O. Adsorption-of, 130 3.3.3.1.1 On pure SnO 2 Adsorption of oxygen on SnO 2 With metal addition Summary of oxygen adsorption, p.142

N. Jaffrezic-renault, Les microcapteurs chimiques, Spectra Analyse, vol.195, pp.mars-avril, 1997.

N. Bârsan and U. Weimar, Understanding the fundamental principles of metal oxide based sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity

R. Lalauze, N. Bui, and C. Pijolat, Interpretation of the electrical properties of a SnO2 gas sensor after treatment with sulfur dioxide, Sensors and Actuators, vol.6, issue.2, pp.119-125, 1984.
DOI : 10.1016/0250-6874(84)85005-2

URL : https://hal.archives-ouvertes.fr/emse-00433405

S. Saukko and V. Lantto, Influence of electrode material on properties of SnO2-based gas sensor, Thin Solid Films, vol.436, issue.1, pp.137-140, 2003.
DOI : 10.1016/S0040-6090(03)00509-1

P. Thesis and . Montmeat, Rôle d'éléments métalliques sur les mécanismes de détection d'un capteur de gaz à base de dioxyde d'étain. Application à l'amélioration de la sélectivité à l'aide d'une membrane de platine, 2003.

D. Barsan, U. Koziej, and . Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.18-35, 2007.
DOI : 10.1016/j.snb.2006.09.047

J. J. Robillard, Electrocatalytic photographic process, patent (GB), p.1063029, 1967.

Z. M. Jarzebski and J. P. Marton, Physical Properties of SnO[sub 2] Materials, Journal of The Electrochemical Society, vol.123, issue.10, p.333, 1976.
DOI : 10.1149/1.2132647

P. Barbarat, S. F. Matar, and G. L. Blevennec, First-principles investigations of the electronic, optical and chemical bonding properties of SnO2, Journal of Materials Chemistry, vol.7, issue.12, pp.2547-2550, 1997.
DOI : 10.1039/a703813e

J. M. Themlin, M. Chtaïb, L. Henrard, . Ph, J. Lambin et al., Characterization of tin oxides by x-ray-photoemission spectroscopy, Physical Review B, vol.46, issue.4, p.2460, 1992.
DOI : 10.1103/PhysRevB.46.2460

P. De-padova, M. Fanfoni, R. Larciprete, M. Mangiantini, S. Priori et al., A synchroton radiation photoemission study of the oxidation of tin, Surface Science, pp.313-379, 1994.

L. Kövér, G. Moretti, . Zs, R. Kovács, I. Sanjinés et al., High resolution photoemission and Auger parameter studies of electronic structure of tin oxides, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.3, pp.1382-1388, 1995.
DOI : 10.1116/1.579568

W. M. Sachtler, P. Van, and . Plank, The role of individual surface atoms in chemisorption and catalysis by nickel-copper alloys, Surface Science, vol.18, issue.1, pp.18-62, 1969.
DOI : 10.1016/0039-6028(69)90267-2

Z. Knor, Chemisorption Complexes and Their Role in Catalytic Reactions on Transition Metals Advances in Catalysis, 1972.

F. F. Volkenshtein, The electronic theory of catalysis on semiconductors, 1963.

S. R. Morrison, The chemical physics of surfaces, 1990.

S. Morrrison, Semiconductor gas sensors, Sensors and Actuators, vol.2, pp.329-341, 1982.
DOI : 10.1016/0250-6874(81)80054-6

N. Yamazoe and T. Seiyama, Sensing mechanism of oxide semiconductor gas sensors, Proc. 3 rd Int. Conf. Solid-State Sensor and Actuators, pp.376-379, 1985.

