.. Le-quadripôle-représenté-est-l-'élément-essentiel-du-filtre-de-masse-quadripolaire, Une trajectoire stable est représentée à l'intérieur du dispositif, p.51

.. Exemple-de-l-'interférence-isobarique-mo, Zr qui rend impossible la mesure directe de l'isotopie du molybdène (pics grisés), p.55

I. , X. , V. Potentiels-appliqués-respectivement-À-la-cellule-et-au-quadripôle, and .. , Les trois potentiels liés à l'énergie des ions sont représentés : V P potentiel plasma, p.67

I. Mc-isoprobe and .. , un gaz de collision, ici Ar, sur l'intensité de 238 U + , dans le cas de la cellule de l', p.69

I. Mc-isoprobe-et-ne and .. , Les valeurs relatives aux gaz He Ar et N 2 O sont mesurées. L'utilisation de ces valeurs et de l'Equation 5.3 (Partie III) a permis de déterminer celles pour, Pression partielle de différents gaz en fonction du débit volumique, p.76

?. Pertes-d-'énergie and . Mesurées-sur-l-'icp-ms-q-x7........, pour l'ion 115 In + et un potentiel V H fixé à -8 V. La perte maximale, ?E max , qui correspond à l'énergie E i de l'ion 115 In + à l'entrée de la cellule, est observée lorque deux courbes se superposent (c.f. courbes associées aux débits de néon à 2,50 et 3 mL.min ?1 ) La puissance RF du plasma, le débit de nébulisation et la position axiale de la torche sont, p.79

I. Mc-isoprobe and ]. , La Figure a) est tirée de la Référence [61, p.125

I. Mc-isoprobe and ]. , La Figure a) est tirée de la Référence [59, p.127

I. Mc-isoprobe and .. , Ln + , avec l'ammoniac, obtenus sur l', Profils cinétiques pour la réaction des cinq lanthanides, p.130

. Efficacité-cinétique, cap (marques pleines et axe des ordonnées de gauche), et énergie de promotion électronique, P E (marques vides et axe des ordonnées de droite), tracées en fonction de l'élément pour cinq cations lanthanide

. Libre-parcours-moyen and . Et-nombre-moyen-de-collisions, subies par les ions lors de leur traversée de la cellule pour les trois débits de néon considéré dans l'étude. Les sections efficaces de collision des ions Zr + , In + , Sm + , et U + avec les atomes de néon ont été approximées par la section de collision de deux atomes de néon, p.5

I. Pour-?, Exemple de résultats obtenus pour les coefficients ? et ? i à partir des mesures de pertes maximales d'énergie pour différentes configurations de fonctionnement (c.f. Tableau 6.2) Les valeurs obtenues pour le coefficient ? sont évaluées, p.82

L. La, correspond à la base Lanl2DZ rendue flexible et à laquelle une fonction de polarisation et une fonction diffuse ont été ajoutées. a Valeurs tirées de la Référence, p.101

L. Valeurs-de-référence-sont and E. , ZrO + ) ref = -121,482424 Hartree, R e (ZrO + ) ref = 1,740 Å et E(SrO + ) ref = -105,359684 Hartree, R e (SrO + ) ref = 2, p.102

H. Enthalpies-de-réaction-?-r, D. B3lyp, and *. La-base-optimisée-lanl2dz++, Les données expérimentales sont tirées des Références [131, 133]. a Aucune valeur n'est indiquée, car à notre connaissance, l'enthalpie de formation de SrO + 2 n'a encore jamais été déterminée, p.109

. Sur-l-'icp-ms-q-x7, Thermo Fisher Scientific) et un ICP-SIFT-MS. Les enthalpies de réaction, ? r H, pour le transfert d'un atome O sont exprimées en kJ

. Pression-dans-la-cellule-de-l-'icp-ms-q-x7 and P. De-collisions, pour des débits de NH 3 compris entre 0 et 1,01 mL.min ?1 . La section efficace de NH 3 utilisée pour le calcul de N coll est prise dans le Tableau 5.1. Pour rappel, p.122, 13328.

.. Pression-dans-la-cellule-de-l-'icp-ms-mc-pa, Isoprobe et nombre minimal de collisions, N coll , pour des débits de NH 3 compris entre 0 et 1,4 mL.min ?1 . La section efficace de NH 3 utilisée pour le calcul de N coll est prise dans le Tableau 5.1. Pour rappel, p.123, 13328.

