-. Multi, 156 5.4.2 Heuristiques multi-applications, p.168

I. Ahmad and Y. Kwok, A New Approach to Scheduling Parallel Programs Using Task Duplication, 1994 International Conference on Parallel Processing (ICPP'94), pp.47-51, 1994.
DOI : 10.1109/ICPP.1994.37

I. Ahmad and Y. Kwok, On exploiting task duplication in parallel program scheduling, IEEE Transactions on Parallel and Distributed Systems, vol.9, issue.9, pp.872-892, 1998.
DOI : 10.1109/71.722221

A. Amar, R. Bolze, Y. Caniou, E. Caron, B. Depardon et al., Tunable scheduling in a GridRPC framework, Concurrency & Computation : Practice & Experience, 2008.
DOI : 10.1002/cpe.1283

URL : https://hal.archives-ouvertes.fr/hal-01428209

P. Amestoy, M. Daydé, C. Hamerling, M. Pantel, and C. Puglisi, Management of services based on a semantic description within the gridtlse project, VECPAR'06 -Workshop on Computational Grids and Clusters (WCGC), Rio de Janeiro, Brésil, number 4395 in LNCS, pp.634-643, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00689156

K. Amin, G. V. Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton et al., GridAnt: a client-controllable grid workflow system, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the, pp.70210-70213, 2004.
DOI : 10.1109/HICSS.2004.1265491

D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage, Fifth IEEE/ACM International Workshop on Grid Computing, pp.4-10, 2004.
DOI : 10.1109/GRID.2004.14

D. P. Anderson, E. Korpela, and R. Walton, High-Performance Task Distribution for Volunteer Computing, First International Conference on e-Science and Grid Computing (e-Science'05), pp.196-203, 2005.
DOI : 10.1109/E-SCIENCE.2005.51

G. Antoniu, M. Bougé, and L. , Juxmem : An adaptive supportive platform for data sharing on the grid, Scalable Computing : Practice and Experience, vol.6, issue.3, pp.45-55, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00000984

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller et al., Users' Guide to NetSolve V1.4. Computer Science Dept, 2001.

R. Bajaj and D. P. , Improving scheduling of tasks in a heterogeneous environment, IEEE Transactions on Parallel and Distributed Systems, vol.15, issue.2, pp.107-118, 2004.
DOI : 10.1109/TPDS.2004.1264795

O. Beaumont, V. Boudet, and Y. Robert, The iso-level scheduling heuristic for heterogeneous processors, Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002.
DOI : 10.1109/EMPDP.2002.994304

URL : https://hal.archives-ouvertes.fr/hal-00807412

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

R. Bolze, E. Caron, F. Desprez, G. Hoesch, and C. Pontvieux, A Monitoring and Visualization Tool and Its Application for a Network Enabled Server Platform, Computational Science and Its Applications -ICCSA 2006, pp.202-213, 2006.
DOI : 10.1007/11751649_22

URL : https://hal.archives-ouvertes.fr/hal-01430514

T. Bonald, L. Massoulié, A. Proutì, and J. Virtamo, A queueing analysis of max-min fairness, proportional fairness and balanced fairness, Queueing Systems, vol.48, issue.7, pp.65-84, 2006.
DOI : 10.1007/s11134-006-7587-7

URL : https://hal.archives-ouvertes.fr/hal-01244245

. Freund, A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems

E. N. Brown, R. E. Kass, and P. P. Mitra, Multiple neural spike train data analysis: state-of-the-art and future challenges, Nature Neuroscience, vol.7, issue.5, pp.456-461, 2004.
DOI : 10.1038/nn1228

P. Brucker, Scheduling Algorithms, 2007.

L. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, Comparative Evaluation Of The Robustness Of DAG Scheduling Heuristics, 2007.
DOI : 10.1007/978-0-387-09457-1_7

URL : https://hal.archives-ouvertes.fr/inria-00333903

J. Cao, A. T. Chan, Y. Sun, S. K. Das, and M. Guo, A taxonomy of application scheduling tools for high performance cluster computing, Cluster Computing, vol.3, issue.1, pp.355-371, 2006.
DOI : 10.1007/s10586-006-9747-2

J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd, ARMS: An Agent-Based Resource Management System for Grid Computing, Scientific Programming, vol.10, issue.2, pp.135-148, 2002.
DOI : 10.1155/2002/910792

J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, Gridflow : Workflow management for grid computing, CCGRID '03 : Proceedings of the 3st International Symposium on Cluster Computing and the Grid, p.198, 2003.