C. G. Fonstad and R. H. Rediker, Electrical Properties of High???Quality Stannic Oxide Crystals, Journal of Applied Physics, vol.42, issue.7, pp.2911-2918, 1971.
DOI : 10.1063/1.1660648

S. Samson and C. G. Fonstad, Defect structure and electronic donor levels in stannic oxide crystals, Journal of Applied Physics, vol.44, issue.10, pp.44-4618, 1973.
DOI : 10.1063/1.1662011

A. Hierlemann, Fundamental principles and thermodynamics of chemical sensing, 1st NOSE I short course, p.11, 2002.

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, pp.335-344, 1978.
DOI : 10.1016/0039-6028(79)90411-4

S. Saukko, U. Lassi, V. Lantto, M. Kroneld, S. Novikov et al., Experimental studies of O2???SnO2 surface interaction using powder, thick films and monocrystalline thin films, Thin Solid Films, vol.490, issue.1, pp.48-53, 2005.
DOI : 10.1016/j.tsf.2005.04.012

S. C. Chang, Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Journal of Vacuum Science and Technology, vol.17, issue.1, p.366, 1980.
DOI : 10.1116/1.570389

S. Lenaerts, J. Roggen, and G. , Macs, FTIR characterization of tin dioxide gas sensors materials under working conditions, Spectorchimica Acta Part A, pp.51-883, 1995.

A. M. Volodin and A. E. Cherkasin, Observation conditions and thermal stability of O 2 ??? on SnO2, Reaction Kinetics and Catalysis Letters, vol.7, issue.3-4, p.329, 1981.
DOI : 10.1007/BF02065842

S. C. Chang, Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Journal of Vacuum Science and Technology, vol.17, issue.1, p.366, 1980.
DOI : 10.1116/1.570389

M. A. Barteau, Site requirements of reactions on oxide surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.4, p.2162, 1993.
DOI : 10.1116/1.578386

D. Kohl, Oxidic Semiconductor Gas Sensors, Gas sensors, pp.43-88
DOI : 10.1007/978-94-011-2737-0_2

M. Egashira, M. Nakashima, and S. Kawasumi, Change of thermal desorption behaviour of adsorbed oxigen with water coadsoption on Ag+-doped tin(IV) oxide, Journal Chemical Society Chemical Communications, pp.1047-1049, 1981.

K. Morishige, S. Kittaka, and T. Morimoto, The thermal desorption of surface hydroxide on tin (IV) oxide, Bull, Chem. Soc. Japan, pp.53-2128, 1980.

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, issue.2, pp.335-344, 1979.
DOI : 10.1016/0039-6028(79)90411-4

E. W. Thornton and P. G. Harrison, Tin oxide surfaces. Part 1.???Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.71, issue.0, pp.71-461, 1975.
DOI : 10.1039/f19757100461

S. Lenaerts, J. Roggen, and G. , Macs, FTIR characterization of tin dioxide gas sensors materials under working conditions, Spectorchimica Acta Part A, pp.51-883, 1995.

F. Berger, E. Beche, R. Berjoan, D. Klein, and A. , Chambaudet, An XPS and FTIR study of SO 2 adsorption on SnO 2 surfaces, Applied Surface Science, pp.93-102, 1996.

P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I. Steady state gas response, Sensors and Actuators, vol.3, pp.233-254, 1982.
DOI : 10.1016/0250-6874(82)80026-7

B. Gillot, C. Fey, and D. Dalafosse, Study of the oxidation kinetics of finely-divided magnetites. II - Influence of chromium substitution, Materials Research Bulletin, vol.11, issue.7, pp.843-849, 1976.
DOI : 10.1016/0025-5408(76)90124-0

Y. Matsuura, K. Takahata, and K. Ihokura, Mechanism of gas sensitivity change with time of SnO2 gas sensors, Sensors and Actuators, vol.14, issue.3, pp.223-232, 1988.
DOI : 10.1016/0250-6874(88)80069-6

K. D. Schierbaum, U. Weimar, and W. , Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B: Chemical, vol.3, issue.3, pp.205-214, 1991.
DOI : 10.1016/0925-4005(91)80007-7

S. R. Morrison, The chemical physics of surfaces, 1990.

M. Caldararu, D. Sprinceana, V. T. Popa, and N. I. , Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide, Sensors and Actuators B: Chemical, vol.30, issue.1, pp.35-41, 1996.
DOI : 10.1016/0925-4005(95)01746-I

D. S. Vlachos, P. D. Skafidas, and J. N. , Avaritsiotis, Transient effects of tin oxide CO sensors in the presence of water vapour, Applied Physics Letters, vol.63, pp.39-42, 1999.