D. La, graphe semilogaritmique et des constantes cinétiques k 1 , mesurées par ICP/SIFT-MS. La longueur l et le rayon interne r de la cellule valent respectivement 29,6 cm et 0,2 cm. L'incertitude sur la mesure de la pente de la décroissance est inférieure 10 % et celle qui en résulte pour la détermination des vitesses v i est évaluée entre 5 et 10 %. L'incertitude sur la valeur moyenne v i correspond à l'écart-type sur les 11

. Constantes-cinétiques,-k-i-'icp-ms, +. Mc-isoprobe-nd, +. Sm, and +. Eu, pour les réactions successives de formation d'adduits des ions Gd + et Dy + avec l'ammoniac. L'incertitude sur les valeurs est estimée à ± 50 %. Les conditions dans la zone de réaction sont v i = 4,28×10 4 cm.s ?1 , l = 29,6 cm et T = 298 K. L'efficacité, k 1 /k cap , de la première réaction d'addition de NH 3 sur l'ion monoatomique Ln + , fait intervenir la constante de collision, k cap =2, 02×10 ?9 cm 3 .molécule ?1 .s ?1 , déterminée à partir de la méthode de la trajectoire paramétrée, p.128

. Températures-effectives and .. Du-début-et-de-la-fin-de-la-série, Ces valeurs ont été déduites des constantes cinétiques k 1 mesurées sur l'ICP-MS MC pour la réaction des ions Ln + avec l'ammoniac. Les températures, déterminées à partir des études par ICP/SIFT-MS de la littérature, p.135

M. R. Sievers, M. , and P. B. Armentrout, Gas phase activation of carbon dioxide by niobium and niobium monoxide cations, International Journal of Mass Spectrometry, vol.179, issue.180, pp.103-115, 1998.
DOI : 10.1016/S1387-3806(98)14064-2

A. Bjarnason and D. P. Ridge, (M = Sc, Ti, V) with Toluene, Organometallics, vol.17, issue.9, pp.1889-1893, 1998.
DOI : 10.1021/om970552z

T. M. Bernhardt, Gas-phase kinetics and catalytic reactions of small silver and gold clusters, International Journal of Mass Spectrometry, vol.243, issue.1, pp.1-29, 2005.
DOI : 10.1016/j.ijms.2004.12.015

D. K. Bohme and H. Schwarz, Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts, Angewandte Chemie International Edition, vol.305, issue.3, pp.2236-2354, 2005.
DOI : 10.1002/anie.200461698

S. Feil, G. K. Koyanagi, A. A. Viggiano, and D. K. Bohme, Ozone reactions with alkaline-earth metal cations and dications in the gas phase : Room-temperature kinetics and catalysis, J. Phys. Chem. A, issue.51, pp.11113397-13402, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00417210

F. Rondinelli, N. Russo, and M. Toscano, On the Origin of the Different Performance of Iron and Manganese Monocations in Catalyzing the Nitrous Oxide Reduction by Carbon Oxide, Inorganic Chemistry, vol.46, issue.18, pp.7489-7493, 2007.
DOI : 10.1021/ic7007045

V. Blagojevic and D. K. Bohme, Catalytic reduction of N2O by CO on benzene clusters of Fe+: Catalytic poisoning by CO, International Journal of Mass Spectrometry, vol.254, issue.3, pp.152-154, 2006.
DOI : 10.1016/j.ijms.2006.04.007

D. K. Bohme, Gaseous ions and chemical mass spectrometry, Canadian Journal of Chemistry, vol.86, issue.3, pp.177-198, 2008.
DOI : 10.1139/v07-146

S. Petrie and D. K. Bohme, Mass Spectrometric Approaches to Interstellar Chemistry, Modern Mass Spectrometry, pp.37-75, 2003.
DOI : 10.1007/3-540-36113-8_2

A. J. Midey and A. A. Viggiano, Kinetics of Sulfur Oxide, Sulfur Fluoride, and Sulfur Oxyfluoride Anions with Atomic Species at 298 and 500 K, The Journal of Physical Chemistry A, vol.111, issue.10, pp.1111852-1859, 2007.
DOI : 10.1021/jp066198c

S. Petrie and D. K. Bohme, Ions in space, Mass Spectrometry Reviews, vol.302, issue.2, pp.258-280, 2007.
DOI : 10.1002/mas.20114

N. G. Adams and D. Smith, The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions, International Journal of Mass Spectrometry and Ion Physics, vol.21, issue.3-4, pp.3-4349, 1976.
DOI : 10.1016/0020-7381(76)80133-7

D. R. Bandura, V. I. Baranov, and S. D. Tanner, Reaction chemistry and collisional processes in multipole devices for resolving isobaric interferences in ICP-MS, Fresenius' Journal of Analytical Chemistry, vol.370, issue.5, pp.454-470, 2001.
DOI : 10.1007/s002160100869

G. C. Eiden, C. J. Barinaga, and D. W. , Beneficial Ion/Molecule Reactions in Elemental Mass Spectrometry, Rapid Communications in Mass Spectrometry, vol.11, issue.1, pp.37-42, 1997.
DOI : 10.1002/(SICI)1097-0231(19970115)11:1<37::AID-RCM815>3.0.CO;2-C

E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, Flowing afterglow measuremnts of ionneutral reactions, Advances in Atomic and Molecular Physics, pp.1-56, 1969.

