S. Datta, Electronic transport in mesoscopic systems, 1995.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, 1998.
DOI : 10.1142/p080

B. J. Van-wees, H. Van-houten, C. W. Beenakker, and J. G. Williamson, Quantized conductance of point contacts in a two-dimensional electron gas, Physical Review Letters, vol.60, issue.9, p.848, 1988.
DOI : 10.1103/PhysRevLett.60.848

D. A. Wharam, T. J. Thornton, R. Newbury, and M. Pepper, One-dimensional transport and the quantisation of the ballistic resistance, Journal of Physics C: Solid State Physics, vol.21, issue.8, p.209, 1988.
DOI : 10.1088/0022-3719/21/8/002

C. J. Muller, J. M. Van-ruitenbeek, and L. J. De-jongh, Experimental observation of the transition from weak link to tunnel junction, Physica C: Superconductivity, vol.191, issue.3-4, p.485, 1992.
DOI : 10.1016/0921-4534(92)90947-B

R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM Journal of Research and Development, vol.1, issue.3, p.223, 1957.
DOI : 10.1147/rd.13.0223

R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philosophical Magazine, vol.1, issue.172, p.863, 1970.
DOI : 10.1080/00018736100101271

R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM Journal of Research and Development, vol.32, issue.3, p.306, 1988.
DOI : 10.1147/rd.323.0306

V. Brasseur and T. Kairet, Cours à l'université catholique de louvain : Le blocage de coulomb et le transistor à un électron, 2001.

I. Stefana and I. , Eet de champ et blocage de Coulomb dans des nanostructures de silicium labores par microscopie force atomique, 2005.

T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters, vol.59, issue.1, p.109, 1987.
DOI : 10.1103/PhysRevLett.59.109

A. T. Johnson, L. P. Kouwenhoven, W. De-jong, N. C. Van, and . Vaart, Zero-dimensional states and single electron charging in quantum dots, Physical Review Letters, vol.69, issue.10, p.1592, 1992.
DOI : 10.1103/PhysRevLett.69.1592

S. Tarucha, D. G. Austing, T. Honda, and R. J. Van-der-hage, Shell Filling and Spin Effects in a Few Electron Quantum Dot, Physical Review Letters, vol.77, issue.17, p.3613, 1996.
DOI : 10.1103/PhysRevLett.77.3613

L. P. Kouwenhoven, T. H. Oosterkamp, M. W. Danoesastro, and M. Eto, Excitation Spectra of Circular, Few-Electron Quantum Dots, Science, vol.278, issue.5344, p.1788, 1997.
DOI : 10.1126/science.278.5344.1788

T. Sakamoto, H. Kawaura, and T. Baba, Single-electron transistors fabricated from a doped-Si film in a silicon-on-insulator substrate, Applied Physics Letters, vol.72, issue.7, p.795, 1998.
DOI : 10.1063/1.120896

A. Fujiwara, H. Inokawa, K. Yamazaki, and H. Namatsu, Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor, Applied Physics Letters, vol.88, issue.5, p.53121, 2006.
DOI : 10.1063/1.2168496

N. M. Zimmerman, A. Fujiwara, H. Inokawa, and Y. Takahashi, Electrostatically gated Si devices: Coulomb blockade and barrier capacitance, Applied Physics Letters, vol.89, issue.5, p.52102, 2006.
DOI : 10.1063/1.2240600

R. A. Smith and H. Ahmed, Gate controlled Coulomb blockade effects in the conduction of a silicon quantum wire, Journal of Applied Physics, vol.81, issue.6, p.2699, 1997.
DOI : 10.1063/1.363934

A. Tilke, R. H. Blick, H. Lorenz, and J. P. Kotthaus, Coulomb blockade in quasimetallic silicon-on-insulator nanowires, Applied Physics Letters, vol.75, issue.23, p.3704, 1999.
DOI : 10.1063/1.125435

A. T. Tilke, F. C. Simmel, R. H. Blick, and H. Lorenz, Coulomb blockade in silicon nanostructures, Progress in Quantum Electronics, vol.25, issue.3, p.97, 2001.
DOI : 10.1016/S0079-6727(01)00005-2

M. Hofheinz, X. Jehl, M. Sanquer, and G. Molas, Simple and controlled single electron transistor based on doping modulation in silicon nanowires, Applied Physics Letters, vol.89, issue.14, p.143504, 2006.
DOI : 10.1063/1.2358812

H. Ishikuro and T. Hiramoto, Quantum mechanical effects in the silicon quantum dot in a single-electron transistor, Applied Physics Letters, vol.71, issue.25, p.3691, 1997.
DOI : 10.1063/1.120483

L. Zhuang, L. Guo, and S. Y. Chou, Silicon single-electron quantum-dot transistor switch operating at room temperature, Applied Physics Letters, vol.72, issue.10, p.1205, 1998.
DOI : 10.1063/1.121014

T. Koester, F. Goldshmidtboeing, B. Hadam, and J. Stein, Direct patterning of single electron tunneling transistors by high resolution electron beam lithography on highly doped molecular beam epitaxy grown silicon films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, p.3804, 1998.
DOI : 10.1116/1.590412

