 2007.

P. Tittelein, E. Wurtz, and G. Achard, Simspark platform evolution for low-energy building simulation, International Scientific Journal of Alternative Energy and Ecology, vol.6, pp.25-29, 2008.

P. Tittelein, E. Wurtz, G. Achard, and L. Stephan, Distribution of beam solar radiation in buildings. Effect on heating demand, The first international Conference On Building Energy and Environment, 2008.

G. N. Tiwari, M. A. Akhtar, A. Shukla, and M. E. Khan, Annual thermal performance of greenhouse with an earth???air heat exchanger: An experimental validation, Renewable Energy, vol.31, issue.15, pp.2432-2446, 2006.
DOI : 10.1016/j.renene.2005.11.006

A. Trombe, L. Serres, and M. Moisson, Solar radiation modelling in a complex enclosure, Solar Energy, vol.6746, issue.2, pp.297-307975, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00811917

V. V. Tyagi, D. Et, and . Buddhi, PCM thermal storage in buildings: A state of art, Renewable and Sustainable Energy Reviews, vol.11, issue.6, pp.1146-1166, 2007.
DOI : 10.1016/j.rser.2005.10.002

A. Tzaferis, D. Liparakis, M. Santamouris, and A. Argiriou, Analysis of the accuracy and sensitivity of eight models to predict the performance of earth-to-air heat exchangers, Energy and Buildings, vol.18, issue.1, pp.35-43, 1992.
DOI : 10.1016/0378-7788(92)90049-M

J. Virgone, F. Et, and . Kuznik, Experimental and numerical results of summer confort in a building equipped with phase change matierials (PCM) Dans les actes de: The first international Conference On Building Energy and Environnement, 2008.

M. Wall, Distribution of solar radiation in glazed spaces and adjacent buildings. A comparison of simulation programs, Energy and Buildings, vol.26, issue.2, pp.129-135, 1997.
DOI : 10.1016/S0378-7788(96)01026-2

G. N. Walton, A new algorithm for radiant interchange in rooms loads calculations, ASHRAE Transactions, vol.86, pp.190-208, 1980.

M. Wetter, P. Haves, M. A. Moshier, and E. F. Sowell, Using Spark as a solver for Modelica, Third National Conference of IBPSA-USA, 2008.

B. N. Winther, A. G. Et, and . Hestnes, Solar Versus Green: The Analysis of a Norwegian Row House, Solar Energy, vol.66, issue.6, pp.387-393, 1999.
DOI : 10.1016/S0038-092X(99)00037-7

W. O. Wray, J. D. Et, and . Balcomb, Sensitivity of direct gain space heating performance to fundamental parameter variations, Solar Energy, vol.23, issue.5, pp.421-425, 1979.
DOI : 10.1016/0038-092X(79)90150-6

E. Wurtz, Modelisation tridimensionnelle des transferts thermiques et aérauliques dans le bâtiment en environnement oriente objet, Thèse de doctorat, 1995.

. Sb=fabs, Lf*cos(as)*Hf*cos(hs)/sin(hs))

I. Annexe, Formules utilisées pour le calcul de la surface de la tache solaire ? Conditions pour lesquelles ce cas est atteint : zC2>=0 and zB2<=0 and yC2>=0 and yD2<=Lp ? Surface de la tache solaire sur chaque paroi

. Sb=fabs, Lf-zA*sin(as)/tan(hs)-Lp)*(zA*cos(as )/tan(hs)+(zA+Hf)*cos(as)/tan(hs)))-0.5*fabs((zA*cos(as )/tan(hs)+(zA+Hf)*cos(as)/tan(hs))*(zA*sin(as )/tan(hs)+(zA+Hf)*sin(as)/tan(hs)))

I. Annexe, Formules utilisées pour le calcul de la surface de la tache solaire xB1>=-Wp and yB1<=Lp and yE1>=Lp and yC1>=Lp and yC2>=Lp ? Surface de la tache solaire sur chaque paroi

. Lf and . Tan, /(sin(as)))*(-(zA*cos(as))/(tan(hs))-(Lp- yA+0.5*Lf)

B. ',-e-'sur-le-plancher, C. , and D. , sur la paroi est Figure A-11 : Position de la tache solaire -cas n°6 ? Conditions pour lesquelles ce cas est atteint : xE1>=-Wp and yE1<=Lp and yC1>=Lp and yC2>=Lp, Cas, vol.6

B. ',-c-'sur-la-paroi-nord, D. , and E. , sur la paroi est Figure A-14 : Position de la tache solaire -cas n°9 ? Conditions pour lesquelles ce cas est atteint : zB2>=0 and yC2<=Lp and yD2>=Lp, Cas, vol.9