R. Ionescu, A. Vancu, C. Moise, and A. Tomescu, Role of water vapour in the Interaction of SnO 2 Gas Sensors with CO and CH 4, Sensors and Actuators B, pp.61-100, 1999.

M. Egashira, M. Nakashima, S. Kawasumi, and T. Selyama, Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces, The Journal of Physical Chemistry, vol.85, issue.26, pp.4125-4155, 1981.
DOI : 10.1021/j150626a034

L. Morris and D. E. Williams, Pt(II) as an Electronically Active Surface Site in the Room Temperature CO Response of Pt Modified Gas Sensitive Resistors, The Journal of Physical Chemistry B, vol.105, issue.30, pp.7272-7279, 2001.
DOI : 10.1021/jp0110049

P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I. Steady state gas response, Sensors and Actuators, vol.3, pp.233-254, 1982.
DOI : 10.1016/0250-6874(82)80026-7

J. F. Boyle and K. A. Jones, The effects of CO, water vapor and surface temperature on the conductivity of a SnO2 gas sensor, Journal of Electronic Materials, vol.29, issue.6, pp.717-750, 1977.
DOI : 10.1007/BF02660346

S. J. Gentry and T. A. Jones, The role of catalysis in solid-state gas sensors, Sensors and Actuators, vol.10, issue.1-2, pp.141-163, 1986.
DOI : 10.1016/0250-6874(86)80039-7

H. Windischmann and P. Mar, A Model for the Operation of a Thin-Film SnO[sub x] Conductance-Modulation Carbon Monoxide Sensor, Journal of The Electrochemical Society, vol.126, issue.4, pp.627-633, 1979.
DOI : 10.1149/1.2129098

E. W. Thornton and P. G. Harrison, Tin oxide surfaces. Part 1.???Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.71, issue.0, pp.71-461, 1975.
DOI : 10.1039/f19757100461

S. Lenaerts, J. Roggen, and G. , Macs, FTIR characterization of tin dioxide gas sensors materials under working conditions, Spectorchimica Acta Part A, pp.51-883, 1995.

M. J. Willett, Spectroscopy of surface reactions

. Williamjs, Techniques and mechanisms in gas sensing, p.61, 1991.

S. R. Morrison, Mechanism of semiconductor gas sensor operation, Sensors and Actuators, vol.11, issue.3, pp.283-287, 1987.
DOI : 10.1016/0250-6874(87)80007-0

N. Bârsan and U. Weimar, Conduction model of metal oxide gas sensors, Journal of Electroceramics, vol.7, issue.3, pp.143-167, 2001.
DOI : 10.1023/A:1014405811371

N. Bârsan, Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence, Sensors and Actuators B: Chemical, vol.17, issue.3, p.241, 1994.
DOI : 10.1016/0925-4005(93)00873-W

H. Windischmann and P. Mar, A model for operation of thin-film SnOx conductance modulation carbon monoxide sensor, Journal of electrochemical Society, pp.126-627, 1979.

H. Pink, L. Treitinger, and L. Vite, Gas Sensors, Japanese Journal of Applied Physics, vol.19, issue.3, pp.513-517, 1980.
DOI : 10.1143/JJAP.19.513

N. Bârsan, R. Grigorovici, R. Ionesc, M. Motronea, and A. Vancu, Mechanism of gas detection in polycrystalline thick film SnO 2 sensors, Thin solid films, pp.171-53, 1989.