T. Koester, F. Goldshmidtboeing, B. Hadam, and J. Stein, Coulomb Blockade Effects in a Highly Doped Silicon Quantum Wire Fabricated on Novel Molecular Beam Epitaxy Grown Material, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 1B, p.465, 1999.
DOI : 10.1143/JJAP.38.465

C. M. Lieber, Nanoscale Science and Technology: Building a Big Future from Small Things, MRS Bulletin, vol.28, issue.07, p.486, 2003.
DOI : 10.1038/nature01141

L. Samuelson, M. T. Björk, K. Deppert, and M. Larsson, Semiconductor nanowires for novel one-dimensional devices, Physica E: Low-dimensional Systems and Nanostructures, vol.21, issue.2-4, p.560, 2004.
DOI : 10.1016/j.physe.2003.11.072

B. Yu and M. Meyyappan, Nanotechnology: Role in emerging nanoelectronics, Solid-State Electronics, vol.50, issue.4, p.536, 2006.
DOI : 10.1016/j.sse.2006.03.028

W. Lu and C. M. Lieber, Semiconductor nanowires, Journal of Physics D: Applied Physics, vol.39, issue.21, p.387, 2006.
DOI : 10.1088/0022-3727/39/21/R01

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Nanowire electronic and optoelectronic devices, Materials Today, vol.9, issue.10, p.18, 2006.
DOI : 10.1016/S1369-7021(06)71650-9

URL : http://doi.org/10.1016/s1369-7021(06)71650-9

C. Thelander, P. Agarwal, S. Brongersma, and J. Eymery, Nanowire-based one-dimensional electronics, Materials Today, vol.9, issue.10, p.28, 2006.
DOI : 10.1016/S1369-7021(06)71651-0

Y. Cui, L. J. Lauhon, M. S. Gudiksen, and J. Wang, Diameter-controlled synthesis of single-crystal silicon nanowires, Applied Physics Letters, vol.78, issue.15, p.2214, 2001.
DOI : 10.1063/1.1363692

Y. Wu, Y. Cui, L. Huynh, and C. J. Barrelet, Controlled Growth and Structures of Molecular-Scale Silicon Nanowires, Nano Letters, vol.4, issue.3, p.433, 2004.
DOI : 10.1021/nl035162i

V. Schmidt and U. Gosele, MATERIALS SCIENCE: How Nanowires Grow, Science, vol.316, issue.5825, p.698, 2007.
DOI : 10.1126/science.1142951

S. Kodambaka, J. Terso, M. C. Reuter, and F. M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science, vol.316, issue.5825, p.729, 2007.
DOI : 10.1126/science.1139105

P. Nguyen, H. T. Ng, and M. Meyyappan, Catalyst Metal Selection for Synthesis of Inorganic Nanowires, Advanced Materials, vol.270, issue.14, p.1773, 2005.
DOI : 10.1002/adma.200401717

Y. F. Zhang, Y. H. Tang, N. Wang, and D. P. Yu, Silicon nanowires prepared by laser ablation at high temperature, Applied Physics Letters, vol.72, issue.15, p.1835, 1998.
DOI : 10.1063/1.121199

A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.279, issue.5348, p.208, 1998.
DOI : 10.1126/science.279.5348.208

J. L. Liu, S. J. Cai, G. L. Jin, and S. G. Thomas, Growth of Si whiskers on Au/Si(111) substrate by gas source molecular beam epitaxy (MBE), Journal of Crystal Growth, vol.200, issue.1-2, p.106, 1999.
DOI : 10.1016/S0022-0248(98)01408-0

P. Werner, N. D. Zakharov, G. Gerth, and L. Schubert, On the formation of Si nanowires by molecular beam epitaxy, International Journal of Materials Research, vol.97, issue.7, p.1008, 2006.
DOI : 10.3139/146.101332

L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Semiconductor nanowire heterostructures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1819, p.1247, 2004.
DOI : 10.1098/rsta.2004.1377

W. Lu, J. Xiang, B. P. Timko, and Y. Wu, One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Natl. Acad. Sci. USA, p.10046, 2005.
DOI : 10.1073/pnas.0504581102

J. Xiang, W. Lu, Y. Hu, and Y. Wu, Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature, vol.80, issue.7092, p.489, 2006.
DOI : 10.1038/nature04796

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, p.57, 2002.
DOI : 10.1063/1.102280

F. Qian, Y. Li, S. Gradecak, and D. Wang, Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics, Nano Letters, vol.4, issue.10, 1975.
DOI : 10.1021/nl0487774

F. Qian, S. Gradecak, Y. Li, and C. Wen, Core/multishell nanowire heterostructures as multicolor, high-eciency light-emitting diodes

D. Whang, S. Jin, and C. M. Lieber, Nanolithography Using Hierarchically Assembled Nanowire Masks, Nano Letters, vol.3, issue.7, p.951, 2003.
DOI : 10.1021/nl034268a

X. Duan and C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Advanced Materials, vol.12, issue.4, p.298, 2000.
DOI : 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y

T. J. Trentler, K. M. Hickman, S. C. Goel, and A. M. Viano, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, vol.270, issue.5243, p.1791, 1995.
DOI : 10.1126/science.270.5243.1791

X. Lu, T. Hanrath, K. P. Johnston, and B. A. , Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate, Nano Letters, vol.3, issue.1, p.93, 2003.
DOI : 10.1021/nl0202307