T. Fujii, Alkali-metal ion/molecule association reactions and their applications to mass spectrometry, Mass Spectrometry Reviews, vol.93, issue.3, pp.111-138, 2000.
DOI : 10.1002/1098-2787(200005/06)19:3<111::AID-MAS1>3.0.CO;2-K

J. W. Olesik and D. R. Jones, Strategies to develop methods using ion-molecule reactions in a quadrupole reaction cell to overcome spectral overlaps in inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., vol.190, issue.2
DOI : 10.1039/B511464K

G. K. Koyanagi, V. V. Lavrov, V. Baranov, D. Bandura, S. Tanner et al., A novel inductively coupled plasma/selected-ion flow tube mass spectrometer for the study of reactions of atomic and atomic oxide ions, International Journal of Mass Spectrometry, vol.194, issue.1, pp.1-5, 2000.
DOI : 10.1016/S1387-3806(99)00233-X

Z. Herman, The crossed-beam scattering method in studies of ion-molecule reaction dynamics, International Journal of Mass Spectrometry, vol.212, issue.1-3
DOI : 10.1016/S1387-3806(01)00493-6

P. B. Armentrout, Guided ion beam studies of transition metal???ligand thermochemistry, International Journal of Mass Spectrometry, vol.227, issue.3, pp.289-302, 2003.
DOI : 10.1016/S1387-3806(03)00087-3

K. M. Ervin, Experimental Techniques in Gas-Phase Ion Thermochemistry, Chemical Reviews, vol.101, issue.2, pp.391-444, 2001.
DOI : 10.1021/cr990081l

P. B. Armentrout, Fundamentals of ion???molecule chemistry, J. Anal. At. Spectrom., vol.109, issue.187, pp.571-580, 2004.
DOI : 10.1039/B313133E

D. Schrøder, H. Schwarz, D. E. Clemmer, Y. Chen, P. B. Armentrout et al., Activation of hydrogen and methane by thermalized FeO+ in the gas phase as studied by multiple mass spectrometric techniques, International Journal of Mass Spectrometry and Ion Processes, vol.161, issue.1-3, pp.175-191, 1997.
DOI : 10.1016/S0168-1176(96)04428-X

P. B. Armentrout, Kinetic energy dependence of ion???molecule reactions: guided ion beams and threshold measurements, International Journal of Mass Spectrometry, vol.200, issue.1-3, pp.219-241, 2000.
DOI : 10.1016/S1387-3806(00)00310-9

G. Gioumousis and D. P. Stevenson, Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory, The Journal of Chemical Physics, vol.29, issue.2, pp.294-299, 1958.
DOI : 10.1063/1.1744477

T. Su and M. T. Bowers, Theory of ion-polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene, The Journal of Chemical Physics, vol.58, issue.7, pp.3027-3037, 1973.
DOI : 10.1063/1.1679615

T. Su, W. J. Chesnavich-]-g, D. Koyanagi, V. Caraiman, D. K. Blagojevic et al., Parametrization of the ion???polar molecule collision rate constant by trajectory calculations, The Journal of Chemical Physics, vol.76, issue.10, pp.5183-5185, 1982.
DOI : 10.1063/1.442828

. Syft, Calibration of SIFT-MS instrumentation, 2005.

G. K. Koyanagi and D. K. Bohme, :?? Periodicities in Reactivity, The Journal of Physical Chemistry A, vol.105, issue.39, pp.8964-8968, 2001.
DOI : 10.1021/jp011627m

V. Blagojevic, E. Flaim, M. J. Jarvis, G. K. Koyanagi, and D. K. Bohme, Nitric Oxide as an Electron Donor, an Atom Donor, an Atom Acceptor, and a Ligand in Reactions with Atomic Transition-Metal and Main-Group Cations in the Gas Phase, The Journal of Physical Chemistry A, vol.109, issue.49, pp.11224-11235, 2005.
DOI : 10.1021/jp0553939

V. Blagojevic, E. Flaim, M. J. Jarvis, G. K. Koyanagi, and D. K. Bohme, Gas-phase reactions of nitric oxide with atomic lanthanide cations: Room-temperature kinetics and periodicity in reactivity, International Journal of Mass Spectrometry, vol.249, issue.250
DOI : 10.1016/j.ijms.2005.11.025

P. Cheng, G. K. Koyanagi, and D. K. Bohme, Carbon Disulfide Reactions with Atomic Transition-Metal and Main-Group Cations:?? Gas-Phase Room-Temperature Kinetics and Periodicities in Reactivity, The Journal of Physical Chemistry A, vol.110, issue.8
DOI : 10.1021/jp057078s

P. Cheng, G. K. Koyanagi, and D. K. Bohme, Gas-phase reactions of atomic lanthanide cations with CO 2 and CS 2 : Room-temperature kinetics and periodicities in reactivity, J. Phys. Chem. A, issue.47, pp.11012832-12838, 2006.

G. K. Koyanagi, X. Zhao, V. Blagojevic, M. J. Jarvis, and D. K. Bohme, Gas-phase reactions of atomic lanthanide cations with methyl fluoride: periodicities reactivity, International Journal of Mass Spectrometry, vol.241, issue.2-3, pp.189-196, 2005.
DOI : 10.1016/j.ijms.2004.11.017

X. Zhao, G. K. Koyanagi, and D. K. Bohme, Reactions of methyl fluoride with atomic transitionmetal and main-group cations : Gas-phase room-temperature kinetics and periodicities in reactivity

K. M. Ervin and P. B. Armentrout, Translational energy dependence of HD) from thermal to 30 eV c.m, J. Chem. Phys, vol.2, issue.831, pp.166-189, 1985.