M. Ippomatsu, H. Sazaki, and H. Yanagida, Sensing mechanism of tin dioxide gas sensors, Journal of Material Science, pp.25-259, 1990.

K. D. Schierbaum, U. Weimar, and W. , Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B: Chemical, vol.3, issue.3, pp.205-214, 1991.
DOI : 10.1016/0925-4005(91)80007-7

P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I. Steady state gas response, Sensors and Actuators, vol.3, pp.233-254, 1982.
DOI : 10.1016/0250-6874(82)80026-7

M. Egashira, M. Nakashima, and S. Kawasumi, Change of thermal desorption behaviour of adsorbed oxigen with water coadsoption on Ag+-doped tin(IV) oxide, Journal Chemical Society Chemical Communications, pp.1047-1049, 1981.

R. Ionescu and A. Vancu, Time-dependence on the conductance of SnO 2 :Pt:Sb in atmospheres containing oxygen, carbon monoxide and water vapour I, Applied Surface Science, pp.74-297, 1994.

K. D. Schierbaum, U. Weimar, and W. , Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B: Chemical, vol.3, issue.3, pp.205-214, 1991.
DOI : 10.1016/0925-4005(91)80007-7

J. Kappler, N. Bârsan, U. Weimar, and W. Göpel, Influence of water vapour on nanocrystalline SnO 2 to monitor CO and CH 4, Conf. Proc. EUROSENSORS XI, pp.1177-1180, 1997.

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, issue.2, pp.335-344, 1979.
DOI : 10.1016/0039-6028(79)90411-4

D. E. Cox, T. B. Fryberger, and S. Semancik, Oxygen vacancies and defect electronic states on the SnO 2 (110) 1x1 surface, Physical Reviews B, vol.38, pp.335-344, 1998.

J. F. Mcaleer, P. T. Moseley, J. O. Norris, and D. E. , Wiliams, tin oxide gas sensors Part 1, Journal of the Chemical Society, Faraday Transaction Part, vol.1, pp.83-1323, 1987.

Y. Matsuura, K. Takahata, and K. Ihokura, Mechanism of gas sensitivity change with time of SnO2 gas sensors, Sensors and Actuators, vol.14, issue.3, pp.223-232, 1988.
DOI : 10.1016/0250-6874(88)80069-6

P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I. Steady state gas response, Sensors and Actuators, vol.3, pp.233-254, 1982.
DOI : 10.1016/0250-6874(82)80026-7

S. Strässler and A. Reis, Simple models for N-type metal oxide gas sensors, Sensors and Actuators, vol.4, pp.465-472, 1983.
DOI : 10.1016/0250-6874(83)85058-6

N. Bârsan and R. Ionescu, The mechanism of the interaction between CO and a SnO 2 surface: the role of water vapour, Sensors and Actuators B, pp.61-71, 1993.

K. D. Schierbaum, U. Weimar, and W. , Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B: Chemical, vol.3, issue.3, pp.205-214, 1991.
DOI : 10.1016/0925-4005(91)80007-7

O. Safonova, I. Bezverkhy, P. Fabrichnyi, M. Rumyantseva, and A. Gaskov, Mechanism of sensing CO in nitrogen by nanocrystalline SnO 2 and SnO 2 (Pd) studied by Mössbauer spectroscopy and conductance measurements, Journal of Materials Chemistry, pp.12-1174, 2002.

A. G. Maddock, Mössbauer spectroscopy, principles and applications, Horwood chemical science series, 1997.

C. Canevali, N. Chiodini, P. Di-nola, F. Morazzoni, R. Scotti et al., Surface reactivity of SnO2 obtained by sol???gel type condensation: interaction with inert, combustible gases, vapour-phase H2O and air, as revealed by electron paramagnetic resonance spectroscopy, Journal of Materials Chemistry, vol.7, issue.6, pp.997-1002, 1997.
DOI : 10.1039/a608608j

G. Sberveglieri, S. Groppelli, P. Nelli, C. Perego, G. Valdre et al., Detection of sub-ppm H 2 S concentrations by means of SnO 2 (Pt) thin films, grown by the RGTO technique, Sensors and Actuators B, pp.15-16, 1993.