H. F. Yan, Y. J. Xing, Q. L. Hang, and D. P. Yu, Growth of amorphous silicon nanowires via a solid???liquid???solid mechanism, Chemical Physics Letters, vol.323, issue.3-4, p.224, 2000.
DOI : 10.1016/S0009-2614(00)00519-4

T. Pauporté and D. Lincot, Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride, Applied Physics Letters, vol.75, issue.24, p.3817, 1999.
DOI : 10.1063/1.125466

R. Konenkamp, K. Boedecker, M. C. Lux-steiner, and M. Poschenrieder, Thin film semiconductor deposition on free-standing ZnO columns, Applied Physics Letters, vol.77, issue.16, p.2575, 2000.
DOI : 10.1063/1.1319187

Y. Xia, P. Yang, Y. Sun, and Y. Wu, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, vol.15, issue.5, p.353, 2003.
DOI : 10.1002/adma.200390087

M. Zheng, L. Zhang, X. Zhang, and J. Zhang, Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes, Chemical Physics Letters, vol.334, issue.4-6, p.298, 2001.
DOI : 10.1016/S0009-2614(00)01426-3

T. Bryllert, L. Wernersson, T. Löwgren, and L. Samuelson, Vertical wrap-gated nanowire transistors, Nanotechnology, vol.17, issue.11, p.227, 2006.
DOI : 10.1088/0957-4484/17/11/S01

M. S. Islam, S. Sharma, T. I. Kamins, and R. Williams, Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces, Nanotechnology, vol.15, issue.5, p.5, 2004.
DOI : 10.1088/0957-4484/15/5/L01

X. Duan, Y. Huang, Y. Cui, and J. Wang, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, vol.409, issue.6816, p.66, 2001.
DOI : 10.1038/35051047

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, p.630, 2001.
DOI : 10.1126/science.291.5504.630

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems, Nano Letters, vol.3, issue.9, p.1255, 2003.
DOI : 10.1021/nl0345062

M. Switkes and M. Rothschild, Immersion lithography at 157 nm, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.6, p.2353, 2001.
DOI : 10.1116/1.1412895

G. Binning, H. Rohrer, . Ch, E. Gerber, and . Weibel, Surface studies by scanning tunneling microscopy Atomic force microscope, Physical Review Letters Physical Review Letters, vol.49, issue.56, p.57930, 1982.

D. Stiévenard and B. Legrand, Silicon surface nano-oxidation using scanning probe microscopy, Progress in Surface Science, vol.81, issue.2-3, p.112, 2006.
DOI : 10.1016/j.progsurf.2006.01.003

B. Legrand, Elaboration et caractrisation physique par microscopies champ proche de nanostructures semi-conductrices, 2000.

N. Clément, Nanocircuits en silicium sur isolant élaborés par microscopie force atomique, 2003.

N. Clément, D. Tonneau, B. Gely, and H. Dalaporta, High aspect ratio nano-oxidation of silicon with noncontact atomic force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, p.2348, 2003.
DOI : 10.1116/1.1620513

B. Legrand and D. Stiévenard, Nanooxidation of silicon with an atomic force microscope: A pulsed voltage technique, Applied Physics Letters, vol.74, issue.26, p.4049, 1999.
DOI : 10.1063/1.123257

G. Jung, E. Johnston-halperin, W. Wu, and Z. Yu, Circuit Fabrication at 17 nm Half-Pitch by Nanoimprint Lithography, Nano Letters, vol.6, issue.3, p.351, 2006.
DOI : 10.1021/nl052110f

S. Jin, D. Whang, M. C. Mcalpine, and R. S. Friedman, Scalable Interconnection and Integration of Nanowire Devices without Registration, Nano Letters, vol.4, issue.5, p.915, 2004.
DOI : 10.1021/nl049659j

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors, Advanced Materials, vol.4, issue.21, p.1890, 2004.
DOI : 10.1002/adma.200400472

Y. Cui, Z. Zhong, D. Wang, and W. U. Wang, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, p.149, 2003.
DOI : 10.1021/nl025875l

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.3218

Y. Choi, T. King, and C. Hu, Nanoscale CMOS spacer FinFET for the terabit era, IEEE Electron Device Letters, vol.23, issue.1, p.25, 2002.
DOI : 10.1109/55.974801

J. Penaud, Contributions à la conception et à la réalisation de transistors MOS à grille multiple, 2006.

F. Fruleux, Conception, élaboration et caractérisation de dispositifs CMOS émergents : une nouvelle approche d'intégration de transistors multigrilles de type FinFET, 2007.

J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Silicon Vertically Integrated Nanowire Field Effect Transistors, Nano Letters, vol.6, issue.5, p.973, 2006.
DOI : 10.1021/nl060166j

Z. Zhong, Y. Fang, W. Lu, and C. M. Lieber, Coherent Single Charge Transport in Molecular-Scale Silicon Nanowires, Nano Letters, vol.5, issue.6, p.1143, 2005.
DOI : 10.1021/nl050783s

C. Yang, Z. Zhong, and C. M. Lieber, Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires, Science, vol.310, issue.5752, p.3101304, 2005.
DOI : 10.1126/science.1118798

Y. Huang, X. Duan, Y. Cui, and L. J. Lauhon, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, vol.294, issue.5545, p.1313, 2001.
DOI : 10.1126/science.1066192