K. M. Ervin and P. B. Armentrout, )+H(D), The Journal of Chemical Physics, vol.86, issue.5, pp.2659-2673, 1987.
DOI : 10.1063/1.452068

Y. Chen, D. E. Clemmer, and P. B. Armentrout, Gas???phase thermochemistry of VH and CrH, The Journal of Chemical Physics, vol.98, issue.6, pp.4929-4936, 1993.
DOI : 10.1063/1.464948

S. J. Ye, R. M. Moision, and P. B. Armentrout, Sequential bond energies of water to sodium glycine cation, International Journal of Mass Spectrometry, vol.240, issue.3, pp.233-248, 2005.
DOI : 10.1016/j.ijms.2004.09.019

H. Koizumi, M. Larson, F. Muntean, and P. B. Armentrout, Sequential bond energies of Ag + (H2O) n and Ag + (dimethylether) n , n = 1 ? 4, determined by threshold collision-induced dissociation

J. C. Amicangelo and P. B. Armentrout, Ligand Exchange Reactions of Sodium Cation Complexes Examined Using Guided Ion Beam Mass Spectrometry:?? Relative and Absolute Dissociation Free Energies and Entropies, The Journal of Physical Chemistry A, vol.108, issue.48, pp.10698-10713, 2004.
DOI : 10.1021/jp0466284

R. H. Schultz, K. C. Crellin, and P. B. Armentrout, Sequential bond energies of iron carbonyl Fe(CO)x+ (x = 1-5): systematic effects on collision-induced dissociation measurements, Journal of the American Chemical Society, vol.113, issue.23
DOI : 10.1021/ja00023a003

E. R. Fisher and P. B. Armentrout, Electronic effects in carbon-hydrogen and carbon-carbon bond activation: reactions of excited-state chromium(+) with propane, butane, methylpropane, and dimethylpropane, Journal of the American Chemical Society, vol.114, issue.6, pp.2049-2055, 1992.
DOI : 10.1021/ja00032a018

F. Li and P. B. Armentrout, Activation of methane by gold cations: Guided ion beam and theoretical studies, The Journal of Chemical Physics, vol.125, issue.13, pp.133114-133127, 2006.
DOI : 10.1063/1.2220038

N. Aristov and P. B. Armentrout, Collision-induced dissociation of vanadium monoxide ion, The Journal of Physical Chemistry, vol.90, issue.21, pp.1806-1819, 1986.
DOI : 10.1021/j100412a049

M. Sabidó, J. M. Lucas-an, J. De-andrés, J. Sogas, M. Albertí et al., Guided ion beams study of ion???molecule reactions at low collision energies: The Li+???acetone adduct formation in the 0.10???1.00eV center of mass energy range, Chemical Physics Letters, vol.442, issue.1-3, pp.1-328, 2007.
DOI : 10.1016/j.cplett.2007.05.065

G. I. Mackay, G. D. Vlachos, D. K. Bohme, and H. I. Schiff, Studies of reactions involving C2Hx+ ions with HCN using a modified selected ion flow tube, International Journal of Mass Spectrometry and Ion Physics, vol.36, issue.3, pp.259-270, 1980.
DOI : 10.1016/0020-7381(80)85059-5

A. B. Raksit and D. K. Bohme, Studies of reactions of C 3 H + ions in the gas phase

S. T. Graul and R. R. Squires, Advances in flow reactor techniques for the study of gas-phase ion chemistry, Mass Spectrometry Reviews, vol.64, issue.3, pp.263-358, 1988.
DOI : 10.1002/mas.1280070302

P. D. Goldan, A. L. Schmeltekopf, H. I. Fehsenfeld, E. E. Schiff, and . Ferguson, Thermal-energy ionneutral reaction rates. II. Some reactions of ionospheric interest, J. Chem. Phys, issue.11, pp.444095-4103, 1966.

F. C. Fehsenfeld, A. L. Schmeltekopf, P. D. Goldan, H. I. Schiff, and E. E. Ferguson, Thermal Energy Ion???Neutral Reaction Rates. I. Some Reactions of Helium Ions, The Journal of Chemical Physics, vol.44, issue.11, pp.444087-4094, 1966.
DOI : 10.1063/1.1726587

F. C. Fehsenfeld, A. L. Schmeltekopf, E. E. Ferguson, R. C. Bolden, R. S. Hemsworth et al., Thermal-energy ion-neutral reaction rates. VII. Some hydrogen-atom abstraction reactions Measurements of thermal-energy ion-neutral reaction rate coefficients for rare gas ions, J. Chem. Phys. J. Phys. B : Atom. Molec. Phys, vol.46, issue.3, pp.2802-280845, 1967.