E. Caron, A. Chis, F. Desprez, and A. Su, Design of plug-in schedulers for a GridRPC environment, Future Generation Computer Systems, vol.24, issue.1, pp.46-57, 2008.
DOI : 10.1016/j.future.2007.02.005

URL : https://hal.archives-ouvertes.fr/hal-01428216

E. Caron, P. Kaur-chouhan, and H. Dail, Godiet : A deployment tool for distributed middleware on grid'5000, IEEE EXPGRID workshop. Experimental Grid Testbeds for the Assessment of Large- Scale Distributed Apllications and Tools. In conjunction with HPDC- 15, pp.1-8, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01430520

T. L. Casavant and J. G. , A taxonomy of scheduling in general-purpose distributed computing systems, IEEE Transactions on Software Engineering, vol.14, issue.2, pp.141-154, 1988.
DOI : 10.1109/32.4634

R. W. Conway, W. L. Maxwell, and L. W. Miller, The Theory of Scheduling, 1967.

A. Cooke, A. Gray, L. Ma, W. Nutt, J. Magowan et al., R-GMA: An Information Integration System for Grid Monitoring, Proc.Int.Conf. Cooperative Information Systems (CoopIS'03), 2003.
DOI : 10.1007/978-3-540-39964-3_29

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil et al., Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Scientific Programming, vol.13, issue.3, pp.219-237, 2005.
DOI : 10.1155/2005/128026

B. and D. Fabbro, ContributionàContributionà la gestion des données dans les grilles de calcuì a la demande : de la conceptionàconceptionà la normalisation, 2005.

D. Del-fabbro, B. Laiymani, J. Nicod, and L. Philippe, DTM: a service for managing data persistency and data replication in network-enabled server environments, Concurrency and Computation: Practice and Experience, vol.11, issue.16, pp.2125-2140, 2007.
DOI : 10.1002/cpe.1185

URL : https://hal.archives-ouvertes.fr/hal-00560818

R. Duan, R. Prodan, and T. Fahringer, Performance and cost optimization for multiple large-scale grid workflow applications, Proceedings of the 2007 ACM/IEEE conference on Supercomputing , SC '07, pp.1-12, 2007.
DOI : 10.1145/1362622.1362639

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.330.6635

T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig et al., ASKALON: a Grid application development and computing environment, The 6th IEEE/ACM International Workshop on Grid Computing, 2005., pp.122-131, 2005.
DOI : 10.1109/GRID.2005.1542733

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.491.2055

C. Ferdinand and R. Wilhelm, On predicting data cache behavior for real-time systems, LCTES '98 : Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems, pp.16-30, 1998.
DOI : 10.1007/BFb0057777

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, Condorg : A computation management agent for multi-institutional grids, Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10), 2001.

M. R. Garey and D. S. Johnson, Computers and Intractability ; A Guide to the Theory of NP-Completeness, 1990.

N. Garnier, A. Friedrich, R. Bolze, E. Bettler, L. Moulinier et al., MAGOS: multiple alignment and modelling server, Bioinformatics, vol.22, issue.17, pp.222164-2165, 2006.
DOI : 10.1093/bioinformatics/btl349

URL : https://hal.archives-ouvertes.fr/hal-00187919

A. Gerasoulis and T. Yang, A comparison of clustering heuristics for scheduling directed acyclic graphs onto multiprocessors. Parallel and Distributed Computing, pp.276-291, 1992.

T. Glatard, Description, Deployment and Optimization of Medical Image Analysis Workflows on Production Grids, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00460156

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, Flexible and Efficient Workflow Deployement of Data-Intensive Applications on Grids with MOTEUR, International Journal of High Performance Computing and Applications, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00459130

C. A. Goble and D. C. De-roure, myExperiment, Proceedings of the 2nd workshop on Workflows in support of large-scale science, WORKS '07, pp.1-2, 2007.
DOI : 10.1145/1273360.1273361

C. Gomez, Engineering and Scientific Computing with Scilab, 1998.
DOI : 10.1007/978-1-4612-1584-4

R. L. Graham, Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied Mathematics, vol.17, issue.2, pp.263-269, 1969.
DOI : 10.1137/0117039

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.8131

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Ann. Discrete Math, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

R. W. Hockney, The communication challenge for MPP: Intel Paragon and Meiko CS-2, Parallel Computing, vol.20, issue.3, pp.389-398, 1994.
DOI : 10.1016/S0167-8191(06)80021-9

. Internet, Workflow management coalition

M. Iverson and F. Ozguner, Dynamic, competitive scheduling of multiple DAGs in a distributed heterogeneous environment, Proceedings Seventh Heterogeneous Computing Workshop (HCW'98), 1998.
DOI : 10.1109/HCW.1998.666546

M. A. Iverson, O. Gregory, and J. Follen, Parallelizing existing applications in a distributed heterogeneous environment, 4th Heterogeneous Computing Workshop (HCW '95), pp.93-100, 1995.