D. Sur-le-plancher,-c-'sur-la-paroi-nord and E. , sur la paroi est Figure A-15 : Position de la tache solaire -cas n°10 ? Conditions pour lesquelles ce cas est atteint : xB1>=-Wp and yB1<=Lp and zC2>=0 and yC2<=Lp and yD2>=Lp and yE1>=Lp, Cas, vol.10

. Sb=0, 5*fabs((-zA*cos(as)/tan(hs)+Wp)*(yA-0.5*Lf-zA*sin, p.tan

. Lp, (zA*cos(as)/tan(hs

. Lf and . Tan, /(sin(as)))*(-Wp-(Lp-yA-0.5*Lf)/(tan(as)))-(-Wp-(Lp- yA-0, Lf)/(tan(as)))*(-(Wp*tan(hs))/(cos(as))-(

I. Annexe, Formules utilisées pour le calcul de la surface de la tache solaire ? Conditions pour lesquelles ce cas est atteint : xB1>=-Wp and yB1<=Lp and zC2>=0 and yC2<=Lp and yD2>=Lp and yE1<=Lp ? Surface de la tache solaire sur chaque paroi

*. Wp and . Tan, Lp)*((zA*cos(as))/(tan(hs))-Wp)), pp.0-5

. Sn=fabs, zA-Hf+Wp*tan(hs)/cos(as))*(yA-0.5*Lf-Wp*tan(as

. Sb=0, +((zA+Hf)*cos(as))/(tan(hs)))*Lf)+0.5*fabs(((zA*cos(as ))/(tan(hs))+((zA+Hf)*cos(as))/(tan(hs)))*(yA+0.5*Lf- ((zA+Hf)*sin(as))/(tan(hs)))-(-Lf, zA*sin(as ))/(tan(hs))+((zA+Hf)*sin(as))/(tan(hs)))*(((zA+Hf )*cos(as))/(tan(hs))+, p.5

D. ',-e-'sur-le-plancher-et-b-', and C. , sur la paroi ouest Figure A-18 : Position de la tache solaire -cas n°13 ? Conditions pour lesquelles ce cas est atteint : xC1>=-Wp and yD1>=0 and yB1<=0, Cas, vol.13

. Lf and . Tan, +0.5*fabs((-zA+(yA-0.5*Lf)*tan(hs)/sin(as))*(zA*cos(as )/tan(hs)+(zA+Hf)*cos(as)/tan(hs)))

C. '. Sur-le-plancher and D. , sur la paroi ouest Figure A-19 : Position de la tache solaire -cas n°14 ? Conditions pour lesquelles ce cas est atteint : xB1>=-Wp and yE1>=0 and yB1<=0 and yD1<=0 and yD2<=0, Cas, vol.14

. Lf and . Tan, *(-(yA-0.5*Lf)/tan(as)+(yA+0.5*Lf)/tan(as))-(- (yA-0, Lf)/tan(as)+(yA+0.5*Lf)/tan(as))*(

. Hf+, 5*Lf)*tan(hs)/sin(as)))+0, p.5

B. ',-e-'sur-le-plancher, C. , and D. , sur la paroi ouest Figure A-20 : Position de la tache solaire -cas n°15 ? Conditions pour lesquelles ce cas est atteint : xE1>=-Wp and yB1>=0 and yD1<=0 and yD2<=0, Cas, vol.15

. Hf+, 5*Lf)*tan(hs)/sin(as))), pp.0-5

. Wp, 5*fabs((zA*cos(as)/tan(hs)-Wp)*(-yA-0.5*Lf+Wp*tan(as)))

. Sn=fabs, -zA-Hf+Wp*tan(hs)/cos(as))*(-yA-0.5*Lf+Wp*tan(as))

. Lf and . Tan, /(sin(as))))+0.5*fabs((-(yA-0.5*Lf)/(tan(as))+Wp)*Hf)

B. ',-e-'sur-le-plancher,-c-'sur-la-paroi-ouest, D' sur la paroi nord Figure A-24 : Position de la tache solaire -cas n°19 ? Conditions pour lesquelles ce cas est atteint : xB1>=-Wp and zC2>=0 and yD2>=0 and yC2<=0 and yB1>=0, Cas, vol.19

*. Lf+wp and . Tan, (zA*cos(as))/(tan(hs))-Wp)*(- yA+0, *Lf+(zA*sin(as))/(tan(hs)))-((zA*cos(as))/(tan(hs))-Wp)*, pp.0-5

. Lf+, /(tan(hs))))+0.5*fabs((- yA+0.5*Lf+(zA*sin(as))/(tan(hs)))*((yA-0.5*Lf)

. Sn=fabs, -zA-Hf+Wp*tan(hs)/cos(as))*(-yA-0.5*Lf+Wp*tan(as))

. Lf and . Tan, sin(as)))+0.5*fabs(((yA-0.5*Lf)/tan(as