N. G. Adams, M. J. Church, and D. Smith, An experimental and theoretical investigation of the dynamics of a flowing afterglow plasma, Journal of Physics D: Applied Physics, vol.8, issue.12, pp.1409-1422, 1975.
DOI : 10.1088/0022-3727/8/12/012

S. I. Gorelski, V. V. Lavrov, G. K. Koyanagi, and D. K. Bohme, with Ammonia in the Gas Phase at Room Temperature, The Journal of Physical Chemistry A, vol.105, issue.41
DOI : 10.1021/jp010205+

D. R. Bandura, V. I. Baranov, A. E. Litherland, and S. D. Tanner, Gas-phase ion???molecule reactions for resolution of atomic isobars: AMS and ICP-MS perspectives, International Journal of Mass Spectrometry, vol.255, issue.256, pp.255-256312, 2006.
DOI : 10.1016/j.ijms.2006.06.012

T. Shoeib, R. K. Milburn, G. K. Koyanagi, and D. K. Bohme, A study of complexes Mg(NH3)n+?? and Ag(NH3)n+, where n = 1???8: competition between direct coordination and solvation through hydrogen bonding, International Journal of Mass Spectrometry, vol.201, issue.1-3, pp.87-100, 2000.
DOI : 10.1016/S1387-3806(00)00213-X

R. Liyanage and P. B. Armentrout, Ammonia activation by iron: state-specific reactions of Fe+(6D, 4F) with ND3 and the reaction of FeNH+ with D2, International Journal of Mass Spectrometry, vol.241, issue.2-3, pp.243-260, 2005.
DOI : 10.1016/j.ijms.2004.12.006

D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Proc. Cambridge Phil. Soc, pp.89-110, 1928.
DOI : 10.1017/S0305004100011919

D. R. Hartree, The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra, Proc. Cambridge Phil. Soc, pp.426-437, 1928.
DOI : 10.1017/S0305004100015954

L. H. Thomas, The calculation of atomic field, Proc. Cambridge Phil, pp.542-548, 1927.

E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell'atome, Rend. Accad. Naz. Lincei, vol.6, pp.602-607, 1927.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.464913

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.82, issue.1, pp.270-283, 1985.
DOI : 10.1063/1.448799

R. F. Browner, J. A. Caruso, D. J. Douglas, A. G. Gustavsson, D. A. Haydar et al., Inductively coupled plasma mass spectrometry, 1998.

R. S. Houk and N. Praphairaksit, Dissociation of polyatomic ions in the inductively coupled plasma, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.56, issue.7, pp.1069-1096, 2001.
DOI : 10.1016/S0584-8547(01)00236-1

N. Yamada, J. Takahashi, and K. Sakata, The effects of cell-gas impurities and kinetic energy discrimination in an octopole collision cell ICP-MS under non-thermalized conditions, Journal of Analytical Atomic Spectrometry, vol.17, issue.10, pp.1213-1222, 2002.
DOI : 10.1039/b205416g

T. W. Burgoyne, G. M. Hieftje, and R. A. Hites, Reducing the Energy Distribution in a Plasma-source Sector-field Mass Spectrometer Interface, Journal of Analytical Atomic Spectrometry, vol.12, issue.10, pp.1149-1153, 1997.
DOI : 10.1039/a607861c

P. K. Appelblad, I. Rodushkin, and D. C. Baxter, The use of Pt guard electrode in inductively coupled plasma sector field mass spectrometry: advantages and limitations, Journal of Analytical Atomic Spectrometry, vol.15, issue.4, pp.359-364, 2000.
DOI : 10.1039/a906531h

S. D. Tanner, V. I. Baranov, and D. R. Bandura, Reaction cells and collision cells for ICP-MS: a tutorial review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.57, issue.9, pp.1361-1452, 2002.
DOI : 10.1016/S0584-8547(02)00069-1

J. M. Moreno, M. Betti, and J. I. Garcia-alonso, Determination of Neptunium and Plutonium in the Presence of High Concentrations of Uranium by Ion Chromatography???Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom., vol.40, issue.3, pp.355-361, 1997.
DOI : 10.1039/A606359D

E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell et al., Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions, Analytica Chimica Acta, vol.310, issue.1, pp.63-78, 1995.
DOI : 10.1016/0003-2670(95)00144-O

C. Pin and S. Joannon, Combined cation-exchange and extraction chromatography for the concomitant separation of Zr, Hf, Th, and the Lanthanides from geological materials, Talanta, vol.57, issue.2, pp.393-403, 2002.
DOI : 10.1016/S0039-9140(02)00040-1

Y. Fujikawa, M. Sugahara, E. Ikeda, and M. Fukui, Analysis of trace actinide elements in soil organic matter : optimization of sample processing to improve chemical separation of Uand Pu, Journal of Radioanalytical and Nuclear Chemistry, vol.252, issue.2, pp.399-405, 2002.
DOI : 10.1023/A:1015743011936

F. Chartier, M. Aubert, and M. Pilier, Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionization mass spectrometry after separation by high-performance liquid chromatography, Fresenius' Journal of Analytical Chemistry, vol.364, issue.4, pp.320-327, 1999.
DOI : 10.1007/s002160051343

T. Yokoyama, A. Makishima, and E. Nakamura, Separation of Thorium and Uranium from Silicate Rock Samples Using Two Commercial Extraction Chromatographic Resins, Analytical Chemistry, vol.71, issue.1, pp.135-141, 1999.
DOI : 10.1021/ac9805807

C. P. Marechal85-]-a, M. V. Vonderheide, A. V. Zoriy, C. Izmer, J. A. Pickhardt et al., Géochimie des isotopes du cuivre et du zinc : méthode, variabilité naturelle et application océanographique Determination of 90 Sr at ultratrace levels in urine by ICP-MS, J. Anal. At. Spectrom, vol.19, pp.675-680, 1998.