N. Bârsan and U. Weimar, Conduction model of metal oxide gas sensors, Journal of Electroceramics, vol.7, issue.3, pp.143-167, 2001.
DOI : 10.1023/A:1014405811371

N. Bârsan, Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence, Sensors and Actuators B: Chemical, vol.17, issue.3, p.241, 1994.
DOI : 10.1016/0925-4005(93)00873-W

. Göpel, Influence of measuring voltage, geometry and electrodes on the characteristics of thick film SnO2 gas sensors, Proc. of the 11th European Microelectronic Conference, pp.14-16, 1997.

M. Schweizer-berberich, Gas sensors based on stannic oxide, Shaker Verlag (D), 1998.

U. Hoefer, K. Steiner, and E. Wagner, Contact and sheet resistance of SnO2 thin films from transmission-line model measurements, Sensors and Actuators B: Chemical, vol.26, issue.1-3, pp.26-27, 1995.
DOI : 10.1016/0925-4005(94)01557-X

H. L. Pang, X. H. Zhang, X. X. Zhong, B. Liu, X. G. Wei et al., Chen Preparation of Ru-doped SnO 2 -supported Pt catalysts and their electrocatalytic properties for methanol oxidation, Journal of Colloid and Interface Science, vol.319, issue.1 1, 2008.

G. Korotcenkov, Gas response control through structural and chemical modificationsof metal oxide films: state of the art and approaches. Sensors and Actuators, pp.209-232, 2005.

B. Mirkelamoglu and G. Karakas, CO oxidation over palladium- and sodium-promoted tin dioxide: catalyst characterization and temperature-programmed studies, Applied Catalysis A: General, vol.281, issue.1-2, pp.275-284, 2005.
DOI : 10.1016/j.apcata.2004.11.036

S. C. Tsang, C. D. Bulpitt, P. C. Mitchell, and A. J. Ramirez-cuesta, Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor, The Journal of Physical Chemistry B, vol.105, issue.24, pp.5737-5742, 2001.
DOI : 10.1021/jp010175a

S. Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators, vol.12, issue.4, pp.425-440, 1987.
DOI : 10.1016/0250-6874(87)80061-6

N. D. Gangal, N. M. Gupta, and R. M. Iyer, Microcalorimetric study of the interaction of CO, O2, and CO + O2 with Pt/SnO2 and SO2 catalysts, Journal of Catalysis, vol.126, issue.1, pp.13-25, 1990.
DOI : 10.1016/0021-9517(90)90042-I

N. Yamazoe, New approaches for improving semiconductor gas sensors. Sensor and Actuators B: Chemical, pp.7-19, 1991.

C. Pijolat, « Etudes des propriétés physico-chimiques et des propriétés électriques du dioxyde d'étain en fonction de l'atmosphère gazeuse environnante. Application à la détection sélective des gaz, 1986.

S. M. Durrani, The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor, Talanta, vol.68, issue.5, pp.1732-1735, 2006.
DOI : 10.1016/j.talanta.2005.08.015

A. Ylinampa, V. Lantto, and S. Leppävuori, Some differences between Au and Pt electrodes in SnO 2 thick-film gas sensors, Sensors and Actuators B: Chemical, vol.14, pp.1-3, 1993.

S. Saukko and V. Lantto, Influence of electrode material on properties of SnO 2 -based gas sensor, Thin Solid Films, pp.137-140, 2003.