R. Jain, D. Chiu, and W. Hawe, A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems. ArXiv Computer Science e-prints, 1998.

M. Jan, JUXMEM : un Service de partage transparent de données pour grilles de calcul fondé sur une approche pair-` a-pair, 2006.

E. Jeannot, Algorithms and Protocols for Data and Computation Management in Distributed and Heterogeneous Environments. HDR The Hague, Machine Scheduling Problems : Classification, Complexity and Computation. Martinus Nijhoff, 1976.

T. Kielmann, H. E. Bal, and K. Verstoep, Fast Measurement of LogP Parameters for Message Passing Platforms, Lecture Notes in Computer Science, vol.1800, pp.1176-1183, 2000.
DOI : 10.1007/3-540-45591-4_162

S. J. Kim and J. C. Browne, A general approach to mapping of parallel computation upon multiprocessor architectures, Int'l Conf. Parallel Processing, pp.1-8, 1988.

D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova, Characterizing resource availability in enterprise desktop grids, Future Generation Computer Systems, vol.23, issue.7, pp.888-903, 2007.
DOI : 10.1016/j.future.2006.11.001

K. Krauter, R. Buyya, M. , and M. , A taxonomy and survey of grid resource management systems for distributed computing, Software: Practice and Experience, vol.22, issue.2, 2002.
DOI : 10.1002/spe.432

Y. Kwok and I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Computing Surveys, vol.31, issue.4, pp.406-471, 1999.
DOI : 10.1145/344588.344618

S. Lacour, ContributionàContributionà l'Automatisation du Déploiement d'Applications sur des Grilles de Calcul, 2005.

L. Lefèvre, J. Gelas, and A. Orgerie, How an experimental grid is used : the grid5000 case and its impact on energy usage. Poster CC- Grid2008, 8th IEEE International Symposium on Cluster Computing and the Grid, 2008.

A. Legrand, A. Su, and F. Vivien, Minimizing the stretch when scheduling flows of divisible requests To appear. [63] Wikipedia l'encyclopédie libre. grille informatique, Journal of Scheduling, 2008.

J. E. Lennard and -. , Cohesion, Proceedings of the Physical Society, vol.43, issue.5, pp.461-482, 1931.
DOI : 10.1088/0959-5309/43/5/301

S. H. Low, A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking, vol.11, issue.4, pp.525-536, 2003.
DOI : 10.1109/TNET.2003.815297

S. Majithia, M. Shields, I. Taylor, and I. Wang, Triana: a graphical Web service composition and execution toolkit, Proceedings. IEEE International Conference on Web Services, 2004., p.514, 2004.
DOI : 10.1109/ICWS.2004.1314777

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.462.6808

M. Mezmaz, N. Melab, and E. Talbi, A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Optimization Problems, 2007 IEEE International Parallel and Distributed Processing Symposium, 2007.
DOI : 10.1109/IPDPS.2007.370217

URL : https://hal.archives-ouvertes.fr/inria-00083814

J. Mintseris, K. Wiehe, B. Pierce, R. Anderson, R. Chen et al., Protein-protein docking benchmark 2.0: An update, Proteins: Structure, Function, and Bioinformatics, vol.52, issue.2, pp.214-216, 2005.
DOI : 10.1002/prot.20560

H. Nakada, M. Sato, and S. Sekiguchi, Design and implementations of Ninf: towards a global computing infrastructure, Future Generation Computer Systems, vol.15, issue.5-6, pp.5-6649, 1999.
DOI : 10.1016/S0167-739X(99)00016-3

H. Nguyen, G. Berthommier, A. Friedrich, L. Poidevin, R. Ripp et al., Introduction du nouveau centre de données biomédicales décrypthon, CORIA 2008, COnférence en Recherche d'Information et Applications, 2008.