S. D. Tanner, Characterization of ionization and matrix suppression in inductively coupled ???cold??? plasma mass spectrometry, J. Anal. At. Spectrom., vol.40, issue.Suppl. 1, pp.905-921, 1995.
DOI : 10.1039/JA9951000905

F. Vanhaecke, ICP???MS, Analytical and Bioanalytical Chemistry, vol.372, issue.1, pp.20-21, 2002.
DOI : 10.1007/s00216-001-1147-0

K. E. Milgram, F. M. White, K. L. Goodner, C. H. Watson, D. W. Koppenaal et al., High-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Analytical Chemistry, vol.69, issue.18, pp.3714-3721, 1997.
DOI : 10.1021/ac970126n

G. Holland, Fundamentals of plasma source mass spectrometry : new developments and applications . PE-SCIEX, 71 Four Valley Drive, pp.4-4, 1999.

Z. Du and R. S. Houk, Attenuation of metal oxide ions in inductively coupled plasma mass spectrometry with hydrogen in a hexapole collision cell, Journal of Analytical Atomic Spectrometry, vol.15, issue.4, pp.383-388, 2000.
DOI : 10.1039/a905046i

W. Chen, T. Olney, and D. J. Douglas, Gas dynamics of the ICP ? MS interface : Impact pressure probe measurements of gas flow profiles, J. Anal. At. Spectrom, vol.14, pp.9-17, 1999.

W. Umrath, Fundamentals of Vacuum Technology. Products and References Book. Leybold Vacuum, p.142, 2002.

W. Umrath, Fundamentals of Vacuum Technology. Products and References Book. Leybold Vacuum, p.12, 2002.

D. W. Koppenaal, G. C. Eiden, and C. J. Barinaga, Collision and reaction cells in atomic mass spectrometry: development, status, and applicationsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of the Royal Society of Chemistry, the Editor or the Editorial Board of JAAS., Journal of Analytical Atomic Spectrometry, vol.19, issue.5, pp.561-570, 2004.
DOI : 10.1039/b403510k

R. Brennetot, L. Pierry, T. Atamyan, G. Favre, and D. Vailhen, Optimisation of the operating conditions of a quadripole ICP ? MS with hexapole collision/reaction cell for the analysis of selenium-79 in spent nuclear fuel using experimental designs, J. Anal. At. Spectrom, 2008.

B. Hattendorf and D. Günther, Characteristics and capabilities of an ICP-MS with a dynamic reaction cell for dry aerosols and laser ablation, J. Anal. At. Spectrom., vol.10, issue.9, pp.1125-1131, 2000.
DOI : 10.1039/B001677M

P. R. Mason, K. Kaspers, and M. J. Van-bergen, Determination of sulfur isotope ratios and concentrations in water samples using ICP-MS incorporating hexapole ion optics, Journal of Analytical Atomic Spectrometry, vol.14, issue.7, pp.1067-1074, 1999.
DOI : 10.1039/a902037c

S. E. O-'brien, B. W. Acon, S. F. Boulyga, J. S. Becker, and H. J. Dietze, Reduction of molecular ion interferences with hexapole collision cell in direct injection nebulization???inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.18, issue.3, pp.230-238, 2003.
DOI : 10.1039/b209047n

S. D. Tanner, V. I. Baranov, and U. Vollkopf, A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS), Journal of Analytical Atomic Spectrometry, vol.15, issue.9, pp.1261-1269, 2000.
DOI : 10.1039/b002604m

M. Iglesias, N. Gilon, E. Poussel, and J. Mermet, Evaluation of an ICP-collision/reaction cell-MS system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions, Journal of Analytical Atomic Spectrometry, vol.17, issue.10, pp.171240-1247, 2002.
DOI : 10.1039/b204786c

L. J. Moens, F. F. Vanhaecke, D. R. Bandura, V. I. Baranov, and S. D. Tanner, Elimination of isobaric interferences in ICP-MS, using ion???molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study, J. Anal. At. Spectrom., vol.71, issue.9, pp.991-994, 2001.
DOI : 10.1039/B103707M

B. Hattendorf, D. Gunther, M. Schonbachler, and A. Halliday, Simultaneous Ultratrace Determination of Zr and Nb in Chromium Matrixes with ICP-Dynamic Reaction Cell MS, Analytical Chemistry, vol.73, issue.22, pp.5494-5498, 2001.
DOI : 10.1021/ac015549a

D. R. Bandura, V. I. Baranov, and S. D. Tanner, Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell, Journal of the American Society for Mass Spectrometry, vol.43, issue.10, pp.1176-1185, 2002.
DOI : 10.1016/S1044-0305(02)00435-X