S. M. Durrani, The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor, Talanta, vol.68, issue.5, pp.1732-1735, 2006.
DOI : 10.1016/j.talanta.2005.08.015

X. Vilanova, E. Llobet, J. Brezmes, J. Calderer, and X. Correig, Numerical simulation of the electrode geometry and position effects on semiconductor gas sensor response, Sensors and Actuators B: Chemical, vol.48, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0925-4005(98)00080-X

U. Jain, A. H. Harker, A. M. Stoneham, and D. E. Williams, Effect of electrode geometry on sensor response, Sensors and Actuators B: Chemical, vol.2, issue.2, pp.111-114, 1990.
DOI : 10.1016/0925-4005(90)80019-V

S. Capone, P. Siciliano, F. Quaranta, R. Rella, M. Epifani et al., Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol???gel thin film, Sensors and Actuators B: Chemical, vol.77, issue.1-2, pp.503-511, 2001.
DOI : 10.1016/S0925-4005(01)00754-7

S. Capone, M. Epifani, L. Francioso, S. Kaciulis, A. Mezzi et al., Influence of electrodes ageing on the properties of the gas sensors based on SnO 2, Sensors and Actuators B: Chemical, vol.115, issue.1, p.23

U. Hoefer, K. Steiner, and E. Wagner, « Contact and sheet resistance of SnO 2 thin films from transmission-line model measurements, Sensors and Actuators B, pp.26-27, 1995.

U. Weimar and W. , Göpel : « A.C. measurements on tin oxide sensors to improve selectivity and sensitivities, Sensors and Actuators B, pp.26-27, 1995.

O. K. Varghese and L. Malhotra, Electrode-sample capacitance effect on Ethanol sensitivity of nano-grained SnO2 thin films, Sensors and Actuators B: Chemical, vol.53, issue.1-2, pp.19-23, 1998.
DOI : 10.1016/S0925-4005(98)00288-3

P. Montmeat, J. Marchand, R. Lalauze, J. Viricelle, G. Tournier et al., Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors, Sensors and Actuators B: Chemical, vol.95, issue.1-3, pp.83-89, 2003.
DOI : 10.1016/S0925-4005(03)00410-6

URL : https://hal.archives-ouvertes.fr/emse-00431889

J. Viricelle, B. Riviere, and C. Pijolat, Optimization of SnO2 screen-printing inks for gas sensor applications, Journal of the European Ceramic Society, vol.25, issue.12, pp.2137-2140, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.020

URL : https://hal.archives-ouvertes.fr/emse-00431860

. Odriozola, DRIFTS chamber for in situ and simultaneous study of infrared and electrical response of sensors, Applied Spectroscopy, vol.49, pp.1094-1096, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01483398

. Odriozola, In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen, Sensors and Actuators, B: Chemical, vol.31, issue.3, pp.197-202, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01483408

R. Pohle, M. Fleischer, and H. Meixner, In situ infrared emission spectroscopic study of the adsorption of H2O and hydrogen-containing gases on Ga2O3 gas sensors, Sensors and Actuators B: Chemical, vol.68, issue.1-3, pp.151-156, 2000.
DOI : 10.1016/S0925-4005(00)00476-7

R. Pohle, M. Fleischer, and H. Meixner, Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycrystalline metal oxide films, Sensors and Actuators B: Chemical, vol.78, issue.1-3, pp.133-137, 2001.
DOI : 10.1016/S0925-4005(01)00803-6

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, issue.2, pp.335-344, 1979.
DOI : 10.1016/0039-6028(79)90411-4

J. Tamaki, M. Nagaishi, Y. Teraoka, N. Miura, and N. Yamazoe, Adsorption behavior of CO and interfering gases on SnO2, Surface Science, vol.221, issue.1-2, p.183, 1989.
DOI : 10.1016/0039-6028(89)90574-8

F. Gaillard, M. Abdat, J. P. Joly, and A. Perrard, An intermittent temperature-programmed desorption method for studying kinetics of desorption from heterogeneous surfaces, Applied Surface Science, vol.238, issue.1-4, p.91, 2004.
DOI : 10.1016/j.apsusc.2004.05.187

URL : https://hal.archives-ouvertes.fr/hal-00007456

D. Koziej, Phenomenological and Spectroscopic Studies on Gas Detection Mechanism of Selected Gases with Tin Dioxide Based Sensors, 2006.

