P. R. Amestoy, T. A. Davis, and I. S. Duff, An Approximate Minimum Degree Ordering Algorithm, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.4, pp.886-905, 1996.
DOI : 10.1137/S0895479894278952

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. R. Amestoy, I. S. Duff, J. Koster, and J. Excellent, MUMPS: A General Purpose Distributed Memory Sparse Solver, Proceedings of PARA2000, the Fifth International Workshop on Applied Parallel Computing, pp.122-131, 1947.
DOI : 10.1007/3-540-70734-4_16

URL : https://hal.archives-ouvertes.fr/hal-00856652

P. R. Amestoy, I. S. Duff, J. Koster, and J. Excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra et al., LAPACK's user's guide, Society for Industrial and Applied Mathematics, 1992.

M. Arioli, Private communication During Matrix Analysis and Applications CIRM Luminy -October 15-19, 2007.

M. Arioli, I. S. Duff, S. Gratton, and S. Pralet, Note on GMRES preconditionned by a perturbed LDLt decomposition with static pivoting, SIAM Journal on Scientific Computing, vol.25, issue.5, pp.2024-2044, 2007.

W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics, vol.9, issue.1, pp.17-29, 1951.
DOI : 10.1090/qam/42792

C. Ashcraft, The fan-both family of column-based distributed Cholesky factorisation algorithm, Graph Theory and Sparse Matrix Computations, pp.159-190, 1993.

O. Axelsson, Iterative Solution Methods, 1994.
DOI : 10.1017/CBO9780511624100

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik et al., PETSc users manual, 2004.

H. Ben-hadj-ali, S. Operto, J. Virieux, and F. Sourbier, Three-dimensional frequencydomain full waveform tomography, Geophysical Research Abstracts, vol.10, 2008.

M. Benzi, C. D. Meyer, and M. T. ?uma, A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method, SIAM Journal on Scientific Computing, vol.17, issue.5, pp.1135-1149, 1996.
DOI : 10.1137/S1064827594271421

M. Benzi and M. T. ?uma, A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, vol.19, issue.3, pp.968-994, 1998.
DOI : 10.1137/S1064827595294691

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

P. Bjørstad and O. Widlund, Iterative Methods for the Solution of Elliptic Problems on Regions Partitioned into Substructures, SIAM Journal on Numerical Analysis, vol.23, issue.6, pp.1097-1120, 1986.
DOI : 10.1137/0723075

P. E. Bjørstad and O. B. Widlund, Iterative Methods for the Solution of Elliptic Problems on Regions Partitioned into Substructures, SIAM Journal on Numerical Analysis, vol.23, issue.6, pp.1093-1120, 1986.
DOI : 10.1137/0723075

J. Bourgat, R. Glowinski, P. L. Tallec, and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, Domain Decomposition Methods, pp.3-16, 1989.

J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring I, Math. Comp, issue.175, pp.47103-134, 1986.

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy, ACM Transactions on Mathematical Software, vol.34, issue.4, 2008.
DOI : 10.1145/1377596.1377597

X. Cai and Y. Saad, Overlapping domain decomposition algorithms for general sparse matrices. Numerical Linear Algebra with Applications, pp.221-237, 1996.
DOI : 10.1002/(sici)1099-1506(199605/06)3:3<221::aid-nla80>3.3.co;2-z

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Cai and M. Sarkis, A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems, SIAM Journal on Scientific Computing, vol.21, issue.2, pp.792-797, 1999.
DOI : 10.1137/S106482759732678X

B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand, Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations, SIAM Journal on Scientific Computing, vol.27, issue.3, pp.774-792, 2005.
DOI : 10.1137/040603917

URL : http://purl.org/net/epubs/manifestation/316

L. M. Carvalho, L. Giraud, and G. Meurant, Local preconditioners for two-level nonoverlapping domain decomposition methods. Numerical Linear Algebra with Applications, pp.207-227, 2001.
DOI : 10.1002/nla.237

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. M. Carvalho, L. Giraud, and P. L. Tallec, Algebraic Two-Level Preconditioners for the Schur Complement Method, SIAM Journal on Scientific Computing, vol.22, issue.6, pp.1987-2005, 2001.
DOI : 10.1137/S1064827598340809

E. Chow, A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners, SIAM Journal on Scientific Computing, vol.21, issue.5, pp.1804-1822, 2000.
DOI : 10.1137/S106482759833913X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. De-roeck, P. Le-tallec, J. Demmel, Y. Hida, W. Kahan et al., Analysis and test of a local domain decomposition preconditioner Error bounds from extra precise iterative refinement, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp.112-128, 1991.