Z. Zhong, D. Wang, Y. Cui, and M. W. Bockrath, Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, vol.302, issue.5649, p.1377, 2003.
DOI : 10.1126/science.1090899

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.1289, 2001.
DOI : 10.1126/science.1062711

E. Stern, J. F. Klemic, D. A. Routenberg, and P. N. , Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, p.519, 2007.
DOI : 10.1038/nature05498

G. Zheng, F. Patolsky, Y. Cui, and W. U. Wang, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, p.1294, 2005.
DOI : 10.1021/ac049479u

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, p.51, 2004.
DOI : 10.1021/nl034853b

F. Patolsky, G. Zheng, O. Hayden, and M. Lakadamyali, Electrical detection of single viruses, Proc. Natl. Acad. Sci. USA, p.14017, 2004.
DOI : 10.1073/pnas.0406159101

.. Bancs-de-caractérisation-Électrique, 73 II.9 Conclusion, p.74

G. Binning, H. Rohrer, . Ch, E. Gerber, and . Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, p.57, 1982.
DOI : 10.1007/978-94-011-1812-5_1

G. Binnig, H. Rohrer, . Ch, E. Gerber, and . Weibel, 7 ?? 7 Reconstruction on Si(111) Resolved in Real Space, Physical Review Letters, vol.50, issue.2, p.120, 1983.
DOI : 10.1103/PhysRevLett.50.120

R. M. Feenstra, J. A. Stroscio, J. Terso, and A. P. Fein, Atom-selective imaging of the GaAs(110) surface, Physical Review Letters, vol.58, issue.12, p.1192, 1987.
DOI : 10.1103/PhysRevLett.58.1192

J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface, Physical Review Letters, vol.58, issue.16, p.1668, 1987.
DOI : 10.1103/PhysRevLett.58.1668

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

R. García and R. Pérez, Dynamic atomic force microscopy methods, Surface Science Reports, vol.47, issue.6-8, p.197, 2002.
DOI : 10.1016/S0167-5729(02)00077-8

C. Kittel, Physique de l'état solide, 1998.

R. García, M. Calleja, and H. Rohrer, Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges, Journal of Applied Physics, vol.86, issue.4, p.1898, 1999.
DOI : 10.1063/1.370985

J. A. Dagata, J. Schneir, H. H. Harary, and C. J. Evans, Modication of hydrogen-passivated silicon by scanning tuneling microscope operating in air, Applied Physics Letters, vol.56, 1990.

E. S. Snow and P. M. Campbell, Fabrication of Si nanostructures with an atomic force microscope, Applied Physics Letters, vol.64, issue.15, 1932.
DOI : 10.1063/1.111746

E. S. Snow, P. M. Campbell, R. W. Rendell, and F. A. Buot, A metal/oxide tunneling transistor, Applied Physics Letters, vol.72, issue.23, p.3071, 1998.
DOI : 10.1063/1.121544

A. E. Gordon, R. T. Fayeld, D. D. Litn, and T. K. Higman, Mechanisms of surface anodization produced by scanning probe microscopes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.6, p.2805, 1995.
DOI : 10.1116/1.588270

E. S. Snow, D. Park, and P. M. Campbell, Single???atom point contact devices fabricated with an atomic force microscope, Applied Physics Letters, vol.69, issue.2, p.269, 1996.
DOI : 10.1063/1.117946

T. H. Chang and W. C. Nixon, Electron beam formation of 800 ?? wide aluminium lines, Journal of Scientific Instruments, vol.44, issue.3, p.231, 1967.
DOI : 10.1088/0950-7671/44/3/420

C. Vieu, F. Carcenac, A. Pépin, and Y. Chen, Electron beam lithography: resolution limits and applications, Applied Surface Science, vol.164, issue.1-4, p.111, 2000.
DOI : 10.1016/S0169-4332(00)00352-4

S. Yasin, D. G. Hasko, and H. Ahmed, Fabrication of <5 nm width lines in poly(methylmethacrylate) resist using a water:isopropyl alcohol developer and ultrasonically-assisted development, Applied Physics Letters, vol.78, issue.18, p.2760, 2001.
DOI : 10.1063/1.1369615

M. J. Van-bruggen, B. Van-someren, and P. Kruit, Development of a multi-electron-beam source for sub-10???nm electron beam induced deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.6, p.2833, 2005.
DOI : 10.1116/1.2091087

S. M. Sze, VLSI Technology. McGraw-Hill International Editions, 1988.

K. Köhier, J. W. Coburn, D. E. Horne, and E. Kay, Plasma potentials of 13.56- mhz rf argon glow discharges in a planar system, Journal of Applied Physics, vol.57, p.59, 1985.

A. Ganguli and R. D. Tarey, Understanding plasma sources, Current Science, vol.83, p.279, 2002.

J. Penaud, Contributions à la conception et à la réalisation de transistors MOS à grille multiple, 2006.

O. Bonnaud, Module pédagogique d'initiation à la microélectronique

J. Grimblot, L'analyse de surfaces des solides, 1995.

I. Lithographie-par and A. , 83 III.3.1 Mécanisme de l'oxydation du silicium par 83 III.3.2 Champ électrique seuil, p.88

W. Chen and H. Ahmed, Fabrication of 5???7 nm wide etched lines in silicon using 100 keV electron???beam lithography and polymethylmethacrylate resist, Applied Physics Letters, vol.62, issue.13, p.1499, 1993.
DOI : 10.1063/1.109609

J. A. Dagata, J. Schneir, H. H. Harary, and C. J. Evans, Modication of hydrogen-passivated silicon by scanning tuneling microscope operating in air, Applied Physics Letters, vol.56, 1990.