S. D. Tanner, C. S. Li, V. Vais, V. Baranov, and D. R. Bandura, Using a Band-Pass Reaction Cell Inductively Coupled Plasma Mass Spectrometer, Analytical Chemistry, vol.76, issue.11, pp.3042-3048, 2004.
DOI : 10.1021/ac049899j

H. Niu and R. S. Houk, Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.51, issue.8, pp.779-815, 1996.
DOI : 10.1016/0584-8547(96)01506-6

A. L. Gray and J. G. Williams, System optimisation and the effect on polyatomic, oxide and doubly charged ion response of a commercial inductively coupled plasma mass spectrometry instrument, Journal of Analytical Atomic Spectrometry, vol.2, issue.6
DOI : 10.1039/ja9870200599

R. S. Houk, J. K. Schoer, and J. S. Crain, Plasma potential measurements for inductively coupled plasma mass spectrometry with a centre-tapped load coil, Journal of Analytical Atomic Spectrometry, vol.2, issue.3, pp.283-286, 1987.
DOI : 10.1039/ja9870200283

J. E. Fulford and D. J. Douglas, Ion Kinetic Energies in Inductively Coupled Plasma/Mass Spectrometry (ICP-MS), Applied Spectroscopy, vol.40, issue.7, pp.971-974, 1986.
DOI : 10.1366/0003702864508160

. Micromass, Isoprobe User's Guide. Floats Road, Wythenshawe, Manchester M23 9 LZ, UK, 1 edition. Chapter 3 : The Hexapole and Ion Optics, p.32

V. N. Epov, V. Taylor, D. Lariviere, R. D. Evans, and R. J. Cornett, Collision cell chemistry for the analysis of radioisotopes by inductively coupled plasma mass spectrometry, Journal of Radioanalytical and Nuclear Chemistry, vol.258, issue.3, pp.473-482, 2003.
DOI : 10.1023/B:JRNC.0000011740.95950.d9

H. V. Bronkhorst, Fluidat on the net, version 1.18/5, 2008.

J. A. Olivares, R. S. Houk, J. B. Olsen, J. H. Macedone, and P. B. Farnsworth, Kinetic energy distributions of positive ions in an inductively coupled plasma mass spectrometer Source gas kinetic temperatures in an ICP-MS determined by measurements of the gas velocities in the first vacuum stage, Appl. Spectrosc. J. Anal. At. Spectrom, vol.39114, issue.21, pp.1070-1077856, 1985.

M. A. Dexter, H. J. Reid, and B. L. Sharp, The effect of ion energy on reactivity and species selectivity in hexapole collision/reaction cell ICP-MS, Journal of Analytical Atomic Spectrometry, vol.17, issue.7, pp.676-681, 2002.
DOI : 10.1039/b205674g

N. Jakubowski, B. J. Raeymaekers, J. A. Broekaert, and D. Stuewer, Study of plasma potential effects in a 40 MHz inductively coupled plasma mass spectrometry system, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.44, issue.2, pp.219-228, 1989.
DOI : 10.1016/0584-8547(89)80024-2

M. Huang, S. A. Lehn, E. J. Andrews, and G. M. Hieftje, Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.52, issue.8, pp.52-1173, 1997.
DOI : 10.1016/S0584-8547(97)00007-4

S. D. Tanner, Plasma temperature from ion kinetic energies and implications for the source of diatomic oxide ions in inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.8, issue.6, pp.891-897, 1993.
DOI : 10.1039/ja9930800891

A. L. Gray, R. S. Houk, and J. G. Williams, Langmuir probe potential measurements in the plasma and their correlation with mass spectral characteristics in inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.2, issue.1
DOI : 10.1039/ja9870200013

C. J. Park and S. M. Noh, Langmuir probe potential measurements of an inductively coupled plasma: effect of radiofrequency and shield between load coil and plasma, Journal of Analytical Atomic Spectrometry, vol.13, issue.8, pp.715-720, 1998.
DOI : 10.1039/a801868e

F. Vanhaecke, R. Dams, and C. Vandecasteele, ???Zone model??? as an explanation for signal behaviour and non-spectral interferences in inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., vol.4, issue.3, pp.433-438, 1993.
DOI : 10.1039/JA9930800433

M. Samson, J. P. Grouiller, J. Pavageau, P. Marimbeau, J. Pinel et al., CESAR : A simplified evolution code for reprocessing applications, 5th International Nuclear Conference on Recycling , Conditioning and Disposal, pp.986-993, 1998.

A. Alvarez and N. Navarro, Method for actinides and Sr-90 determination in urine samples, Applied Radiation and Isotopes, vol.47, issue.9-10, pp.9-10869, 1996.
DOI : 10.1016/S0969-8043(96)00077-2

V. F. Taylor, R. D. Evans, and R. J. Cornett, Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP???MS, Analytical and Bioanalytical Chemistry, vol.13, issue.1, pp.343-350, 2007.
DOI : 10.1007/s00216-006-0938-8

H. Isnard, M. Aubert, P. Blanchet, R. Brennetot, F. Chartier et al., Determination of 90 Sr/ 238 U ratio by double isotope dilution inductively coupled plasma mass spectrometer with multiple collection in spent nuclear fuel samples with in situ 90 Sr/ 90 Zr separation in a collision-reaction cell, Spectrochim. Acta Part B, issue.2, pp.61150-156, 2006.