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, S. X. Li, and J. W. Liu, A Supernodal Approach to Sparse Partial Pivoting, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.3, pp.720-755, 1999.
DOI : 10.1137/S0895479895291765

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. W. Demmel, J. R. Gilbert, and X. S. Li, An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.4, pp.915-952, 1999.
DOI : 10.1137/S0895479897317685

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Dolean, S. Lanteri, and R. Perrussel, A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, Journal of Computational Physics, vol.227, issue.3, pp.2044-2072, 2008.
DOI : 10.1016/j.jcp.2007.10.004

URL : https://hal.archives-ouvertes.fr/inria-00155231

J. Drko?ová, M. Rozlo?ník, Z. Strako?, and A. Greenbaum, Numerical stability of GMRES, BIT Numerical Mathematics, vol.29, issue.1, pp.309-330, 1995.
DOI : 10.1007/BF01732607

M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz Analysis of Iterative Substructuring Algorithms for Elliptic Problems in Three Dimensions, SIAM Journal on Numerical Analysis, vol.31, issue.6, pp.311662-1694, 1993.
DOI : 10.1137/0731086

I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, 1986.

I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse Symmetric Linear, ACM Transactions on Mathematical Software, vol.9, issue.3, pp.302-325, 1983.
DOI : 10.1145/356044.356047

I. S. Duff and J. K. Reid, The Multifrontal Solution of Unsymmetric Sets of Linear Equations, SIAM Journal on Scientific and Statistical Computing, vol.5, issue.3, pp.633-641, 1984.
DOI : 10.1137/0905045

J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by deflation, Journal of Computational and Applied Mathematics, vol.69, issue.2, pp.303-318, 1996.
DOI : 10.1016/0377-0427(95)00047-X

URL : http://doi.org/10.1016/0377-0427(95)00047-x

Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, On a class of preconditioners for solving the??Helmholtz equation, Applied Numerical Mathematics, vol.50, issue.3-4, pp.3-4409, 2004.
DOI : 10.1016/j.apnum.2004.01.009

C. Farhat and F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, International Journal for Numerical Methods in Engineering, vol.28, issue.6, pp.1205-1227, 1991.
DOI : 10.1002/nme.1620320604

V. Frayssé and L. Giraud, A set of conjugate gradient routines for real and complex arithmetics, CERFACS, 2000.

V. Frayssé, L. Giraud, and S. Gratton, A set of flexible GMRES routines for real and complex arithmetics on high performance computers, CERFACS, 2006.

V. Frayssé, L. Giraud, S. Gratton, and J. Langou, Algorithm 842, ACM Transactions on Mathematical Software, vol.31, issue.2, pp.228-238, 2005.
DOI : 10.1145/1067967.1067970

A. C. Gale, R. C. Almeida, S. M. Malta, and A. F. Loula, Finite element analysis of convection dominated reaction???diffusion problems, Applied Numerical Mathematics, vol.48, issue.2, pp.205-222, 2004.
DOI : 10.1016/j.apnum.2003.10.002

L. Giraud, S. Gratton, and E. Martin, Incremental spectral preconditioners for sequences of linear systems, Applied Numerical Mathematics, vol.57, issue.11-12, pp.1164-1180, 2007.
DOI : 10.1016/j.apnum.2007.01.005

L. Giraud, S. Gratton, and J. Langou, Convergence in Backward Error of Relaxed GMRES, SIAM Journal on Scientific Computing, vol.29, issue.2, pp.710-728, 2007.
DOI : 10.1137/040608416

L. Giraud and A. Haidar, Parallel algebraic hybrid solvers for large 3D convection-diffusion problems, Numerical Algorithms, vol.14, issue.2???3
DOI : 10.1007/s11075-008-9248-x

URL : https://hal.archives-ouvertes.fr/hal-00441717

L. Giraud, A. Haidar, and S. Pralet, Using multiple levels of parallelism to enhance the performance of hybrid linear solvers