J. H. Lambert, Photometria sive de mensura et grodibus luminis colorum et umbrae. page Augustatae Vindelicorum, 1760.

G. Kortüm, Reflectance Spectroscopy, 1969.
DOI : 10.1007/978-3-642-88071-1

T. Armarolli, S. Becue, and . Gautier, Diffuse reflection infrared spectroscopy (DRIFTS): Application to the in situ analysis of catalysts. Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole, pp.215-237, 2004.

R. Griffiths, P. , M. Olinger, and J. , Continuum Theories of Diffuse Reflection
DOI : 10.1002/0470027320.s2401

R. Chalmers and J. M. Griffiths, Handbook of vibrational spectroscopy, 2002.
DOI : 10.1002/0470027320

A. Schuster, Radiation Through a Foggy Atmosphere, The Astrophysical Journal, vol.21, issue.1, 1905.
DOI : 10.1086/141186

P. Kubelka and F. Munk, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für technische Physik, pp.593-601, 1931.

J. Dahm, D. , D. Dahm, and K. , Discontinuum Theory of Diffuse Reflection
DOI : 10.1002/0470027320.s2402

R. Chalmers and J. M. Griffiths, Handbook of vibrational.spectroscopy, 2002.

K. Seeger, Semiconductor Physics: an introduction, 1999.

M. I. Baraton and L. Merhari, Nanoparticles-based chemical gas sensors for outdoor air quality monitoring microstations, Materials Science and Engineering: B, vol.112, issue.2-3, pp.206-213, 2004.
DOI : 10.1016/j.mseb.2004.05.033

M. I. Baraton and L. Merhari, Determination of the gas sensing potentiality of nanosized powders by FTIR spectrometry, Scripta Materialia, vol.44, issue.8-9, pp.1643-1648, 2001.
DOI : 10.1016/S1359-6462(01)00874-0

. Rastomjee, Influence of carrier-free surface-layers on infrared reflectance spectra of n-type metallic oxides, Journal of Electron Spectroscopy and Related Phenomena, vol.54, pp.1173-1182, 1990.

Z. , C. Orel, B. Orel, M. Hodoscek, and V. Kaucic, Conductive SnO2/Sb powder: preparation and optical properties, Journal of Materials Science, vol.27, pp.313-318, 1992.

. Rastomjee, Influence of carrier-free surface-layers on infrared reflectance spectra of n-type metallic oxides, Journal of Electron Spectroscopy and Related Phenomena, vol.54, pp.1173-1182, 1990.

P. J. Brimmer and P. R. Griffiths, Effect of absorbing matrixes on diffuse reflectance infrared spectra, Analytical Chemistry, vol.58, issue.11, pp.2179-2186, 1986.
DOI : 10.1021/ac00124a015

M. A. Barteau, Site requirements of reactions on oxide surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.4, p.2162, 1993.
DOI : 10.1116/1.578386

A. Davydov, Molecular spectroscopy of oxide catalyst surface
DOI : 10.1002/0470867981

S. Saukko, U. Lassi, V. Lantto, M. Kroneld, S. Novikov et al., Experimental studies of O2???SnO2 surface interaction using powder, thick films and monocrystalline thin films, Thin Solid Films, vol.490, issue.1, pp.48-53, 2005.
DOI : 10.1016/j.tsf.2005.04.012

D. Koziej and N. Bârsan, Jacek Szuber, Kengo Shimanoe and Noboru Yamazoe, Water?oxygen interplay on tin dioxide surface: Implication on gas sensing, Chemical Physics Letters, vol.410, pp.4-6, 2005.

. Place and . Birth, Saint Brieuc (cotes d'Armor, France) Marital Status: married Nationality: French Education, PhD studies in the frame of Joint Doctoral Degree Project of the GOSPEL Network of Excellence between ecole des mines de St Etienne (France) and University of Tübingen, 2004.