Z. Grahek, I. Eskinja, K. Kosutic, S. Lulic, and K. Kvastek, Isolation of radioactive strontium from natural samples: A semi-automatic procedure, Journal of Radioanalytical and Nuclear Chemistry, vol.379, issue.3, pp.617-626, 1999.
DOI : 10.1007/BF02347222

S. B. Clark, Separation and determination of radiostrontium in calcium carbonate matrices of biological origin, Journal of Radioanalytical and Nuclear Chemistry Articles, vol.26, issue.2, pp.297-302, 1995.
DOI : 10.1007/BF02038427

J. T. Chuang and J. G. Lo, The solvent extraction of carrier-free90Y from90Sr with crown ethers, Journal of Radioanalytical and Nuclear Chemistry Articles, vol.53, issue.2, pp.307-317, 1995.
DOI : 10.1007/BF02042610

J. S. Becker and H. Dietze, Ultratrace and precise isotope analysis by double-focusing sector field inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.13, issue.9, pp.1057-1063, 1998.
DOI : 10.1039/a801528g

N. Jakubowski, L. Moens, and F. Vanhaecke, Sector field mass spectrometers in ICP-MS, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.53, issue.13, pp.1739-1763, 1998.
DOI : 10.1016/S0584-8547(98)00222-5

B. Hattendorf and D. Günther, Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.58, issue.1, pp.1-13, 2003.
DOI : 10.1016/S0584-8547(02)00168-4

S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin et al., Gas-phase ion and neutral thermochemistry, J. Phys. and Chem. Ref. Data, vol.17, issue.1, pp.433-438, 1988.

F. Rondinelli, N. Russo, and M. Toscano, CO2 Activation by Zr+ and ZrO+ in Gas Phase, Theoretical Chemistry Accounts, vol.12, issue.180, pp.434-440, 2006.
DOI : 10.1007/s00214-006-0124-2

S. Portmann and H. P. Lüthi, MOLEKEL : An interactive molecular graphics tool, Chimia, vol.54, pp.766-770, 2000.

V. V. Lavrov, V. Blagojevic, G. K. Koyanagi, G. Orlova, and D. K. Bohme, Gas-Phase Oxidation and Nitration of First-, Second-, and Third-Row Atomic Cations in Reactions with Nitrous Oxide:?? Periodicities in Reactivity, The Journal of Physical Chemistry A, vol.108, issue.26, pp.5610-5624, 2004.
DOI : 10.1021/jp049931d

M. R. Sievers and P. B. Armentrout, Oxidation of CO and reduction of CO 2 by gas phase Zr + , ZrO + , and ZrO + 2, Int. J. Mass Spectrom, vol.185187, issue.186, pp.117-129, 1999.

R. J. Van-zee, S. Li, and W. J. Weltner, Ground electronic states of ZrO+, HfO+, and Nb+2. ESR spectra of the matrix-isolated ions, Chemical Physics Letters, vol.217, issue.4, pp.381-386, 1994.
DOI : 10.1016/0009-2614(93)E1412-A

N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Canadian Journal of Chemistry, vol.70, issue.2, pp.560-571, 1992.
DOI : 10.1139/v92-079

S. Huzinaga and M. Klobukowski, Well-tempered Gaussian basis sets for the calculation of matrix Hartree???Fock wavefunctions, Chemical Physics Letters, vol.212, issue.3-4, pp.3-4260, 1993.
DOI : 10.1016/0009-2614(93)89323-A

L. A. Lajohn, P. A. Christiansen, R. B. Ross, T. Atashroo, and W. C. Ermler, relativistic effective potentials with spin???orbit operators. III. Rb through Xe, The Journal of Chemical Physics, vol.87, issue.5, pp.2812-2824, 1987.
DOI : 10.1063/1.453069

S. Chiodo, N. Russo, and E. Sicilia, Newly developed basis sets for density functional calculations, Journal of Computational Chemistry, vol.24, issue.2
DOI : 10.1002/jcc.20144

J. B. Pedley and E. M. Marshall, Thermochemical Data for Gaseous Monoxides, Journal of Physical and Chemical Reference Data, vol.12, issue.4, pp.967-1031, 1983.
DOI : 10.1063/1.555698

D. K. Bohme, Data Transferability Issues : SIFT versus Reaction Cell Kinetics, 2008.

J. B. Schilling and J. L. Beauchamp, Hydrocarbon activation by gas-phase lanthanide cations: interaction of praseodymium (Pr+), europium (Eu+), and gadolinium (Gd+) with small alkanes, cycloalkanes, and alkenes, Journal of the American Chemical Society, vol.110, issue.1, pp.15-24, 1988.
DOI : 10.1021/ja00209a002

J. K. Gibson, Role of Atomic Electronics in f-Element Bond Formation:?? Bond Energies of Lanthanide and Actinide Oxide Molecules, The Journal of Physical Chemistry A, vol.107, issue.39, pp.7891-7899, 2003.
DOI : 10.1021/jp035003n

N. Asd-team, Nist atomic spectra database (version 3.1.5), 2008.