L. Giraud, A. Haidar, and L. T. Watson, Mixed-Precision Preconditioners in Parallel Domain Decomposition Solvers, Lectures notes computational science and engineering, pp.357-364, 2008.
DOI : 10.1007/978-3-540-75199-1_44

L. Giraud, A. Haidar, and L. T. Watson, Parallel scalability study of hybrid preconditioners in three dimensions, Parallel Computing, vol.34, issue.6-8, pp.363-379, 2008.
DOI : 10.1016/j.parco.2008.01.006

L. Giraud, A. Marrocco, and J. , Iterative versus direct parallel substructuring methods in semiconductor device modelling. Numerical Linear Algebra with Applications, pp.33-53, 2005.
DOI : 10.1002/nla.391

L. Giraud and R. Tuminaro, Algebraic Domain Decomposition Preconditioners, Mesh partitioning techniques and domain decomposition methods, pp.187-216, 2007.
DOI : 10.4203/csets.17.8

G. H. Golub and C. Van-loan, Matrix computations, 1996.

A. Greenbaum, Iterative methods for solving linear systems, Society for Industrial and Applied Mathematics (SIAM), 1997.
DOI : 10.1137/1.9781611970937

W. D. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementation of the MPI message passing interface standard, Parallel Computing, vol.22, issue.6, p.22, 1996.
DOI : 10.1016/0167-8191(96)00024-5

M. Grote and T. Huckle, Parallel Preconditioning with Sparse Approximate Inverses, SIAM Journal on Scientific Computing, vol.18, issue.3, pp.838-853, 1997.
DOI : 10.1137/S1064827594276552

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Heroux, AztecOO user guide, 2004.
DOI : 10.2172/974892

M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu et al., An overview of the Trilinos project, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31397-423, 2005.
DOI : 10.1145/1089014.1089021

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436, 1952.
DOI : 10.6028/jres.049.044

N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.
DOI : 10.1137/1.9780898718027

G. Karypis and V. Kumar, METIS, unstructured graph partitioning and sparse matrix ordering system. version 2.0, 1995.

L. Y. Kolotilina, A. Yu, A. A. Yeremin, and . Nikishin, Factorized sparse approximate inverse preconditionings. III: Iterative construction of preconditioners Originally published in Russian in Zap, Journal of Mathematical Sciences Nauchn. Semin. POMI, vol.101, issue.248, pp.3237-325417, 1998.
DOI : 10.1137/0614004

J. Kurzak and J. Dongarra, Implementation of the mixed-precision high performance LIN- PACK benchmark on the CELL processor, 2006.

C. Lanczos, Solution of systems of linear equations by minimized iterations, Journal of Research of the National Bureau of Standards, vol.49, issue.1, pp.33-53, 1952.
DOI : 10.6028/jres.049.006

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari et al., Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy, 2006.

P. and L. Tallec, Domain decomposition methods in computational mechanics, of Computational Mechanics Advances, pp.121-220, 1994.

Z. Li, Y. Saad, and M. Sosonkina, pARMS: a parallel version of the algebraic recursive multilevel solver, Numerical Linear Algebra with Applications, vol.21, issue.5-6, 2001.
DOI : 10.1002/nla.325

J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering, vol.13, issue.3, pp.233-241, 1993.
DOI : 10.1002/cnm.1640090307

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Mathematics of Computation, vol.65, issue.216, pp.1387-1401, 1996.
DOI : 10.1090/S0025-5718-96-00757-0

J. Mandel and R. Tezaur, Convergence of a substructuring method with Lagrange multipliers, Numerische Mathematik, vol.73, issue.4, pp.473-487, 1996.
DOI : 10.1007/s002110050201

G. Meurant, The Lanczos and conjugate gradient algorithms: from theory to finite precision computations. Software, Environments, and Tools 19, SIAM, 2006.
DOI : 10.1137/1.9780898718140

R. B. Morgan, Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1112-1135
DOI : 10.1137/S0895479897321362

R. B. Morgan, A Restarted GMRES Method Augmented with Eigenvectors, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.4, pp.1154-1171, 1995.
DOI : 10.1137/S0895479893253975

K. W. Morton, Numerical Solution of Convection-Diffusion Problems, 1996.

S. Operto, J. Virieux, P. Amestoy, J. Y. L-'excellent, L. Giraud et al., 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, GEOPHYSICS, vol.72, issue.5, pp.195-211, 2007.
DOI : 10.1190/1.2759835