E. S. Snow and P. M. Campbell, Fabrication of Si nanostructures with an atomic force microscope, Applied Physics Letters, vol.64, issue.15, 1932.
DOI : 10.1063/1.111746

L. Tsau, D. Wang, and K. L. Wang, Nanometer scale patterning of silicon (100) surfaces by an atomic force microscope operating in air, Applied Physics Letters, vol.64, issue.16, p.2133, 1994.
DOI : 10.1063/1.111707

D. Wang, L. Tsau, and K. L. Wang, Nanometer???structure writing on Si(100) surfaces using a non???contact???mode atomic force microscope, Applied Physics Letters, vol.65, issue.11, p.1415, 1994.
DOI : 10.1063/1.112068

F. Marchi, V. Bouchiat, H. Dallaporta, and V. Safarov, Growth of silicon oxide on hydrogenated silicon during lithography with an atomic force microscope, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, p.2952, 1998.
DOI : 10.1116/1.590325

R. García, M. Calleja, and H. Rohrer, Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges, Journal of Applied Physics, vol.86, issue.4, p.1898, 1999.
DOI : 10.1063/1.370985

F. Pérez-murano, C. Martín, N. Barniol, and H. Kuramochi, Measuring electrical current during scanning probe oxidation, Applied Physics Letters, vol.82, issue.18, p.3086, 2003.
DOI : 10.1063/1.1572480

P. Avouris, T. Hertel, and R. Martel, Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Applied Physics Letters, vol.71, issue.2, p.285, 1997.
DOI : 10.1063/1.119521

P. Schmuki, H. Böhni, and J. A. , In Situ Characterization of Anodic Silicon Oxide Films by AC Impedance Measurements, Journal of The Electrochemical Society, vol.142, issue.5, p.1705, 1995.
DOI : 10.1149/1.2048644

J. A. Dagata, T. Inoue, J. Itoh, and K. Matsumoto, Role of space charge in scanned probe oxidation, Journal of Applied Physics, vol.84, issue.12, p.6891, 1998.
DOI : 10.1063/1.368986

P. A. Fontaine, E. Dubois, and D. Stiévenard, Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanoli- BIBLIOGRAPHIE thography on hydrogen-passivated silicon, Journal of Applied Physics, vol.84, p.1176, 1998.

T. Teuschler, K. Mahr, S. Miyazaki, and M. Hundhausen, Nanometer???scale field???induced oxidation of Si(111):H by a conducting???probe scanning force microscope: Doping dependence and kinetics, Applied Physics Letters, vol.67, issue.21, p.3144, 1995.
DOI : 10.1063/1.114861

L. Ley, T. Teuschler, K. Mahr, and S. Miyazaki, Kinetics of field-induced oxidation of hydrogen-terminated Si(111), Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.4, p.2845, 1996.
DOI : 10.1116/1.588843

D. Stiévenard, P. A. Fontaine, and E. Dubois, Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation, Applied Physics Letters, vol.70, issue.24, p.3272, 1997.
DOI : 10.1063/1.118425

J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, Understanding scanned probe oxidation of silicon, Applied Physics Letters, vol.73, issue.2, p.271, 1998.
DOI : 10.1063/1.121777

J. A. Dagata, F. Pérez-murano, G. Abadal, and K. Morimoto, Predictive model for scanned probe oxidation kinetics, Applied Physics Letters, vol.76, issue.19, p.2710, 2000.
DOI : 10.1063/1.126451

D. Stiévenard and B. Legrand, Silicon surface nano-oxidation using scanning probe microscopy, Progress in Surface Science, vol.81, issue.2-3, p.112, 2006.
DOI : 10.1016/j.progsurf.2006.01.003

V. Q. Ho and T. Sugano, Selective anodic oxidation of silicon in oxygen plasma, IEEE Transactions on Electon Devices, vol.27, p.1436, 1980.

R. García, M. Calleja, and F. Pérez-murano, Local oxidation of silicon surfaces by dynamic force microscopy : nanofabrication and water bridge formation

M. Calleja and R. García, Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: Size dependence on voltage and pulse duration, Applied Physics Letters, vol.76, issue.23, p.3427, 2000.
DOI : 10.1063/1.126856

B. Legrand and D. Stiévenard, Nanooxidation of silicon with an atomic force microscope: A pulsed voltage technique, Applied Physics Letters, vol.74, issue.26, p.4049, 1999.
DOI : 10.1063/1.123257

B. Legrand and D. Stiévenard, Atomic force microscope tip-surface behavior under continuous bias or pulsed voltages in noncontact mode, Applied Physics Letters, vol.76, issue.8, p.1018, 2000.
DOI : 10.1063/1.125925

M. Calleja, J. Anguita, R. García, and K. Birkelund, Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication, Nanotechnology, vol.10, issue.1, p.34, 1999.
DOI : 10.1088/0957-4484/10/1/008

F. Pérez-murano, K. Birkelund, K. Morimoto, and J. A. Dagata, Voltage modulation scanned probe oxidation, Applied Physics Letters, vol.75, issue.2, p.199, 1999.
DOI : 10.1063/1.124318

N. Clément, Nanocircuits en silicium sur isolant élaborés par microscopie force atomique, 2003.

N. Clément, D. Tonneau, B. Gely, and H. Dalaporta, High aspect ratio nanooxidation of silicon with noncontact atomic force microscopy Semiconductor integrated circuit processing technology, Journal of Vacuum Science and Technology B, vol.2129, p.2348, 1990.