J. Pineau, Y. Robert, and F. Vivien, The impact of heterogeneity on master-slave scheduling, Parallel Computing, vol.34, issue.3, pp.158-176, 2008.
DOI : 10.1016/j.parco.2007.12.006

URL : https://hal.archives-ouvertes.fr/hal-00804401

F. Plewniak, L. Bianchetti, A. Brelivet, Y. Carles, F. Chalmel et al., PipeAlign: a new toolkit for protein family analysis, Nucleic Acids Research, vol.31, issue.13, pp.313829-3832, 2003.
DOI : 10.1093/nar/gkg518

C. Pouzat, M. Delescluse, P. Viot, and J. Diebolt, Improved spike-sorting by modeling firing statistics and burst-dependent spike amplitude attenuation : a Markov chain Monte Carlo approach Available from : http://intl-jn.physiology.org/cgi/content [76] EGEE project. Enabling grids for e-science web page, J Neurophysiol, vol.9191, issue.66, pp.2910-2928, 2004.

R. The and . Team, R-project : R a software environment for statistical computing and graphics

M. Quinson, Découverte automatique des caractéristiques et capacités d'une plate-forme de calcul distribué, 2003.

C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems, 1995.

S. Sacquin-mora, A. Carbone, and R. Lavery, Identification of Protein Interaction Partners and Protein???Protein Interaction Sites, Journal of Molecular Biology, vol.382, issue.5, pp.1276-1289, 2008.
DOI : 10.1016/j.jmb.2008.08.002

V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, 1989.

M. Sato, T. Boku, and D. Takahasi, OmniRPC: a grid RPC system for parallel programming in cluster and grid environment, CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings., pp.206-213, 2003.
DOI : 10.1109/CCGRID.2003.1199370

E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski, GridLab???a grid application toolkit and testbed, Future Generation Computer Systems, vol.18, issue.8, pp.1143-1153, 2002.
DOI : 10.1016/S0167-739X(02)00091-2

URL : https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/3948

K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka, The end-user and middleware apis for gridrpc, Workshop on Grid Application Programming Interfaces, In conjunction with GGF12, 2004.

Z. Shi and J. J. Dongarra, Scheduling workflow applications on processors with different capabilities, Future Generation Computer Systems, vol.22, issue.6, pp.665-675, 2006.
DOI : 10.1016/j.future.2005.11.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9779

G. C. Sih and E. A. Lee, A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures, IEEE Transactions on Parallel and Distributed Systems, vol.4, issue.2
DOI : 10.1109/71.207593

T. F. Smith and M. S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

B. The and . Team, The berkeley open infrastructure for network computing

D. The and . Team, Diet : Distributed interactive engineering toolbox) http://graal.ens-lyon.fr/DIET. [94] The DIET team. Diet user's manual

D. The, Godiet : a deployment tool for diet. http ://graal.enslyon .fr/ diet/godiet.html. [96] The DIET team. Vizdiet : a vizual representation of diet

B. T. Beowulf, Scalable performance clusters based on commodity hardware

. Kadeploy, Kadeploy : a fast and scalable deployment system. http://kadeploy.imag.fr/. [104] the OAR team. Oar : Resource management system for high performance computing

H. Topcuoglu, S. Hariri, and M. Wu, Task scheduling algorithms for heterogeneous processors, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99), 1999.
DOI : 10.1109/HCW.1999.765092

H. Topcuouglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 1970.
DOI : 10.1109/71.993206

F. Wolf and R. Ernst, Execution cost interval refinement in static software analysis, Journal of Systems Architecture, vol.47, issue.3-4, pp.339-356, 2001.
DOI : 10.1016/S1383-7621(00)00053-9

I. Ahmad and Y. Kwok, Benchmarking the task graph scheduling algorithms, IPPS '98 : Proceedings of the 12th. International Parallel Processing Symposium on International Parallel Processing Symposium, p.531, 1998.

T. Yang and A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded number of processors, IEEE Transactions on Parallel and Distributed Systems, vol.5, issue.9, pp.951-967, 1994.
DOI : 10.1109/71.308533

J. Yu and R. Buyya, A taxonomy of scientific workflow systems for grid computing, ACM SIGMOD Record, vol.34, issue.3, pp.44-49, 2005.
DOI : 10.1145/1084805.1084814

M. Zacharias, Protein-protein docking with a reduced protein model accounting for side-chain flexibility, Protein Science, vol.238, issue.6, pp.1271-1282, 2003.
DOI : 10.1110/ps.0239303

H. Zhao and R. Sakellariou, An Experimental Investigation into the Rank Function of the Heterogeneous Earliest Finish Time Scheduling Algorithm, Euro-Par, 2003.
DOI : 10.1007/978-3-540-45209-6_28

H. Zhao and R. Sakellariou, Scheduling multiple dags onto heterogeneous systems, Proceedings of the 15th Heterogeneous Computing Workshop (HCW), 2006.