URL : https://hal.archives-ouvertes.fr/insu-00355256

C. Paige, M. Rozlo?ník, and Z. Strako?, Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES, SIAM Journal on Matrix Analysis and Applications, vol.28, issue.1, pp.264-284, 2006.
DOI : 10.1137/050630416

C. C. Paige and M. A. Saunders, Solution of Sparse Indefinite Systems of Linear Equations, SIAM Journal on Numerical Analysis, vol.12, issue.4, pp.617-629, 1975.
DOI : 10.1137/0712047

M. L. Parks, E. De-sturler, G. Mackey, D. D. Jhonson, and S. Maiti, Recycling Krylov Subspaces for Sequences of Linear Systems, SIAM Journal on Scientific Computing, vol.28, issue.5, 2004.
DOI : 10.1137/040607277

R. G. Pratt, Velocity Models From Frequency Domain Waveform Tomography ??? Past, Present and Future, 66th EAGE Conference and Exhibition, Workshops, 2004.
DOI : 10.3997/2214-4609.201405674

G. Radicati and Y. Robert, Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor, Parallel Computing, vol.11, issue.2, pp.223-239, 1989.
DOI : 10.1016/0167-8191(89)90030-6

C. Ravaut, S. Operto, L. Improta, J. Virieux, A. Herrero et al., Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophysical Journal International, vol.159, issue.3, pp.1032-1056, 2004.
DOI : 10.1111/j.1365-246X.2004.02442.x

URL : https://hal.archives-ouvertes.fr/hal-00407340

H. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations Convection-diffusion and flow problems, of Springer Series in Computational Mathematics, 1996.
DOI : 10.1007/978-3-662-03206-0

Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM Journal on Scientific Computing, vol.14, issue.2, pp.461-469, 1993.
DOI : 10.1137/0914028

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, vol.19, issue.4, pp.387-402, 1994.
DOI : 10.1002/nla.1680010405

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Saad, Iterative Methods for Sparse Linear Systems, 2003.
DOI : 10.1137/1.9780898718003

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Saad, H. A. Van, and . Vorst, Iterative solution of linear systems in the 20-th century, 1999.

J. Schulze, Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods, Bit Numerical Mathematics, vol.41, issue.4, pp.800-841, 2001.
DOI : 10.1023/A:1021908421589

H. A. Schwarz, Über eine grenzübergang durch alternirendes verfahren, Gesammelete Mathematische Abhandlungen First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, pp.133-143, 1870.

V. Shanthi and N. Ramanujam, Asymptotic numerical methods for singularly perturbed fourth order ordinary differential equations of convection???diffusion type, Applied Mathematics and Computation, vol.133, issue.2-3, pp.559-579, 2002.
DOI : 10.1016/S0096-3003(01)00257-0

V. Simoncini and E. Gallopoulos, An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides, SIAM Journal on Scientific Computing, vol.16, issue.4, pp.917-933, 1995.
DOI : 10.1137/0916053

B. F. Smith, Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity, 1990.

B. F. Smith, W. Bjørstad, and . Gropp, Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, 1996.

]. F. Sourbier, A. Haidar, L. Giraud, R. Brossier, S. Operto et al., Combining direct and iterative solvers for improving efficiency of solving wave equations when considering multi-sources problems, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408470

F. Sourbier, S. Operto, and J. Virieux, Acoustic full-waveform inversion in the frequency domain, Conception, verification and application of innovative techniques to study active volcanoes, pp.295-307, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408271

M. Stynes, Steady-state convection-diffusion problems, Acta Numerica, vol.14, pp.445-508, 2005.
DOI : 10.1017/S0962492904000261

P. , L. Tallec, Y. Roeck, and M. Vidrascu, Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, vol.34, pp.93-117, 1991.
DOI : 10.1016/0377-0427(91)90150-i

URL : https://hal.archives-ouvertes.fr/inria-00075376

R. S. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid, Official Aztec user's guide: Version 2.1, 1999.

T. Vanorio, J. Virieux, P. Capuano, and G. Russo, Three-dimensional seismic tomography from p wave and s wave microearthquake travel times and rock physics characterization of the campi flegrei caldera, J. Geophys. Res, vol.110, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00355213

J. H. Wilkinson, Rounding Errors in Algebraic Processes, 1963.