B. Legrand, D. Deresmes, and D. Stiévenard, Silicon nanowires with sub 10 nm lateral dimensions: From atomic force microscope lithography based fabrication to electrical measurements, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.3, p.862, 2002.
DOI : 10.1116/1.1470519

K. E. Bean, Anisotropic etching of silicon, IEEE Transactions on Electron Devices, vol.25, issue.10, p.1185, 1978.
DOI : 10.1109/T-ED.1978.19250

H. Angermann, W. Henrion, A. Röseler, and M. Rebien, Wet-chemical passivation of Si(111)- and Si(100)-substrates, Materials Science and Engineering: B, vol.73, issue.1-3, p.178, 2000.
DOI : 10.1016/S0921-5107(99)00457-2

W. Henrion, M. Rebien, H. Angermann, and A. Röseler, Spectroscopic investigations of hydrogen termination, oxide coverage, roughness, and surface state density of silicon during native oxidation in air, Applied Surface Science, vol.202, issue.3-4, p.199, 2002.
DOI : 10.1016/S0169-4332(02)00923-6

Y. M. Niquet, A. Lherbier, N. H. Quang, and M. V. Fernández-serra, Electronic structure of semiconductor nanowires, Physical Review B, vol.73, issue.16, p.165319, 2006.
DOI : 10.1103/PhysRevB.73.165319

URL : https://hal.archives-ouvertes.fr/hal-00127831

X. Zhao, C. M. Wei, L. Yang, and M. Y. Chou, Quantum Confinement and Electronic Properties of Silicon Nanowires, Physical Review Letters, vol.92, issue.23, p.236805, 2004.
DOI : 10.1103/PhysRevLett.92.236805

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.1289, 2001.
DOI : 10.1126/science.1062711

E. Stern, J. F. Klemic, D. A. Routenberg, and P. N. , Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, p.519, 2007.
DOI : 10.1038/nature05498

G. Zheng, F. Patolsky, Y. Cui, and W. U. Wang, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, p.1294, 2005.
DOI : 10.1021/ac049479u

K. Yamazaki and H. Namatsu, 5-nm-order electron-beam lithography for nanodevice fabrication, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference, p.3767, 2004.
DOI : 10.1109/IMNC.2003.1268626

H. Namatsu, Y. Takahashi, K. Yamazaki, and T. Yamaguchi, Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, p.69, 1998.
DOI : 10.1116/1.589837

F. Fruleux, Conception, élaboration et caractérisation de dispositifs CMOS émergents : une nouvelle approche d'intégration de transistors multigrilles de type FinFET, 2007.

C. Yang and W. Chen, The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing, Journal of Materials Chemistry, vol.12, issue.4, p.1138, 2002.
DOI : 10.1039/b107697n

A. N. Broers, Resolution limits for electron-beam lithography, IBM Journal of Research and Development, vol.32, issue.4, p.502, 1988.
DOI : 10.1147/rd.324.0502

G. Mazzoni, A. L. Lacaita, L. M. Perron, and A. Pirovano, On surface roughness-limited mobility in highly doped n-MOSFET's, IEEE Transactions on Electron Devices, vol.46, issue.7, p.1423, 1999.
DOI : 10.1109/16.772486

V. Premachandran, Etch rate enhancement of photoresist in nitrogen???containing plasmas, Applied Physics Letters, vol.55, issue.24, p.2488, 1989.
DOI : 10.1063/1.102007

V. Premachandran, plasma, Applied Physics Letters, vol.58, issue.15, p.1600, 1991.
DOI : 10.1063/1.105137

G. K. Reeves and H. B. Harrison, Obtaining the specic contact resistance from transmission line model measurements, IEEE Electron Device Letters, vol.3, issue.5, p.111113, 1982.

O. D. Trapp, R. A. Blanchard, L. J. Lopp, and T. I. Kamins, Semiconductor Technology Hanbook, 1982.

R. W. Bower, Characteristics of aluminum???titanium electrical contacts on silicon, Applied Physics Letters, vol.23, issue.2, p.99, 1973.
DOI : 10.1063/1.1654823

K. Pradip, S. M. Roy, A. K. Merchant, and . Nanda, Layering processes and their applications in silicon microelectronics, Bell Labs Technical Journal, vol.1, 1997.

H. Angermann, W. Henrion, A. Röseler, and M. Rebien, Wet-chemical passivation of Si(111)- and Si(100)-substrates, Materials Science and Engineering: B, vol.73, issue.1-3, p.178, 2000.
DOI : 10.1016/S0921-5107(99)00457-2

T. Vo, A. J. Williamson, and G. Galli, First principles simulations of the structural and electronic properties of silicon nanowires, Physical Review B, vol.74, issue.4, p.45116, 2006.
DOI : 10.1103/PhysRevB.74.045116

M. Diarra, Y. M. Niquet, C. Delerue, and G. Allan, Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement, Physical Review B, vol.75, issue.4, p.45301, 2007.
DOI : 10.1103/PhysRevB.75.045301

URL : https://hal.archives-ouvertes.fr/hal-00283119

K. Seo, S. Sharma, A. A. Yasseri, and D. R. Stewart, Surface Charge Density of Unpassivated and Passivated Metal-Catalyzed Silicon Nanowires, Electrochemical and Solid-State Letters, vol.9, issue.3, p.69, 2006.
DOI : 10.1149/1.2159295

M. V. Fernández-serra, C. Adessi, and X. Blase, Conductance, Surface Traps, and Passivation in Doped Silicon Nanowires, Nano Letters, vol.6, issue.12, p.2674, 2006.
DOI : 10.1021/nl0614258

Y. Cui, Z. Zhong, D. Wang, and W. U. Wang, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, p.149, 2003.
DOI : 10.1021/nl025875l

A. Saad, O. I. Velichko, Y. P. Shaman, and A. V. Mazanik, Modeling of hydrogen diffusion in silicon crystals, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.253, issue.1-2, p.118, 2006.
DOI : 10.1016/j.nimb.2006.10.016

S. Darwiche, M. Nikravech, D. Morvan, and J. Amouroux, Effects of hydrogen plasma on passivation and generation of defects in multicrystalline silicon, Solar Energy Materials and Solar Cells, vol.91, issue.2-3, p.195, 2007.
DOI : 10.1016/j.solmat.2006.08.008

T. I. Kamins and . Marcoux, Hydrogenation of transistors fabricated in polycrystalline-silicon films, IEEE Electron Device Letters, vol.1, issue.8, p.159, 1980.
DOI : 10.1109/EDL.1980.25272

I. Wu, T. Huang, W. B. Jackson, and A. G. Lewis, Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation, IEEE Electron Device Letters, vol.12, issue.4, p.181, 1991.
DOI : 10.1109/55.75757

J. W. Lyding, G. C. Abeln, T. C. Shen, and C. Wang, Nanometer scale patterning and oxidation of silicon surfaces with an ultrahigh vacuum scanning tunneling microscope, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.6, p.3735, 1994.
DOI : 10.1116/1.587433

Y. Wei, L. Li, and I. S. Tsong, Etching of Si(111)???(7??7) and Si(100)???(2??1) surfaces by atomic hydrogen, Applied Physics Letters, vol.66, issue.14, p.1818, 1995.
DOI : 10.1063/1.113332

C. Syrykh, J. P. Nys, B. Legrand, and D. Stiévenard, Nanoscale desorption of H-passivated Si(100)???2??1 surfaces using an ultrahigh vacuum scanning tunneling microscope, Journal of Applied Physics, vol.85, issue.7, p.3887, 1999.
DOI : 10.1063/1.369760

P. F. Newman and D. F. Holcomb, Metal-insulator transition in Si: As, Physical Review B, vol.28, issue.2, p.638, 1983.
DOI : 10.1103/PhysRevB.28.638

J. Wagner and J. A. Del-alamo, Band???gap narrowing in heavily doped silicon: A comparison of optical and electrical data, Journal of Applied Physics, vol.63, issue.2, p.425, 1987.
DOI : 10.1063/1.340257

A. Bid, A. Bora, and A. K. Raychaudhuri, : Applicability of Bloch-Gr??neisen theorem, Physical Review B, vol.74, issue.3, p.35426, 2006.
DOI : 10.1103/PhysRevB.74.035426

W. D. Williams and N. Giordano, Experimental study of localization and electron-electron interaction effects in thin Au wires, Physical Review B, vol.33, issue.12, p.8146, 1986.
DOI : 10.1103/PhysRevB.33.8146

Z. Zhong, D. Wang, Y. Cui, and M. W. Bockrath, Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, vol.302, issue.5649, p.1377, 2003.
DOI : 10.1126/science.1090899

C. Yang, Z. Zhong, and C. M. Lieber, Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires, Science, vol.310, issue.5752, p.3101304, 2005.
DOI : 10.1126/science.1118798

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, p.57, 2002.
DOI : 10.1063/1.102280

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, p.630, 2001.
DOI : 10.1126/science.291.5504.630

Y. Cui, Z. Zhong, D. Wang, and W. U. Wang, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, p.149, 2003.
DOI : 10.1021/nl025875l

Y. M. Niquet, A. Lherbier, N. H. Quang, and M. V. Fernández-serra, Electronic structure of semiconductor nanowires, Physical Review B, vol.73, issue.16, p.165319, 2006.
DOI : 10.1103/PhysRevB.73.165319

URL : https://hal.archives-ouvertes.fr/hal-00127831

A. Dehon, Array-based architecture for FET-based, nanoscale electronics, IEEE Transactions On Nanotechnology, vol.2, issue.1, p.23, 2003.
DOI : 10.1109/TNANO.2003.808508

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.1289, 2001.
DOI : 10.1126/science.1062711

E. Stern, J. F. Klemic, D. A. Routenberg, and P. N. , Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, p.519, 2007.
DOI : 10.1038/nature05498

G. Zheng, F. Patolsky, Y. Cui, and W. U. Wang, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, p.1294, 2005.
DOI : 10.1021/ac049479u

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, p.51, 2004.
DOI : 10.1021/nl034853b

F. Patolsky, G. Zheng, O. Hayden, and M. Lakadamyali, Electrical detection of single viruses, Proc. Natl. Acad. Sci. USA, p.14017, 2004.
DOI : 10.1073/pnas.0406159101

Y. Conier, C. Olivier, A. Perzyna, and B. Grandidier, Semicarbazidefunctionalized Si(111) surfaces for the site-specic immobilization of peptides, Langmuir, vol.21, p.1489, 2005.

Y. Conier, Fonctionnalisation de supports chromatographiques par des ligands pseudobiospéciques pour l'élimination extracorporelle de biomolécules pathogénes du sang (maladies autoimmunes), 2002.

K. R. Williams, K. Gupta, and M. Wasilik, Etch rates for micromachining processing-part II, Journal of Microelectromechanical Systems, vol.12, issue.6, p.761, 1973.
DOI : 10.1109/JMEMS.2003.820936

R. J. Hamers, S. K. Coulter, M. D. Ellison, J. S. Hovis, D. S. Padowitz et al., Cycloaddition Chemistry of Organic Molecules with Semiconductor Surfaces, Accounts of Chemical Research, vol.33, issue.9, p.617, 2000.
DOI : 10.1021/ar970281o

S. T. Forrest, Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques, Chemical Reviews, vol.97, issue.6, p.1793, 1997.
DOI : 10.1021/cr941014o

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Physical Review B, vol.5, issue.12, p.4709, 1972.
DOI : 10.1103/PhysRevB.5.4709

J. L. Armstrong, J. M. White, and J. , Thermal decomposition reactions of acetaldehyde and acetone on Si(100), Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.15, issue.3, p.1146, 1997.
DOI : 10.1116/1.580445

R. Schlaf, Observation of strong band bending in perylene tetracarboxylic dianhydride thin films grown on SnS2, Journal of Applied Physics, vol.86, issue.3, p.1499, 1999.
DOI : 10.1063/1.370920

A. Hoshino, S. Isoda, H. Kurata, and T. Kobayashi, Scanning tunneling microscope contrast of perylene???3,4,9,10???tetracarboxylic???dianhydride on graphite and its application to the study of epitaxy, Journal of Applied Physics, vol.76, issue.7, p.4113, 1994.
DOI : 10.1063/1.357361

J. J. Boland, Scanning tunneling microscopy study of the adsorption and recombinative desorption of hydrogen from the Si(100)???2??1 surface, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, issue.4, p.2458, 1992.
DOI : 10.1116/1.577984

T. Bitzer, T. Rada, and N. V. Richardson, Inhibition of the [2+2] Cycloaddition:?? Maleic Anhydride on Si(100)-2??1, The Journal of Physical Chemistry B, vol.105, issue.20, p.4535, 2001.
DOI : 10.1021/jp0028958

T. Soubiron, Molecular interactions of PTCDA on Si(100), Surface Science, vol.581, issue.2-3, pp.178-188, 2005.
DOI : 10.1016/j.susc.2005.02.050

URL : https://hal.archives-ouvertes.fr/hal-00126421

. Adam, Electronic address: catherine.priester@isen.fr 1 D, Nature London, vol.371, issue.141, 2002.

X. Cui, J. Duan, C. M. Hu, and . Lieber, Doping and Electrical Transport in Silicon Nanowires, The Journal of Physical Chemistry B, vol.104, issue.22, p.5213, 2000.
DOI : 10.1021/jp0009305

J. Wu, C. Xiang, W. Yang, C. M. Lu, and . Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature, vol.285, issue.6995, p.61, 2004.
DOI : 10.1038/nature01141

C. M. Lu and . Lieber, Semiconductor nanowires, Journal of Physics D: Applied Physics, vol.39, issue.21, pp.387-406, 2006.
DOI : 10.1088/0022-3727/39/21/R01

X. Huang, Y. Duan, L. J. Cui, K. Lauhon, C. M. Kim et al., Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, vol.294, issue.5545, p.1313, 2001.
DOI : 10.1126/science.1066192

A. Yu, C. M. Cao, and . Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nature Nanotechnology, vol.303, issue.6, p.372, 2007.
DOI : 10.1038/nnano.2007.150

Y. M. Diarra, C. Niquet, G. Delerue, and . Allan, Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement, Physical Review B, vol.75, issue.4, p.45301, 2007.
DOI : 10.1103/PhysRevB.75.045301

URL : https://hal.archives-ouvertes.fr/hal-00283119

A. J. Vo, G. Williamson, and . Galli, First principles simulations of the structural and electronic properties of silicon nanowires, Physical Review B, vol.74, issue.4, p.45116, 2006.
DOI : 10.1103/PhysRevB.74.045116

D. Legrand and . Stiévenard, Nanooxidation of silicon with an atomic force microscope: A pulsed voltage technique, Applied Physics Letters, vol.74, issue.26, p.4049, 1999.
DOI : 10.1063/1.123257

W. Angermann, A. Henrion, M. Röseler, and . Rebien, Wet-chemical passivation of Si(111)- and Si(100)-substrates, Materials Science and Engineering: B, vol.73, issue.1-3, p.178, 2000.
DOI : 10.1016/S0921-5107(99)00457-2